WO2018027451A1 - 一种飞行定位的方法及装置 - Google Patents

一种飞行定位的方法及装置 Download PDF

Info

Publication number
WO2018027451A1
WO2018027451A1 PCT/CN2016/093898 CN2016093898W WO2018027451A1 WO 2018027451 A1 WO2018027451 A1 WO 2018027451A1 CN 2016093898 W CN2016093898 W CN 2016093898W WO 2018027451 A1 WO2018027451 A1 WO 2018027451A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset mark
dimensional coordinate
aircraft
target area
coordinate information
Prior art date
Application number
PCT/CN2016/093898
Other languages
English (en)
French (fr)
Inventor
李佐广
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to PCT/CN2016/093898 priority Critical patent/WO2018027451A1/zh
Priority to CN201680011495.5A priority patent/CN107438863B/zh
Publication of WO2018027451A1 publication Critical patent/WO2018027451A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image

Definitions

  • Embodiments of the present invention relate to the field of aircraft positioning technologies, and in particular, to a method and apparatus for flight positioning of an aircraft.
  • the aircraft uses GPS for positioning, which can achieve relatively accurate formation flying outdoors. Because the GPS signal is not easy to penetrate metal and concrete, it will be strongly shielded indoors, which makes it impossible for the aircraft to use the GPS for formation flying indoors. In the prior art, indoor positioning is usually performed using technologies such as Bluetooth and Wifi.
  • the technical problem to be solved by the present invention is to provide a method and device for flight positioning, which can identify a preset mark in a target area image, determine a two-dimensional coordinate of the aircraft according to the two-dimensional coordinate information of the preset mark, and pass the distance sensor or According to the pixel width of the preset mark and the correspondence between the pixel width and the flying height, the three-dimensional coordinates of the aircraft are determined, and the precise flight positioning of the aircraft is realized.
  • an embodiment of the present invention provides a method for flight positioning, the method being performed by an aircraft, the method comprising:
  • Identifying a preset mark in the image of the target area wherein the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify two-dimensional coordinates of the preset mark;
  • the flying height of the aircraft is determined by a distance sensor or according to a pixel width of the preset mark and a correspondence between a pixel width of the preset mark and a flying height.
  • determining the two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information including:
  • the preset mark is a preset mark that is closest to the image center of the target area.
  • determining the two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information including:
  • the preset mark is a two-dimensional code.
  • an embodiment of the present invention provides a device for flight positioning, wherein the device includes:
  • An acquisition module configured to acquire an image of a target area
  • a recognition module configured to identify a preset mark in the image of the target area, where the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify two-dimensional coordinates of the preset mark;
  • a two-dimensional coordinate positioning module configured to determine two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information
  • a flying height positioning module configured to determine a flying height of the aircraft by a distance sensor or according to a pixel width of the preset mark and a correspondence between the pixel width and a flying height.
  • the two-dimensional coordinate positioning module includes:
  • An actual offset determining unit configured to: according to an offset pixel width between a center of the preset mark and a center of the target area image, and a pixel width of the preset mark and an actual width of the preset mark a value that determines an actual offset corresponding to the offset pixel width;
  • a two-dimensional coordinate determining unit configured to determine two-dimensional coordinates of the aircraft according to the actual offset and the two-dimensional coordinate information.
  • the preset mark is a preset mark that is closest to the image center of the target area.
  • the two-dimensional coordinate positioning module is configured to: if the two-dimensional coordinate information of the preset mark closest to the image center of the target area is not recognized, according to the second closest to the image center of the target area The two-dimensional coordinate information of the preset mark determines the two-dimensional coordinates of the aircraft.
  • the preset mark is a two-dimensional code.
  • a method and device for flight positioning by acquiring an image of a target area, identifying a preset mark of the image of the target area, wherein the preset mark identifies two-dimensional coordinate information, and determining the aircraft according to the two-dimensional coordinate information
  • the two-dimensional coordinates are determined by the distance sensor or the pixel width according to the preset mark and the corresponding relationship between the pixel width of the preset mark and the flying height, thereby determining the flying height of the aircraft, thereby determining the three-dimensional coordinates of the aircraft, and realizing accurate flight positioning of the aircraft.
  • FIG. 1 is a schematic diagram of a method for flight positioning according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of a marking area in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an image of a target area in an embodiment of the present invention.
  • FIG. 4 is a table showing a correspondence relationship between a pixel width of a preset mark and a flying height according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a device for flight positioning according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of the two-dimensional coordinate positioning module shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of hardware of an aircraft for performing a method for performing flight positioning according to an embodiment of the present invention.
  • a plurality of aircrafts perform a formation flight show, each aircraft is equipped with a pan/tilt and a camera disposed on the pan/tilt, and the camera is stabilized by the pan/tilt, and the camera is adjusted to shoot at a vertically downward angle.
  • the image of the target area is obtained, and finally the precise positioning of the two-dimensional coordinates of the aircraft is realized.
  • FIG. 1 is a schematic diagram of a method for flight positioning according to an embodiment of the present invention, which is performed by an aircraft. As shown in Figure 1, the method includes the following:
  • Step 11 Acquire an image of the target area.
  • FIG. 2 is a schematic plan view of a marking area 200 according to an embodiment of the present invention.
  • the marking area 200 is located in a two-dimensional coordinate system XY, and the marking area 200 includes preset marks 201 arranged in a plurality of rows and columns.
  • the preset mark 201 may be a pattern formed by laying, spraying, or printing.
  • the carrier of the preset mark 201 includes, but is not limited to, a thin material such as polyethylene PE, PVC, etc., for example, the carrier of the preset mark 201 may also be a ground.
  • the target area image 220 corresponding to the target area 210 is acquired according to the target area 210 within the camera mark mark area 200 on the aircraft.
  • the target area image 220 acquired by camera shooting with a certain focal length is scaled by a predetermined ratio with respect to the target area 210.
  • Step 12 Identify a preset mark in the image of the target area, wherein the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify the two-dimensional coordinate of the preset mark.
  • the preset mark 201 is marked with two-dimensional coordinate information, and the two-dimensional coordinate information of the preset mark 201 refers to the two-dimensional coordinates of the preset mark 201 in the two-dimensional coordinate system XY.
  • the preset mark 201 may be a two-dimensional code that identifies two-dimensional coordinate information, such as a matrix two-dimensional code, a stacked two-dimensional code, a row-type two-dimensional code, or the like, or may be other that identifies two-dimensional coordinate information.
  • a matrix two-dimensional code such as a matrix two-dimensional code, a stacked two-dimensional code, a row-type two-dimensional code, or the like
  • Formal graphics may be a two-dimensional code that identifies two-dimensional coordinate information.
  • Step 13 Determine two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information.
  • the offset pixel width corresponding to the offset pixel width is determined according to the offset pixel width between the center of the preset mark and the center of the target area image and the pixel width of the preset mark and the actual width value of the preset mark.
  • the actual offset; and then the two-dimensional coordinates of the aircraft are determined based on the actual offset and the two-dimensional coordinate information.
  • FIG. 3 is a schematic diagram of a target area image 220, The preset mark 221 in the target area image 220 is described as an example, wherein the preset mark 221 in the target area image 220 corresponds to the preset mark 201 in the target area 210.
  • the offset pixel width between the center of the preset mark 221 and the center of the target area image 220 is M, and the pixel width of the preset mark 221 is N.
  • the actual width value of the preset mark 221 is A.
  • the actual width value of the preset mark 221 is equal to the width value of the preset mark 201 in the two-dimensional coordinate system XY shown in FIG.
  • the offset pixel width and the pixel width of the preset mark 221 are all detected from the target area image 220.
  • N/A is equal to a predetermined ratio of the target area image 220 with respect to the target area 210, and therefore, under the condition that it is determined that the offset pixel width between the center of the preset mark 221 and the center of the target area image 220 is M, It can be determined that in the above two-dimensional coordinate system XY, the actual offset between the center of the preset mark 201 with respect to the center of the target area 210 is M/(N/A).
  • the two-dimensional coordinates of the preset mark 201 corresponding to the preset mark 221 in the two-dimensional coordinate system XY are (x, y), and further according to the offset angle of the center of the target area image 220 with respect to the center of the preset mark 221
  • the two-dimensional coordinates of the center of the target area image 220 in the two-dimensional coordinate system XY can be determined, so that the two-dimensional coordinates of the center of the target area image 220 are used as two-dimensional coordinates of the aircraft, so that the aircraft can be accurately positioned.
  • the preset mark is a preset mark that is closest to the center of the target area image 220.
  • the two-dimensional coordinates of the aircraft are determined based on the preset mark closest to the center of the target area image 220. That is, the two-dimensional coordinates of the preset mark closest to the center of the target area image 220 are taken as the two-dimensional coordinates of the aircraft, so that the two-dimensional coordinates of the aircraft can be roughly positioned.
  • the two-dimensional coordinate information of the preset mark closest to the center of the target area image 220 cannot be recognized, the two-dimensionality of the aircraft is determined according to the second closest preset mark from the center of the target area image 220.
  • the coordinates, that is, the two-dimensional coordinates of the preset mark that is second closest to the center of the target area image 220 are taken as the two-dimensional coordinates of the aircraft, avoiding the inability to recognize the preset mark closest to the center of the target area image 220 due to wear or occlusion. .
  • Step 14 Determine the flying height of the aircraft by the distance sensor or according to the pixel width of the preset mark and the corresponding relationship between the pixel width of the preset mark and the flying height.
  • the flying height of the aircraft can be determined by the distance sensor on the one hand. For example, it is measured by an ultrasonic sensor or a laser ranging sensor to determine the flying height of the aircraft.
  • the flying height of the aircraft can be determined according to the pixel width of the preset mark 221 in the target area image 220 and the correspondence between the pixel width of the preset mark 221 and the flying height.
  • the flying height of the aircraft and the pixel width of the preset mark 221 at the flying height are stored in a correspondence table as shown in FIG. 4, and the preset mark is determined from the target area image 220. After the pixel width of 221, the above-mentioned correspondence table is matched to determine the flying height of the aircraft.
  • steps 13 and 14 can be reversed.
  • the two-dimensional coordinates of the aircraft are first determined according to the two-dimensional coordinate information, and then the flying height of the aircraft is determined by the distance sensor or according to the pixel width of the preset mark and the corresponding relationship between the pixel width of the preset mark and the flying height.
  • the flying height of the aircraft is first determined by the distance sensor or the pixel width according to the preset mark and the pixel width of the preset mark and the flying height, and then the two-dimensional coordinates of the aircraft are determined according to the two-dimensional coordinate information. .
  • a method for flight positioning obtains a preset mark of a target area image by acquiring an image of a target area, wherein the preset mark identifies two-dimensional coordinate information, and determines two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information. Coordinates, by the distance sensor or according to the pixel width of the preset mark and the corresponding relationship between the pixel width of the preset mark and the flying height, determine the flying height of the aircraft, thereby determining the three-dimensional coordinates of the aircraft, and achieving accurate flight positioning of the aircraft.
  • FIG. 5 is a schematic diagram of a device for flight positioning according to another embodiment of the present invention. As shown in FIG. 5, the device includes an acquisition module 51, an identification module 52, a two-dimensional coordinate positioning module 53, and a flight height positioning module 54.
  • the obtaining module 51 is configured to acquire an image of a target area
  • the identification module 52 is configured to identify a preset mark in the image of the target area, wherein the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify two-dimensional coordinates of the preset mark;
  • the two-dimensional coordinate positioning module 53 is configured to determine two-dimensional coordinates of the aircraft according to the two-dimensional coordinate information
  • the flying height positioning module 54 is configured to determine the flying height of the aircraft by the distance sensor or according to the pixel width of the preset mark and the correspondence between the pixel width and the flying height.
  • the obtaining module 51 acquires an image of a target area, and then identifies the module. 52 identifying a preset mark in the image of the target area, in order to calculate the two-dimensional coordinates of the aircraft, the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify the two-dimensional coordinates of the preset mark, and finally, on the other hand, two The dimensional coordinate positioning module 53 determines the two-dimensional coordinates of the aircraft based on the two-dimensional coordinate information.
  • the flying height positioning module 54 determines the aircraft by the distance sensor or according to the pixel width of the preset mark and the correspondence between the pixel width and the flying height. The flying height is used to determine the three-dimensional coordinates of the aircraft to achieve accurate flight positioning of the aircraft.
  • the acquisition module 51 may be an imaging device such as a camera.
  • the identification module 52, the two-dimensional coordinate positioning module 53, and the fly height positioning module 54 may be processors.
  • FIG. 6 is a schematic structural view of the two-dimensional coordinate positioning module 53 shown in FIG. 5.
  • the two-dimensional coordinate positioning module 53 includes an actual offset amount determining unit 531 and a two-dimensional coordinate determining unit 532.
  • the actual offset determining unit 531 is configured to: according to an offset pixel width between a center of the preset mark and a center of the target area image, and a pixel width of the preset mark and an actual width of the preset mark a value that determines an actual offset corresponding to the offset pixel width.
  • the two-dimensional coordinate determining unit 532 is configured to determine the two-dimensional coordinates of the aircraft according to the actual offset and the two-dimensional coordinate information.
  • the actual offset determining unit 531 and the two-dimensional coordinate determining unit 532 may be different processors or the same processor.
  • FIG. 7 is a schematic structural diagram of hardware of an aircraft for performing a method for performing flight positioning according to an embodiment of the present invention.
  • the aircraft includes: one or more processors 710 and a memory 720.
  • one processor 710 is taken as an example, the processor 710 is connected to the memory 720, and the memory 720 is stored by the processor 710.
  • the executed instruction, the instruction is configured to execute:
  • Identifying a preset mark in the image of the target area wherein the preset mark identifies two-dimensional coordinate information, and the two-dimensional coordinate information is used to identify two-dimensional coordinates of the preset mark;
  • the correspondence between the flying heights determines the flying height of the aircraft.
  • the memory 720 can be used to store a non-volatile software program, a non-volatile computer-executable program, and a module, such as a device for performing flight positioning in an embodiment of the present invention.
  • Program instructions/modules eg, acquisition module 51, identification module 52, two-dimensional coordinate positioning module 53, and fly height positioning module 54 shown in FIG. 5.
  • the processor 710 executes various functional applications of the server and data processing by running non-volatile software programs and instructions stored in the memory 720, that is, a method for implementing flight positioning of the above method embodiments.
  • the memory 720 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the device performing the flight positioning, and the like.
  • memory 720 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 720 can optionally include memory remotely located relative to processor 710 that can be connected to the aircraft flight location device via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 720, and when executed by the one or more processors 710, perform the method of flight location in any of the method embodiments described above.
  • the above-mentioned aircraft can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method provided by the embodiments of the present invention can perform the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the computer software can be stored in a computer readable storage medium, which, when executed, can include the flow of an embodiment of the methods described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

飞行定位的方法及装置,其中,所述飞行定位的方法包括:获取目标区域图像(11);识别目标区域图像中的预设标记,其中预设标记标识有二维坐标信息,二维坐标信息用于标识预设标记的二维坐标(12);根据二维坐标信息,确定飞行器的二维坐标(13);通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度(14)。通过飞行定位的方法确定飞行器的三维坐标,实现飞行器的精确飞行定位。

Description

一种飞行定位的方法及装置 技术领域
本发明实施例涉及飞行器定位技术领域,特别是涉及一种飞行器的飞行定位的方法及装置。
背景技术
目前,飞行器利用GPS进行定位,能够在室外实现比较精确的编队飞行,由于GPS信号不易穿透金属和混泥土,在室内会受到较强的遮蔽作用,造成飞行器无法在室内利用GPS进行编队飞行。现有技术中,通常利用Bluetooth、Wifi等技术进行室内定位。
发明人在实现本发明实施例的过程中发现:现有技术中,利用Bluetooth、Wifi等技术,室内定位精度不高。
发明内容
本发明主要解决的技术问题是提供一种飞行定位的方法及装置,能够识别目标区域图像中的预设标记,根据预设标记的二维坐标信息,确定飞行器的二维坐标;通过距离传感器或者根据预设标记的像素宽度以及像素宽度与飞行高度之间的对应关系,从而确定飞行器的三维坐标,实现飞行器的精确飞行定位。
在第一方面,本发明实施例提供一种飞行定位的方法,所述方法由飞行器执行,所述方法包括:
获取目标区域图像;
识别所述目标区域图像中的预设标记,其中所述预设标记标识有二维坐标信息,所述二维坐标信息用于标识所述预设标记的二维坐标;
根据所述二维坐标信息,确定所述飞行器的二维坐标;
通过距离传感器或者根据所述预设标记的像素宽度以及所述预设标记的像素宽度与飞行高度之间的对应关系,确定所述飞行器的飞行高度。
可选地,根据所述二维坐标信息,确定所述飞行器的二维坐标,包括:
根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量;
根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
可选地,所述预设标记为距离所述目标区域图像中心最近的预设标记。
可选地,根据所述二维坐标信息,确定所述飞行器的二维坐标,包括:
若无法识别距离所述目标区域图像中心最近的预设标记的二维坐标信息,则根据距离所述目标区域图像中心第二近的预设标记的二维坐标信息,确定所述飞行器的二维坐标。
可选地,所述预设标记为二维码。
在第一方面,本发明实施例提供一种飞行定位的装置,其特征在于,所述装置包括:
获取模块,用于获取目标区域图像;
识别模块,用于识别所述目标区域图像中的预设标记,其中所述预设标记标识有二维坐标信息,所述二维坐标信息用于标识所述预设标记的二维坐标;
二维坐标定位模块,用于根据所述二维坐标信息,确定所述飞行器的二维坐标;
飞行高度定位模块,用于通过距离传感器或者根据所述预设标记的像素宽度以及所述像素宽度与飞行高度之间的对应关系,确定所述飞行器的飞行高度。
可选地,所述二维坐标定位模块包括:
实际偏移量确定单元,用于根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量;
二维坐标确定单元,用于根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
可选地,所述预设标记为距离所述目标区域图像中心最近的预设标记。
可选地,所述二维坐标定位模块用于若无法识别距离所述目标区域图像中心最近的预设标记的二维坐标信息,则根据距离所述目标区域图像中心第二近 的预设标记的二维坐标信息,确定所述飞行器的二维坐标。
可选地,所述预设标记为二维码。
本发明实施例提供的一种飞行定位的方法及装置,通过获取目标区域图像,识别目标区域图像的预设标记,其中预设标记标识有二维坐标信息,根据二维坐标信息,确定飞行器的二维坐标,通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度,从而确定飞行器的三维坐标,实现飞行器的精确飞行定位。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种飞行定位的方法;
图2为本发明实施例中标记区域的平面示意图;
图3为本发明实施例中目标区域图像的示意图;
图4为本发明实施例中预设标记的像素宽度与飞行高度之间的对应关系表;
图5为本发明又一实施例提供的一种飞行定位的装置的结构示意图;
图6为图5所示二维坐标定位模块的结构示意图;
图7为本发明实施例提供的执行飞行定位的方法的飞行器的硬件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明实施例中,多个飞行器进行编队飞行表演,每个飞行器安装有云台以及设于云台上的相机,通过云台对相机进行增稳,调节相机以垂直向下的角度拍摄而获取目标区域图像,最终实现对飞行器二维坐标的精确定位。
下面结合具体附图对本发明实施例作具体阐述。
图1为本发明实施例提供的一种飞行定位的方法,该方法由飞行器执行。如图1所示,该方法包括以下:
步骤11、获取目标区域图像。
在本发明实施例中,图2为本发明实施例中标记区域200的平面示意图。标记区域200位于二维坐标系XY中,标记区域200包含有呈多行多列排布的预设标记201。在实际应用中,预设标记201可以是采用铺设、喷涂或者印刷等方式形成的图案。预设标记201的载体包括但不限于聚乙烯PE、PVC等薄材,比如,预设标记201的载体也可以为地面。
根据飞行器上的相机拍摄标记区域200内的目标区域210,获取与目标区域210对应的目标区域图像220。
通过具有一定焦距的相机拍摄而获取的目标区域图像220相对于目标区域210缩放了预定比例。
步骤12、识别目标区域图像中的预设标记,其中预设标记标识有二维坐标信息,二维坐标信息用于标识预设标记的二维坐标。
在本发明实施例中,预设标记201标识有二维坐标信息,预设标记201的二维坐标信息是指在上述二维坐标系XY中预设标记201的二维坐标。
预设标记201可以是标识有二维坐标信息的二维码,例如,矩阵式二维码、堆叠式二维码、行排式二维码等,也可以是标识有二维坐标信息的其他形式的图形。
步骤13、根据二维坐标信息,确定飞行器的二维坐标。
在本发明一实施例中,根据预设标记的中心与目标区域图像的中心之间的偏移像素宽度以及预设标记的像素宽度与预设标记的实际宽度值,确定与偏移像素宽度对应的实际偏移量;进而根据实际偏移量以及二维坐标信息,确定飞行器的二维坐标。例如,如图3所示,图3为目标区域图像220的示意图,以 目标区域图像220中的预设标记221为例进行说明,其中,目标区域图像220中的预设标记221对应目标区域210中的预设标记201。
例如,预设标记221的中心与目标区域图像220的中心之间的偏移像素宽度是M,预设标记221的像素宽度是N。预设标记221的实际宽度值是A,具体的,预设标记221的实际宽度值等于图1所示的二维坐标系XY中预设标记201的宽度值。上述偏移像素宽度、预设标记221的像素宽度均是从目标区域图像220中检测得到。
N/A即等于目标区域图像220相对于目标区域210缩放的预定比例,因此,在确定预设标记221的中心与目标区域图像220的中心之间的偏移像素宽度是M的条件下,即可确定在上述二维坐标系XY中,预设标记201的中心相对于目标区域210的中心之间的实际偏移量是M/(N/A)。
比如,预设标记221对应的预设标记201在二维坐标系XY中的二维坐标是(x,y),进一步根据目标区域图像220的中心相对于预设标记221的中心的偏移角度,即可确定在二维坐标系XY中,目标区域图像220的中心的二维坐标,从而将目标区域图像220的中心的二维坐标作为飞行器的二维坐标,从而可以精确地定位飞行器的二维坐标。
在本发明另一实施例中,预设标记为距离目标区域图像220中心最近的预设标记。根据距离目标区域图像220的中心最近的预设标记,确定飞行器的二维坐标。也就是说,将距离目标区域图像220的中心最近的预设标记的二维坐标作为飞行器的二维坐标,从而可以粗略地定位飞行器的二维坐标。在实际应用中,若无法识别距离目标区域图像220的中心最近的预设标记的二维坐标信息,则根据距离目标区域图像220的中心第二近的预设标记,确定所述飞行器的二维坐标,即将距离目标区域图像220的中心第二近的预设标记的二维坐标作为飞行器的二维坐标,避免因磨损或遮挡,而导致无法识别距离目标区域图像220的中心最近的预设标记。
步骤14、通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度。
在本发明实施例中,一方面可以通过距离传感器确定飞行器的飞行高度, 例如,通过超声波传感器或者激光测距传感器测量,从而确定飞行器的飞行高度。另一方面可以根据目标区域图像220中预设标记221的像素宽度以及预设标记221的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度。
例如,在飞行器实际飞行测试中,将飞行器的飞行高度以及处于该飞行高度下预设标记221的像素宽度存储在如图4所示的对应关系表中,从目标区域图像220中确定预设标记221的像素宽度之后,匹配上述对应关系表,即可确定飞行器的飞行高度。
需要说明的是,步骤13与步骤14的执行顺序可以调换。例如,先根据二维坐标信息,确定飞行器的二维坐标,然后通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度。又如,先通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度,然后根据二维坐标信息,确定飞行器的二维坐标。
本发明实施例提供的一种飞行定位的方法,通过获取目标区域图像,识别目标区域图像的预设标记,其中预设标记标识有二维坐标信息,根据二维坐标信息,确定飞行器的二维坐标,通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度,从而确定飞行器的三维坐标,实现飞行器的精确飞行定位。
图5为本发明又一实施例提供的一种飞行定位的装置。如图5所示,该装置包括:获取模块51、识别模块52、二维坐标定位模块53、飞行高度定位模块54。
获取模块51用于获取目标区域图像;
识别模块52用于识别目标区域图像中的预设标记,其中预设标记标识有二维坐标信息,二维坐标信息用于标识预设标记的二维坐标;
二维坐标定位模块53用于根据二维坐标信息,确定飞行器的二维坐标;
飞行高度定位模块54用于通过距离传感器或者根据预设标记的像素宽度以及像素宽度与飞行高度之间的对应关系,确定飞行器的飞行高度。
在本发明实施例中,首先,获取模块51获取目标区域图像,继而识别模块 52识别目标区域图像中的预设标记,为了计算得到飞行器的二维坐标,预设标记标识有二维坐标信息,二维坐标信息用于标识预设标记的二维坐标,最后,一方面二维坐标定位模块53根据二维坐标信息确定飞行器的二维坐标,另一方面飞行高度定位模块54通过距离传感器或者根据预设标记的像素宽度以及像素宽度与飞行高度之间的对应关系确定飞行器的飞行高度,从而确定飞行器的三维坐标,实现飞行器的精确飞行定位。
在实际应用中,获取模块51可以是相机等摄像设备。识别模块52、二维坐标定位模块53以及飞行高度定位模块54可以是处理器。
图6为图5中所示二维坐标定位模块53的结构示意图。二维坐标定位模块53包括:实际偏移量确定单元531以及二维坐标确定单元532。
实际偏移量确定单元531用于根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量。
二维坐标确定单元532用于根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
在实际应用中,实际偏移量确定单元531和二维坐标确定单元532可以分别是不同的处理器,也可以是同一个处理器。
需要说明的是,由于飞行定位的方法与飞行定位的装置是基于相同的发明构思,方法实施例与装置实施例中的相应技术内容可相互适用,此处不再详述。
图7为本发明实施例提供的执行飞行定位的方法的飞行器的硬件结构示意图。如图7所示,所述飞行器包括:一个或多个处理器710以及存储器720,图7中以一个处理器710为例,处理器710与存储器720相连,存储器720存储有可被处理器710执行的指令,指令被配置为执行:
获取目标区域图像;
识别目标区域图像中的预设标记,其中预设标记标识有二维坐标信息,二维坐标信息用于标识预设标记的二维坐标;
根据二维坐标信息,确定飞行器的二维坐标;
通过距离传感器或者根据预设标记的像素宽度以及预设标记的像素宽度与 飞行高度之间的对应关系,确定飞行器的飞行高度。
本发明又一实施例提供的执行飞行定位的方法的飞行器,根据二维坐标信息,确定飞行器的二维坐标指令具体被配置为执行:
根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量;
根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
本发明又一实施例提供的执行飞行定位的方法的飞行器,根据二维坐标信息,确定飞行器的二维坐标指令具体被配置为执行:
若无法识别距离所述目标区域图像中心最近的预设标记的二维坐标信息,则根据距离所述目标区域图像中心第二近的预设标记的二维坐标信息,确定所述飞行器的二维坐标。
存储器720作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的执行飞行定位的装置对应的程序指令/模块(例如,附图5所示的获取模块51、识别模块52、二维坐标定位模块53以及飞行高度定位模块54)。处理器710通过运行存储在存储器720中的非易失性软件程序、指令,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例飞行定位的方法。
存储器720可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据执行飞行定位的装置的使用所创建的数据等。此外,存储器720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器720可选包括相对于处理器710远程设置的存储器,这些远程存储器可以通过网络连接至执行飞行器飞行定位装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器720中,当被所述一个或者多个处理器710执行时,执行上述任意方法实施例中飞行定位的方法。
上述飞行器可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所述仅为本发明的可选实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种飞行定位的方法,其特征在于,所述方法由飞行器执行,所述方法包括:
    获取目标区域图像;
    识别所述目标区域图像中的预设标记,其中所述预设标记标识有二维坐标信息,所述二维坐标信息用于标识所述预设标记的二维坐标;
    根据所述二维坐标信息,确定所述飞行器的二维坐标;
    通过距离传感器或者根据所述预设标记的像素宽度以及所述预设标记的像素宽度与飞行高度之间的对应关系,确定所述飞行器的飞行高度。
  2. 根据权利要求1所述的方法,其特征在于,根据所述二维坐标信息,确定所述飞行器的二维坐标,包括:
    根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量;
    根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设标记为二维码。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,所述预设标记为距离所述目标区域图像中心最近的预设标记。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,根据所述二维坐标信息,确定所述飞行器的二维坐标,包括:
    若无法识别距离所述目标区域图像中心最近的预设标记的二维坐标信息,则根据距离所述目标区域图像中心第二近的预设标记的二维坐标信息,确定所述飞行器的二维坐标。
  6. 一种飞行定位的装置,其特征在于,所述装置包括:
    获取模块,用于获取目标区域图像;
    识别模块,用于识别所述目标区域图像中的预设标记,其中所述预设标记标识有二维坐标信息,所述二维坐标信息用于标识所述预设标记的二维坐标;
    二维坐标定位模块,用于根据所述二维坐标信息,确定所述飞行器的二维 坐标;
    飞行高度定位模块,用于通过距离传感器或者根据所述预设标记的像素宽度以及所述像素宽度与飞行高度之间的对应关系,确定所述飞行器的飞行高度。
  7. 根据权利要求6所述的装置,其特征在于,所述二维坐标定位模块包括:
    实际偏移量确定单元,用于根据所述预设标记的中心与所述目标区域图像的中心之间的偏移像素宽度以及所述预设标记的像素宽度与所述预设标记的实际宽度值,确定与所述偏移像素宽度对应的实际偏移量;
    二维坐标确定单元,用于根据所述实际偏移量以及所述二维坐标信息,确定所述飞行器的二维坐标。
  8. 根据权利要求6或7所述的装置,其特征在于,所述预设标记为二维码。
  9. 根据权利要求6-8中任一所述的装置,其特征在于,所述预设标记为距离所述目标区域图像中心最近的预设标记。
  10. 根据权利要求6-9中任一所述的装置,其特征在于,所述二维坐标定位模块用于若无法识别距离所述目标区域图像中心最近的预设标记的二维坐标信息,则根据距离所述目标区域图像中心第二近的预设标记的二维坐标信息,确定所述飞行器的二维坐标。
PCT/CN2016/093898 2016-08-08 2016-08-08 一种飞行定位的方法及装置 WO2018027451A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/093898 WO2018027451A1 (zh) 2016-08-08 2016-08-08 一种飞行定位的方法及装置
CN201680011495.5A CN107438863B (zh) 2016-08-08 2016-08-08 一种飞行定位的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093898 WO2018027451A1 (zh) 2016-08-08 2016-08-08 一种飞行定位的方法及装置

Publications (1)

Publication Number Publication Date
WO2018027451A1 true WO2018027451A1 (zh) 2018-02-15

Family

ID=60458676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093898 WO2018027451A1 (zh) 2016-08-08 2016-08-08 一种飞行定位的方法及装置

Country Status (2)

Country Link
CN (1) CN107438863B (zh)
WO (1) WO2018027451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722179A (zh) * 2020-06-29 2020-09-29 河南天安润信信息技术有限公司 一种多点布设的无人机信号测向方法
CN114842465A (zh) * 2022-06-06 2022-08-02 阿波罗智联(北京)科技有限公司 车牌检测方法、装置、电子设备、介质及智能交通设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305346A (zh) * 2017-12-28 2018-07-20 国网上海市电力公司 设备巡检方法、装置
CN113504794B (zh) * 2021-07-23 2023-04-21 中国科学院地理科学与资源研究所 一种无人机集群重构方法、系统和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315748B2 (en) * 2010-01-07 2012-11-20 Korea Aerospace Research Institute Altitude measurement apparatus and method
CN102829785A (zh) * 2012-08-30 2012-12-19 中国人民解放军国防科学技术大学 基于序列图像和基准图匹配的飞行器全参数导航方法
CN102853835A (zh) * 2012-08-15 2013-01-02 西北工业大学 基于尺度不变特征变换的无人飞行器景象匹配定位方法
CN103661966A (zh) * 2012-09-17 2014-03-26 贝尔直升机德事隆公司 着陆点指示系统
CN104049641A (zh) * 2014-05-29 2014-09-17 深圳市大疆创新科技有限公司 一种自动降落方法、装置及飞行器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541066A (zh) * 2011-12-16 2012-07-04 新时代集团国防科技研究中心 一种用于无人飞行器作业的自动定高的控制方法
CN103810286B (zh) * 2014-02-25 2017-05-24 合肥亿图网络科技有限公司 一种用于二维地图与三维地图匹配的坐标点定位方法
WO2016065627A1 (zh) * 2014-10-31 2016-05-06 深圳市大疆创新科技有限公司 一种基于位置的控制方法、装置、可移动机器以及机器人
CN105824324B (zh) * 2015-01-04 2020-03-31 中国移动通信集团公司 一种失联条件下飞行器自动调节的方法、装置和飞行器
CN104991564A (zh) * 2015-05-27 2015-10-21 杨珊珊 无人飞行器飞行控制方法及装置
CN104991493B (zh) * 2015-06-24 2018-06-05 广州飞米电子科技有限公司 数据传输方法、装置及系统
CN105549604B (zh) * 2015-12-10 2018-01-23 腾讯科技(深圳)有限公司 飞行器操控方法和装置
CN105447853B (zh) * 2015-11-13 2018-07-13 深圳市道通智能航空技术有限公司 飞行装置、飞行控制系统及方法
CN105487555B (zh) * 2016-01-14 2018-09-28 浙江华飞智能科技有限公司 一种无人机的悬停定位方法及装置
CN105759839B (zh) * 2016-03-01 2018-02-16 深圳市大疆创新科技有限公司 无人机视觉跟踪方法、装置以及无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315748B2 (en) * 2010-01-07 2012-11-20 Korea Aerospace Research Institute Altitude measurement apparatus and method
CN102853835A (zh) * 2012-08-15 2013-01-02 西北工业大学 基于尺度不变特征变换的无人飞行器景象匹配定位方法
CN102829785A (zh) * 2012-08-30 2012-12-19 中国人民解放军国防科学技术大学 基于序列图像和基准图匹配的飞行器全参数导航方法
CN103661966A (zh) * 2012-09-17 2014-03-26 贝尔直升机德事隆公司 着陆点指示系统
CN104049641A (zh) * 2014-05-29 2014-09-17 深圳市大疆创新科技有限公司 一种自动降落方法、装置及飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722179A (zh) * 2020-06-29 2020-09-29 河南天安润信信息技术有限公司 一种多点布设的无人机信号测向方法
CN114842465A (zh) * 2022-06-06 2022-08-02 阿波罗智联(北京)科技有限公司 车牌检测方法、装置、电子设备、介质及智能交通设备

Also Published As

Publication number Publication date
CN107438863A (zh) 2017-12-05
CN107438863B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN110506297B (zh) 高精确度校准系统和方法
EP3407294A1 (en) Information processing method, device, and terminal
WO2018027451A1 (zh) 一种飞行定位的方法及装置
WO2016199605A1 (ja) 画像処理装置および方法、並びにプログラム
CN106408601B (zh) 一种基于gps的双目融合定位方法及装置
US9443311B2 (en) Method and system to identify a position of a measurement pole
Rumpler et al. Automated end-to-end workflow for precise and geo-accurate reconstructions using fiducial markers
CN110910459B (zh) 一种对摄像装置的标定方法、装置及标定设备
JP2008134161A (ja) 位置姿勢計測方法、位置姿勢計測装置
US10854015B2 (en) Real-time quality control during manufacturing using augmented reality
CN103795935B (zh) 一种基于图像校正的摄像式多目标定位方法及装置
CN109099889A (zh) 近景摄影测量系统和方法
George et al. Towards drone-sourced live video analytics for the construction industry
CN106705860A (zh) 一种激光测距方法
CN112686951A (zh) 用于确定机器人位置的方法、装置、终端及存储介质
US20150228064A1 (en) Maintenance supporting system and maintenance supporting method
CN109035343A (zh) 一种基于监控相机的楼层相对位移测量方法
JP2011112556A (ja) 捜索目標位置特定装置及び捜索目標位置特定方法並びにコンピュータプログラム
US20200041262A1 (en) Method for performing calibration by using measured data without assumed calibration model and three-dimensional scanner calibration system for performing same
JP2021092482A (ja) 測量システム及び測量方法
CN105043341B (zh) 无人机对地高度的测量方法及装置
CN207600393U (zh) 图案投射模组、三维信息获取系统及处理装置
US20220018950A1 (en) Indoor device localization
JP2006329817A (ja) 3次元計測におけるターゲット座標の取得方法およびそれに用いられるターゲット
CN107037414A (zh) 成像定位金属球雷达定标方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911908

Country of ref document: EP

Kind code of ref document: A1