WO2018028114A1 - 一种换流阀阀冷系统内冷水入阀温度高保护方法 - Google Patents

一种换流阀阀冷系统内冷水入阀温度高保护方法 Download PDF

Info

Publication number
WO2018028114A1
WO2018028114A1 PCT/CN2016/111521 CN2016111521W WO2018028114A1 WO 2018028114 A1 WO2018028114 A1 WO 2018028114A1 CN 2016111521 W CN2016111521 W CN 2016111521W WO 2018028114 A1 WO2018028114 A1 WO 2018028114A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
temperature
thyristor
value
cold water
Prior art date
Application number
PCT/CN2016/111521
Other languages
English (en)
French (fr)
Inventor
王振
陈欢
国建宝
彭德辉
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2018028114A1 publication Critical patent/WO2018028114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature

Definitions

  • the invention relates to the field of power system converter valve cooling control, in particular to a method for high temperature protection of cold water inlet valve in a converter valve cooling system for a high voltage or ultra high voltage direct current power transmission system.
  • the converter valve for high-voltage or UHV DC transmission is mainly composed of a thyristor series.
  • the working state of the core component thyristor is closely dependent on the temperature of its chip (silicon), that is, the junction temperature.
  • the junction temperature rises, the dielectric capacity of silicon is weakened, and the fatigue resistance is reduced.
  • the main performance is reduced pressure resistance, increased reverse recovery charge, and reduced lifetime.
  • the junction temperature of the thyristor affects both the operational reliability of the converter valve and its service life.
  • the temperature rise of the thyristor chip is mainly caused by the loss generated by the chip itself.
  • the high voltage or UHV DC transmission thyristor valve is equipped with a water-cooling resistor to take away its working loss, and at the same time, the internal cooling water is placed in the valve cooling system control protection with high temperature protection, but the current domestic valve cooling system control and protection equipment manufacturers It is common practice to install three temperature sensors at the inner cold water pipe of the inner cold water inlet valve. When any two of the temperature sensors exceed the alarm setting value, the alarm is issued. When the trip value is exceeded, the direct current power transmission system is blocked. Control the steady state operating junction temperature of the thyristor below the limit value of 90 °C.
  • the high temperature protection method of the cold water inlet valve in the converter valve cooling system does not consider the actual on-state loss of the thyristor, and only considers the on-state loss under the rated DC current condition.
  • This protection method reduces the operating margin when the HVDC system is operating under rated DC conditions; this protection method may be used when the HVDC system is operated under rated DC conditions (1.2 times overload operation) There is a risk of causing the thyristor junction temperature to exceed the limit of 90 °C, damaging the thyristor or shortening the life of the thyristor.
  • the object of the present invention is to provide a coordinated control strategy for improving the commutation failure resistance of a parallel hybrid direct current transmission system in view of the above problems in the prior art.
  • the valve cooling system includes a valve cooling control protection system, and the valve cold control protection system is introduced from the pole control device
  • the real-time direct current of the power transmission system is connected with three redundant temperature sensor signals provided in the inner cold water pipe, and the valve cold control protection system is used for issuing an alarm signal and issuing a trip command to block the direct current transmission system;
  • the protection method includes:
  • Step 1 After the converter valve cooling system is put into operation, the valve cooling control protection system reads the temperature values of the three redundant temperature sensors at the inlet of the internal cold water pipe. If the current value of the sampling circuit of the temperature sensor is less than 4 mA or greater than 20 mA, it is considered The temperature sensor is faulty, otherwise the temperature sensor is considered to be operating normally;
  • Real-time valve temperature if all three temperature sensors are faulty, the valve cooling control protection system issues a trip command to block the DC transmission system;
  • Step 4 Calculate the real-time on-state loss P TH0 of the commutator thyristor and the thyristor dynamic loss P TH.dyn calculated by step 3.
  • the thyristor loss P TH.dyn is only related to the type of the thyristor, so in the actual direct current transmission project
  • Step 5 Calculate the sum of the contact thermal resistance between the thyristor junction to the heat sink and the contact heat resistance between the heat sink and the inlet water, and obtain the total thermal resistance R TH .
  • the contact thermal resistance of the thyristor junction to the heat sink And the contact thermal resistance of the radiator to the inlet water is a constant, wherein the contact thermal resistance between the radiator and the inlet water is mainly related to the water flow velocity of the inner cold water;
  • Step 7 If the actual junction temperature Tv J of the converter valve thyristor reaches the alarm value, the valve cold control protection system delays the alarm; if the actual junction temperature Tv J of the converter valve thyristor reaches the trip value, that is, the junction temperature limit value is 90 ° C, The valve cold control protection system delays the trip command, blocks the DC transmission system, completes a periodic operation, and returns to step 1 when performing the next periodic operation.
  • the DC power transmission system in which the converter valve is located is inversely related to the alarm value and the trip value of the cold water inlet valve temperature in the valve cooling system.
  • the internal cooling water inlet valve temperature protection setting value is automatically reduced to ensure that the thyristor junction temperature does not exceed the limit value of 90 ° C, and the converter valve thyristor can be avoided at the same time to prolong the service life of the thyristor.
  • the method can read the temperature values of the three redundant temperature sensors of the internal cold water pipeline into the valve and the direct current of the pole of the direct current transmission system in real time, and finally calculate the real-time junction temperature of the converter valve thyristor, and compare with the fixed value.
  • the method is applicable to the DC transmission engineering converter valve cooling system under various voltage levels and various load conditions, and can also improve the operating margin of the valve cooling system and protect the safe and stable operation of the thyristor, and has a great converter valve cooling system.
  • the application value of the project is applicable to the DC transmission engineering converter valve cooling system under various voltage levels and various load conditions, and can also improve the operating margin of the valve cooling system and protect the safe and stable operation of the thyristor, and has a great converter valve cooling system.
  • Fig. 1 is a flow chart showing the method for protecting the temperature of the cold water inlet valve in the valve refrigeration system of the present invention.
  • the invention provides a high temperature protection method for cold water inlet valve in a refrigerant system of a converter valve.
  • the converter valve cooling system is manually put into operation; after the converter valve is energized, the valve is cooled and protected.
  • the system reads the real-time value of the DC current from the pole control device, and reads the real-time temperature value of the internal cold water into the valve from the three internal cold water inlet valve temperature sensors. If all three temperature sensors fail, the valve cold control protection system issues a trip command.
  • FIG. 1 is a block diagram of a method according to an embodiment of a method.
  • the specific implementation method includes the following steps:
  • Step 1 After the converter valve cooling system is put into operation, the valve cooling control protection system reads the temperature values of the three redundant temperature sensors at the inlet of the internal cold water pipe. If the current value of the sampling circuit of the temperature sensor is less than 4 mA or greater than 20 mA, it is considered The temperature sensor is faulty, otherwise the temperature sensor is considered to be operating normally;
  • the temperature value of the temperature sensor is selected as the maximum temperature value; if one or two temperature sensors are faulty, a maximum temperature value is selected from the remaining normal operating temperature sensors as the real-time inlet temperature of the internal cooling water; if three temperatures The sensor is faulty, the valve cold control protection system issues a trip command, and the DC transmission system is blocked;
  • Step 4 Calculate the real-time on-state loss P TH0 of the commutator thyristor and the thyristor dynamic loss P TH.dyn calculated by step 3.
  • the thyristor loss P TH.dyn is only related to the type of the thyristor, so in the actual direct current transmission project
  • Step 5 Calculate the sum of the contact thermal resistance between the thyristor junction to the heat sink and the contact heat resistance between the heat sink and the inlet water, and obtain the total thermal resistance R TH .
  • the contact thermal resistance of the thyristor junction to the heat sink And the contact thermal resistance of the radiator to the inlet water is a constant, wherein the contact thermal resistance between the radiator and the inlet water is mainly related to the water flow velocity of the inner cold water;
  • Step 7 If the actual junction temperature Tv J of the converter valve thyristor reaches the alarm value, the valve cold control protection system delays the alarm; if the actual junction temperature Tv J of the converter valve thyristor reaches the trip value, that is, the junction temperature limit value is 90 ° C, The valve cold control protection system delays the trip command, blocks the DC transmission system, completes a periodic operation, and proceeds to step 1 after performing the next periodic operation.
  • the DC power transmission system in which the converter valve is located is inversely related to the alarm value and the trip value of the cold water inlet valve temperature in the valve cooling system, and the cold water in the valve cooling system is different according to the transmission power of the DC transmission system.
  • the alarm value and the trip value of the inlet valve temperature are different. The lower the delivery power, the higher the alarm value and the trip value of the valve.
  • the internal cooling water inlet valve temperature is automatically lowered to ensure that the thyristor junction temperature does not exceed the limit value of 90 ° C, which can simultaneously avoid damage to the converter valve thyristor and prolong the service life of the thyristor.

Abstract

一种换流阀阀冷系统内冷水入阀温度高保护方法,阀冷控制保护系统从极控装置中读取直流电流实时值,同时从三个内冷水入阀温度传感器中读取内冷水入阀实时温度值,如果三个温度传感器全部故障,阀冷控制保护系统发出跳闸命令,闭锁直流输电系统,否则选取一个最大的温度值作为内冷水入阀温度实时值,根据内冷水入阀温度以及直流电流值,计算出换流阀晶闸管的实时结温,比较晶闸管结温值与结温限制值,当晶闸管结温达到报警值则发报警信号,当晶闸管结温达到结温限制值时则发跳闸命令,闭锁直流输电系统。所述方法协调控制性能好,能适应各种电压等级以及各种直流负荷情况下用直流输电系统换流阀。

Description

一种换流阀阀冷系统内冷水入阀温度高保护方法 技术领域
本发明涉及电力系统换流阀冷却控制领域,尤其涉及一种高压或特高压直流输电系统用换流阀冷却系统内冷水入阀温度高保护的方法。
背景技术
高压或特高压直流输电用换流阀目前主要采用晶闸管串联形式组成,其核心元器件晶闸管的工作状态密切依赖于其芯片(硅)的温度,即结温。当结温升高时,硅的介电能力减弱,耐疲劳能力降低,其主要表现为耐压能力降低、反向恢复电荷增加以及使用寿命降低等。总之,晶闸管的结温既影响换流阀的运行可靠性,又影响其使用寿命。在晶闸管运行过程中,晶闸管芯片的温升主要由芯片自身工作产生的损耗引起。因此,高压或特高压直流输电晶闸管阀配有水冷电阻将其工作损耗带走,同时在阀冷系统控制保护中配置有内冷水入阀温度高保护,但目前国内阀冷系统控制保护设备厂家的普遍做法是在内冷水入阀口的内冷水管道处装设三个温度传感器,当其中任意两个温度传感器的温度超过报警定值时则报警,超过跳闸定值时则闭锁直流输电系统,以控制晶闸管稳态运行结温在限制值90℃以下。这种换流阀冷却系统内冷水入阀温度高保护方法没有考虑晶闸管实际通态损耗,只考虑额定直流电流工况下的通态损耗。当直流输电系统在额定直流以下工况下运行时,这种保护方法降低了运行裕度;当直流输电系统在额定直流以上工况下运行(1.2倍过负荷运行)时,这种保护方法可能存在导致晶闸管结温超过限制值90℃的风险,损坏晶闸管或缩短晶闸管使用寿命。
发明内容
本发明的目的在于针对上述现有技术中存在的问题,提出一种提高并联混合直流输电系统换相失败抵御能力的协调控制策略。
为达到上述发明的目的,本发明通过以下技术方案实现:
一种换流阀阀冷系统内冷水入阀温度高保护方法,
所述阀冷系统包括阀冷控制保护系统,阀冷控制保护系统从极控设备引入直 流输电系统实时直流电流,并与内冷水管道内设的三个冗余温度传感器信号连接,所述阀冷控制保护系统用以发出报警信号、发出跳闸指令闭锁直流输电系统;
所述保护方法包括:
步骤1、换流阀冷却系统投入运行后,阀冷控制保护系统读取内冷水管道入阀处三个冗余温度传感器的温度值,如果温度传感器采样回路电流值小于4mA或者大于20mA,则认为该温度传感器故障,否则认为该温度传感器正常运行;
步骤2、如果三个冗余温度传感器都正常运行,则从三个冗余温度传感器中选取一个最大的温度值作为内冷水实时入阀温度,即实时入阀温度TνCW=MAX(B101、B102、B103),以B101表示第一冗余温度传感器的温度值,B102表示第二冗余温度传感器的温度值,B103表示第三冗余温度传感器的温度值,MAX(B101、B102、B103)则表示从第一至第三冗余温度传感器的温度值中选取最大的温度值;如果有一个或者两个温度传感器故障,就从剩下的正常运行温度传感器中选取一个最大的温度值作为内冷水实时入阀温度;如果三个温度传感器都故障,阀冷控制保护系统发跳闸命令,闭锁直流输电系统;
步骤3、读取直流输电系统该极的实际电流值IdH,计算出换流阀晶闸管的实时通态损耗PTH0=(1.32V+0.29mΩ×IdH)×IdH/3;
步骤4、利用步骤3计算出的换流阀晶闸管实时通态损耗PTH0以及晶闸管动态损耗PTH.dyn,所述晶闸管损耗PTH.dyn只与晶闸管的型号有关,因此在实际直流输电工程中,对于一个具体换流阀,其晶闸管损耗PTH.dyn是一个常数,计算出换流阀晶闸管的实际损耗:PTH.1=PTH0+PTH.dyn
步骤5、计算晶闸管结到散热器的接触热阻与散热器到进水间的接触热阻的和,得出总热阻RTH,对于一个特定的工程,晶闸管结到散热器的接触热阻以及散热器到进水间的接触热阻都是一个常数,其中,散热器到进水间的接触热阻主要与内冷水的水流速度有关;
步骤6、根据步骤2、4、5计算出的结果,利用公式计算出换流阀晶闸管的实际结温:TνJ=TνCW+PTH.1·RTH
步骤7、如果换流阀晶闸管的实际结温TvJ达到告警值,阀冷控制保护系统 延时报警;如果换流阀晶闸管的实际结温TvJ达到跳闸值,即结温限制值90℃,阀冷控制保护系统延时发跳闸命令,闭锁直流输电系统,完成了一个周期性工作,执行下一周期性工作时则回到步骤1。
进一步,换流阀所在的直流输电系统输送功率,与阀冷系统内冷水入阀温度的告警值和跳闸值成反相关关系。
进一步,直流输电系统过负荷运行时,自动降低内冷水入阀温度高保护定值,确保晶闸管结温不超过限制值90℃,可以同时避免损坏换流阀晶闸管,延长晶闸管使用寿命。
本发明的一种换流阀阀冷系统内冷水入阀温度高保护方法的有益效果是:
该方法可实时读取内冷水管道入阀处三个冗余温度传感器的温度值以及直流输电系统该极的直流电流,最终计算出换流阀晶闸管的实时结温,并与定值进行比较,延时后做出报警或者跳闸的选择;
该方法适用各种电压等级以及各种负荷工况下的直流输电工程换流阀冷却系统,同时也能提高阀冷系统运行裕度以及保护晶闸管的安全稳定运行,具有极大换流阀冷却系统工程的应用价值。
附图说明
图1为本发明的一种换流阀阀冷系统内冷水入阀温度高保护方法的流程框图。
具体实施方式
下面结合附图和实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。
实施例
本发明提供一种换流阀阀冷系统内冷水入阀温度高保护方法,在换流阀带电运行前,手动将换流阀冷却系统投入运行;待换流阀带电运行后,阀冷控制保护系统从极控装置中读取直流电流实时值,同时从三个内冷水入阀温度传感器中读取内冷水入阀实时温度值,如果三个温度传感器全部故障,阀冷控制保护系统发出跳闸命令,闭锁直流输电系统,否则选取一个最大的温度值作为内冷水入阀温 度实时值,根据内冷水入阀温度以及直流电流值,计算出换流阀晶闸管的实时结温,比较晶闸管结温值与结温限制值后,当晶闸管结温达到报警值则发报警信号,当晶闸管结温达到结温限制值时则发跳闸命令,闭锁直流输电系统。
参看图1,为本发明方法实施例的流程框图,具体的实现方法包括如下步骤:
步骤1、换流阀冷却系统投入运行后,阀冷控制保护系统读取内冷水管道入阀处三个冗余温度传感器的温度值,如果温度传感器采样回路电流值小于4mA或者大于20mA,则认为该温度传感器故障,否则认为该温度传感器正常运行;
步骤2、如果三个冗余温度传感器都正常运行,则从三个冗余温度传感器中选取一个最大的温度值作为内冷水实时入阀温度,即实时入阀温度TνCW=MAX(B101、B102、B103),以B101表示第一冗余温度传感器,B102表示第二冗余温度传感器,B103表示第三冗余温度传感器,MAX(B101、B102、B103)则表示从第一至第三冗余温度传感器的温度值中选取最大的温度值;如果有一个或者两个温度传感器故障,就从剩下的正常运行温度传感器中选取一个最大的温度值作为内冷水实时入阀温度;如果三个温度传感器都故障,阀冷控制保护系统发跳闸命令,闭锁直流输电系统;
步骤3、读取直流输电系统该极的实际电流值IdH,计算出换流阀晶闸管的实时通态损耗PTH0=(1.32V+0.29mΩ×IdH)×IdH/3;
步骤4、利用步骤3计算出的换流阀晶闸管实时通态损耗PTH0以及晶闸管动态损耗PTH.dyn,所述晶闸管损耗PTH.dyn只与晶闸管的型号有关,因此在实际直流输电工程中,对于一个具体换流阀,其晶闸管损耗PTH.dyn是一个常数,计算出换流阀晶闸管的实际损耗:PTH.1=PTH0+PTH.dyn
步骤5、计算晶闸管结到散热器的接触热阻与散热器到进水间的接触热阻的和,得出总热阻RTH,对于一个特定的工程,晶闸管结到散热器的接触热阻以及散热器到进水间的接触热阻都是一个常数,其中,散热器到进水间的接触热阻主要与内冷水的水流速度有关;
步骤6、根据步骤2、4、5计算出的结果,利用公式计算出换流阀晶闸管的实际结温:TνJ=TνCW+PTH.1·RTH
步骤7、如果换流阀晶闸管的实际结温TvJ达到告警值,阀冷控制保护系统延时报警;如果换流阀晶闸管的实际结温TvJ达到跳闸值,即结温限制值90℃,阀冷控制保护系统延时发跳闸命令,闭锁直流输电系统,完成了一个周期性工作,执行下一个周期性工作则进入步骤1。
作为一个实施例,换流阀所在的直流输电系统输送功率,与阀冷系统内冷水入阀温度的告警值和跳闸值成反相关关系,随着直流输电系统输送功率不同,阀冷系统内冷水入阀温度的告警值和跳闸值都不一样,输送功率越低入阀温度告警值和跳闸值就越高。
作为一个实施例,直流输电系统过负荷运行时,自动降低内冷水入阀温度高保护定值,确保晶闸管结温不超过限制值90℃,可以同时避免损坏换流阀晶闸管,延长晶闸管使用寿命。
上述实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或者等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

  1. 一种换流阀阀冷系统内冷水入阀温度高保护方法,其特征在于,
    所述阀冷系统包括阀冷控制保护系统,阀冷控制保护系统从极控设备引入直流输电系统实时直流电流,并与内冷水管道内设的三个冗余温度传感器信号连接,所述阀冷控制保护系统用以发出报警信号、发出跳闸指令闭锁直流输电系统;
    所述保护方法包括:
    步骤1、换流阀冷却系统投入运行后,阀冷控制保护系统读取内冷水管道入阀处三个冗余温度传感器的温度值,如果温度传感器采样回路电流值小于4mA或者大于20mA,则认为该温度传感器故障,否则认为该温度传感器正常运行;
    步骤2、如果三个冗余温度传感器都正常运行,则从三个冗余温度传感器中选取一个最大的温度值作为内冷水实时入阀温度TνCW;如果有一个或者两个温度传感器故障,就从剩下的正常运行温度传感器中选取一个最大的温度值作为内冷水实时入阀温度;如果三个温度传感器都故障,阀冷控制保护系统发跳闸命令,闭锁直流输电系统;
    步骤3、读取直流输电系统该极的实际电流值IdH,计算出换流阀晶闸管的实时通态损耗PTH0=(1.32V+0.29mΩ×IdH)×IdH/3;
    步骤4、利用步骤3计算出的换流阀晶闸管实时通态损耗PTH0以及晶闸管动态损耗PTH.dyn,计算出换流阀晶闸管的实际损耗PTH.1=PTH0+PTH.dyn
    步骤5、计算晶闸管结到散热器的接触热阻与散热器到进水间的接触热阻的和,得出总热阻RTH,对于一个特定的工程,晶闸管结到散热器的接触热阻以及散热器到进水间的接触热阻都是一个常数,其中,散热器到进水间的接触热阻主要与内冷水的水流速度有关;
    步骤6、根据步骤2、4、5计算出的结果,利用公式计算出换流阀晶闸管的实际结温TνJ=TνCW+PTH.1·RTH
    步骤7、如果换流阀晶闸管的实际结温TvJ达到告警值,阀冷控制保护系统延时报警;如果换流阀晶闸管的实际结温TvJ达到跳闸值,即结温限制值90℃, 阀冷控制保护系统延时发跳闸命令,闭锁直流输电系统,完成了一个周期性工作,执行下一周期性工作时则回到步骤1。
  2. 根据权利要求1所述的换流阀阀冷系统内冷水入阀温度高保护方法,其特征在于,换流阀所在的直流输电系统输送功率,与阀冷系统内冷水入阀温度的告警值和跳闸值成反相关关系。
  3. 根据权利要求2所述的换流阀阀冷系统内冷水入阀温度高保护方法,其特征在于,直流输电系统过负荷运行时,自动降低内冷水入阀温度高保护定值,确保晶闸管结温不超过限制值90℃。
PCT/CN2016/111521 2016-08-12 2016-12-22 一种换流阀阀冷系统内冷水入阀温度高保护方法 WO2018028114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610662733.0 2016-08-12
CN201610662733.0A CN106253220B (zh) 2016-08-12 2016-08-12 一种换流阀阀冷系统内冷水入阀温度高保护方法

Publications (1)

Publication Number Publication Date
WO2018028114A1 true WO2018028114A1 (zh) 2018-02-15

Family

ID=57591974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111521 WO2018028114A1 (zh) 2016-08-12 2016-12-22 一种换流阀阀冷系统内冷水入阀温度高保护方法

Country Status (2)

Country Link
CN (1) CN106253220B (zh)
WO (1) WO2018028114A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521213A (zh) * 2018-03-27 2018-09-11 特变电工新疆新能源股份有限公司 一种换流阀冷却系统及冷却方法
CN108955910A (zh) * 2018-06-06 2018-12-07 无锡应达工业有限公司 一种带报警显示功能的温控传感器组件
CN112164209A (zh) * 2020-08-20 2021-01-01 中国南方电网有限责任公司超高压输电公司广州局 一种换流站换流阀元件温度预测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253220B (zh) * 2016-08-12 2017-11-07 中国南方电网有限责任公司超高压输电公司检修试验中心 一种换流阀阀冷系统内冷水入阀温度高保护方法
CN109546643B (zh) * 2018-10-24 2020-10-02 中国南方电网有限责任公司超高压输电公司广州局 一种基于换流站阀冷系统冷却能力的直流负荷限制保护方法
CN113514166A (zh) * 2021-03-03 2021-10-19 中国南方电网有限责任公司超高压输电公司天生桥局 一种hvdc换流阀晶闸管温度监测方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185116B1 (en) * 1997-06-11 2001-02-06 Abb Ab HVDC power transmission system with cooling and switching device temperature detection
US20090303761A1 (en) * 2006-01-23 2009-12-10 Abb Technology Converter station and a method for control thereof
CN101634866A (zh) * 2009-02-10 2010-01-27 广州市高澜水技术有限公司 一种高压直流输电换流阀纯水冷却装置控制系统
CN102566623A (zh) * 2012-01-04 2012-07-11 广州高澜节能技术股份有限公司 直流输电换流阀纯水冷却装置控制系统
CN202712816U (zh) * 2012-08-17 2013-01-30 中国南方电网有限责任公司超高压输电公司 一种换流站阀冷系统控制系统
CN106253220A (zh) * 2016-08-12 2016-12-21 中国南方电网有限责任公司超高压输电公司检修试验中心 一种换流阀阀冷系统内冷水入阀温度高保护方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185116B1 (en) * 1997-06-11 2001-02-06 Abb Ab HVDC power transmission system with cooling and switching device temperature detection
US20090303761A1 (en) * 2006-01-23 2009-12-10 Abb Technology Converter station and a method for control thereof
CN101634866A (zh) * 2009-02-10 2010-01-27 广州市高澜水技术有限公司 一种高压直流输电换流阀纯水冷却装置控制系统
CN102566623A (zh) * 2012-01-04 2012-07-11 广州高澜节能技术股份有限公司 直流输电换流阀纯水冷却装置控制系统
CN202712816U (zh) * 2012-08-17 2013-01-30 中国南方电网有限责任公司超高压输电公司 一种换流站阀冷系统控制系统
CN106253220A (zh) * 2016-08-12 2016-12-21 中国南方电网有限责任公司超高压输电公司检修试验中心 一种换流阀阀冷系统内冷水入阀温度高保护方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521213A (zh) * 2018-03-27 2018-09-11 特变电工新疆新能源股份有限公司 一种换流阀冷却系统及冷却方法
CN108955910A (zh) * 2018-06-06 2018-12-07 无锡应达工业有限公司 一种带报警显示功能的温控传感器组件
CN112164209A (zh) * 2020-08-20 2021-01-01 中国南方电网有限责任公司超高压输电公司广州局 一种换流站换流阀元件温度预测方法及系统
CN112164209B (zh) * 2020-08-20 2021-10-08 中国南方电网有限责任公司超高压输电公司广州局 一种换流站换流阀元件温度预测方法及系统

Also Published As

Publication number Publication date
CN106253220A (zh) 2016-12-21
CN106253220B (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2018028114A1 (zh) 一种换流阀阀冷系统内冷水入阀温度高保护方法
US6215682B1 (en) Semiconductor power converter and its applied apparatus
CN107590295B (zh) 用于功率模块的散热系统状况评估的方法及装置
CN101326696B (zh) 换流站及其控制方法
JP2007157700A (ja) 超電導体を利用する電力回路保護装置
CN112130063B (zh) 混合式高压直流断路器机械开关偷跳的检测与保护方法
CN203604230U (zh) 一种风扇控制电路
US20220307947A1 (en) Detection apparatus and server
WO2019181040A1 (ja) 電力変換装置
DK179119B1 (en) Variable frequency drive operation to avoid overheating
CN110768210B (zh) 变压器保护的电流突变量启动方法与变压器保护装置
JP2007274744A (ja) 超電導限流器、超電導限流システム、及び超電導限流制御方法
CN111413116B (zh) 电机控制器冷却故障检测系统及其方法
CN109548369A (zh) 一种基于半导体制冷的高频开关电源模块
WO2019237221A1 (zh) 固体断路器、用于固体断路器的断路方法
JP3619522B2 (ja) 変電所冷却システム
CN109285678A (zh) 一种变压器冷却器油泵故障识别方法
CN209627960U (zh) 一种基于半导体制冷的高频开关电源模块
CN110365193B (zh) 地铁再生制动能馈装置功率模块的散热系统及控制方法
CN113985938B (zh) 一种变压器的温度控制方法及温度控制系统
JP6619393B2 (ja) 電力変換装置
CN207530608U (zh) 强迫油循环风冷变压器冷却器强投的装置
CN109346281A (zh) 一种变压器冷却器水流、油流故障识别方法
JP7404171B2 (ja) 直流電流遮断装置
JPH0525190U (ja) 電気機器の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912568

Country of ref document: EP

Kind code of ref document: A1