WO2018028258A1 - 确定非均质碳酸盐岩储层饱和度指数的方法及系统 - Google Patents
确定非均质碳酸盐岩储层饱和度指数的方法及系统 Download PDFInfo
- Publication number
- WO2018028258A1 WO2018028258A1 PCT/CN2017/084304 CN2017084304W WO2018028258A1 WO 2018028258 A1 WO2018028258 A1 WO 2018028258A1 CN 2017084304 W CN2017084304 W CN 2017084304W WO 2018028258 A1 WO2018028258 A1 WO 2018028258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- reservoir
- saturation
- water saturation
- index
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 49
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000011148 porous material Substances 0.000 claims description 49
- 238000002474 experimental method Methods 0.000 claims description 38
- 238000005119 centrifugation Methods 0.000 claims description 11
- 238000003384 imaging method Methods 0.000 claims description 11
- 230000035699 permeability Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 description 13
- 239000009096 changqing Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 239000008398 formation water Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000009671 shengli Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
Definitions
- the invention relates to the field of oil and gas reservoir logging evaluation technology, in particular to a method and a system for determining a saturation index of a heterogeneous carbonate reservoir.
- the conductivity of reservoir rocks mainly depends on the fluid properties, saturation state and spatial distribution in the pore space.
- the pore structure has a significant effect on the electrical resistivity.
- the influence of resistivity far exceeds the influence of oil and gas.
- Many researchers have tried to get rid of the traditional method of calculating the saturation by relying solely on the resistivity curve for more than 70 years. Try to use various non-electrical logging to calculate the saturation of carbonate rock, but The effect is not ideal. Therefore, to date, saturation calculation based on electrical logging is still the most practical and feasible method.
- Archie (1942) first proposed the relationship between the resistivity increase rate of hydrocarbon reservoirs—water saturation, formation factors—porosity.
- Li Ning (1989) based on the non-uniform anisotropic formation model, through the complete mathematical derivation, gives the relationship between the increase rate of resistivity - water saturation, formation factor - porosity.
- the general relational theory theoretically solves the problem of accurate quantitative calculation of heterogeneous complex reservoir saturation.
- two key technical problems need to be solved in applying it to actual production: first, generally The relational formula is a general solution equation, which is not convenient for direct programming calculation. That is to say, under the existing logging technology conditions, it is quite difficult to determine all the parameters in the general relationship.
- the shortest form also called the best form
- the methods for determining the saturation index n can be basically divided into two categories: one is to use the rock power experiment, by fitting the relationship between the resistance increase rate and the water saturation; the second is to use the established saturation.
- the empirical relationship between the index n and reservoir parameters such as porosity and permeability is determined.
- the first type of method belongs to the direct method and is the conventional method for determining the saturation index n.
- the present invention proposes a method for determining a saturation index of a heterogeneous carbonate reservoir to accurately determine a heterogeneous carbonate saturation index, thereby achieving carbonate saturation.
- the model parameters are dynamically determined to improve the calculation accuracy of the oil and gas saturation.
- the present application provides a method for determining a saturation index of a heterogeneous carbonate reservoir, comprising:
- the target rock reservoir is divided into at least two reservoir types according to predetermined rules
- the dividing the target rock reservoir into at least two reservoir types according to a predetermined rule includes:
- a plurality of said core samples are divided into at least two types of cores according to predetermined rules to represent at least two types of reservoirs.
- core samples of more than 10 target rock reservoirs are selected.
- the core sample for selecting a plurality of target rock reservoirs includes:
- a plurality of core samples are drilled at the coring position.
- the dividing the plurality of core samples into at least two types of cores according to a predetermined rule to represent at least two types of reservoirs includes:
- the plurality of core samples are divided into two types of cores; the two types of cores include: core samples with poor pores but poor connectivity of pores; and the other types are cracks or intercrystalline pores.
- Core sample includes: core samples with poor pores but poor connectivity of pores; and the other types are cracks or intercrystalline pores.
- the predetermined rule includes:
- the core corresponding to the imaging log data can see the hole feature but no crack feature, or the data point of the core in the hole seepage map is located at the lower right, or the core can see the dissolved hole but no micro crack
- the core can be classified as a core with poor pores but poor connectivity, otherwise the core can be classified into a core containing cracks or intercrystalline pores.
- the obtaining the correspondence between the saturation index and the irreducible water saturation in each reservoir type includes:
- the saturation index of the core sample in each reservoir type is linearly fitted to the bound water saturation to obtain a correspondence between the saturation index and the irreducible water saturation in each reservoir type; the correspondence is as follows:
- n aSwir+b
- n is the saturation index
- Swir is the irreducible water saturation.
- the obtaining the correspondence between the saturation index and the irreducible water saturation in each reservoir type further includes:
- the obtaining a saturation index of each core sample includes:
- a saturation index for each of the core samples in the core sample in each of the reservoir types is obtained.
- the obtaining the irreducible water saturation of each of the core samples comprises:
- the obtaining a saturation index of each core sample includes:
- a rock power experiment was performed on a partial number of the core samples in each reservoir type to obtain a saturation index.
- the obtaining the irreducible water saturation of the core to be tested includes:
- the pore permeability parameter measurement and the centrifugation experiment are performed on the core to be tested to determine the irreducible water saturation.
- a system for determining a saturation index of a heterogeneous carbonate reservoir comprising:
- a dividing device for dividing the target rock reservoir into at least two reservoir types according to a predetermined rule
- a first obtaining device configured to acquire a correspondence between a saturation index and a bound water saturation in each reservoir type
- a second obtaining device configured to acquire the irreducible water saturation of the core to be tested
- a calculating device configured to calculate a saturation index of the core to be tested based on the correspondence relationship of the associated reservoir type according to the bound water saturation of the core to be tested.
- the method proposed by the present invention has the following significant advantages: (1) the determination method is simple: once the region has saturation n and bound water The relationship between the saturations S wir is established. With this method, it is no longer necessary to carry out the reservoir condition rock power experiment on the core of the target interval, and the value of the reservoir saturation index n of other layers in the region can be determined by the irreducible water saturation. In order to overcome the complex difficulties of reservoir conditions for rock power experiments; (2) the parameters are more accurate: the method can determine the corresponding saturation index according to different reservoir characteristics of the target horizon, reflecting the influence of different pore structures on the electrical properties. The difference is good; (3) It is convenient to use the logging data to dynamically determine: Using this method, the logging data can be used to easily realize the dynamic calculation of the saturation index n, thereby improving the calculation accuracy of the complex carbonate rock oil saturation.
- FIG. 1 is a flow chart showing the steps of a method for determining a saturation index of a heterogeneous carbonate reservoir provided by an embodiment of the present application;
- Figure 2 is a correspondence diagram between the reservoir saturation index n and the irreducible water saturation Swir in the Changqing Oilfield;
- Figure 3 is the reservoir saturation index n and the irreducible water saturation Swir in the Changqing Oilfield with cracks or intercrystalline pores. Correspondence diagram between the two.
- an embodiment of the present application provides a method for determining a saturation index of a heterogeneous carbonate reservoir, the method comprising the following steps:
- the pore structure characteristics of the heterogeneous carbonate reservoir are considered, and the target rock reservoir is divided into at least two reservoir types. There are differences in the pore structure of different reservoir types.
- step S100 the dividing the target rock reservoir into at least two reservoir types according to a predetermined rule (step S100) comprises the following sub-steps:
- this step preferably more than 10 core samples of the target rock reservoir are selected.
- a representative core sample of the study area may be selected, which is to determine the position and effective thickness of the target horizon based on comprehensive analysis of conventional and imaging logs, and according to conventional, imaging logging, etc.
- the longitudinal characteristics of the data determine the location of the core and drill a representative core sample.
- the selecting a core sample of the plurality of target rock reservoirs may include the following sub-steps: S111, determining a location of the target rock reservoir, and an effective thickness; S112, determining the target rock reservoir according to the imaging log data. The coring position; S113, drilling a plurality of core samples at the coring position.
- the hole characteristics of the core sample are used to represent the hole characteristics of the reservoir in which it is located. This is also the purpose of selecting more than 10 core samples in the previous step S110, to more accurately and accurately represent the rock reservoir through the core sample. The characteristics of the layer.
- the dividing the plurality of core samples into at least two types of cores according to a predetermined rule to represent at least two types of reservoirs may include: S121, dividing the plurality of core samples according to a predetermined rule.
- Two types of rock The two types of cores include: core samples with poor pores but poor connectivity (first type); and core samples with cracks or intercrystalline pores (second type).
- the predetermined rule may include: if the hole mapping feature of the core corresponds to the hole feature but no crack feature, or in the hole seepage map (porosity-permeability intersection diagram), the core data point is located At the lower right, or when the core is observed, the naked eye can see the dissolved pores but no micro-cracks exist.
- the core can be classified as a core with poor pores but poor connectivity. Otherwise, the core can be classified into cracks or intercrystalline pores. Core.
- the step S200 can be performed by: S210: acquiring a bound water saturation of each core sample; S220, obtaining a saturation index of each core sample; S230, and selecting each type of reservoir
- the saturation index of the core sample and the bound water saturation are linearly fitted to obtain the correspondence between the saturation index and the irreducible water saturation in each reservoir type.
- step S200 firstly, the selected core sample is subjected to measurement of porosity and permeability parameters, and then the selected core is subjected to a centrifugal experiment.
- the choice of centrifugal force in the experiment should refer to the pore and pressure characteristics of the reservoir.
- the saturated water content of the core sample should be measured first, and then centrifuged at a certain speed (or centrifugal force).
- the weight of the core sample after centrifugation is measured, and the irreducible water saturation of the core is calculated. That is, the obtaining the irreducible water saturation of each of the core samples (step S210) may include performing a percolation parameter measurement and a centrifugation experiment on each of the core samples to determine the irreducible water saturation.
- the type of formation water and the degree of salinity in the experiment were determined according to the analysis data of the formation water in the study area.
- the experimental temperature and confining pressure were determined according to the reservoir temperature and pressure of the target interval.
- the relationship between the resistance increase rate and the water saturation of the core sample is plotted, and the value of each core saturation index n is determined by the Archie formula (Archi formula). That is, the obtaining the saturation index (S220) of each of the core samples may include performing a rock power experiment on a portion of the core samples in each reservoir type to obtain a saturation index.
- the obtaining a correspondence between the saturation index and the irreducible water saturation in each reservoir type may further include the step of: S225, saturating according to the bound water Select a portion of the core sample for each reservoir type.
- the step S230 of acquiring the saturation index of each core sample includes: (S): acquiring a saturation of each of the core samples in a portion of the core samples in each reservoir type. Degree index.
- Unreasonable data can be eliminated by step S225, that is, the irreducible water saturation is obviously not in conformity with the core sample In the reservoir category, thus improving the accuracy of the calculation.
- the first type of core bound water saturation is usually low, and the second type of core is usually higher in bound water saturation.
- a representative core is selected for rock electrical experiments based on the value of the irreducible water saturation. For example, if the first type of core irreducible water saturation is 50% in the study area, it is necessary to select a representative core with a bound water saturation of 0-50% in the first type of core for rock power experiments, greater than 50%. The data can be eliminated. After removing the unreasonable core sample, the rock power experiment is performed on each of the remaining core samples (ie, step S231).
- step S230 according to the calculation result of the selected irreducible water saturation Swir and the saturation index n of the representative core, the fitting between the different reservoir type saturation index n and the irreducible water saturation Swir is determined by fitting.
- the relationship between the two types of reservoir types is as follows:
- n a 1 Swir+b 1 (1)
- Class 2 Correspondence between the saturation index of the reservoir containing cracks or intercrystalline pores and the irreducible water saturation is
- n a 2 Swir+b 2 (2)
- the parameters a 1 , b 1 and a 2 , b 2 in the above formula are constant for a specific horizon of a specific region, but the values of the above parameters are different in different regions and different horizons, and parameters a 1 , b 1 and a
- the values of 2 and b 2 can be determined by core experiments.
- S300 determining, according to the predetermined rule, a reservoir type to which the core to be tested belongs;
- the S300 can confirm the type of the reservoir to which the core to be tested belongs by the above predetermined rule, and the core to be tested is not subjected to the rock power experiment.
- the predetermined rule may include: if the hole mapping feature of the core corresponds to the hole feature but no crack feature, or the data point of the core is located at the lower right in the hole seepage map, or the naked eye can observe the core When the dissolved pores are seen but no micro-cracks exist, the core can be classified as a core with poor pores but poor connectivity. Otherwise, the core can be classified into a core containing cracks or intercrystalline pores.
- the core of the core to be measured is measured for porosity and permeability, and then the core to be tested is subjected to a centrifugal experiment.
- the choice of centrifugal force in the experiment should refer to the pore and pressure characteristics of the reservoir.
- the saturated water content of the core to be tested should be measured first, and then centrifuged at a certain speed (or centrifugal force). After the experiment, the weight of the core to be tested after centrifugation is measured, and the bound water saturation of the core to be tested is calculated. degree.
- S500 Calculate a saturation index of the core to be tested based on the corresponding relationship of the associated reservoir type according to the bound water saturation of the core to be tested.
- step S300 it is determined in step S300 that the reservoir type to be tested belongs to the first type, and the irreducible water saturation is determined to be Swir by step S400.
- step S500 the Swir is to be brought into the first type of reservoir in step S230.
- the correspondence between the saturation index and the irreducible water saturation in the type, so that the saturation index n of the core to be tested is to be a 1 Swir to + b 1 .
- the method proposed by the present invention has the following significant advantages: (1) the determination method is simple: once the region has saturation n and bound water The relationship between the saturations S wir is established. With this method, it is no longer necessary to carry out the reservoir condition rock power experiment on the core of the target interval, and the value of the reservoir saturation index n of other layers in the region can be determined by the irreducible water saturation. In order to overcome the complex difficulties of reservoir conditions for rock power experiments; (2) the parameters are more accurate: the method can determine the corresponding saturation index according to different reservoir characteristics of the target horizon, reflecting the influence of different pore structures on the electrical properties. The difference is good; (3) It is convenient to use the logging data to dynamically determine: Using this method, the logging data can be used to easily realize the dynamic calculation of the saturation index n, thereby improving the calculation accuracy of the complex carbonate rock oil saturation.
- the location and effective thickness of the target horizon are determined, and the variation characteristics of the data in the longitudinal direction are determined according to the conventional and imaging logs.
- the porosity and permeability parameters of the selected 19 plunger cores were measured, and then the selected core was centrifuged.
- the core water content of each core was measured first, and then centrifuged at 3000 rpm.
- the weight of each core after centrifugation was measured after the end of the experiment.
- the above 19 cores are divided into two types with different pore structure: one is a core with poor pores but poor connectivity, a total of 10, another The class is a core containing cracks or intercrystalline pores, a total of nine.
- the specific method for classifying the core pore structure is as follows: if the core corresponding to the imaging log data can see the hole feature but no crack feature, or in the hole seepage map, the core data point is located at the lower right, or when the core is observed If the naked eye can see the dissolved pores but no micro-cracks exist, the core can be classified as a core with poor pores but poor connectivity.
- the core can be classified into the second type, that is, the core containing cracks or intercrystalline pores. If the core is subjected to a three-dimensional CT test, the core is divided into cores with poor pores but poor connectivity, cracks or cores with intercrystalline pores according to CT data, which is simpler and more accurate.
- a representative core is selected according to the irreducible water saturation to carry out the reservoir conditional displacement rock power experiment, and the core saturation index n is calculated.
- the irreducible water saturation the first type of a certain layer in Changqing Oilfield (that is, the pores are developed but the pores are poorly connected) is 7 cores, and the second type (that is, containing cracks or intercrystalline pores)
- a semi-permeable diaphragm gas drive rock experiment was carried out.
- the salinity of the saturated brine was 100,000 ppm
- the water type was NaCl
- the formation water resistivity Rw was 0.032 ohm ⁇ m.
- the confining pressure in the experiment is 15 MPa.
- the relationship between the saturation index n and the irreducible water saturation Swir of different reservoir types in the region is determined by fitting:
- cores A and B which are cores to be tested
- core A is determined.
- core B is the second type.
- the irreversible water saturation Swir of the core A is calculated to be 0.38
- the irreversible water saturation Swir of the core B is 0.71
- the two types of reservoir cores bound water have been established.
- the relationship between the saturation Swir and the saturation index n can be quickly calculated to obtain a core A with a saturation index of 1.75 and a core B with a saturation index of 1.53.
- the saturation index of other cores and corresponding interval reservoirs can be determined using the above method.
- Another embodiment of the present invention also provides a system for determining a saturation index of a heterogeneous carbonate reservoir, the system for determining a saturation index of a heterogeneous carbonate reservoir comprising: a dividing device, Dividing the target rock reservoir into at least two reservoir types according to a predetermined rule; the first obtaining device is configured to obtain a correspondence relationship between the saturation index and the irreducible water saturation in each reservoir type; Determining, according to the predetermined rule, a type of reservoir to which the core to be tested belongs; a second obtaining means for acquiring the irreducible water saturation of the core to be tested; and calculating means for using the irreducible water saturation of the core to be tested Calculating a saturation index of the core to be tested based on the correspondence relationship of the associated reservoir type.
- the system for determining the saturation index of the heterogeneous carbonate reservoir in the present embodiment corresponds to the embodiment of the method for determining the saturation index of the heterogeneous carbonate reservoir of the present invention, and the present application can be implemented.
- the implementation of the method for determining the saturation index of the heterogeneous carbonate reservoir and the technical effect of the method embodiment are not described herein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Geophysics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Mining & Mineral Resources (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种确定非均质碳酸盐岩储层饱和度指数的方法及系统,该确定非均质碳酸盐岩储层饱和度指数的方法包括:按照预定规则将目标岩储层分为至少两种储层类型(S100);获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系(S200);按照预定规则确定待测岩心所属储层类型(S300);获取待测岩心的束缚水饱和度(S400);根据待测岩心的束缚水饱和度基于所属储层类型的对应关系计算待测岩心的饱和度指数(S500)。
Description
交叉参考相关引用
本申请要求2016年8月10日递交的申请号为201610649337.4、发明名称为“确定非均质碳酸盐岩储层饱和度指数的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及油气藏储层测井评价技术领域,特别涉及一种确定非均质碳酸盐岩储层饱和度指数的方法及系统。
储层岩石的导电性主要取决于孔隙空间中的流体性质、饱和状态及其空间分布,对非均质碳酸盐岩储层而言,孔隙结构对电阻率的影响非常显著,有时缝洞对电阻率的影响远超含油气性的影响,很多研究者试图摆脱70多年来单纯依赖电阻率曲线计算饱和度的传统方法,尝试利用各种非电法测井计算碳酸盐岩饱和度,但效果并不理想。因此,迄今为止,以电法测井为基础的饱和度计算依然是最切实、可行的方法。
Archie(1942)最早提出了含油气储层电阻率增大率—含水饱和度、地层因素—孔隙度之间的关系式。李宁(1989)以非均匀各向异性地层模型为基础,通过完整的数学推导,给出了电阻率增大率—含水饱和度、地层因素—孔隙度之间的关系式。一般关系式从理论上解决了非均质复杂储层饱和度的精确定量计算问题,但在现有技术条件下,要将其应用到实际生产中还需要解决两个关键技术问题:首先,一般关系式是一个通解方程,不便于直接用于编程计算,即在现有测井技术条件下,确定一般关系中的所有参数相当困难,因此实际应用中需要根据实际的储层特征选择满足精度要求的最短形式(也称最佳形式);其次,需要选择一种可靠的方法准确确定最佳形式中各个待定参数,使得最终确定的计算模型能够最大限度地反映储层电阻率与含水饱和度之间的真实规律。
以Archie公式为核心的含油气饱和度计算中,涉及到胶结指数m、饱和度指数n这两个重要的岩电参数。如何准确确定饱和度指数n,一直以来是岩石物理学家及测井分析家研究的重点。目前,确定饱和度指数n的方法基本上可以分为两大类:一是利用岩电实验,通过拟合电阻增大率——含水饱和度之间的关系确定;二是利用建立的饱和度
指数n与孔隙度、渗透率等储层参数之间的经验关系确定。第一类方法属于直接法,是目前饱和度指数n确定的常规方法,但实际应用中存在两个缺点:首先,为了确定饱和度指数n,需要对每块岩心开展变饱和度岩电实验(如气驱法),而该实验花费的时间通常较长;其次,利用该类方法难以实现通过测井资料根据储层特性动态确定饱和度指数n的数值。第二类方法属于间接法,是目前国内外研究的重点,利用该类方法容易实现饱和度指数n的动态确定。通过研究,很多研究者也提出了根据储层物性参数,如朱家俊(2010)给出了胜利油区中高孔隙度砂岩储层饱和度指数n与孔隙度及地层水矿化度的关系,傅爱兵(2007)通过分段回归及相关性分析研究了饱和度指数n的方法。这些研究大多集中在砂岩储层,碳酸盐岩饱和度指数n的动态确定方法研究相对较少。此外,现有的研究更多基于饱和度指数n与储层孔隙度、渗透率关系分析,对于非均质复杂碳酸盐岩,研究表明相同孔隙度、渗透率下饱和度指数n的变化范围较大,因此如何准确确定碳酸盐岩饱和度指数n的数值是目前测井评价中面临的一大挑战。
发明内容
针对上述技术问题,本发明提出了一种确定非均质碳酸盐岩储层饱和度指数的方法,以能够准确确定非均质碳酸盐岩饱和度指数,从而实现碳酸盐岩饱和度模型参数动态确定、提高含油气饱和度的计算精度。
为达到上述目的,本申请提供一种确定非均质碳酸盐岩储层饱和度指数的方法,包括:
按照预定规则将目标岩储层分为至少两种储层类型;
获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;
按照所述预定规则确定待测岩心所属储层类型;
获取所述待测岩心的束缚水饱和度;
根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
作为一种优选的实施方式,所述按照预定规则将目标岩储层分为至少两种储层类型包括:
选取多块目标岩储层的岩心样本;
按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型。
作为一种优选的实施方式,选取10块以上目标岩储层的岩心样本。
作为一种优选的实施方式,所述选取多块目标岩储层的岩心样本包括:
确定目标岩储层的位置、有效厚度;
根据成像测井资料确定目标岩储层的取心位置;
在所述取心位置钻取多个岩心样本。
作为一种优选的实施方式,所述按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型包括:
按照预定规则将多块所述岩心样本分为两类岩心;所述两类岩心包括:一类是孔洞发育但孔洞连通性差的岩心样本;另一类是含裂缝或以晶间孔为主的岩心样本。
作为一种优选的实施方式,所述预定规则包括:
若岩心对应的成像测井资料上能够看到孔洞特征但无裂缝特征,或者在孔渗交会图中该岩心的数据点位于右下方,或者岩心观察时肉眼能够看到溶蚀孔洞但无微裂缝存在,则该岩心可以归为孔洞发育但孔洞连通性差的岩心,否则岩心可以归类于含裂缝或以晶间孔为主的岩心。
作为一种优选的实施方式,所述获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系包括:
获取每块所述岩心样本的束缚水饱和度;
获取每块所述岩心样本的饱和度指数;
将每种储层类型中所述岩心样本的饱和度指数与束缚水饱和度线性拟合以获得每种储层类型中饱和度指数与束缚水饱和度的对应关系;所述对应关系如下:
n=aSwir+b;
n为饱和度指数;Swir为束缚水饱和度。
作为一种优选的实施方式,所述获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系还包括:
根据所述束缚水饱和度选取每种储层类型中部分数量的所述岩心样本;
相对应的,所述获取每块所述岩心样本的饱和度指数包括:
获取每种储层类型中部分数量的所述岩心样本中每块所述岩心样本的饱和度指数。
作为一种优选的实施方式,所述获取每块所述岩心样本的束缚水饱和度包括:
对每块所述岩心样本进行孔渗参数测量及离心实验以确定束缚水饱和度。
作为一种优选的实施方式,所述获取每块所述岩心样本的饱和度指数包括:
对每种储层类型中部分数量的所述岩心样本进行岩电实验以获取饱和度指数。
作为一种优选的实施方式,所述获取所述待测岩心的束缚水饱和度包括:
对所述待测岩心进行孔渗参数测量及离心实验以确定束缚水饱和度。
一种确定非均质碳酸盐岩储层饱和度指数的系统,包括:
划分装置,用于按照预定规则将目标岩储层分为至少两种储层类型;
第一获取装置,用于获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;
确定装置,用于按照所述预定规则确定待测岩心所属储层类型;
第二获取装置,用于获取所述待测岩心的束缚水饱和度;
计算装置,用于根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
通过以上描述可以看出,与传统储层饱和度指数n的确定方法相比,本发明提出的方法具有以下几个显著的优点:(1)确定方法简便:一旦该地区饱和度n与束缚水饱和度Swir之间的关系建立,利用该方法,不需再对目的层段岩心进行储层条件岩电实验,即可通过束缚水饱和度确定该地区其它层储层饱和度指数n的数值,从而克服了储层条件岩电实验复杂的困难;(2)参数更为准确:利用该方法能够根据目的层位不同储层特征确定对应的饱和度指数,体现了不同孔隙结构对电性影响的差异;(3)便于利用测井资料动态确定:利用该方法,利用测井资料能够方便地实现饱和度指数n的动态计算,从而提高了复杂碳酸盐岩油气饱和度的计算精度。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种实施方式所提供的确定非均质碳酸盐岩储层饱和度指数的方法步骤流程图;
图2是长庆油田孔洞发育但孔洞连通性差的储层饱和度指数n与束缚水饱和度Swir之间的对应关系图;
图3是长庆油田含裂缝或以晶间孔为主的储层饱和度指数n与束缚水饱和度Swir之
间的对应关系图。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如图1所示,本申请一种实施方式提供一种确定非均质碳酸盐岩储层饱和度指数的方法,该方法包括以下步骤:
S100:按照预定规则将目标岩储层分为至少两种储层类型;
该步骤是考虑了非均质碳酸盐岩储层的孔隙结构特征,将目标岩储层分为至少两种储层类型。不同储层类型的孔隙结构存在差别。
在一个实施方式中,所述按照预定规则将目标岩储层分为至少两种储层类型(步骤S100)包括以下子步骤:
S110、选取多块目标岩储层的岩心样本;
为较好的反映储层类别,在本步骤中,优选地选取10块以上目标岩储层的岩心样本。
该步骤S110中可以选取研究区域有代表性的岩心样本,是指在对常规、成像测井等资料综合分析基础之上,确定目的层位的位置、有效厚度,并根据常规、成像测井等资料在纵向上的变化特征,确定取心位置并钻取有代表性的岩心样本。
具体地,所述选取多块目标岩储层的岩心样本(步骤S110)可以包括以下子步骤:S111、确定目标岩储层的位置、有效厚度;S112、根据成像测井资料确定目标岩储层的取心位置;S113、在所述取心位置钻取多个岩心样本。
S120、按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型;
在本步骤中,通过岩心样本的孔洞特征来代表其所在储层的孔洞特征,这也是上一步骤S110选多10块以上岩心样本的目的,以更精细准确地通过岩心样本来代表所在岩储层的特征。
较佳的,所述按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型(步骤S120)可以包括:S121、按照预定规则将多块所述岩心样本分为两类岩
心;所述两类岩心包括:一类是孔洞发育但孔洞连通性差的岩心样本(第一类);另一类是含裂缝或以晶间孔为主的岩心样本(第二类)。
其中,所述预定规则可以包括:若岩心对应的成像测井资料上能够看到孔洞特征但无裂缝特征,或者在孔渗交会图(孔隙度-渗透率交会图)中该岩心的数据点位于右下方,或者岩心观察时肉眼能够看到溶蚀孔洞但无微裂缝存在,则该岩心可以归为孔洞发育但孔洞连通性差的岩心,否则岩心可以归类于含裂缝或以晶间孔为主的岩心。
S200:获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;
其中,本步骤S200可以通过以下步骤执行:S210、获取每块所述岩心样本的束缚水饱和度;S220、获取每块所述岩心样本的饱和度指数;S230、将每种储层类型中所述岩心样本的饱和度指数与束缚水饱和度线性拟合以获得每种储层类型中饱和度指数与束缚水饱和度的对应关系。所述对应关系为:n=aSwir+b;其中,n为饱和度指数;Swir为束缚水饱和度。
在步骤S200中,首先对所选取的岩心样本,进行孔隙度、渗透率参数测量,然后对所选择的岩心进行离心实验。实验中离心力的选择应参考储层的孔隙及压力特性。离心实验中,应先测量岩心样本的饱含水重量,然后在一定转速(或者说离心力)下进行离心实验,实验结束后测量离心后的岩心样本重量,并计算岩心的束缚水饱和度。即,所述获取每块所述岩心样本的束缚水饱和度(步骤S210)可以包括:对每块所述岩心样本进行孔渗参数测量及离心实验以确定束缚水饱和度。
实验中地层水的类型及矿化度根据研究区域地层水分析资料确定,实验温度以及围压根据目的层段的储层温度及压力确定。在(驱替)岩电实验基础上,绘制岩心样本的电阻增大率与含水饱和度之间的关系图,并利用Archie公式(阿尔奇公式)确定每块岩心饱和度指数n的数值。即,所述获取每块所述岩心样本的饱和度指数(S220)可以包括:对每种储层类型中部分数量的所述岩心样本进行岩电实验以获取饱和度指数。
进一步的,为获取合理准确的计算结果,所述获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系(步骤S200)还可以包括步骤:S225、根据所述束缚水饱和度选取每种储层类型中部分数量的所述岩心样本。
相对应的,所述获取每块所述岩心样本的饱和度指数步骤S230则包括(为):S231、获取每种储层类型中部分数量的所述岩心样本中每块所述岩心样本的饱和度指数。
通过步骤S225可以剔除不合理的数据,即,束缚水饱和度明显不符合该岩心样本所
在储层类别,从而提高计算的精度。研究表明,第一类岩心束缚水饱和度通常较低,第二类岩心的束缚水饱和度通常较高。在每一类岩心中,根据束缚水饱和度的数值选择有代表性的岩心开展岩电实验。例如:若研究区域,第一类岩心束缚水饱和度最大为50%,则需在第一类岩心中选择束缚水饱和度在0-50%的具有代表性岩心进行岩电实验,大于50%的数据可以剔除。剔除不合理的岩心样本后,对剩余的岩心样本每块均进行岩电实验(即步骤S231)。
在步骤S230中,根据所选择的具有代表性岩心的束缚水饱和度Swir、饱和度指数n的计算结果,通过拟合确定该地区不同储层类型饱和度指数n与束缚水饱和度Swir之间的关系,以上述两类储层类型为例:
第1类:孔洞发育但孔洞连通性差的储层的饱和度指数与束缚水饱和度的对应关系为:
n=a1Swir+b1 (1)
第2类:含裂缝或以晶间孔为主的储层的饱和度指数与束缚水饱和度的对应关系为
n=a2Swir+b2 (2)
上述公式中的参数a1、b1和a2、b2对特定地区的特定层位而言是常数,但不同地区、不同层位上述参数的数值存在差异,参数a1、b1和a2、b2的数值可通过岩心实验确定。
S300:按照所述预定规则确定待测岩心所属储层类型;
在本步骤中,S300可以通过上述预定规则确认待测岩心所属储层类型,待测岩心未进行岩电实验。
其中,所述预定规则可以包括:若岩心对应的成像测井资料上能够看到孔洞特征但无裂缝特征,或者在孔渗交会图中该岩心的数据点位于右下方,或者岩心观察时肉眼能够看到溶蚀孔洞但无微裂缝存在,则该岩心可以归为孔洞发育但孔洞连通性差的岩心,否则岩心可以归类于含裂缝或以晶间孔为主的岩心。
S400:获取所述待测岩心的束缚水饱和度;
在本步骤中,对待测岩心进行孔隙度、渗透率参数测量,然后待测岩心进行离心实验。实验中离心力的选择应参考储层的孔隙及压力特性。离心实验中,应先测量待测岩心的饱含水重量,然后在一定转速(或者说离心力)下进行离心实验,实验结束后测量离心后的待测岩心重量,并计算待测岩心的束缚水饱和度。
S500:根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
比如,通过步骤S300确定待测岩心所属储层类型为第1类,通过步骤S400确定其束缚水饱和度为Swir待,在步骤S500中即为将Swir待带入步骤S230中第1类储层类型中的饱和度指数与束缚水饱和度的对应关系,从而得到待测岩心的饱和度指数n待=a1Swir待+b1。
通过以上描述可以看出,与传统储层饱和度指数n的确定方法相比,本发明提出的方法具有以下几个显著的优点:(1)确定方法简便:一旦该地区饱和度n与束缚水饱和度Swir之间的关系建立,利用该方法,不需再对目的层段岩心进行储层条件岩电实验,即可通过束缚水饱和度确定该地区其它层储层饱和度指数n的数值,从而克服了储层条件岩电实验复杂的困难;(2)参数更为准确:利用该方法能够根据目的层位不同储层特征确定对应的饱和度指数,体现了不同孔隙结构对电性影响的差异;(3)便于利用测井资料动态确定:利用该方法,利用测井资料能够方便地实现饱和度指数n的动态计算,从而提高了复杂碳酸盐岩油气饱和度的计算精度。
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
在对长庆油田某层段常规、成像测井等资料综合分析基础之上,确定了目的层位的位置、有效厚度,并根据常规、成像测井等资料在纵向上的变化特征,确定取心位置并钻取有代表性的柱塞岩心19块(此为岩心样本)。
首先对所选取的19块柱塞岩心,进行孔隙度、渗透率参数测量,然后对所选择的岩心进行离心实验。离心实验中,先测量了每块岩心饱含水重量,然后在转速为3000转/秒下进行离心实验,实验结束后测量每块岩心离心后的重量。
根据所选取岩心对应深度的成像测井资料、孔渗特性及岩心观察将上述19块岩心分为孔隙结构不同的两类:一类是孔洞发育但孔洞连通性差的岩心,共10块,另一类是含裂缝或以晶间孔为主的岩心,共9块。根据岩心孔隙结构进行分类的具体方法为:若岩心对应的成像测井资料上能够看到孔洞特征但无裂缝特征,或者在孔渗交会图中该岩心的数据点位于右下方,或者岩心观察时肉眼能够看到溶蚀孔洞但无微裂缝存在,则该岩心可以归为孔洞发育但孔洞连通性差的岩心,否则岩心可以归类于第二类,即含裂缝或以晶间孔为主的岩心。若岩心进行了三维CT测试,则根据CT资料将岩心划分为孔洞发育但孔洞连通性差的岩心、含裂缝或以晶间孔为主的岩心,更为简便、准确。
对上述两类不同孔隙结构的岩心,根据束缚水饱和度选择具有代表性的岩心开展储层条件驱替岩电实验,并计算岩心的饱和度指数n。根据束缚水饱和度,选择长庆油田某层位第一类(即孔洞发育但孔洞连通性差)岩心7块、第二类(即含裂缝或以晶间孔
为主)岩心5块开展了储层条件半渗透隔板气驱岩电实验。实验中,饱和盐水的矿化度为100000ppm、水型为NaCl型,地层水电阻率Rw为0.032欧姆·米。根据目的区域储层深度,实验中围压为15MPa。
根据实验中获得的不同含水饱和度下岩心的电阻率,绘制了每块岩心电阻增大率与含水饱和度之间的关系图,并利用Archie公式确定了每块岩心饱和度指数n的数值。
根据所选择的具有代表性岩心的束缚水饱和度Swir、饱和度指数n的计算结果,通过拟合确定该地区不同储层类型饱和度指数n与束缚水饱和度Swir之间的关系:
长庆油田某层位第一类储层,即孔洞发育但孔洞连通性差的储层束缚水饱和度Swir与饱和度指数n之间的关系图为附图2所示,定量拟合关系式为:
n=2.342Swir+0.857 (1)
长庆油田某层位第二类储层,即含裂缝或以晶间孔为主的储层束缚水饱和度Swir与饱和度指数n之间的关系图为附图3所示,定量拟合关系式为:
n=-1.957Swir+2.919 (2)
对长庆油田某层段未进行储岩电实验的岩心A、B(此为待测岩心),首先分析这两块岩心的孔隙结构类型,按照上述分析方法(预定规则),确定岩心A为第一类,岩心B为第二类,根据离心结果计算该岩心A的束缚水饱和度Swir为0.38,岩心B的束缚水饱和度Swir为0.71,利用前述已经建立的两类储层岩心束缚水饱和度Swir与饱和度指数n之间的关系,可以快速准备地计算得到岩心A的饱和度指数为1.75,岩心B的饱和度指数为1.53。类似地,可以利用上述方法确定其它岩心及对应层段储层的饱和度指数。
本发明另一种实施方式还提供一种确定非均质碳酸盐岩储层饱和度指数的系统,该确定非均质碳酸盐岩储层饱和度指数的系统中包括:划分装置,用于按照预定规则将目标岩储层分为至少两种储层类型;第一获取装置,用于获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;确定装置,用于按照所述预定规则确定待测岩心所属储层类型;第二获取装置,用于获取所述待测岩心的束缚水饱和度;计算装置,用于根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
本实施方式中的确定非均质碳酸盐岩储层饱和度指数的系统与本发明的确定非均质碳酸盐岩储层饱和度指数的方法中的实施方式相对应,可以实现本申请的确定非均质碳酸盐岩储层饱和度指数的方法的实施方式并达到方法实施方式的技术效果,具体的本申请在此不再赘述。
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入本发明要求保护的范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (12)
- 一种确定非均质碳酸盐岩储层饱和度指数的方法,其特征在于,包括:按照预定规则将目标岩储层分为至少两种储层类型;获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;按照所述预定规则确定待测岩心所属储层类型;获取所述待测岩心的束缚水饱和度;根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
- 如权利要求1所述的方法,其特征在于,所述按照预定规则将目标岩储层分为至少两种储层类型包括:选取多块目标岩储层的岩心样本;按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型。
- 如权利要求2所述的方法,其特征在于,选取10块以上目标岩储层的岩心样本。
- 如权利要求2所述的方法,其特征在于,所述选取多块目标岩储层的岩心样本包括:确定目标岩储层的位置、有效厚度;根据成像测井资料确定目标岩储层的取心位置;在所述取心位置钻取多个岩心样本。
- 如权利要求2所述的方法,其特征在于,所述按照预定规则将多块所述岩心样本分为至少两类岩心以代表至少两种储层类型包括:按照预定规则将多块所述岩心样本分为两类岩心;所述两类岩心包括:一类是孔洞发育但孔洞连通性差的岩心样本;另一类是含裂缝或以晶间孔为主的岩心样本。
- 如权利要求5所述的方法,其特征在于,所述预定规则包括:若岩心对应的成像测井资料上能够看到孔洞特征但无裂缝特征,或者在孔渗交会图中该岩心的数据点位于右下方,或者岩心观察时肉眼能够看到溶蚀孔洞但无微裂缝存 在,则该岩心可以归为孔洞发育但孔洞连通性差的岩心,否则岩心可以归类于含裂缝或以晶间孔为主的岩心。
- 如权利要求1所述的方法,其特征在于,所述获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系包括:获取每块所述岩心样本的束缚水饱和度;获取每块所述岩心样本的饱和度指数;将每种储层类型中所述岩心样本的饱和度指数与束缚水饱和度线性拟合以获得每种储层类型中饱和度指数与束缚水饱和度的对应关系;所述对应关系如下:n=aSwir+b;n为饱和度指数;Swir为束缚水饱和度。
- 如权利要求7所述的方法,其特征在于,所述获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系还包括:根据所述束缚水饱和度选取每种储层类型中部分数量的所述岩心样本;相对应的,所述获取每块所述岩心样本的饱和度指数包括:获取每种储层类型中部分数量的所述岩心样本中每块所述岩心样本的饱和度指数。
- 如权利要求7所述的方法,其特征在于,所述获取每块所述岩心样本的束缚水饱和度包括:对每块所述岩心样本进行孔渗参数测量及离心实验以确定束缚水饱和度。
- 如权利要求7所述的方法,其特征在于,所述获取每块所述岩心样本的饱和度指数包括:对每种储层类型中部分数量的所述岩心样本进行岩电实验以获取饱和度指数。
- 如权利要求1所述的方法,其特征在于,所述获取所述待测岩心的束缚水饱和度包括:对所述待测岩心进行孔渗参数测量及离心实验以确定束缚水饱和度。
- 一种确定非均质碳酸盐岩储层饱和度指数的系统,其特征在于,包括:划分装置,用于按照预定规则将目标岩储层分为至少两种储层类型;第一获取装置,用于获取每种储层类型中饱和度指数与束缚水饱和度之间的对应关系;确定装置,用于按照所述预定规则确定待测岩心所属储层类型;第二获取装置,用于获取所述待测岩心的束缚水饱和度;计算装置,用于根据所述待测岩心的束缚水饱和度基于所述所属储层类型的所述对应关系计算所述待测岩心的饱和度指数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/095,432 US11112527B2 (en) | 2016-08-10 | 2017-05-15 | Method and system for determining heterogeneous carbonate reservoir saturation exponent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610649337.4 | 2016-08-10 | ||
CN201610649337.4A CN106093350B (zh) | 2016-08-10 | 2016-08-10 | 确定非均质碳酸盐岩储层饱和度指数的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018028258A1 true WO2018028258A1 (zh) | 2018-02-15 |
Family
ID=57456241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/084304 WO2018028258A1 (zh) | 2016-08-10 | 2017-05-15 | 确定非均质碳酸盐岩储层饱和度指数的方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11112527B2 (zh) |
CN (1) | CN106093350B (zh) |
WO (1) | WO2018028258A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108647417A (zh) * | 2018-04-28 | 2018-10-12 | 中石化石油工程技术服务有限公司 | 一种确定页岩气储层含气饱和度的简易方法 |
CN114086938A (zh) * | 2020-08-05 | 2022-02-25 | 中国石油化工股份有限公司 | 一种非均质性砂岩储层的含气饱和度预测方法 |
CN114112841A (zh) * | 2021-11-19 | 2022-03-01 | 中国石油大学(华东) | 一种致密砂岩储层束缚水饱和度的计算方法 |
CN117408180A (zh) * | 2023-10-18 | 2024-01-16 | 西南石油大学 | 一种计算地下储气库两相稳定生产临界流速的方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093350B (zh) | 2016-08-10 | 2018-05-04 | 中国石油天然气股份有限公司 | 确定非均质碳酸盐岩储层饱和度指数的方法 |
CN107807078B (zh) * | 2017-09-13 | 2019-11-08 | 中国石油天然气股份有限公司 | 地层条件下岩心可动水饱和度在线检测方法 |
CN111441765B (zh) * | 2019-01-16 | 2023-12-26 | 中国石油天然气股份有限公司 | 一种含裂缝致密油藏空气重力驱潜力评价实验方法及装置 |
CN112049623B (zh) * | 2019-06-05 | 2024-05-28 | 中国石油天然气股份有限公司 | 一种中基性火山岩束缚水出水的判定方法和装置 |
CN111425189B (zh) * | 2019-06-13 | 2024-01-30 | 中国石油天然气股份有限公司 | 超深层缝洞碳酸盐岩储层品质评价方法、装置及存储介质 |
CN112627810B (zh) * | 2019-09-24 | 2023-08-22 | 中国石油天然气股份有限公司 | 碳酸盐岩储层中溶洞占比的检测方法 |
CN113031064B (zh) * | 2019-12-25 | 2022-11-04 | 中国石油大学(北京) | 一种低含油饱和度油层识别方法、装置及设备 |
CN111079313B (zh) * | 2019-12-31 | 2021-12-17 | 成都理工大学 | 一种碳酸盐岩储层信息分类处理方法、信息数据处理终端 |
CN113029892B (zh) * | 2020-03-17 | 2022-12-13 | 中国海洋石油集团有限公司 | 基于区域统计规律的油水相对渗透率曲线合理性评价方法 |
CN113640456B (zh) * | 2020-05-11 | 2024-05-28 | 中国石油天然气股份有限公司 | 确定输气管道样本的方法和装置 |
CN111894568A (zh) * | 2020-08-04 | 2020-11-06 | 中国地质大学(北京) | 裂缝性碳酸盐岩油藏饱和度模型数字岩心分析方法 |
CN114428089B (zh) * | 2020-09-15 | 2023-11-28 | 中国石油化工股份有限公司 | 泥质烃源岩分岩石类型评价方法、装置、电子设备及介质 |
CN114280686B (zh) * | 2020-09-27 | 2024-05-28 | 中国石油天然气股份有限公司 | 碳酸盐岩储层的岩心物性分析方法及设备 |
CN112304849A (zh) * | 2020-11-13 | 2021-02-02 | 北京拓普莱博油气田开发技术研究院 | 一种不规则形状疏松岩样气体渗透率测试方法 |
CN112595566B (zh) * | 2020-12-03 | 2023-05-16 | 四川蜀科仪器有限公司 | 一种致密岩心离心脱水方法 |
CN112924360B (zh) * | 2021-02-06 | 2022-05-13 | 西安石油大学 | 一种定量评价岩心均质程度的方法 |
CN113586043B (zh) * | 2021-07-19 | 2023-10-27 | 中国石油天然气股份有限公司 | 束缚水饱和参数的确定方法、装置和计算机设备 |
CN113969777B (zh) * | 2021-11-17 | 2024-08-30 | 中国石油天然气股份有限公司 | 一种储层含油饱和度确定方法、存储介质及电子设备 |
CN114089421B (zh) * | 2021-12-06 | 2023-03-21 | 中国矿业大学 | 一种油气储层非均质性分析方法 |
CN114487341A (zh) * | 2021-12-17 | 2022-05-13 | 成都理工大学 | 一种适用于页岩的岩电含水饱和度测定系统、方法及应用 |
CN114544459B (zh) * | 2022-02-09 | 2024-04-19 | 武汉左晟检测技术有限公司 | 一种基于储层参数的岩心油水相渗曲线构建方法 |
CN116774279B (zh) * | 2023-06-14 | 2024-04-16 | 西南石油大学 | 基于气水平衡岩性组合单元的页岩含水饱和度预测方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030019A1 (en) * | 2002-09-11 | 2005-02-10 | Marc Fleury | Method for determining the resistivity index, as a function of the water saturation, of certain rocks of complex porosity |
WO2006063711A2 (en) * | 2004-12-17 | 2006-06-22 | Services Petroliers Schlumberger | Method for the determining the water saturation of an underground formation |
CN102175832A (zh) * | 2011-01-10 | 2011-09-07 | 中国石油天然气股份有限公司 | 一种确定典型储层最佳饱和度计算模型的方法 |
CN102434152A (zh) * | 2011-12-05 | 2012-05-02 | 中国石油天然气股份有限公司 | 一种储层含油饱和度的计算方法 |
CN103422853A (zh) * | 2012-05-24 | 2013-12-04 | 中国石油天然气集团公司 | 一种确定地层含水饱和度的方法及装置 |
WO2013180593A1 (ru) * | 2012-06-01 | 2013-12-05 | Общество С Ограниченной Ответственностью "Сплит" | Способ определения коэффициента нефтегазонасыщенности по комплексу гис на основании импульсных нейтронных методов каротажа |
CN103543474A (zh) * | 2012-07-16 | 2014-01-29 | 中国石油化工股份有限公司 | 一种基于非导电孔隙模型的含油气饱和度评价方法 |
CN104278989A (zh) * | 2013-07-02 | 2015-01-14 | 中国石油天然气股份有限公司 | 一种获取低孔低渗储层饱和度指数的方法 |
CN105445441A (zh) * | 2015-12-03 | 2016-03-30 | 中国石油天然气股份有限公司 | 储层含气饱和度确定方法及装置 |
CN106093350A (zh) * | 2016-08-10 | 2016-11-09 | 中国石油天然气股份有限公司 | 确定非均质碳酸盐岩储层饱和度指数的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4790180A (en) * | 1988-02-16 | 1988-12-13 | Mobil Oil Corporation | Method for determining fluid characteristics of subterranean formations |
US7133779B2 (en) * | 2003-05-08 | 2006-11-07 | Schlumberger Technology Corporation | Automated borehole geology and petrophysics interpretation using image logs |
CN101806215B (zh) * | 2010-03-05 | 2013-05-01 | 中国石油集团川庆钻探工程有限公司 | 用束缚水饱和度数据判别储层流体类型的方法 |
US8805616B2 (en) * | 2010-12-21 | 2014-08-12 | Schlumberger Technology Corporation | Method to characterize underground formation |
CN102243196B (zh) * | 2011-04-26 | 2012-07-04 | 中国石油大学(华东) | 一种实验室快速测定饱和度指数n的方法 |
WO2013059585A2 (en) * | 2011-10-21 | 2013-04-25 | Saudi Arabian Oil Company | Methods, computer readable medium, and apparatus for determining well characteristics and pore architecture utilizing conventional well logs |
US9791589B2 (en) * | 2013-03-01 | 2017-10-17 | Halliburton Energy Services, Inc. | Downhole differentiation of light oil and oil-based filtrates by NMR with oleophilic nanoparticles |
CN105114064B (zh) * | 2015-08-04 | 2018-03-13 | 中国石油天然气股份有限公司 | 确定致密砂岩储层饱和度的方法 |
-
2016
- 2016-08-10 CN CN201610649337.4A patent/CN106093350B/zh active Active
-
2017
- 2017-05-15 US US16/095,432 patent/US11112527B2/en active Active
- 2017-05-15 WO PCT/CN2017/084304 patent/WO2018028258A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030019A1 (en) * | 2002-09-11 | 2005-02-10 | Marc Fleury | Method for determining the resistivity index, as a function of the water saturation, of certain rocks of complex porosity |
WO2006063711A2 (en) * | 2004-12-17 | 2006-06-22 | Services Petroliers Schlumberger | Method for the determining the water saturation of an underground formation |
CN102175832A (zh) * | 2011-01-10 | 2011-09-07 | 中国石油天然气股份有限公司 | 一种确定典型储层最佳饱和度计算模型的方法 |
CN102434152A (zh) * | 2011-12-05 | 2012-05-02 | 中国石油天然气股份有限公司 | 一种储层含油饱和度的计算方法 |
CN103422853A (zh) * | 2012-05-24 | 2013-12-04 | 中国石油天然气集团公司 | 一种确定地层含水饱和度的方法及装置 |
WO2013180593A1 (ru) * | 2012-06-01 | 2013-12-05 | Общество С Ограниченной Ответственностью "Сплит" | Способ определения коэффициента нефтегазонасыщенности по комплексу гис на основании импульсных нейтронных методов каротажа |
CN103543474A (zh) * | 2012-07-16 | 2014-01-29 | 中国石油化工股份有限公司 | 一种基于非导电孔隙模型的含油气饱和度评价方法 |
CN104278989A (zh) * | 2013-07-02 | 2015-01-14 | 中国石油天然气股份有限公司 | 一种获取低孔低渗储层饱和度指数的方法 |
CN105445441A (zh) * | 2015-12-03 | 2016-03-30 | 中国石油天然气股份有限公司 | 储层含气饱和度确定方法及装置 |
CN106093350A (zh) * | 2016-08-10 | 2016-11-09 | 中国石油天然气股份有限公司 | 确定非均质碳酸盐岩储层饱和度指数的方法 |
Non-Patent Citations (2)
Title |
---|
ZHAO, LIANGXIAO ET AL: "Calculation Methods of The Oil and Gas Saturation in Complex Carbonate Reservoir", NATURAL GAS INDUSTRY, vol. 25, no. 9, 30 September 2005 (2005-09-30), pages 42 - 44 * |
ZHEN, TINGJIANG: "Study on Saturation Index of Heterogeneous Carbonates", WELL LOGGING TECHNOLOGY,, vol. 21, no. 4, 30 April 1997 (1997-04-30), pages 254 - 257 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108647417A (zh) * | 2018-04-28 | 2018-10-12 | 中石化石油工程技术服务有限公司 | 一种确定页岩气储层含气饱和度的简易方法 |
CN114086938A (zh) * | 2020-08-05 | 2022-02-25 | 中国石油化工股份有限公司 | 一种非均质性砂岩储层的含气饱和度预测方法 |
CN114086938B (zh) * | 2020-08-05 | 2024-03-08 | 中国石油化工股份有限公司 | 一种非均质性砂岩储层的含气饱和度预测方法 |
CN114112841A (zh) * | 2021-11-19 | 2022-03-01 | 中国石油大学(华东) | 一种致密砂岩储层束缚水饱和度的计算方法 |
CN117408180A (zh) * | 2023-10-18 | 2024-01-16 | 西南石油大学 | 一种计算地下储气库两相稳定生产临界流速的方法 |
Also Published As
Publication number | Publication date |
---|---|
US11112527B2 (en) | 2021-09-07 |
CN106093350A (zh) | 2016-11-09 |
US20190137648A1 (en) | 2019-05-09 |
CN106093350B (zh) | 2018-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018028258A1 (zh) | 确定非均质碳酸盐岩储层饱和度指数的方法及系统 | |
CN107701180B (zh) | 一种基于密闭取心的原始油藏含水饱和度计算方法 | |
CN109753755B (zh) | 一种确定储层含水饱和度的方法 | |
CN110320139B (zh) | 缝洞型储层裂缝孔隙度定量评价方法及系统 | |
CN102565858B (zh) | 一种多孔介质含水饱和度的计算方法 | |
EP3593159A1 (en) | Absolute porosity and pore size determination of pore types in media with varying pore sizes using nmr | |
CN109100812B (zh) | 基于核磁共振的岩石孔隙分形维数评价方法及装置 | |
Zifei et al. | A study on remaining oil distribution in a carbonate oil reservoir based on reservoir flow units | |
CN106323835B (zh) | 确定非均质碳酸盐岩储层胶结指数的方法 | |
US9176251B2 (en) | Asphaltene evaluation based on NMR measurements and temperature / pressure cycling | |
RU2016134036A (ru) | Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения | |
CN105401937B (zh) | 一种基于孔隙结构的饱和度指数预测方法 | |
CN103198363A (zh) | 一种基于ct孔隙分析的储层产气量预测方法及装置 | |
CN109117505A (zh) | 一种基于介电实验的孔隙结构储层冲洗带含水饱和度计算方法 | |
CN106202763B (zh) | 双重介质储层岩石含水饱和度的计算方法 | |
RU2455483C2 (ru) | Способ оценки степени трещиноватости карбонатных пород через параметр диффузионно-адсорбционной активности | |
CN102052074A (zh) | 一种岩心数字化确定岩电参数的方法 | |
CN106285652B (zh) | 确定页岩游离气体饱和度的方法 | |
CN111963159A (zh) | 一种砾岩致密油储层流体性质的识别方法 | |
Yanjie et al. | Lower limit of tight oil flowing porosity: Application of high-pressure mercury intrusion in the fourth Member of Cretaceous Quantou Formation in southern Songliao Basin, NE China | |
RU2542998C1 (ru) | Способ лабораторного определения анизотропии абсолютной газопроницаемости на полноразмерном керне | |
CN105240003A (zh) | 理想地层因数、含油气饱和度确定及孔隙有效性评价方法 | |
NO20160546A1 (en) | Determining formation gas composition during well drilling | |
RU2017116073A (ru) | Определение фракции связанного углеводорода и пористости посредством диэлектрической спектроскопии | |
CN114183121A (zh) | 裂缝有效性定量评价方法、装置、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17838390 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17838390 Country of ref document: EP Kind code of ref document: A1 |