WO2018028132A1 - Wifi异常自动重连装置、系统及方法 - Google Patents

Wifi异常自动重连装置、系统及方法 Download PDF

Info

Publication number
WO2018028132A1
WO2018028132A1 PCT/CN2016/113451 CN2016113451W WO2018028132A1 WO 2018028132 A1 WO2018028132 A1 WO 2018028132A1 CN 2016113451 W CN2016113451 W CN 2016113451W WO 2018028132 A1 WO2018028132 A1 WO 2018028132A1
Authority
WO
WIPO (PCT)
Prior art keywords
wifi
module
reconnection
mcu
timing
Prior art date
Application number
PCT/CN2016/113451
Other languages
English (en)
French (fr)
Inventor
吴世杰
张静
黄海健
钟用建
Original Assignee
深圳奥尼电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥尼电子股份有限公司 filed Critical 深圳奥尼电子股份有限公司
Publication of WO2018028132A1 publication Critical patent/WO2018028132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless network technologies, and in particular, to a WIFI abnormal automatic reconnection device, system and method.
  • the existing processing methods mainly include the following two types:
  • the terminal device is manually restarted to perform a WIFI reconnection operation. Therefore, there is a defect that the WIFI exception handling is not intelligent.
  • the terminal device detects that the WIFI connection is abnormal, the terminal performs intelligent WIFI reconnection operation. If the WIFI connection has been abnormal, the WIFI reconnection operation will be performed frequently. Therefore, frequent execution of the WIFI reconnection operation results in a large power consumption of the terminal device.
  • the present disclosure provides a WIFI abnormal automatic reconnection device, system and method, which solves the problem that the WIFI abnormality processing mode is not intelligent and the WIFI reconnection is frequently performed, resulting in large power consumption.
  • the present invention provides a WIFI abnormal automatic reconnection device, which includes:
  • a normal working module comprising a main power circuit, a DSP and a memory electrically connected to the DSP, wherein the memory stores a mapping table, wherein the mapping table includes the number of reconnections and a required interval duration corresponding to the number of reconnections;
  • the low-power working module includes a sub-power circuit, an MCU, and a WIFI module electrically connected to the MCU; the sub-power circuit supplies power to the MCU and the WIFI module, and the WIFI module is in a low-power operation mode.
  • the DSP determines that the WIFI module does not receive the externally sent heartbeat feedback signal, the DSP obtains the current number of reconnection times and obtains the actual required interval duration corresponding to the current reconnection number according to the mapping table; after the actual required interval duration, the execution is performed. Reconnection operation of WIFI module and external.
  • the low-power working module further includes a timing module electrically connected to the MCU; the DSP generates a timing reconnection instruction according to the actual required interval duration and sends the timing reconnection instruction to the MCU, and when the MCU receives the timing reconnection instruction, Turn off the main power circuit and control the timing module to start timing.
  • the timing module sends a first open command to the MCU. After receiving the first open command, the MCU turns on the main power circuit and controls.
  • the WIFI module re-establishes a communication connection with the outside.
  • the DSP further includes a determining unit, and the determining unit is configured to determine whether the communication connection between the WIFI module and the external device is successfully established;
  • the WIFI module sends the heartbeat data packet to the outside at intervals of the first preset duration.
  • the DSP determines that the WIFI module receives the externally sent heartbeat feedback signal
  • the DSP generates a normal sleep instruction according to the second preset duration and sends a normal sleep instruction to the MCU, and when the MCU receives the normal sleep instruction, the main power supply circuit is turned off.
  • the control timing module starts timing, and when the timing duration of the timing module reaches the second preset duration, the timing module sends a second open command to the MCU, and the MCU is turned on. Start the main power circuit.
  • the present invention also provides a WIFI abnormal automatic reconnection system, which comprises the above WIFI abnormal automatic reconnection device.
  • the server is in communication connection with the WIFI module of the WIFI abnormal automatic reconnection device.
  • the present invention also provides a WIFI abnormal automatic reconnection method, which is applied to a WIFI abnormal automatic reconnection system, and the WIFI abnormal automatic reconnection system includes a server and a WIFI abnormal automatic reconnection device, and the WIFI abnormal reconnection automatically
  • the device comprises a normal working module and a low power working module.
  • the normal working module comprises a main power circuit, a DSP and a memory, and the memory stores a mapping table, wherein the mapping table includes the number of reconnections and a required interval time corresponding to the number of reconnections;
  • the power consumption module includes a secondary power circuit, an MCU, a WIFI module, and a timing module.
  • the WIFI abnormal automatic reconnection method includes the following steps:
  • the auxiliary power supply circuit supplies power to the MCU and the WIFI module, and the WIFI module is in a low power operation mode and sends a heartbeat data packet to the outside at a first preset time interval, and the WIFI abnormal automatic reconnection device is in a sleep state;
  • the main power circuit When the MCU receives the wake-up request, the main power circuit is turned on, the main power circuit supplies power to the DSP and the memory, and the WIFI module is switched from the low-power working mode to the normal working mode, and the WIFI abnormal automatic reconnecting device is switched from the sleep state to the awake state;
  • the DSP performs the WIFI abnormality determining operation, and the WIFI abnormality determining operation is for the DSP to determine whether the WIFI module receives the heartbeat feedback signal sent by the server;
  • the DSP obtains the current reconnection number and obtains the actual required interval duration corresponding to the current reconnection number according to the mapping table. After that, the WIFI module is connected to the external reconnection operation.
  • the steps of performing a reconnection operation between the WIFI module and the external including:
  • the DSP generates a timing reconnection instruction according to the actual required interval duration and sends a timing reconnection instruction to the MCU;
  • the main power circuit When the MCU receives the timing reconnection command, the main power circuit is turned off and the timing module is controlled to start timing;
  • the timing module sends a first open command to the MCU;
  • the MCU After receiving the first open command, the MCU turns on the main power circuit and controls the WIFI module to re-establish a communication connection with the server.
  • the method further includes:
  • the DSP determines whether the communication connection between the WIFI module and the server is successfully established
  • the WIFI abnormality determining operation is performed after the current reconnection number is incremented by one;
  • the WIFI module sends a heartbeat data packet to the server at a first preset time interval to perform a WIFI abnormality determination operation.
  • the method further includes:
  • the DSP When receiving the heartbeat feedback signal sent by the server, the DSP generates a normal sleep instruction according to the second preset duration and sends the normal sleep instruction to the MCU;
  • the main power circuit When the MCU receives the normal sleep instruction, the main power circuit is turned off and the timing module is controlled to start timing;
  • the timing module When the timing of the timing module reaches the second preset duration, the timing module sends a second open command to the MCU;
  • the MCU After receiving the second open command, the MCU turns on the main power circuit and performs the WIFI abnormality judgment operation.
  • the device of the present invention detects a WIFI abnormality, the abnormality processing is automatically performed. Therefore, the processing of the WIFI abnormality has an intelligent characteristic.
  • the DSP obtains the current reconnection number and the actual required interval duration corresponding to the current reconnection number, and performs the WIFI reconnection operation after the actual interval interval is required, thereby avoiding frequent reconnection operations and achieving Reduce the technical effect of power consumption.
  • FIG. 1 is a schematic structural diagram of a frame of an embodiment of a WIFI abnormal automatic reconnection device according to the present invention.
  • FIG. 2 is a schematic structural diagram of a frame of an embodiment of a WIFI abnormal automatic reconnection system according to the present invention.
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a WIFI abnormal automatic reconnection method according to the present invention.
  • the WIFI abnormal automatic reconnection device 1 includes a normal working module 11 and a low power consumption working module 12.
  • the normal working module 11 includes a main power circuit 111, a DSP 113, and a memory 112 electrically connected to the DSP 113.
  • the memory 112 stores a mapping table including the number of reconnections and the required interval duration corresponding to the number of reconnections.
  • the low power working module 12 includes a secondary power circuit 121, an MCU 122, and a WIFI module 124 electrically connected to the MCU 122.
  • the WIFI module 124 sends the heartbeat data packet to the outside at intervals of the first preset duration.
  • the sub power circuit 121 supplies power to the MCU 122 and the WIFI module 124.
  • the WIFI module 124 is in a low power mode of operation.
  • the WIFI module 124 switches from the low power operation mode to the normal operation mode, and the MCU 122 turns on the main power circuit 111, and the main power circuit 111 supplies power to the DSP 113 and the memory 112, and the DSP 113 determines the WIFI module 124.
  • the DSP 113 obtains the current reconnection number and obtains the actual required interval duration corresponding to the current reconnection number according to the mapping table, and turns off the main power circuit 111, and the WIFI module 124 enters the low power consumption operation. mode.
  • the MCU 122 turns on the main power circuit 111, and the WIFI module 124 enters the normal working mode, and performs the WIFI module 124 and the external reconnection operation.
  • the WIFI module 124 and the external reconnection operation include: the low power consumption working module 12 further includes a timing module 123 electrically connected to the MCU 122.
  • the DSP 113 determines that the WIFI module 124 does not receive the externally transmitted heartbeat feedback signal, the DSP 113 generates a timing reconnection command according to the actual required interval duration and sends a timing reconnection instruction to the MCU 122.
  • the MCU 122 When the MCU 122 receives the timing reconnection instruction, the MCU 122 turns off the main The power circuit 111 controls the timing module 123 to start timing. When the timing duration of the timing module 123 coincides with the actual required interval duration, the timing module 123 sends a first opening command to the MCU 122, and after receiving the first opening command, the MCU 122 turns on the main power. Circuit 111 and control WIFI module 124 re-establishes a communication connection with the outside.
  • the WIFI abnormal automatic reconnection device 1 is in a sleep state, and the power consumption is reduced, when the WIFI abnormality is not detected and the actual required interval time for waiting for reconnection after detecting the WIFI abnormality. If the WIFI connection has been in an abnormal state, the WIFI abnormal reconnection device 1 cannot frequently perform the WIFI reconnection operation due to the interval of the WIFI reconnection, and further reduces the power consumption.
  • the DSP 113 further includes a determining unit for determining the WIFI module 124 and the other embodiments. Whether the external communication connection is successfully established; if the WIFI module 124 and the external communication connection are not successfully established, the current reconnection number is incremented by one and stored, and the DSP 113 performs the WIFI abnormality determination operation again to determine whether the WIFI module 124 receives the external transmission. Heartbeat feedback signal. If the communication connection between the WIFI module 124 and the external communication is successful, the WIFI module 124 sends the heartbeat data packet to the outside at intervals of the first preset duration, and receives the heartbeat feedback signal sent by the external.
  • the mapping stored in the memory 112 includes the number of reconnections and the required interval duration corresponding to the number of reconnections, wherein the required interval duration corresponding to the number of reconnections is a value that increases as the number of reconnections increases. .
  • the required interval for the first reconnection is 30 seconds
  • the required interval for the second reconnection is 60 seconds
  • the required interval for the third reconnection is 120 seconds.
  • the proportion is gradually increased. The more times the WIFI is reconnected, the longer the interval is required, which effectively avoids frequent WIFI reconnection operations and reduces power consumption.
  • the device when the WIFI abnormality is not detected, the device automatically enters the sleep state from the awake state. Therefore, on the basis of the foregoing embodiment, in other embodiments, when the DSP 113 determines that the WIFI module 124 receives the externally sent heartbeat feedback signal, the DSP 113 generates a normal sleep instruction and sends the normal sleep instruction to the MCU 122, and the MCU 122 receives the After the normal sleep command, the main power circuit 111 is turned off and the timing module 123 is controlled to start timing.
  • the timing module 123 sends a second open command to the MCU 122, and the MCU 122 turns on the main power circuit 111.
  • the second preset duration is greater than the required interval duration corresponding to the number of reconnections in the mapping table.
  • the second preset duration may be set to 1 day.
  • FIG. 2 illustrates an embodiment of the WIFI anomaly automatic reconnection system of the present invention.
  • the WIFI abnormal automatic reconnection system includes a WIFI abnormal automatic reconnection device 1 and a server 2.
  • the WIFI abnormal automatic reconnection device 1 includes a normal working module 11 and a low power working module 12.
  • the normal working module 11 includes a main power circuit 111, a DSP 113, and a memory 112 electrically connected to the DSP 113.
  • the memory 112 stores a mapping table including the number of reconnections and the required interval duration corresponding to the number of reconnections.
  • the low power working module 12 includes a secondary power circuit 121, an MCU 122, and a WIFI module 124 electrically connected to the MCU 122.
  • the WIFI module 124 sends a heartbeat packet to the server 2 at intervals of a first preset duration.
  • the secondary power circuit 121 supplies power to the MCU 122 and the WIFI module 124, and the WIFI module 124 is in a low power mode of operation.
  • the WIFI module 124 switches from the low power operation mode to the normal operation mode, and the MCU 122 turns on the main power circuit 111, and the main power circuit 111 supplies power to the DSP 113 and the memory 112, and the DSP 113 determines the WIFI module 124.
  • the DSP 113 obtains the current reconnection number and obtains the actual required interval duration corresponding to the current reconnection number according to the mapping table, and turns off the main power circuit 111, and the WIFI module 124 enters the low power consumption. Operating mode.
  • the MCU 122 turns on the main power circuit 111, and the WIFI module 124 enters the normal working mode, and performs the reconnection operation of the WIFI module 124 and the server 2.
  • the reconnection operation of the WIFI module 124 and the server 2 includes: the low power consumption working module 12 further includes a timing module 123 electrically connected to the MCU 122.
  • the DSP 113 determines that the WIFI module 124 does not receive the heartbeat feedback signal sent by the server 2
  • the DSP 113 generates a timing reconnection command according to the actual required interval duration and sends a timing reconnection instruction to the MCU 122, and the MCU 122 closes when receiving the timing reconnection instruction.
  • the main power circuit 111 controls the timing module 123 to start timing, when the timing module 123 is timing When the length is the same as the actual required interval duration, the timing module 123 sends a first open command to the MCU 122. After receiving the first open command, the MCU 122 turns on the main power circuit 111 and controls the WIFI module 124 to re-establish a communication connection with the server 2.
  • the WIFI abnormal automatic reconnection device 1 is in a sleep state, and the power consumption is reduced, and the power consumption is reduced, and the WIFI abnormal reconnection device 1 is in a sleep state when the WIFI abnormality is not detected and the WIFI abnormality is detected.
  • the reason why the WIFI reconnection has an interval duration is that the WIFI abnormal reconnection device 1 cannot frequently perform the WIFI reconnection operation, and further achieves the effect of reducing the power consumption.
  • the DSP 113 further includes a determining unit for determining the WIFI module 124 and the other embodiments. Whether the communication connection of the server 2 is successfully established; if the communication connection between the WIFI module 124 and the server 2 is not successfully established, the current number of reconnections is incremented by one and stored, and the DSP 113 performs the WIFI abnormality determination operation again to determine whether the WIFI module 124 receives the connection.
  • the heartbeat feedback signal sent by the server 2. If the communication connection between the WIFI module 124 and the server 2 is successfully established, the WIFI module 124 sends a heartbeat data packet to the server 2 at intervals of a first preset duration, and receives a heartbeat feedback signal sent by the server 2.
  • the mapping table stored in the memory 112 includes the number of reconnections and the required interval duration corresponding to the number of reconnections, where the required interval duration corresponding to all reconnection times may be a fixed value, or may be The value that is incremented by the number of reconnections.
  • the required interval length corresponding to the number of reconnections can be set to 300 seconds, that is, each time the WIFI reconnection operation is performed, an interval of 300 seconds is required; or the following rules can be set: the first reconnection corresponding to the required The interval is 30 seconds, the required interval for the second reconnection is 60 seconds, and the required interval for the third reconnection is 120 seconds, which is gradually increased by a certain ratio. The more times the WIFI reconnects, The longer the required interval, the more effective it is to avoid Frequent execution of WIFI reconnection operation reduces power consumption.
  • the device when the WIFI abnormality is not detected, the device automatically enters the sleep state from the awake state. Therefore, on the basis of the foregoing embodiment, in other embodiments, when the DSP 113 determines that the WIFI module 124 receives the heartbeat feedback signal sent by the server 2, the DSP 113 generates a normal sleep instruction and sends the normal sleep instruction to the MCU 122, and the MCU 122 receives the signal. After the normal sleep instruction, the main power circuit 111 is turned off and the timing module 123 is controlled to start timing.
  • the timing module 123 When the timing of the timing module 123 reaches the second preset duration, the timing module 123 sends a second open command to the MCU 124, and the MCU 124 turns on the main power circuit. 111.
  • the second preset duration is greater than the required interval duration corresponding to all the reconnection times in the mapping table. For example, when the second preset duration is set to 1 day, the required interval duration is no longer than 1 day.
  • FIG. 3 shows an embodiment of the WIFI abnormal automatic reconnection method of the present invention.
  • the WIFI abnormal automatic reconnection method is applied to the above WIFI abnormal automatic reconnection system.
  • the WIFI abnormal automatic reconnection system includes a server and a WIFI abnormal automatic reconnection device.
  • the WIFI abnormal automatic reconnection device includes a normal working module and a low power working module.
  • the normal working module comprises a main power circuit, a DSP and a memory electrically connected to the DSP
  • the low power working module comprises a sub power circuit, an MCU, a WIFI module and a timing module.
  • the WIFI abnormal automatic reconnection method includes the following steps:
  • step S1 the auxiliary power circuit supplies power to the MCU and the WIFI module, and the WIFI module is in a low power operation mode and sends a heartbeat data packet to the server at intervals of a first preset time, and the WIFI abnormal automatic reconnection device is in a sleep state.
  • Step S2 when the MCU receives the wake-up request, the main power circuit is turned on, the main power circuit supplies power to the DSP and the memory, and the WIFI module is switched from the low-power working mode to the normal working mode, and the WIFI abnormal automatic reconnecting device changes from the sleep state to the wake-up state. status.
  • step S3 the DSP determines whether the WIFI module receives the heartbeat feedback signal sent by the server. If the heartbeat feedback signal sent by the server is not received, step S4 is performed. If the heartbeat feedback signal sent by the server is received, step S8 is performed.
  • step S4 the DSP obtains the current reconnection number and obtains the actual required interval duration corresponding to the current reconnection number according to the mapping table, and performs the reconnection operation of the WIFI module and the server after the actual required interval duration.
  • performing the reconnection operation of the WIFI module and the server includes the following steps: Step S41, generating a timing reconnection instruction according to the actual required interval duration and transmitting the timing reconnection instruction to the MCU; Step S42, the MCU When receiving the timing reconnection command, turning off the main power circuit and controlling the timing module to start timing; in step S43, when the timing duration of the timing module is consistent with the actual required interval duration, the timing module sends a first opening command to the MCU; step S44, the MCU After receiving the first open command, the main power circuit is turned on and the WIFI module is controlled to re-establish a communication connection with the server.
  • the WIFI abnormal reconnection method further includes:
  • step S5 the DSP determines whether the communication connection between the WIFI module and the server is successful. If the communication connection between the WIFI module and the server is not established successfully, step S6 is performed. If the communication connection between the WIFI module and the server is successfully established, step S7 is performed.
  • step S6 the current number of reconnections is incremented by one and stored, and step S3 is performed.
  • the number of reconnections is incremented and stored on the basis of the number of previous reconnections. For example, if the reconnection operation is not successful for the first time, the current number of reconnections is 0. When 1 is added, the current reconnection number is 1. Therefore, the actual required interval duration corresponding to the number of times the reconnection of the DSP is read next time is the actual required interval duration of the next restart operation.
  • step S7 the WIFI module sends the heartbeat data packet to the server and is in a normal working state, and step S3 is performed.
  • the WIFI abnormal automatic reconnection method also includes:
  • Step S8 the DSP generates a normal sleep instruction according to the second preset duration and sends a normal sleep instruction to the MCU; when receiving the normal sleep instruction, the MCU turns off the main power circuit and controls the timing module to start timing; the timing of the timing module reaches the second When the preset duration is long, the timing module sends a second open command to the MCU; after receiving the second open command, the MCU turns on the main power supply circuit, and performs step S3.
  • the MCU when the DSP determines that the WIFI module receives the heartbeat feedback signal sent by the server, that is, when there is no WIFI abnormality, the MCU will disconnect the main power circuit, and the WIFI module is switched from the normal working mode to the low power working mode, and the interval is After the preset duration, the MCU turns on the main power circuit and determines again whether the WIFI module receives the heartbeat feedback signal sent by the server.
  • the second preset duration may be a fixed value, but the value of the second preset duration is greater than the actual required interval corresponding to the number of reconnections in the mapping table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明公开了一种WIFI异常自动重连装置、系统及方法。其中,WIFI异常自动重连装置包括正常工作模块和低功耗工作模块。正常工作模块包括主电源电路、DSP和存储器,存储器存储有映射表,其包括重连次数和所需间隔时长。低功耗工作模块包括副电源电路、MCU和WIFI模块,WIFI模块间隔第一预设时长发送心跳数据包至外部;收到唤醒请求时,WIFI模块由低功耗工作模式转换为正常工作模式,DSP判定WIFI模块未接收到心跳反馈信号时,获取当前重连次数和实际所需间隔时长;间隔实际所需间隔时长后,重建WIFI模块与外部的通信连接。本发明实现了WIFI异常自动重连,且避免了频繁的进行重连操作。

Description

WIFI异常自动重连装置、系统及方法 技术领域
本发明涉及无线网络技术领域,尤其是涉及一种WIFI异常自动重连装置、系统及方法。
背景技术
终端设备出现WIFI连接异常时,现有的处理的方法主要包括如下两种:
第一种,人为方式重启终端设备以执行WIFI重连操作。因此,存在WIFI异常处理不智能的缺陷。
第二种,终端设备检测到WIFI连接异常时,智能执行WIFI重连操作。若WIFI连接一直异常,则会频繁的执行WIFI重连操作。因此,频繁执行WIFI重连操作会致使终端设备的耗电量较大。
发明内容
为克服背景技术中存在的问题,本公开提供一种WIFI异常自动重连装置、系统及方法,以解决WIFI异常时处理方式不智能及频繁地进行WIFI重连导致耗电量大的问题。
为解决上述问题,本发明提供一种WIFI异常自动重连装置,其包括:
正常工作模块,其包括主电源电路、DSP和与DSP电性连接的存储器,存储器存储有映射表,映射表包括重连次数和与重连次数对应的所需间隔时长;
低功耗工作模块,其包括副电源电路、MCU和与MCU电性连接的WIFI模块;副电源电路向MCU和WIFI模块供电,WIFI模块处于低功耗工作模式 且间隔第一预设时长发送心跳数据包至外部;MCU接收到外部的唤醒请求时,WIFI模块从低功耗工作模式转换为正常工作模式,MCU开启主电源电路,主电源电路供电给DSP和存储器,DSP判定WIFI模块未接收到外部发送的心跳反馈信号时,DSP获取当前重连次数并根据映射表得到与当前重连次数对应的实际所需间隔时长;间隔实际所需间隔时长后,执行WIFI模块与外部的重连操作。
进一步的,低功耗工作模块还包括与MCU电性连接的计时模块;DSP根据实际所需间隔时长生成定时重连指令并将定时重连指令发送至MCU,MCU接收到定时重连指令时,关闭主电源电路并控制计时模块开始计时,计时模块的计时时长与实际所需间隔时长一致时,计时模块发送第一开启指令至MCU,MCU接收到第一开启指令后,开启主电源电路且控制WIFI模块与外部重新建立通信连接。
进一步的,DSP还包括判断单元,判断单元用于判断WIFI模块与外部的通信连接是否建立成功;
若WIFI模块与外部的通信连接未建立成功,当前重连次数加1并进行存储;
若WIFI模块与外部的通信连接建立成功,WIFI模块间隔第一预设时长发送心跳数据包至外部。
进一步的,DSP判定WIFI模块接收到外部发送的心跳反馈信号时,DSP根据第二预设时长生成正常休眠指令并将正常休眠指令发送至MCU,MCU接收到正常休眠指令时,关闭主电源电路并控制计时模块开始计时,计时模块的计时时长达到第二预设时长时,计时模块发送第二开启指令至MCU,MCU开 启主电源电路。
为了解决上述问题,本发明还提供了一种WIFI异常自动重连系统,其包括上述的WIFI异常自动重连装置。
进一步的,其还包括服务器,服务器与WIFI异常自动重连装置的WIFI模块通信连接。
为了解决上述问题,本发明还提供了一种WIFI异常自动重连方法,其应用于WIFI异常自动重连系统,WIFI异常自动重连系统包括服务器和WIFI异常自动重连装置,WIFI异常自动重连装置包括正常工作模块和低功耗工作模块,正常工作模块包括主电源电路、DSP和存储器,存储器存储有映射表,映射表包括重连次数和与重连次数对应的所需间隔时长;低功耗工作模块包括副电源电路、MCU、WIFI模块和计时模块。该WIFI异常自动重连方法包括如下步骤:
副电源电路供电给MCU和WIFI模块,WIFI模块处于低功耗工作模式且间隔第一预设时长发送心跳数据包至外部,WIFI异常自动重连装置处于休眠状态;
MCU收到唤醒请求时,开启主电源电路,主电源电路供电给DSP和存储器,WIFI模块从低功耗工作模式转换为正常工作模式,WIFI异常自动重连装置从休眠状态转换为唤醒状态;
DSP执行WIFI异常判断操作,WIFI异常判断操作为DSP判断WIFI模块是否接收到服务器发送的心跳反馈信号;
当未接收到服务器发送的心跳反馈信号时,DSP获取当前重连次数并根据映射表得到与当前重连次数对应的实际所需间隔时长,间隔实际所需间隔时长 后,执行WIFI模块与外部的重连操作。
进一步的,执行WIFI模块与外部的重连操作的步骤,包括:
DSP根据实际所需间隔时长生成定时重连指令并将定时重连指令发送至MCU;
MCU接收到定时重连指令时,关闭主电源电路并控制计时模块开始计时;
计时模块的计时时长与实际所需间隔时长一致时,计时模块发送第一开启指令至MCU;
MCU接收到第一开启指令后,开启主电源电路且控制WIFI模块与服务器重新建立通信连接。
进一步的,开启主电源电路且控制WIFI模块与服务器重新建立通信连接的步骤之后,还包括:
DSP判断WIFI模块与服务器的通信连接是否建立成功;
若WIFI模块与服务器的通信连接未建立成功,当前重连次数加1后执行WIFI异常判断操作;
若WIFI模块与服务器的通信连接建立成功,WIFI模块间隔第一预设时长段发送心跳数据包至服务器,执行WIFI异常判断操作。
进一步的,所述方法还包括:
当接收到服务器发送的心跳反馈信号时,DSP根据第二预设时长生成正常休眠指令并将正常休眠指令发送至MCU;
MCU接收到正常休眠指令时,关闭主电源电路并控制计时模块开始计时;
计时模块的计时时长达到第二预设时长时,计时模块发送第二开启指令至MCU;
MCU接收到第二开启指令后,MCU开启主电源电路,执行WIFI异常判断操作。
与现有技术相比,本发明装置检测到WIFI异常时,自动进行异常处理,因此,WIFI异常的处理具有智能化的特性。此外,WIFI异常时,DSP获取当前重连次数和与当前重连次数对应的实际所需间隔时长,间隔实际所需间隔时长后才执行WIFI重连操作,避免了频繁进行重连操作,达到了降低耗电量的技术效果。
附图说明
图1为本发明WIFI异常自动重连装置一种实施例的框架结构示意图。
图2为本发明WIFI异常自动重连系统一种实施例的框架结构示意图。
图3为本发明WIFI异常自动重连方法一种实施例的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用来限定本发明。
图1展示了本发明WIFI异常自动重连装置的一种实施例。在实施例中,该WIFI异常自动重连装置1包括正常工作模块11和低功耗工作模块12。其中,该正常工作模块11包括主电源电路111、DSP113和与该DSP113电性连接的存储器112,存储器112存储有映射表,该映射表包括重连次数和与重连次数对应的所需间隔时长。低功耗工作模块12包括副电源电路121、MCU122和与MCU122电性连接的WIFI模块124。WIFI模块124间隔第一预设时长发送心跳数据包至外部。副电源电路121向MCU122和WIFI模块124供电, WIFI模块124处于低功耗工作模式。
当MCU122接收到外部的唤醒请求时,WIFI模块124从低功耗工作模式转换为正常工作模式,MCU122开启主电源电路111,该主电源电路111供电给DSP113和存储器112,DSP113判定该WIFI模块124未接收到外部发送的心跳反馈信号时,DSP113获取当前重连次数并根据映射表得到与当前重连次数对应的实际所需间隔时长,并关闭主电源电路111,WIFI模块124进入低功耗工作模式。
间隔实际所需间隔时长后,MCU122开启主电源电路111,WIFI模块124进入正常工作模式,并执行WIFI模块124和外部的重连操作。具体地,该WIFI模块124和外部的重连操作包括:低功耗工作模块12还包括与MCU122电性连接的计时模块123。当DSP113判定WIFI模块124未接收到外部发送的心跳反馈信号时,DSP113根据实际所需间隔时长生成定时重连指令并将定时重连指令发送至MCU122,MCU122接收到定时重连指令时,关闭主电源电路111并控制计时模块123开始计时,当计时模块123的计时时长与实际所需间隔时长一致时,计时模块123发送第一开启指令至MCU122,MCU122接收到第一开启指令后,开启主电源电路111且控制WIFI模块124与外部重新建立通信连接。
通过本实施例,在未检测到WIFI异常时和检测到WIFI异常后等待重连的实际所需间隔时长内,该WIFI异常自动重连装置1均处于休眠状态,降低了耗电量。若WIFI连接一直处于异常状态时,因WIFI重连存在间隔时长的原因,该WIFI异常自动重连装置1无法频繁的进行WIFI重连操作,进一步达到了降低耗电量的效果。
为了进一步降低本实施例的WIFI异常自动重连装置1的耗电量,因此,在上述实施例的基础上,其它实施例中,DSP113还包括判断单元,该判断单元用于判断WIFI模块124与外部的通信连接是否建立成功;若WIFI模块124与外部的通信连接未建立成功,则将当前重连次数加1并进行存储,DSP113再次执行WIFI异常判断操作,判断WIFI模块124是否接收到外部发送的心跳反馈信号。若WIFI模块124与外部的通信连接建立成功,则WIFI模块124间隔第一预设时长发送心跳数据包至外部,并接收外部发送的心跳反馈信号。
需要说明的是,存储器112中存储的映射中包括重连次数和与重连次数对应的所需间隔时长,其中,所有重连次数对应的所需间隔时长是随重连次数递增而增加的值。例如,第一次重连对应的所需间隔时长为30秒,第二次重连对应的所需间隔时长为60秒,第三次重连对应的所需间隔时长为120秒,以一定的比例逐步增加,WIFI重连次数越多,所需间隔时长越长,有效的避免了频繁执行WIFI重连操作,降低了耗电量。
为了进一步的降低本实施例的WIFI异常自动重连装置1的耗电量,因此,当未检测到WIFI异常时,本装置自动从唤醒状态进入休眠状态。因此,在上述实施例的基础上,其它实施例中,当DSP113判定WIFI模块124接收到外部发送的心跳反馈信号时,DSP113生成正常休眠指令并将该正常休眠指令发送至MCU122,MCU122接收到该正常休眠指令后,关闭主电源电路111并控制计时模块123开始计时,当计时模块123的计时时长达到第二预设时长时,计时模块123发送第二开启指令至MCU122,MCU122开启主电源电路111。需要说明的是,第二预设时长大于映射表中重连次数对应的所需间隔时长,例如,第二预设时长可以设置为1天时。
图2展示了本发明WIFI异常自动重连系统的一种实施例。在本实施例中,该WIFI异常自动重连系统包括WIFI异常自动重连装置1和服务器2。
其中,该WIFI异常自动重连装置1包括正常工作模块11和低功耗工作模块12。其中,该正常工作模块11包括主电源电路111、DSP113和与该DSP113电性连接的存储器112,存储器112存储有映射表,该映射表包括重连次数和与重连次数对应的所需间隔时长。低功耗工作模块12包括副电源电路121、MCU122和与MCU122电性连接的WIFI模块124。WIFI模块124间隔第一预设时长发送心跳数据包至服务器2。副电源电路121向MCU122和WIFI模块124供电,WIFI模块124处于低功耗工作模式。
当MCU122接收到外部的唤醒请求时,WIFI模块124从低功耗工作模式转换为正常工作模式,MCU122开启主电源电路111,该主电源电路111供电给DSP113和存储器112,DSP113判定该WIFI模块124未接收到服务器2发送的心跳反馈信号时,DSP113获取当前重连次数并根据映射表得到与当前重连次数对应的实际所需间隔时长,并关闭主电源电路111,WIFI模块124进入低功耗工作模式。
间隔实际所需间隔时长后,MCU122开启主电源电路111,WIFI模块124进入正常工作模式,并执行WIFI模块124和服务器2的重连操作。具体地,该WIFI模块124和服务器2的重连操作包括:低功耗工作模块12还包括与MCU122电性连接的计时模块123。当DSP113判定WIFI模块124未接收到服务器2发送的心跳反馈信号时,DSP113根据实际所需间隔时长生成定时重连指令并将定时重连指令发送至MCU122,MCU122接收到定时重连指令时,关闭主电源电路111并控制计时模块123开始计时,当计时模块123的计时时 长与实际所需间隔时长一致时,计时模块123发送第一开启指令至MCU122,MCU122接收到第一开启指令后,开启主电源电路111且控制WIFI模块124与服务器2重新建立通信连接。
通过本实施例,在未检测到WIFI异常时和检测到WIFI异常后等待重连的实际所需间隔时长内,该WIFI异常自动重连装置1均处于休眠状态,降低了耗电量,且因WIFI重连存在间隔时长的原因,该WIFI异常自动重连装置1无法频繁的进行WIFI重连操作,进一步达到了降低耗电量的效果。
为了进一步降低本实施例的WIFI异常自动重连装置1的耗电量,因此,在上述实施例的基础上,其它实施例中,DSP113还包括判断单元,该判断单元用于判断WIFI模块124与服务器2的通信连接是否建立成功;若WIFI模块124与服务器2的通信连接未建立成功,则将当前重连次数加1并进行存储,DSP113再次执行WIFI异常判断操作,判断WIFI模块124是否接收到服务器2发送的心跳反馈信号。若WIFI模块124与服务器2的通信连接建立成功,则WIFI模块124间隔第一预设时长发送心跳数据包至服务器2,并接收服务器2发送的心跳反馈信号。
具体地,存储器112中存储的映射表中包括重连次数和与重连次数对应的所需间隔时长,其中,所有重连次数对应的所需间隔时长可以是固定的一个值,也可以是随重连次数递增而增加的值。例如,所有重连次数对应的所需间隔时长可以设置为300秒,即每次执行WIFI重连操作都需要间隔300秒;也可以按下述规则进行设置:第一次重连对应的所需间隔时长为30秒,第二次重连对应的所需间隔时长为60秒,第三次重连对应的所需间隔时长为120秒,以一定的比例逐步增加,WIFI重连次数越多,所需间隔时长越长,有效的避免 了频繁执行WIFI重连操作,降低了耗电量。
为了进一步的降低本实施例的WIFI异常自动重连装置1的耗电量,因此,当未检测到WIFI异常时,本装置自动从唤醒状态进入休眠状态。因此,在上述实施例的基础上,其它实施例中,当DSP113判定WIFI模块124接收到服务器2发送的心跳反馈信号时,DSP113生成正常休眠指令并将该正常休眠指令发送至MCU122,MCU122接收到该正常休眠指令后,关闭主电源电路111并控制计时模块123开始计时,当计时模块123的计时时长达到第二预设时长时,计时模块123发送第二开启指令至MCU124,MCU124开启主电源电路111。其中,第二预设时长大于映射表中所有重连次数对应的所需间隔时长,例如,第二预设时长设置为1天时,所需间隔时长最长不超过1天。
图3展示了本发明WIFI异常自动重连方法的一种实施例。在本实施例中,该WIFI异常自动重连方法应用于上述的WIFI异常自动重连系统。该WIFI异常自动重连系统包括服务器和WIFI异常自动重连装置。WIFI异常自动重连装置包括正常工作模块和低功耗工作模块。其中,正常工作模块包括主电源电路、DSP和与DSP电性连接的存储器,低功耗工作模块包括副电源电路、MCU、WIFI模块和计时模块。该WIFI异常自动重连方法包括如下步骤:
步骤S1,副电源电路供电给MCU和WIFI模块,WIFI模块处于低功耗工作模式且间隔第一预设时长发送心跳数据包至服务器,WIFI异常自动重连装置处于休眠状态。
步骤S2,MCU收到唤醒请求时,开启主电源电路,主电源电路供电给DSP和存储器,WIFI模块从低功耗工作模式转换为正常工作模式,WIFI异常自动重连装置从休眠状态转换为唤醒状态。
步骤S3,DSP判断WIFI模块是否接收到服务器发送的心跳反馈信号,若未接收到服务器发送的心跳反馈信号,则执行步骤S4,若接收到服务器发送的心跳反馈信号,则执行步骤S8。
步骤S4,DSP获取当前重连次数并根据映射表得到与当前重连次数对应的实际所需间隔时长,间隔实际所需间隔时长后,执行WIFI模块与服务器的重连操作。具体地,在其他实施例中,执行WIFI模块与服务器的重连操作包括如下步骤:步骤S41,根据实际所需间隔时长生成定时重连指令并将定时重连指令发送至MCU;步骤S42,MCU接收到定时重连指令时,关闭主电源电路并控制计时模块开始计时;步骤S43,计时模块的计时时长与实际所需间隔时长一致时,计时模块发送第一开启指令至MCU;步骤S44,MCU接收到第一开启指令后,开启主电源电路且控制WIFI模块与服务器重新建立通信连接。
为了进一步的降低该WIFI异常自动重连装置的耗电量,所述WIFI异常自动重连方法还包括:
步骤S5,DSP判断WIFI模块与服务器的通信连接是否建立成功,若WIFI模块与服务器的通信连接未建立成功,则执行步骤S6,若WIFI模块与服务器的通信连接建立成功,则执行步骤S7。
步骤S6,当前重连次数加1并进行存储,执行步骤S3。
具体地,当WIFI模块与服务器的通信连接未建立成功时,将重连次数在之前重连次数的基础上进行加1并存储。例如,若是第一次进行重连操作未成功,则当前重连次数为0,加1后即为当前重连次数为1。因此,DSP下次读取的重连次数为1时对应的实际所需间隔时长,即为下次重启操作的实际所需间隔时长。
步骤S7,WIFI模块发送心跳数据包至服务器且处于正常工作状态,执行步骤S3。
为了进一步的降低本实施例的WIFI异常自动重连装置的耗电量,因此,当未检测到WIFI异常时,本装置自动从唤醒状态进入休眠状态。本WIFI异常自动重连方法还包括:
步骤S8,DSP根据第二预设时长生成正常休眠指令并将正常休眠指令发送至MCU;MCU接收到正常休眠指令时,关闭主电源电路并控制计时模块开始计时;计时模块的计时时长达到第二预设时长时,计时模块发送第二开启指令至MCU;MCU接收到第二开启指令后,MCU开启主电源电路,执行步骤S3。具体地,当DSP判定WIFI模块接收到服务器发送的心跳反馈信号时,即无WIFI异常的情况时,MCU将断开主电源电路,WIFI模块由正常工作模式转换为低功耗工作模式,间隔第二预设时长后,MCU开启主电源电路并再次判断WIFI模块是否接收到服务器发送的心跳反馈信号。其中,第二预设时长可以为一个固定值,但该第二预设时长的值比映射表中的重连次数对应的实际所需间隔时长要大。
以上对发明的具体实施方式进行了详细说明,但其只作为范例,本发明并不限制与以上描述的具体实施方式。对于本领域的技术人员而言,任何对该发明进行的等同修改或替代也都在本发明的范畴之中,因此,在不脱离本发明的精神和原则范围下所作的均等变换和修改、改进等,都应涵盖在本发明的范围内。

Claims (10)

  1. 一种WIFI异常自动重连装置,其特征在于,其包括:
    正常工作模块,其包括主电源电路、DSP和与所述DSP电性连接的存储器,所述存储器存储有映射表,所述映射表包括重连次数和与所述重连次数对应的所需间隔时长;
    低功耗工作模块,其包括副电源电路、MCU和与所述MCU电性连接的WIFI模块;所述副电源电路向所述MCU和所述WIFI模块供电,所述WIFI模块处于低功耗工作模式且间隔第一预设时长发送心跳数据包至外部;所述MCU接收到外部的唤醒请求时,所述WIFI模块从所述低功耗工作模式转换为正常工作模式,所述MCU开启所述主电源电路,所述主电源电路供电给所述DSP和所述存储器,所述DSP判定所述WIFI模块未接收到外部发送的心跳反馈信号时,所述DSP获取当前重连次数并根据所述映射表得到与所述当前重连次数对应的实际所需间隔时长;间隔所述实际所需间隔时长后,执行所述WIFI模块与外部的重连操作。
  2. 根据权利要求1所述的WIFI异常自动重连装置,其特征在于,所述低功耗工作模块还包括与所述MCU电性连接的计时模块;所述DSP根据所述实际所需间隔时长生成定时重连指令并将所述定时重连指令发送至所述MCU,所述MCU接收到所述定时重连指令时,关闭所述主电源电路并控制所述计时模块开始计时,所述计时模块的计时时长与所述实际所需间隔时长一致时,所述计时模块发送第一开启指令至所述MCU,所述MCU接收到第一开启指令后,开启所述主电源电路且控制所述WIFI模块与外部重新建立通信连接。
  3. 根据权利要求2所述的WIFI异常自动重连装置,其特征在于,所述DSP还包括判断单元,所述判断单元用于判断所述WIFI模块与外部的通信连接是否建立成功;
    若所述WIFI模块与外部的通信连接未建立成功,所述当前重连次数加1并进行存储;
    若所述WIFI模块与外部的通信连接建立成功,所述WIFI模块间隔所述第一预设时长发送心跳数据包至外部。
  4. 根据权利要求1所述的WIFI异常自动重连装置,其特征在于,所述DSP判定所述WIFI模块接收到外部发送的心跳反馈信号时,所述DSP根据第二预设时长生成正常休眠指令并将所述正常休眠指令发送至MCU,所述MCU接收到所述正常休眠指令时,关闭所述主电源电路并控制所述计时模块开始计时,所述计时模块的计时时长达到所述第二预设时长时,所述计时模块发送第二开启指令至所述MCU,所述MCU开启所述主电源电路。
  5. 一种WIFI异常自动重连系统,其特征在于,其包括权利要求1-4之一所述的WIFI异常自动重连装置。
  6. 根据权利要求5所述WIFI异常自动重连系统,其特征在于,其还包括服务器,所述服务器与所述WIFI异常自动重连装置的WIFI模块通信连接。
  7. 一种WIFI异常自动重连方法,其应用于WIFI异常自动重连系统,所述WIFI异常自动重连系统包括服务器和WIFI异常自动重连装置,所述WIFI异常自动重连装置包括正常工作模块和低功耗工作模块,所述正常工作模块包括主电源电路、DSP和存储器,所述存储器存储有映射表,所述映射表包括重连次数和与所述重连次数对应的所需间隔时长;所述低功耗工作模块包括副电源电路、MCU、WIFI模块和计时模块,其特征在于,所述WIFI异常自动重连方法包括如下步骤:
    所述副电源电路供电给所述MCU和所述WIFI模块,所述WIFI模块处于低功耗工作模式且间隔第一预设时长发送心跳数据包至服务器,所述WIFI异常 自动重连装置处于休眠状态;
    所述MCU收到唤醒请求时,开启所述主电源电路,所述主电源电路供电给所述DSP和所述存储器,所述WIFI模块从所述低功耗工作模式转换为正常工作模式,所述WIFI异常自动重连装置从所述休眠状态转换为唤醒状态;
    所述DSP执行WIFI异常判断操作,所述WIFI异常判断操作为所述DSP判断所述WIFI模块是否接收到服务器发送的心跳反馈信号;
    当未接收到服务器发送的心跳反馈信号时,所述DSP获取当前重连次数并根据所述映射表得到与所述当前重连次数对应的实际所需间隔时长,间隔所述实际所需间隔时长后,执行所述WIFI模块与外部的重连操作。
  8. 根据权利要求7所述WIFI异常自动重连方法,其特征在于,执行所述WIFI模块与外部的重连操作的步骤,包括:
    所述DSP根据所述实际所需间隔时长生成定时重连指令并将所述定时重连指令发送至所述MCU;
    所述MCU接收到所述定时重连指令时,关闭所述主电源电路并控制所述计时模块开始计时;
    所述计时模块的计时时长与所述实际所需间隔时长一致时,所述计时模块发送第一开启指令至所述MCU;
    所述MCU接收到第一开启指令后,开启所述主电源电路且控制所述WIFI模块与服务器重新建立通信连接。
  9. 根据权利要求8所述WIFI异常自动重连方法,其特征在于,开启所述主电源电路且控制所述WIFI模块与服务器重新建立通信连接的步骤之后,还包括:
    所述DSP判断所述WIFI模块与服务器的通信连接是否建立成功;
    若所述WIFI模块与服务器的通信连接未建立成功,所述当前重连次数加1后执行所述WIFI异常判断操作;
    若所述WIFI模块与服务器的通信连接建立成功,所述WIFI模块间隔第一预设时长段发送心跳数据包至服务器,执行所述WIFI异常判断操作。
  10. 根据权利要求7所述WIFI异常自动重连方法,其特征在于,所述方法还包括:当接收到服务器发送的心跳反馈信号时,所述DSP根据第二预设时长生成正常休眠指令并将所述正常休眠指令发送至所述MCU;所述MCU接收到所述正常休眠指令时,关闭所述主电源电路并控制所述计时模块开始计时;所述计时模块的计时时长达到所述第二预设时长时,所述计时模块发送所述第二开启指令至所述MCU;所述MCU接收到所述第二开启指令后,所述MCU开启所述主电源电路,执行所述WIFI异常判断操作。
PCT/CN2016/113451 2016-08-10 2016-12-30 Wifi异常自动重连装置、系统及方法 WO2018028132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610654788.7 2016-08-10
CN201610654788.7A CN106332159B (zh) 2016-08-10 2016-08-10 Wifi异常自动重连装置、系统及方法

Publications (1)

Publication Number Publication Date
WO2018028132A1 true WO2018028132A1 (zh) 2018-02-15

Family

ID=57740319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113451 WO2018028132A1 (zh) 2016-08-10 2016-12-30 Wifi异常自动重连装置、系统及方法

Country Status (2)

Country Link
CN (1) CN106332159B (zh)
WO (1) WO2018028132A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139348A (zh) * 2019-05-21 2019-08-16 广东几米星联通讯有限公司 一种rdss通信方法及其终端
CN114530939A (zh) * 2022-02-11 2022-05-24 深圳天地宽视信息科技有限公司 一种两线集中供电的远程监控装置及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172304B (zh) * 2017-07-17 2019-12-03 维沃移动通信有限公司 一种移动终端功耗检测方法及移动终端
CN110755061A (zh) * 2018-07-27 2020-02-07 九阳股份有限公司 一种家电设备的心跳检测方法以及家电设备
CN109814516A (zh) * 2019-03-19 2019-05-28 上海零眸智能科技有限公司 一种冰柜智能监控盒及监控算法
CN111193769A (zh) * 2019-11-25 2020-05-22 泰康保险集团股份有限公司 恢复长连接的方法、系统、装置、电子设备及存储介质
CN111010604B (zh) * 2019-12-27 2022-03-08 深圳创维-Rgb电子有限公司 一种预防wifi列表丢失的方法、智能电视机及介质
CN111741541B (zh) * 2020-06-10 2023-11-17 国网湖南省电力有限公司 基于配电终端无线通信模块的频繁重连方法及系统
CN111970050B (zh) * 2020-07-14 2022-03-15 电子科技大学 一种基于异常检测的联合监测调制格式和光信噪比的系统
CN111918236B (zh) * 2020-08-10 2021-08-31 上海顺舟智能科技股份有限公司 物联网安防传感器寻网方法、装置、设备及存储介质
CN113766543B (zh) * 2021-09-14 2024-04-30 青岛中科英泰商用系统股份有限公司 一种提高WiFi稳定性方法、系统、电子设备及介质
CN113866651B (zh) * 2021-09-18 2022-08-02 珠海格力电器股份有限公司 遥控器的低电量的检测方法、检测装置和遥控器
CN114710569A (zh) * 2022-03-11 2022-07-05 珠海派诺科技股份有限公司 自伸缩tcp链路维持方法、系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316555A (zh) * 2011-09-19 2012-01-11 华为终端有限公司 一种移动终端扫描WiFi网络的方法以及使用该方法的移动终端
US8868065B2 (en) * 2012-06-08 2014-10-21 Apple Inc. System and method for reducing power consumption for push messaging
CN104378421A (zh) * 2014-11-14 2015-02-25 四川长虹电器股份有限公司 一种智能家电产品远程控制系统及方法
CN105357283A (zh) * 2015-10-20 2016-02-24 北京奇虎科技有限公司 智能可佩戴设备的长连接建立方法及服务器、终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560410B2 (en) * 2014-12-31 2017-01-31 Echostar Technologies L.L.C. Systems and methods for automatic resumption of video stream following transient WiFi disconnect
CN105050115B (zh) * 2015-06-29 2020-06-02 小米科技有限责任公司 唤醒mcu的方法及装置
CN205158550U (zh) * 2015-10-27 2016-04-13 华南理工大学广州学院 基于wifi的公交防盗装置
CN105405188A (zh) * 2015-11-04 2016-03-16 海星客企业发展(上海)有限公司 基于WiFi的声波开锁装置、系统及其控制方法
CN105636004A (zh) * 2015-12-25 2016-06-01 惠州Tcl移动通信有限公司 一种基于低功耗蓝牙的蓝牙自动重连方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316555A (zh) * 2011-09-19 2012-01-11 华为终端有限公司 一种移动终端扫描WiFi网络的方法以及使用该方法的移动终端
US8868065B2 (en) * 2012-06-08 2014-10-21 Apple Inc. System and method for reducing power consumption for push messaging
CN104378421A (zh) * 2014-11-14 2015-02-25 四川长虹电器股份有限公司 一种智能家电产品远程控制系统及方法
CN105357283A (zh) * 2015-10-20 2016-02-24 北京奇虎科技有限公司 智能可佩戴设备的长连接建立方法及服务器、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEZHEE: "Android IM", 20 September 2015 (2015-09-20), XP055603852, Retrieved from the Internet <URL:http://zhoujianghua.com/2015/09/20/summary_of_im_android/#> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139348A (zh) * 2019-05-21 2019-08-16 广东几米星联通讯有限公司 一种rdss通信方法及其终端
CN110139348B (zh) * 2019-05-21 2022-10-28 广东几米星联通讯有限公司 一种rdss通信方法及其终端
CN114530939A (zh) * 2022-02-11 2022-05-24 深圳天地宽视信息科技有限公司 一种两线集中供电的远程监控装置及方法

Also Published As

Publication number Publication date
CN106332159A (zh) 2017-01-11
CN106332159B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2018028132A1 (zh) Wifi异常自动重连装置、系统及方法
WO2016180132A1 (zh) 无线保真Wi-Fi设备的休眠方法及装置
US20100273519A1 (en) Methods and apparatuses of network system with power saving functions
WO2015154462A1 (zh) 一种即时通讯应用程序管理方法、装置及其移动终端
US9519327B2 (en) Communication apparatus and control method therefor
US20120269126A1 (en) Method for controlling wireless router and wireless router
CN110691399B (zh) 物联网终端及其唤醒方法及装置、存储介质
WO2018127045A1 (zh) 一种基站故障识别处理方法及装置
CN103118387B (zh) 一种主备模式的瘦ap冗余接入控制方法
US10440125B2 (en) Method for maintaining transmission control protocol connection and computer system using the method
US10912022B2 (en) WLAN station capable of optimizing power saving operation
WO2013013527A1 (zh) 一种基站的节能方法及基站
WO2019110005A1 (zh) 一种终端智能省电的方法、终端及具有存储功能的装置
JP4620414B2 (ja) 無線通信端末装置及びプログラム
CN102053686A (zh) 一种基于蓝牙的电脑自动控制方法
WO2012126396A1 (zh) 业务单板的节能方法、主控板、业务单板及接入设备
WO2015158161A1 (zh) 一种虚拟桌面的休眠控制方法、装置及系统
US10488909B2 (en) Communicating commands to an embedded controller of a system
JP2013017264A (ja) 電力供給装置、電力管理システム、電力管理方法および電力管理プログラム
US8412146B2 (en) Mutual awakening system and method thereof between a handheld device and a wireless communication module
WO2023005481A1 (zh) 用于吊钩倾角检测装置的通信方法及吊钩倾角检测装置
WO2021103893A1 (zh) 一种无线保真wifi芯片控制方法及其相关设备
KR101611399B1 (ko) 에어컨용 통신장치, 이를 이용한 저전력 제어 시스템 및 방법
JP2009170983A (ja) 給電装置、給電方法および給電制御プログラム
JP4341305B2 (ja) 電源管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912585

Country of ref document: EP

Kind code of ref document: A1