CN102175832A - 一种确定典型储层最佳饱和度计算模型的方法 - Google Patents

一种确定典型储层最佳饱和度计算模型的方法 Download PDF

Info

Publication number
CN102175832A
CN102175832A CN2011100038147A CN201110003814A CN102175832A CN 102175832 A CN102175832 A CN 102175832A CN 2011100038147 A CN2011100038147 A CN 2011100038147A CN 201110003814 A CN201110003814 A CN 201110003814A CN 102175832 A CN102175832 A CN 102175832A
Authority
CN
China
Prior art keywords
hole
reservoir
type
computation model
saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100038147A
Other languages
English (en)
Other versions
CN102175832B (zh
Inventor
李宁
王克文
武宏亮
冯庆付
柴华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN 201110003814 priority Critical patent/CN102175832B/zh
Publication of CN102175832A publication Critical patent/CN102175832A/zh
Application granted granted Critical
Publication of CN102175832B publication Critical patent/CN102175832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种确定典型储层最佳饱和度计算模型的方法,属于油气藏储层评价技术领域。所述方法包括:根据油气储层段的岩心、测井数据资料,选出具有代表性的全直径岩心,并对全直径岩心进行微CT扫描及储层条件岩电实验;根据岩心、测井数据资料,分析全直径岩心所在储层段的特性及孔隙结构特征,并利用微CT扫描结果,确定全直径岩心所在储层的类型;根据全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式;根据岩电实验结果,确定饱和度计算模型的最佳形式中的待定参数。本发明解决了目前饱和度计算模型确定的关键性难点,大幅度提高了常见储层,特别是非均质复杂储层饱和度的计算精度,在油田现场应用中效果显著。

Description

一种确定典型储层最佳饱和度计算模型的方法
技术领域
本发明涉及油气藏储层评价技术领域,特别涉及一种在砂岩、泥质砂岩、低孔低渗碎屑岩、碳酸盐岩、火山岩等储层中,利用全直径岩心分析、测井等资料确定最佳饱和度计算模型的方法。
背景技术
Archie最早提出了油气层电阻率-含水饱和度之间的关系式,即Archie公式,该公式奠定了油气藏储层饱和度计算的基础,在测井评价中具有重要的作用。但Archie公式主要适用于各向均匀的孔隙性储层(如物性较好的砂岩储层),对复杂储层不适用。后来有人提出了一系列扩展的油气藏储层饱和度计算模型,例如:阳离子交换模型(也称W-S模型)、双水模型(也称D-W模型)、S-B模型等等,相对于Archie公式而言,这些扩展计算模型的适用范围更广,可以适用于层状均匀储层(如泥质砂岩储层)的饱和度计算,但仍不能解决非均质各向异性储层饱和度的计算。随着油气勘探的发展,低孔低渗碎屑岩、碳酸盐岩、火山岩等非均质各向异性复杂储层逐渐成为勘探的重点,因此,非均质各向异性储层的饱和度计算显得尤为重要;另外,从岩石物理研究的理论发展来说,也需要寻求非均质各向异性储层饱和度计算的一般形式。
针对上述问题,李宁于1989年以非均匀各向异性地层模型为基础,通过完整的数学推导,给出了电阻率与含水饱和度之间的一般关系式:
I = Σ i = 1 n p i Σ k = 1 l i h ik S w θ ik
= p 1 h 11 S w θ 11 + h 12 S w θ 12 + . . . + h 1 l 1 S w θ 1 l 1 +
= p 2 h 21 S w θ 21 + h 22 S w θ 22 + . . . + h 2 l 2 S w θ 21 l 2 +
. . . + p z h z 1 S w θ z 1 + h z 2 S w θ z 2 + . . . + h z l z S w θ z l z - - - ( 1 )
其中,I为岩石电阻增大率,无因次;Sw为油气层含水饱和度,无因次;pi、hik和θik为待定参数。进一步分析可以发现,常用的Archie方程、W-S方程和D-W方程等为一般关系式(1)在给定条件下的三种截短表达式,只不过它们因简单而只适合均质地层或层状均匀地层。
电阻率-含水饱和度一般关系式的提出,从理论上解决了非均质复杂储层饱和度的精确定量计算问题。但在现有技术条件下,要将其应用到实际生产中还需要解决两个关键技术问题:首先,一般关系式是一个通解方程,不便于直接用于编程计算,即在现有测井技术条件下,确定一般关系中的所有参数相当困难,因此实际应用中需要根据实际的储层特征选择满足精度要求的最短形式(也称最佳形式),这点在关系式(1)提出时就给出了两种最佳形式;其次,需要选择一种可靠的方法准确确定最佳形式中各个待定参数,使得最终确定的计算模型能够最大限度地反映储层电阻率与含水饱和度之间的真实规律。
发明内容
为了解决现有电阻率-含水饱和度关系计算模型中参数确定困难,计算模型不能真实反映储层电阻率与含水饱和度之间规律的问题,本发明提供了一种确定典型储层最佳饱和度计算模型的方法,所述方法包括:
根据油气储层段的岩心、测井数据资料,选出具有代表性的全直径岩心,并对所述全直径岩心进行微CT扫描及储层条件岩电实验;
根据所述岩心、测井数据资料,分析所述全直径岩心所在储层段的特性及孔隙结构特征,并利用微CT扫描结果,确定所述全直径岩心所在储层的类型;
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式;
根据所述岩电实验结果,确定所述饱和度计算模型的最佳形式中的待定参数。
所述利用微CT扫描结果,确定所述全直径岩心所在储层的类型的步骤具体包括:
利用微CT扫描结果定量刻画储层岩心裂缝、孔洞的发育情况,分析原生孔隙半径的大小及分布,确定孔洞之间的空间连通性;
根据定量分析结果,确定所述全直径岩心所在储层的类型。
所述岩心资料包括岩心的孔隙度、岩心的渗透率及岩心核磁T2谱;所述测井资料包括常规测井资料和成像测井资料。
所述储层的类型包括:孔隙型、泥质-孔隙型、孔隙-裂缝型、孔隙-孔洞型、孔隙-裂缝连通孔洞型或孔隙-裂缝-孔洞型。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、n1为待定参数,p1、n1为正数;
所述孔隙型储层的孔隙以原生粒间孔隙为主,孔隙尺寸分布均匀,均质性强,不含泥质。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为泥质-孔隙型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述泥质-孔隙型储层的孔隙以原生粒间孔隙为主,含有层状及分散泥质,或者除原生粒间孔隙外微孔隙发育。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1为待定参数,p1、p2、n1为正数;
所述孔隙-裂缝型储层的孔隙以原生粒间孔隙、次生裂缝为主。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + 1 p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述孔隙-孔洞型储层的孔隙以原生粒间孔隙、次生孔洞为主,且孔洞体之间无裂缝形成的长程的次生通道。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝连通孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述孔隙-裂缝连通孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,且孔洞之间明显被微裂缝、裂缝沟通,孔洞之间的连通性好,形成了长程的次生通道。
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝-孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 + 1 p 3 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、p3、n1、n2为待定参数,p1、p2、p3、n1为正数,n2为非负数;
所述孔隙-裂缝-孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,孔洞之间未被微裂缝、裂缝沟通,孔洞之间未形成长程的次生通道。
本发明提供了六种常见储层类型的饱和度计算模型的最佳形式及基于孔隙结构特征的确定方法,概括了六种常见储层的电性特征,解决了用尽量少的待定参数和尽量简单的表达形式获得尽可能高的饱和度计算精度这一难题,第一次在参数个数和计算精度之间找到了一个平衡点,为饱和度计算模型的精确确定提供了一种可行的技术方法,具有非常广泛的适用性。
附图说明
图1是本发明实施例孔洞的铸体薄片;
图2是本发明实施例裂缝连通孔洞的铸体薄片;
图3是本发明实施例根据核磁实验得到的岩心a的T2谱;
图4是本发明实施例根据核磁实验得到的岩心b的T2谱;
图5是本发明实施例岩心a三维微CT扫描结果的典型切片;
图6是本发明实施例岩心b三维微CT扫描结果的典型切片;
图7是本发明实施例岩心a的岩电实验结果与饱和度计算模型最佳形式的拟合曲线;
图8是本发明实施例岩心b的岩电实验结果与饱和度计算模型最佳形式的拟合曲线;
图9是本发明实施例确定的饱和度计算模型计算的饱和度与某油井密闭取心饱和度分析结果的对比曲线;
图10是本发明实施例提供的确定典型储层最佳饱和度计算模型的方法流程图。
具体实施方式
为了深入了解本发明,下面结合附图及具体实施例对本发明进行详细说明。
参见图10,本发明实施例提出了一种确定典型储层最佳饱和度计算模型的方法,该方法从技术实施角度解决了现有油气储层饱和度计算模型中待定参数确定的难点,对几类典型储层,特别是对低孔低渗碎屑岩、碳酸盐岩、火山岩等非均质各向异性复杂储层饱和度的精确定量计算具有重要意义,该方法包括如下步骤:
步骤101:根据油气储层段的岩心、测井等数据资料,选出具有代表性的全直径岩心;
本实施例选择一油田区块的油气储层段作为待研究的油气目的层,收集该油气储层段的岩心资料、常规测井及成像测井等资料,并根据这些资料选出了具有代表性的全直径岩心a和岩心b;岩心资料包括:岩心的孔隙度、岩心的渗透率及岩心核磁T2谱等;所谓具有代表性的岩心是指岩心在孔隙度、渗透率数值,以及孔隙的类型、特征等方面应具有代表性;本实施例选出的岩心a、b的孔隙度分别为12.909%、12.18%,岩心a、b的渗透率分别为0.0953mD、0.0238mD,图3和图4分别是根据核磁实验得到的岩心a、b的T2谱;
步骤102:对选出的岩心进行高分辨率微CT扫描及储层条件岩电实验研究;
高分辨率微CT是一种直接的三维空间成像技术,在材料、医学等方面应用广泛,近年来逐渐应用到储层地质中;高分辨率微CT的选择要求对全直径岩心能够清楚地看到微裂缝、裂缝、孔洞等次生孔隙,对小岩样(直径小于25mm)分辨率不低于30微米;图5和图6分别是对岩心a、岩心b进行三维微CT扫描结果的典型切片;
在确定电阻增大率-含水饱和度关系中的待定参数时,往往采用1英寸直径柱塞岩心,这种岩心可以反映均匀地层情况,但对低孔低渗碎屑岩、碳酸盐岩、火山岩等非均质各向异性复杂储层不适用。非均质各向异性地层,不同取样点反映的储层情况可能完全不同,这就要求岩心尽可能大(最大为全直径岩心),尽量减小非均质造成的取样误差;因此,岩电实验需要选取储层段的全直径岩心,进行储层条件(高温、高压)的电性测量,实验时的温度及压力根据实际储层条件确定,以最大限度地减小测量条件对分析结果的影响;本实施例对储层条件进行高温高压岩电实验,设置实验的温度为100℃,压力为20MPa;
步骤103:根据岩心资料、常规测井及成像测井资料,分析岩心所在储层段的特性及孔隙结构特征,并利用岩心微CT扫描结果,确定岩心所在储层的类型;
储层特性主要是指储层岩石类型(砂岩、碳酸盐岩、火山岩等)、泥质含量等,储层特性及泥质含量可根据常规测井资料确定;储层孔隙结构特征主要是指储集空间的类型(如原生粒间孔隙、裂缝、孔洞等),以及不同类型孔隙的空间连通性等;通常,储层孔隙结构特征可以根据岩心分析、常规测井及成像测井资料综合确定:根据T2谱的分布可以辨别出储层是否含孔洞、裂缝以及原生孔隙半径的分布情况;孔隙度-渗透率关系可在一定程度上帮助分析岩心是否含有裂缝及裂缝发育的情况(当存在裂缝时,相同孔隙度下渗透率显著偏高,随着裂缝发育程度的增大,渗透率增加的数值进一步增大);利用成像测井资料可以确定次生孔隙的类型及发育情况;本实施例中岩心a、b所在储层段的岩石类型为火山岩,不含泥质;由图3和图4所示的核磁T2谱可以看出,岩心a的T2谱呈现出非常明显的单峰分布,且T2值主要分布在3ms至300ms之间,因此岩心a次生孔隙不发育,孔隙类型主要为粒间孔隙;岩心b的T2谱呈现出非常明显的双峰分布,且较大的峰T2值主要分布在30ms至700ms之间,因此岩心b次生孔隙比较发育;上述分析的孔隙结构特征在成像测井资料上也有体现;
在常规的孔隙结构特征分析基础之上,本实施例还将高分辨率微CT三维成像技术用来定量刻画储层岩心裂缝、孔洞的发育情况,分析原生孔隙半径的大小及分布等,确定孔洞之间的空间连通性等,进而确定岩心所在储层的类型;为了精确描述岩石的电性,根据孔洞在三维空间中的连通状况,进一步将孔洞分为孔洞(图1)和裂缝连通孔洞(图2);本实施例的孔洞并不仅指那些稀疏分布的孤立孔洞,更多情况下是指那些具有一定分布密度、主要依靠基质孔隙而不是依靠裂缝连通的孔洞;在孔洞中,孔洞未被裂缝连接,空间连通性较差,但孔洞与基质孔隙之间仍存在连通性;在裂缝连通孔洞中,孔洞被微裂缝连接,空间连通性比较好;
常见的储层类型包括:孔隙型、泥质-孔隙型、孔隙-裂缝型、孔隙-孔洞型、孔隙-裂缝连通孔洞型或孔隙-裂缝-孔洞型;其中,孔隙型储层的孔隙以原生粒间孔隙为主,孔隙尺寸分布比较均匀,均质性强,不含泥质,该类型主要出现在砂岩储层中,在次生孔隙不发育的火山岩及碳酸盐岩中也可能出现;泥质-孔隙型储层的孔隙以原生粒间孔隙为主,含有泥质,特别是层状及分散泥质,或者除原生粒间孔隙外微孔隙发育,该类型主要出现在泥质砂岩、低孔渗碎屑岩储层中;孔隙-裂缝型储层的孔隙以原生粒间孔隙、次生裂缝为主,该类型主要出现在低孔渗碎屑岩、碳酸盐岩、火山岩储层中;孔隙-孔洞型储层的孔隙以原生粒间孔隙、次生孔洞为主,且孔洞体之间无裂缝形成的长程的次生通道,该类型主要出现在碳酸盐岩、火山岩储层中;孔隙-裂缝连通孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,且孔洞之间明显被微裂缝、裂缝沟通,孔洞之间的连通性比较好,形成了长程的次生通道,该类型主要出现在碳酸盐岩、火山岩储层中;孔隙-裂缝-孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,孔洞之间未被微裂缝、裂缝沟通,孔洞之间未形成长程的次生通道,该类型主要出现在低孔渗碎屑岩、碳酸盐岩、火山岩储层中;
本实施例利用图5和图6的微CT扫描结果来定量刻画储层岩心裂缝、孔洞的发育情况,经过分析得知岩心b的次生孔隙主要为孔洞,且孔洞主要以孤立的形式存在,空间连通性比较差;本实施例根据上述的孔隙结构分析结果和岩心CT扫描定量分析结果,将岩心a所在储层的类型确定为孔隙型,将岩心b所在储层的类型确定为孔隙-孔洞型;
步骤104:根据岩心所在储层的类型,选择饱和度计算模型的最佳形式;
1)若岩心所在储层为孔隙型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 - - - ( 2 )
2)若岩心所在储层为泥质-孔隙型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 S w n 2 - - - ( 3 )
3)若岩心所在储层为孔隙-裂缝型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 - - - ( 4 )
4)若岩心所在储层为孔隙-孔洞型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + 1 p 2 S w n 2 - - - ( 5 )
5)若岩心所在储层为孔隙-裂缝连通孔洞型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + 1 p 2 S w n 2 - - - ( 6 )
6)若岩心所在储层为孔隙-裂缝-孔洞型,则选择的饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 + 1 p 3 S w n 2 - - - ( 7 )
其中,p1、p2、p3、n1、n2是待定参数,p1、p2、p3、n1取值为正数,n2取值为非负数;若n2取值为0,则对应项变为常数,即岩石电阻增大率与含水饱和度的变化无关;
根据步骤103确定的岩心a、b所在储层的类型,并结合式(2)-式(7)提出的饱和度计算模型最佳形式的选择方法,可以选择岩心a所在储层饱和度的最佳形式为式(2)、岩心b所在储层饱和度的最佳形式为式(5);
步骤105:根据岩电实验结果,利用能够反映地层真实特性的刻度方法及优化拟合技术,确定饱和度计算模型的最佳形式中的待定参数,获得储层条件最佳的饱和度计算模型;
在步骤104确定的饱和度计算模型的最佳形式基础之上,利用步骤102获得的全直径岩心储层条件下的岩电实验结果,通过数据拟合方法确定饱和度计算模型的最佳形式中的待定参数;岩心a、b饱和度计算模型的最佳形式中的参数数值及相关系数如下表1所示,R为相关系数:
表1
Figure BDA0000043222660000112
岩心a、b的岩电实验结果与饱和度计算模型最佳形式(式(2)、式(5))拟合结果,如图7(岩心a)和图8(岩心b)所示。由此,最终确定岩心a、b所在储层的饱和度计算模型式(8)、式(9):
I = 1 0.95838 S w 1.79935 - - - ( 8 )
I = 1 1 . 7578 S w 3 . 2521 + 1 2.16549 = 1 1.7578 S w 3.2521 + 0.46179 - - - ( 9 )
在实际应用中,利用本发明实施例提出的方法确定的饱和度计算模型计算得到的饱和度数值与密闭取心饱和度分析结果吻合得非常好。图9是某油井密闭取心饱和度分析结果与本发明实施例方法计算的饱和度的对比曲线,平均相对误差为4.92%。除火山岩储层外,本发明实施例提出的饱和度计算模型确定方法在其他油田的非均质灰岩、白云岩储层测井评价中也取得了显著的应用效果。
本发明实施例首次提出了根据储层特性及孔隙结构特征确定几类常见储层饱和度计算模型的方法,该方法的创新点体现在:1、采用先进的高分辨率微CT分析技术,精确测定储层岩石三维孔隙结构特征;2、根据地质对象的不同复杂程度及精细孔隙特征,提出了六种饱和度计算模型的最佳形式,这六个方程针对不同地质情况,概括了常见储层的电性特征,解决了用尽量少的待定参数和尽量简单的表达形式获得尽可能高的饱和度计算精度这一难题,第一次在参数个数和计算精度之间找到了一个平衡点,具有非常广泛的适用性;3、利用能够反映地层真实特性的刻度方法及优化拟合技术获得饱和度计算模型参数。
本发明实施例解决了目前饱和度计算模型确定的关键性难点,大幅度提高了常见储层,特别是非均质复杂储层饱和度的计算精度,在油田现场应用中效果显著。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种确定典型储层最佳饱和度计算模型的方法,其特征在于,所述方法包括:
根据油气储层段的岩心、测井数据资料,选出具有代表性的全直径岩心,并对所述全直径岩心进行微CT扫描及储层条件岩电实验;
根据所述岩心、测井数据资料,分析所述全直径岩心所在储层段的特性及孔隙结构特征,并利用微CT扫描结果,确定所述全直径岩心所在储层的类型;
根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式;
根据所述岩电实验结果,确定所述饱和度计算模型的最佳形式中的待定参数。
2.如权利要求1所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,所述利用微CT扫描结果,确定所述全直径岩心所在储层的类型的步骤具体包括:
利用微CT扫描结果定量刻画储层岩心裂缝、孔洞的发育情况,分析原生孔隙半径的大小及分布,确定孔洞之间的空间连通性;
根据定量分析结果,确定所述全直径岩心所在储层的类型。
3.如权利要求1或2所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,所述岩心资料包括岩心的孔隙度、岩心的渗透率及岩心核磁T2谱;所述测井资料包括常规测井资料和成像测井资料。
4.如权利要求1或2所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,所述储层的类型包括:孔隙型、泥质-孔隙型、孔隙-裂缝型、孔隙-孔洞型、孔隙-裂缝连通孔洞型或孔隙-裂缝-孔洞型。
5.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、n1为待定参数,p1、n1为正数;
所述孔隙型储层的孔隙以原生粒间孔隙为主,孔隙尺寸分布均匀,均质性强,不含泥质。
6.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为泥质-孔隙型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述泥质-孔隙型储层的孔隙以原生粒间孔隙为主,含有层状及分散泥质,或者除原生粒间孔隙外微孔隙发育。
7.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1为待定参数,p1、p2、n1为正数;
所述孔隙-裂缝型储层的孔隙以原生粒间孔隙、次生裂缝为主。
8.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + 1 p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述孔隙-孔洞型储层的孔隙以原生粒间孔隙、次生孔洞为主,且孔洞体之间无裂缝形成的长程的次生通道。
9.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝连通孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、n1、n2为待定参数,p1、p2、n1为正数,n2为非负数;
所述孔隙-裂缝连通孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,且孔洞之间明显被微裂缝、裂缝沟通,孔洞之间的连通性好,形成了长程的次生通道。
10.如权利要求4所述的确定典型储层最佳饱和度计算模型的方法,其特征在于,根据所述全直径岩心所在储层的类型,选择饱和度计算模型的最佳形式的步骤具体为:若所述全直径岩心所在储层为孔隙-裂缝-孔洞型储层,则饱和度计算模型的最佳形式为:
I = 1 p 1 S w n 1 + p 2 + 1 p 3 S w n 2
其中,I为岩石电阻增大率,Sw为油气层含水饱和度,p1、p2、p3、n1、n2为待定参数,p1、p2、p3、n1为正数,n2为非负数;
所述孔隙-裂缝-孔洞型储层的孔隙以原生粒间孔隙、次生裂缝及孔洞为主,孔洞之间未被微裂缝、裂缝沟通,孔洞之间未形成长程的次生通道。
CN 201110003814 2011-01-10 2011-01-10 一种确定典型储层最佳饱和度计算模型的方法 Active CN102175832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110003814 CN102175832B (zh) 2011-01-10 2011-01-10 一种确定典型储层最佳饱和度计算模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110003814 CN102175832B (zh) 2011-01-10 2011-01-10 一种确定典型储层最佳饱和度计算模型的方法

Publications (2)

Publication Number Publication Date
CN102175832A true CN102175832A (zh) 2011-09-07
CN102175832B CN102175832B (zh) 2013-10-16

Family

ID=44519037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110003814 Active CN102175832B (zh) 2011-01-10 2011-01-10 一种确定典型储层最佳饱和度计算模型的方法

Country Status (1)

Country Link
CN (1) CN102175832B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628354A (zh) * 2012-04-12 2012-08-08 东北石油大学 孔隙微米级油水分布识别量化方法
CN103198363A (zh) * 2013-03-19 2013-07-10 中国石油天然气股份有限公司 一种基于ct孔隙分析的储层产气量预测方法及装置
CN103499679A (zh) * 2013-09-11 2014-01-08 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN103498669A (zh) * 2013-09-04 2014-01-08 中国石油天然气股份有限公司 一种非均质岩心模型层间窜流量的定量测定方法
CN103573251A (zh) * 2012-08-06 2014-02-12 中国石油化工股份有限公司 大尺寸火山岩水力裂缝起裂与扩展ct扫描裂缝监测方法
CN103675945A (zh) * 2013-12-17 2014-03-26 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN104169714A (zh) * 2012-01-13 2014-11-26 领英股份有限公司 用多能量x射线成像确定储层性质和品质的方法
CN104748906A (zh) * 2015-04-10 2015-07-01 中国石油大学(北京) 碳酸盐岩毛细管压力确定方法及装置
CN105181721A (zh) * 2015-10-08 2015-12-23 中国石油大学(华东) 基于岩心扫描的富泥披储层泥质含量计算方法
CN105649615A (zh) * 2015-12-28 2016-06-08 中国石油天然气股份有限公司 Ct定量、三维可视化测试储层致密油赋存状态的方法
CN106093083A (zh) * 2016-07-01 2016-11-09 龙威 一种采用数字岩心模拟建立岩电关系的方法
CN106285656A (zh) * 2015-06-09 2017-01-04 中国石油化工股份有限公司 用于确定页岩气储层的游离气饱和度的方法及系统
CN106368688A (zh) * 2015-07-21 2017-02-01 中国石油化工股份有限公司 研究岩石受热破裂条件和裂缝分布的实验方法
CN104535475B (zh) * 2015-01-08 2018-02-06 中国石油天然气股份有限公司 碳酸盐岩微观结构的确定方法及装置
WO2018028258A1 (zh) * 2016-08-10 2018-02-15 中国石油天然气股份有限公司 确定非均质碳酸盐岩储层饱和度指数的方法及系统
CN107907461A (zh) * 2017-11-03 2018-04-13 中国石油化工股份有限公司 页岩油主要赋存孔径范围的研究方法
CN107917865A (zh) * 2016-10-11 2018-04-17 中国石油化工股份有限公司 一种致密砂岩储层多参数渗透率预测方法
CN109115657A (zh) * 2018-10-22 2019-01-01 中国石油大学(北京) 一种饱和度与渗透率耦合检测的水锁解除能力评价装置
CN109142163A (zh) * 2018-10-22 2019-01-04 中国石油大学(北京) 一种饱和度与渗透率耦合检测的水锁解除能力评价方法
CN109239311A (zh) * 2018-10-23 2019-01-18 中国石油化工股份有限公司 堵剂充满度测试方法
CN110132971A (zh) * 2019-06-06 2019-08-16 克拉玛依市昂科能源科技有限公司 一种实验室定量区分接触泥质和分散泥质的方法
CN110706344A (zh) * 2019-11-04 2020-01-17 西南石油大学 一种碳酸盐岩缝洞储层连通性的3d建模方法
CN113805247A (zh) * 2020-06-15 2021-12-17 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法
CN115099991A (zh) * 2022-07-20 2022-09-23 中国科学院大学 一种基于生产数据的非均质油藏动态含油饱和度计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982086A (en) * 1988-07-14 1991-01-01 Atlantic Richfield Company Method of porosity determination in porous media by x-ray computed tomography
CN101487390A (zh) * 2009-02-23 2009-07-22 大庆油田有限责任公司 一种确定油层原始含油饱和度的阿尔奇模式方法
CN101639434A (zh) * 2009-08-27 2010-02-03 太原理工大学 基于显微图像分析固体材料孔隙结构的方法
CN101649738A (zh) * 2008-08-13 2010-02-17 中国石油天然气集团公司 一种确定地层含水饱和度的方法
CN101929973A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 裂缝储层含油气饱和度定量计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982086A (en) * 1988-07-14 1991-01-01 Atlantic Richfield Company Method of porosity determination in porous media by x-ray computed tomography
CN101649738A (zh) * 2008-08-13 2010-02-17 中国石油天然气集团公司 一种确定地层含水饱和度的方法
CN101487390A (zh) * 2009-02-23 2009-07-22 大庆油田有限责任公司 一种确定油层原始含油饱和度的阿尔奇模式方法
CN101929973A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 裂缝储层含油气饱和度定量计算方法
CN101639434A (zh) * 2009-08-27 2010-02-03 太原理工大学 基于显微图像分析固体材料孔隙结构的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李宁: "电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(Ⅰ)", 《地球物理学报》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169714B (zh) * 2012-01-13 2017-07-11 领英股份有限公司 用多能量x射线成像确定储层性质和品质的方法
CN104169714A (zh) * 2012-01-13 2014-11-26 领英股份有限公司 用多能量x射线成像确定储层性质和品质的方法
CN102628354B (zh) * 2012-04-12 2014-08-13 东北石油大学 孔隙微米级油水分布识别量化方法
CN102628354A (zh) * 2012-04-12 2012-08-08 东北石油大学 孔隙微米级油水分布识别量化方法
CN103573251B (zh) * 2012-08-06 2016-04-27 中国石油化工股份有限公司 大尺寸火山岩水力裂缝起裂与扩展ct扫描裂缝监测方法
CN103573251A (zh) * 2012-08-06 2014-02-12 中国石油化工股份有限公司 大尺寸火山岩水力裂缝起裂与扩展ct扫描裂缝监测方法
CN103198363A (zh) * 2013-03-19 2013-07-10 中国石油天然气股份有限公司 一种基于ct孔隙分析的储层产气量预测方法及装置
CN103198363B (zh) * 2013-03-19 2015-02-25 中国石油天然气股份有限公司 一种基于ct孔隙分析的储层产气量预测方法及装置
CN103498669A (zh) * 2013-09-04 2014-01-08 中国石油天然气股份有限公司 一种非均质岩心模型层间窜流量的定量测定方法
CN103498669B (zh) * 2013-09-04 2015-12-09 中国石油天然气股份有限公司 一种非均质岩心模型层间窜流量的定量测定方法
CN103499679A (zh) * 2013-09-11 2014-01-08 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN103499679B (zh) * 2013-09-11 2015-06-03 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN103675945B (zh) * 2013-12-17 2017-03-08 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN103675945A (zh) * 2013-12-17 2014-03-26 中国石油天然气股份有限公司 一种测定孔洞型储层的饱和度的方法及设备
CN104535475B (zh) * 2015-01-08 2018-02-06 中国石油天然气股份有限公司 碳酸盐岩微观结构的确定方法及装置
CN104748906A (zh) * 2015-04-10 2015-07-01 中国石油大学(北京) 碳酸盐岩毛细管压力确定方法及装置
CN106285656A (zh) * 2015-06-09 2017-01-04 中国石油化工股份有限公司 用于确定页岩气储层的游离气饱和度的方法及系统
CN106368688A (zh) * 2015-07-21 2017-02-01 中国石油化工股份有限公司 研究岩石受热破裂条件和裂缝分布的实验方法
CN105181721A (zh) * 2015-10-08 2015-12-23 中国石油大学(华东) 基于岩心扫描的富泥披储层泥质含量计算方法
CN105649615B (zh) * 2015-12-28 2019-01-18 中国石油天然气股份有限公司 Ct定量、三维可视化测试储层致密油赋存状态的方法
CN105649615A (zh) * 2015-12-28 2016-06-08 中国石油天然气股份有限公司 Ct定量、三维可视化测试储层致密油赋存状态的方法
CN106093083A (zh) * 2016-07-01 2016-11-09 龙威 一种采用数字岩心模拟建立岩电关系的方法
CN106093083B (zh) * 2016-07-01 2018-08-07 清能艾科(深圳)能源技术有限公司 一种采用数字岩心模拟建立岩电关系的方法
WO2018028258A1 (zh) * 2016-08-10 2018-02-15 中国石油天然气股份有限公司 确定非均质碳酸盐岩储层饱和度指数的方法及系统
US11112527B2 (en) 2016-08-10 2021-09-07 Petrochina Company Limited Method and system for determining heterogeneous carbonate reservoir saturation exponent
CN107917865A (zh) * 2016-10-11 2018-04-17 中国石油化工股份有限公司 一种致密砂岩储层多参数渗透率预测方法
CN107917865B (zh) * 2016-10-11 2020-01-31 中国石油化工股份有限公司 一种致密砂岩储层多参数渗透率预测方法
CN107907461A (zh) * 2017-11-03 2018-04-13 中国石油化工股份有限公司 页岩油主要赋存孔径范围的研究方法
CN109115657A (zh) * 2018-10-22 2019-01-01 中国石油大学(北京) 一种饱和度与渗透率耦合检测的水锁解除能力评价装置
CN109142163A (zh) * 2018-10-22 2019-01-04 中国石油大学(北京) 一种饱和度与渗透率耦合检测的水锁解除能力评价方法
CN109239311A (zh) * 2018-10-23 2019-01-18 中国石油化工股份有限公司 堵剂充满度测试方法
CN109239311B (zh) * 2018-10-23 2024-03-22 中国石油化工股份有限公司 堵剂充满度测试方法
CN110132971A (zh) * 2019-06-06 2019-08-16 克拉玛依市昂科能源科技有限公司 一种实验室定量区分接触泥质和分散泥质的方法
CN110132971B (zh) * 2019-06-06 2020-01-07 克拉玛依市昂科能源科技有限公司 一种实验室定量区分接触泥质和分散泥质的方法
CN110706344A (zh) * 2019-11-04 2020-01-17 西南石油大学 一种碳酸盐岩缝洞储层连通性的3d建模方法
CN113805247A (zh) * 2020-06-15 2021-12-17 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法
CN113805247B (zh) * 2020-06-15 2024-03-19 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法
CN115099991A (zh) * 2022-07-20 2022-09-23 中国科学院大学 一种基于生产数据的非均质油藏动态含油饱和度计算方法

Also Published As

Publication number Publication date
CN102175832B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
CN102175832B (zh) 一种确定典型储层最佳饱和度计算模型的方法
Xiao et al. Combining rate-controlled porosimetry and NMR to probe full-range pore throat structures and their evolution features in tight sands: A case study in the Songliao Basin, China
CN105334536B (zh) 致密砂岩储层网状裂缝系统有效性评价方法
US7532983B2 (en) Method and apparatus for measuring the wettability of geological formations
CN102262041B (zh) 一种基于多谱孔隙结构分析的饱和度确定方法
CN103306671B (zh) 一种四象限储层类型识别方法及系统
CN102042011B (zh) 利用常规测井资料构建伪核磁t2谱的方法
CN102434152A (zh) 一种储层含油饱和度的计算方法
CN104819923A (zh) 基于核磁共振的低渗透砂岩储层孔隙结构定量反演方法
CN109100812B (zh) 基于核磁共振的岩石孔隙分形维数评价方法及装置
CN110824556A (zh) 一种非常规致密砂岩储层的岩石物理模型建立方法及应用
US8005619B2 (en) Method of determining reservoir parameters
CN105445441A (zh) 储层含气饱和度确定方法及装置
CN104989386A (zh) 一种致密油特性判别方法及图版的生成方法
CN104863574A (zh) 一种适用于致密砂岩储层的流体识别方法
CN112145165B (zh) 一种微裂缝-孔隙型储层动静态渗透率转换方法
CN110568160A (zh) 一种油气储层岩石的综合评价方法及装置
CN105257284B (zh) 一种利用元素俘获能谱测井确定凝灰质含量的方法及装置
Guoqiang Challenges and countermeasures of log evaluation in unconventional petroleum exploration and development
CN105205296A (zh) 一种求取页岩气储层孔隙度的方法
CN106777707B (zh) 一种利用改进的蜘蛛网图进行测井岩性定量识别的方法
CN105350959A (zh) 由测井岩性密度确定页岩气储层含气饱和度的方法
CN109738955B (zh) 一种基于成分-结构分类下的变质岩岩性综合判别方法
CN105604548B (zh) 一种基于油基钻井液的地层油判识方法
CN103197348A (zh) 利用各层内部样品进行加权编制测井交会图的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant