WO2018025479A1 - Optical lens - Google Patents

Optical lens Download PDF

Info

Publication number
WO2018025479A1
WO2018025479A1 PCT/JP2017/020030 JP2017020030W WO2018025479A1 WO 2018025479 A1 WO2018025479 A1 WO 2018025479A1 JP 2017020030 W JP2017020030 W JP 2017020030W WO 2018025479 A1 WO2018025479 A1 WO 2018025479A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical lens
lens
metallized layer
optical
substrate
Prior art date
Application number
PCT/JP2017/020030
Other languages
French (fr)
Japanese (ja)
Inventor
充 富田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018025479A1 publication Critical patent/WO2018025479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an optical lens.
  • optical communication devices have attracted attention with the demand for higher speed communication.
  • Optical lenses are used in such optical communication devices.
  • Patent Document 1 discloses an optical module in which a lens member is fixed on a mounting substrate with an adhesive. It is known that the optical axis height of the lens member can be aligned by using an adhesive having high adhesiveness for mounting the lens member.
  • Patent Document 2 discloses a lens member in which a lens is incorporated in a metal barrel. A metallized layer is formed on the side surface of the lens barrel.
  • an adhesive containing an organic substance is used in a hermetically sealed optical module casing. Therefore, long-term stability may be impaired due to the influence of gas generated by the volatilization of organic substances contained in the adhesive.
  • the light emitted from the light source is slightly absorbed by the lens member even if the lens member is transparent. Thereby, the lens member generates heat. When the energy density of the irradiated light is high, the lens member becomes high temperature even with slight light absorption.
  • the adhesive is heated and softened to the lens member that has reached a high temperature, and the lens member may be displaced. Further, the lens member may be peeled off from the mounting substrate.
  • the lens member of Patent Document 2 is a glass-only molded body that does not include a metal lens barrel
  • a metallized layer is formed on the side surface of the lens member.
  • the metallized layer is continuously formed on the side surfaces of a plurality of lens members arranged in close contact with each other.
  • the metallized layer reaches the edge of the surface on which the metallized layer is formed. Therefore, when the position of the lens member is confirmed by the camera after the lens member is arranged on the mounting substrate, the position of the edge portion may be difficult to be recognized by the reflected light from the metallized layer at the edge portion. Thus, it may be difficult to confirm the position of the lens member.
  • the lens members when forming the metallized layer, in the step of arranging small lens members without gaps, the lens members may be chipped or cracked due to contact between the lens members. Long-term stability may be impaired by crack growth or the like.
  • An object of the present invention is to provide an optical lens capable of easily confirming a position at the time of mounting and having excellent long-term stability.
  • the optical lens according to the present invention is an optical lens having an optical axis direction, and has a lens forming surface, a top surface and a bottom surface connected to the lens forming surface, and a lens portion formed on the lens forming surface. And a metallized layer formed on the bottom surface of the substrate, the bottom surface of the substrate having first and second edge portions facing each other in a direction perpendicular to the optical axis direction. In the bottom surface, the metallized layer is not formed in the vicinity of the first and second edge portions.
  • the length of the region where the metallized layer is not formed in the direction perpendicular to the optical axis direction is preferably 5% or more and 20% or less of the length in the same direction of the bottom surface.
  • a light shielding film or a light absorbing film may be formed on the upper surface of the base material so as to overlap at least the entire surface of the metallized layer in plan view.
  • the light-shielding film or the light absorption film is also formed outside the outer peripheral edge of the metallized layer in plan view.
  • an optical lens capable of easily confirming the position at the time of mounting and having excellent long-term stability.
  • FIG. 1 is a schematic bottom view showing an optical lens according to the first embodiment of the present invention.
  • FIG. 2 is a schematic front view showing the optical lens according to the first embodiment of the present invention.
  • FIG. 3 is a schematic bottom view showing an optical lens of a comparative example.
  • FIG. 4 is a schematic front view showing an optical lens according to a first modification of the first embodiment of the present invention.
  • FIG. 5 is a schematic bottom view showing an optical lens according to a second modification of the first embodiment of the present invention.
  • FIGS. 6A and 6B are schematic cross-sectional views for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention.
  • FIG. 7 is a schematic plan view for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention.
  • FIG. 8 is a schematic side view for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention.
  • FIG. 9 is a schematic front view showing an optical lens according to the second embodiment of the present invention.
  • FIG. 10 is a schematic plan view showing an optical lens according to the second embodiment of the present invention.
  • FIG. 11 is a schematic plan view showing an optical lens according to the third embodiment of the present invention.
  • FIG. 1 is a schematic bottom view showing an optical lens according to the first embodiment of the present invention.
  • FIG. 2 is a schematic front view showing the optical lens according to the first embodiment.
  • a metallized layer to be described later is indicated by hatching. The same applies to FIGS. 3 to 5, 8, and 9 to be described later.
  • the optical lens 1 has an optical axis direction y.
  • the optical lens 1 includes a base material 2 having first and second lens forming surfaces 2a and 2b facing each other in the optical axis direction y.
  • a first lens portion 3 is formed on the first lens forming surface 2a
  • a second lens portion 4 is formed on the second lens forming surface 2b.
  • the first and second lens portions 3 and 4 are convex lenses.
  • the optical lens 1 should just have at least 1 lens part.
  • the substrate 2 has a bottom surface 2c connected to the first and second lens forming surfaces 2a and 2b.
  • the bottom surface 2c includes first and second edge portions 2c1 and 2c2 that face each other in a direction x perpendicular to the optical axis direction y.
  • the bottom surface 2c has third and fourth end edges 2c3 and 2c4 connecting the first and second end edges 2c1 and 2c2.
  • the third edge 2c3 is located on the first lens forming surface 2a side, and the fourth edge 2c4 is located on the second lens forming surface 2b side.
  • the direction x is a direction parallel to the bottom surface 2c.
  • the base material 2 has an upper surface 2d that faces the bottom surface 2c.
  • the upper surface 2d has first and second edge portions 2d1 and 2d2 that face each other in the direction x.
  • the first edge portions 2d1 and 2c1 of the upper surface 2d and the bottom surface 2c overlap each other in plan view.
  • the second end edges 2d2 and 2c2 of the upper surface 2d and the bottom surface 2c also overlap.
  • the dimension along the direction x of the optical lens 1 is defined as the width, and the dimension along the direction z perpendicular to the optical axis direction y and the direction x is defined as the height.
  • the optical lens 1 has a width of 1 mm and a height of 1 mm.
  • the size of the optical lens 1 is not particularly limited.
  • the base material 2 can be comprised with glass, ceramics, a semiconductor, resin, etc., for example. But it is preferable that the base material 2 consists of glass. Examples of the glass used for the substrate 2 include B 2 O 3 —ZnO—La 2 O 3 glass, TeO 2 —B 2 O 3 —WO 3 —La 2 O 3 glass, and the like.
  • the transmittance of light having a wavelength of 400 nm to 1600 nm of the substrate 2 is preferably 70% or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 99% or more.
  • the transmittance is less than 70%, the light collection efficiency tends to decrease due to light scattering and absorption.
  • the metallized layer 5 is formed on the bottom surface 2c of the substrate 2.
  • the metallized layer 5 has an outer peripheral edge 5g.
  • the optical lens 1 is bonded to a mounting substrate for an optical device or the like via the metallized layer 5.
  • the optical lens 1 can be bonded to a mounting substrate or the like by melting the metallized layer 5 by, for example, laser light irradiation.
  • the metallized layer 5 is a laminated metal film in which a plurality of metal films are laminated. More specifically, the metallized layer 5 is a laminated metal film in which a Cr layer, a Pd layer, and an AuSn alloy layer are laminated in this order from the bottom surface 2c side.
  • a Ni layer, a Ti layer, or a Pt layer may be used instead of or in addition to the Pd layer.
  • the kind of metal which comprises the metallization layer 5 is not limited above.
  • the thickness of the metallized layer 5 is preferably 0.2 ⁇ m or more, and more preferably 0.5 ⁇ m or more. Thereby, a sufficient bonding force can be obtained.
  • the thickness of the metallized layer 5 is preferably 2.0 ⁇ m or less. Thereby, the inclination of the optical lens 1 at the time of joining can be suppressed.
  • the arithmetic average roughness (Ra) of the bottom surface 2c of the substrate 2 is preferably 0.005 ⁇ m or more, more preferably 0.007 ⁇ m or more, and further preferably 0.010 ⁇ m or more.
  • the contact area between the bottom surface 2c and the metallized layer 5 can be increased, and the bonding force can be further increased. Even if the thickness of the metallized layer 5 is reduced, the bonding force can be sufficient, so that the inclination of the optical lens 1 during bonding can be suppressed.
  • the arithmetic average roughness (Ra) of the bottom surface 2c of the substrate 2 is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • the arithmetic average roughness (Ra) of the upper surface 2d of the substrate 2 is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.0 ⁇ m or less. In this case, problems such as difficulty in press molding of the first and second lens portions 3 and 4 hardly occur.
  • arithmetic mean roughness (Ra) shows arithmetic mean roughness (Ra) prescribed
  • the bottom surface 2c includes a first metallized layer non-formation region A1 located in the vicinity of the first edge 2c1, and a second metallization layer non-formation region A2 located in the vicinity of the second edge 2c2.
  • the metallized layer 5 is not formed in the first and second metallized layer non-forming regions A1 and A2. In the present embodiment, the metallized layer 5 does not reach the third and fourth edge portions 2c3 and 2c4.
  • the feature of the present embodiment is that the metallized layer 5 is formed on the bottom surface 2c, and the bottom surface 2c has first and second metallized non-formation regions A1 and A2. As a result, the position can be easily confirmed at the time of mounting, and the long-term stability is excellent. Details of this effect will be described below.
  • the optical lens 1 is arranged on a mounting substrate by a transport collet, for example, when mounted on a mounting substrate for an optical device. After being placed on the mounting substrate, the position of the optical lens 1 is confirmed by the camera from the upper surface 2d side. In general, the position of the object is confirmed based on the luminance difference between the object whose position is to be confirmed and its surroundings. For example, a portion where the luminance difference exceeds a certain threshold is recognized as the outer periphery of the object. Note that in this specification, luminance refers to the intensity of light received by a camera. Below, this embodiment and the following comparative example are compared about the ease of performing the position confirmation by a camera.
  • FIG. 3 is a schematic bottom view showing an optical lens of a comparative example.
  • the metallized layer 105 reaches the first and second end edges 2c1 and 2c2 of the bottom surface 2c of the base material 2.
  • the metallized layer 105 reflects light strongly.
  • the optical lens 101 is imaged by the camera from the upper surface side of the substrate 2, the reflected light from the metallized layer 105 that has passed through the substrate 2 is also received by the camera.
  • the portion where the metallized layer 105 is formed and the periphery thereof are recognized as portions where the luminance is uniformly high.
  • the high luminance portion includes the first and second end edges 2c1 and 2c2 of the bottom surface 2c, the first and second end edges of the top surface, and the periphery thereof. Therefore, the brightness difference between the first and second end edge portions 2c1 and 2c2 of the bottom surface 2c and the first and second end edge portions of the upper surface and the periphery thereof does not increase, and the position of the optical lens 101 is confirmed. hard.
  • the length of the first metallized layer non-forming region A1 along the direction x from the first edge 2c1 is preferably 5% or more of the length along the direction x of the bottom surface 2c.
  • the length of the second metallized layer non-forming region A2 along the direction x from the second edge 2c2 is preferably 5% or more of the length along the direction x of the bottom surface 2c.
  • the length of the first metallized layer non-forming region A1 along the direction x from the first edge 2c1 is preferably 20% or less of the length along the direction x of the bottom surface 2c, preferably 10% or less. It is more preferable that The length along the direction x from the second end edge 2c2 of the second metallized layer non-forming region A2 is preferably 20% or less of the length along the direction x of the bottom surface 2c, and is preferably 10% or less. It is more preferable that Thereby, the bonding force of the optical lens 1 to the mounting substrate or the like can be increased.
  • the length of the shortest portion along the direction x from the first edge 2c1 of the first metallized layer non-forming region A1 is preferably 10 ⁇ m or more and 200 ⁇ m or less, preferably 20 ⁇ m or more, More preferably, it is 100 ⁇ m or less.
  • the length of the shortest portion along the direction x from the first edge 2c2 of the second metallized layer non-formation region A2 is preferably 10 ⁇ m or more and 200 ⁇ m or less, preferably 20 ⁇ m or more and 100 ⁇ m or less. It is more preferable that Thereby, the position of the optical lens 1 at the time of mounting can be confirmed more reliably, and the bonding force at the time of mounting can be increased.
  • the optical lens 1 can be bonded to the mounting substrate through the metallized layer 5, it can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 1 is excellent in long-term stability when mounted.
  • the ratio of the area of the metallized layer 5 to the area of the bottom surface 2c when viewed from the bottom surface 2c side of the substrate 2 is preferably 36% or more, and more preferably 50% or more. Thereby, the bonding force of the optical lens 1 to the mounting substrate or the like can be increased.
  • the ratio of the area of the metallized layer 5 to the area of the bottom surface 2c is preferably 95% or less, and more preferably 90% or less. Thereby, the position of the optical lens 1 at the time of mounting can be easily confirmed. In order to increase the bonding force of the optical lens 1 to the mounting substrate or the like, it is preferable to bond the optical lens 1 while applying a load.
  • the metallized layer 5 can be optically bonded even when bonded to a mounting substrate or the like while applying a load to the optical lens 1. It is possible to prevent leakage from the lens 1.
  • the base material 32 may be chamfered like the 1st modification of 1st Embodiment shown in FIG.
  • the base material 32 has side surfaces 32e and 32f that are connected to the bottom surface 32c and the first lens forming surface 32a and that face each other.
  • the chamfered portion of the bottom surface 32c and the portion where the side surfaces 32e and 32f are connected are the first and second end edge portions 32c1 and 32c2.
  • the chamfer is chamfered, chipping of the base material 32 hardly occurs.
  • the metallized layer 5 does not reach the third and fourth edge portions 2c3 and 2c4 of the bottom surface 2c, but the second modification of the first embodiment shown in FIG. As described above, the metallized layer 45 may reach the third and fourth edge portions 2c3 and 2c4.
  • FIG. 6A and FIG. 6B are schematic cross-sectional views for explaining an example of the manufacturing method of the optical lens according to the first embodiment.
  • FIG. 7 is a schematic plan view for explaining an example of the manufacturing method of the optical lens according to the first embodiment.
  • FIG. 8 is a schematic side view for explaining an example of the manufacturing method of the optical lens according to the first embodiment.
  • the side surface in FIG. 8 shows the metallized layer formation surface mentioned later.
  • a mother substrate 2A having first and second main surfaces 2Aa and 2Ab is prepared.
  • press molding of the mother substrate 2A is performed using the molds 7A and 7B.
  • a plurality of first lens portions 3 are formed on the first main surface 2Aa of the mother substrate 2A, and a plurality of second lens portions are formed on the second main surface 2Ab. 4 is formed.
  • the first and second lens portions 3 and 4 may be formed in a portion other than the cross section shown in FIG. 6B, for example, as shown in FIG. In this case, dicing is performed along the dicing line II. Dicing may be performed using, for example, a dicing saw or the like, or may be performed by laser scribing. Thereby, a metallized layer forming surface is formed.
  • the metallized layer forming surface is a surface corresponding to the bottom surface 2c of the optical lens 1 of the first embodiment shown in FIG. Blasting or the like may be performed on the metallized layer forming surface so that the metallized layer forming surface has an arithmetic average roughness (Ra) within the above-described range.
  • a plurality of metallized layers 5 are formed on the metallized layer forming surface 2Ac.
  • a plurality of metallized layers 5 are formed so that the outer peripheral edge 5g of each metallized layer 5 does not reach the outer peripheral edges of the dicing line II-II and the mother substrate 2A.
  • the metallized layer 5 can be formed by, for example, a sputtering method or a vapor deposition method.
  • a resist pattern may be formed on the metallized layer forming surface 2Ac by a photolithography method, and the plurality of metallized layers 5 may be formed using the resist pattern.
  • Dicing is performed along the dicing line II-II.
  • Dicing may be performed using, for example, a dicing saw or the like, or may be performed by laser scribing. Thereby, a plurality of optical lenses 1 can be obtained.
  • FIG. 9 is a schematic front view showing an optical lens according to the second embodiment.
  • FIG. 10 is a schematic plan view showing an optical lens according to the second embodiment.
  • a light shielding film described later is indicated by broken-line hatching.
  • the optical lens 11 is different from the first embodiment in that a light shielding film 16 is formed on the upper surface 2d of the substrate 2. Except for the above points, the optical lens 11 has the same configuration as the optical lens 1 according to the first embodiment.
  • an appropriate metal or semiconductor can be used.
  • metals include Cr, Ti, Ni, Al and the like.
  • semiconductors include Ge and Si.
  • the light shielding film 16 is formed so as to overlap the entire surface of the metallized layer 5 in plan view.
  • the reflected light from the metallized layer 5 toward the camera side can be shielded by the light shielding film 16. Therefore, the luminance difference between the first and second end edges 2d1, 2c1, 2d2, and 2c2 of the top surface 2d and the bottom surface 2c shown in FIG. Therefore, the position of the optical lens 11 at the time of mounting can be confirmed more reliably.
  • the light shielding film 16 is preferably formed so as to overlap at least part of the first and second metallized layer non-forming regions A1 and A2 in plan view. More preferably, the light shielding film 16 is also formed outside the outer peripheral edge 5g of the metallized layer 5 in a plan view as in the present embodiment. As a result, the reflected light from the metallized layer 5 toward the camera can be more reliably shielded.
  • the light shielding film 16 does not reach the first and second end edges 2d1 and 2d2 of the upper surface 2d. This makes it easier to confirm the position of the optical lens 11 during mounting.
  • the optical lens 11 can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 11 is excellent in long-term stability when mounted.
  • FIG. 11 is a schematic plan view showing an optical lens according to the third embodiment.
  • a light absorption film described later is indicated by broken line hatching.
  • the optical lens 21 is different from the second embodiment in that a light absorbing film 26 is formed on the upper surface 2d of the substrate 2. Except for the above points, the optical lens 21 has the same configuration as the optical lens 11 according to the second embodiment.
  • an appropriate semiconductor or nitride can be used.
  • semiconductors include Ge and Si.
  • nitrides include AlN, SiN, and CrN.
  • the light absorbing film 26 is disposed at the same position as the light shielding film 16 in the second embodiment. More specifically, the light absorption film 26 is formed so as to overlap the entire surface of the metallized layer 5 in plan view. Accordingly, when the position is confirmed by the camera from the upper surface 2d side, the reflected light from the metallized layer 5 toward the camera side is absorbed by the light absorption film 26. Therefore, it is possible to block the reflected light toward the camera side. Therefore, as in the second embodiment, the position of the optical lens 21 at the time of mounting can be confirmed more reliably.
  • the light absorbing film 26 is preferably formed so as to overlap at least part of the first and second metallized layer non-forming regions A1 and A2 in plan view. More preferably, as in the present embodiment, it is desirable that the light absorption film 26 is also formed outside the outer peripheral edge 5g of the metallized layer 5 in plan view. As a result, the reflected light from the metallized layer 5 toward the camera can be more reliably shielded.
  • the light absorption film 26 does not reach the first and second end edges 2d1 and 2d2 of the upper surface 2d. This makes it easier to check the position of the optical lens 21 during mounting.
  • the optical lens 21 can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 21 is excellent in long-term stability when mounted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Light Receiving Elements (AREA)

Abstract

Provided is an optical lens that allows easy checking of a position thereof during implementation and that has excellent long-term stability. An optical lens 1 having an optical axis direction y is characterized by being provided with: a substrate 2 having a first lens forming surface 2a, an upper surface 2d and a bottom surface 2c that are connected to the first lens forming surface 2a, and a first lens part 3 formed on the first lens forming surface 2a; and a metallization layer 5 formed on the bottom surface 2c of the substrate 2, wherein the bottom surface 2c of the substrate 2 has first and second edge parts 2c1, 2c2 opposing each other in a direction x perpendicular to the optical axis direction y, and the metallization layer 5 is not formed, on the bottom surface 2c and in the vicinities of the first and second edge parts 2c1, 2c2.

Description

光学レンズOptical lens
 本発明は、光学レンズに関するものである。 The present invention relates to an optical lens.
 近年、通信のさらなる高速化の需要に伴い、光通信デバイスが注目を集めている。このような光通信デバイス等に、光学レンズが用いられている。 In recent years, optical communication devices have attracted attention with the demand for higher speed communication. Optical lenses are used in such optical communication devices.
 例えば、下記の特許文献1には、レンズ部材が接着剤により実装基板上に固定された、光モジュールが開示されている。レンズ部材の実装に粘着性が高い接着剤を用いることにより、レンズ部材の光軸高さの調芯が可能となることが知られている。下記の特許文献2には、金属製の鏡筒にレンズが組み込まれたレンズ部材が開示されている。鏡筒の側面には、メタライズ層が形成されている。 For example, Patent Document 1 below discloses an optical module in which a lens member is fixed on a mounting substrate with an adhesive. It is known that the optical axis height of the lens member can be aligned by using an adhesive having high adhesiveness for mounting the lens member. The following Patent Document 2 discloses a lens member in which a lens is incorporated in a metal barrel. A metallized layer is formed on the side surface of the lens barrel.
特開2008-026462号公報JP 2008-026462 A 特開2008-203418号公報JP 2008-203418 A
 特許文献1に記載の光モジュールでは、気密封止された光モジュールの筐体内において、有機物を含む接着剤が用いられている。そのため、接着剤に含まれた有機物の揮発によって発生したガスの影響により、長期安定性が損なわれるおそれがある。 In the optical module described in Patent Document 1, an adhesive containing an organic substance is used in a hermetically sealed optical module casing. Therefore, long-term stability may be impaired due to the influence of gas generated by the volatilization of organic substances contained in the adhesive.
 光源から照射された光は、レンズ部材が透明であっても、レンズ部材にわずかに吸収される。それによって、レンズ部材は発熱する。照射される光のエネルギー密度が高い場合には、わずかな光吸収であってもレンズ部材が高温となる。特許文献1の光モジュールにおいては、高温となったレンズ部材に接着剤が加熱されて軟化し、レンズ部材に位置ずれが生じるおそれがある。さらに、レンズ部材が実装基板から剥離するおそれもある。 The light emitted from the light source is slightly absorbed by the lens member even if the lens member is transparent. Thereby, the lens member generates heat. When the energy density of the irradiated light is high, the lens member becomes high temperature even with slight light absorption. In the optical module of Patent Document 1, the adhesive is heated and softened to the lens member that has reached a high temperature, and the lens member may be displaced. Further, the lens member may be peeled off from the mounting substrate.
 近年、レンズ部材のより一層の小型化が求められている。特許文献2に記載されたレンズ部材の鏡筒の場合には、例えば、1mm程度またはそれ以下のサイズとすることが求められる。このような小型の鏡筒に高精度にレンズを組み込むことは非常に困難である。 In recent years, there has been a demand for further miniaturization of lens members. In the case of the lens barrel of the lens member described in Patent Document 2, for example, a size of about 1 mm 3 or less is required. It is very difficult to incorporate a lens in such a small lens barrel with high accuracy.
 また、特許文献2のレンズ部材を、金属製の鏡筒を含まないガラスのみの成形体とした場合においても、レンズ部材の側面にはメタライズ層が形成されている。このレンズ部材の製造工程において、メタライズ層は、互いに密着するように並べられた複数のレンズ部材の側面に連続して形成される。各レンズ部材において、メタライズ層は、メタライズ層が形成された面の端縁部に至っている。そのため、レンズ部材を実装基板上に配置した後に、レンズ部材の位置をカメラにより確認する際、端縁部におけるメタライズ層からの反射光により、端縁部の位置を画像認識され難いことがある。このように、レンズ部材の位置確認が困難となることがある。 Even when the lens member of Patent Document 2 is a glass-only molded body that does not include a metal lens barrel, a metallized layer is formed on the side surface of the lens member. In this lens member manufacturing process, the metallized layer is continuously formed on the side surfaces of a plurality of lens members arranged in close contact with each other. In each lens member, the metallized layer reaches the edge of the surface on which the metallized layer is formed. Therefore, when the position of the lens member is confirmed by the camera after the lens member is arranged on the mounting substrate, the position of the edge portion may be difficult to be recognized by the reflected light from the metallized layer at the edge portion. Thus, it may be difficult to confirm the position of the lens member.
 さらに、メタライズ層形成の際に、小型のレンズ部材を隙間なく並べる工程においては、レンズ部材同士の接触等により、レンズ部材に欠けやクラックが発生するおそれがある。クラックの成長等により、長期安定性が損なわれるおそれもある。 Furthermore, when forming the metallized layer, in the step of arranging small lens members without gaps, the lens members may be chipped or cracked due to contact between the lens members. Long-term stability may be impaired by crack growth or the like.
 本発明の目的は、実装時の位置確認を容易に行うことができ、かつ長期安定性に優れる、光学レンズを提供することにある。 An object of the present invention is to provide an optical lens capable of easily confirming a position at the time of mounting and having excellent long-term stability.
 本発明に係る光学レンズは、光軸方向を有する光学レンズであって、レンズ形成面と、レンズ形成面に接続されている上面及び底面とを有し、かつレンズ形成面に形成されたレンズ部を有する基材と、基材の底面上に形成されているメタライズ層とを備え、基材の底面が、光軸方向に垂直な方向において対向する第1,第2の端縁部を有し、底面において、第1,第2の端縁部の近傍にメタライズ層が形成されていないことを特徴としている。 The optical lens according to the present invention is an optical lens having an optical axis direction, and has a lens forming surface, a top surface and a bottom surface connected to the lens forming surface, and a lens portion formed on the lens forming surface. And a metallized layer formed on the bottom surface of the substrate, the bottom surface of the substrate having first and second edge portions facing each other in a direction perpendicular to the optical axis direction. In the bottom surface, the metallized layer is not formed in the vicinity of the first and second edge portions.
 本発明において、光軸方向に垂直な方向におけるメタライズ層が形成されていない領域の長さが、底面の同方向における長さの5%以上、20%以下であることが好ましい。 In the present invention, the length of the region where the metallized layer is not formed in the direction perpendicular to the optical axis direction is preferably 5% or more and 20% or less of the length in the same direction of the bottom surface.
 本発明において、平面視において、少なくともメタライズ層の全面に重なるように、基材の上面上に遮光膜または光吸収膜が形成されていてもよい。この場合には、平面視において、遮光膜または光吸収膜が、メタライズ層の外周縁より外側にも形成されていることが好ましい。 In the present invention, a light shielding film or a light absorbing film may be formed on the upper surface of the base material so as to overlap at least the entire surface of the metallized layer in plan view. In this case, it is preferable that the light-shielding film or the light absorption film is also formed outside the outer peripheral edge of the metallized layer in plan view.
 本発明によれば、実装時の位置確認を容易に行うことができ、かつ長期安定性に優れる、光学レンズを提供することができる。 According to the present invention, it is possible to provide an optical lens capable of easily confirming the position at the time of mounting and having excellent long-term stability.
図1は、本発明の第1の実施形態に係る光学レンズを示す模式的底面図である。FIG. 1 is a schematic bottom view showing an optical lens according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る光学レンズを示す模式的正面図である。FIG. 2 is a schematic front view showing the optical lens according to the first embodiment of the present invention. 図3は、比較例の光学レンズを示す模式的底面図である。FIG. 3 is a schematic bottom view showing an optical lens of a comparative example. 図4は、本発明の第1の実施形態の第1の変形例に係る光学レンズを示す模式的正面図である。FIG. 4 is a schematic front view showing an optical lens according to a first modification of the first embodiment of the present invention. 図5は、本発明の第1の実施形態の第2の変形例に係る光学レンズを示す模式的底面図である。FIG. 5 is a schematic bottom view showing an optical lens according to a second modification of the first embodiment of the present invention. 図6(a)及び図6(b)は、本発明の第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的断面図である。FIGS. 6A and 6B are schematic cross-sectional views for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的平面図である。FIG. 7 is a schematic plan view for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的側面図である。FIG. 8 is a schematic side view for explaining an example of the manufacturing method of the optical lens according to the first embodiment of the present invention. 図9は、本発明の第2の実施形態に係る光学レンズを示す模式的正面図である。FIG. 9 is a schematic front view showing an optical lens according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態に係る光学レンズを示す模式的平面図である。FIG. 10 is a schematic plan view showing an optical lens according to the second embodiment of the present invention. 図11は、本発明の第3の実施形態に係る光学レンズを示す模式的平面図である。FIG. 11 is a schematic plan view showing an optical lens according to the third embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る光学レンズを示す模式的底面図である。図2は、第1の実施形態に係る光学レンズを示す模式的正面図である。なお、図1及び図2においては、後述するメタライズ層を斜線のハッチングにより示す。後に示す図3~図5、図8、図9においても同様である。
(First embodiment)
FIG. 1 is a schematic bottom view showing an optical lens according to the first embodiment of the present invention. FIG. 2 is a schematic front view showing the optical lens according to the first embodiment. In FIG. 1 and FIG. 2, a metallized layer to be described later is indicated by hatching. The same applies to FIGS. 3 to 5, 8, and 9 to be described later.
 図1に示すように、本実施形態に係る光学レンズ1は、光軸方向yを有する。光学レンズ1は、光軸方向yにおいて互いに対向し合う第1,第2のレンズ形成面2a,2bを有する、基材2を備える。第1のレンズ形成面2aには第1のレンズ部3が形成されており、第2のレンズ形成面2bには第2のレンズ部4が形成されている。本実施形態では、第1,第2のレンズ部3,4は凸レンズである。なお、光学レンズ1は、レンズ部を少なくとも1つ有していればよい。 As shown in FIG. 1, the optical lens 1 according to the present embodiment has an optical axis direction y. The optical lens 1 includes a base material 2 having first and second lens forming surfaces 2a and 2b facing each other in the optical axis direction y. A first lens portion 3 is formed on the first lens forming surface 2a, and a second lens portion 4 is formed on the second lens forming surface 2b. In the present embodiment, the first and second lens portions 3 and 4 are convex lenses. In addition, the optical lens 1 should just have at least 1 lens part.
 基材2は、第1,第2のレンズ形成面2a,2bに接続されている底面2cを有する。底面2cは、光軸方向yに垂直な方向xにおいて互いに対向し合う第1,第2の端縁部2c1,2c2を有する。底面2cは、第1,第2の端縁部2c1,2c2を接続する第3,第4の端縁部2c3,2c4を有する。第3の端縁部2c3は第1のレンズ形成面2a側に位置しており、第4の端縁部2c4は第2のレンズ形成面2b側に位置している。なお、方向xは底面2cに平行な方向である。 The substrate 2 has a bottom surface 2c connected to the first and second lens forming surfaces 2a and 2b. The bottom surface 2c includes first and second edge portions 2c1 and 2c2 that face each other in a direction x perpendicular to the optical axis direction y. The bottom surface 2c has third and fourth end edges 2c3 and 2c4 connecting the first and second end edges 2c1 and 2c2. The third edge 2c3 is located on the first lens forming surface 2a side, and the fourth edge 2c4 is located on the second lens forming surface 2b side. The direction x is a direction parallel to the bottom surface 2c.
 図2に示すように、基材2は、底面2cに対向している上面2dを有する。上面2dは、方向xにおいて互いに対向し合う第1,第2の端縁部2d1,2d2を有する。本実施形態においては、平面視において、上面2d及び底面2cの第1の端縁部2d1,2c1は重なっている。上面2d及び底面2cの第2の端縁部2d2,2c2も重なっている。 As shown in FIG. 2, the base material 2 has an upper surface 2d that faces the bottom surface 2c. The upper surface 2d has first and second edge portions 2d1 and 2d2 that face each other in the direction x. In the present embodiment, the first edge portions 2d1 and 2c1 of the upper surface 2d and the bottom surface 2c overlap each other in plan view. The second end edges 2d2 and 2c2 of the upper surface 2d and the bottom surface 2c also overlap.
 ここで、光学レンズ1の、方向xに沿う寸法を幅とし、光軸方向y及び方向xに垂直な方向zに沿う寸法を高さとする。このとき、本実施形態では、光学レンズ1の幅は1mmであり、高さは1mmである。なお、光学レンズ1のサイズは、特に限定されない。 Here, the dimension along the direction x of the optical lens 1 is defined as the width, and the dimension along the direction z perpendicular to the optical axis direction y and the direction x is defined as the height. At this time, in this embodiment, the optical lens 1 has a width of 1 mm and a height of 1 mm. The size of the optical lens 1 is not particularly limited.
 基材2は、例えば、ガラス、セラミックス、半導体または樹脂等により構成することができる。もっとも、基材2はガラスからなることが好ましい。基材2に用いられるガラスとしては、例えば、B-ZnO-La系ガラスやTeO-B-WO-La系ガラス等を挙げることができる。 The base material 2 can be comprised with glass, ceramics, a semiconductor, resin, etc., for example. But it is preferable that the base material 2 consists of glass. Examples of the glass used for the substrate 2 include B 2 O 3 —ZnO—La 2 O 3 glass, TeO 2 —B 2 O 3 —WO 3 —La 2 O 3 glass, and the like.
 基材2の、波長400nm~1600nmの光の透過率は、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましく、99%以上が最も好ましい。透過率が70%未満である場合、光の散乱や吸収により、集光効率が低くなる傾向がある。 The transmittance of light having a wavelength of 400 nm to 1600 nm of the substrate 2 is preferably 70% or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 99% or more. When the transmittance is less than 70%, the light collection efficiency tends to decrease due to light scattering and absorption.
 基材2の底面2c上には、メタライズ層5が形成されている。メタライズ層5は外周縁5gを有する。光学レンズ1は、メタライズ層5を介して、光学デバイス用の実装基板等に接合される。光学レンズ1は、例えば、レーザー光の照射によりメタライズ層5を溶融させ、実装基板等に接合することができる。本実施形態では、メタライズ層5は、複数の金属膜が積層された積層金属膜である。より具体的には、メタライズ層5は、底面2c側から、Cr層、Pd層及びAuSn合金層がこの順序で積層された積層金属膜である。上記Pd層の代わりに、または上記Pd層に加えて、Ni層、Ti層またはPt層が用いられてもよい。なお、メタライズ層5を構成する金属の種類は、上記に限定されない。 The metallized layer 5 is formed on the bottom surface 2c of the substrate 2. The metallized layer 5 has an outer peripheral edge 5g. The optical lens 1 is bonded to a mounting substrate for an optical device or the like via the metallized layer 5. The optical lens 1 can be bonded to a mounting substrate or the like by melting the metallized layer 5 by, for example, laser light irradiation. In the present embodiment, the metallized layer 5 is a laminated metal film in which a plurality of metal films are laminated. More specifically, the metallized layer 5 is a laminated metal film in which a Cr layer, a Pd layer, and an AuSn alloy layer are laminated in this order from the bottom surface 2c side. A Ni layer, a Ti layer, or a Pt layer may be used instead of or in addition to the Pd layer. In addition, the kind of metal which comprises the metallization layer 5 is not limited above.
 メタライズ層5の厚みは、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましい。それによって、十分な接合力を得ることができる。メタライズ層5の厚みは、2.0μm以下であることが好ましい。それによって、接合に際しての光学レンズ1の傾きを抑制することができる。 The thickness of the metallized layer 5 is preferably 0.2 μm or more, and more preferably 0.5 μm or more. Thereby, a sufficient bonding force can be obtained. The thickness of the metallized layer 5 is preferably 2.0 μm or less. Thereby, the inclination of the optical lens 1 at the time of joining can be suppressed.
 基材2の底面2cの算術平均粗さ(Ra)は、0.005μm以上であることが好ましく、0.007μm以上であることがより好ましく、0.010μm以上であることがさらに好ましい。それによって、底面2cとメタライズ層5との接触面積を大きくすることができ、接合力をより一層高めることができる。メタライズ層5の厚みを薄くしても接合力を十分とすることができるため、接合に際しての光学レンズ1の傾きを抑制することができる。 The arithmetic average roughness (Ra) of the bottom surface 2c of the substrate 2 is preferably 0.005 μm or more, more preferably 0.007 μm or more, and further preferably 0.010 μm or more. Thereby, the contact area between the bottom surface 2c and the metallized layer 5 can be increased, and the bonding force can be further increased. Even if the thickness of the metallized layer 5 is reduced, the bonding force can be sufficient, so that the inclination of the optical lens 1 during bonding can be suppressed.
 基材2の底面2cの算術平均粗さ(Ra)は、2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることがさらに好ましい。それによって、第1,第2のレンズ部3,4のプレス成形が困難となる等の問題が生じ難い。 The arithmetic average roughness (Ra) of the bottom surface 2c of the substrate 2 is preferably 2.0 μm or less, more preferably 1.5 μm or less, and even more preferably 1.0 μm or less. As a result, problems such as difficulty in press molding of the first and second lens portions 3 and 4 hardly occur.
 基材2の上面2dの算術平均粗さ(Ra)は、2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることがさらに好ましい。この場合には、第1,第2のレンズ部3,4のプレス成形が困難となる等の問題が生じ難い。なお、本明細書では、算術平均粗さ(Ra)は、JIS B 0601:2013において規定される算術平均粗さ(Ra)を示す。 The arithmetic average roughness (Ra) of the upper surface 2d of the substrate 2 is preferably 2.0 μm or less, more preferably 1.5 μm or less, and even more preferably 1.0 μm or less. In this case, problems such as difficulty in press molding of the first and second lens portions 3 and 4 hardly occur. In addition, in this specification, arithmetic mean roughness (Ra) shows arithmetic mean roughness (Ra) prescribed | regulated in JISB0601: 2013.
 底面2cは、第1の端縁部2c1の近傍に位置する第1のメタライズ層非形成領域A1と、第2の端縁部2c2の近傍に位置する第2のメタライズ層非形成領域A2とを有する。第1,第2のメタライズ層非形成領域A1,A2には、メタライズ層5は形成されていない。本実施形態では、メタライズ層5は第3,第4の端縁部2c3,2c4にも至っていない。 The bottom surface 2c includes a first metallized layer non-formation region A1 located in the vicinity of the first edge 2c1, and a second metallization layer non-formation region A2 located in the vicinity of the second edge 2c2. Have. The metallized layer 5 is not formed in the first and second metallized layer non-forming regions A1 and A2. In the present embodiment, the metallized layer 5 does not reach the third and fourth edge portions 2c3 and 2c4.
 本実施形態の特徴は、底面2cにメタライズ層5が形成されており、かつ底面2cが第1,第2のメタライズ非形成領域A1,A2を有することにある。それによって、実装時の位置確認を容易に行うことができ、かつ長期安定性に優れる。この効果の詳細を、以下において説明する。 The feature of the present embodiment is that the metallized layer 5 is formed on the bottom surface 2c, and the bottom surface 2c has first and second metallized non-formation regions A1 and A2. As a result, the position can be easily confirmed at the time of mounting, and the long-term stability is excellent. Details of this effect will be described below.
 光学レンズ1は、光学デバイス用の実装基板への実装の際、例えば、搬送コレットにより実装基板上に配置される。実装基板上に配置された後、上面2d側から、カメラにより光学レンズ1の位置が確認される。一般的に、位置確認を行う対象と、その周囲との輝度差等に基づき、上記対象の位置が確認される。例えば、輝度差が一定の閾値を超えている部分が、上記対象の外周縁として画像認識される。なお、本明細書において、輝度とは、カメラが受光した光の強度をいう。以下において、カメラによる位置確認の行い易さについて、本実施形態と、下記の比較例とを比較する。 The optical lens 1 is arranged on a mounting substrate by a transport collet, for example, when mounted on a mounting substrate for an optical device. After being placed on the mounting substrate, the position of the optical lens 1 is confirmed by the camera from the upper surface 2d side. In general, the position of the object is confirmed based on the luminance difference between the object whose position is to be confirmed and its surroundings. For example, a portion where the luminance difference exceeds a certain threshold is recognized as the outer periphery of the object. Note that in this specification, luminance refers to the intensity of light received by a camera. Below, this embodiment and the following comparative example are compared about the ease of performing the position confirmation by a camera.
 図3は、比較例の光学レンズを示す模式的底面図である。比較例の光学レンズ101においては、メタライズ層105が、基材2の底面2cの第1,第2の端縁部2c1,2c2に至っている。メタライズ層105は光を強く反射する。光学レンズ101を基材2の上面側からカメラにより撮像する場合、基材2を透過したメタライズ層105からの反射光もカメラに受光される。カメラには、メタライズ層105が形成されている部分及びその周囲は、一様に輝度が高い部分として画像認識される。この輝度が高い部分には、底面2cの第1,第2の端縁部2c1,2c2、上面の第1,第2の端縁部及びその周囲も含まれる。そのため、底面2cの第1,第2の端縁部2c1,2c2及び上面の第1,第2の端縁部と、その周囲との輝度差が大きくならず、光学レンズ101の位置確認を行い難い。 FIG. 3 is a schematic bottom view showing an optical lens of a comparative example. In the optical lens 101 of the comparative example, the metallized layer 105 reaches the first and second end edges 2c1 and 2c2 of the bottom surface 2c of the base material 2. The metallized layer 105 reflects light strongly. When the optical lens 101 is imaged by the camera from the upper surface side of the substrate 2, the reflected light from the metallized layer 105 that has passed through the substrate 2 is also received by the camera. In the camera, the portion where the metallized layer 105 is formed and the periphery thereof are recognized as portions where the luminance is uniformly high. The high luminance portion includes the first and second end edges 2c1 and 2c2 of the bottom surface 2c, the first and second end edges of the top surface, and the periphery thereof. Therefore, the brightness difference between the first and second end edge portions 2c1 and 2c2 of the bottom surface 2c and the first and second end edge portions of the upper surface and the periphery thereof does not increase, and the position of the optical lens 101 is confirmed. hard.
 これに対して、図1及び図2に示す本実施形態においては、第1のメタライズ層非形成領域A1にはメタライズ層5が形成されていないため、第1の端縁部2c1近傍においては、メタライズ層5により光が反射されない。これにより、上面2d及び底面2cの第1の端縁部2d1,2c1と、その周囲との輝度差を大きくすることができる。よって、第1の端縁部2d1,2c1の位置は容易に画像認識され得る。同様に、第2のメタライズ層非形成領域A2にもメタライズ層5は形成されていないため、第2の端縁部2d2,2c2の位置も容易に画像認識され得る。従って、実装時の光学レンズ1の位置確認を容易に行うことができる。 On the other hand, in the present embodiment shown in FIGS. 1 and 2, since the metallized layer 5 is not formed in the first metallized layer non-forming region A1, in the vicinity of the first edge 2c1, Light is not reflected by the metallized layer 5. Thereby, the brightness | luminance difference between 1st edge part 2d1, 2c1 of the upper surface 2d and the bottom face 2c, and its circumference | surroundings can be enlarged. Accordingly, the positions of the first edge portions 2d1 and 2c1 can be easily recognized. Similarly, since the metallized layer 5 is not formed in the second metallized layer non-forming region A2, the positions of the second edge portions 2d2 and 2c2 can be easily recognized. Therefore, the position of the optical lens 1 at the time of mounting can be easily confirmed.
 第1のメタライズ層非形成領域A1の、第1の端縁部2c1からの方向xに沿う長さは、底面2cの方向xに沿う長さの5%以上であることが好ましい。第2のメタライズ層非形成領域A2の、第2の端縁部2c2からの方向xに沿う長さは、底面2cの方向xに沿う長さの5%以上であることが好ましい。それによって、実装時の光学レンズ1の位置確認をより確実に行うことができる。 The length of the first metallized layer non-forming region A1 along the direction x from the first edge 2c1 is preferably 5% or more of the length along the direction x of the bottom surface 2c. The length of the second metallized layer non-forming region A2 along the direction x from the second edge 2c2 is preferably 5% or more of the length along the direction x of the bottom surface 2c. Thereby, the position of the optical lens 1 at the time of mounting can be confirmed more reliably.
 第1のメタライズ層非形成領域A1の、第1の端縁部2c1からの方向xに沿う長さは、底面2cの方向xに沿う長さの20%以下であることが好ましく、10%以下であることがより好ましい。第2のメタライズ層非形成領域A2の、第2の端縁部2c2からの方向xに沿う長さは、底面2cの方向xに沿う長さの20%以下であることが好ましく、10%以下であることがより好ましい。それによって、光学レンズ1の実装基板等に対する接合力を高めることができる。 The length of the first metallized layer non-forming region A1 along the direction x from the first edge 2c1 is preferably 20% or less of the length along the direction x of the bottom surface 2c, preferably 10% or less. It is more preferable that The length along the direction x from the second end edge 2c2 of the second metallized layer non-forming region A2 is preferably 20% or less of the length along the direction x of the bottom surface 2c, and is preferably 10% or less. It is more preferable that Thereby, the bonding force of the optical lens 1 to the mounting substrate or the like can be increased.
 また、第1のメタライズ層非形成領域A1の第1の端縁部2c1からの方向xに沿う長さが最短の部分の長さは、10μm以上、200μm以下であることが好ましく、20μm以上、100μm以下であることがより好ましい。第2のメタライズ層非形成領域A2の第1の端縁部2c2からの方向xに沿う長さが最短の部分の長さは、10μm以上、200μm以下であることが好ましく、20μm以上、100μm以下であることがより好ましい。それによって、実装時の光学レンズ1の位置確認をより確実に行うことができ、かつ実装時の接合力を高めることができる。 The length of the shortest portion along the direction x from the first edge 2c1 of the first metallized layer non-forming region A1 is preferably 10 μm or more and 200 μm or less, preferably 20 μm or more, More preferably, it is 100 μm or less. The length of the shortest portion along the direction x from the first edge 2c2 of the second metallized layer non-formation region A2 is preferably 10 μm or more and 200 μm or less, preferably 20 μm or more and 100 μm or less. It is more preferable that Thereby, the position of the optical lens 1 at the time of mounting can be confirmed more reliably, and the bonding force at the time of mounting can be increased.
 光学レンズ1は、メタライズ層5を介して実装基板に接合することができるため、有機物を含む接着剤を用いずに、実装を行うことができる。よって、光学レンズ1は、実装された際の長期安定性に優れる。 Since the optical lens 1 can be bonded to the mounting substrate through the metallized layer 5, it can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 1 is excellent in long-term stability when mounted.
 基材2の底面2c側から見たときの、底面2cの面積に対するメタライズ層5の面積の割合は、36%以上であることが好ましく、50%以上であることがより好ましい。それによって、光学レンズ1の実装基板等に対する接合力を高めることができる。底面2cの面積に対するメタライズ層5の面積の割合は、95%以下であることが好ましく、90%以下であることがより好ましい。それによって、実装時の光学レンズ1の位置確認を容易に行うことができる。なお、光学レンズ1の実装基板等に対する接合力を高めるためには、光学レンズ1に荷重をかけつつ接合することが好ましい。本発明のように、底面2cの面積に対するメタライズ層5の面積の割合を95%以下に制限することにより、光学レンズ1に荷重をかけつつ実装基板等に接合しても、メタライズ層5が光学レンズ1から漏れ出してしまうことを防ぐことが可能となる。 The ratio of the area of the metallized layer 5 to the area of the bottom surface 2c when viewed from the bottom surface 2c side of the substrate 2 is preferably 36% or more, and more preferably 50% or more. Thereby, the bonding force of the optical lens 1 to the mounting substrate or the like can be increased. The ratio of the area of the metallized layer 5 to the area of the bottom surface 2c is preferably 95% or less, and more preferably 90% or less. Thereby, the position of the optical lens 1 at the time of mounting can be easily confirmed. In order to increase the bonding force of the optical lens 1 to the mounting substrate or the like, it is preferable to bond the optical lens 1 while applying a load. By limiting the ratio of the area of the metallized layer 5 to the area of the bottom surface 2c to 95% or less as in the present invention, the metallized layer 5 can be optically bonded even when bonded to a mounting substrate or the like while applying a load to the optical lens 1. It is possible to prevent leakage from the lens 1.
 図4に示す第1の実施形態の第1の変形例のように、基材32は面取りされていてもよい。基材32は、底面32c及び第1のレンズ形成面32aに接続されており、かつ互いに対向し合う側面32e,32fを有する。第1の変形例においては、底面32cの面取りされた部分と、側面32e,32fとがそれぞれ接続された部分が、第1,第2の端縁部32c1,32c2である。第1の変形例においては、面取りされているため、基材32の欠け等が生じ難い。 The base material 32 may be chamfered like the 1st modification of 1st Embodiment shown in FIG. The base material 32 has side surfaces 32e and 32f that are connected to the bottom surface 32c and the first lens forming surface 32a and that face each other. In the first modification, the chamfered portion of the bottom surface 32c and the portion where the side surfaces 32e and 32f are connected are the first and second end edge portions 32c1 and 32c2. In the first modified example, since the chamfer is chamfered, chipping of the base material 32 hardly occurs.
 図1に示す第1の実施形態では、メタライズ層5は底面2cの第3,第4の端縁部2c3,2c4に至っていないが、図5に示す第1の実施形態の第2の変形例のように、メタライズ層45は第3,第4の端縁部2c3,2c4に至っていてもよい。 In the first embodiment shown in FIG. 1, the metallized layer 5 does not reach the third and fourth edge portions 2c3 and 2c4 of the bottom surface 2c, but the second modification of the first embodiment shown in FIG. As described above, the metallized layer 45 may reach the third and fourth edge portions 2c3 and 2c4.
 以下において、第1の実施形態に係る光学レンズ1の製造方法の一例を説明する。 Hereinafter, an example of a method for manufacturing the optical lens 1 according to the first embodiment will be described.
 (製造方法)
 図6(a)及び図6(b)は、第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的断面図である。図7は、第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的平面図である。図8は、第1の実施形態に係る光学レンズの製造方法の一例を説明するための模式的側面図である。なお、図8における側面とは、後述するメタライズ層形成面を示す。
(Production method)
FIG. 6A and FIG. 6B are schematic cross-sectional views for explaining an example of the manufacturing method of the optical lens according to the first embodiment. FIG. 7 is a schematic plan view for explaining an example of the manufacturing method of the optical lens according to the first embodiment. FIG. 8 is a schematic side view for explaining an example of the manufacturing method of the optical lens according to the first embodiment. In addition, the side surface in FIG. 8 shows the metallized layer formation surface mentioned later.
 図6(a)に示すように、第1,第2の主面2Aa,2Abを有するマザー基板2Aを用意する。次に、成形型7A,7Bを用いて、マザー基板2Aのプレス成形を行う。これにより、図6(b)に示すように、マザー基板2Aの第1の主面2Aaに複数の第1のレンズ部3を形成し、第2の主面2Abに複数の第2のレンズ部4を形成する。 As shown in FIG. 6A, a mother substrate 2A having first and second main surfaces 2Aa and 2Ab is prepared. Next, press molding of the mother substrate 2A is performed using the molds 7A and 7B. Thereby, as shown in FIG. 6B, a plurality of first lens portions 3 are formed on the first main surface 2Aa of the mother substrate 2A, and a plurality of second lens portions are formed on the second main surface 2Ab. 4 is formed.
 第1,第2のレンズ部3,4は、図6(b)に示す断面以外の部分にも形成してもよく、例えば、図7に示すように、マトリクス状に形成してもよい。この場合には、次に、ダイシングラインI-Iに沿い、ダイシングを行う。ダイシングは、例えば、ダイシングソー等を用いて行ってもよく、あるいは、レーザースクライビングにより行ってもよい。これにより、メタライズ層形成面を形成する。 The first and second lens portions 3 and 4 may be formed in a portion other than the cross section shown in FIG. 6B, for example, as shown in FIG. In this case, dicing is performed along the dicing line II. Dicing may be performed using, for example, a dicing saw or the like, or may be performed by laser scribing. Thereby, a metallized layer forming surface is formed.
 メタライズ層形成面は、図1に示した第1の実施形態の光学レンズ1の底面2cに相当する面である。メタライズ層形成面が、上述した範囲内の算術平均粗さ(Ra)となるように、メタライズ層形成面にブラスト加工等を行ってもよい。 The metallized layer forming surface is a surface corresponding to the bottom surface 2c of the optical lens 1 of the first embodiment shown in FIG. Blasting or the like may be performed on the metallized layer forming surface so that the metallized layer forming surface has an arithmetic average roughness (Ra) within the above-described range.
 次に、図8に示すように、メタライズ層形成面2Ac上に、複数のメタライズ層5を形成する。各メタライズ層5の外周縁5gが、ダイシングラインII-II及びマザー基板2Aの外周縁に至らないように、複数のメタライズ層5を形成する。メタライズ層5の形成は、例えば、スパッタリング法や蒸着法等により行うことができる。このとき、例えば、フォトリソグラフィ法によりメタライズ層形成面2Ac上にレジストパターンを形成し、該レジストパターンを用いて複数のメタライズ層5を形成してもよい。 Next, as shown in FIG. 8, a plurality of metallized layers 5 are formed on the metallized layer forming surface 2Ac. A plurality of metallized layers 5 are formed so that the outer peripheral edge 5g of each metallized layer 5 does not reach the outer peripheral edges of the dicing line II-II and the mother substrate 2A. The metallized layer 5 can be formed by, for example, a sputtering method or a vapor deposition method. At this time, for example, a resist pattern may be formed on the metallized layer forming surface 2Ac by a photolithography method, and the plurality of metallized layers 5 may be formed using the resist pattern.
 次に、ダイシングラインII-IIに沿い、ダイシングを行う。ダイシングは、例えば、ダイシングソー等を用いて行ってもよく、あるいは、レーザースクライビングにより行ってもよい。これにより、複数の光学レンズ1を得ることができる。 Next, dicing is performed along the dicing line II-II. Dicing may be performed using, for example, a dicing saw or the like, or may be performed by laser scribing. Thereby, a plurality of optical lenses 1 can be obtained.
 (第2の実施形態)
 図9は、第2の実施形態に係る光学レンズを示す模式的正面図である。図10は、第2の実施形態に係る光学レンズを示す模式的平面図である。なお、図9及び図10においては、後述する遮光膜を破線のハッチングにより示す。
(Second Embodiment)
FIG. 9 is a schematic front view showing an optical lens according to the second embodiment. FIG. 10 is a schematic plan view showing an optical lens according to the second embodiment. In FIGS. 9 and 10, a light shielding film described later is indicated by broken-line hatching.
 図9に示すように、光学レンズ11は、基材2の上面2d上に遮光膜16が形成されている点で、第1の実施形態と異なる。上記の点以外においては、光学レンズ11は、第1の実施形態に係る光学レンズ1と同様の構成を有する。 As shown in FIG. 9, the optical lens 11 is different from the first embodiment in that a light shielding film 16 is formed on the upper surface 2d of the substrate 2. Except for the above points, the optical lens 11 has the same configuration as the optical lens 1 according to the first embodiment.
 遮光膜16には、例えば、適宜の金属や半導体を用いることができる。金属の例としては、Cr、Ti、Ni、Al等を挙げることができる。半導体の例としては、Ge、Si等を挙げることができる。 For the light shielding film 16, for example, an appropriate metal or semiconductor can be used. Examples of metals include Cr, Ti, Ni, Al and the like. Examples of semiconductors include Ge and Si.
 図10に示すように、平面視において、遮光膜16はメタライズ層5の全面に重なるように形成されている。それによって、上面2d側からカメラにより位置確認を行うときに、メタライズ層5からカメラ側に向かう反射光を、遮光膜16により遮光することができる。そのため、図9に示す上面2d及び底面2cの第1,第2の端縁部2d1,2c1,2d2,2c2と、その周囲との輝度差をより確実に大きくすることができる。従って、実装時の光学レンズ11の位置確認をより確実に行うことができる。 As shown in FIG. 10, the light shielding film 16 is formed so as to overlap the entire surface of the metallized layer 5 in plan view. Thereby, when the position is confirmed by the camera from the upper surface 2d side, the reflected light from the metallized layer 5 toward the camera side can be shielded by the light shielding film 16. Therefore, the luminance difference between the first and second end edges 2d1, 2c1, 2d2, and 2c2 of the top surface 2d and the bottom surface 2c shown in FIG. Therefore, the position of the optical lens 11 at the time of mounting can be confirmed more reliably.
 遮光膜16は、平面視において、第1,第2のメタライズ層非形成領域A1,A2の少なくとも一部に重なるように形成されていることが好ましい。より好ましくは、本実施形態のように、平面視において、遮光膜16がメタライズ層5の外周縁5gの外側にも形成されていることが望ましい。それによって、メタライズ層5からカメラ側に向かう反射光を、より一層確実に遮光することができる。 The light shielding film 16 is preferably formed so as to overlap at least part of the first and second metallized layer non-forming regions A1 and A2 in plan view. More preferably, the light shielding film 16 is also formed outside the outer peripheral edge 5g of the metallized layer 5 in a plan view as in the present embodiment. As a result, the reflected light from the metallized layer 5 toward the camera can be more reliably shielded.
 本実施形態においては、遮光膜16は、上面2dの第1,第2の端縁部2d1,2d2には至っていない。これにより、実装時の光学レンズ11の位置確認をより一層行い易い。 In the present embodiment, the light shielding film 16 does not reach the first and second end edges 2d1 and 2d2 of the upper surface 2d. This makes it easier to confirm the position of the optical lens 11 during mounting.
 また、本実施形態においても、第1の実施形態と同様に、有機物を含む接着剤を用いずに、光学レンズ11の実装を行うことができる。よって、光学レンズ11は、実装された際の長期安定性に優れる。 Also in this embodiment, similarly to the first embodiment, the optical lens 11 can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 11 is excellent in long-term stability when mounted.
 (第3の実施形態)
 図11は、第3の実施形態に係る光学レンズを示す模式的平面図である。なお、図11においては、後述する光吸収膜を破線のハッチングにより示す。
(Third embodiment)
FIG. 11 is a schematic plan view showing an optical lens according to the third embodiment. In FIG. 11, a light absorption film described later is indicated by broken line hatching.
 図11に示すように、光学レンズ21は、基材2の上面2d上に光吸収膜26が形成されている点で、第2の実施形態と異なる。上記の点以外においては、光学レンズ21は、第2の実施形態に係る光学レンズ11と同様の構成を有する。 As shown in FIG. 11, the optical lens 21 is different from the second embodiment in that a light absorbing film 26 is formed on the upper surface 2d of the substrate 2. Except for the above points, the optical lens 21 has the same configuration as the optical lens 11 according to the second embodiment.
 光吸収膜26には、例えば、適宜の半導体や窒化物を用いることができる。半導体の例としては、Ge、Si等を挙げることができる。窒化物の例としては、AlN、SiN、CrN等を挙げることができる。 For the light absorption film 26, for example, an appropriate semiconductor or nitride can be used. Examples of semiconductors include Ge and Si. Examples of nitrides include AlN, SiN, and CrN.
 本実施形態においては、光吸収膜26が、第2の実施形態における遮光膜16と同様の位置に配置されている。より具体的には、平面視において、光吸収膜26はメタライズ層5の全面に重なるように形成されている。それによって、上面2d側からカメラにより位置確認を行うときに、メタライズ層5からカメラ側に向かう反射光は光吸収膜26により吸光される。よって、カメラ側に向かう反射光を遮光することができる。従って、第2の実施形態と同様に、実装時の光学レンズ21の位置確認をより確実に行うことができる。 In the present embodiment, the light absorbing film 26 is disposed at the same position as the light shielding film 16 in the second embodiment. More specifically, the light absorption film 26 is formed so as to overlap the entire surface of the metallized layer 5 in plan view. Accordingly, when the position is confirmed by the camera from the upper surface 2d side, the reflected light from the metallized layer 5 toward the camera side is absorbed by the light absorption film 26. Therefore, it is possible to block the reflected light toward the camera side. Therefore, as in the second embodiment, the position of the optical lens 21 at the time of mounting can be confirmed more reliably.
 光吸収膜26は、平面視において、第1,第2のメタライズ層非形成領域A1,A2の少なくとも一部に重なるように形成されていることが好ましい。より好ましくは、本実施形態のように、平面視において、光吸収膜26がメタライズ層5の外周縁5gの外側にも形成されていることが望ましい。それによって、メタライズ層5からカメラ側に向かう反射光を、より一層確実に遮光することができる。 The light absorbing film 26 is preferably formed so as to overlap at least part of the first and second metallized layer non-forming regions A1 and A2 in plan view. More preferably, as in the present embodiment, it is desirable that the light absorption film 26 is also formed outside the outer peripheral edge 5g of the metallized layer 5 in plan view. As a result, the reflected light from the metallized layer 5 toward the camera can be more reliably shielded.
 なお、本実施形態においては、光吸収膜26は、上面2dの第1,第2の端縁部2d1,2d2には至っていない。これにより、実装時の光学レンズ21の位置確認をより一層行い易い。 In the present embodiment, the light absorption film 26 does not reach the first and second end edges 2d1 and 2d2 of the upper surface 2d. This makes it easier to check the position of the optical lens 21 during mounting.
 また、本実施形態においても、第1の実施形態と同様に、有機物を含む接着剤を用いずに、光学レンズ21の実装を行うことができる。よって、光学レンズ21は、実装された際の長期安定性に優れる。 Also in this embodiment, similarly to the first embodiment, the optical lens 21 can be mounted without using an adhesive containing an organic substance. Therefore, the optical lens 21 is excellent in long-term stability when mounted.
1…光学レンズ
2…基材
2a,2b…第1,第2のレンズ形成面
2c…底面
2c1~2c4…第1~第4の端縁部
2d…上面
2d1,2d2…第1,第2の端縁部
2A…マザー基板
2Aa,2Ab…第1,第2の主面
2Ac…メタライズ層形成面
3,4…第1,第2のレンズ部
5…メタライズ層
5g…外周縁
7A,7B…成形型
11…光学レンズ
16…遮光膜
21…光学レンズ
26…光吸収膜
32…基材
32a…第1のレンズ形成面
32c…底面
32c1,32c2…第1,第2の端縁部
32e,32f…側面
45…メタライズ層
101…光学レンズ
105…メタライズ層
DESCRIPTION OF SYMBOLS 1 ... Optical lens 2 ... Base material 2a, 2b ... 1st, 2nd lens formation surface 2c ... Bottom surface 2c1-2c4 ... 1st-4th edge part 2d ... Upper surface 2d1, 2d2 ... 1st, 2nd Edge portion 2A ... Mother substrates 2Aa, 2Ab ... First and second main surfaces 2Ac ... Metallized layer forming surfaces 3, 4 ... First and second lens parts 5 ... Metalized layer 5g ... Outer peripheral edges 7A, 7B ... Molded Mold 11 ... Optical lens 16 ... Light shielding film 21 ... Optical lens 26 ... Light absorption film 32 ... Base material 32a ... First lens forming surface 32c ... Bottom surface 32c1, 32c2 ... First and second edge portions 32e, 32f ... Side 45 ... Metallized layer 101 ... Optical lens 105 ... Metallized layer

Claims (4)

  1.  光軸方向を有する光学レンズであって、
     レンズ形成面と、前記レンズ形成面に接続されている上面及び底面とを有し、かつ前記レンズ形成面に形成されたレンズ部を有する基材と、
     前記基材の前記底面上に形成されているメタライズ層とを備え、
     前記基材の前記底面が、光軸方向に垂直な方向において対向する第1,第2の端縁部を有し、前記底面において、前記第1,第2の端縁部の近傍に前記メタライズ層が形成されていない、光学レンズ。
    An optical lens having an optical axis direction,
    A substrate having a lens forming surface, and an upper surface and a bottom surface connected to the lens forming surface, and having a lens portion formed on the lens forming surface;
    A metallized layer formed on the bottom surface of the base material,
    The bottom surface of the base material has first and second edge portions facing each other in a direction perpendicular to the optical axis direction, and the metallization is provided in the vicinity of the first and second edge portions on the bottom surface. An optical lens in which no layer is formed.
  2.  前記光軸方向に垂直な方向における前記メタライズ層が形成されていない領域の長さが、前記底面の同方向における長さの5%以上、20%以下である、請求項1に記載の光学レンズ。 2. The optical lens according to claim 1, wherein a length of a region where the metallized layer is not formed in a direction perpendicular to the optical axis direction is not less than 5% and not more than 20% of a length in the same direction of the bottom surface. .
  3.  平面視において、少なくとも前記メタライズ層の全面に重なるように、前記基材の前記上面上に遮光膜または光吸収膜が形成されている、請求項1または2に記載の光学レンズ。 The optical lens according to claim 1, wherein a light shielding film or a light absorbing film is formed on the upper surface of the base material so as to overlap at least the entire surface of the metallized layer in a plan view.
  4.  平面視において、前記遮光膜または前記光吸収膜が、前記メタライズ層の外周縁より外側にも形成されている、請求項3に記載の光学レンズ。 4. The optical lens according to claim 3, wherein the light shielding film or the light absorbing film is also formed outside the outer peripheral edge of the metallized layer in a plan view.
PCT/JP2017/020030 2016-08-01 2017-05-30 Optical lens WO2018025479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-151047 2016-08-01
JP2016151047A JP2018021946A (en) 2016-08-01 2016-08-01 Optical lens

Publications (1)

Publication Number Publication Date
WO2018025479A1 true WO2018025479A1 (en) 2018-02-08

Family

ID=61072904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020030 WO2018025479A1 (en) 2016-08-01 2017-05-30 Optical lens

Country Status (2)

Country Link
JP (1) JP2018021946A (en)
WO (1) WO2018025479A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176068A1 (en) * 2022-03-16 2023-09-21 ナルックス株式会社 Methods for manufacturing microlens and microlens array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216021A (en) * 1992-01-09 1993-08-27 Nec Corp Liquid crystal display device
JP2008203418A (en) * 2007-02-19 2008-09-04 Alps Electric Co Ltd Optical lens and manufacturing method of the same
WO2012098808A1 (en) * 2011-01-21 2012-07-26 富士フイルム株式会社 Stack lens array and lens module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216021A (en) * 1992-01-09 1993-08-27 Nec Corp Liquid crystal display device
JP2008203418A (en) * 2007-02-19 2008-09-04 Alps Electric Co Ltd Optical lens and manufacturing method of the same
WO2012098808A1 (en) * 2011-01-21 2012-07-26 富士フイルム株式会社 Stack lens array and lens module

Also Published As

Publication number Publication date
JP2018021946A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
CN101593932B (en) Light emitting device and method of manufacturing light emitting device
TW201714329A (en) Light emitting device with bevel reflector and manufacturing method of the same
JP4764373B2 (en) Optical waveguide circuit and manufacturing method thereof
JP2012212019A (en) Method for manufacturing optical element array, optical element array, lens unit and camera module
JP2006147864A (en) Semiconductor package and its manufacturing method
US11555596B2 (en) Radiation angle changing element and light emitting device
WO2018025479A1 (en) Optical lens
JP6220461B2 (en) Optoelectronic component, optoelectronic device, optical element manufacturing method, and optoelectronic component manufacturing method
JP2003163297A (en) Optical semiconductor device
CN111025441B (en) Optical component, method for manufacturing the same, and light-emitting device
JP2023052104A (en) Lens and light-emitting device
TWI739506B (en) Wavelength conversion member, wavelength conversion device and light source device for welding
JP2013137487A (en) Optical filter member and imaging apparatus
JP6508189B2 (en) Light emitting device
JP7108179B2 (en) Manufacturing method of cap, light emitting device and manufacturing method thereof
US11939667B2 (en) Method for manufacturing wavelength conversion member and light emitting device
WO2023007616A1 (en) Production method for lens unit, lens unit, imaging device, and endoscope
JP2004226632A (en) Joint substrate, optical circuit substrate and its manufacturing method
JP7495921B2 (en) Transparent sealing materials
JP2006201372A (en) Optical path conversion mirror, optical path conversion apparatus using the same, and method for manufacturing optical path conversion mirror
TWI791896B (en) Collimating system for providing highly efficient parallel light
US20210384699A1 (en) Method of manufacturing metal-coated member, metal-coated member, wavelength conversion member, and light emitting device
US20230148016A1 (en) Window material for optical element, lid for optical element package, optical element package, and optical device
US20210202912A1 (en) Wavelength conversion element
JP6711706B2 (en) Lid body, package for storing image pickup element, and image pickup apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836586

Country of ref document: EP

Kind code of ref document: A1