WO2018026193A1 - 치과 시술용 차폐막 - Google Patents

치과 시술용 차폐막 Download PDF

Info

Publication number
WO2018026193A1
WO2018026193A1 PCT/KR2017/008343 KR2017008343W WO2018026193A1 WO 2018026193 A1 WO2018026193 A1 WO 2018026193A1 KR 2017008343 W KR2017008343 W KR 2017008343W WO 2018026193 A1 WO2018026193 A1 WO 2018026193A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
titanium core
dental
ptfe
holes
Prior art date
Application number
PCT/KR2017/008343
Other languages
English (en)
French (fr)
Inventor
권태수
정희석
Original Assignee
권태수
정희석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권태수, 정희석 filed Critical 권태수
Publication of WO2018026193A1 publication Critical patent/WO2018026193A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a shielding membrane for dental surgery, which is used in the alveolar bone regeneration procedure for implant placement, is configured to have a thin plate-shaped body formed with holes and provided with a titanium core between the PTFE membrane and the shape deformation by external force, the bone graft material
  • the present invention relates to a dental masking membrane configured to cover the filled alveolar bone defect with a flexible shape structure so that alveolar bone regeneration can be effectively performed.
  • the implant can restore the function by implanting the artificial tooth, but if the alveolar bone is lost, it is necessary to implant the artificial tooth after forming a new alveolar bone through the bone graft.
  • Alveolar bone graft fills the bone-shaped bone graft in the alveolar bone defect and maintains it for a predetermined time, so that bone regeneration is performed by integrally bonding the bone graft to the alveolar bone defect.
  • a shielding membrane is installed outside the alveolar bone defect to secure the bone regeneration space.
  • the shielding membrane also provides a function to prevent invasion due to the growth of periodontal soft tissue into the alveolar bone defect.
  • Alveolar bone defects may occur due to bone loss or may result from bone deficiency.
  • the bone graft material is filled into the alveolar bone defect before the implant fixture is placed in the alveolar bone, and the bone regeneration is performed with the shielding film installed outside.
  • the bone fixture may be filled in the bone lacking part while the fixture of the implant is placed in the alveolar bone, and bone regeneration may be performed with the shielding film installed outside.
  • Typical shielding membranes currently used include PTFE (polytetrafluoroethylene) membranes, collagen membranes, titanium membranes, and the like.
  • Korean Patent Registration No. 10-1510589 (registered on April 02, 2015) discloses a PTFE nanofiber shielding membrane having an antimicrobial property and a method of manufacturing the same.
  • Korean Patent No. 10-0653850 registered on November 28, 2006 has disclosed a support plate for an implant made of titanium, and Korean Patent No. 10-1540559 (July, 2015) The 24th registration) disclosed a support plate for dental implants made of titanium.
  • the present invention has been made in view of the above problems, it is used in the alveolar bone regeneration procedure for implant placement, is configured to have a thin plate-shaped body formed with a hole and is provided between the PTFE membrane and a titanium core capable of shape deformation by external force, It is an object of the present invention to provide a dental surgical shield configured to cover alveolar bone defects filled with bone grafts with a flexible shape structure so that alveolar bone regeneration can be effectively performed.
  • a thin plate-shaped body formed with two or more holes, the titanium core capable of deformation by external force; A first PTFE membrane provided on one side of the titanium core; And a second PTFE membrane provided on the other side of the titanium core, wherein the first PTFE membrane and the second PTFE membrane form an adhesive bond to the outside of the body of the titanium core and include at least one of the holes.
  • a shielding membrane for a dental procedure characterized in that it is configured to achieve mutually adhesive coupling inside.
  • At least one of the holes of the titanium core is characterized in that the hole for the implant screw coupling.
  • the implant screw coupling hole is characterized in that it has a smaller size than the head of the screw.
  • At least one of the holes of the titanium core is characterized in that the screw for the implant has a size that can penetrate.
  • At least one recess is formed on the outer side of the thin body of the titanium core.
  • the titanium core has at least one or more implant screw coupling holes and at least one shape deformation guide hole.
  • the implant screw coupling hole is spaced apart from the shape deformation guide hole.
  • the plurality of shape deformation guide holes are formed, and the implant screw coupling holes are formed between two or more shape deformation guide holes.
  • the first PTFE membrane and the second PTFE membrane is characterized in that it is configured to form an mutual bond between the membrane in the state that the attachment with the titanium core is not made.
  • the first PTFE membrane and the second PTFE membrane is characterized in that they have a mutually bonded state by heat fusion or ultrasonic fusion.
  • At least one of the holes of the titanium core is formed to have a triangular or square shape.
  • the implant screw penetrating the hole forming position of the titanium core is configured to remain fixedly bonded by the first PTFE membrane and the second PTFE membrane in the mutually attached state.
  • the present invention covers the alveolar bone defects filled with the bone graft material with a flexible shape so that the alveolar bone regeneration can be effectively performed.
  • the present invention has the advantage that the appropriate shape retention function is provided through the titanium core, it is prevented from adhering to the skin by the PTFE membrane provided on the outside.
  • the present invention because it is configured to have a thin plate-shaped body formed with holes, it is possible to simply install fixed to the alveolar bone using the hole for implant screw coupling.
  • the present invention because it can be fixed using the implant screw, there is an advantage that does not need to install a separate screw in the alveolar bone for fixing the shielding film.
  • the present invention since the titanium core is configured to have a thin plate-like body having at least one or more shape deformation guide hole, there is an advantage that can be fixed flexible coupling to match the shape of the alveolar bone defect.
  • the first and the second PTFE membrane provided on both sides of the titanium core is not directly attached to the titanium core, but attached to the membrane mutually attached to the outer surface of the body of the titanium core and the inside of the hole to surround the titanium core
  • the membrane bonding process is simple and the bonding structure is robust.
  • FIG. 1 is a schematic plan view of a shielding membrane for a dental procedure according to an embodiment of the present invention
  • FIG 2 is an exploded perspective view of the shielding membrane for the dental procedure illustrated in Figure 1,
  • FIG. 3 is a cross-sectional view taken along line A-A 'of the dental shielding membrane illustrated in FIG. 1;
  • FIG. 4 is a perspective view of a modified state of the dental shielding membrane illustrated in FIG. 1,
  • Figure 5 is a schematic cross-sectional view showing the installation and removal process of the shielding membrane for a dental procedure according to an embodiment of the present invention
  • FIG. 6 is a schematic plan view of a shielding membrane for dental surgery according to various embodiments of the present disclosure
  • FIG. 7 is a schematic plan view of a shielding membrane for dental surgery according to another embodiment of the present invention.
  • first, second, etc. are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as the second component
  • second component may also be referred to as the first component
  • FIG. 1 is a schematic plan view of a dental shielding membrane according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the dental shielding membrane illustrated in FIG. 1
  • FIG. 3 is an AA ′ of the dental shielding membrane illustrated in FIG. 1.
  • 4 is a perspective view of a modified state of the dental shielding membrane illustrated in FIG. 1
  • FIG. 6 is a schematic plan view of the dental shielding membrane according to various embodiments of the present disclosure.
  • Dental shielding membrane 10 of the present embodiment is used in the alveolar bone regeneration procedure for implant placement, is configured to cover the bone graft filled alveolar bone defects with a flexible shape structure.
  • the dental shielding membrane 10 of the present embodiment has a configuration in which a titanium core 300 is provided in the middle of the first PTFE membrane 100 and the second PTFE membrane 200.
  • Titanium core 300 is configured to have a thin plate-shaped body formed with two or more holes (310, 320), it is configured to enable the shape deformation by an external force.
  • Titanium alloys are lightweight, nonmagnetic, and have excellent biocompatibility with mechanical properties such as corrosion resistance, strength and toughness, so they are used in dentistry as small fillings, crowns and artificial roots.
  • Titanium forms a dense passivation film on the surface, which is excellent in corrosion resistance and biocompatibility, and the density is about 50% of stainless steel or cobalt-chromium alloy. Very light
  • titanium is composed of 99.5% titanium and 0.5% impurities (carbon, oxygen, nitrogen, hydrogen and iron).
  • impurities carbon, oxygen, nitrogen, hydrogen and iron.
  • the mechanical properties vary greatly depending on the amount of impurities. According to ASTM F67 (Standard Specification for Unalloyed Titanium for Surgical Implant Applications), titanium is classified into grades 1-4 and grade 5 corresponds to titanium alloys.
  • the titanium core 300 of the present embodiment may be used Grade 2 titanium, and other grades of titanium or titanium alloy may be used under conditions that can be appropriate shape deformation.
  • the titanium core 300 cuts the titanium thin film base material having a thickness of about 0.01 mm into the required shape using cutting means such as water jet, ultrasonic wave, laser, etc., and uses the strongly acidic solution to adjust the final thickness required. It can be post-processed to have.
  • At least one of the holes 310 and 320 of the titanium core 300 is configured to be an implant screw coupling hole 310.
  • a typical implant is a fixture that is implanted by screwing into the alveolar bone, an abutment that is coupled to the upper part of the fixture to penetrate the gums and is exposed to the outside, and the abutment and cement are coupled to the tooth It is composed of a crown (Crown) forming a.
  • an abutment screw for securing the abutment to the fixture may be coupled, and a cover screw may be coupled to close the upper screw hole of the fixture during the first operation, before the abutment and crown are engaged.
  • a cover screw used to close the upper screw hole of the fixture may be used as the shield membrane fixing screw.
  • the implant screw 24 illustrated in FIG. 5 may be understood as a cover screw.
  • the shielding membrane 10 for dental surgery of the present embodiment the implant screw 24 is passed through the implant screw coupling hole 310 of the titanium core 300 is coupled to the fixture (22 in Fig. 5). In this manner, the shielding film 10 may be fixed.
  • the implant screw coupling hole 310 has a smaller size (smaller cross-sectional area) than the head of the implant screw 24 so that the shielding film 10 can be fixed by the implant screw 24 coupled to the fixture 22. It is composed.
  • the titanium core 300 includes at least one shape deformation guide hole 320 together with the implant screw coupling hole 310.
  • the shape deformation guide hole 320 guides the flexible deformation so that the thin titanium core 300 is in close contact with the external shape of the alveolar bone.
  • the number or position of the shape deformation guide hole 320 and the relative position with the implant screw coupling hole 310 is configured in consideration of the size or shape of the alveolar bone defect in which the shielding film 10 is used. 6, various modifications related thereto are illustrated.
  • a circular hole is an implant screw coupling hole 310, and a hexagonal hole is a shape deformation guide hole 320.
  • the shape deformation guide hole 320 is formed in plural, and the implant screw coupling hole 310 is formed between two or more shape deformation guide holes 320. This configuration corresponds to the embodiment of FIG.
  • the shape deformation guide hole 320 is formed in a hexagon, and the implant screw coupling hole 310 may be formed in a circular shape so as to facilitate the coupling with the screw.
  • the shape of the shape deformation guide hole 320 and the implant screw coupling hole 310 may be variously modified under conditions in which coupling with the screw and shape deformation function are provided. (E.g. triangles, squares, pentagons, circles, etc.)
  • the titanium core 300 is formed around the implant screw coupling hole 310 as shown in FIG. 1 to shield both the left and right sides of the alveolar bone defect. It is configured in a form extending to both the left and right sides and two or more shape deformation guide holes 320 are formed on the left and right sides around the implant screw coupling hole 310.
  • 6 (b) and 6 (c) are examples configured to be suitable when the alveolar bone defect is generated along the circumference of the fixture 22.
  • the implant screw coupling hole 310 is spaced apart from the shape deformation guide hole 320.
  • the titanium core 300 is mainly extended to one side about the implant screw coupling hole 310 to shield the alveolar bone defect.
  • Two or more shape deformation guide holes 320 are configured to be spaced apart from one side of the implant screw coupling hole 310.
  • 6 (a) and 6 (d) are examples configured to be suitable when the alveolar bone defect is mainly generated on one side of the fixture 22.
  • the first PTFE membrane 100 is provided on one side of the titanium core 300.
  • the second PTFE membrane 200 is provided on the other side of the titanium core (300).
  • PTFE polytetrafluoroethylene
  • ICI Tupon and Fluon
  • PTFE forms very stable compounds due to the strong chemical bonds of fluorine and carbon, and thus has almost perfect chemical inertness and heat resistance (stable at 250 ° C), non-tackiness, good insulation and low coefficient of friction.
  • PTFE is suitable as a material of the shielding film 10 of this embodiment due to its property of not sticking to almost all materials.
  • non-stretched general PTFE may be used, or stretched expanded PTFE (e-PTFE) may be used.
  • e-PTFE stretched expanded PTFE
  • the first PTFE membrane 100 and the second PTFE membrane 200 are each configured to have a thickness of about 0.01 mm, for example.
  • the first PTFE membrane 100 and the second PTFE membrane 200 are mutually bonded to the outside of the body of the titanium core (300).
  • the first PTFE membrane 100 and the second PTFE membrane 200 are mutually bonded to the inside of at least one or more of the holes 310 and 320 of the titanium core 300. .
  • the first PTFE membrane 100 and the second PTFE membrane 200 are mutually bonded to the outside of the body of the titanium core 300, and together with the inside of the implant screw coupling hole 310.
  • Reference numeral 10a denotes an edge of the inter-membrane mutual attachment surface
  • reference numeral 10b denotes an inner space formed by the inter-membrane mutual attachment.
  • the mutual adhesion bonding of the first PTFE membrane 100 and the second PTFE membrane 200 may be accomplished by, for example, heat fusion or ultrasonic fusion.
  • the shielding membrane 10 of the present embodiment is made of an adhesive bond only between the first PTFE membrane 100 and the second PTFE membrane 200, and the first PTFE membrane 100 or the second PTFE membrane 200 Attachment of the titanium core 300 is not made.
  • Direct attachment and fixation of the PTFE membrane and the titanium core requires the application of an adhesive for attachment between dissimilar materials. Since the adhesive is harmful to the human body, this attachment structure is not suitable for medical products used in the human body. In this embodiment, since only the adhesive bond between the first PTFE membrane 100 and the second PTFE membrane 200 is made, there is an advantage that it is not necessary to use an adhesive.
  • the shielding film 10 of the present embodiment the first PTFE membrane 100 and the second PTFE membrane 200 in the holes 310, 320 of the titanium core 300 as well as the outside of the body of the titanium core 300. Since at least one hole 310 and 320 are mutually bonded to each other, the first PTFE membrane 100 and the second PTFE membrane 200 and the titanium core may be modified even when the shielding membrane 10 is deformed to match the alveolar bone defect shape. A tightly coupled state of 300 is maintained.
  • At least one groove portion 330 is formed on the outer side of the thin body of the titanium core (300).
  • the groove 330 guides the flexible deformation so that the thin titanium core 300 is in close contact with the external shape of the alveolar bone. 4 illustrates this flexible deformation state.
  • the number or position of the recesses 330 is configured in consideration of the size or shape of the alveolar bone defect in which the shielding film 10 is used.
  • FIG. 5 is a schematic cross-sectional view showing the installation and removal process of the dental surgical shielding membrane according to an embodiment of the present invention, with reference to the drawings will be described the installation and removal of the dental surgical shielding membrane.
  • FIG. 5 illustrates a process in which bone regeneration is performed by filling a bone graft material 32 into a bone defect 2a while the fixture 22 of the implant is placed in the alveolar bone 2 in the case of bone deficiency.
  • Reference numeral 24 represents a cover screw of the implant screw.
  • the gum 4 is cut to expose the bone defect 2a of the alveolar bone 2.
  • Reference numerals 4a and 4b denote gum incision sites.
  • the bone defect 2a filled with the bone graft material 32 is covered with the shielding film 10.
  • the shielding film 10 can be used to cover the entire shape including the edge of the bone defect portion (2a) of the shielding film of various shapes as shown in Figure 6 while being capable of deforming the shape of the titanium core 300 at an appropriate angle and direction do. Titanium core 300 is deformed by the operator appropriately in accordance with the shape of the bone defect (2a).
  • the cover screw 24 is fixed to the fixture 22 in a state where the cover screw 24 is penetrated through the shielding film 10.
  • the cover screw 24 passes through the implant screw coupling hole 310 and is again fixed to the fixture 22.
  • the shielding film 10 is removed.
  • removal typically takes place between 6-12 months after insertion into the periodontal tissue.
  • FIG. 7 is a schematic plan view of a shielding membrane for dental surgery according to another embodiment of the present invention.
  • the hole 350 of the titanium core 300 of the present embodiment is configured to have various shapes and sizes, such as triangles and squares, not circular or hexagonal holes.
  • At least one of the holes 350 of the titanium core 300 is formed to have a size through which the implant screw 24 can pass.
  • the shielding film 10 of the present embodiment does not include the above-described implant screw coupling hole, and the implant screw 24 coupled to the fixture 22 penetrates the hole 350 forming position of the titanium core 300. And by the first PTFE membrane 100 and the second PTFE membrane 200 in mutually attached state.
  • the shape and number of the holes 350 of the titanium core 300 of the present embodiment may be variously modified under conditions in which coupling with a screw and a shape deformation function are provided.
  • the shape deformation of the titanium core 300 may be more flexible and variously provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Prostheses (AREA)
  • Dental Prosthetics (AREA)
  • Materials For Medical Uses (AREA)
  • Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Ceramic Engineering (AREA)
  • Biomedical Technology (AREA)

Abstract

본 발명은 치과시술용 차폐막에 관한 것이다. 본 발명의 일측면에 따르면, 2 이상의 홀이 형성된 박판형 몸체를 갖도록 구성되며, 외력에 의한 형상 변형이 가능한 티타늄 코어; 상기 티타늄 코어의 일측면에 구비되는 제1 PTFE 멤브레인; 및 상기 티타늄 코어의 타측면에 구비되는 제2 PTFE 멤브레인;을 포함하며, 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 상기 티타늄 코어의 몸체 외측에서 상호 부착 결합을 이루며, 상기 홀 중 적어도 하나 이상의 홀의 내측에서 상호 부착 결합을 이루도록 구성된 것을 특징으로 하는 치과 시술용 차폐막이 개시된다.

Description

치과 시술용 차폐막
본 발명은 치과시술용 차폐막에 관한 것으로서, 임플란트 식립을 위한 치조골 재생 시술에 사용되고, 홀이 형성된 박판형 몸체를 갖도록 구성되며 외력에 의한 형상 변형이 가능한 티타늄 코어가 PTFE 멤브레인 사이에 구비되어, 골 이식재가 채워진 치조골 결손부를 유연한 형상 구조로 커버하여 치조골 재생이 효과적으로 이뤄질 수 있도록 구성된 치과시술용 차폐막에 관한 것이다.
인구 노령화로 인해 치아의 기능을 상실하거나 치아결손부의 장기적인 방치로 인해 치조골이 소실되거나 그 역할을 제대로 하지 못하는 경우가 증가하고 있다.
치아 기능만 상실된 경우에는 임플란트 시술을 통해 인공치아를 식립하여 기능을 회복할 수 있지만, 치조골이 소실된 경우에는 골 이식술을 통해 새로운 치조골을 형성시킨 후 인공치아를 식립해야 한다.
치조골 이식술은 입자 형태의 골 이식재를 치조골 결손부에 채워 넣고 일정 시간 동안 유지되도록 하여, 골 이식재가 치조골 결손부에 일체로 결합하는 과정을 통해 골 재생이 이뤄지도록 한다.
치조골이 재생되는 과정 중에, 골 이식재가 치조골 결손부 외부로 이탈되는 것을 방지하기 위해, 치조골 결손부 외측에 차폐막을 설치하여 골 재생공간을 확보하게 된다. 차폐막은 치조골 결손부의 내측으로 치주 연조직의 성장으로 인한 침입을 방지하는 기능을 함께 제공한다.
치조골 결손부는 골 소실로 인해 발생할 수도 있고, 골 부족으로 발생할 수도 있다.
일반적으로, 골 소실의 경우에는, 임플란트의 픽스쳐를 치조골에 식립하기 전에 골 이식재를 치조골 결손부에 채워 넣고 그 외측에 차폐막을 설치한 상태에서 골 재생이 이뤄지도록 한다.
골 부족의 경우에는, 임플란트의 픽스쳐가 치조골에 식립된 상태에서 골이 부족한 부위에 골 이식재를 채워 넣고 그 외측에 차폐막을 설치한 상태에서 골 재생이 이뤄지도록 할 수도 있다.
현재 사용되고 있는 대표적인 차폐막으로는 PTFE(polytetrafluoroethylene) 멤브레인, 콜라겐(Collagen) 멤브레인, 티타늄(Titanium) 멤브레인 등이 있다.
PTFE 멤브레인과 관련된 종래기술의 예로, 대한민국 등록특허 10-1510589(2015년04월02일 등록)는 항균성을 갖는 PTFE 나노섬유 차폐막 및 그 제조 방법을 개시한 바 있다.
티타늄 멤브레인과 관련된 종래기술의 예로, 대한민국 등록특허 10-0653850(2006년11월28일 등록)은 티타늄 재질로 이뤄진 임플란트용 지지 플레이트를 개시한 바 있으며, 대한민국 등록특허 10-1540559(2015년07월24일 등록)은 티타늄 재질로 이뤄진 치과 임플란트 시술용 지지플레이트를 개시한 바 있다.
그런데, 콜라겐 재질로 이뤄진 흡수성 차폐막의 경우, 골 이식재를 이식부에 고정시키기 어려우며, 탄성에 의해 성형 후의 유지성이 떨어지고, 찢기거나 밀려 정확한 위치에 고정하기가 쉽지 않으며 이들 틈으로 골 이식재가 탈락되거나 이동할 수 있다는 단점이 있었다.
한편, 티타늄 재질로 이뤄진 비흡수성 차폐막의 경우, 원하는 형태로 성형이 어려우며, 날카로운 부분이 정상 연조직에 손상을 줄 수 있고, 치조골 재생 이후 제거해야 하는 재수술이 요구되며 이때 광범위한 연조직 절개가 필요하게 되며, 차폐막의 노출에 의해 감염 발생 우려가 있었다.
한편, PTFE 재질로 이뤄진 비흡수성 차폐막의 경우, 노출 및 감염 우려가 있고, 형상 제어에 불리하다는 단점이 있었다.
이로 인해, 종래의 차폐막의 단점을 해소하는 제품의 개발이 필요한 실정이었다.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로서, 임플란트 식립을 위한 치조골 재생 시술에 사용되고, 홀이 형성된 박판형 몸체를 갖도록 구성되며 외력에 의한 형상 변형이 가능한 티타늄 코어가 PTFE 멤브레인 사이에 구비되어, 골 이식재가 채워진 치조골 결손부를 유연한 형상 구조로 커버하여 치조골 재생이 효과적으로 이뤄질 수 있도록 구성된 치과시술용 차폐막을 제공하는 것을 그 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명의 일측면에 따르면, 2 이상의 홀이 형성된 박판형 몸체를 갖도록 구성되며, 외력에 의한 형상 변형이 가능한 티타늄 코어; 상기 티타늄 코어의 일측면에 구비되는 제1 PTFE 멤브레인; 및 상기 티타늄 코어의 타측면에 구비되는 제2 PTFE 멤브레인;을 포함하며, 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 상기 티타늄 코어의 몸체 외측에서 상호 부착 결합을 이루며, 상기 홀 중 적어도 하나 이상의 홀의 내측에서 상호 부착 결합을 이루도록 구성된 것을 특징으로 하는 치과 시술용 차폐막이 개시된다.
바람직하게, 상기 티타늄 코어의 홀 중 적어도 하나는 임플란트 스크류 결합용 홀인 것을 특징으로 한다.
바람직하게, 상기 임플란트 스크류 결합용 홀은 스크류의 헤드보다 작은 크기를 갖는 것을 특징으로 한다.
바람직하게, 상기 티타늄 코어의 홀 중 적어도 하나는 임플란트용 스크류가 관통 가능한 크기를 갖는 것을 특징으로 한다.
바람직하게, 상기 티타늄 코어의 박판형 몸체의 외측에는 적어도 하나 이상의 요홈부가 형성된 것을 특징으로 한다.
바람직하게, 상기 티타늄 코어는 적어도 하나 이상의 임플란트 스크류 결합용 홀을 구비하고, 적어도 하나 이상의 형상 변형 가이드 홀을 구비한 것을 특징으로 한다.
바람직하게, 상기 임플란트 스크류 결합용 홀은 상기 형상 변형 가이드 홀과 이격 형성된 것을 특징으로 한다.
바람직하게, 상기 형상 변형 가이드 홀은 복수로 형성되며, 상기 임플란트 스크류 결합용 홀은 2 이상의 형상 변형 가이드 홀 사이에 형성된 것을 특징으로 한다.
바람직하게, 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 상기 티타늄 코어와의 부착이 이뤄지지 않은 상태에서 멤브레인 간의 상호 부착 결합을 이루도록 구성된 것을 특징으로 한다.
바람직하게, 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 열융착 또는 초음파 융착에 의한 상호 부착 결합 상태를 갖는 것을 특징으로 한다.
바람직하게, 상기 티타늄 코어의 홀 중 적어도 하나는 삼각형 또는 사각형 형상을 갖도록 형성된 것을 특징으로 한다.
바람직하게, 상기 티타늄 코어의 홀 형성 위치를 관통한 임플란트 스크류가 상호 부착 상태의 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인에 의해 고정 결합 상태를 유지하도록 구성된 것을 특징으로 한다.
이와 같은 본 발명은, 골 이식재가 채워진 치조골 결손부를 유연한 형상 구조로 커버하여 치조골 재생이 효과적으로 이뤄질 수 있도록 한다.
또한, 본 발명은, 티타늄 코어를 통해 적절한 형상 유지 기능이 제공되고, 그 외측에 구비된 PTFE 멤브레인에 의해 피부에 점착되는 것이 방지되는 장점이 있다.
또한, 본 발명은, 홀이 형성된 박판형 몸체를 갖도록 구성되므로, 임플란트 스크류 결합용 홀을 이용하여 치조골 부위에 간편하게 고정 설치가 가능하다.
또한, 본 발명은, 임플란트 스크류를 이용하여 고정이 가능하므로, 차폐막 고정을 위한 별도의 스크류를 치조골에 설치할 필요가 없다는 장점이 있다.
또한, 본 발명은, 박판형 몸체를 갖도록 구성된 티타늄 코어에 적어도 하나 이상의 형상 변형 가이드 홀을 구비하므로, 치조골 결손부의 형상에 맞추어 유연한 고정 결합이 가능하다는 장점이 있다.
또한, 본 발명은, 티타늄 코어의 양측면에 구비되는 제1 및 제2 PTFE 멤브레인이 티타늄 코어에 직접 부착되지 않고, 티타늄 코어의 몸체 외측 및 홀의 내측에서 멤브레인 상호간에 부착되어 티타늄 코어를 감싸는 결합 상태를 이루므로, 멤브레인 결합 공정이 간단하고 결합 구조가 견고하다는 장점이 있다.
도 1은 본 발명의 일실시예에 따른 치과 시술용 차폐막의 평면 모식도,
도 2는 도 1에 예시된 치과 시술용 차폐막의 분리 사시도,
도 3은 도 1에 예시된 치과 시술용 차폐막의 A-A' 단면도,
도 4는 도 1에 예시된 치과 시술용 차폐막의 변형 상태 사시도,
도 5는 본 발명의 일실시예에 따른 치과 시술용 차폐막의 설치 및 제거 과정을 나타낸 단면 모식도,
도 6은 본 발명의 다양한 실시예에 따른 치과 시술용 차폐막의 평면 모식도,
도 7은 본 발명의 또다른 실시예에 따른 치과 시술용 차폐막의 평면 모식도이다.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안 된다.
제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다.
본 출원에서 사용한 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서에 기재된 구성요소 또는 이들의 조합이 존재하는 것을 표현하려는 것이지, 다른 구성요소 또는 특징이 존재 또는 부가될 가능성을 미리 배제하는 것은 아니다.
본 발명의 설명에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명의 일실시예에 따른 치과 시술용 차폐막의 평면 모식도, 도 2는 도 1에 예시된 치과 시술용 차폐막의 분리 사시도, 도 3은 도 1에 예시된 치과 시술용 차폐막의 A-A' 단면도, 도 4는 도 1에 예시된 치과 시술용 차폐막의 변형 상태 사시도, 도 6은 본 발명의 다양한 실시예에 따른 치과 시술용 차폐막의 평면 모식도이다.
본 실시예의 치과시술용 차폐막(10)은 임플란트 식립을 위한 치조골 재생 시술에 사용되고, 골 이식재가 채워진 치조골 결손부를 유연한 형상 구조로 커버하도록 구성된다.
본 실시예의 치과시술용 차폐막(10)은 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200) 중간에 티타늄 코어(300)가 구비된 구성을 갖는다.
티타늄 코어(300)는 2 이상의 홀(310,320)이 형성된 박판형 몸체를 갖도록 구성되며, 외력에 의한 형상 변형이 가능하도록 구성된다.
티타늄 합금은 가볍고 비자성이며 내식성, 강도 및 인성 등의 기계적 특성과 함께 생체적합성도 매우 우수하여 치과에서는 작은 충전물, 크라운 및 인공치근 등으로 이용되고 있다.
현재 골내 임플란트로 가장 많이 사용하는 재료는 순수 티타늄과 티타늄 합금으로, 티타늄은 표면에 치밀한 부동태 피막을 형성하여 부식저항성과 생체적합성이 우수하고, 밀도는 스테인리스강이나 코발트-크롬계 합금의 50 % 정도로 매우 가볍다.
순수 티타늄은 99.5%의 티타늄과 0.5%의 불순물(탄소, 산소, 질소, 수소 및 철)로 구성되어 있는데 불순물의 함량에 따라 기계적 특성은 큰 차이를 보인다. ASTM F67 (Standard Specification for Unalloyed Titanium for Surgical Implant Applications)에 따르면 티타늄은 1~4등급으로 분류되며 5등급은 티타늄 합금에 해당된다.
일예로, 본 실시예의 티타늄 코어(300)는 Grade 2 티타늄이 사용될 수 있으며, 적절한 형상 변형이 이뤄질 수 있는 조건하에 다른 Grade의 티타늄이나 티타늄 합금이 사용될 수도 있다.
티타늄 코어(300)는 예를 들어, 0.01 mm 정도의 두께를 갖는 티타늄 박막 모재를 워터젯, 초음파, 레이저 등의 절단 수단을 이용하여 필요 형상으로 절단하고, 강산성의 용액을 이용하여 요구되는 최종 두께를 갖도록 후가공될 수 있다.
바람직하게, 상기 티타늄 코어(300)의 홀(310,320) 중 적어도 하나는 임플란트 스크류 결합용 홀(310)이 되도록 구성된다.
통상의 임플란트는 치조골 내부에 스크류 결합을 통해 식립되는 픽스쳐(fixture)와, 픽스쳐의 상부에 결합되어 잇몸을 뚫고 외부로 노출되도록 구성된 어버트먼트(abutment)와, 어버트먼트와 시멘트로 결합되어 치아를 형성하는 크라운(Crown)으로 구성된다.
또한, 어버트먼트를 픽스쳐에 고정하기 위한 어버트먼트 스크류가 결합될 수 있으며, 어버트먼트와 크라운이 결합되기 전인 1차 수술시에 픽스쳐의 상부 나사 구멍을 폐쇄하기 위해 커버 스크류가 결합될 수 있다.
본 실시예의 치과시술용 차폐막(10)은, 어버트먼트와 크라운이 결합되기 전에 치조골 결손부를 보강하기 위해서 사용되므로, 픽스쳐의 상부 나사 구멍을 폐쇄하기 위해 사용되는 커버 스크류를 차폐막 고정용 스크류로 사용할 수 있다. 도 5에 예시된 임플란트 스크류(24)는 커버 스크류로 이해될 수 있다.
이러한 구성을 통해 본 실시예의 치과시술용 차폐막(10)은, 상기 티타늄 코어(300)의 임플란트 스크류 결합용 홀(310)을 임플란트 스크류(24)가 통과하여 픽스쳐(도 5의 22)에 결합되는 방식으로 차폐막(10)의 고정이 이뤄질 수 있다.
픽스쳐(22)에 결합된 임플란트 스크류(24)에 의해 차폐막(10)의 고정이 가능하도록, 상기 임플란트 스크류 결합용 홀(310)은 임플란트 스크류(24)의 헤드보다 작은 크기(작은 단면적)를 갖도록 구성된다.
상기 티타늄 코어(300)는 상기 임플란트 스크류 결합용 홀(310)과 함께, 적어도 하나 이상의 형상 변형 가이드 홀(320)을 구비한다. 형상 변형 가이드 홀(320)은 박판형의 티타늄 코어(300)가 치조골의 외형에 밀접한 상태를 이루도록 유연한 변형을 가이드한다.
형상 변형 가이드 홀(320)의 개수나 위치, 임플란트 스크류 결합용 홀(310)과의 상대적 위치는 차폐막(10)이 사용되는 치조골 결손부의 크기나 형상을 고려하여 구성된다. 도 6에는 이와 관련된 다양한 변형예가 예시되어 있으며, 원형의 홀이 임플란트 스크류 결합용 홀(310)이며, 육각형의 홀이 형상 변형 가이드 홀(320)이다.
일예로, 상기 형상 변형 가이드 홀(320)은 복수로 형성되며, 상기 임플란트 스크류 결합용 홀(310)은 2 이상의 형상 변형 가이드 홀(320) 사이에 형성된다. 이러한 구성은 도 1의 실시예에 해당한다.
일예로, 상기 형상 변형 가이드 홀(320)은 육각형으로 형성되며, 상기 임플란트 스크류 결합용 홀(310)은 스크류와의 결합이 원활하도록 원형으로 형성될 수 있다. 다만, 상기 형상 변형 가이드 홀(320)과 임플란트 스크류 결합용 홀(310)의 형상은 스크류와의 결합과 형상 변형 기능이 제공되는 조건에서 다양하게 변형될 수 있다. (예, 삼각형, 사각형, 오각형, 원형 등)
치조골 결손부가 도 5와 같이 픽스쳐(22)의 주위를 따라 발생된 경우에는 치조골 결손부 좌우 양측을 모두 차폐하기 위해 도 1과 같이 임플란트 스크류 결합용 홀(310)을 중심으로 티타늄 코어(300)가 좌우 양측으로 확장된 형태로 구성되며 2 이상의 형상 변형 가이드 홀(320)이 임플란트 스크류 결합용 홀(310)을 중심으로 좌우 양측에 형성된다.
도 6의 (b),(c) 실시예는 치조골 결손부가 픽스쳐(22)의 주위를 따라 발생된 경우에 적합하도록 구성된 예이다.
다른 예로, 상기 임플란트 스크류 결합용 홀(310)은 상기 형상 변형 가이드 홀(320)과 이격 형성된다.
치조골 결손부가 픽스쳐(22)의 일측(예, 설측)에 주로 발생된 경우에는 치조골 결손부를 차폐하기 위해 임플란트 스크류 결합용 홀(310)을 중심으로 티타늄 코어(300)가 일측으로 주로 확장된 형태로 구성되며 2 이상의 형상 변형 가이드 홀(320)이 임플란트 스크류 결합용 홀(310)의 일측으로 이격 형성된다.
도 6의 (a),(d) 실시예는 치조골 결손부가 픽스쳐(22)의 일측에 주로 발생된 경우에 적합하도록 구성된 예이다.
제1 PTFE 멤브레인(100)은 상기 티타늄 코어(300)의 일측면에 구비된다. 또한, 제2 PTFE 멤브레인(200)은 상기 티타늄 코어(300)의 타측면에 구비된다.
PTFE(polytetrafluoroethylene)는 불소계 폴리머로 테프론(Dupont), 플루온(ICI) 등의 상용제품명으로 알려져 있다. PTFE는 불소와 탄소의 강력한 화학적 결합으로 인해 매우 안정된 화합물을 형성함으로써 거의 완벽한 화학적 비활성 및 내열성(250℃에서도 안정), 비점착성, 우수한 절연성 및 낮은 마찰계수 등의 특성을 가지고 있다. 특히, PTFE는 거의 모든 물질에 점착되지 않는다는 특성으로 인해 본 실시예의 차폐막(10)의 소재로서 적합하다.
본 실시예의 PTFE 멤브레인은 연신가공되지 않은 일반 PTFE가 사용되거나, 연신가공된 expanded PTFE(e-PTFE)가 사용될 수 있다.
상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)은 예를 들어, 각각 0.01 mm 정도의 두께를 갖도록 구성된다.
상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)은 상기 티타늄 코어(300)의 몸체 외측에서 상호 부착 결합을 이룬다.
특히 본 실시예에서, 상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)은 티타늄 코어(300)의 상기 홀(310,320) 중 적어도 하나 이상의 홀(310,320)의 내측에서 상호 부착 결합을 이룬다.
도 3의 경우, 상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)이 티타늄 코어(300)의 몸체 외측에서 상호 부착 결합을 이루면서, 이와 함께 임플란트 스크류 결합용 홀(310)의 내측에서 상호 부착 결합을 이룬 예를 나타낸다. 부호 10a는 멤브레인 간 상호 부착면의 테두리를 나타내며, 부호 10b는 멤브레인 간 상호 부착에 의해 형성된 내부 공간을 각각 나타낸다.
제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)의 상호 부착 결합은 일예로, 열융착 또는 초음파 융착 등에 의해 이뤄질 수 있다.
바람직하게, 본 실시예의 차폐막(10)은 상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200) 상호 간의 부착 결합만 이뤄지며, 제1 PTFE 멤브레인(100) 또는 제2 PTFE 멤브레인(200)과 티타늄 코어(300)의 부착은 이뤄지지 않는다.
PTFE 멤브레인과 티타늄 코어를 직접 부착 고정하게 되면 이종 소재 간의 부착을 위해 접착제를 도포해야 하는데, 접착제는 인체에 위해하므로 이러한 부착 구조는 인체내 삽입 사용되는 의료용 제품에는 적합하지 않다. 본 실시예의 경우, 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200) 상호 간의 부착 결합만 이뤄지도록 구성되므로, 접착제를 반드시 사용하지 않아도 된다는 장점이 있다.
또한, 본 실시예의 차폐막(10)은, 상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)이 상기 티타늄 코어(300)의 몸체 외측 뿐만 아니라 티타늄 코어(300)의 홀(310,320) 중 적어도 하나 이상의 홀(310,320)의 내측에서 상호 부착 결합을 이루므로, 치조골 결손부 형상에 맞추어 차폐막(10)을 형상 변형하더라도 상기 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)과 티타늄 코어(300)의 견고한 결합 상태가 유지된다.
한편, 바람직한 일예로, 상기 티타늄 코어(300)의 박판형 몸체의 외측에는 적어도 하나 이상의 요홈부(330)가 형성된다.
요홈부(330)는 박판형의 티타늄 코어(300)가 치조골의 외형에 밀접한 상태를 이루도록 유연한 변형을 가이드한다. 도 4는 이러한 유연한 변형 상태를 예시한다.
요홈부(330)의 개수나 위치는 차폐막(10)이 사용되는 치조골 결손부의 크기나 형상을 고려하여 구성된다.
도 5는 본 발명의 일실시예에 따른 치과 시술용 차폐막의 설치 및 제거 과정을 나타낸 단면 모식도로서, 도면을 참조하여 치과 시술용 차폐막의 설치 및 제거 과정을 설명한다.
도 5는 골 부족의 경우에 임플란트의 픽스쳐(22)가 치조골(2)에 식립된 상태에서 골 결손부(2a)에 골 이식재(32)를 채워 넣고 골 재생이 이뤄지는 과정을 예시한 것이다. 부호 24는 임플란트 스크류 중 커버 스크류를 나타낸다.
먼저, 잇몸(4)을 절개하여 치조골(2)의 골 결손부(2a)를 노출시킨다.
다음으로, 커버 스크류(24)를 픽스쳐(22)로부터 분리하고, 골 이식재(32)를 골 결손부(2a)에 채워 넣는다. 부호 4a,4b는 잇몸 절개부위를 나타낸다.
골 이식재(32)가 채워진 골 결손부(2a)를 차폐막(10)으로 커버한다. 이때, 차폐막(10)은 도 6과 같은 다양한 형상의 차폐막 중에서 골 결손부(2a)의 가장자리를 포함하여 전체적으로 커버할 수 있으면서 티타늄 코어(300)가 적절한 각도와 방향으로 형상 변형 가능한 것을 선택하여 사용한다. 티타늄 코어(300)는 골 결손부(2a)의 형상에 맞추어 시술자가 적절하게 절곡 변형한다.
다음으로, 커버 스크류(24)를 차폐막(10)에 관통시킨 상태에서 픽스쳐(22)에 고정한다. 도 1의 차폐막(10)의 경우, 커버 스크류(24)가 임플란트 스크류 결합용 홀(310)을 관통하여 픽스쳐(22)에 다시 고정된다.
다음으로, 잇몸 절개부위(4a,4b)를 봉합한다.
이후, 골 조직의 성장속도는 개인차가 있으므로, 골 조직의 성장여부를 X-ray로 확인하여, 골 조직이 완전히 재생된 것으로 확인된 후 차폐막(10)을 제거한다. PTFE를 포함하는 비흡수성 차폐막의 경우, 통상적으로 치주 조직 내 삽입 후 6~12개월 사이에 제거가 이뤄지게 된다.
도 7은 본 발명의 또다른 실시예에 따른 치과 시술용 차폐막의 평면 모식도이다.
본 실시예의 상기 티타늄 코어(300)의 홀(350)은 상술한 실시예와 달리 원형 또는 육각형의 홀이 아니라 삼각형, 사각형과 같은 다양한 형상과 크기를 갖도록 구성된다.
이러한 본 실시예의 차폐막(10)에 있어서, 상기 티타늄 코어(300)의 홀(350) 중 적어도 하나는 임플란트용 스크류(24)가 관통 가능한 크기를 갖도록 형성된다.
본 실시예의 차폐막(10)은, 상술한 임플란트 스크류 결합용 홀을 별도로 구비하지 않으며, 픽스쳐(22)에 결합되는 임플란트 스크류(24)가 티타늄 코어(300)의 홀(350) 형성 위치를 관통하고, 상호 부착 상태의 제1 PTFE 멤브레인(100) 및 제2 PTFE 멤브레인(200)에 의해 고정 결합 상태를 유지하도록 구성된다.
본 실시예의 상기 티타늄 코어(300)의 홀(350)의 형상과 개수는 스크류와의 결합과 형상 변형 기능이 제공되는 조건에서 다양하게 변형될 수 있다.
이러한 구성을 취하는 경우, 티타늄 코어(300)의 형상 변형이 더욱 유연하고 다양하게 제공될 수 있다는 장점이 있다.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.

Claims (12)

  1. 2 이상의 홀이 형성된 박판형 몸체를 갖도록 구성되며, 외력에 의한 형상 변형이 가능한 티타늄 코어;
    상기 티타늄 코어의 일측면에 구비되는 제1 PTFE(polytetrafluoroethylene) 멤브레인; 및
    상기 티타늄 코어의 타측면에 구비되는 제2 PTFE 멤브레인;을 포함하며,
    상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 상기 티타늄 코어의 몸체 외측에서 상호 부착 결합을 이루며, 상기 홀 중 적어도 하나 이상의 홀의 내측에서 상호 부착 결합을 이루도록 구성된 것을 특징으로 하는 치과 시술용 차폐막.
  2. 제1항에 있어서,
    상기 티타늄 코어의 홀 중 적어도 하나는 임플란트 스크류 결합용 홀인 것을 특징으로 하는 치과 시술용 차폐막.
  3. 제2항에 있어서,
    상기 임플란트 스크류 결합용 홀은 스크류의 헤드보다 작은 크기를 갖는 것을 특징으로 하는 치과 시술용 차폐막.
  4. 제1항에 있어서,
    상기 티타늄 코어의 홀 중 적어도 하나는 임플란트용 스크류가 관통 가능한 크기를 갖는 것을 특징으로 하는 치과 시술용 차폐막.
  5. 제1항에 있어서,
    상기 티타늄 코어의 박판형 몸체의 외측에는 적어도 하나 이상의 요홈부가 형성된 것을 특징으로 하는 치과 시술용 차폐막.
  6. 제1항에 있어서,
    상기 티타늄 코어는 적어도 하나 이상의 임플란트 스크류 결합용 홀을 구비하고, 적어도 하나 이상의 형상 변형 가이드 홀을 구비한 것을 특징으로 하는 치과 시술용 차폐막.
  7. 제6항에 있어서,
    상기 임플란트 스크류 결합용 홀은 상기 형상 변형 가이드 홀과 이격 형성된 것을 특징으로 하는 치과 시술용 차폐막.
  8. 제6항에 있어서,
    상기 형상 변형 가이드 홀은 복수로 형성되며, 상기 임플란트 스크류 결합용 홀은 2 이상의 형상 변형 가이드 홀 사이에 형성된 것을 특징으로 하는 치과 시술용 차폐막.
  9. 제1항에 있어서,
    상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 상기 티타늄 코어와의 부착이 이뤄지지 않은 상태에서 멤브레인 간의 상호 부착 결합을 이루도록 구성된 것을 특징으로 하는 치과 시술용 차폐막.
  10. 제1항에 있어서,
    상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인은 열융착 또는 초음파 융착에 의한 상호 부착 결합 상태를 갖는 것을 특징으로 하는 치과 시술용 차폐막.
  11. 제1항에 있어서,
    상기 티타늄 코어의 홀 중 적어도 하나는 삼각형 또는 사각형 형상을 갖도록 형성된 것을 특징으로 하는 치과 시술용 차폐막.
  12. 제1항에 있어서,
    상기 티타늄 코어의 홀 형성 위치를 관통한 임플란트 스크류가 상호 부착 상태의 상기 제1 PTFE 멤브레인 및 제2 PTFE 멤브레인에 의해 고정 결합 상태를 유지하도록 구성된 것을 특징으로 하는 치과 시술용 차폐막.
PCT/KR2017/008343 2016-08-02 2017-08-02 치과 시술용 차폐막 WO2018026193A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160098624A KR101731055B1 (ko) 2016-08-02 2016-08-02 치과 시술용 차폐막
KR10-2016-0098624 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018026193A1 true WO2018026193A1 (ko) 2018-02-08

Family

ID=58702819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008343 WO2018026193A1 (ko) 2016-08-02 2017-08-02 치과 시술용 차폐막

Country Status (2)

Country Link
KR (1) KR101731055B1 (ko)
WO (1) WO2018026193A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4268854A1 (fr) * 2022-04-28 2023-11-01 Joseph Nammour Dispositif de regeneration osseuse guidee en titane et procede de fabrication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101731055B1 (ko) * 2016-08-02 2017-04-27 권태수 치과 시술용 차폐막
KR101998847B1 (ko) * 2018-08-08 2019-07-11 (주) 코웰메디 치주조직 재생용 차폐막
KR102146161B1 (ko) * 2018-08-29 2020-08-19 연세대학교 산학협력단 결합돌기가 구비된 치조골 골유도재생용 차폐막

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044449A1 (en) * 2006-08-17 2008-02-21 Mckay William F Medical implant sheets useful for tissue regeneration
US8556990B2 (en) * 2009-02-23 2013-10-15 Barry K. Bartee Reinforced PTFE medical barriers
US20130288199A1 (en) * 2012-04-27 2013-10-31 Shih-Cheng Wen Composite regeneration membrane
WO2016051165A1 (en) * 2014-09-30 2016-04-07 Neoss Limited Surgical membrane
KR101731055B1 (ko) * 2016-08-02 2017-04-27 권태수 치과 시술용 차폐막

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637311B1 (ko) 2015-02-26 2016-07-07 전북대학교산학협력단 유도재생용 타이타늄 차폐막 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044449A1 (en) * 2006-08-17 2008-02-21 Mckay William F Medical implant sheets useful for tissue regeneration
US8556990B2 (en) * 2009-02-23 2013-10-15 Barry K. Bartee Reinforced PTFE medical barriers
US20130288199A1 (en) * 2012-04-27 2013-10-31 Shih-Cheng Wen Composite regeneration membrane
WO2016051165A1 (en) * 2014-09-30 2016-04-07 Neoss Limited Surgical membrane
KR101731055B1 (ko) * 2016-08-02 2017-04-27 권태수 치과 시술용 차폐막

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4268854A1 (fr) * 2022-04-28 2023-11-01 Joseph Nammour Dispositif de regeneration osseuse guidee en titane et procede de fabrication
WO2023208968A1 (fr) * 2022-04-28 2023-11-02 Develop Dispositif de régénération osseuse guidée en titane et procédé de fabrication

Also Published As

Publication number Publication date
KR101731055B1 (ko) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2018026193A1 (ko) 치과 시술용 차폐막
WO2018026194A1 (ko) 치과 시술용 차폐막
Jemt Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: A study of treatment from the time of prosthesis placement to the first annual checkup.
Augthun et al. Healing of bone defects in combination with immediate implants using the membrane technique.
Lekholm et al. Soft tissue and marginal bone conditions at osseointegrated implants that have exposed threads: a 5-year retrospective study.
WO2013025017A2 (ko) 여러 가지 각도로 제작되는 코어크라운을 수용할 수 있으며 캡을 부착하면 힐링어버트먼트의 기능을 하는 어버트먼트와 그를 이용한 임플란트 보철물의 제조방법 및 임플란트 시술방법
FI842733A (fi) Faestanordning foer protestand.
US20140134571A1 (en) Dental Prosthesis And Fabrication
WO2013077672A1 (ko) 힐링 어버트먼트
KR101731541B1 (ko) 치유 어버트먼트
Gitto et al. Evaluation of the peri-implant epithelial tissue of percutaneous implant abutments supporting maxillofacial prostheses.
WO2012157815A1 (ko) 임플란트 수술, 재생 수술 및 수술 술기 교육을 위한 치아 모형
WO2021215851A1 (ko) 치과용 임플란트 보철물결합조립체
WO2016024681A1 (ko) 임플란트용 드릴 및 이를 구비하는 임플란트용 드릴 장치
GB2161080A (en) Article for treatment of periodontal defect
US20160278887A1 (en) Dental implant
WO2024101837A1 (ko) 치과용 힐링 어번트먼트
WO2011040687A1 (ko) 치과 임플란트 시술용 가이드 블록, 가이드 블록 조립체 및 이를 이용한 임플란트 시술 방법
KR101473835B1 (ko) 힐링 어버트먼트에 체결이 가능한 보호 캡
WO2020032607A1 (ko) 치주조직 재생용 차폐막
WO2019103294A1 (ko) 인조치아 고정장치
Holgers et al. Morphologic Evaluation of Clinical Long-Term Percutaneous Titanium Implants.
WO2020197151A2 (ko) 치과 교정용 앵커링 장치 및 시스템
KR101820489B1 (ko) 시술 과정이 감소되는 범용 어버트먼트
McComb Osseointegrated titanium implants for the attachment of facial prostheses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837244

Country of ref document: EP

Kind code of ref document: A1