WO2018028235A1 - 炉内自脱焦油式有机固体燃料气化装置与方法 - Google Patents

炉内自脱焦油式有机固体燃料气化装置与方法 Download PDF

Info

Publication number
WO2018028235A1
WO2018028235A1 PCT/CN2017/080993 CN2017080993W WO2018028235A1 WO 2018028235 A1 WO2018028235 A1 WO 2018028235A1 CN 2017080993 W CN2017080993 W CN 2017080993W WO 2018028235 A1 WO2018028235 A1 WO 2018028235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
section
gas
pyrolysis
ash
Prior art date
Application number
PCT/CN2017/080993
Other languages
English (en)
French (fr)
Inventor
李爱民
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/076,042 priority Critical patent/US10640174B2/en
Publication of WO2018028235A1 publication Critical patent/WO2018028235A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/24Anchors
    • B63B21/26Anchors securing to bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/24Anchors
    • B63B21/26Anchors securing to bed
    • B63B2021/265Anchors securing to bed by gravity embedment, e.g. by dropping a pile-type anchor from a certain height
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a self-degreasing oil type organic solid fuel gasification device and method in a furnace.
  • coal In the world's energy reserves, coal accounts for about 79%, and oil and natural gas accounts for about 12%.
  • the research and development of coal utilization technology is one of the important contents of the energy strategy.
  • the proportion of coal in chemical raw materials has been declining and gradually replaced by oil and natural gas until the 20th century.
  • the development of the world petrochemical industry was affected.
  • coal chemical industry has made remarkable progress in coal gasification and coal liquefaction.
  • world oil prices have been operating at high levels for a long time, and they are on the rise.
  • China's non-renewable resource reserves are characterized by rich coal, lean oil and low gas.
  • Low-rank coal such as lignite and long-flame coal also account for China's coal reserves. More than 30% is an important energy component in China, so low-order coal gasification is an important research area in China.
  • the object of the present invention is to provide a self-degreasing oil type organic solid fuel gasification device and method in a furnace, which can achieve good tar removal effect, realize zero discharge of coking wastewater, and can be in process. Optimize gas quality, improve energy efficiency, and reduce operating costs.
  • Self-degreasing oil type organic solid fuel gasification device in furnace comprising feeding device 1 and gasification device 2 , gasification gas fly ash cyclone separation device or fly ash separation filter device 4, condensing device 5, condensate evaporation device 8, gasification medium preheating device 7, ash slag discharge device 3 and gas storage tank 9;
  • the feeding device 1 comprises a feed port 1a, a two-stage sealed feed valve 1b and a screw feeder 1c, and a feed port 1a
  • the outlet is connected to the inlet of the two-stage screw feeder 1b, and the screw feeder 1c is arranged at the outlet of the two-stage screw feeder 1b, and is connected to the top of the furnace of the gasification device 2;
  • the gasification device 2 includes a pyrolysis drying section 2a, a spiral blanking device, a gasification combustion section 2c, and a ash section 2e in the gasification apparatus.
  • a pyrolysis drying section 2a Internal, from top to bottom, followed by pyrolysis drying section 2a, gasification combustion section 2c and ash section 2e, pyrolysis drying section 2a and gasification combustion section 2c with first spiral blanking device 2b a second spiral blanking device 2d is provided between the gasification combustion section 2c and the ash section 2e; a gasification agent inlet is provided between the gasification combustion section 2c and the ash section 2e, and the inlet is located in the second spiral blanking device 2d; the pyrolysis drying section 2a is divided into two parts, a drying section and a pyrolysis section, and the drying section is located above the pyrolysis section;
  • the ash discharge device 3 includes a screw discharger 3a, a two-stage sealed discharge valve 3b, and a slag discharge port 3c, and the gasification device 2
  • the bottom of the ash section 2e is connected to the inlet of the screw discharger 3a, the outlet of the screw discharger 3a is connected to the slag opening 3c, and a two-stage sealed discharge valve 3b is provided between the screw discharger 3a and the slag discharge port 3c. ;
  • the gasification device 2 gasification gas outlet and gasification gas fly ash cyclone separation device or fly ash separation filter device 4
  • the inlet is connected, the bottom of the gasification fly ash cyclone separation device or the fly ash separation filter device is connected to the fly ash recovery pipe inlet, the fly ash recovery pipe outlet and the slag discharge device 3 slag outlet 3c Connected;
  • gasification gas fly ash cyclone separation device upper side or fly ash separation filter device is provided with gasification gas outlet, gasification gas outlet and gasification medium preheating device 7 gasification gas inlet connected, gasification medium preheating device 7
  • the gasification gas outlet is connected to the condensate evaporation device 8 gasification gas inlet, and the gasification medium preheating device 7 is provided with an air oxygen inlet, a gasification medium preheating device 7 a preheating air or oxygen outlet and a gasification device 2
  • the gasification agent inlet is connected, and the condensate evaporation device 8 is connected to the gas
  • the top gasification gas outlet of the pyrolysis drying section 2a is connected to the condensing device 5 gasification gas inlet, the condensing device 5 gasification gas outlet and the air pump 6
  • the inlet is connected, the outlet of the air pump 6 is connected to the gas storage tank 9,
  • the condensing device 5 is connected to the condensate water outlet 8 condensate inlet, and the condensate evaporation device 8 is provided with a supplementary water inlet and a condensed water evaporation device.
  • the vapor outlet is connected to the gasification unit 2 gasification agent inlet;
  • Each of the spiral blanking devices is composed of a plurality of screw transmission devices, and the adjacent spiral blanking devices are spaced apart by less than 1.2 times the pitch and have opposite movement directions.
  • the gasification device 2 A multi-layer spiral blanking device is arranged between the inner pyrolysis drying section, the gasification combustion section and the tail ash section, and a porous supporting partition is arranged at the spiral blanking device.
  • the invention discloses a self-de-tarring organic solid fuel gasification method in a furnace, which is a method for first absorbing and burning tar in a device and providing heat for a gasification process, and the specific steps are as follows:
  • the solid fuel is fed from the feed port 1a, and the air is passed through the two-stage sealed feed valve 1b to enter the gasification device 2
  • a part of the gasification gas generated by the gasification combustion section 2c enters the pyrolysis drying section from bottom to top 2a Providing necessary heat for pyrolysis reaction and material drying, mixing with gaseous products such as pyrolysis gas, tar and water vapor generated during pyrolysis drying, and then entering the drying section, and the pyrolyzed gaseous product is passed upward through the pyrolysis drying section 2a When it is cooled, most of the tar is adsorbed by the cold material during the cooling process and then pyrolyzed with the material entering the pyrolysis section. The condensed tar adsorbed on the cold material forms a gaseous tar upward in the pyrolysis section, and the process is repeated.
  • the gaseous tar continues to participate in the subsequent reaction in the form of solid coke in this process, and the cooled pyrolysis gas and the drying section water vapor are discharged from the reactor into the condensing device. 5.
  • the gasification gas is condensed to remove water vapor and a small amount of light tar, it is sent to the gas storage tank 9 through the air pump 6 for storage, and the removed condensed water and a small amount of light tar are sent to the condensed water evaporation device 8;
  • the condensate evaporation device After heat exchange with the gasifier oxygen (air), the condensate evaporation device is introduced, and the preheated oxygen (air) is sent to the gasification device through the gasification device 2 gasification agent inlet 2 to participate in the gasification reaction and enter the condensate evaporation device 8
  • the gasification gas continues to provide heat for the condensation of condensed water, make-up water and a small amount of light tar to be cooled and sent to the storage tank for storage;
  • Condensate and a small amount of light tar in the condensing device 5 are sent to the condensate evaporation device 8 and then evaporated together with the supplementary water to pass through the gasification device.
  • the gasification agent inlet is sent to the gasification unit 2 to be used as a gasification agent to participate in the gasification reaction.
  • the temperature difference between the drying section and the pyrolysis section causes the tar to be repeatedly converted between the gaseous state and the liquid state, increasing the residence time of the tar in the furnace, so that the tar is continuously concentrated and polymerized in the process, and the solid coke is formed to continue to participate in the subsequent reaction, avoiding the tar
  • the blockage of the gasification gas pipeline eliminates the subsequent tar washing and purifying process, saves costs, and greatly improves energy utilization.
  • the gaseous product such as pyrolysis gas and water vapor brought out by the gasification gas entering the pyrolysis drying section in the pyrolysis section is returned to the gas through the condensing device and the condensate evaporation device between the tail gas collecting section and the gasification section.
  • the chemical plant it continues to participate in the gasification reaction, achieving zero discharge of waste water and waste gas.
  • it increases the calorific value of the gasification gas and the thermal efficiency of the gasifier, and improves the quality of the gasification gas.
  • the gasifier has a simple and compact structure and is easy to install. It is applicable to a gasification device such as a circulating fluidized bed or a double-bed vaporizer, and can be used in small and medium-sized industrial fields.
  • FIG. 1 is a schematic view showing the structure of a gasification furnace of the present invention.
  • 1 feeding device 1a feeding port; 1b two-stage sealing feed valve; 1c screw feeder;
  • 2 gasification unit 2a pyrolysis drying section; 2b first spiral blanking device; 2c gasification combustion section;
  • the device comprises a feeding device 1 and a gasification device 2 a gasification gas fly ash cyclone separation device or fly ash separation filter device 4, a condensing device 5, a condensate evaporation device 7, a gasification medium preheating device 8, a ash discharge device 3, and a gas storage tank 9;
  • Device 1 Includes feed port 1a, two-stage seal feed valve 1b and screw feeder 1c, feed port 1a outlet connected to screw feeder 1c inlet, screw feeder 1c outlet and gasifier 2 The top of the furnace is connected;
  • the gasification device 2 comprises a pyrolysis drying section 2a, a spiral blanking device 2b2d, a gasification combustion section 2c and a ash section 2e, a gasification combustion section 2c and a ash section 2e
  • a gasification agent inlet is provided;
  • the ash discharge device 3 includes a screw discharger 3a, a two-stage seal discharge valve 3b and a discharge port 3c,
  • Gasification unit 2 Gasification gas outlet and gasification gas fly ash cyclone separation device or fly ash separation filter device 4 Connected to the inlet, the bottom of the gasification gas fly ash cyclone separation device or the fly ash separation filter device 4 is connected to the inlet of the fly ash recovery pipe, and the fly ash recovery pipe outlet is connected to the slag outlet 3c, the gasification gas fly ash cyclone separation device or fly ash Separation filter 4
  • the upper side is provided with a gasification gas outlet, and the gasification gas outlet is connected with the gasification medium preheating device 7 gasification gas inlet, gasification medium preheating device 7 gasification gas outlet and condensate evaporation device 8
  • the gasification gas inlet is connected, the gasification medium preheating device 7 is provided with an air (oxygen) inlet, and the gasification medium preheating device 7 is preheated air (oxygen) outlet connected to the gasification device 2 gasification agent inlet, and the condensed water evaporation device 8
  • a multi-layer spiral blanking device 2b2d is arranged between the pyrolysis drying section 2a, the gasification combustion section 2c and the tail ash section 2e in the furnace. And a porous support spacer.
  • a method for first absorbing and burning tar in a device and providing heat for the gasification process the specific steps are as follows:
  • the gaseous tar continues to participate in the subsequent reaction in the form of solid coke in the process, and the cooled pyrolysis gas and the drying section water vapor are discharged from the reactor.
  • the condensing device after the gasification gas is condensed to remove water vapor and a small amount of light tar, is sent to the gas storage tank through the air pump, and the removed condensed water and a small amount of light tar are sent into the condensed water evaporation device;
  • Another part of the gasification gas generated by the gasification combustion section enters the gasification gas cyclone separation device or the fly ash separation filter device to remove the fine ash, and then enters the gas through the gasification gas cyclone separation device upper end or the fly ash separation filter device gasification gas outlet.
  • the medium preheating device exchanges heat with the gasification agent oxygen (air) and enters the condensate evaporation device.
  • the preheated oxygen (air) is sent to the gasification device through the gasification device inlet of the gasification device to participate in the gasification reaction and enter the condensed water.
  • the gasification gas of the evaporation device continues to provide heat for evaporation of condensed water, supplementary water and a small amount of light tar, and then is sent to the gas storage tank for storage;
  • the condensed water and a small amount of light tar in the condensing device are sent to the condensed water evaporation device, and then evaporated together with the supplementary water, and then sent to the gasification device through the gasification device inlet of the gasification device to be used as a gasifying agent to participate in the gasification reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Piles And Underground Anchors (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)

Abstract

一种炉内自脱焦油式有机固体燃料气化装置与方法,该装置包括进料装置(1)、气化装置(2)、气化气飞灰旋风分离装置或飞灰分离过滤装置(4)、冷凝装置(5)、冷凝水蒸发装置(8)、气化介质预热装置(7)、灰渣排出装置(3)和储气罐(9)。该方法将有机固体燃料从进料口(1a)加入,经两级密封进料阀(1b)送入气化装置(2),气化装置(2)内的有机固体燃料先进行干燥、热解、气化和燃烧反应,产生气化气及灰渣。该装置与方法,既能实现良好的除焦油效果,又能在过程中优化气体品质,提高能源效率,降低运营成本。

Description

炉内自脱焦油式有机固体燃料气化装置与方法
技术领域
本发明涉及一种炉内自脱焦油式有机固体燃料气化装置与方法。
背景技术
在世界能源储量中,煤炭约占 79% ,石油与天然气约占 12% ,煤炭利用技术的研究和开发是能源战略的重要内容之一。但随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,直到 20 世纪 70 年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是 20 世纪 90 年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。中国的不可再生资源储备又有着富煤、贫油、少气的特点,褐煤、长焰煤等低阶煤又占我国煤炭储量的 30% 以上,是我国重要的能源组成部分,因此低阶煤气化是我国重点研究的领域。
煤的结构特点决定了低阶煤挥发分高、活性强。由于水分和氧含量高而热值低,直接利用(燃烧或气化)效率低,经济价值远不如高阶煤,大规模开发利用必须先对其进行加工提质。最为科学和常用的方法之一是热解,即 ' 干馏 ' 或热分解。热解是指煤在隔绝空气或在惰性气体条件下持续加热至较高温度时,所发生的一系列物理变化和化学反应。在此过程中煤会发生交联键断裂、产物重组和二次反应,最终得到气体(煤气)、液体(焦油)、及固体(半焦)等产物。焦油相比,热解实现了煤中不同成分的梯级转化,是一种资源高效综合利用方法,具有减少燃煤造成的环境污染,提高低阶煤资源综合利用价值的优势,可创造显著的经济社会效益。但是由于低阶煤的特性,热解产生的大量气态焦油、大部分挥发分和水份会一同进入到气化气中,焦油含量过高会导致其极易析出堵塞管道,而使用净化气化气又需要使用大量水来进行洗涤冷却,产生大量废水,处理难度大,成本过高直接排放又会对环境造成严重污染,同样类似的问题也出现在生物质气化领域。
因此如何提供一种其既能实现良好的除焦油效果,实现焦化废水零排放,又能在过程中优化气体品质,提高能源效率,降低运营成本的固体燃料气化装置成为了业界需要解决的问题。
发明内容
针对现有技术的缺点,本发明的目的是提供一种炉内自脱焦油式有机固体燃料气化装置与方法,其既能实现良好的除焦油效果,实现焦化废水零排放,又能在过程中优化气体品质,提高能源效率,降低运营成本。
本发明的技术方案:
一种炉内自脱焦油式有机固体燃料气化装置,包括进料装置 1 、气化装置 2 、气化气飞灰旋风分离装置或飞灰分离过滤装置 4 、冷凝装置 5 、冷凝水蒸发装置 8 、气化介质预热装置 7 、灰渣排出装置 3 和储气罐 9 ;
所述的进料装置 1 包括进料口 1a 、两级密封进料阀 1b 和螺旋进料器 1c ,进料口 1a 出口与两级螺旋进料器 1b 入口相连,两级螺旋进料器 1b 出口处设有螺旋进料器 1c , 与气化装置 2 炉膛顶部相连;
所述的气化装置 2 包括热解干燥段 2a 、螺旋落料装置、气化燃烧段 2c 和灰渣段 2e ,在气化装置 2 内部,从上到下,依次为热解干燥段 2a 、 气化燃烧段 2c 和 灰渣段 2e , 热解干燥段 2a 和 气化燃烧段 2c 间设有第一 螺旋落料装置 2b , 气化燃烧段 2c 和 灰渣段 2e 间设有第二 螺旋落料装置 2d ; 气化燃烧段 2c 与灰渣段 2e 间设有气化剂入口,该入口位于 第二 螺旋落料装置 2d 下 ;热解干燥段 2a 分为干燥段和热解段两部分,干燥段位于热解段上方;
所述的灰渣排出装置 3 包括螺旋出料器 3a 、两级密封出料阀 3b 和出渣口 3c ,气化装置 2 的灰渣段 2e 底部与螺旋出料器 3a 入口相连,螺旋出料器 3a 出口与出渣口 3c 相连,螺旋出料器 3a 与 出渣口 3c 间设有两级密封出料阀 3b ;
所述的气化装置 2 气化气出口与气化气飞灰旋风分离装置或飞灰分离过滤装置 4 入口相连,气化气飞灰旋风分离装置底部或飞灰分离过滤装置与飞灰回收管入口相连,飞灰回收管出口与灰渣排出装置 3 的出渣口 3c 相连;气化气飞灰旋风分离装置上侧或飞灰分离过滤装置设有气化气出口,气化气出口与气化介质预热装置 7 气化气入口相连,气化介质预热装置 7 气化气出口与冷凝水蒸发装置 8 气化气入口相连,气化介质预热装置 7 设有空气氧气入口,气化介质预热装置 7 预热空气或氧气出口与气化装置 2 气化剂入口相连,冷凝水蒸发装置 8 气化气出口与储气罐 9 相连;
热解干燥段 2a 的顶部气化气出口与冷凝装置 5 气化气入口相连,冷凝装置 5 气化气出口与抽气泵 6 入口相连,抽气泵 6 出口与储气罐 9 相连,冷凝装置 5 冷凝水出口与冷凝水蒸发装置 8 冷凝水入口相连,冷凝水蒸发装置 8 设有补充水入口,冷凝水蒸发装置 8 蒸气出口与气化装置 2 气化剂入口相连;
每个螺旋落料装置由多个螺旋传动装置组成,相邻螺旋落料装置间隔小于1.2倍螺距,且运动方向相反。
所述的气化装置 2 内热解干燥段、气化燃烧段、尾灰段之间设有多层螺旋落料装置,螺旋落料装置处设有多孔支撑隔板。
一种炉内自脱焦油式有机固体燃料气化方法,即为一种将焦油于装置内先吸附后燃烧并为气化过程提供热量的方法,具体步骤如下:
( 1 )将固体燃料从进料口 1a 加入,通过两级密封进料阀 1b 隔绝空气后,进入气化装置 2 炉体上部的热解干燥段 2a ,经过干燥烘焙后的固体燃料在气化装置 2 内向下移动,进入到热解段,经过热解后的热解产物半焦通第一过螺旋落料装置 2b 进入气化燃烧段 2c ,气化反应后的炙热灰通过第二螺旋落料装置进入尾灰段 2e ,冷却灰通过螺旋出料器 3a 送出系统;
( 2 )气化燃烧段 2c 产生的一部分气化气由下至上进入热解干燥段 2a ,为热解反应和物料干燥提供必要热量,与热解干燥过程中产生的热解气、焦油及水蒸气等气态产物混合后一起进入干燥段,热解气态产物在向上经过热解干燥段 2a 时被冷却,大部分焦油在降温过程被冷物料吸附再次随物料进入热解段进行热解,吸附在冷物料上的冷凝焦油在热解段遇高温又形成气态焦油向上,此过程反复进行,气态焦油在此过程中以形成固体焦碳的形式继续参与后续反应,被冷却的热解气与干燥段水蒸气由反应器排出进入冷凝装置 5 ,气化气冷凝脱除水蒸气和少量轻质焦油后,通过抽气泵 6 送入储气罐 9 储存,脱除的冷凝水和少量轻质焦油送入冷凝水蒸发装置 8 中;
( 3 )气化燃烧段 2c 产生的另一部分气化气进入气化气旋风分离装置或飞灰分离过滤装置 4 脱除细灰后,通过气化气旋风分离装置上端或飞灰分离过滤装置气化气出口进入气化介质预热装置 7 与气化剂氧气(空气)进行热交换后进入冷凝水蒸发装置,预热氧气(空气)通过气化装置 2 气化剂入口送入气化装置 2 参与气化反应,进入冷凝水蒸发装置 8 的气化气继续为冷凝水、补充水和少量轻质焦油蒸发提供热量降温后送入储气罐储存;
( 4 )冷凝装置 5 中的冷凝水和少量轻质焦油送入冷凝水蒸发装置 8 后与补充水一起蒸发后通过气化装置 2 气化剂入口送入气化装置 2 用做气化剂参与气化反应。
本发明的有益效果:
1. 干燥段和热解段的温差使焦油在气态和液态之间反复转化,增加了焦油在炉内的停留时间,使焦油在此过程中不断浓缩聚合,形成固体焦炭继续参与后续反应,避免了焦油对气化气管道的堵塞,同时省去了后续焦油洗涤净化工艺,节约成本,大大提高了能量利用率。
2. 进入热解干燥段的气化气在热解段带出的热解气、水蒸气等气态产物,通过冷凝装置和冷凝水蒸发装置在尾灰收集段和气化段间气化剂入口回到气化装置内,继续参与气化反应,实现了废水废气零排放,同时在过程中提高了气化气热值和气化炉热效率,提高了出炉气化气的品质。
3. 气化炉结构简单紧凑,安装方便,相比于循环流化床、双床汽化器等气化装置,适用范围广,中、小型工业领域也可使用。
附图说明
图 1 是本发明的气化炉的结构示意图。
图中: 1 进料装置; 1a 进料口; 1b 两级密封进料阀; 1c 螺旋进料器;
2 气化装置; 2a 热解干燥段; 2b 第一 螺旋落料装置; 2c 气化燃烧段;
2d 第二 螺旋落料装置; 2e 尾灰段; 3 灰渣排出装置; 3a 螺旋出料器;
3b 两级密封出料阀; 3c 出渣口;
4 气化气飞灰旋风分离装置或飞灰分离过滤装置; 5 冷凝装置; 6 抽气泵;
7 气化介质预热装置; 8 冷凝水蒸发装置; 9 储气罐。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
一种炉内自脱焦油式有机固体燃料气化装置与方法,该装置包括进料装置 1 、气化装置 2 、气化气飞灰旋风分离装置或飞灰分离过滤装置 4 、冷凝装置 5 、冷凝水蒸发装置 7 、气化介质预热装置 8 、灰渣排出装置 3 和储气罐 9 ;所述进料装置 1 包括进料口 1a 、两级密封进料阀 1b 和螺旋进料器 1c ,进料口 1a 出口与螺旋进料器 1c 入口相连,螺旋进料器 1c 出口与气化装置 2 炉膛顶部相连;所述气化装置 2 包括热解干燥段 2a 、螺旋落料装置 2b2d 、气化燃烧段 2c 和灰渣段 2e ,气化燃烧段 2c 与灰渣段 2e 之间设有气化剂入口;所述灰渣排出装置 3 包括螺旋出料器 3a 、两级密封出料阀 3b 和落料口 3c ,灰渣段 2e 底部与螺旋出料器 3a 入口相连,螺旋出料器 3a 出口与落料口 3c 相连;
气化装置 2 气化气出口与气化气飞灰旋风分离装置或飞灰分离过滤装置 4 入口相连,气化气飞灰旋风分离装置或飞灰分离过滤装置 4 底部与飞灰回收管入口相连,飞灰回收管出口与出渣口 3c 相连,气化气飞灰旋风分离装置或飞灰分离过滤装置 4 上侧设有气化气出口,气化气出口与气化介质预热装置 7 气化气入口相连,气化介质预热装置 7 气化气出口与冷凝水蒸发装置 8 气化气入口相连,气化介质预热装置 7 设有空气(氧气)入口,气化介质预热装置 7 预热空气(氧气)出口与气化装置 2 气化剂入口相连,冷凝水蒸发装置 8 气化气出口与储气罐 9 相连,热解干燥段 2a 的顶部气化气出口与冷凝装置 5 气化气入口相连,冷凝装置 5 气化气出口与抽气泵 6 入口相连,抽气泵 6 出口与储气罐 9 相连,冷凝装置 5 冷凝水出口与冷凝水蒸发装置 8 冷凝水入口相连,冷凝水蒸发装置 8 设有补充水入口,冷凝水蒸发装置 8 蒸气出口与气化装置气化剂入口相连;
所述炉内热解干燥段 2a 、气化燃烧段 2c 、尾灰段 2e 之间设有多层螺旋落料装置 2b2d 及多孔支撑隔板。
一种将焦油于装置内先吸附后燃烧并为气化过程提供热量的方法,具体步骤如下:
( 1 )将固体燃料从进料口加入,通过两级密封插板阀隔绝空气后,进入气化装置炉体上部的热解干燥段,经过干燥烘焙后的固体燃料在气化炉内向下移动,进入到热解段,经过热解后的热解产物半焦通过螺旋落料装置进入气化燃烧段,气化反应后的炙热灰通过螺旋落料装置进入尾灰段,冷却灰通过螺旋出料器送出系统;
( 2 )气化燃烧段产生的一部分气化气由下至上进入热解干燥段,为热解反应和物料干燥提供必要热量,与热解干燥过程中产生的热解气、焦油及水蒸气等气态产物混合后一起进入干燥段,热解气态产物在向上经过干燥段时被冷却,大部分焦油在降温过程被冷物料吸附再次随物料进入热解段进行热解,吸附在冷物料上的冷凝焦油在热解段遇高温又形成气态焦油向上,此过程反复进行,气态焦油在此过程中以形成固体焦碳的形式继续参与后续反应,被冷却的热解气与干燥段水蒸气由反应器排出进入冷凝装置,气化气冷凝脱除水蒸气和少量轻质焦油后,通过抽气泵送入储气罐储存,脱除的冷凝水和少量轻质焦油送入冷凝水蒸发装置中;
气化燃烧段产生的另一部分气化气进入气化气旋风分离装置或飞灰分离过滤装置脱除细灰后,通过气化气旋风分离装置上端或飞灰分离过滤装置气化气出口进入气化介质预热装置与气化剂氧气(空气)进行热交换后进入冷凝水蒸发装置,预热氧气(空气)通过气化装置气化剂入口送入气化装置参与气化反应,进入冷凝水蒸发装置的气化气继续为冷凝水、补充水和少量轻质焦油蒸发提供热量降温后送入储气罐储存;
冷凝装置中的冷凝水和少量轻质焦油送入冷凝水蒸发装置后与补充水一起蒸发后通过气化装置气化剂入口送入气化装置用做气化剂参与气化反应。

Claims (4)

  1. 一种炉内自脱焦油式有机固体燃料气化装置,其特征在于,所述的炉内自脱焦油式有机固体燃料气化装置包括进料装置 (1) 、气化装置 (2) 、气化气飞灰旋风分离装置或飞灰分离过滤装置 (4) 、冷凝装置 (5) 、冷凝水蒸发装置 (8) 、气化介质预热装置 (7) 、灰渣排出装置 (3) 和储气罐 (9) ;
    所述的进料装置 (1) 包括进料口 ( 1a ) 、两级密封进料阀 ( 1b ) 和螺旋进料器 ( 1c ) ,进料口 ( 1a ) 出口与两级螺旋进料器 ( 1b ) 入口相连,两级螺旋进料器 ( 1b ) 出口处设有螺旋进料器 ( 1c ) , 与气化装置 (2) 炉膛顶部相连;
    所述的气化装置 (2) 包括热解干燥段 ( 2a ) 、螺旋落料装置、气化燃烧段 ( 2c ) 和灰渣段 ( 2e ) ,在气化装置 (2) 内部,从上到下,依次为热解干燥段 ( 2a ) 、 气化燃烧段 ( 2c ) 和 灰渣段 ( 2e ) , 热解干燥段 ( 2a ) 和 气化燃烧段 ( 2c ) 间设有第一 螺旋落料装置 ( 2b ) , 气化燃烧段 ( 2c ) 和 灰渣段 ( 2e ) 间设有第二 螺旋落料装置 ( 2d ) ; 气化燃烧段 ( 2c ) 与灰渣段 ( 2e ) 间设有气化剂入口,该入口位于 第二 螺旋落料装置 ( 2d ) 下 ;热解干燥段 ( 2a ) 分为干燥段和热解段两部分,干燥段位于热解段上方;
    所述的灰渣排出装置 (3) 包括螺旋出料器 ( 3a ) 、两级密封出料阀 ( 3b ) 和出渣口 ( 3c ) ,气化装置 (2) 的灰渣段 ( 2e ) 底部与螺旋出料器 ( 3a ) 入口相连,螺旋出料器 ( 3a ) 出口与出渣口 ( 3c ) 相连,螺旋出料器 ( 3a ) 与 出渣口 ( 3c ) 间设有两级密封出料阀 ( 3b ) ;
    所述的气化装置 (2) 气化气出口与气化气飞灰旋风分离装置或飞灰分离过滤装置 (4) 入口相连,气化气飞灰旋风分离装置底部或飞灰分离过滤装置与飞灰回收管入口相连,飞灰回收管出口与灰渣排出装置 (3) 的出渣口 (3c) 相连;气化气飞灰旋风分离装置上侧或飞灰分离过滤装置设有气化气出口,气化气出口与气化介质预热装置 (7) 气化气入口相连,气化介质预热装置 (7) 气化气出口与冷凝水蒸发装置 (8) 气化气入口相连,气化介质预热装置 (7) 设有空气氧气入口,气化介质预热装置 (7) 预热空气或氧气出口与气化装置 (2) 气化剂入口相连,冷凝水蒸发装置 (8) 气化气出口与储气罐 (9) 相连;
    热解干燥段 ( 2a ) 的顶部气化气出口与冷凝装置 (5) 气化气入口相连,冷凝装置 (5) 气化气出口与抽气泵 (6) 入口相连,抽气泵 (6) 出口与储气罐 (9) 相连,冷凝装置 (5) 冷凝水出口与冷凝水蒸发装置 (8) 冷凝水入口相连,冷凝水蒸发装置 (8) 设有补充水入口,冷凝水蒸发装置 (8) 蒸气出口与气化装置 (2) 气化剂入口相连。
  2. 根据权利要求1所述的 炉内自脱焦油式有机固体燃料气化装置,其特征在于, 每个螺旋落料装置由多个螺旋传动装置组成,相邻螺旋落料装置间隔小于1.2倍螺距,且运动方向相反。
  3. 根据权利要求1或2所述的 炉内自脱焦油式有机固体燃料气化装置,其特征在于,所述的气化装置 (2) 内螺旋落料装置处设有多孔支撑隔板。
  4. 一种炉内自脱焦油式有机固体燃料气化方法,即为一种将焦油于装置内先吸附后燃烧并为气化过程提供热量的方法,其特征在于,步骤如下:
    ( 1 )将固体燃料从进料口 ( 1a ) 加入,通过两级密封进料阀 ( 1b ) 隔绝空气后,进入气化装置 (2) 炉体上部的热解干燥段 ( 2a ) ,经过干燥烘焙后的固体燃料在气化装置 (2) 内向下移动,进入到热解段,经过热解后的热解产物半焦通第一过螺旋落料装置 ( 2b ) 进入气化燃烧段 ( 2c ) ,气化反应后的炙热灰通过第二螺旋落料装置进入尾灰段 ( 2e ) ,冷却灰通过螺旋出料器 ( 3a ) 送出系统;
    ( 2 )气化燃烧段 ( 2c ) 产生的一部分气化气由下至上进入热解干燥段 ( 2a ) ,为热解反应和物料干燥提供必要热量,与热解干燥过程中产生的热解气、焦油及水蒸气等气态产物混合后一起进入干燥段,热解气态产物在向上经过热解干燥段 ( 2a ) 时被冷却,大部分焦油在降温过程被冷物料吸附再次随物料进入热解段进行热解,吸附在冷物料上的冷凝焦油在热解段遇高温又形成气态焦油向上,此过程反复进行,气态焦油在此过程中以形成固体焦碳的形式继续参与后续反应,被冷却的热解气与干燥段水蒸气由反应器排出进入冷凝装置 (5) ,气化气冷凝脱除水蒸气和少量轻质焦油后,通过抽气泵 (6) 送入储气罐 (9) 储存,脱除的冷凝水和少量轻质焦油送入冷凝水蒸发装置 (8) 中;
    ( 3 )气化燃烧段 ( 2c ) 产生的另一部分气化气进入气化气旋风分离装置或飞灰分离过滤装置 (4) 脱除细灰后,通过气化气旋风分离装置上端或飞灰分离过滤装置气化气出口进入气化介质预热装置 (7) 与气化剂氧气或空气进行热交换后进入冷凝水蒸发装置,预热氧气或空气通过气化装置 (2) 气化剂入口送入气化装置 (2) 参与气化反应,进入冷凝水蒸发装置 (8) 的气化气继续为冷凝水、补充水和少量轻质焦油蒸发提供热量降温后送入储气罐储存;
    ( 4 )冷凝装置 (5) 中的冷凝水和少量轻质焦油送入冷凝水蒸发装置 (8) 后与补充水一起蒸发后通过气化装置 (2) 气化剂入口送入气化装置 (2) 用做气化剂参与气化反应。
PCT/CN2017/080993 2016-08-09 2017-04-19 炉内自脱焦油式有机固体燃料气化装置与方法 WO2018028235A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/076,042 US10640174B2 (en) 2016-08-09 2017-04-19 Apparatus and a method for solid fuel gasification with tar self-removed within the gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610648708.7A CN106240748B (zh) 2016-08-09 2016-08-09 用于增加动力锚沉贯深度的方法及其推进器
CN201610648708.7 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018028235A1 true WO2018028235A1 (zh) 2018-02-15

Family

ID=58077708

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/079918 WO2018028228A1 (zh) 2016-08-09 2017-04-10 一种用于增加板翼动力锚沉贯深度的推进器及其方法
PCT/CN2017/080993 WO2018028235A1 (zh) 2016-08-09 2017-04-19 炉内自脱焦油式有机固体燃料气化装置与方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079918 WO2018028228A1 (zh) 2016-08-09 2017-04-10 一种用于增加板翼动力锚沉贯深度的推进器及其方法

Country Status (4)

Country Link
US (2) US10384746B2 (zh)
CN (1) CN106240748B (zh)
AU (1) AU2017309535B2 (zh)
WO (2) WO2018028228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671138A (zh) * 2019-11-13 2020-01-10 山东东山古城煤矿有限公司 适用矿山巷道全锚支护的风动锚索助推器及施工方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106240748B (zh) * 2016-08-09 2018-01-23 大连理工大学 用于增加动力锚沉贯深度的方法及其推进器
KR101895506B1 (ko) * 2017-02-10 2018-09-06 더 유니버시티 오브 웨스턴 오스트레일리아 해저 대심도용 앵커
CN107640287A (zh) * 2017-09-29 2018-01-30 夏尔特拉(北京)太阳能科技有限公司 锤击入泥式板锚及其安装工具和入泥施工方法
US10962460B2 (en) * 2017-12-27 2021-03-30 Dalian University Of Technology Free fall ball penetrometer with a booster
CN108152170B (zh) * 2017-12-27 2020-04-07 大连理工大学 带有推进器的自由落体式球形贯入仪
CN108423125B (zh) * 2018-05-14 2023-11-24 大连理工大学 一种新型轻质动力安装锚及安装方法
WO2019218115A1 (zh) * 2018-05-14 2019-11-21 大连理工大学 一种新型轻质动力安装锚及安装方法
CN109271751B (zh) * 2018-11-16 2022-08-26 重庆科技学院 一种悬垂绝缘子串的最大动态风偏角确定方法
AU2020323950B2 (en) * 2020-02-17 2022-01-06 Dalian University Of Technology Hybrid dynamically installed anchor with a folding shank and control method for keep anchor verticality during free fall in water
CN111301610B (zh) * 2020-02-17 2021-08-20 大连理工大学 折叠式锚柄的组合动力锚及其水中下落时垂直度控制方法
CN111361692B (zh) * 2020-03-26 2022-07-01 天津大学 一种重力贯入锚
CN112111301B (zh) * 2020-09-23 2021-09-07 西安交通大学 一种组合式部分循环生物质气化炉及其工作方法
CN113428296B (zh) * 2021-07-14 2022-04-26 江苏科技大学 一种海洋工程浮式结构的快速锚固动力发射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095866A1 (en) * 2000-12-04 2002-07-25 Hassett Scott E. Multi-faceted gasifier and related methods
CN102643676A (zh) * 2012-04-28 2012-08-22 广西大学 燃气回流燃烧自供热生物质热解气化方法
CN202543155U (zh) * 2012-03-08 2012-11-21 华北电力大学 以热载体为基础的气化燃烧及催化剂再生联合循环系统
CN203269882U (zh) * 2013-04-07 2013-11-06 邢力 一种生活垃圾的热解催化气化炉
CN103773506A (zh) * 2014-01-28 2014-05-07 广州贝龙火地生物质能源设备科技有限责任公司 生物质双裂解一体炉
CN105647591A (zh) * 2016-04-01 2016-06-08 南京理工大学 固体燃料流化床热解气化燃烧分级转化装置及方法
CN106867585A (zh) * 2017-04-19 2017-06-20 大连理工大学 炉内自脱焦油式有机固体燃料气化装置与方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347012A (en) * 1978-10-07 1982-08-31 Fmc Corporation Method and apparatus for tension setting and compression releasing tubular connectors
US4312289A (en) * 1979-11-13 1982-01-26 Joseph Conrad Permanent mooring apparatus
US4394132A (en) * 1980-05-19 1983-07-19 Ergon, Inc Particulate coal-in-liquid mixture and process for the production thereof
US5059404A (en) * 1989-02-14 1991-10-22 Manufacturing And Technology Conversion International, Inc. Indirectly heated thermochemical reactor apparatus and processes
US5536488A (en) * 1991-07-01 1996-07-16 Manufacturing And Technology Conversion Indirectly heated thermochemical reactor processes
DE19516558A1 (de) * 1995-05-05 1996-11-07 Metallgesellschaft Ag Verfahren zur Aufarbeitung von zink- und eisenoxidhaltigem Reststoff
US5976484A (en) * 1997-09-23 1999-11-02 Teng; Chien-Lang Intermittent continuous method for recovering refined activated carbon from waste tires and the like and the device therefor
DE69938515D1 (de) * 1998-10-30 2008-05-21 Brupat Ltd Mariner Anker mit Einrichtung zum Eingraben des Ankers
US6453830B1 (en) * 2000-02-29 2002-09-24 Bert Zauderer Reduction of nitrogen oxides by staged combustion in combustors, furnaces and boilers
KR100459985B1 (ko) * 2002-02-15 2004-12-04 (주)대우건설 석션파일 앵커
US6941885B2 (en) * 2003-10-30 2005-09-13 Zimmerman Evan H Anchor for marine mooring
CA2610808A1 (en) * 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of coal to a gas of a specified composition
AU2006254672A1 (en) * 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
KR101424614B1 (ko) * 2006-04-11 2014-08-01 서모 테크놀로지스 엘엘씨 고체 탄소물질의 합성가스 발생 방법 및 장치
EP2019981A4 (en) * 2006-05-05 2010-04-21 Plascoenergy Ip Holdings Slb CONTROL SYSTEM FOR CONVERTING A CARBONATED GAS CHARGE TO GAS
US20080141922A1 (en) * 2006-12-13 2008-06-19 Edmund Muehlner Folding torpedo anchor for marine moorings
US7875090B2 (en) * 2007-04-24 2011-01-25 The United States Of America As Represented By The Secretary Of Agriculture Method and apparatus to protect synthesis gas via flash pyrolysis and gasification in a molten liquid
CN101327833B (zh) * 2008-06-05 2010-09-29 上海交通大学 带高频微幅振动的动力埋入锚
US8829695B2 (en) * 2012-03-29 2014-09-09 All Power Labs, Inc. Compact gasifier-genset architecture
PE20131217A1 (es) * 2010-09-01 2013-10-21 Starlight Energy Holdings LLC Sistema y proceso para la gasificacion de productos de biomasa
CZ2010807A3 (cs) * 2010-11-08 2010-12-22 Key@Group@Holding@@s@r@o Zpusob@zpracování@organického@odpadu@@zarízení@najeho@zpracování@a@použití@zpracovaných@produktu
CN102602506B (zh) * 2012-03-27 2014-06-18 上海交通大学 一种分离式自钻埋入锚
CN102700682B (zh) 2012-06-04 2014-12-10 上海百川通海洋工程有限公司 锚体潜入海底的锤体锚固分离及定位的施工工法
CN202896831U (zh) 2012-09-19 2013-04-24 昆明赛福消防科技有限公司 一种自动埋设地锚
US9422034B2 (en) * 2014-03-27 2016-08-23 Intermoor Inc. Actively steerable gravity embedded anchor systems and methods for using the same
US10696911B2 (en) * 2015-02-10 2020-06-30 V-GRID Energy Systems Method and system for automatic solids flow in a gasifier
CN105059479B (zh) * 2015-08-10 2017-06-09 徐州工程学院 海洋设施锚固定位自动锚
CN106240748B (zh) 2016-08-09 2018-01-23 大连理工大学 用于增加动力锚沉贯深度的方法及其推进器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095866A1 (en) * 2000-12-04 2002-07-25 Hassett Scott E. Multi-faceted gasifier and related methods
CN202543155U (zh) * 2012-03-08 2012-11-21 华北电力大学 以热载体为基础的气化燃烧及催化剂再生联合循环系统
CN102643676A (zh) * 2012-04-28 2012-08-22 广西大学 燃气回流燃烧自供热生物质热解气化方法
CN203269882U (zh) * 2013-04-07 2013-11-06 邢力 一种生活垃圾的热解催化气化炉
CN103773506A (zh) * 2014-01-28 2014-05-07 广州贝龙火地生物质能源设备科技有限责任公司 生物质双裂解一体炉
CN105647591A (zh) * 2016-04-01 2016-06-08 南京理工大学 固体燃料流化床热解气化燃烧分级转化装置及方法
CN106867585A (zh) * 2017-04-19 2017-06-20 大连理工大学 炉内自脱焦油式有机固体燃料气化装置与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671138A (zh) * 2019-11-13 2020-01-10 山东东山古城煤矿有限公司 适用矿山巷道全锚支护的风动锚索助推器及施工方法

Also Published As

Publication number Publication date
CN106240748B (zh) 2018-01-23
CN106240748A (zh) 2016-12-21
AU2017309535A1 (en) 2018-06-07
AU2017309535B2 (en) 2019-07-04
WO2018028228A1 (zh) 2018-02-15
US10384746B2 (en) 2019-08-20
US10640174B2 (en) 2020-05-05
US20180346074A1 (en) 2018-12-06
US20190153342A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018028235A1 (zh) 炉内自脱焦油式有机固体燃料气化装置与方法
CN106867585B (zh) 炉内自脱焦油式有机固体燃料气化装置与方法
CN101608125B (zh) 一种煤热解提质方法
CN102703131B (zh) 一种用于宽粒径分布燃料的两段气化方法及其气化装置
CN103013544B (zh) 一种煤、油页岩的隧道管薄层干馏装置及工艺方法
CN101608126A (zh) 一种煤热解提质装置
CN101280201A (zh) 油页岩(煤)生产页岩油的全循环干馏工艺及系统
CN101619223B (zh) 油页岩干馏法冷凝回收系统油洗节能装置及操作工艺
WO2018133303A1 (zh) 一种循环流化床与热解床复合气化的方法及其装置
CN103695014B (zh) 一种稻壳生产甲醇生物质油的方法
CN101280200A (zh) 油页岩(煤)直产汽、柴油干馏系统及其工艺
CN103074093B (zh) 一种褐煤直接干燥和热解一体化工艺和系统
CN102643703B (zh) 一种外热式褐煤热解提质系统及工艺
CN105542806A (zh) 一种生物质连续炭化生产清洁燃气和生物质炭的装置及方法
CN105062528A (zh) 一种适用于煤粉炉的煤热解多联产工艺及其装置
CN101747918A (zh) 干熄焦联产煤制天然气的方法
CN102839001B (zh) 一种生产轻质焦油的热解装置及方法
CN204529766U (zh) 一种自供热生物质气化装置及油气联产系统
WO2012129814A1 (zh) 一种有机物热解制取活性炭方法
CN205328941U (zh) 热解设备
CN108504389B (zh) 一种碳基燃料化学链燃烧气化耦合装置及方法
CN102994127A (zh) 低阶煤多级流化床煤化工多联产系统及其方法
CN105038827A (zh) 一种低阶碎煤分质分级梯级利用系统及方法
CN104593089A (zh) 一种自供热式生物质油气联产工艺
CN107267176A (zh) 一种高效生物质处理焦油多联产热解炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838367

Country of ref document: EP

Kind code of ref document: A1