CN106285656A - 用于确定页岩气储层的游离气饱和度的方法及系统 - Google Patents

用于确定页岩气储层的游离气饱和度的方法及系统 Download PDF

Info

Publication number
CN106285656A
CN106285656A CN201510313795.6A CN201510313795A CN106285656A CN 106285656 A CN106285656 A CN 106285656A CN 201510313795 A CN201510313795 A CN 201510313795A CN 106285656 A CN106285656 A CN 106285656A
Authority
CN
China
Prior art keywords
resistivity
shale
saturation
volume
gas reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510313795.6A
Other languages
English (en)
Inventor
路菁
李军
南泽宇
武清钊
郝士博
于文芹
张爱芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Exploration and Production Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201510313795.6A priority Critical patent/CN106285656A/zh
Publication of CN106285656A publication Critical patent/CN106285656A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种用于确定页岩气储层的游离气饱和度的方法及系统,方法包括:获取页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率;基于构建的页岩气储层的体积模型,体积模型包括页理缝、粉砂质和含有机质的泥质,获取页理缝的电阻率及该页理缝占页岩气储层的体积百分比;获取泥质中湿黏土的电阻率及该泥质占页岩气储层的体积百分比;根据获取的参数确定页岩气储层的游离气饱和度。本发明丰富了含油气饱和度评价理论,完善了非常规页岩气储层含水饱和度与游离气饱和度的评价方法,同时为复杂地质条件下,不适用于传统泥质砂岩饱和度评价方法的页岩气储层含水饱和度以及游离气饱和度评价问题提供了有效途径。

Description

用于确定页岩气储层的游离气饱和度的方法及系统
技术领域
本发明涉及非常规油气勘探开发技术领域,尤其涉及一种用于确定页岩气储层的游离气饱和度的方法及系统。
背景技术
页岩气储层游离气饱和度是页岩气储层游离气含量以及页岩气藏储量评价的关键参数。目前测井行业中,首先采用传统纯砂岩含油气饱和度模型(阿尔奇公式)或泥质砂岩含油气饱和度模型(Simandoux公式、Waxman-Smits双水模型等)来确定页岩含水饱和度。在确定页岩含水饱和度后,利用页岩游离气饱和度与页岩含水饱和度的关系来确定页岩游离气饱和度。
然而,在实际应用中,基于传统纯砂岩与泥质砂岩岩性与含流体特性建立的含油气饱和度模型,并不完全符合页岩气储层具有的页理发育、岩石组分更加复杂、颗粒更加细小,天然气赋存空间更加多样等实际地质与岩石物理特征。因此,将上述传统含油气饱和度模型应用于页岩气储层游离气饱和度评价时,效果不佳。
发明内容
本发明所要解决的技术问题是:由于传统纯砂岩含油气饱和度模型和泥质砂岩含油气饱和度模型,并不完全符合页岩气储层的实际地质与岩石物理特征,因此,将上述传统含油气饱和度模型应用于页岩气储层游离气饱和度评价时,效果不佳。
为了解决上述技术问题,本发明提供了一种用于确定页岩气储层的游离气饱和度的方法及系统。
根据本发明的一个方面,提供了一种用于确定页岩气储层的游离气饱和度的方法,其包括:
获取所述页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率;
基于构建的所述页岩气储层的体积模型,所述体积模型包括页理缝、粉砂质和含有机质的泥质,获取所述页理缝的电阻率及该页理缝占所述页岩气储层的体积百分比,得到第一电阻率和第一体积百分比;
获取所述泥质中湿黏土的电阻率及该泥质占所述页岩气储层的体积百分比,得到第二电阻率和第二体积百分比;
根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度。
优选的是,根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度,包括:
根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合构建的含水饱和度模型确定所述页岩气储层的含水饱和度;
根据所述含水饱和度,确定所述游离气饱和度。
优选的是,上述方法还包括:构建所述页岩气储层的含水饱和度模型,具体包括:
根据所述页岩气储层的体积模型,构建所述页岩气储层的等效电路;
根据所述等效电路,构建所述含水饱和度模型。
优选的是,所述含水饱和度模型为
1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h ) ;
其中,Sw表示所述含水饱和度,φe表示所述有效孔隙度,Rt表示所述原状地层电阻率,Rw表示所述地层水电阻率;Vf和Rf分别表示所述第一体积百分比和所述第一电阻率;Vsh和Rsh分别表示所述第二体积百分比和所述第二电阻率;a表示与延时有关的比例系数。
优选的是,利用双侧向测井反演的方法获取所述第一体积百分比;或者
根据对所述页岩气储层进行核磁共振实验所得的数据,以及对所述页岩气储层的岩心进行薄片扫描实验所得的数据,获取所述第一体积百分比。
根据本发明的另一个方面,提供了一种用于确定页岩气储层的游离气饱和度的系统,其包括:
第一获取模块,设置为获取所述页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率;
第二获取模块,设置为基于构建的所述页岩气储层的体积模型,所述体积模型包括页理缝、粉砂质和含有机质的泥质,获取所述页理缝的电阻率及该页理缝占所述页岩气储层的体积百分比,得到第一电阻率和第一体积百分比;
第三获取模块,设置为获取所述泥质中湿黏土的电阻率及该泥质占所述页岩气储层的体积百分比,得到第二电阻率和第二体积百分比;
游离气饱和度确定模块,设置为根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度。
优选的是,所述游离气饱和度确定模块包括:
含水饱和度确定单元,设置为根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合构建的含水饱和度模型确定所述页岩气储层的含水饱和度;
游离气饱和度确定单元,设置为根据所述含水饱和度,确定所述游离气饱和度。
优选的是,上述系统还包括含水饱和度模型构建模块,设置为构建所述页岩气储层的含水饱和度模型;所述含水饱和度模型构建模块包括:
等效电路构建单元,设置为根据所述页岩气储层的体积模型,构建所述页岩气储层的等效电路;
含水饱和度模型构建单元,设置为根据所述等效电路,构建所述含水饱和度模型。
优选的是,所述含水饱和度模型为 1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h ) ;
其中,Sw表示所述含水饱和度,φe表示所述有效孔隙度,Rt表示所述原状地层电阻率,Rw表示所述地层水电阻率;Vf和Rf分别表示所述第一体积百分比和所述第一电阻率;Vsh和Rsh分别表示所述第二体积百分比和所述第二电阻率;a表示与延时有关的比例系数。
优选的是,所述第二获取模块具体设置为利用双侧向测井反演的方法获取所述第一体积百分比;或者根据对所述页岩气储层进行核磁共振实验所得的数据,以及对所述页岩气储层的岩心进行薄片扫描实验所得的数据,获取所述第一体积百分比。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
本发明用于确定页岩气储层的游离气饱和度的方法丰富了含油气饱和度评价理论,完善了非常规页岩气储层含水饱和度与游离气饱和度的评价方法,同时为复杂地质条件下,不适用于传统泥质砂岩饱和度评价方法的页岩气储层含水饱和度以及游离气饱和度评价问题提供了有效途径。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1示出了本发明实施例用于确定页岩气储层的游离气饱和度的方法的一种流程示意图;
图2示出了本发明实施例用于确定页岩气储层的游离气饱和度的方法的另一种流程示意图;
图3示出了本发明实施例中构建所述页岩气储层的含水饱和度模型的方法的流程示意图;
图4示出了本发明实施例中根据页岩气储层的物理结构特征构建的页岩气储层的体积模型的结构示意图;
图5示出了本发明实施例中构建的页岩气储层的等效电路的示意图;
图6示出了针对场景A,应用本实施例确定的游离气饱和度与岩心测试结果的对比示意图;
图7示出了针对场景B,应用本实施例确定的游离气饱和度与岩心测试结果的对比示意图;
图8示出了本发明实施例用于确定页岩气储层的游离气饱和度的系统的一种结构示意图;
图9示出了本发明实施例用于确定页岩气储层的游离气饱和度的系统的另一种结构示意图;以及
图10示出了本发明实施例中含水饱和度模型构建模块的结构示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
本发明所要解决的技术问题是:由于传统纯砂岩含油气饱和度模型和泥质砂岩含油气饱和度模型,并不完全符合页岩气储层的实际地质与岩石物理特征,因此,将上述传统含油气饱和度模型应用于页岩气储层游离气饱和度评价时,效果不佳。为了解决上述技术问题,本发明实施例提供了一和新的用于确定页岩气储层的游离气饱和度的方法。
如图1所示,是本发明实施例用于确定页岩气储层的游离气饱和度的方法的流程示意图。本实施例用于确定页岩气储层的游离气饱和度的方法,主要包括步骤101~104。
步骤101:获取页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率。
具体地,获取页岩气储层的有效孔隙度。在具体实施过程中,可利用但不限于以下方式获取页岩气储层的有效孔隙度:测井交会图分析、岩心测试、岩心刻度测井。
获取页岩气储层的原状地层电阻率。在具体实施过程中,可利用代表原状地层的测井曲线(如LLD,RLD等)来获取页岩气储层的原状地层电阻率。
页岩气储层的地层水电阻率可利用实验分析或者地区经验关系等确定。
步骤102:基于构建的页岩气储层的体积模型,体积模型包括页理缝、粉砂质和含有机质的泥质,获取页理缝的电阻率及该页理缝占页岩气储层的体积百分比,得到第一电阻率和第一体积百分比。
具体地,体积模型包括的页理缝的电阻率可取泥浆电阻率。
第一体积百分比优选地利用双侧向测井反演的方法获取,或者根据对页岩气储层进行高精度核磁共振实验所得的实验数据,以及对页岩气储层的岩心进行薄片扫描实验所得的实验数据来获取。由于利用双侧向测井反演的方法获取第一体积百分比,以及根据核磁共振实验数据和薄片扫描实验数据获取第一体积百分比,均是本领域技术人员惯常采用的技术手段,故在本文中不再进行展开说明。
步骤103:获取泥质中湿黏土的电阻率及该泥质占页岩气储层的体积百分比,得到第二电阻率和第二体积百分比。
具体地,本文将含有机质的泥质中的湿黏土看成是泥质中的主要导电部分。湿黏土的电阻率可取临近泥岩电阻率。
第二体积百分比优选地利用放射性测井的方法获取,或者利用自然电位测井的方法获取。由于利用放射性测井的方法来获取第二体积百分比,以及利用自然电位测井的方法来获取第二体积百分比,均是本领域技术人员惯常采用的技术手段,故在本文中不再进行展开说明。
步骤104:根据有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定页岩气储层的游离气饱和度。特别地,根据上述参量确定页岩气储层的游离气饱和度(也称为游离气含量)的方法将在下文中结合图2进行详细地阐述。
图2示出了本实施例用于确定页岩气储层的游离气饱和度的方法的另一种流程示意图。本实施例的确定方法除了包括上述步骤101~103之外,还包括步骤201、步骤202和步骤203。步骤202和步骤203是步骤103的进一步扩展。
参照图2,本实施例的用于确定页岩气储层的游离气饱和度的方法,主要包括:
步骤201:构建页岩气储层的含水饱和度模型。
具体地,含水饱和度模型可离线构建而成,也可在执行步骤202之前的任意时刻构建。在本发明一优选的实施例中,构建的含水饱和度模型优选地表示为:
1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h )
其中,Sw表示含水饱和度,φe表示页岩气储层的有效孔隙度,Rt表示页岩气储层的原状地层电阻率,Rw表示页岩气储层的地层水电阻率。Vf表示页理缝占页岩气储层的体积百分比(即第一体积百分比),Rf页理缝的电阻率(即第一电阻率)。Vsh表示含有机质的泥质占页岩气储层的体积百分比(即第二体积百分比),Rsh表示含有机质的泥质中湿黏土的的电阻率(即第二电阻率)。a表示与延时有关的比例系数,该比例系数取值为大于等于0.6且小于等于1.5的实数。
步骤101:获取页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率。
步骤102:获取页理缝的电阻率及该页理缝占页岩气储层的体积百分比,得到第一电阻率和第一体积百分比。
步骤103:获取含有机质的泥质中湿黏土的电阻率及该泥质占页岩气储层的体积百分比,得到第二电阻率和第二体积百分比。
步骤202:根据有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合含水饱和度模型确定页岩气储层的含水饱和度。
步骤203:根据含水饱和度,确定游离气饱和度。
具体地,首先将步骤101~103获取的所有参量代入含水饱和度模型中,得到含水饱和度。然后根据Sg=1-Sw得到页岩气储层的游离气饱和度,式中Sg表示页岩气储层的游离气饱和度,Sw表示页岩气储层的含水饱和度。
如图3所示,是本发明实施例中构建含水饱和度模型的方法的流程示意图。本实施例所述的构建含水饱和度模型的方法,主要包括步骤301和步骤302。
步骤301:根据构建的页岩气储层的体积模型,构建页岩气储层的等效电路。
具体地,从定义看页岩是一种岩石组分复杂、普遍具有薄页状或薄片层状节理、主要由黏土、细粉砂、粉砂等细粒矿物经压实、脱水、重结晶等成岩作用形成的沉积岩。而含气页岩储层(即页岩气储层)除具有上述页岩普遍岩石特征外,还具有一定含量的有机质用于生烃,以及孔隙空间用于储集以游离状态赋存其中的天然气。
考虑到测井评价中通常将黏土与细粉砂合称为泥质,且富有机质页岩中有机质通常与更加细粒的泥质共同沉积,故将黏土、细粉砂与有机质合并为“含有机质的泥质”(以下简称为泥质)处理。另外,考虑到页岩沉积成岩后,“页理缝”是相对较粗的矿物颗粒与细粒矿物的“分界面”,是电测井的主要导电通道。因此,根据页岩气储层的物理结构特征,可首先构建如图4所示的体积模型,然后根据体积模型构建如图5所示的等效电路。参照图4,构建的体积模型包括页理缝、粉砂质的含有机质的泥质。参照图5,构建的等效电路为并联在一起的页理缝的电阻、泥质的电阻以及粉砂质的电阻。
值得注意的是,在具体实施过程中,可首先采集的代表页岩气储层各组成部分的物理参数,然后根据这些特理参数构建体积模型。
步骤302:根据等效电路,构建含水饱和度模型。
具体地,在步骤中,依据上述构建的体积模型和等效电路,依据并联导电原理推导页岩石气储层的含水饱和度模型。下面详细阐述构建含水饱和度模型的过程。
参照图4,设页岩气储层的岩样为长L的立方体,其总体积为V,总截面积为A,电阻率为Rt,电阻为r。页理缝、泥质与粉砂质的体积依次为:V1,V2和V3,截面积依次为:Af,A′sh和Asd,电阻率依次为:Rf,R′sh和Rsd,电阻依次为rf,r′sh和rsd。图4中的S′g和S′w分别表示含有机质的泥质的游离气饱和度和含水饱和度,S″g和S″w分别表示粉砂质的游离气饱和度和含水饱和度。在本文中认为含有机质的泥质的游离气饱和度S′g和粉砂质的游离气饱和度S″g均等于页岩气储层的游离气饱和度Sg,并认为含有机质的泥质的含水饱和度S′w和粉砂质的含水饱和度S″w均等于页岩气储层的含水饱和度Sw。即认为构建的体积模型中粉砂质的含水饱和度和含有机质的泥质的含水饱和度是均匀的。
结合图5所示等效电路可用式(1)表达页岩气储层的电阻并联关系:
1 r = 1 r f + 1 r s h ′ + 1 r s d - - - ( 1 )
式(2)可改写成:
1 R t L A = 1 R f L A f + 1 R s h ′ L A s h ′ + 1 R s d L A s d - - - ( 2 )
在式(2)的两端同时乘以L2得到:
A L R t = A f L R f + A s h ′ L R s h ′ + A s d L R s d A L R t = A f L R f + A s h ′ L R s h ′ + A s d L R s d - - - ( 3 )
即:
V R t = V 1 R f + V 2 R s h ′ + V 3 R s d - - - ( 4 )
为页理缝相对于页岩气储层的相对体积(即第一体积百分比),为泥质相对于页岩气储层的相对体积(即第二体积百分比),为粉砂质相对于页岩气储层的相对体积,对式(4)两端除以V有:
1 R t = V f R f + V s h R s h ′ + 1 - V f - V s h R s d - - - ( 5 )
对于粉砂质部分,设其有效孔隙度为则有根据粉砂质公式且 R s d FR w = 1 S w 2 R s d FR w = 1 S w 2 , 则有:
式(6)中,a表示与延时有关的比例系数,该比例系数取值为大于等于0.6且小于等于1.5的实数。
由于有机质不导电,可认为它是“含气泥质的骨架部分”,故假设页岩气储层中的“泥质”为黏土较重的含有机质细粉砂岩,其孔隙中含有湿黏土与天然气,且认为这部分细粉砂岩的有效孔隙中含水饱和度也等于Sw,当湿黏土的电阻率为Rsh时,则与纯砂岩类似,可写出含气泥质的含水饱和度关系式:
R s h ′ R s h = 1 S w n - - - ( 7 )
由于这部分泥质岩性极细,其电阻率增大系数一般只有1.5~2左右,故可取指数n=1,式(7)可写为如下式(8)的形式:
1 R s h ′ = S w R s h - - - ( 8 )
将式(6)与式(8)同时代入式(5)可得页岩气储层的含水饱和度模型:
1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h )
值得注意的是,在具体实施过程中,可直接利用使用含水饱和度模型。
可以看出,本发明实施例从页岩气储层实际岩石物理特征分析入手,建立具有页理缝导电的体积模型及等效电路,利用电测井响应信息,提出一种新的用于确定页岩气储层的游离气饱和度的方法。
相比于现有技术,本发明实施例丰富了含油气饱和度评价理论,完善了非常规页岩气储层含水饱和度与游离气饱和度的评价方法。同时为复杂地质条件下,不适用于传统泥质砂岩饱和度评价方法的页岩气储层含水饱和度以及游离气饱和度评价问题提供了有效途径。
为验证本发明实施例对页岩气储层的游离气饱和度评价的适应性与有效性,对四川盆地两口页岩气井测井资料进行评价,并将评价结果与岩心分析结果进行对比。
从图6利用本发明实施例对四川盆地A井页岩气储层的游离气饱和度进行评价的结果看,图6右侧第1道中,利用本发明确定的游离气饱和度(该道内虚线与实线之差)加上吸附气含量构成的总含气量(该道内实线),与岩心现场含量气量测试结果(该道内杆状实线)具有较好的一致性,验证了本发明实施例的适应性与有效性。
另外,从图7利用本发明实施例对四川盆地B井页岩气储层的游离气饱和度进行评价的结果看,图7右侧第1道,利用本发明确定的游离气饱和度(该道内实线)与该道内岩心分析测试结果(该道内杆状实线)同样具有较好的一致性,验证了本发明实施例的适应性与有效性。
相应地,本发明实施例还提供了一种用于确定页岩气储层的游离气饱和度的系统。
如图8所示,是本发明实施例用于确定页岩气储层的游离气饱和度的系统的一种结构示意图。本实施例的确定系统包括游离气饱和度确定模块404,以及均与游离气饱和度确定模块404电连接的第一获取模块401、第二获取模块402和第三获取模块403。
具体地,第一获取模块401,设置为获取页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率。
第二获取模块402,设置为基于构建的页岩气储层的体积模型,所述体积模型包括页理缝、粉砂质和含有机质的泥质,获取页理缝的电阻率及该页理缝占页岩气储层的体积百分比,得到第一电阻率和第一体积百分比。特别地,第二获取模块402具体利用双侧向测井反演的方法获取第一体积百分比;或者根据对页岩气储层进行核磁共振实验所得的数据,以及对页岩气储层的岩心进行薄片扫描实验所得的数据,获取第一体积百分比。
第三获取模块403,设置为获取含有机质的泥质中湿黏土的电阻率及该泥质占页岩气储层的体积百分比,得到第二电阻率和第二体积百分比。特别地,第三获取模块403具体设置为利用放射性测井的方法或者自然电位测井的方法获取第二体积百分比。
游离气饱和度确定模块404,设置为根据有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定页岩气储层的游离气饱和度。
如图9所示,是本发明实施例用于确定页岩气储层的游离气饱和度的系统的另一种结构示意图。本实施例的确定系统除了包括游离气饱和度确定模块404,以及均与游离气饱和度确定模块404电连接的第一获取模块401、第二获取模块402和第三获取模块403之外,还包括含水饱和度模型构建模块501。
具体地,含水饱和度模型构建模块501,设置为构建页岩气储层的含水饱和度模型。
游离气饱和度确定模块404包括彼此电连接的含水饱和度确定单元502和游离气饱和度确定单元503。含水饱和度模型构建模块501与含水饱和度确定单元502电连接。
含水饱和度确定单元502,设置为根据有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合构建的含水饱和度模型确定页岩气储层的含水饱和度。
游离气饱和度确定单元503,设置为根据含水饱和度,确定游离气饱和度。
如图10所示,是本发明实施例中含水饱和度模型构建模块501的结构示意图。在本实施例中,含水饱和度模型构建模块501包括彼此电连接的等效电路构建单元601和含水饱和度模型构建单元602。
具体地,等效电路构建单元601,设置为根据页岩气储层的体积模型,构建页岩气储层的等效电路。
含水饱和度模型构建单元602,设置为根据等效电路,构建含水饱和度模型。
在本发明实施例中,含水饱和度模型为 1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h ) . 其中,其中,Sw表示含水饱和度,φe表示有效孔隙度,Rt表示原状地层电阻率,Rw表示地层水电阻率;Vf和Rf分别表示第一体积百分比和第一电阻率;Vsh和Rsh分别表示第二体积百分比和第二电阻率;a表示与延时有关的比例系数,该比例系数取值为大于等于0.6且小于等于1.5的实数。
上述各模块中的操作的具体细化,可参见上面结合图1~图7对本发明方法的说明,在此不再详细赘述。
可以看出,本发明实施例从页岩气储层实际岩石物理特征分析入手,建立具有页理缝导电的体积模型及等效电路,利用电测井响应信息,提出一种新的用于确定页岩气储层的游离气饱和度的系统。
相比于现有技术,本发明实施例丰富了含油气饱和度评价理论,完善了非常规页岩气储层含水饱和度与游离气饱和度的评价方法。同时为复杂地质条件下,不适用于传统泥质砂岩饱和度评价方法的页岩气储层含水饱和度以及游离气饱和度评价问题提供了有效途径。
本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

1.一种用于确定页岩气储层的游离气饱和度的方法,其特征在于,包括:
获取所述页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率;
基于构建的所述页岩气储层的体积模型,所述体积模型包括页理缝、粉砂质和含有机质的泥质,获取所述页理缝的电阻率及该页理缝占所述页岩气储层的体积百分比,得到第一电阻率和第一体积百分比;
获取所述泥质中湿黏土的电阻率及该泥质占所述页岩气储层的体积百分比,得到第二电阻率和第二体积百分比;
根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度。
2.根据权利要求1所述的方法,其特征在于,根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度,包括:
根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合构建的含水饱和度模型确定所述页岩气储层的含水饱和度;
根据所述含水饱和度,确定所述游离气饱和度。
3.根据权利要求2所述的方法,其特征在于,还包括:构建所述页岩气储层的含水饱和度模型,具体包括:
根据所述页岩气储层的体积模型,构建所述页岩气储层的等效电路;
根据所述等效电路,构建所述含水饱和度模型。
4.根据权利要求2或3所述的方法,其特征在于,所述含水饱和度模型为
1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h ) ;
其中,Sw表示所述含水饱和度,φe表示所述有效孔隙度,Rt表示所述原状地层电阻率,Rw表示所述地层水电阻率;Vf和Rf分别表示所述第一体积百分比和所述第一电阻率;Vsh和Rsh分别表示所述第二体积百分比和所述第二电阻率;a表示与延时有关的比例系数。
5.根据权利要求2或3所述的方法,其特征在于,
利用双侧向测井反演的方法获取所述第一体积百分比;或者
根据对所述页岩气储层进行核磁共振实验所得的数据,以及对所述页岩气储层的岩心进行薄片扫描实验所得的数据,获取所述第一体积百分比。
6.一种用于确定页岩气储层的游离气饱和度的系统,其特征在于,包括:
第一获取模块,设置为获取所述页岩气储层的有效孔隙度、原状地层电阻率和地层水电阻率;
第二获取模块,设置为基于构建的所述页岩气储层的体积模型,所述体积模型包括页理缝、粉砂质和含有机质的泥质,获取所述页理缝的电阻率及该页理缝占所述页岩气储层的体积百分比,得到第一电阻率和第一体积百分比;
第三获取模块,设置为获取所述泥质中湿黏土的电阻率及该泥质占所述页岩气储层的体积百分比,得到第二电阻率和第二体积百分比;
游离气饱和度确定模块,设置为根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,确定所述页岩气储层的游离气饱和度。
7.根据权利要求6所述的系统,其特征在于,所述游离气饱和度确定模块包括:
含水饱和度确定单元,设置为根据所述有效孔隙度、原状地层电阻率、地层水电阻率、第一电阻率、第一体积百分比、第二电阻率和第二体积百分比,结合构建的含水饱和度模型确定所述页岩气储层的含水饱和度;
游离气饱和度确定单元,设置为根据所述含水饱和度,确定所述游离气饱和度。
8.根据权利要求7所述的系统,其特征在于,还包括含水饱和度模型构建模块,设置为构建所述页岩气储层的含水饱和度模型;所述含水饱和度模型构建模块包括:
等效电路构建单元,设置为根据所述页岩气储层的体积模型,构建所述页岩气储层的等效电路;
含水饱和度模型构建单元,设置为根据所述等效电路,构建所述含水饱和度模型。
9.根据权利要求7或8所述的系统,其特征在于,所述含水饱和度模型为
1 R t = V f R f + S w V s h R s h + φ e 2 S w 2 aR w ( 1 - V f - V s h ) ;
其中,Sw表示所述含水饱和度,φe表示所述有效孔隙度,Rt表示所述原状地层电阻率,Rw表示所述地层水电阻率;Vf和Rf分别表示所述第一体积百分比和所述第一电阻率;Vsh和Rsh分别表示所述第二体积百分比和所述第二电阻率;a表示与延时有关的比例系数。
10.根据权利要求7或8所述的系统,其特征在于,所述第二获取模块具体设置为利用双侧向测井反演的方法获取所述第一体积百分比;或者根据对所述页岩气储层进行核磁共振实验所得的数据,以及对所述页岩气储层的岩心进行薄片扫描实验所得的数据,获取所述第一体积百分比。
CN201510313795.6A 2015-06-09 2015-06-09 用于确定页岩气储层的游离气饱和度的方法及系统 Pending CN106285656A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510313795.6A CN106285656A (zh) 2015-06-09 2015-06-09 用于确定页岩气储层的游离气饱和度的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510313795.6A CN106285656A (zh) 2015-06-09 2015-06-09 用于确定页岩气储层的游离气饱和度的方法及系统

Publications (1)

Publication Number Publication Date
CN106285656A true CN106285656A (zh) 2017-01-04

Family

ID=57660117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510313795.6A Pending CN106285656A (zh) 2015-06-09 2015-06-09 用于确定页岩气储层的游离气饱和度的方法及系统

Country Status (1)

Country Link
CN (1) CN106285656A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808055A (zh) * 2017-10-30 2018-03-16 中石化石油工程技术服务有限公司 一种基于双重影响的页岩气饱和度测井计算方法
CN108663414A (zh) * 2018-03-22 2018-10-16 长江大学 一种确定压裂液饱和度范围的方法及系统
CN111624233A (zh) * 2020-06-12 2020-09-04 中联煤层气有限责任公司 一种基于电阻率法的页岩气饱和度计算方法
CN113805247A (zh) * 2020-06-15 2021-12-17 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040245A (zh) * 1988-07-25 1990-03-07 石油工业部石油勘探开发科学研究院石油地质研究所 一种测井信息的解释处理方法
RU2360233C1 (ru) * 2007-12-19 2009-06-27 Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании" ОАО "ТомскНИПИнефть ВНК" Способ определения нефтенасыщенности породы
CN101929973A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 裂缝储层含油气饱和度定量计算方法
CN102175832A (zh) * 2011-01-10 2011-09-07 中国石油天然气股份有限公司 一种确定典型储层最佳饱和度计算模型的方法
CN102434152A (zh) * 2011-12-05 2012-05-02 中国石油天然气股份有限公司 一种储层含油饱和度的计算方法
CN103543474A (zh) * 2012-07-16 2014-01-29 中国石油化工股份有限公司 一种基于非导电孔隙模型的含油气饱和度评价方法
CN104181090A (zh) * 2013-05-27 2014-12-03 中国石油化工股份有限公司 一种基于岩电结构系数的含油气饱和度评价方法
CN104500049A (zh) * 2014-10-20 2015-04-08 成都创源油气技术开发有限公司 页岩气地球物理快速评价方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040245A (zh) * 1988-07-25 1990-03-07 石油工业部石油勘探开发科学研究院石油地质研究所 一种测井信息的解释处理方法
RU2360233C1 (ru) * 2007-12-19 2009-06-27 Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании" ОАО "ТомскНИПИнефть ВНК" Способ определения нефтенасыщенности породы
CN101929973A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 裂缝储层含油气饱和度定量计算方法
CN102175832A (zh) * 2011-01-10 2011-09-07 中国石油天然气股份有限公司 一种确定典型储层最佳饱和度计算模型的方法
CN102434152A (zh) * 2011-12-05 2012-05-02 中国石油天然气股份有限公司 一种储层含油饱和度的计算方法
CN103543474A (zh) * 2012-07-16 2014-01-29 中国石油化工股份有限公司 一种基于非导电孔隙模型的含油气饱和度评价方法
CN104181090A (zh) * 2013-05-27 2014-12-03 中国石油化工股份有限公司 一种基于岩电结构系数的含油气饱和度评价方法
CN104500049A (zh) * 2014-10-20 2015-04-08 成都创源油气技术开发有限公司 页岩气地球物理快速评价方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID E. JOHSON: "《石油测井》", 31 December 2009, 石油工业出版社 *
王志刚: "《涪陵页岩气田试验井组开发实践与认识》", 31 December 2014, 中国石化出版社 *
雍世和: "《测井数据处理与综合解释》", 30 September 1996, 石油大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808055A (zh) * 2017-10-30 2018-03-16 中石化石油工程技术服务有限公司 一种基于双重影响的页岩气饱和度测井计算方法
CN107808055B (zh) * 2017-10-30 2021-05-14 中石化石油工程技术服务有限公司 一种基于双重影响的页岩气饱和度测井计算方法
CN108663414A (zh) * 2018-03-22 2018-10-16 长江大学 一种确定压裂液饱和度范围的方法及系统
CN111624233A (zh) * 2020-06-12 2020-09-04 中联煤层气有限责任公司 一种基于电阻率法的页岩气饱和度计算方法
CN113805247A (zh) * 2020-06-15 2021-12-17 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法
CN113805247B (zh) * 2020-06-15 2024-03-19 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法

Similar Documents

Publication Publication Date Title
CN104712329A (zh) 一种泥页岩油气饱和度的计算模型
Yu et al. Porosity estimation in kerogen-bearing shale gas reservoirs
CN106285656A (zh) 用于确定页岩气储层的游离气饱和度的方法及系统
US10866335B2 (en) Formation clay typing from electromagnetic measurements
CN105317429A (zh) 一种确定页岩地层干酪根含量的方法
Calvin et al. Evaluating the diagenetic alteration and structural integrity of volcanic ash beds within the Eagle Ford shale
Fothergill et al. Regional Modelling of the Late Devonian Duvernay Formation, Western Alberta, Canada
Sadeq et al. Porosity and permeability analysis from well logs and core in fracture, vugy and intercrystalline carbonate reservoirs
CN106285652A (zh) 确定页岩游离气体饱和度的方法
Abdelaal et al. Integration of dielectric dispersion and 3D NMR characterizes the texture and wettability of a cretaceous carbonate reservoir
Chen et al. Impact of anisotropic nature of organic-rich source rocks on electrical resistivity measurements
Worthington Conjunctive interpretation of core and log data through association of the effective and total porosity models
Ariyo et al. Application of electrical resistivity method for groundwater exploration in a sedimentary terrain: A case study of Ilara-Remo Southwestern Nigeria
WO1996029616A1 (en) Determining a parameter of a component in a composition
Rincones et al. Effective petrophysical fracture characterization using the flow unit concept-San Juan Reservoir, Orocual Field, Venezuela
Walker et al. Stochastic inversion for facies: A case study on the Schiehallion field
Villarroel et al. Integrating Thomas-Stieber with a Staged Differential Effective Medium Model for Saturation Interpretation of Thin-Bedded Shaly Sands
Sabouhi et al. Investigation of hydraulic flow units of carbonate shoal reservoir facies of Kangan formation (Early Triassic) and its relationship with depositional environment and diagenesis
Alizadeh et al. Porosity analysis using image logs
Shen et al. Anisotropic characteristics of electrical responses of fractured reservoir with multiple sets of fractures
CN111594153B (zh) 巨厚致密砾岩层下塑性泥岩的识别方法、装置和存储介质
Gibrata et al. An Integrated Reservoir Characterization in Overpressure and Complex Sandstone Reservoirs for Hybrid Reservoir Modeling and Oil Productivity
Fan et al. Model building for Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field
Bin Tajul Amar et al. Core-log Data Integration for Improved Formation Evaluation in the Dulang Field, Offshore Peninsular Malaysia
Sutiyono Magnetic resonance image log use in evaluation of low resistivity pay in the Attaka field

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104