WO2018025410A1 - Indirect heating carbonization apparatus - Google Patents

Indirect heating carbonization apparatus Download PDF

Info

Publication number
WO2018025410A1
WO2018025410A1 PCT/JP2016/073140 JP2016073140W WO2018025410A1 WO 2018025410 A1 WO2018025410 A1 WO 2018025410A1 JP 2016073140 W JP2016073140 W JP 2016073140W WO 2018025410 A1 WO2018025410 A1 WO 2018025410A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization
door
chamber
furnace case
opening
Prior art date
Application number
PCT/JP2016/073140
Other languages
French (fr)
Japanese (ja)
Inventor
福村猛
Original Assignee
株式会社Fukutec
福村猛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fukutec, 福村猛 filed Critical 株式会社Fukutec
Priority to PCT/JP2016/073140 priority Critical patent/WO2018025410A1/en
Priority to JP2017083185A priority patent/JP6233910B1/en
Publication of WO2018025410A1 publication Critical patent/WO2018025410A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge

Definitions

  • the present invention relates to an indirect heating type carbonization treatment apparatus having a double structure of a carbonization chamber and a carbonization furnace case.
  • Such a carbonization apparatus includes a combustion chamber that generates hot air, and a box-shaped carbonization chamber that surrounds five sides excluding the door portion with a heat flow channel having a serpentine structure through which the hot air flows.
  • the carbonization target object housed in the carbonization chamber is indirectly heated from the outside of the carbonization chamber to carbonize the carbonization target.
  • the volume of carbonized objects can be reduced, reduced, and recycled in a short time.
  • the heat flow path of such a carbonization apparatus is formed in a flow path that simply falls or heat moves from the upper part to the lower part and from one end edge to multiple end edges on each inner surface in the square carbonization chamber, and the radiant heat follows the heat flow.
  • the temperature of the radiant heat that moves from the upper part to the lower part and from one end edge to the multi-end edge and radiates from the flow path becomes lower at the downstream side, and becomes lower at the ceiling and bottom surfaces as it goes from the beginning to the end of the flow path,
  • the temperature in the square carbonization chamber became non-uniform and thermal spots were generated, the temperature in the carbonization chamber became unstable, and the carbonized object could not be thermally decomposed quickly and stably.
  • the temperature difference between the side surfaces of the carbonization chamber due to the thermal spots increases the difference in thermal expansion between the side surfaces, which may cause thermal distortion in the carbonization chamber and dissipate heat from the carbonization chamber.
  • the heat dissipating member around the heat dissipating part caused heat damage, and the life of the carbonization furnace itself was shortened.
  • the contact member of the door ages and the thermal energy further expanded from that part leaks, and the thermal energy of the hot air generated in the carbonization chamber is reduced.
  • the heat energy of the original hot air as radiant heat is reduced by heat exchange efficiency between the hot air in the heat flow path and the space inside the carbonization chamber because it is deprived by adjacent inferior heat energy or is exchanged with the outside air. It was exhausted wastefully as hot gas outside the carbonization chamber without effectively utilizing the gas.
  • the present invention has been made in view of such circumstances, and the carbonization equipment is made compact, and a certain device is applied to the abutting portion of the sealable door portion so that the carbonization is performed at the site where the carbonization target is generated.
  • the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber is dramatically increased to maximize the thermal energy of the hot air as radiant heat.
  • the present invention provides an indirect heating type carbonization apparatus capable of realizing a stable carbonization of a carbonization target object in a short time even when using relatively low thermal energy.
  • the present invention provides a carbonization furnace case, a carbonization chamber accommodated in the carbonization furnace case, an inner side surface of the carbonization furnace case, and an outer side excluding the carbonization target entry / exit side of the carbonization chamber.
  • the carbonization processing apparatus comprising a carbonization gas transfer pipe communicated with the carbonization furnace, the carbonization furnace case and the carbonization chamber accommodated in the carbonization furnace case are open to the outside of the hexahedron of the outer periphery for the removal and removal of the carbonization target.
  • a door part for shutting off the outside air is pivotally supported in the open part so that the door part can be opened and closed, and when the door is closed, between the pressing flange on the peripheral part of the door part and the peripheral part of the opening part of the carbonization furnace case in which the carbonization chamber is fitted.
  • the carbonization chamber flange around the periphery of the opening of the carbonization chamber is configured to be clamped and crimped.
  • a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. It is also characterized in that the most advanced edge portion of the carbon steel can be crimped to the front end surface of the carbonization furnace case.
  • a coherent section rope fitted into a U-shaped cross-section is interposed between the front end face of the carbonization chamber flange and the front end face of the carbonization furnace case.
  • a frame shaft that operates vertically and horizontally by a hydraulic cylinder is arranged around the opening periphery of the carbonization furnace case, and a plurality of taper frames are connected to predetermined positions of the frame shaft.
  • the present invention provides an indirect heating system carbonization apparatus characterized in that door pieces that come into contact with each other and perform a taper fitting function protrude from the periphery of the door portion.
  • the carbonization furnace case, the carbonization chamber accommodated in the carbonization furnace case, the inner side surface of the carbonization furnace case, and the outside of the carbonization processing object entrance / exit side of the carbonization chamber are excluded.
  • the carbonization processing apparatus comprising a carbonization gas transfer pipe communicated with the carbonization furnace, the carbonization furnace case and the carbonization chamber accommodated in the carbonization furnace case are open to the outside of the hexahedron of the outer periphery for the removal and removal of the carbonization target.
  • a door part for shutting off the outside air is pivotally supported in the open part so that the door part can be opened and closed, and when the door is closed, between the pressing flange on the peripheral part of the door part and the peripheral part of the opening part of the carbonization furnace case in which the carbonization chamber is fitted.
  • Configured to hold and crimp the carbonization chamber flange around the opening of the carbonization chamber Therefore, the carbonization chamber can be fixed in the carbonization furnace case via each flange, and the opening of the carbonization chamber can be securely and tightly closed and closed when the door is closed.
  • the carbonization equipment can be made compact so that the carbonization target can be carbonized at the site where the carbonization target is generated, and of course, the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber
  • the carbonization of the object to be carbonized stably can be realized in a short time even with a relatively low thermal energy by making maximum use of the thermal energy of hot air as radiant heat.
  • a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. Since the most advanced edge portion is configured to be crimped to the front end surface of the carbonization furnace case, it is possible to buffer the impact of the heavy door portion when the door is closed and to perform the sealing function of the opening portion of the carbonization furnace case.
  • the coherent compartment rope fitted in the U-shaped cross section of the carbonization chamber flange front end surface of the carbonization chamber and the front end surface of the carbonization furnace case is interposed, the carbonization chamber between the door buffer cushioning rope Even if a heavy load is applied to the pressing flange at the periphery of the door when closing the door, the weight load is firmly supported by the two overlapping ropes and the door can be tightly closed. it can.
  • a frame shaft that is vertically and horizontally operated by a hydraulic cylinder is disposed on the periphery of the opening of the carbonization furnace case, and a plurality of taper frames are continuously provided at predetermined positions of the frame shaft.
  • Door pieces that contact each other and perform a taper fitting function protrude from the periphery of the door part, and the door piece on the door part and the taper piece on the carbonization furnace case are taper-fitted by the advance and retreat operation of the piece by the hydraulic cylinder.
  • the peripheral edge of the door is pressure-bonded to the peripheral edge of the opening of the carbonization furnace case, so that the carbonization furnace case opening and the carbonization chamber opening can be reliably sealed and closed.
  • the present invention relates to a heat flow formed between a carbonization furnace case, a carbonization chamber housed in the carbonization furnace case, and an inner peripheral surface of the carbonization furnace case and an outer peripheral five side surfaces excluding a carbonization target entry / exit side of the carbonization chamber.
  • one of the outer peripheral hexahedrons is opened for taking in and out the object to be carbonized, and this open part is blocked from outside air.
  • a carbonization chamber flange at the periphery of the opening of the carbonizing chamber is supported between the pressing flange at the periphery of the door and the opening peripheral surface of the carbonizing furnace case in which the carbonization chamber is fitted when the door is closed.
  • the carbonization chamber opening is fixed together with the carbonization chamber fixed.
  • a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. It is also characterized in that the most advanced edge portion of the carbon steel can be crimped to the front end surface of the carbonization furnace case.
  • a coherent section rope fitted into a U-shaped cross-section is interposed between the front end face of the carbonization chamber flange and the front end face of the carbonization furnace case.
  • a frame shaft that operates vertically and horizontally by a hydraulic cylinder is arranged around the opening periphery of the carbonization furnace case, and a plurality of taper frames are connected to predetermined positions of the frame shaft.
  • the present invention provides an indirect heating system carbonization apparatus characterized in that door pieces that come into contact with each other and perform a taper fitting function protrude from the periphery of the door portion.
  • FIG. 1 is an explanatory diagram showing the concept of the overall configuration of the carbonizing apparatus A.
  • 2 is a front view showing the appearance of the carbonization apparatus A
  • FIG. 3 is a plan sectional view thereof.
  • FIG. 4 is a perspective view of the configuration of the heat flow path 4 surrounding the carbonization chamber 2 as viewed from the upper side of one side
  • FIG. 5 is a perspective view of the configuration of the heat channel 4 as viewed from the lower side of the other side.
  • the carbonization apparatus A includes a combustion chamber 6 that generates hot air at the center thereof, and a heat flow path layer 3 through which hot air flows through both upper ends of the combustion chamber 6. 3 'and two carbonization chambers 2 and 2' surrounded by the outer periphery excluding the front surface, and hot air is blown and circulated over the entire heat flow path layers 3 and 3 'to provide carbonization chambers 2 and 2'.
  • the carbonization object C accommodated therein is indirectly heated from the outside of the carbonization chambers 2 and 2 'to be carbonized.
  • the heat flow path layer 3 is formed with a heat flow path 4 having a serpentine structure, and heat air is regularly distributed around the outer circumferences of the carbonization chambers 2 and 2 ′. Heat is effectively transferred to the carbonization object C inside the carbonization chamber 2, 2 ′.
  • the structure of the heat flow path 4 is not a simple snake-shaped structure surrounding the outer periphery of the carbonization chamber 2 already proposed by the inventor of the present invention in Japanese Patent Publication No. 2013-533897.
  • the hot air flows through the zigzag heat flow paths 4a and 4b, so that the heat energy of the hot air is transmitted to the carbonization object C inside the carbonization chambers 2 and 2 'very effectively and efficiently.
  • the carbonization processing apparatus A that can be mounted on the vehicle by the indirect heating method includes the heat flow paths 4a and 4b that dramatically increase the heat exchange rate such as heating and cooling with the heat transfer fluid or the refrigerant fluid. In order to prevent the harmful effects that occur during heat exchange.
  • the carbonization chamber 2 is formed in a box shape as shown in FIGS. 2 to 5 and is housed in a carbonization furnace case 1 similar to the carbonization chamber 2.
  • one carbonization apparatus main body 11 has a nested structure between the carbonization furnace case 1 and the carbonization chamber 2, and the outer peripheral five side surfaces excluding the inner side surface of the carbonization furnace case 1 and the carbonization object entry / exit port 2 f side of the carbonization chamber 2.
  • a heat flow path layer 3 whose outer periphery is closed by an outer plate 3 a is formed so as to be blocked from outside air, and a zigzag heat flow path 4 is formed in the heat flow path layer 3.
  • a constant gap is formed between the outer plate 3 a of the heat flow path layer 3 and the inner plate of the carbonization furnace case 1 to form a heat insulating air layer 80.
  • heat insulating air layer 80 is formed between the carbonization furnace case 1 and the carbonization chamber 2 housed therein in a nested structure between the other peripheral side surfaces except for the door portion 12 and the bottom surface. become.
  • the inside of the wall thickness of the carbonization furnace case 1 is filled with ceramic wool 81 as a heat insulating material.
  • the carbonization chamber 2 has the space which accommodates the carbonization target object C in an inside, the insertion to the carbonization chamber inside of the carbonization target object C on the front side, and a carbonization processed product
  • the carbonization target object entrance / exit 2f having a front opening that enables the collection of the carbon dioxide is formed, and the door 12 is pivotally supported by the carbonization process target entrance / exit 2f so as to be freely opened and closed.
  • the inside of the door portion 12 is filled with a heat insulating material such as ceramic wool 81 as in the case of the carbonization furnace case 1, and actually, several sheets of ceramic wool 81 are stacked and fixed with a through bolt or the like. .
  • the carbonization chamber 2 is formed in the carbonization chamber 2 in communication with the combustion chamber 6 via the dry distillation gas transfer pipe 7 at the upper center of one side surface 2 a.
  • the dry distillation gas is recirculated into the combustion chamber 6 to increase the combustion efficiency.
  • the storage mechanism 90 for the carbonization object C is removably stored in the carbonization chamber 2.
  • the storage mechanism 90 according to the present embodiment is a carbonized tray 20 described later.
  • FIG. 7 shows the configuration of the carbonizing device main body 11 in the closed state
  • FIG. 8 shows the configuration of the carbonizing device main body 11 in the opened state
  • FIG. 9 shows the state which decomposed
  • the carbonization apparatus main body 11 leaks hot air gas (dry distillation gas) inside the carbonization chamber 2 by improving the sealing structure between the door portion 12 and the openings 1a and 2f of the carbonization furnace case 1 and the carbonization chamber 2 and the like. In this way, carbonization can be performed with high thermal efficiency.
  • hot air gas dry distillation gas
  • the carbonization furnace case 1 and the carbonization chamber 2 housed in the carbonization furnace case 1 are, as shown in FIG.
  • a door 12 for shutting off from the outside air is pivotally supported so as to be openable and closable in the opening 1 a of the carbonization furnace case 1 and the carbonization chamber opening 2 f.
  • the door portion 12 is pivotally supported on the front surface of the carbonization furnace case 1 via two door support arms 92 that are substantially L-shaped in plan view, and more specifically, the door support arm 92.
  • the end of the L-shaped short side is at one end of the outer wall of the carbonization furnace case 1 and the end of the long side of the door support arm 92 is at a substantially central position on the outer surface of the door 12 with a predetermined interval in the vertical direction. Axis wearing.
  • FIG. 10 shows the sealing structure on the back surface of the door 12
  • FIG. 11 shows the sealing structure provided on the opening peripheral surface 1 b of the carbonization furnace case 1
  • FIG. 12 shows the sealing structure on the front surface of the carbonization furnace case 1.
  • FIG. 13 is a cross-sectional view taken along the line AA of the carbonizing apparatus main body 11 shown in FIG. 12, and FIGS. 13 (a) and 13 (b) show an open state and a closed state, respectively.
  • the carbonization chamber flange 2 i is sandwiched between the pressing flange 12 a at the periphery of the door 12 and the opening peripheral surface 1 b of the carbonization furnace case 1, thereby fixing the carbonization chamber 2.
  • the opening 2f of the carbonization chamber 2 and the opening 1a of the carbonization furnace case 1 are configured to be sealable via a pressing flange 12a on the peripheral edge of the door portion 12. Yes.
  • a steel rod 12c having a U-shaped cross section is projected from the end edge 12b of the door portion 12, and a buffer cushioning rope 12d for the door portion is inserted into the rod 12c.
  • the door portion 12 is put in a state in which the door portion buffer close-contacting rope 12d is stretched around the periphery of the door portion 12.
  • the buffering rope 12d is made of ceramic wool, can maintain strength by a heat resistance function against heat as well as an adhesion function by a certain elastic force, and can obtain a heat insulation effect.
  • the edge 12b of the door portion is closed. Can be pressure-bonded to the front end surface 1e of the carbonization furnace case so that the heat loss of the heat energy in the carbonization chamber is minimized.
  • a steel rib 1c having a U-shaped cross section is formed on the peripheral edge surface 1b of the opening.
  • a furnace buffer close-contact rope 1d is inserted into the protruding rod 1c and the furnace buffer close-contact rope 1d is stretched around the periphery of the carbonization furnace case 1.
  • the rope material is made of ceramic wool.
  • the leading edge 12e of the door 12 can be crimped to the front end surface 1e of the carbonization furnace case when the door is closed, and the impact of the heavy door 12 when the door is closed can be buffered.
  • the sealing function of the carbonization furnace case opening 1a can be achieved.
  • the close-contact section rope 51 is disposed at a position corresponding to the door-part buffering close-contact rope 12d stretched around the edge of the door part 12, and the door-part buffer close-contacting Between the rope 12d, a flange 2i on the periphery of the carbonization chamber 2 is interposed. Even when a weight load is applied to the pressing flange 12a on the periphery of the door when the door is closed, the two superposed ropes 12d, 51 overlapped with the weight load. Therefore, the door can be firmly closed and securely closed.
  • FIG. 14A shows a state in which the door top 12g of the door 12 and the taper top 72 of the carbonization furnace case 1 are open, and FIG. 14B shows that the tops 72 and 12g are fitted to each other.
  • FIG. 14C shows a taper fitting mechanism of the tops 72 and 12g by sliding of the top shaft 71 in plan view.
  • left and right vertical frame shafts 71 a and 71 b are formed in the left and right vertical direction, and upper and lower horizontal frame shafts 71 c and 71 d are formed in the vertical direction of the carbonization furnace case 1. Each is slidably installed.
  • a hydraulic cylinder 70 is connected to the end of the coma shaft 71, and the coma shaft 71 is configured to slide up and down and left and right by the operation of the hydraulic cylinder 70.
  • a plurality of tapered pieces 72 are continuously connected to the piece shaft 71 at a predetermined interval, and as shown in FIGS. 9, 10, and 14, the piece portion of the door portion 12 is also closed when the door is closed.
  • a door piece 12g is projected from a position substantially corresponding to the tapered piece 72 of 71.
  • these tops 72 and 12g are formed such that their contact surfaces are tapered and tapered, and the tapered top 72 is formed narrowed upward.
  • the door top 12g is formed in a tapered slope opposite to the tapered top 72.
  • the abutting sliding surfaces of the tops 72 and 12g form inclined surfaces in opposite directions, and as shown in FIG.
  • the door peripheral portion 12h can be brought into close contact with the opening peripheral surface 1b of the carbonization furnace case 1 by the taper function of the tops 72 and 12g.
  • the door 12 can be brought into close contact with the carbonization chamber 2 and the openings 1a and 2f of the carbonization furnace case 1 through the contact section rope 51, the door buffer contact rope 12d, the furnace buffer contact rope 1d, and the like. Further, the contact function of the tapered pieces 72 and 12g can also achieve a stronger adhesion function, and by this structure, heat leakage is reduced as much as possible to efficiently and effectively use heat energy for carbonization. It can be used.
  • FIG. 15A is an explanatory diagram illustrating the entire configuration of the combustion chamber 6, and FIG. 15B is an explanatory diagram illustrating a generation state of a swirling flow of hot air inside the combustion chamber 6.
  • the combustion chamber 6 is disposed so as to be sandwiched between two front and rear carbonization furnace cases 1 mounted on the trailer 31 in a rectangular parallelepiped shape as will be described later.
  • a hot air generating burner 61 is provided substantially at the center of the front wall 6 a of the combustion chamber 6, and dry distillation from the front position of the upper wall 6 b of the combustion chamber 6 to the inside of the combustion chamber 6.
  • the gas transfer pipes 7 and 7 ′ are projected, and two hot air inflow pipes 5a and 5a ′ and a hot air supply section 62 communicating with the upper part of the upper wall 6b of the combustion chamber 6 and a hot air supply section 62 are disposed at the rear position.
  • a mixed firing portion 63 is formed behind the air portion 62.
  • the outer peripheral side of the combustion chamber 6 is surrounded by a heat-resistant wall body 64 such as a refractory material, for example, refractory smoke tile or ceramic.
  • Burner 61 uses kerosene gas, which will be described later, as fuel. Further, the pair of dry distillation gas transfer pipes 7 and 7 ′ protrude from the front position of the upper wall 6 b of the combustion chamber 6 to the inside of the combustion chamber 6.
  • 7 c and 7 c ′ indicate opening portions at the front ends of the dry distillation gas transfer pipes 7 and 7 ′, and 6 c indicates the rear side wall of the combustion chamber 6.
  • the tip openings 7c and 7c ′ of the pair of dry distillation gas transfer pipes 7 and 7 ′ are connected to the combustion chamber 6 from the dry distillation gas transfer pipes 7 and 7 ′ as shown in FIGS.
  • the dry distillation gas and combustion air jetted into the interior strike the left and right side walls 6d and 6d 'in an oblique direction, and generate two swirling flows whose rotational directions are different from each other along both sides of the flame injection direction of the burner 61. It is arranged.
  • the co-firing unit 63 is provided as a predetermined space behind the hot air supply unit 62 and surrounded by the rear side wall 6c, the upper and lower side walls, and the left and right side walls 6d and 6d 'of the combustion chamber 6.
  • the hot air supply section 62 is a box-shaped member having a predetermined space protruding upward from the rear position of the upper side wall 6b of the combustion chamber 6, and two hot air inflow pipes 5a and 5a 'are connected to the upper part thereof. Has been established.
  • the two swirling flows composed of the dry distillation gas and the combustion air having mutually different swirling directions draw more dry distillation gas and combustion air into the central portion where the negative pressure is generated.
  • the burner 61 moves to the mixed firing portion 63 while burning along the flame injection direction.
  • the swirling flow that has moved hits the rear side wall 6c and the left and right side walls 6d, 6d 'of the combustion chamber 6 and is in a turbulent state, thereby promoting co-firing and completely burning dry distillation gas to generate hot hot air. It is possible to make it happen.
  • a certain amount of this hot air is once accumulated in the hot air supply section 62 at the rear of the upper wall 6b of the combustion chamber 6, and the partial flow rate ratio of the hot air flowing into the two hot air inflow pipes 5a and 5a 'is constant.
  • combustion chamber 6 communicates with a heat flow path 4, 4 ′ formed on the outer periphery of the carbonization chamber 2, 2 ′ via hot air inflow pipes 5 a, 5 a ′.
  • the hot air generated in the combustion chamber 6 circulates in the hot flow passages 4, 4 ′ formed on the outer periphery of the carbonization chambers 2, 2 ′ via the hot air inflow pipes 5 a, 5 a ′. It will be discharged
  • FIG. 6 is a development view showing the two heat flow paths 4a and 4b.
  • the heat flow path 4 is formed in a zigzag shape on each of the five side surfaces of the outer periphery of the carbonization chamber 2 by forming a heat flow path layer 3 that is blocked from outside air.
  • the heat flow path layer 3 is configured as a continuous first flow path 4a, and the zigzag heat flow paths on the other two side surfaces are configured as continuous second flow paths 4b.
  • both the start end of the first flow path 4 a and the start end of the second flow path 4 b are the terminal opening of the hot air supply path 5 from the combustion chamber 6 that opens to one side surface 2 a of the carbonization chamber 2.
  • the terminal end of the first flow path 4 a and the terminal end of the second flow path 4 b are both one of the carbonization chambers 2 on the side opposite to the terminal opening of the hot air supply path 5.
  • a zigzag shape is formed so as to communicate with and merge with the starting end opening 10c of the hot air discharge passage 10 provided on the side surface 2a, and the flow paths are partitioned by a plurality of partition walls 41.
  • the partitioned passage becomes the heat flow path 4, as shown in FIGS. 4 to 6.
  • the heat flow path layer 3 that is cut off from the outside air by the outer plate 3a is formed.
  • first flow path 4a and the second flow path 4b are partitioned by the flow dividing wall 40 provided on the one side surface 2a of the carbonization chamber 2 at a position where the terminal opening 5b of the hot air inflow pipe 5a is substantially halved.
  • the first flow path 4 a includes a first flow path upstream portion 4 a-1 formed on one side surface 2 a of the carbonization chamber 2 and a first flow formed on the upper surface 2 b of the carbonization chamber 2. It is formed by the midstream portion 4a-2 and the first flow path downstream portion 4a-3 formed on the other side surface 2c of the carbonization chamber 2.
  • the second flow path 4b includes a second flow path upstream portion 4b-1 formed on the back surface 2d of the carbonization chamber 2, and a second flow path downstream portion 4b-2 formed on the lower surface 2e of the carbonization chamber 2. It is formed with.
  • each flow path section on the upstream side and the downstream side are in communication with each other.
  • each of the first flow path 4 a and the second flow path 4 b is connected to a side wall 6 d opposite to the side face 2 a provided with the flow dividing wall 40 of the carbonization chamber 2.
  • 10 is configured to communicate and merge at the start end opening 10c of the discharge pipe 10a.
  • the base of the burner 61 of the combustion chamber 6 includes a kerosene tank 14 via a kerosene supply pipe 14a, and a blower 9a for blowing air for combustion via a combustion air feed pipe 13, respectively. There is a continuous connection.
  • the combustion air from the blower 9b is converted into the dry distillation gas.
  • the mixed combustion air feed pipe 16 is connected, and functions as an ejector that draws the dry distillation gas from the carbonization chamber 2 into the dry distillation gas transfer pipe 7.
  • automatic open / close valves 13 a, 16 a, 14 b, and 7 a are provided in the middle of the combustion air feed pipe 13, kerosene supply pipe 14 a, combustion air feed pipe 16, and dry distillation gas transfer pipe 7, and are operated and controlled by the control panel 15. .
  • 15a is a burner control unit
  • V is an on-off valve
  • T is a thermoelectric band for detecting the carbonization chamber temperature.
  • the hot hot air generated in the combustion chamber 6 has a first flow path 4a and a first flow path 4a formed in parallel with a large number of single heat flow paths 42 on the five side surfaces of the outer periphery of the carbonization chamber 2.
  • the two flow paths 4b are circulated in a zigzag shape to exchange heat with the carbonization chamber 2.
  • the thus formed heat flow path 4 can also be used as a cooling flow path for cooling the carbonization chamber 2 after the carbonization treatment of the carbonization target C. That is, in addition to the blower 9 a and the blower 9 b, a large volume of cool air supplied from the cooling fan 9 c is circulated through the hot flow path 4 via the hot air supply path 5.
  • a forced air cooling function of the carbonization chambers 2 and 2 ′ having the heat flow paths 4 and 4 ′ can be provided, and the cooling time of the carbonization chamber 2 can be shortened.
  • FIG. 16 is a perspective view showing a state in which the carbonization tray 20 is installed in the carbonization chamber 2.
  • FIG. 18 is a side view showing the configuration of the carbonization tray 20, and
  • FIG. 19 is a front view showing the configuration of the carbonization tray 20.
  • the carbonization tray 20 is formed in a rectangular shape slightly smaller than the internal space of the carbonization chamber 2 and has a box shape that is open upward.
  • the peripheral wall is composed of a wire mesh 20a, and legs are formed at the bottom four corners.
  • the carbonization object C having an irregular shape arbitrarily stacked in an unaligned manner accommodated in the carbonization tray 20 in the carbonization chamber 2 can be uniformly and quickly as uniform as possible. While radiant heat is irradiated, hot air efficiently circulates through the gap between the carbonization target object C, and the hot air is brought into contact with the entire surface of the carbonization target object C having an irregular shape as much as possible to improve the efficiency of the carbonization process. it can
  • FIG. 18 is a perspective view showing a mounting structure when the carbonization chamber is accommodated in the carbonization furnace case, and FIG. 19 is a side view thereof.
  • FIG. 20A shows the trailer 31 and the tractor 32 before the carbonization apparatus A is mounted.
  • FIG. 20B shows a carbonization vehicle 30 equipped with the carbonization apparatus A, and
  • FIG. 21 is a side view thereof.
  • the carbonizing apparatus main body 11 has support protrusions 21, 21 ′ at predetermined positions on the bottom surface of the carbonizing chamber 2, for example, at four positions corresponding to rails 34, 34 ′ laid down below. Is projected so that it can be placed on rails 34 and 34 ′ laid on the bottom of the carbonization furnace case 1.
  • the support protrusions 21 and 21 'of the carbonization chamber 2 are configured to be loosely fitted in the protrusion support holes 34a and 34a' drilled in the rails 34 and 34 'while maintaining a certain clearance.
  • the deformation displacement of the carbonizing chamber 2 caused by the expansion and contraction of the constituent members due to the above is configured to be absorbed by the clearances of the protrusion support holes 34a and 34a ′.
  • the expansion and contraction of the constituent members caused by the thermal expansion of the carbonization chambers 2 and 2 ′ is caused by the clearance between the projection support holes 34a and 34a ′ and the support projections 21 and 21 ′. It is possible to absorb with.
  • the combustion chamber 6 between the two carbonizing device main bodies 11, 11 ′ and the carbonizing device main bodies 11, 11 ′ configured as described above is replaced with a chassis of a vehicle-mounted trailer 31.
  • the carbonization processing vehicle 30 is configured by arranging the carbonization apparatus body 33 so as to distribute the weight so as to reduce the weight load of each member and structural section of the carbonization apparatus main bodies 11 and 11 as much as possible.
  • the rear half portion 33b of the chassis 33 of the trailer 31 is formed at a position slightly lower than the front half portion 33a, and the two carbonizing device bodies 11, 11 ′ are placed on the chassis 33 of the rear half portion 33b.
  • the combustion chamber 6 is disposed between the front and rear and the combustion chamber 6 is interposed between them.
  • the chassis 33 of the front half 33a has an operation control device 17, a power generation device 18, and a kerosene tank provided with a control panel 15 as an auxiliary member 91 for operation and operation. 14, a kerosene pump 14c is provided.
  • the heavy load of the two carbonizer main bodies 11 is applied to the rear half 33b of the chassis 33 below the front half 33a to reduce the weight load at the connecting portion between the tractor 32 and the trailer 31. Since the traction power can be transmitted as smoothly as possible, there is no hindrance to the traction associated with the road running movement of the carbonizer.
  • the rear half 33b of the chassis 33 is located at a position below the front half 33a of the chassis 33. Since the carbonization apparatus main bodies 11 and 11 ′ are subjected to a weight load, a state in which the rear end of the chassis 33 swings can be prevented as much as possible, and safer traveling can be performed.
  • the operation- and operation-related attachment-related member 91 is disposed in the front half 33a of the chassis 33, so that the inspection and maintenance work of the apparatus can be easily performed, and the traveling vibration caused by the unevenness of the road surface when traveling on the road is the first half. Since 33a is located at a higher position than the rear half 33b, it is possible to prevent malfunctions and failures of the instruments as much as possible without directly receiving vibration shock.
  • the carbonization vehicle 30 equipped with the carbonization apparatus A is loaded with a plurality of empty carbonization trays 20 and travels around the waste generation site, and the carbonization target C is accommodated in the carbonization tray 20 at the waste discharge site.
  • the carbonization tray 20 is inserted into two or any one of the carbonization chambers 2, 2 'and the doors 12, 12' are closed.
  • the impact of the heavy door portion 12 when the door is closed is such that the buffer contact ropes 12d and 12d ′ of the edge portions 12b and 12b ′ of the door portions 12 and 12 ′ and the carbonization furnace case 1 It is buffered by 1 ′ furnace buffering tight ropes 1d and 1d ′.
  • the hydraulic cylinder 70 is operated through the control panel 15 of the operation control device 17, and the left and right vertical frame shafts 71a and 71b and the upper and lower horizontal frame shafts 71c and 71d at the periphery of the opening of the carbonization furnace case 1 are closed vertically and horizontally, respectively. Move in the direction.
  • the plurality of tapered pieces 72 provided on each piece shaft are provided with a plurality of corresponding pieces on the door portion 12 side as the piece pieces 71a, 71b, 71c, 71d are moved in the closing direction.
  • the door peripheral edge 12h is brought into close contact with the opening peripheral edge surface 1b of the carbonization furnace case 1 by abutting and sliding on the door top 12g.
  • the door portion 12 is connected to the carbonizing chamber 2 or the carbonizing furnace case via the contact section rope 51, the door buffer contact rope 12d, the furnace buffer contact rope 1d, or the like. 1 is firmly adhered to the openings 1a and 2f.
  • the pressing flanges 12a and 12a 'of the door portions 12 and 12' sandwich and press the carbonization chamber flanges 2i and 2i 'against the peripheral edge surfaces 1b and 1b' of the carbonization furnace case.
  • the carbonization chambers 2 and 2 ′ can be firmly fixed in the carbonization furnace cases 1 and 1 ′, and the openings 2f and 2f ′ of the carbonization chambers 2 and 2 ′ and the carbonization furnace cases 1 and 1 ′ are closed when the door is closed.
  • the openings 1a and 1a ′ are securely and tightly closed.
  • the inside of the carbonization chamber 2 that is sealed by the door portion 12 and has improved the efficiency of shutting off from the outside air in each stage is oxygen remaining in the carbonization chamber 2 as the carbonization target C is thermally decomposed.
  • the consumption is promoted and the oxygen-free state is achieved as soon as possible, and the carbonization treatment is further promoted.
  • the supply amount of the dry distillation gas and kerosene gas is 40,000 kcl / h to 460 for the combustion chamber 6 based on the temperature information in the combustion chamber 6 and the carbonization chamber 2 detected by each thermoelectric band T and the temperature sensor 15b.
  • the flow rate is automatically adjusted by the control panel 15 so that each of the carbonization chambers 2 and 2 ′ has a temperature of 0 ° C. or more and 1000 ° C. or less at 000 kcl / h.
  • the hot air that has flowed into the first flow path 4a and the second flow path 4b by the flow dividing wall 40 flows into the first flow path 4a and the second flow path 4b formed on each side surface.
  • the hot air in the first flow path middle portion 4a-2 flows in the zigzag shape through the single heat flow path 42, reaches the first flow path downstream portion 4a-3, and reaches the discharge pipe 10a.
  • the hot air in the second flow path upstream portion 4b-1 descends and circulates in the left and right zigzag form, reaches the second flow path downstream part 4b-2, circulates in the single heat flow path 42 in the front and rear zigzag form, One channel reaches the downstream portion 4a-3.
  • FIG. 17 a hot gas convection phenomenon of dry distillation gas filling the inside of the carbonization chamber 2 occurs due to the difference in thermal temperature between the side surfaces of the carbonization chamber 2.
  • the opening portions 2f and 2f ′ of the carbonization chambers 2 and 2 ′ are mutually connected to the front-end surface 1e of the carbonization furnace case and the front-end surface 1e of the carbonization furnace case.
  • the hot gas convection environment The carbonization efficiency of the carbonized object C is significantly improved.
  • the heat insulating effect of the heat insulating air layer 80 between the carbonization furnace case 1 and the carbonization chamber 2 is as described above by the close contact section between the carbonization chamber flange front end surface 2h and the carbonization furnace case front end surface 1e by taper fitting sealing.
  • the rope 51 is tightly closed, that is, the carbonization furnace case opening 1a is surely sealed to further improve.
  • the carbide inside the carbonization chamber 2 can be taken out in a short time by operating and quenching the carbonization apparatus A.
  • the carbonization object C carbonized in the carbonization chamber can be lifted with the forklift lift claw together with the carbonization tray 20 and taken out of the carbonization chamber.
  • the carbonization furnace cases 1, 1 ′ and the carbonization chambers 2, 2 ′ accommodated in the carbonization furnace case 1 are composed of a hexahedron of the outer peripheral hexahedron.
  • a door 12 for opening and closing the object C and opening and shutting off from outside air is pivotally supported so that it can be opened and closed.
  • the pressing flange 12a on the periphery of the door 12, 12 'and the carbonization chamber 2 The carbonization chamber flanges 2i and 2i ′ at the peripheral edges of the carbonization chambers 2 and 2 ′ are sandwiched between the peripheral edge surfaces 1b and 1b ′ of the carbonization furnace case 1 and 1 ′ in which 2 ′ is fitted. Since it is configured to be crimped, the carbonization chambers 2 and 2 ′ can be fixed in the carbonization furnace cases 1 and 1 ′ through the flanges, and the carbonization chambers 2 and 2 ′ are closed when the door portions 12 and 12 ′ are closed.
  • the opening portions 2f and 2f ′ of the carbonization chamber can be securely and tightly closed and closed. , It is possible to remarkably improve as much as possible to prevent carbonization efficiency thermal energy losses to the carbonization object C within 2 '.
  • edge portions 12b and 12b ′ of the door portions 12 and 12 ′ are provided with ribs 12c and 12c ′ having a U-shaped cross section, and the buffer cushioning ropes 12d and 12d ′ for the door portion are fitted into the ribs,
  • the edge portions 12b and 12b ′ of the door portions 12 and 12 ′ are configured to be press-bonded to the front end surfaces 1e and 1e ′ of the carbonization furnace case via the buffering ropes 12d and 12d ′, and the carbonization furnace cases 1 and 1 ′.
  • Opening peripheral surfaces 1b and 1b ′ are provided with ribs 1c and 1c ′ having a U-shaped cross section, and furnace buffering close-fitting ropes 1d and 1d ′ are fitted into the ribs. Since the leading edge portions 12e and 12e ′ of the door portions 12 and 12 ′ can be crimped to the front end surfaces 1e and 1e ′ of the carbonization furnace case, it is possible to buffer the impact of the heavy door portion when the door is closed. And the sealing function of the carbonization furnace case openings 1a and 1a '. .
  • top shafts 71a, 71b, 71a ′, 71b ′ that are vertically and horizontally operated by the hydraulic cylinders 70, 70 ′ are disposed on the periphery of the opening of the carbonization furnace case 1, 1 ′, and the top shafts 71a, 71b, 71a ′, A plurality of tapered pieces 72, 72 'are connected to predetermined positions of 71b', and the taper pieces 71a, 71b, 71a ', 71b' are brought into contact with the tapered pieces 72, 72 'by advancing and retreating operations thereof, and a taper fitting function is provided.
  • a door piece that fulfills the following conditions is projected on the periphery of the door portion, and the door pieces 12g and 12g ′ of the door portion and the taper pieces 72 and 72 ′ of the carbonization furnace cases 1 and 1 ′ by the advance and retreat operation of the piece shaft by the hydraulic cylinder Are taper-fitted so that the peripheral edge portions 12h and 12h ′ of the door are pressure-bonded to the peripheral edge surfaces 1b and 1b ′ of the carbonization furnace cases 1 and 1 ′, and the carbonization furnace case openings 1a and 1a ′ and the carbonization chamber opening 2f, 2f The can be reliably sealed closing.
  • the carbonization equipment can be made compact and the carbonization target can be efficiently carbonized at the site where the carbonization target is generated by devising a certain device on the contact portion of the sealable door portion.
  • the heat exchange efficiency between the hot air generated in the combustion chamber and the carbonization chamber space can be dramatically increased, and the heat energy of the hot air as radiant heat can be maximized to be a relatively low thermal energy.
  • a Indirect heating type carbonization processing apparatus Carbonization furnace case 1a Carbonization furnace case opening 1b Opening peripheral surface 1c Strip 1d Furnace buffering adhesion rope 1e Carbonization furnace front end face 2 Carbonization chamber 2f Opening 2h Carbonization chamber flange front end face 2i Carbonization Chamber flange 11 Carbonizing device main body 12 Door 12a Press flange 12b End edge 12c ridge 12d Shock absorbing rope 12e for door part 12e Front edge 12f Flange tip edge 12g Door top 12h Door peripheral edge 50 ridge 51 Adhesion Compartment rope 70 Hydraulic cylinder 71 Top shaft 72 Tapered top

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is an indirect heating carbonization apparatus which not only serves as a compact carbonization facility that is capable of carbonizing objects to be carbonized at the site where the objects to be carbonized are produced, but is also capable of stably carbonizing the objects to be carbonized in a short time with relatively low thermal energy by significantly increasing the thermal exchange efficiency between hot air generated in a combustion chamber and the space inside a carbonization chamber and making maximum use of the thermal energy of the hot air as radiant heat. One face of the peripheral hexahedron of a carbonization furnace case and the carbonization chamber accommodated inside the carbonization furnace case is open for placing in and taking out objects to be carbonized, and a door for blocking outside air is openably and closably hinged to this open portion. When the door is closed, a carbonization chamber flange on the periphery of the opening of the carbonization chamber is sandwiched and clamped between a pressing flange on the periphery of the door and the peripheral face of the opening of the carbonization furnace case into which the carbonization chamber fits. Thus, the carbonization chamber is secured, and the opening of the carbonization chamber and the opening of the carbonization furnace case are sealable and openable by the door.

Description

間接加熱方式炭化処理装置Indirect heating carbonization equipment
 本発明は、炭化室と炭化炉ケースとの二重構造よりなる間接加熱方式炭化処理装置に関する。 The present invention relates to an indirect heating type carbonization treatment apparatus having a double structure of a carbonization chamber and a carbonization furnace case.
 一般的に、各種産業界、畜産業界、下水処理場及び医療関係機関などの種々の業界で日々排出される有機系の廃棄物(以下、単に「炭化処理対象物」と言う。)の処理は、環境に配慮しつつ一定の基準に即して処理する必要があり、これらの業界において大きな負担となっていた。 In general, processing of organic waste (hereinafter simply referred to as “carbonization target”) discharged in various industries such as various industries, livestock industry, sewage treatment plants and medical-related organizations is performed. However, it is necessary to process in accordance with certain standards while considering the environment, which has been a heavy burden in these industries.
 これに対し、炭化処理対象物を無酸素状態で間接的に加熱することで熱分解し、固定炭素として資源化可能とする炭化炉処理装置が提案されている(例えば、特許文献1参照。)。 On the other hand, a carbonization furnace processing apparatus has been proposed in which a carbonization target object is thermally decomposed by indirectly heating in an oxygen-free state and can be recycled as fixed carbon (see, for example, Patent Document 1). .
 このような炭化処理装置は、熱風を発生させる燃焼室と、熱風が流通する蛇型構造の熱流路で扉部分を除いた5側面を囲繞した箱型形状の炭化室とを備えており、熱風を熱流路全体に送風循環させ、炭化室内に収容した炭化処理対象物を炭化室外部から間接的に加熱して炭化するもので、シンプルな構造を実現しつつも、炭化処理対象物の発生現場において短時間で炭化処理対象物を減容化、減量化、再資源化をすることができるとしている。 Such a carbonization apparatus includes a combustion chamber that generates hot air, and a box-shaped carbonization chamber that surrounds five sides excluding the door portion with a heat flow channel having a serpentine structure through which the hot air flows. The carbonization target object housed in the carbonization chamber is indirectly heated from the outside of the carbonization chamber to carbonize the carbonization target. The volume of carbonized objects can be reduced, reduced, and recycled in a short time.
特表第2013-533897号Special table No. 2013-533897
 かかる炭化処理装置の熱流路は、方形状の炭化処理室内の各内側面において上部から下部、一端縁から多端縁に至るまで単純に熱降下や熱移動する流路に形成し、輻射熱は熱流に従って上部から下部に、また一端縁から多端縁に移動し流路から発散される輻射熱の温度は側面では下流側ほど低い温度となり、天井面や底面では流路始端から終端に至るに従って低い温度となり、方形状の炭化処理室内の温度は不均一となり熱斑が発生して炭化室内部の温度が不安定となり、炭化処理対象物を迅速且つ安定して熱分解をすることができなかった。 The heat flow path of such a carbonization apparatus is formed in a flow path that simply falls or heat moves from the upper part to the lower part and from one end edge to multiple end edges on each inner surface in the square carbonization chamber, and the radiant heat follows the heat flow. The temperature of the radiant heat that moves from the upper part to the lower part and from one end edge to the multi-end edge and radiates from the flow path becomes lower at the downstream side, and becomes lower at the ceiling and bottom surfaces as it goes from the beginning to the end of the flow path, The temperature in the square carbonization chamber became non-uniform and thermal spots were generated, the temperature in the carbonization chamber became unstable, and the carbonized object could not be thermally decomposed quickly and stably.
 特に、かかる現象は炭化処理室内の各内側面のうち正面に構成した扉部分おいて処理物の出し入れや閉扉部分のわずかな間隙からの熱ロス等により発生することが多く、扉部分の密閉構造を簡易な構造により確実に行うことが重要な課題となっていた。 In particular, such a phenomenon often occurs due to heat loss or the like from a slight gap in the closed part of the door in the front part of the inner surface of the carbonization chamber. It has been an important issue to reliably perform the above with a simple structure.
 また、この熱斑により炭化処理室内各側面同士の温度差が過剰となることで各側面の熱膨張差を拡大させ、炭化室に熱ひずみが生じて炭化処理室から熱が散逸する恐れがあり、熱の散逸部分周辺の部材の熱損壊を生起して炭化炉自体の寿命も短くしていた。 In addition, the temperature difference between the side surfaces of the carbonization chamber due to the thermal spots increases the difference in thermal expansion between the side surfaces, which may cause thermal distortion in the carbonization chamber and dissipate heat from the carbonization chamber. The heat dissipating member around the heat dissipating part caused heat damage, and the life of the carbonization furnace itself was shortened.
 このため炭化室の各側面で温度分布が不均一となり、偏奇して一部に異常な高温エリアを形成することになりこのような各側面における不均一な熱分布は局所的な熱斑を発生させて方形状の炭化処理室壁の熱膨張差を過剰としていた。 For this reason, the temperature distribution on each side of the carbonization chamber becomes non-uniform, and it becomes uneven and partly forms an abnormally high temperature area. This non-uniform heat distribution on each side causes local heat spots. Thus, the difference in thermal expansion of the square carbonization chamber wall was excessive.
 この理は、炭化処理室の天井面や底面においても発生することであり、天井面や底面の一端縁と他端縁間の熱流路で発生する温度分布の偏奇にも適用されることである。 This reason is that it also occurs on the ceiling surface and bottom surface of the carbonization chamber, and is also applied to the uneven temperature distribution generated in the heat flow path between the one end edge and the other end edge of the ceiling surface or bottom surface. .
 さらには、扉部分の四隅や四辺部分から漏洩する熱エネルギーによって扉の密着部材が老化老朽化してその部分から更に拡大した熱エネルギーが漏洩してしまい、炭化処理室内において発生する熱風の熱エネルギーが隣接して連続する劣熱エネルギーにより奪われたり、外気と熱交換されてしまい熱流路内における熱風と炭化室内空間との間における熱交換効率を低下させて輻射熱としての本来の熱風の有する熱エネルギーを有効に利用することなく炭化室外に熱ガスとして無駄に排出していた。 Furthermore, due to the thermal energy leaking from the four corners and the four sides of the door part, the contact member of the door ages and the thermal energy further expanded from that part leaks, and the thermal energy of the hot air generated in the carbonization chamber is reduced. The heat energy of the original hot air as radiant heat is reduced by heat exchange efficiency between the hot air in the heat flow path and the space inside the carbonization chamber because it is deprived by adjacent inferior heat energy or is exchanged with the outside air. It was exhausted wastefully as hot gas outside the carbonization chamber without effectively utilizing the gas.
 本発明は、斯かる事情に鑑みてなされたものであって、炭化処理設備をコンパクト化して密閉可能な扉部分の当接部分に一定の工夫を凝らして炭化処理対象物の発生現場で同炭化処理対象物を効率よく炭化処理することができることは勿論、燃焼室で生成した熱風と炭化室内空間との間の熱交換効率を飛躍的に上昇させ、輻射熱としての熱風の有する熱エネルギーを最大限利用して比較的低い熱エネルギーであっても短時間で安定した炭化処理対象物の炭化処理を実現できる間接加熱方式炭化処理装置を提供するものである。 The present invention has been made in view of such circumstances, and the carbonization equipment is made compact, and a certain device is applied to the abutting portion of the sealable door portion so that the carbonization is performed at the site where the carbonization target is generated. In addition to being able to efficiently carbonize the object to be treated, the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber is dramatically increased to maximize the thermal energy of the hot air as radiant heat. The present invention provides an indirect heating type carbonization apparatus capable of realizing a stable carbonization of a carbonization target object in a short time even when using relatively low thermal energy.
 上記従来の課題を解決するために、この発明は、炭化炉ケースと、炭化炉ケース内に収納された炭化室と、炭化炉ケース内側面と炭化室の炭化処理対象物出入口側を除いた外周五側面との間に形成した熱流路層と、熱流路層に形成したジグザグ状の熱流路と、熱流路に熱風供給路を介して連通した燃焼室と、炭化室と燃焼室との間に連通介設した乾留ガス移送管とよりなる炭化処理装置において、炭化炉ケースと炭化炉ケース内に収納された炭化室とは、外周六面体のうち一面体は炭化処理対象物の出し入れ用に開放してこの開放部に外気と遮断するための扉部を開閉自在に枢支し、閉扉時に扉部の周縁の押圧フランジと炭化室を内嵌する炭化炉ケースの開口部周縁面との間で炭化室の開口部周縁の炭化室フランジを挟持圧着すべく構成して炭化室の固定と共に炭化室の開口部と炭化炉ケースの開口部とを扉部により密封自在及び開放自在に構成したことを特徴とする間接加熱方式炭化処理装置を提供するものである。 In order to solve the above-described conventional problems, the present invention provides a carbonization furnace case, a carbonization chamber accommodated in the carbonization furnace case, an inner side surface of the carbonization furnace case, and an outer side excluding the carbonization target entry / exit side of the carbonization chamber. Between the heat flow path layer formed between the peripheral five side surfaces, the zigzag heat flow path formed in the heat flow path layer, the combustion chamber communicating with the heat flow path via the hot air supply path, and between the carbonization chamber and the combustion chamber In the carbonization processing apparatus comprising a carbonization gas transfer pipe communicated with the carbonization furnace, the carbonization furnace case and the carbonization chamber accommodated in the carbonization furnace case are open to the outside of the hexahedron of the outer periphery for the removal and removal of the carbonization target. Then, a door part for shutting off the outside air is pivotally supported in the open part so that the door part can be opened and closed, and when the door is closed, between the pressing flange on the peripheral part of the door part and the peripheral part of the opening part of the carbonization furnace case in which the carbonization chamber is fitted. The carbonization chamber flange around the periphery of the opening of the carbonization chamber is configured to be clamped and crimped. There is provided an indirect heating method carbonizing apparatus characterized by being configured to freely sealed freely and opened by the door portion and the opening of the coking chamber and the opening of the carbonizing furnace casing with the carbonization chamber fixed.
 また、扉部の端縁部には断面コ字状の樋条を設け樋条中に扉用緩衝密着ロープを嵌入し、該緩衝密着ロープを介して扉部の端縁部を炭化炉ケース前端面に圧着可能に構成すると共に、炭化炉ケースの開口部周縁面には断面コ字状の樋条を設け樋条中に炉緩衝密着ロープを嵌入し、該炉緩衝密着ロープを介して扉部の最先端縁部を炭化炉ケース前端面に圧着可能に構成したことにも特徴を有する。 In addition, a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. It is also characterized in that the most advanced edge portion of the carbon steel can be crimped to the front end surface of the carbonization furnace case.
 また、炭化室の炭化室フランジ先端面と炭化炉ケース前端面との間に断面コ字状の樋条中に嵌入した密着区画ロープを介在したことを特徴とする。 Also, a coherent section rope fitted into a U-shaped cross-section is interposed between the front end face of the carbonization chamber flange and the front end face of the carbonization furnace case.
 また、炭化炉ケースの開口部周縁に油圧シリンダにより垂直及び水平作動するコマ軸を配設しコマ軸の所定箇所に複数のテーパーコマを連設すると共に、コマ軸摺動により各テーパーコマと当接し互いにテーパー嵌合機能を果たす扉用コマを扉部の周縁に突設したことを特徴とする間接加熱方式炭化処理装置を提供するものである。 In addition, a frame shaft that operates vertically and horizontally by a hydraulic cylinder is arranged around the opening periphery of the carbonization furnace case, and a plurality of taper frames are connected to predetermined positions of the frame shaft. The present invention provides an indirect heating system carbonization apparatus characterized in that door pieces that come into contact with each other and perform a taper fitting function protrude from the periphery of the door portion.
 本発明に係る間接加熱方式炭化処理装置によれば、炭化炉ケースと、炭化炉ケース内に収納された炭化室と、炭化炉ケース内側面と炭化室の炭化処理対象物出入口側を除いた外周五側面との間に形成した熱流路層と、熱流路層に形成したジグザグ状の熱流路と、熱流路に熱風供給路を介して連通した燃焼室と、炭化室と燃焼室との間に連通介設した乾留ガス移送管とよりなる炭化処理装置において、炭化炉ケースと炭化炉ケース内に収納された炭化室とは、外周六面体のうち一面体は炭化処理対象物の出し入れ用に開放してこの開放部に外気と遮断するための扉部を開閉自在に枢支し、閉扉時に扉部の周縁の押圧フランジと炭化室を内嵌する炭化炉ケースの開口部周縁面との間で炭化室の開口部周縁の炭化室フランジを挟持圧着すべく構成したので、各フランジを介して炭化室を炭化炉ケース内に固定することができると共に、扉部の閉扉時に炭化室の開口部を確実に強固に密着閉塞することができることになり炭化室内において炭化処理対象物への熱エネルギーの損失を可及的に防ぎ炭化効率を格段に向上することができる効果がある。 According to the indirect heating system carbonization apparatus according to the present invention, the carbonization furnace case, the carbonization chamber accommodated in the carbonization furnace case, the inner side surface of the carbonization furnace case, and the outside of the carbonization processing object entrance / exit side of the carbonization chamber are excluded. Between the heat flow path layer formed between the peripheral five side surfaces, the zigzag heat flow path formed in the heat flow path layer, the combustion chamber communicating with the heat flow path via the hot air supply path, and between the carbonization chamber and the combustion chamber In the carbonization processing apparatus comprising a carbonization gas transfer pipe communicated with the carbonization furnace, the carbonization furnace case and the carbonization chamber accommodated in the carbonization furnace case are open to the outside of the hexahedron of the outer periphery for the removal and removal of the carbonization target. Then, a door part for shutting off the outside air is pivotally supported in the open part so that the door part can be opened and closed, and when the door is closed, between the pressing flange on the peripheral part of the door part and the peripheral part of the opening part of the carbonization furnace case in which the carbonization chamber is fitted. Configured to hold and crimp the carbonization chamber flange around the opening of the carbonization chamber Therefore, the carbonization chamber can be fixed in the carbonization furnace case via each flange, and the opening of the carbonization chamber can be securely and tightly closed and closed when the door is closed. There is an effect that the loss of heat energy to the object to be treated can be prevented as much as possible and the carbonization efficiency can be remarkably improved.
 更には、炭化処理設備をコンパクト化して炭化処理対象物の発生現場で同炭化処理対象物を炭化処理することができることは勿論、燃焼室で生成した熱風と炭化室内空間との間の熱交換効率を飛躍的に上昇させ、輻射熱としての熱風の有する熱エネルギーを最大限利用して比較的低い熱エネルギーであっても短時間で安定した炭化処理対象物の炭化処理を実現できる。 Furthermore, the carbonization equipment can be made compact so that the carbonization target can be carbonized at the site where the carbonization target is generated, and of course, the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber The carbonization of the object to be carbonized stably can be realized in a short time even with a relatively low thermal energy by making maximum use of the thermal energy of hot air as radiant heat.
 また、扉部の端縁部には断面コ字状の樋条を設け樋条中に扉用緩衝密着ロープを嵌入し、該緩衝密着ロープを介して扉部の端縁部を炭化炉ケース前端面に圧着可能に構成すると共に、炭化炉ケースの開口部周縁面には断面コ字状の樋条を設け樋条中に炉緩衝密着ロープを嵌入し、該炉緩衝密着ロープを介して扉部の最先端縁部を炭化炉ケース前端面に圧着可能に構成したため、閉扉時の大重量の扉部の衝撃を緩衝することができると共に炭化炉ケース開口部の密封機能を果たすことができる。 In addition, a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. Since the most advanced edge portion is configured to be crimped to the front end surface of the carbonization furnace case, it is possible to buffer the impact of the heavy door portion when the door is closed and to perform the sealing function of the opening portion of the carbonization furnace case.
 また、炭化室の炭化室フランジ先端面と炭化炉ケース前端面との間に断面コ字状の樋条中に嵌入した密着区画ロープを介在したため、扉部用緩衝密着ロープとの間に炭化室の周縁のフランジを介して、閉扉時に扉部周縁の押圧フランジの重量負荷がかかってもその重量負荷を重なった二本の重合ロープによって強固に支持し確実に扉部の密着閉扉を行うことができる。 In addition, because the coherent compartment rope fitted in the U-shaped cross section of the carbonization chamber flange front end surface of the carbonization chamber and the front end surface of the carbonization furnace case is interposed, the carbonization chamber between the door buffer cushioning rope Even if a heavy load is applied to the pressing flange at the periphery of the door when closing the door, the weight load is firmly supported by the two overlapping ropes and the door can be tightly closed. it can.
 また、炭化炉ケースの開口部周縁に油圧シリンダにより垂直及び水平作動するコマ軸を配設しコマ軸の所定箇所に複数のテーパーコマを連設すると共に、コマ軸の進退作動により各テーパーコマと当接し互いにテーパー嵌合機能を果たす扉用コマを扉部の周縁に突設し、油圧シリンダによるコマ軸の進退作動により扉部の扉用コマと炭化炉ケースのテーパーコマとがテーパー嵌合して扉部周縁が炭化炉ケースの開口部周縁に圧着し炭化炉ケース開口部及び炭化室開口部を確実に密封閉扉できる効果がある。 In addition, a frame shaft that is vertically and horizontally operated by a hydraulic cylinder is disposed on the periphery of the opening of the carbonization furnace case, and a plurality of taper frames are continuously provided at predetermined positions of the frame shaft. Door pieces that contact each other and perform a taper fitting function protrude from the periphery of the door part, and the door piece on the door part and the taper piece on the carbonization furnace case are taper-fitted by the advance and retreat operation of the piece by the hydraulic cylinder. Thus, the peripheral edge of the door is pressure-bonded to the peripheral edge of the opening of the carbonization furnace case, so that the carbonization furnace case opening and the carbonization chamber opening can be reliably sealed and closed.
本発明に係る間接加熱方式炭化処理装置の全体構成の概念を示す説明図である。It is explanatory drawing which shows the concept of the whole structure of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の構成を示す正面図である。It is a front view which shows the structure of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の構成を示す平面図である。It is a top view which shows the structure of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の熱流路の構成を示す斜視図である。It is a perspective view which shows the structure of the heat flow path of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の熱流路の構成を示す斜視図である。It is a perspective view which shows the structure of the heat flow path of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の熱流路の構成を示す展開図である。It is an expanded view which shows the structure of the heat flow path of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化装置本体の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization apparatus main body of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化装置本体の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization apparatus main body of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化装置本体の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization apparatus main body of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の扉部の構成を示す説明図である。It is explanatory drawing which shows the structure of the door part of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化炉ケースの構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization furnace case of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化装置本体の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization apparatus main body of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化装置本体のシーリング構造を示す説明図である。It is explanatory drawing which shows the sealing structure of the carbonization apparatus main body of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化炉ケースと扉部のテーパー嵌合機能の構成を示す説明図である。It is explanatory drawing which shows the structure of the taper fitting function of the carbonization furnace case and door part of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の燃焼室の構成を示す説明図である。It is explanatory drawing which shows the structure of the combustion chamber of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化室に収納する炭化トレイの構造を示す説明図である。It is explanatory drawing which shows the structure of the carbonization tray accommodated in the carbonization chamber of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化室に収納する炭化トレイの構造を示す説明図である。It is explanatory drawing which shows the structure of the carbonization tray accommodated in the carbonization chamber of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化処理車両への搭載構造を示す説明図である。It is explanatory drawing which shows the mounting structure to the carbonization processing vehicle of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化処理車両への搭載構造を示す説明図である。It is explanatory drawing which shows the mounting structure to the carbonization processing vehicle of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化処理車両の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization processing vehicle of the indirect heating system carbonization processing apparatus which concerns on this invention. 本発明に係る間接加熱方式炭化処理装置の炭化処理車両の構成を示す説明図である。It is explanatory drawing which shows the structure of the carbonization processing vehicle of the indirect heating system carbonization processing apparatus which concerns on this invention.
 本発明は、炭化炉ケースと、炭化炉ケース内に収納された炭化室と、炭化炉ケース内側面と炭化室の炭化処理対象物出入口側を除いた外周五側面との間に形成した熱流路層と、熱流路層に形成したジグザグ状の熱流路と、熱流路に熱風供給路を介して連通した燃焼室と、炭化室と燃焼室との間に連通介設した乾留ガス移送管とよりなる炭化処理装置において、炭化炉ケースと炭化炉ケース内に収納された炭化室とは、外周六面体のうち一面体は炭化処理対象物の出し入れ用に開放してこの開放部に外気と遮断するための扉部を開閉自在に枢支し、閉扉時に扉部の周縁の押圧フランジと炭化室を内嵌する炭化炉ケースの開口部周縁面との間で炭化室の開口部周縁の炭化室フランジを挟持圧着すべく構成して炭化室の固定と共に炭化室の開口部と炭化炉ケースの開口部とを扉部により密封自在及び開放自在に構成したことを特徴とする間接加熱方式炭化処理装置を提供するものである。 The present invention relates to a heat flow formed between a carbonization furnace case, a carbonization chamber housed in the carbonization furnace case, and an inner peripheral surface of the carbonization furnace case and an outer peripheral five side surfaces excluding a carbonization target entry / exit side of the carbonization chamber. A path layer, a zigzag heat channel formed in the heat channel layer, a combustion chamber communicating with the heat channel via a hot air supply channel, and a dry distillation gas transfer pipe provided between the carbonization chamber and the combustion chamber. In the carbonization apparatus comprising the carbonization furnace case and the carbonization chamber accommodated in the carbonization furnace case, one of the outer peripheral hexahedrons is opened for taking in and out the object to be carbonized, and this open part is blocked from outside air. A carbonization chamber flange at the periphery of the opening of the carbonizing chamber is supported between the pressing flange at the periphery of the door and the opening peripheral surface of the carbonizing furnace case in which the carbonization chamber is fitted when the door is closed. The carbonization chamber opening is fixed together with the carbonization chamber fixed. There is provided an indirect heating method carbonizing apparatus characterized by being configured to freely sealed freely and open an opening of the carbonizing furnace casing by the door portion.
 また、扉部の端縁部には断面コ字状の樋条を設け樋条中に扉用緩衝密着ロープを嵌入し、該緩衝密着ロープを介して扉部の端縁部を炭化炉ケース前端面に圧着可能に構成すると共に、炭化炉ケースの開口部周縁面には断面コ字状の樋条を設け樋条中に炉緩衝密着ロープを嵌入し、該炉緩衝密着ロープを介して扉部の最先端縁部を炭化炉ケース前端面に圧着可能に構成したことにも特徴を有する。 In addition, a rib having a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is fitted into the string, and the edge of the door is connected to the front end of the carbonization furnace case via the buffering adhesion rope. It is constructed so that it can be crimped to the surface, and a rib with a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case. It is also characterized in that the most advanced edge portion of the carbon steel can be crimped to the front end surface of the carbonization furnace case.
 また、炭化室の炭化室フランジ先端面と炭化炉ケース前端面との間に断面コ字状の樋条中に嵌入した密着区画ロープを介在したことを特徴とする。 Also, a coherent section rope fitted into a U-shaped cross-section is interposed between the front end face of the carbonization chamber flange and the front end face of the carbonization furnace case.
 また、炭化炉ケースの開口部周縁に油圧シリンダにより垂直及び水平作動するコマ軸を配設しコマ軸の所定箇所に複数のテーパーコマを連設すると共に、コマ軸摺動により各テーパーコマと当接し互いにテーパー嵌合機能を果たす扉用コマを扉部の周縁に突設したことを特徴とする間接加熱方式炭化処理装置を提供するものである。 In addition, a frame shaft that operates vertically and horizontally by a hydraulic cylinder is arranged around the opening periphery of the carbonization furnace case, and a plurality of taper frames are connected to predetermined positions of the frame shaft. The present invention provides an indirect heating system carbonization apparatus characterized in that door pieces that come into contact with each other and perform a taper fitting function protrude from the periphery of the door portion.
 以下、実施形態に係る間接加熱方式炭化処理装置A(以下、単に炭化処理装置Aとも言う。)について図面を参照しながら説明する。図1は、炭化処理装置Aの全体構成の概念を示す説明図である。また、図2は、炭化処理装置Aの外観を示す正面図であり、図3は、その平断面図である。また、図4は、炭化室2を囲繞する熱流路4の構成を一側面上方側からみた斜視図であり、図5は、他側面下方側からみた斜視図である。 Hereinafter, an indirect heating carbonization apparatus A (hereinafter also simply referred to as carbonization apparatus A) according to an embodiment will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing the concept of the overall configuration of the carbonizing apparatus A. 2 is a front view showing the appearance of the carbonization apparatus A, and FIG. 3 is a plan sectional view thereof. FIG. 4 is a perspective view of the configuration of the heat flow path 4 surrounding the carbonization chamber 2 as viewed from the upper side of one side, and FIG. 5 is a perspective view of the configuration of the heat channel 4 as viewed from the lower side of the other side.
 本発明に係る炭化処理装置Aは、図1~図3に示すように、その中央部に熱風を発生させる燃焼室6と、燃焼室6の上方両端側に熱風が流通する熱流路層3、3’で正面を除いた外周を囲まれた2つの炭化室2、2’と、を備えており、熱風を熱流路層3、3’全域に亘って送風循環させ、炭化室2、2’内に収容した炭化処理対象物Cを炭化室2、2’外部から間接的に加熱して炭化しようとするものである。 As shown in FIGS. 1 to 3, the carbonization apparatus A according to the present invention includes a combustion chamber 6 that generates hot air at the center thereof, and a heat flow path layer 3 through which hot air flows through both upper ends of the combustion chamber 6. 3 'and two carbonization chambers 2 and 2' surrounded by the outer periphery excluding the front surface, and hot air is blown and circulated over the entire heat flow path layers 3 and 3 'to provide carbonization chambers 2 and 2'. The carbonization object C accommodated therein is indirectly heated from the outside of the carbonization chambers 2 and 2 'to be carbonized.
 熱流路層3には、図4及び図5に示すように、蛇型構造の熱流路4が形成されており、炭化室2、2’の外周で熱風を規則的に流通させて熱エネルギーを効果的に炭化室2、2’内部の炭化処理対象物Cに伝熱する。 As shown in FIGS. 4 and 5, the heat flow path layer 3 is formed with a heat flow path 4 having a serpentine structure, and heat air is regularly distributed around the outer circumferences of the carbonization chambers 2 and 2 ′. Heat is effectively transferred to the carbonization object C inside the carbonization chamber 2, 2 ′.
 特に、この熱流路4の構造は、本願発明者が特表第2013-533897号で既に提案している炭化室2の外周を囲む単純な蛇型構造としているのではなく、1つの炭化室2の外周において2つの熱流路4a、4bに分け、それぞれの上流側から下流側にかけて炭化室2の五側面に熱流路4a、4bを一定の規則に従ってジグザグ状に形成している。 In particular, the structure of the heat flow path 4 is not a simple snake-shaped structure surrounding the outer periphery of the carbonization chamber 2 already proposed by the inventor of the present invention in Japanese Patent Publication No. 2013-533897. Are divided into two heat flow paths 4a and 4b, and the heat flow paths 4a and 4b are formed in a zigzag shape on the five side surfaces of the carbonization chamber 2 from the upstream side to the downstream side in accordance with a certain rule.
 そして、このようなジグザグ状の熱流路4a、4b内を熱風が流通することにより、熱風の熱エネルギーが炭化室2、2’内部の炭化処理対象物Cに極めて効果的且つ効率よく伝わる。 Then, the hot air flows through the zigzag heat flow paths 4a and 4b, so that the heat energy of the hot air is transmitted to the carbonization object C inside the carbonization chambers 2 and 2 'very effectively and efficiently.
 また、ジグザグ状の熱流路4a、4bに冷風を流通させることで高熱状態にある炭化室2、2’を急速冷却すると炭化室2、2’の熱斑に起因した偏奇ひずみや劣化を防止しつつ炭化室2、2’側壁の均一な熱収縮を実現する。 Moreover, when the coking chambers 2 and 2 'in a high heat state are rapidly cooled by circulating cold air through the zigzag heat flow paths 4a and 4b, uneven strain and deterioration due to the heat spots of the carbonizing chambers 2 and 2' are prevented. While realizing the uniform thermal shrinkage of the carbonization chamber 2 and the 2 ′ side wall.
 このように間接加熱方式で車載可能な炭化処理装置Aは、熱媒流体や冷媒流体との間で加熱や冷却といった熱交換率を飛躍的に上昇させる熱流路4a、4bを炭化室2、2’に対し一定の規則性に従って備え、熱交換時に発生する弊害を防止している。 Thus, the carbonization processing apparatus A that can be mounted on the vehicle by the indirect heating method includes the heat flow paths 4a and 4b that dramatically increase the heat exchange rate such as heating and cooling with the heat transfer fluid or the refrigerant fluid. In order to prevent the harmful effects that occur during heat exchange.
 炭化室2は、図2~図5に示すように、ボックス形状に形成しており、炭化室2と相似形の炭化炉ケース1内に収納されている。 The carbonization chamber 2 is formed in a box shape as shown in FIGS. 2 to 5 and is housed in a carbonization furnace case 1 similar to the carbonization chamber 2.
 すなわち、1つの炭化装置本体11は、炭化炉ケース1と炭化室2とで入れ子構造とし、炭化炉ケース1内側面と炭化室2の炭化処理対象物出入口2f側を除いた外周五側面との間に外気と遮断するように外側板3aにより外周が閉塞された熱流路層3を形成し、この熱流路層3にジグザグ状の熱流路4を形成している。 That is, one carbonization apparatus main body 11 has a nested structure between the carbonization furnace case 1 and the carbonization chamber 2, and the outer peripheral five side surfaces excluding the inner side surface of the carbonization furnace case 1 and the carbonization object entry / exit port 2 f side of the carbonization chamber 2. A heat flow path layer 3 whose outer periphery is closed by an outer plate 3 a is formed so as to be blocked from outside air, and a zigzag heat flow path 4 is formed in the heat flow path layer 3.
 更には、図1に示すように、熱流路層3の外側板3aと炭化炉ケース1の内側板との間には一定の間隙を形成して断熱空気層80としている。 Furthermore, as shown in FIG. 1, a constant gap is formed between the outer plate 3 a of the heat flow path layer 3 and the inner plate of the carbonization furnace case 1 to form a heat insulating air layer 80.
 従って、炭化炉ケース1とその内部に入れ子構造で収納した炭化室2との間には扉部12と底面を除いて他の周側面間にこのような断熱空気層80が形成されていることになる。 Therefore, such a heat insulating air layer 80 is formed between the carbonization furnace case 1 and the carbonization chamber 2 housed therein in a nested structure between the other peripheral side surfaces except for the door portion 12 and the bottom surface. become.
 また、炭化炉ケース1の壁厚内部には断熱素材としてのセラミックウール81を充填している。 Further, the inside of the wall thickness of the carbonization furnace case 1 is filled with ceramic wool 81 as a heat insulating material.
 また、図2及び図3に示すように、炭化室2は、内部に炭化処理対象物Cを収容する空間と、正面側に炭化処理対象物Cの炭化室内部への装入及び炭化処理物の収集を可能とする正面開口の炭化処理対象物出入口2fを形成し、炭化処理対象物出入口2fには扉部12が開閉自在に枢支されている。 Moreover, as shown in FIG.2 and FIG.3, the carbonization chamber 2 has the space which accommodates the carbonization target object C in an inside, the insertion to the carbonization chamber inside of the carbonization target object C on the front side, and a carbonization processed product The carbonization target object entrance / exit 2f having a front opening that enables the collection of the carbon dioxide is formed, and the door 12 is pivotally supported by the carbonization process target entrance / exit 2f so as to be freely opened and closed.
 かかる扉部12内部には、炭化炉ケース1同様にセラミックウール81などの断熱素材が充填されており、実際にはシート状のセラミックウール81を数枚積層して貫通ボルトなどにより固定している。 The inside of the door portion 12 is filled with a heat insulating material such as ceramic wool 81 as in the case of the carbonization furnace case 1, and actually, several sheets of ceramic wool 81 are stacked and fixed with a through bolt or the like. .
 また、炭化室2は、図1及び図4に示すように、その一側面2aの中央部上部で乾留ガス移送管7を介して燃焼室6内と連通連設し炭化室2内で生成した乾留ガスを燃焼室6内に還流して高燃焼効率化を図っている。 Further, as shown in FIGS. 1 and 4, the carbonization chamber 2 is formed in the carbonization chamber 2 in communication with the combustion chamber 6 via the dry distillation gas transfer pipe 7 at the upper center of one side surface 2 a. The dry distillation gas is recirculated into the combustion chamber 6 to increase the combustion efficiency.
 かかる炭化室2の内部には炭化処理対象物Cとして、例えば廃棄材木や日用品のうち有機材料でできている廃棄物などが収納される。そのために、炭化室2内には炭化処理対象物Cの収納機構90を取り出し自在に収納する。本実施形態に係る収納機構90は、後述する炭化トレイ20としている。 In the carbonization chamber 2, for example, waste made of organic materials among waste wood and daily necessities is stored as the carbonization target C. For this purpose, the storage mechanism 90 for the carbonization object C is removably stored in the carbonization chamber 2. The storage mechanism 90 according to the present embodiment is a carbonized tray 20 described later.
 そして、本実施形態の炭化処理装置Aにおいて炭化室2内部での炭化処理対象物Cの炭化処理向上のため、特に本発明は下記の扉部12のシール機構について特徴を有している。図7は、閉扉状態の炭化装置本体11の構成を示し、図8は、開扉状態の炭化装置本体11の構成を示す。また、図9は、炭化装置本体11を分解した状態を示す。 And in order to improve the carbonization treatment of the carbonization object C inside the carbonization chamber 2 in the carbonization apparatus A of the present embodiment, the present invention is particularly characterized by the following sealing mechanism of the door portion 12. FIG. 7 shows the configuration of the carbonizing device main body 11 in the closed state, and FIG. 8 shows the configuration of the carbonizing device main body 11 in the opened state. Moreover, FIG. 9 shows the state which decomposed | disassembled the carbonization apparatus main body 11. FIG.
 炭化装置本体11は、扉部12と炭化炉ケース1、炭化室2等の開口部1a、2fとの間のシーリング構造を改良することにより炭化室2内部の熱風ガス(乾留ガス)を漏洩させることなく熱効率のよい炭化処理が行えるように構成している。 The carbonization apparatus main body 11 leaks hot air gas (dry distillation gas) inside the carbonization chamber 2 by improving the sealing structure between the door portion 12 and the openings 1a and 2f of the carbonization furnace case 1 and the carbonization chamber 2 and the like. In this way, carbonization can be performed with high thermal efficiency.
 すなわち、炭化炉ケース1と炭化炉ケース1内に収納された炭化室2とは、図8に示すように、外周六面体のうち一面体は炭化処理対象物Cの出し入れ用に開放し、この開放部である炭化炉ケース1の開口部1aや炭化室開口部2fに、図7及び図8に示すように、外気と遮断するための扉部12を開閉自在に枢支している。 That is, the carbonization furnace case 1 and the carbonization chamber 2 housed in the carbonization furnace case 1 are, as shown in FIG. As shown in FIGS. 7 and 8, a door 12 for shutting off from the outside air is pivotally supported so as to be openable and closable in the opening 1 a of the carbonization furnace case 1 and the carbonization chamber opening 2 f.
 扉部12は、図7に示すように、平面視略L字状の2つの扉支持アーム92を介して炭化炉ケース1正面に枢支されており、より具体的には、扉支持アーム92のL字短辺端部を炭化炉ケース1外側壁の一端で、また、扉支持アーム92の長辺端部を扉部12外面の略中央部位置で、それぞれ上下方向に所定間隔を隔てて軸着している。 As shown in FIG. 7, the door portion 12 is pivotally supported on the front surface of the carbonization furnace case 1 via two door support arms 92 that are substantially L-shaped in plan view, and more specifically, the door support arm 92. The end of the L-shaped short side is at one end of the outer wall of the carbonization furnace case 1 and the end of the long side of the door support arm 92 is at a substantially central position on the outer surface of the door 12 with a predetermined interval in the vertical direction. Axis wearing.
 扉部12の閉扉に関する構造としては、閉扉時に扉部12の周縁の押圧フランジ12aが炭化室2を内嵌する炭化炉ケース1の開口部周縁面1bに圧着されるが、その間に炭化室2の開口部周縁の炭化室フランジ2iを挟持圧着すべく構成している。図10は、扉部12背面のシーリング構造を示し、図11は、炭化炉ケース1の開口部周縁面1bに設けられたシーリング構造を示し、図12は、炭化炉ケース1正面のシーリング構造を示す。また、図13は、図12に示した炭化装置本体11のA-A断面図であり、図13(a)及び図13(b)は、それぞれ開扉状態と閉扉状態とを示す。 As a structure related to the closing of the door portion 12, the pressing flange 12 a at the periphery of the door portion 12 is pressure-bonded to the opening peripheral surface 1 b of the carbonizing furnace case 1 in which the carbonizing chamber 2 is fitted when the door is closed. The carbonization chamber flange 2i at the periphery of the opening is sandwiched and pressure-bonded. FIG. 10 shows the sealing structure on the back surface of the door 12, FIG. 11 shows the sealing structure provided on the opening peripheral surface 1 b of the carbonization furnace case 1, and FIG. 12 shows the sealing structure on the front surface of the carbonization furnace case 1. Show. FIG. 13 is a cross-sectional view taken along the line AA of the carbonizing apparatus main body 11 shown in FIG. 12, and FIGS. 13 (a) and 13 (b) show an open state and a closed state, respectively.
 すなわち、図13(b)に示すように、炭化室フランジ2iが扉部12の周縁の押圧フランジ12aと炭化炉ケース1の開口部周縁面1bとにより挟持されることにより、炭化室2の固定がなされる構造に構成していると共に、炭化室2の開口部2fと炭化炉ケース1の開口部1aとを扉部12の周縁の押圧フランジ12aを介して密封自在となるように構成している。 That is, as shown in FIG. 13 (b), the carbonization chamber flange 2 i is sandwiched between the pressing flange 12 a at the periphery of the door 12 and the opening peripheral surface 1 b of the carbonization furnace case 1, thereby fixing the carbonization chamber 2. In addition, the opening 2f of the carbonization chamber 2 and the opening 1a of the carbonization furnace case 1 are configured to be sealable via a pressing flange 12a on the peripheral edge of the door portion 12. Yes.
 すなわち、図10に示すように、扉部12の端縁部12bには断面コ字状の鋼鉄製の樋条12cを突設し、樋条12c中には扉部用緩衝密着ロープ12dを嵌入敷設し、扉部12の周縁に扉部用緩衝密着ロープ12dを張り巡らした状態とする。 That is, as shown in FIG. 10, a steel rod 12c having a U-shaped cross section is projected from the end edge 12b of the door portion 12, and a buffer cushioning rope 12d for the door portion is inserted into the rod 12c. The door portion 12 is put in a state in which the door portion buffer close-contacting rope 12d is stretched around the periphery of the door portion 12.
 該緩衝密着ロープ12dは素材をセラミックウールにより構成し、一定の弾性力による密着機能と共に熱に対する耐熱機能により強度を保持し、しかも断熱効果を得ることができ、閉扉時に扉部の端縁部12bを炭化炉ケース前端面1eに圧着可能として炭化室内の熱エネルギーの熱損失を可及的に少なくなるように構成している。 The buffering rope 12d is made of ceramic wool, can maintain strength by a heat resistance function against heat as well as an adhesion function by a certain elastic force, and can obtain a heat insulation effect. When the door is closed, the edge 12b of the door portion is closed. Can be pressure-bonded to the front end surface 1e of the carbonization furnace case so that the heat loss of the heat energy in the carbonization chamber is minimized.
 また、断熱空気層80を介して炭化室2を被覆する炭化炉ケース1においても、図11に示すように、同様に開口部周縁面1bには断面コ字状の鋼鉄製の樋条1cを突設し樋条1c中に炉緩衝密着ロープ1dを嵌入して炭化炉ケース1の周縁に炉緩衝密着ロープ1dを張り巡らしている。そして該ロープ素材はセラミックウールにより構成している。 Further, in the carbonization furnace case 1 that covers the carbonization chamber 2 via the heat insulating air layer 80, similarly, as shown in FIG. 11, a steel rib 1c having a U-shaped cross section is formed on the peripheral edge surface 1b of the opening. A furnace buffer close-contact rope 1d is inserted into the protruding rod 1c and the furnace buffer close-contact rope 1d is stretched around the periphery of the carbonization furnace case 1. The rope material is made of ceramic wool.
 また、閉扉時に扉部12の最先端縁部12eに設けたフランジ先端縁12fは、図13(a)及び図13(b)に示すように、炭化炉ケース1の炉緩衝密着ロープ1dに当接可能に構成している。 Further, the flange tip edge 12f provided on the foremost edge 12e of the door 12 when the door is closed contacts the furnace shock-absorbing rope 1d of the carbonization furnace case 1 as shown in FIGS. 13 (a) and 13 (b). It is configured to be accessible.
 このように構成することにより閉扉時に扉部12の最先端縁部12eを炭化炉ケース前端面1eに圧着可能に構成し、閉扉時の大重量の扉部12の衝撃を緩衝することができると共に炭化炉ケース開口部1aの密封機能を果たすことができる。 By configuring in this way, the leading edge 12e of the door 12 can be crimped to the front end surface 1e of the carbonization furnace case when the door is closed, and the impact of the heavy door 12 when the door is closed can be buffered. The sealing function of the carbonization furnace case opening 1a can be achieved.
 また、図11~図13に示すように、炭化室2の炭化室フランジ先端面2hと炭化炉ケース前端面1eとの間には鋼鉄製の断面コ字状の樋条50中に嵌入した密着区画ロープ51を介在している。該ロープ素材はセラミックウールにより構成している。 Further, as shown in FIG. 11 to FIG. 13, between the carbonization chamber flange front end surface 2h of the carbonization chamber 2 and the carbonization furnace case front end surface 1e, there is a close fit fitted in a steel bar 50 having a U-shaped cross section. A partition rope 51 is interposed. The rope material is made of ceramic wool.
 密着区画ロープ51は、図13(a)に示すように、扉部12の端縁部に張り巡らした扉部用緩衝密着ロープ12dに対応する位置に配設しており、扉部用緩衝密着ロープ12dとの間には炭化室2の周縁のフランジ2iを介しており、閉扉時に扉部周縁の押圧フランジ12aの重量負荷がかかってもその重量負荷を重なった二本の重合ロープ12d、51によって強固に支持し確実に扉部の密着閉扉を行うことができる。 As shown in FIG. 13A, the close-contact section rope 51 is disposed at a position corresponding to the door-part buffering close-contact rope 12d stretched around the edge of the door part 12, and the door-part buffer close-contacting Between the rope 12d, a flange 2i on the periphery of the carbonization chamber 2 is interposed. Even when a weight load is applied to the pressing flange 12a on the periphery of the door when the door is closed, the two superposed ropes 12d, 51 overlapped with the weight load. Therefore, the door can be firmly closed and securely closed.
 また、炭化炉ケース1の開口部周縁面1bには、図11に示すように、油圧シリンダ70により垂直及び水平作動するコマ軸71を配設している。図14(a)は、扉部12の扉用コマ12gと炭化炉ケース1のテーパーコマ72とが開放している状態を示し、図14(b)は互いのコマ72、12g同士が嵌合している状態を示す。また、図14(c)は、平面視におけるコマ軸71の摺動による互いのコマ72、12gのテーパー嵌合機構を示す。 Further, as shown in FIG. 11, a top shaft 71 that is vertically and horizontally operated by a hydraulic cylinder 70 is disposed on the peripheral edge surface 1 b of the carbonization furnace case 1. FIG. 14A shows a state in which the door top 12g of the door 12 and the taper top 72 of the carbonization furnace case 1 are open, and FIG. 14B shows that the tops 72 and 12g are fitted to each other. Indicates the state of FIG. 14C shows a taper fitting mechanism of the tops 72 and 12g by sliding of the top shaft 71 in plan view.
 すなわち、図11に示すように、炭化炉ケース1の開口部周縁にうち左右縦方向には左右の縦コマ軸71a、71bが、また、上下横方向には上下の横コマ軸71c、71dがそれぞれ摺動自在に架設されている。 That is, as shown in FIG. 11, left and right vertical frame shafts 71 a and 71 b are formed in the left and right vertical direction, and upper and lower horizontal frame shafts 71 c and 71 d are formed in the vertical direction of the carbonization furnace case 1. Each is slidably installed.
 かかるコマ軸71の端部には油圧シリンダ70が連設されており油圧シリンダ70の作動によりコマ軸71は上下左右に摺動するように構成されている。 A hydraulic cylinder 70 is connected to the end of the coma shaft 71, and the coma shaft 71 is configured to slide up and down and left and right by the operation of the hydraulic cylinder 70.
 しかも、コマ軸71には所定の間隔で複数のテーパーコマ72が連設されていると共に、図9、図10及び図14に示すように、扉部12の周縁部にも閉扉時においてコマ軸71のテーパーコマ72と略対応する位置に扉用コマ12gが突設されている。 In addition, a plurality of tapered pieces 72 are continuously connected to the piece shaft 71 at a predetermined interval, and as shown in FIGS. 9, 10, and 14, the piece portion of the door portion 12 is also closed when the door is closed. A door piece 12g is projected from a position substantially corresponding to the tapered piece 72 of 71.
 これらのコマ72、12gは、図14(c)に示すように、互いの当接面がテーパーの傾斜状に形成されており、テーパーコマ72は上方に向かって狭窄状に形成されており、扉用コマ12gはテーパーコマ72と反対のテーパーの傾斜状に形成されている。 As shown in FIG. 14 (c), these tops 72 and 12g are formed such that their contact surfaces are tapered and tapered, and the tapered top 72 is formed narrowed upward. The door top 12g is formed in a tapered slope opposite to the tapered top 72.
 すなわち、各コマ72、12gの当接摺動面は互いに反対方向の傾斜面を形成しており、図14(c)に示すように、閉扉時のコマ軸71の摺動により各コマ72、12gの当接摺動によって扉部周縁部12hはコマ72、12gのテーパー機能により炭化炉ケース1の開口部周縁面1bに密着することができる。 That is, the abutting sliding surfaces of the tops 72 and 12g form inclined surfaces in opposite directions, and as shown in FIG. By the contact sliding of 12g, the door peripheral portion 12h can be brought into close contact with the opening peripheral surface 1b of the carbonization furnace case 1 by the taper function of the tops 72 and 12g.
 このように扉部12は、上記した密着区画ロープ51や扉部用緩衝密着ロープ12dや炉緩衝密着ロープ1dなどを介して炭化室2や炭化炉ケース1の開口部1a、2fに密着できると共に、テーパー状のコマ72、12gの当接機能によってもさらに強固な密着機能を果たすことができ、かかる構造によって熱漏洩を可及的に減じて炭化処理のための熱エネルギーの効率的で有効な利用が可能となる。 As described above, the door 12 can be brought into close contact with the carbonization chamber 2 and the openings 1a and 2f of the carbonization furnace case 1 through the contact section rope 51, the door buffer contact rope 12d, the furnace buffer contact rope 1d, and the like. Further, the contact function of the tapered pieces 72 and 12g can also achieve a stronger adhesion function, and by this structure, heat leakage is reduced as much as possible to efficiently and effectively use heat energy for carbonization. It can be used.
 次に、図1、図2、及び図15を参照しつつ、燃焼室6の構成について説明する。図15(a)は、燃焼室6の全体構成を示す説明図であり、図15(b)は、燃焼室6内部における熱風の旋回流の発生状態を示す説明図である。 Next, the configuration of the combustion chamber 6 will be described with reference to FIGS. 1, 2, and 15. FIG. 15A is an explanatory diagram illustrating the entire configuration of the combustion chamber 6, and FIG. 15B is an explanatory diagram illustrating a generation state of a swirling flow of hot air inside the combustion chamber 6.
 燃焼室6は、後述するように直方体形状でトレーラ31上に載置した前後二個の炭化炉ケース1の間に挟まれるように配設されている。 The combustion chamber 6 is disposed so as to be sandwiched between two front and rear carbonization furnace cases 1 mounted on the trailer 31 in a rectangular parallelepiped shape as will be described later.
 図15(a)に示すように、燃焼室6の前側壁6a略中央には熱風生成用のバーナー61が設けられ、燃焼室6の上側壁6bの前部位置から燃焼室6内方に乾留ガス移送管7、7’が突出され、燃焼室6の上側壁6bの後部位置には2つの熱風流入管5a、5a’及びその上部で連通する熱風送気部62が配設され、熱風送気部62後方には混焼部63が形成されている。なお、燃焼室6の外周側は、図1に示すように、耐火材料、例えば耐火煙瓦やセラミック等の耐熱性壁体64で囲繞している。 As shown in FIG. 15 (a), a hot air generating burner 61 is provided substantially at the center of the front wall 6 a of the combustion chamber 6, and dry distillation from the front position of the upper wall 6 b of the combustion chamber 6 to the inside of the combustion chamber 6. The gas transfer pipes 7 and 7 ′ are projected, and two hot air inflow pipes 5a and 5a ′ and a hot air supply section 62 communicating with the upper part of the upper wall 6b of the combustion chamber 6 and a hot air supply section 62 are disposed at the rear position. A mixed firing portion 63 is formed behind the air portion 62. In addition, as shown in FIG. 1, the outer peripheral side of the combustion chamber 6 is surrounded by a heat-resistant wall body 64 such as a refractory material, for example, refractory smoke tile or ceramic.
 バーナー61は、後述する灯油ガスを燃料とする。また、一対の乾留ガス移送管7、7’は、燃焼室6の上側壁6bの前部位置から燃焼室6の内方にそれぞれ突出している。図15(a)中、7c、7c’は乾留ガス移送管7、7’の先端開口部、6cは燃焼室6の後側壁を示す。 Burner 61 uses kerosene gas, which will be described later, as fuel. Further, the pair of dry distillation gas transfer pipes 7 and 7 ′ protrude from the front position of the upper wall 6 b of the combustion chamber 6 to the inside of the combustion chamber 6. In FIG. 15 (a), 7 c and 7 c ′ indicate opening portions at the front ends of the dry distillation gas transfer pipes 7 and 7 ′, and 6 c indicates the rear side wall of the combustion chamber 6.
 すなわち、一対の乾留ガス移送管7、7’の先端開口部7c、7c’は、図15(a)及び図15(b)に示すように、乾留ガス移送管7、7’から燃焼室6内部へ噴出供給される乾留ガスや燃焼用空気が左右両側壁6d、6d’に斜め方向に突き当たると共にバーナー61の火炎噴射方向両側に沿って互いに回転方向を違える2つの旋回流を発生させるように配設している。 That is, the tip openings 7c and 7c ′ of the pair of dry distillation gas transfer pipes 7 and 7 ′ are connected to the combustion chamber 6 from the dry distillation gas transfer pipes 7 and 7 ′ as shown in FIGS. The dry distillation gas and combustion air jetted into the interior strike the left and right side walls 6d and 6d 'in an oblique direction, and generate two swirling flows whose rotational directions are different from each other along both sides of the flame injection direction of the burner 61. It is arranged.
 混焼部63は、熱風送気部62の後方で、燃焼室6の後側壁6c、上下側壁及び左右両側壁6d、6d’で囲まれる所定空間として設けている。 The co-firing unit 63 is provided as a predetermined space behind the hot air supply unit 62 and surrounded by the rear side wall 6c, the upper and lower side walls, and the left and right side walls 6d and 6d 'of the combustion chamber 6.
 熱風送気部62は、燃焼室6の上側壁6bの後部位置から上方に向けて突設された所定空間を有する箱型部材であり、その上部で2つの熱風流入管5a、5a’を連設している。 The hot air supply section 62 is a box-shaped member having a predetermined space protruding upward from the rear position of the upper side wall 6b of the combustion chamber 6, and two hot air inflow pipes 5a and 5a 'are connected to the upper part thereof. Has been established.
 このように燃焼室6を構成することにより、互いに旋回方向を違えた乾留ガスと燃焼空気とからなる2つの旋回流は、負圧となる中心部に更なる乾留ガスや燃焼用空気を引き込みつつ、バーナー61の火炎噴射方向に沿って燃焼しながら混焼部63に移動する。 By configuring the combustion chamber 6 in this way, the two swirling flows composed of the dry distillation gas and the combustion air having mutually different swirling directions draw more dry distillation gas and combustion air into the central portion where the negative pressure is generated. The burner 61 moves to the mixed firing portion 63 while burning along the flame injection direction.
 そして混焼部63では、移動してきた旋回流が燃焼室6の後側壁6cや左右側壁6d、6d’に突き当たり乱流状態となることで混焼が促進され乾留ガスを完全燃焼して高温の熱風を生起させることを可能としている。 In the co-firing section 63, the swirling flow that has moved hits the rear side wall 6c and the left and right side walls 6d, 6d 'of the combustion chamber 6 and is in a turbulent state, thereby promoting co-firing and completely burning dry distillation gas to generate hot hot air. It is possible to make it happen.
 この熱風は、いったん燃焼室6の上側壁6b後部の熱風送気部62内に一定量が吹き溜まり、2つの熱風流入管5a、5a’に対して流入する熱風の分流量割合を一定としている。 A certain amount of this hot air is once accumulated in the hot air supply section 62 at the rear of the upper wall 6b of the combustion chamber 6, and the partial flow rate ratio of the hot air flowing into the two hot air inflow pipes 5a and 5a 'is constant.
 また、燃焼室6は、熱風流入管5a、5a’を介して炭化室2、2’の外周に形成した熱流路4、4’と連通連設している。 Further, the combustion chamber 6 communicates with a heat flow path 4, 4 ′ formed on the outer periphery of the carbonization chamber 2, 2 ′ via hot air inflow pipes 5 a, 5 a ′.
 すなわち、燃焼室6で生成した熱風は、熱風流入管5a、5a’を介して、上述の炭化室2、2’の外周に形成した熱流路4、4’を循環し、熱風排出路10である排出管10aを通じて煙突10bから排出されることとなる。 That is, the hot air generated in the combustion chamber 6 circulates in the hot flow passages 4, 4 ′ formed on the outer periphery of the carbonization chambers 2, 2 ′ via the hot air inflow pipes 5 a, 5 a ′. It will be discharged | emitted from the chimney 10b through a certain discharge pipe 10a.
 次に、熱流路4の基本的な構成について、図4~図6を参照しながら説明する。図6は、2つの熱流路4a、4bを示す展開図である。 Next, the basic configuration of the heat flow path 4 will be described with reference to FIGS. FIG. 6 is a development view showing the two heat flow paths 4a and 4b.
 熱流路4は、図4~図6に示すように外気と遮断した熱流路層3を形成し炭化室2外周の五側面にそれぞれジグザグ状に形成し、五側面のうち三側面のジグザグ状の熱流路層3はそれぞれ一本に連続した第1流路4aとし、他の二側面のジグザグ状の熱流路はそれぞれ連続した第2流路4bとして構成している。 As shown in FIGS. 4 to 6, the heat flow path 4 is formed in a zigzag shape on each of the five side surfaces of the outer periphery of the carbonization chamber 2 by forming a heat flow path layer 3 that is blocked from outside air. The heat flow path layer 3 is configured as a continuous first flow path 4a, and the zigzag heat flow paths on the other two side surfaces are configured as continuous second flow paths 4b.
 更には、図4に示すように、第1流路4aの始端と第2流路4bの始端は共に炭化室2の一側面2aに開口した燃焼室6からの熱風供給路5の終端開口部5bに連通して合流すると共に、図5に示すように、第1流路4aの終端と第2流路4bの終端は共に熱風供給路5の終端開口部と反対側の炭化室2の一側面2aに設けた熱風排出路10の始端開口部10cに連通して合流する構成としジグザグ形状を構成すると共に各流路間は複数の隔壁41で区画されている。 Furthermore, as shown in FIG. 4, both the start end of the first flow path 4 a and the start end of the second flow path 4 b are the terminal opening of the hot air supply path 5 from the combustion chamber 6 that opens to one side surface 2 a of the carbonization chamber 2. As shown in FIG. 5, the terminal end of the first flow path 4 a and the terminal end of the second flow path 4 b are both one of the carbonization chambers 2 on the side opposite to the terminal opening of the hot air supply path 5. A zigzag shape is formed so as to communicate with and merge with the starting end opening 10c of the hot air discharge passage 10 provided on the side surface 2a, and the flow paths are partitioned by a plurality of partition walls 41.
 換言すれば、炭化室2の外周側面に複数の隔壁41を立設して炭化室の外方をジグザグ形状に区画するとこの区画された通路が熱流路4となり、図4~図6に示すように、外側板3aにより外気と遮断した熱流路層3を形成することとなる。 In other words, when a plurality of partition walls 41 are erected on the outer peripheral side surface of the carbonization chamber 2 and the outside of the carbonization chamber is partitioned in a zigzag shape, the partitioned passage becomes the heat flow path 4, as shown in FIGS. 4 to 6. In addition, the heat flow path layer 3 that is cut off from the outside air by the outer plate 3a is formed.
 また、第1流路4aと第2流路4bとは、熱風流入管5aの終端開口部5bを略半分にする位置で炭化室2の一側面2aに設けた分流壁40により区画される。 Further, the first flow path 4a and the second flow path 4b are partitioned by the flow dividing wall 40 provided on the one side surface 2a of the carbonization chamber 2 at a position where the terminal opening 5b of the hot air inflow pipe 5a is substantially halved.
 第1流路4aは、図4~図6に示すように、炭化室2の一側面2aに形成した第1流路上流部4a-1と、炭化室2の上面2bに形成した第1流路中流部4a-2と、炭化室2の他側面2cに形成した第1流路下流部4a-3とで形成している。 As shown in FIGS. 4 to 6, the first flow path 4 a includes a first flow path upstream portion 4 a-1 formed on one side surface 2 a of the carbonization chamber 2 and a first flow formed on the upper surface 2 b of the carbonization chamber 2. It is formed by the midstream portion 4a-2 and the first flow path downstream portion 4a-3 formed on the other side surface 2c of the carbonization chamber 2.
 同様にして、第2流路4bは、炭化室2の背面2dに形成した第2流路上流部4b-1と、炭化室2の下面2eに形成した第2流路下流部4b-2とで形成している。 Similarly, the second flow path 4b includes a second flow path upstream portion 4b-1 formed on the back surface 2d of the carbonization chamber 2, and a second flow path downstream portion 4b-2 formed on the lower surface 2e of the carbonization chamber 2. It is formed with.
 そして、第1流路4aや第2流路4bは、それぞれ上流側と下流側の各流路部の始端と終端が連通している。 In the first flow path 4a and the second flow path 4b, the start end and the end of each flow path section on the upstream side and the downstream side are in communication with each other.
 また、第1流路4aと第2流路4bのそれぞれの終端は、図5に示すように、炭化室2の分流壁40を設けた一側面2aと反対側の側壁6dに、熱風排出路10である排出管10aの始端開口部10cで連通して合流するように構成している。 Further, as shown in FIG. 5, the end of each of the first flow path 4 a and the second flow path 4 b is connected to a side wall 6 d opposite to the side face 2 a provided with the flow dividing wall 40 of the carbonization chamber 2. 10 is configured to communicate and merge at the start end opening 10c of the discharge pipe 10a.
 次いで、図1~図6、及び図15を参照しながら、熱風の発生と流通の機構を説明する。燃焼室6のバーナー61の基部は、図1に示すように、灯油供給管14aを介して灯油タンク14と、また、燃焼空気送管13を介して燃焼用空気送風用の送風機9aと、それぞれ連通連設している。 Next, the hot air generation and distribution mechanism will be described with reference to FIGS. 1 to 6 and FIG. As shown in FIG. 1, the base of the burner 61 of the combustion chamber 6 includes a kerosene tank 14 via a kerosene supply pipe 14a, and a blower 9a for blowing air for combustion via a combustion air feed pipe 13, respectively. There is a continuous connection.
 また、炭化室2と燃焼室6とを連通する乾留ガス移送管7の中途部7bには、図1~図6、及び図15に示すように、送風機9bからの燃焼用空気を乾留ガスに混入する燃焼空気送管16が連結しており、乾留ガスを炭化室2内部から乾留ガス移送管7へ引き込むエジェクターとして機能する。 Further, in the middle portion 7b of the dry distillation gas transfer pipe 7 communicating the carbonization chamber 2 and the combustion chamber 6, as shown in FIGS. 1 to 6 and 15, the combustion air from the blower 9b is converted into the dry distillation gas. The mixed combustion air feed pipe 16 is connected, and functions as an ejector that draws the dry distillation gas from the carbonization chamber 2 into the dry distillation gas transfer pipe 7.
 また、燃焼空気送管13、灯油供給管14a、燃焼空気送管16、乾留ガス移送管7の中途部には自動開閉バルブ13a、16a、14b、7aが設けられ制御盤15で操作制御される。なお図1中、15aはバーナー制御ユニット、Vは開閉バルブ、Tは炭化室温度を検出する熱電帯を示す。 In addition, automatic open / close valves 13 a, 16 a, 14 b, and 7 a are provided in the middle of the combustion air feed pipe 13, kerosene supply pipe 14 a, combustion air feed pipe 16, and dry distillation gas transfer pipe 7, and are operated and controlled by the control panel 15. . In FIG. 1, 15a is a burner control unit, V is an on-off valve, and T is a thermoelectric band for detecting the carbonization chamber temperature.
 そして、燃焼室6で発生した高温の熱風は、図4~図6に示すように、炭化室2外周の五側面に熱単体流路42を多数平行して形成した第1流路4aと第2流路4bとをジグザグ状に流通して炭化室2と熱交換する。 As shown in FIGS. 4 to 6, the hot hot air generated in the combustion chamber 6 has a first flow path 4a and a first flow path 4a formed in parallel with a large number of single heat flow paths 42 on the five side surfaces of the outer periphery of the carbonization chamber 2. The two flow paths 4b are circulated in a zigzag shape to exchange heat with the carbonization chamber 2.
 このように形成した熱流路4は、炭化処理対象物Cの炭化処理後に炭化室2を冷却する冷却流路として兼用することができる。すなわち、送風機9aや送風機9bの他に、冷却専用の送風機9cから供給される大容量の冷風を熱風供給路5を介して熱流路4に流通させることにより行う。 The thus formed heat flow path 4 can also be used as a cooling flow path for cooling the carbonization chamber 2 after the carbonization treatment of the carbonization target C. That is, in addition to the blower 9 a and the blower 9 b, a large volume of cool air supplied from the cooling fan 9 c is circulated through the hot flow path 4 via the hot air supply path 5.
 このような炭化処理後の冷却方式により、熱流路4、4’を備えた炭化室2、2’の強制空冷機能を付与し、炭化室2の冷却時間を短縮することができる。 By such a cooling method after carbonization treatment, a forced air cooling function of the carbonization chambers 2 and 2 ′ having the heat flow paths 4 and 4 ′ can be provided, and the cooling time of the carbonization chamber 2 can be shortened.
次に、図3、図16及び図17を参照しながら、炭化室2に収納する炭化トレイ20の構成について説明する。図16は、炭化トレイ20を炭化室2に装入設置した状態を示す斜視図である。また、図18は、炭化トレイ20の構成を示す側面図であり、図19は、炭化トレイ20の構成を示す正面図である。 Next, the structure of the carbonization tray 20 accommodated in the carbonization chamber 2 will be described with reference to FIGS. 3, 16, and 17. FIG. 16 is a perspective view showing a state in which the carbonization tray 20 is installed in the carbonization chamber 2. FIG. 18 is a side view showing the configuration of the carbonization tray 20, and FIG. 19 is a front view showing the configuration of the carbonization tray 20.
 炭化トレイ20は、図3及び図16に示すように、炭化室2内部空間よりやや小さくした方形状に形成し上方開放の箱型にして周壁は金網20aで構成し、底部四隅には脚体20bを垂設して炭化トレイ20を数段に重ねたときに脚体20bを介して上下段の炭化トレイ20の間にフォークリフトの爪が差し込まれる空間が形成されている。 As shown in FIGS. 3 and 16, the carbonization tray 20 is formed in a rectangular shape slightly smaller than the internal space of the carbonization chamber 2 and has a box shape that is open upward. The peripheral wall is composed of a wire mesh 20a, and legs are formed at the bottom four corners. When the carbonization tray 20 is stacked in several stages by suspending 20b, a space is formed in which forklift claws are inserted between the upper and lower carbonization trays 20 via the legs 20b.
 このような構成により、図17に示すように、炭化室2内において炭化トレイ20に収納した任意に不整列に積層した不定形状の炭化処理対象物Cに可及的均一迅速にかつ万遍なく輻射熱が照射されるとともに、炭化処理対象物Cの間隙を熱風が効率よく流通して不定形状の炭化処理対象物Cの全面に可及的に熱風を接触させ炭化処理の効率化を行うことができる With such a configuration, as shown in FIG. 17, the carbonization object C having an irregular shape arbitrarily stacked in an unaligned manner accommodated in the carbonization tray 20 in the carbonization chamber 2 can be uniformly and quickly as uniform as possible. While radiant heat is irradiated, hot air efficiently circulates through the gap between the carbonization target object C, and the hot air is brought into contact with the entire surface of the carbonization target object C having an irregular shape as much as possible to improve the efficiency of the carbonization process. it can
 また、本発明による炭化処理装置Aは、図20に示すように、炭化処理車両30に搭載可能としている。図18は、炭化室を炭化炉ケースへ収容する際の載置構造を示す斜視図であり、図19は、その側面図である。また、図20(a)は、炭化処理装置Aを搭載する前のトレーラ31とトラクター32を示す。図20(b)は、炭化処理装置Aを搭載した炭化処理車両30の示し、図21は、その側面図である。 Further, the carbonization apparatus A according to the present invention can be mounted on the carbonization vehicle 30 as shown in FIG. FIG. 18 is a perspective view showing a mounting structure when the carbonization chamber is accommodated in the carbonization furnace case, and FIG. 19 is a side view thereof. FIG. 20A shows the trailer 31 and the tractor 32 before the carbonization apparatus A is mounted. FIG. 20B shows a carbonization vehicle 30 equipped with the carbonization apparatus A, and FIG. 21 is a side view thereof.
 炭化装置本体11は、図18や図19に示すように、炭化室2底面の所定箇所、例えば、下方に敷設するレール34、34’に対応する位置の4か所に支持突起21、21’を突設して炭化炉ケース1の底部に敷設したレール34、34’上に載置可能に構成している。 As shown in FIGS. 18 and 19, the carbonizing apparatus main body 11 has support protrusions 21, 21 ′ at predetermined positions on the bottom surface of the carbonizing chamber 2, for example, at four positions corresponding to rails 34, 34 ′ laid down below. Is projected so that it can be placed on rails 34 and 34 ′ laid on the bottom of the carbonization furnace case 1.
 しかも、炭化室2の支持突起21、21’はレール34、34’に穿設した突起支持孔34a、34a’に一定のクリアランスを保持して遊嵌されるように構成しており、熱膨張による構成部材の伸縮から生じる炭化室2の変形変位を突起支持孔34a、34a’のクリアランスで吸収すべく構成している。 In addition, the support protrusions 21 and 21 'of the carbonization chamber 2 are configured to be loosely fitted in the protrusion support holes 34a and 34a' drilled in the rails 34 and 34 'while maintaining a certain clearance. The deformation displacement of the carbonizing chamber 2 caused by the expansion and contraction of the constituent members due to the above is configured to be absorbed by the clearances of the protrusion support holes 34a and 34a ′.
 このように炭化装置本体11を構成することにより、炭化室2、2’の熱膨張によって生起する構成部材の伸縮を、突起支持孔34a、34a’と支持突起21、21’との間のクリアランスで吸収することを可能としている。 By configuring the carbonization apparatus main body 11 in this manner, the expansion and contraction of the constituent members caused by the thermal expansion of the carbonization chambers 2 and 2 ′ is caused by the clearance between the projection support holes 34a and 34a ′ and the support projections 21 and 21 ′. It is possible to absorb with.
 そして、図20及び図21に示すように、このように構成した二個の炭化装置本体11、11’と炭化装置本体11、11’の間の燃焼室6を、車載用のトレーラ31のシャーシ33に炭化装置本体11、11の各部材や構造セクションの重量負荷を可及的に軽減できるような重量配分を行うように配設して炭化処理車両30を構成している。 As shown in FIGS. 20 and 21, the combustion chamber 6 between the two carbonizing device main bodies 11, 11 ′ and the carbonizing device main bodies 11, 11 ′ configured as described above is replaced with a chassis of a vehicle-mounted trailer 31. The carbonization processing vehicle 30 is configured by arranging the carbonization apparatus body 33 so as to distribute the weight so as to reduce the weight load of each member and structural section of the carbonization apparatus main bodies 11 and 11 as much as possible.
 すなわち、図21に示すように、トレーラ31のシャーシ33の後半部33bを前半部33aをよりやや下方位置に形成し、後半部33bのシャーシ33には二個の炭化装置本体11、11’を前後に配設すると共にその間に燃焼室6を介設し、前半部33aのシャーシ33には操作及び作動関係の付属関連部材91として制御盤15を備える操作制御装置17や発電装置18、灯油タンク14、灯油ポンプ14cを配設している。 That is, as shown in FIG. 21, the rear half portion 33b of the chassis 33 of the trailer 31 is formed at a position slightly lower than the front half portion 33a, and the two carbonizing device bodies 11, 11 ′ are placed on the chassis 33 of the rear half portion 33b. The combustion chamber 6 is disposed between the front and rear and the combustion chamber 6 is interposed between them. The chassis 33 of the front half 33a has an operation control device 17, a power generation device 18, and a kerosene tank provided with a control panel 15 as an auxiliary member 91 for operation and operation. 14, a kerosene pump 14c is provided.
 このように構成することでシャーシ33の後半部33bに前半部33aより下位置で二個の炭化装置本体11の大重量負荷をかけてトラクター32とトレーラ31との連結部分における重量負荷の軽減を図ることができ、可及的に牽引動力の伝達を円滑に行うことができるために炭化装置の路上走行移動に伴う牽引に何ら支障がない。 With this configuration, the heavy load of the two carbonizer main bodies 11 is applied to the rear half 33b of the chassis 33 below the front half 33a to reduce the weight load at the connecting portion between the tractor 32 and the trailer 31. Since the traction power can be transmitted as smoothly as possible, there is no hindrance to the traction associated with the road running movement of the carbonizer.
 更には、トレーラ31とトラクター32とを連結して車両全体を長大化させて路上走行を行う場合に路上カーブのハンドリングに際し、シャーシ33の後半部33bでシャーシ33の前半部33aより下位置において二個の炭化装置本体11、11’の重量負荷をかけているので、シャーシ33の最後尾が振れる状態を可及的に防止することができることになり、より安全な走行を行うことができる。 In addition, when the trailer 31 and the tractor 32 are connected to increase the length of the entire vehicle and travel on the road, when the road curve is handled, the rear half 33b of the chassis 33 is located at a position below the front half 33a of the chassis 33. Since the carbonization apparatus main bodies 11 and 11 ′ are subjected to a weight load, a state in which the rear end of the chassis 33 swings can be prevented as much as possible, and safer traveling can be performed.
 また、シャーシ33の前半部33aに操作及び作動関係の付属関連部材91を配設したことにより、装置の点検やメンテナンス作業が行い易く、また路上走行時の路面の凹凸に伴う走行振動が前半部33aが後半部33bより高い位置にあるため振動衝撃を直接に受けることなく計器類の誤作動や故障を可及的に防止することができる。 Further, the operation- and operation-related attachment-related member 91 is disposed in the front half 33a of the chassis 33, so that the inspection and maintenance work of the apparatus can be easily performed, and the traveling vibration caused by the unevenness of the road surface when traveling on the road is the first half. Since 33a is located at a higher position than the rear half 33b, it is possible to prevent malfunctions and failures of the instruments as much as possible without directly receiving vibration shock.
 次に、炭化処理装置A及び同炭化処理装置Aを搭載した炭化処理車両30の使用方法について説明する。 Next, a method of using the carbonization apparatus A and the carbonization vehicle 30 equipped with the carbonization apparatus A will be described.
 炭化処理装置Aを搭載した炭化処理車両30は、空の炭化トレイ20を複数積んで廃棄物発生地を巡回し、廃棄物排出地で炭化処理対象物Cを炭化トレイ20に収容する。 The carbonization vehicle 30 equipped with the carbonization apparatus A is loaded with a plurality of empty carbonization trays 20 and travels around the waste generation site, and the carbonization target C is accommodated in the carbonization tray 20 at the waste discharge site.
 そして炭化処理対象物Cの収集後、二個またはいずれか一方の炭化室2、2’に炭化トレイ20を装入して扉部12、12’を閉める。なお、閉扉時の大重量の扉部12の衝撃は、図8に示すように、扉部12、12’の端縁部12b、12b’の緩衝密着ロープ12d、12d’や炭化炉ケース1、1’の炉緩衝密着ロープ1d、1d’により緩衝される。 Then, after collecting the carbonization object C, the carbonization tray 20 is inserted into two or any one of the carbonization chambers 2, 2 'and the doors 12, 12' are closed. As shown in FIG. 8, the impact of the heavy door portion 12 when the door is closed is such that the buffer contact ropes 12d and 12d ′ of the edge portions 12b and 12b ′ of the door portions 12 and 12 ′ and the carbonization furnace case 1 It is buffered by 1 ′ furnace buffering tight ropes 1d and 1d ′.
 このような閉扉時に、図14に示すように、炭化炉ケース1の開口部周縁のコマ軸71上の複数のテーパーコマ72と、扉部12周縁部のテーパーコマ72と略対応する位置に突設した複数の扉用コマ12gとをテーパ嵌合させる。 When such a door is closed, as shown in FIG. 14, the plurality of taper pieces 72 on the frame shaft 71 at the periphery of the opening of the carbonization furnace case 1 and the positions corresponding to the taper pieces 72 at the periphery of the door 12 are projected. A plurality of door pieces 12g are taper-fitted.
 すなわち操作制御装置17の制御盤15を通じて油圧シリンダ70を作動させ、炭化炉ケース1の開口部周縁の左右の縦コマ軸71a、71bや上下の横コマ軸71c、71dをそれぞれ垂直及び水平の閉方向に動作させる。 That is, the hydraulic cylinder 70 is operated through the control panel 15 of the operation control device 17, and the left and right vertical frame shafts 71a and 71b and the upper and lower horizontal frame shafts 71c and 71d at the periphery of the opening of the carbonization furnace case 1 are closed vertically and horizontally, respectively. Move in the direction.
 この各コマ軸71a、71b、71c、71dの閉方向動作に伴い、図14(c)に示すように、各コマ軸に設けた複数のテーパーコマ72が、対応する扉部12側の複数の扉用コマ12gに当接摺動して、扉部周縁部12hが炭化炉ケース1の開口部周縁面1bに密着する。 As shown in FIG. 14 (c), the plurality of tapered pieces 72 provided on each piece shaft are provided with a plurality of corresponding pieces on the door portion 12 side as the piece pieces 71a, 71b, 71c, 71d are moved in the closing direction. The door peripheral edge 12h is brought into close contact with the opening peripheral edge surface 1b of the carbonization furnace case 1 by abutting and sliding on the door top 12g.
 このようなテーパー状のコマ72、12gの当接機能により、扉部12は、密着区画ロープ51や扉部用緩衝密着ロープ12dや炉緩衝密着ロープ1dなどを介して炭化室2や炭化炉ケース1の開口部1a、2fに強固な密着をする。 Due to the abutting function of the tapered pieces 72 and 12g, the door portion 12 is connected to the carbonizing chamber 2 or the carbonizing furnace case via the contact section rope 51, the door buffer contact rope 12d, the furnace buffer contact rope 1d, or the like. 1 is firmly adhered to the openings 1a and 2f.
 すなわち、図13に示すように、炭化炉ケースの開口部周縁面1b、1b’に対して扉部12、12’の押圧フランジ12a、12a’が炭化室フランジ2i、2i’を挟持圧着して、炭化室2、2’を炭化炉ケース1、1’内に強固に固定することができると共に、閉扉時に炭化室2、2’の開口部2f、2f’や炭化炉ケース1、1’の開口部1a、1a’を確実に強固に密着閉塞する。 That is, as shown in FIG. 13, the pressing flanges 12a and 12a 'of the door portions 12 and 12' sandwich and press the carbonization chamber flanges 2i and 2i 'against the peripheral edge surfaces 1b and 1b' of the carbonization furnace case. The carbonization chambers 2 and 2 ′ can be firmly fixed in the carbonization furnace cases 1 and 1 ′, and the openings 2f and 2f ′ of the carbonization chambers 2 and 2 ′ and the carbonization furnace cases 1 and 1 ′ are closed when the door is closed. The openings 1a and 1a ′ are securely and tightly closed.
 そして、このような炭化室密封状態で炭化処理車両30に搭載した制御盤15を通じて燃焼室6のバーナー61を作動させる。 And the burner 61 of the combustion chamber 6 is operated through the control panel 15 mounted on the carbonization processing vehicle 30 in such a carbonization chamber sealed state.
 このバーナー61の燃焼により燃焼室6内に熱風を発生させ、炭化室2、2’を加熱すると、炭化室2、2’内部で乾留ガスが発生する。 When hot air is generated in the combustion chamber 6 by the combustion of the burner 61 and the carbonizing chambers 2, 2 'are heated, dry distillation gas is generated inside the carbonizing chambers 2, 2'.
 そして、炭化室2内部で発生した乾留ガスを乾留ガス移送管7に吸引し、乾留ガスと燃焼用空気が燃焼室6に供給される。 Then, the dry distillation gas generated in the carbonization chamber 2 is sucked into the dry distillation gas transfer pipe 7, and the dry distillation gas and combustion air are supplied to the combustion chamber 6.
 なお、上述のように扉部12により密閉され、外気との遮断効率が各段に向上した炭化室2内部は、炭化処理対象物Cの熱分解の進行に伴い炭化室2内部に残存する酸素が消費が促進されて可及的速やかに無酸素状態となり炭化処理がより促進されることとなる。 As described above, the inside of the carbonization chamber 2 that is sealed by the door portion 12 and has improved the efficiency of shutting off from the outside air in each stage is oxygen remaining in the carbonization chamber 2 as the carbonization target C is thermally decomposed. However, the consumption is promoted and the oxygen-free state is achieved as soon as possible, and the carbonization treatment is further promoted.
 また、乾留ガスや灯油ガスの供給量は、各熱電帯Tや温度センサー15bにより検出した燃焼室6や炭化室2内部の温度情報を元に、燃焼室6を40、000kcl/h~460、000kcl/hで、且つ、それぞれの炭化室2、2’を0℃以上1000℃以下の温度となるように、制御盤15により流量を自動調節している。 The supply amount of the dry distillation gas and kerosene gas is 40,000 kcl / h to 460 for the combustion chamber 6 based on the temperature information in the combustion chamber 6 and the carbonization chamber 2 detected by each thermoelectric band T and the temperature sensor 15b. The flow rate is automatically adjusted by the control panel 15 so that each of the carbonization chambers 2 and 2 ′ has a temperature of 0 ° C. or more and 1000 ° C. or less at 000 kcl / h.
 このようにして炭化室2、2’の熱流路4、4’から輻射される熱は炭化室2内部で炭化処理対象物Cの炭化処理を行う。 In this way, the heat radiated from the heat flow paths 4, 4 ′ of the carbonization chambers 2, 2 ′ carbonizes the carbonization target C within the carbonization chamber 2.
 すなわち、分流壁40により第1流路4aと第2流路4bにそれぞれ分流して流入した熱風は、図6に示すように、各側面に形成した第1流路4aや第2流路4bをジグザグ状に順次なぞるようにして流通することで、各側面を均一な温度分布となるように加熱し、熱斑の発生を抑制している。 That is, as shown in FIG. 6, the hot air that has flowed into the first flow path 4a and the second flow path 4b by the flow dividing wall 40 flows into the first flow path 4a and the second flow path 4b formed on each side surface. Are distributed in a zigzag pattern so that each side surface is heated to have a uniform temperature distribution, thereby suppressing the occurrence of thermal spots.
 より具体的には、第1流路中流部4a-2の熱風は、熱単体流路42を前後ジグザグ状に流通して第1流路下流部4a-3に至り排出管10aに至る。 More specifically, the hot air in the first flow path middle portion 4a-2 flows in the zigzag shape through the single heat flow path 42, reaches the first flow path downstream portion 4a-3, and reaches the discharge pipe 10a.
 また、第2流路上流部4b-1内の熱風は、左右ジグザグ状に降下流通して第2流路下流部4b-2に至り、熱単体流路42を前後ジグザグ状に流通し、第1流路下流部4a-3に至る。 Further, the hot air in the second flow path upstream portion 4b-1 descends and circulates in the left and right zigzag form, reaches the second flow path downstream part 4b-2, circulates in the single heat flow path 42 in the front and rear zigzag form, One channel reaches the downstream portion 4a-3.
 そして、熱風が各熱流路4a、4bを順次流通することにより、扉部12で密閉した炭化室2、2’の六側面には僅かながら温度差が生起している。このような炭化室2の各側面の熱温度差により、図17に示すように、炭化室2内部に充満する乾留ガスの熱ガス対流現象が起こる。 And since hot air distribute | circulates each heat | fever flow path 4a, 4b one by one, a slight temperature difference has arisen on the six side surfaces of the carbonization chamber 2, 2 'sealed with the door part 12. FIG. As shown in FIG. 17, a hot gas convection phenomenon of dry distillation gas filling the inside of the carbonization chamber 2 occurs due to the difference in thermal temperature between the side surfaces of the carbonization chamber 2.
 この際、炭化室2、2’の開口部2f、2f’は、上述のごとく扉部用緩衝密着ロープ12dや炉緩衝密着ロープ1dが炭化炉ケース前端面1eや炭化炉ケース前端面1eに相互に強固に密着して閉塞されているため、炭化室2、2’内において乾留ガスや輻射熱の漏洩、すなわち炭化処理対象物Cへの熱エネルギーの損失を可及的に防ぎ、熱ガス対流環境を保持して炭化処理対象物Cの炭化効率を格段に向上してる。 At this time, the opening portions 2f and 2f ′ of the carbonization chambers 2 and 2 ′ are mutually connected to the front-end surface 1e of the carbonization furnace case and the front-end surface 1e of the carbonization furnace case. In order to prevent leakage of dry distillation gas and radiant heat in the carbonization chambers 2 and 2 ', that is, loss of heat energy to the carbonization target C as much as possible, the hot gas convection environment The carbonization efficiency of the carbonized object C is significantly improved.
 しかも、炭化炉ケース1と炭化室2との間の断熱空気層80の断熱効果は、上述のごとくテーパー嵌合密閉により炭化室フランジ先端面2hと炭化炉ケース前端面1eとの間の密着区画ロープ51を介して強固に閉塞、すなわち炭化炉ケース開口部1aを確実に密封してより向上している。 In addition, the heat insulating effect of the heat insulating air layer 80 between the carbonization furnace case 1 and the carbonization chamber 2 is as described above by the close contact section between the carbonization chamber flange front end surface 2h and the carbonization furnace case front end surface 1e by taper fitting sealing. The rope 51 is tightly closed, that is, the carbonization furnace case opening 1a is surely sealed to further improve.
 そして、炭化処理対象物Cの炭化処理の終了後には、稼働させて炭化処理装置Aを急冷することで炭化室2内部の炭化物を短時間で取出すことを可能としている。 Then, after the carbonization treatment of the carbonization object C is completed, the carbide inside the carbonization chamber 2 can be taken out in a short time by operating and quenching the carbonization apparatus A.
 特に、上述の密閉構造により炭化室2、2’急冷中に、炭化室2、2’内部への不用意な外気の流入による余熱状態の炭化物の燃焼損失を防止して、炭化物の収率を向上している。 In particular, by the above-described sealed structure, during the carbonization chamber 2, 2 ′ quenching, combustion loss of remaining heat state carbide due to inadvertent inflow of outside air into the carbonization chamber 2, 2 ′ is prevented, and the yield of the carbide is reduced. It has improved.
 そして取り出し際しては、炭化室内で炭化処理された炭化処理対象物Cを炭化トレイ20ごとフォークリフトのリフト爪で持ち上げ炭化室外に取り出すことが出来る。 When taking out, the carbonization object C carbonized in the carbonization chamber can be lifted with the forklift lift claw together with the carbonization tray 20 and taken out of the carbonization chamber.
 このように本発明に係る炭化処理装置Aによれば、炭化炉ケース1、1’と炭化炉ケース1内に収納された炭化室2、2’とは、外周六面体のうち一面体は炭化処理対象物Cの出し入れ用に開放してこの開放部に外気と遮断するための扉部12を開閉自在に枢支し、閉扉時に扉部12、12’の周縁の押圧フランジ12aと炭化室2、2’を内嵌する炭化炉ケース1、1’の開口部周縁面1b、1b’との間で炭化室2、2’の開口部2f、2f’周縁の炭化室フランジ2i、2i’を挟持圧着すべく構成したので、各フランジを介して炭化室2、2’を炭化炉ケース1、1’内に固定することができると共に、扉部12、12’の閉扉時に炭化室2、2’の開口部2f、2f’を確実に強固に密着閉塞することができることになり炭化室2、2’内において炭化処理対象物Cへの熱エネルギーの損失を可及的に防ぎ炭化効率を格段に向上することができる。 As described above, according to the carbonization apparatus A according to the present invention, the carbonization furnace cases 1, 1 ′ and the carbonization chambers 2, 2 ′ accommodated in the carbonization furnace case 1 are composed of a hexahedron of the outer peripheral hexahedron. A door 12 for opening and closing the object C and opening and shutting off from outside air is pivotally supported so that it can be opened and closed. When the door is closed, the pressing flange 12a on the periphery of the door 12, 12 'and the carbonization chamber 2, The carbonization chamber flanges 2i and 2i ′ at the peripheral edges of the carbonization chambers 2 and 2 ′ are sandwiched between the peripheral edge surfaces 1b and 1b ′ of the carbonization furnace case 1 and 1 ′ in which 2 ′ is fitted. Since it is configured to be crimped, the carbonization chambers 2 and 2 ′ can be fixed in the carbonization furnace cases 1 and 1 ′ through the flanges, and the carbonization chambers 2 and 2 ′ are closed when the door portions 12 and 12 ′ are closed. The opening portions 2f and 2f ′ of the carbonization chamber can be securely and tightly closed and closed. , It is possible to remarkably improve as much as possible to prevent carbonization efficiency thermal energy losses to the carbonization object C within 2 '.
 また、扉部12、12’の端縁部12b、12b’には断面コ字状の樋条12c、12c’を設け樋条中に扉部用緩衝密着ロープ12d、12d’を嵌入し、該緩衝密着ロープ12d、12d’を介して扉部12、12’の端縁部12b、12b’を炭化炉ケース前端面1e、1e’に圧着可能に構成すると共に、炭化炉ケース1、1’の開口部周縁面1b、1b’には断面コ字状の樋条1c、1c’を設け樋条中に炉緩衝密着ロープ1d、1d’を嵌入し、該炉緩衝密着ロープ1d、1d’を介して扉部12、12’の最先端縁部12e、12e’を炭化炉ケース前端面1e、1e’に圧着可能に構成したので、閉扉時の大重量の扉部の衝撃を緩衝することができると共に炭化炉ケース開口部1a、1a’の密封機能を果たすことができる。 Further, the edge portions 12b and 12b ′ of the door portions 12 and 12 ′ are provided with ribs 12c and 12c ′ having a U-shaped cross section, and the buffer cushioning ropes 12d and 12d ′ for the door portion are fitted into the ribs, The edge portions 12b and 12b ′ of the door portions 12 and 12 ′ are configured to be press-bonded to the front end surfaces 1e and 1e ′ of the carbonization furnace case via the buffering ropes 12d and 12d ′, and the carbonization furnace cases 1 and 1 ′. Opening peripheral surfaces 1b and 1b ′ are provided with ribs 1c and 1c ′ having a U-shaped cross section, and furnace buffering close-fitting ropes 1d and 1d ′ are fitted into the ribs. Since the leading edge portions 12e and 12e ′ of the door portions 12 and 12 ′ can be crimped to the front end surfaces 1e and 1e ′ of the carbonization furnace case, it is possible to buffer the impact of the heavy door portion when the door is closed. And the sealing function of the carbonization furnace case openings 1a and 1a '. .
 また、炭化室2、2’の炭化室フランジ先端面2h、2h’と炭化炉ケース前端面1e、1e’との間に断面コ字状の樋条中に嵌入した密着区画ロープ51、51’を介在したでの、扉部用緩衝密着ロープ12dとの間に炭化室2、2’の周縁のフランジを介して、閉扉時に扉部周縁の押圧フランジ12a、12a’の重量負荷がかかってもその重量負荷を重なった二本の重合ロープによって強固に支持し確実に扉部の密着閉扉を行うことができる。 Further, the coherent compartment ropes 51, 51 ′ fitted into the ribs having a U-shaped cross section between the carbonization chamber flange front end surfaces 2h, 2h ′ of the carbonization chambers 2, 2 ′ and the carbonization furnace case front end surfaces 1e, 1e ′. Even if a heavy load is applied to the pressing flanges 12a and 12a ′ on the periphery of the door portion when the door is closed, the flanges on the periphery of the carbonizing chambers 2 and 2 ′ are interposed between the buffer cushioning rope 12d for the door portion. The heavy load is firmly supported by the two overlapping ropes, and the door can be tightly closed.
 また、炭化炉ケース1、1’の開口部周縁に油圧シリンダ70、70’により垂直及び水平作動するコマ軸71a、71b、71a’、71b’を配設しコマ軸71a、71b、71a’、71b’の所定箇所に複数のテーパーコマ72、72’を連設すると共に、コマ軸71a、71b、71a’、71b’の進退作動により各テーパーコマ72、72’と当接し互いにテーパー嵌合機能を果たす扉用コマを扉部の周縁に突設し、油圧シリンダによるコマ軸の進退作動により扉部の扉用コマ12g、12g’と炭化炉ケース1、1’のテーパーコマ72、72’とがテーパー嵌合して扉部周縁部12h、12h’が炭化炉ケース1、1’の開口部周縁面1b、1b’に圧着し炭化炉ケース開口部1a、1a’及び炭化室開口部2f、2f’を確実に密封閉扉できる。 Further, the top shafts 71a, 71b, 71a ′, 71b ′ that are vertically and horizontally operated by the hydraulic cylinders 70, 70 ′ are disposed on the periphery of the opening of the carbonization furnace case 1, 1 ′, and the top shafts 71a, 71b, 71a ′, A plurality of tapered pieces 72, 72 'are connected to predetermined positions of 71b', and the taper pieces 71a, 71b, 71a ', 71b' are brought into contact with the tapered pieces 72, 72 'by advancing and retreating operations thereof, and a taper fitting function is provided. A door piece that fulfills the following conditions is projected on the periphery of the door portion, and the door pieces 12g and 12g ′ of the door portion and the taper pieces 72 and 72 ′ of the carbonization furnace cases 1 and 1 ′ by the advance and retreat operation of the piece shaft by the hydraulic cylinder Are taper-fitted so that the peripheral edge portions 12h and 12h ′ of the door are pressure-bonded to the peripheral edge surfaces 1b and 1b ′ of the carbonization furnace cases 1 and 1 ′, and the carbonization furnace case openings 1a and 1a ′ and the carbonization chamber opening 2f, 2f The can be reliably sealed closing.
 すなわち、本発明は、炭化処理設備をコンパクト化して密閉可能な扉部分の当接部分に一定の工夫を凝らして炭化処理対象物の発生現場で同炭化処理対象物を効率よく炭化処理することができることは勿論、燃焼室で生成した熱風と炭化室内空間との間の熱交換効率を飛躍的に上昇させ、輻射熱としての熱風の有する熱エネルギーを最大限利用して比較的低い熱エネルギーであっても短時間で安定した炭化処理対象物の炭化処理を実現できる間接加熱方式炭化処理装置を提供できる。 That is, according to the present invention, the carbonization equipment can be made compact and the carbonization target can be efficiently carbonized at the site where the carbonization target is generated by devising a certain device on the contact portion of the sealable door portion. Of course, the heat exchange efficiency between the hot air generated in the combustion chamber and the carbonization chamber space can be dramatically increased, and the heat energy of the hot air as radiant heat can be maximized to be a relatively low thermal energy. In addition, it is possible to provide an indirect heating type carbonization apparatus capable of realizing a stable carbonization process of a carbonized object in a short time.
 最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはなく、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiments. Of course, various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
A 間接加熱方式炭化処理装置
1 炭化炉ケース
1a 炭化炉ケース開口部
1b 開口部周縁面
1c 樋条
1d 炉緩衝密着ロープ
1e 炭化炉ケース前端面
2 炭化室
2f 開口部
2h 炭化室フランジ先端面
2i 炭化室フランジ
11 炭化装置本体
12 扉部
12a 押圧フランジ
12b 端縁部
12c 樋条
12d 扉部用緩衝密着ロープ
12e 最先端縁部
12f フランジ先端縁
12g 扉部用コマ
12h 扉部周縁部
50 樋条
51 密着区画ロープ
70 油圧シリンダ
71 コマ軸
72 テーパーコマ
A Indirect heating type carbonization processing apparatus 1 Carbonization furnace case 1a Carbonization furnace case opening 1b Opening peripheral surface 1c Strip 1d Furnace buffering adhesion rope 1e Carbonization furnace front end face 2 Carbonization chamber 2f Opening 2h Carbonization chamber flange front end face 2i Carbonization Chamber flange 11 Carbonizing device main body 12 Door 12a Press flange 12b End edge 12c ridge 12d Shock absorbing rope 12e for door part 12e Front edge 12f Flange tip edge 12g Door top 12h Door peripheral edge 50 ridge 51 Adhesion Compartment rope 70 Hydraulic cylinder 71 Top shaft 72 Tapered top

Claims (4)

  1.  炭化炉ケースと、炭化炉ケース内に収納された炭化室と、炭化炉ケース内側面と炭化室の炭化処理対象物出入口側を除いた外周五側面との間に形成した熱流路層と、熱流路層に形成したジグザグ状の熱流路と、熱流路に熱風供給路を介して連通した燃焼室と、炭化室と燃焼室との間に連通介設した乾留ガス移送管とよりなる炭化処理装置において、
     炭化炉ケースと炭化炉ケース内に収納された炭化室とは、外周六面体のうち一面体は炭化処理対象物の出し入れ用に開放してこの開放部に外気と遮断するための扉部を開閉自在に枢支し、閉扉時に扉部の周縁の押圧フランジと炭化室を内嵌する炭化炉ケースの開口部周縁面との間で炭化室の開口部周縁の炭化室フランジを挟持圧着すべく構成して炭化室の固定と共に炭化室の開口部と炭化炉ケースの開口部とを扉部により密封自在及び開放自在に構成したことを特徴とする間接加熱方式炭化処理装置。
    A carbonization furnace case, a carbonization chamber housed in the carbonization furnace case, a heat flow path layer formed between the inner surface of the carbonization furnace case and the outer peripheral five side surfaces excluding the carbonization target entry / exit side of the carbonization chamber, Carbonization treatment comprising a zigzag heat flow path formed in the heat flow path layer, a combustion chamber communicating with the heat flow path via a hot air supply path, and a dry distillation gas transfer pipe provided between the carbonization chamber and the combustion chamber. In the device
    The carbonization furnace case and the carbonization chamber housed in the carbonization furnace case are openable for opening and closing the outer side hexahedron for taking in and out the object to be carbonized, and to open and close the door part to shut off the outside air. The carbonization chamber flange on the periphery of the opening of the carbonization chamber is sandwiched and crimped between the pressing flange on the periphery of the door and the peripheral surface of the opening of the carbonization furnace case in which the carbonization chamber is fitted. An indirect heating system carbonization apparatus characterized in that the carbonization chamber is fixed and the opening of the carbonization chamber and the opening of the carbonization furnace case are sealed and openable by a door.
  2.  扉部の端縁部には断面コ字状の樋条を設け樋条中に扉用緩衝密着ロープを嵌入し、該緩衝密着ロープを介して扉部の端縁部を炭化炉ケース前端面に圧着可能に構成すると共に、炭化炉ケースの開口部周縁面には断面コ字状の樋条を設け樋条中に炉緩衝密着ロープを嵌入し、該炉緩衝密着ロープを介して扉部の最先端縁部を炭化炉ケース前端面に圧着可能に構成したことを特徴とする請求項1に記載した間接加熱方式炭化処理装置。 A ridge with a U-shaped cross section is provided at the edge of the door, and a buffer cushioning rope for the door is inserted into the ridge, and the edge of the door is connected to the front end surface of the carbonization furnace case via the buffering adhesion rope. It is configured to be capable of being crimped, and a rib having a U-shaped cross section is provided on the peripheral surface of the opening of the carbonization furnace case, and a furnace buffering tight rope is inserted into the rib, and the door portion is closed through the furnace buffering tight rope. The indirect heating type carbonization processing apparatus according to claim 1, wherein the front end edge portion is configured to be crimped to the front end surface of the carbonization furnace case.
  3.  炭化室の炭化室フランジ先端面と炭化炉ケース前端面との間に断面コ字状の樋条中に嵌入した密着区画ロープを介在したことを特徴とする請求項1又は請求項2に記載した間接加熱方式炭化処理装置。 The tightly bounding section rope fitted in a U-shaped cross-section is interposed between the front end face of the carbonizing chamber flange and the front end face of the carbonizing furnace case of the carbonizing chamber. Indirect heating carbonization equipment.
  4.  炭化炉ケースの開口部周縁に油圧シリンダにより垂直及び水平作動するコマ軸を配設しコマ軸の所定箇所に複数のテーパーコマを連設すると共に、コマ軸摺動により各テーパーコマと当接し互いにテーパー嵌合機能を果たす扉用コマを扉部の周縁に突設したことを特徴とする請求項1乃至請求項3に記載した間接加熱方式炭化処理装置。 A coma shaft that operates vertically and horizontally by a hydraulic cylinder is disposed on the periphery of the opening of the carbonization furnace case, and a plurality of taper pieces are continuously provided at predetermined positions of the coma shaft. The indirect heating system carbonization apparatus according to claim 1, wherein a door piece that performs a taper fitting function is provided on a peripheral edge of the door portion.
PCT/JP2016/073140 2016-08-05 2016-08-05 Indirect heating carbonization apparatus WO2018025410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/073140 WO2018025410A1 (en) 2016-08-05 2016-08-05 Indirect heating carbonization apparatus
JP2017083185A JP6233910B1 (en) 2016-08-05 2017-04-19 Production method of biomass fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073140 WO2018025410A1 (en) 2016-08-05 2016-08-05 Indirect heating carbonization apparatus

Publications (1)

Publication Number Publication Date
WO2018025410A1 true WO2018025410A1 (en) 2018-02-08

Family

ID=61072722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073140 WO2018025410A1 (en) 2016-08-05 2016-08-05 Indirect heating carbonization apparatus

Country Status (1)

Country Link
WO (1) WO2018025410A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159913A1 (en) * 2002-02-22 2003-08-28 Murcia Philippe R. Portable reactor
JP2003292965A (en) * 2002-04-05 2003-10-15 Takeshi Fukumura Truck for carbonizing raw garbage and method for carbonizing the raw garbage
JP2006342301A (en) * 2005-06-10 2006-12-21 Yamamoto Co Ltd Carbonization apparatus
JP2007203281A (en) * 2006-02-03 2007-08-16 Takeshi Fukumura Carbonization treatment facilities of medical waste and method for carbonization treatment of medical waste
JP2013533897A (en) * 2010-05-20 2013-08-29 猛 福村 Waste indirect heating carbonization system and carbonization vehicle using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159913A1 (en) * 2002-02-22 2003-08-28 Murcia Philippe R. Portable reactor
JP2003292965A (en) * 2002-04-05 2003-10-15 Takeshi Fukumura Truck for carbonizing raw garbage and method for carbonizing the raw garbage
JP2006342301A (en) * 2005-06-10 2006-12-21 Yamamoto Co Ltd Carbonization apparatus
JP2007203281A (en) * 2006-02-03 2007-08-16 Takeshi Fukumura Carbonization treatment facilities of medical waste and method for carbonization treatment of medical waste
JP2013533897A (en) * 2010-05-20 2013-08-29 猛 福村 Waste indirect heating carbonization system and carbonization vehicle using the same

Similar Documents

Publication Publication Date Title
CN103968651B (en) A kind of energy-conservation apparatus for baking
KR101129826B1 (en) A carbonization system and the carbonization vehicle for processing all kinds of wastes
CN102648039B (en) For removing the method and apparatus of VOC from air-flow
JP6940893B2 (en) Pyrolysis equipment
US3171399A (en) Space heater
CN104029948B (en) A kind of special bulk bin of electrical heating Colophonium
WO2018025410A1 (en) Indirect heating carbonization apparatus
KR101193778B1 (en) apparatus for testing coke manufacturing
JP6711532B2 (en) In-vehicle carbonization equipment
US20170023240A1 (en) High temperature fluid generator
JP6052649B1 (en) Indirect heating carbonization system
CN205227386U (en) Combustion chamber of using in corrugated paper production
CN203837426U (en) Energy-saving baking device
CN209744974U (en) energy-saving tunnel kiln for producing coal gangue bricks
CN203772024U (en) Quick cooling system and intermittent carbonization furnace
KR20180080055A (en) Firewood boiler
KR101525910B1 (en) Pyrolysis oil recovery apparatus with sludge cooling device using waste material
JP4058274B2 (en) Smoke drying treatment method and equipment
WO2017171362A2 (en) Combustion apparatus using charcoal kiln
CN203315389U (en) Sterilization device
CN216274280U (en) High-efficiency energy-saving blast furnace gas chamber type heating furnace with double heat storage heating modes
CN117384653A (en) Box-type coking equipment and box-type coking method
KR101228422B1 (en) Equipment with assembled type of combustion chamber
CN213395362U (en) Catalytic combustion exhaust treatment device
CN209778311U (en) Steam and flue gas configuration device for activation furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP