WO2018024180A1 - 太阳能电站直接蒸汽过热生成方法及设备 - Google Patents

太阳能电站直接蒸汽过热生成方法及设备 Download PDF

Info

Publication number
WO2018024180A1
WO2018024180A1 PCT/CN2017/095358 CN2017095358W WO2018024180A1 WO 2018024180 A1 WO2018024180 A1 WO 2018024180A1 CN 2017095358 W CN2017095358 W CN 2017095358W WO 2018024180 A1 WO2018024180 A1 WO 2018024180A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat collecting
collecting tower
heliostats
heat
evaporator
Prior art date
Application number
PCT/CN2017/095358
Other languages
English (en)
French (fr)
Inventor
刘阳
李维
Original Assignee
北京兆阳光热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳光热技术有限公司 filed Critical 北京兆阳光热技术有限公司
Publication of WO2018024180A1 publication Critical patent/WO2018024180A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/06Steam superheating characterised by heating method with heat supply predominantly by radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present application belongs to the field of solar thermal power generation technology, and in particular relates to a method and a device for directly generating steam superheat in a solar power station.
  • solar thermal power generation technology is considered to be one of the main dependencies of future human energy demand because of its environmental friendliness and easy connection with existing power grids.
  • Solar thermal power generation is an important direction for the use of new energy.
  • the main forms are three types of systems: trough, tower and dish (disc).
  • the biggest advantage of CSP is that the power output is stable, the basic power can be used, and peak shaving can be done.
  • its mature and reliable energy storage (heat storage) configuration can continuously generate electricity at night.
  • the application provides a method for directly generating steam superheat in a solar power plant, comprising:
  • a collector tower is disposed at a center of the set layout; an evaporator is disposed at an upper portion of the heat collecting tower, and a steam drum is disposed at a top of the heat collecting tower; an outlet of the evaporator is connected to an inlet of the steam drum;
  • the superheater Collecting heat by using a linear concentrating reflection device; an inlet of the superheater is connected to an outlet of the steam drum, and an outlet of the superheater is connected to a work device;
  • the heat transfer medium After the heat transfer medium enters the evaporator, it enters the superheater through the steam drum to perform overheating, and the heat transfer medium after the superheat enters the work device to release heat.
  • the application also provides a direct steam superheat generating device for a solar power plant, including
  • a heat collecting tower disposed at a center of the set layout; an evaporator is disposed at an upper portion of the heat collecting tower, and a steam drum is disposed at a top; an outlet of the evaporator is connected to an inlet of the steam separator in the steam drum;
  • the superheater includes a linear concentrating reflection device; an inlet of the superheater is in communication with an outlet of the steam drum, the superheater The export is connected to the work equipment.
  • FIG. 1 is a flow chart showing a method for generating a direct steam superheat of a solar power plant according to an example of the present application
  • FIG. 2 is a central cross-sectional view of a solar power plant direct steam superheat generating apparatus according to an example of the present application
  • Figure 3 is a schematic illustration of the flow direction of a heat transfer medium during direct steam superheat formation as shown in Figure 2.
  • a solar power plant uses a linear solar collector, such as a parabolic trough solar collector or a linear Fresnel solar collector, and an organic heat transfer fluid in a linear solar collector passes through three series A heat exchanger wherein the organic heat transfer fluid is preheated to its boiling point in a first heat exchanger, boiled in a second heat exchanger, and superheated in a third heat exchanger.
  • the generated superheated steam expands and passes through the turbine to provide kinetic energy to the generator that produces the electrical energy.
  • the organic heat transfer fluid of the linear solar collector uses water, that is, the water becomes superheated steam after being preheated, evaporated, and superheated on the heated surface. Due to the fact that there is no obvious boundary between the evaporation and overheating of the linear solar collector, flow instability and pulsation (water hammer vibration) sometimes occur on the evaporation heating surface, thus affecting the stability and safety of the linear solar collector operation. .
  • Tower power generation is equipped with a large number of large solar mirrors on a large area, usually called heliostats. Each heliostat is equipped with a tracking mechanism to accurately concentrate the reflection of sunlight onto the top of a high tower.
  • the receiver converts the absorbed solar energy into heat energy, then transfers the heat energy to the working medium, passes through the heat storage link, inputs the heat power machine, expands the workmanship, drives the generator, and finally outputs it in the form of electric energy.
  • the receiver of the tower power generation system usually comprises a heat collecting tower, a cavity is formed in an upper part of the heat collecting tower, an evaporator and a superheater are arranged inside the cavity, a steam drum is installed on the top of the heat collecting tower, and the medium water is evaporated by the evaporator.
  • the outlet of the steam drum is connected with the superheater, and the superheater is connected to the evaporator through the pipeline to form a circulation loop.
  • the circulation loop can better avoid the occurrence of water hammer vibration phenomenon by relying on the self-circulation principle.
  • the collector on the heat collecting tower is affected by various factors such as solar light density change, cloud cover, liquid flow and pressure, etc., causing the superheater to operate. Stable, causing overheating damage to the superheater.
  • the production materials requiring high temperature resistance, such as nickel-based alloys, etc., and the high cost of the above materials make the cost of the tower power generation system high.
  • the collector tower of the tower power generation system does not cause water hammer vibration in the water pipeline of the evaporator arranged in the tower compared with the linear solar collector, but the overheating section has the above example.
  • the problem of running unstable At the same time, the structure of the linear solar collector is less affected by factors such as changes in solar optical density and cloud occlusion, and the heat is uniform and the photothermal flow density is stable.
  • the evaporation section adopts a near-horizontal setting, and there is a water hammer vibration phenomenon. Based on the above situation, the example of the present application proposes a completely new direct steam superheat generating method for a solar power plant.
  • FIG. 1 is a flow chart of a method for generating a direct steam superheat of a solar power plant according to an example of the present application. As shown in FIG. 1, the method includes the following steps:
  • S101 Arranging a plurality of heliostats according to a set layout.
  • the setting layout of a plurality of heliostats may refer to the shape of a region formed by a plurality of heliostats.
  • the shape of the area formed by the plurality of heliostats may be a ring shape, a sector shape or a rectangle shape. It should be noted that the above shapes are merely exemplary and are not used to define the shape of the area formed by a plurality of heliostats.
  • the layout of the plurality of heliostats can be adaptively changed according to the construction requirements, and set to different area shapes.
  • An evaporator is disposed at an upper portion of the heat collecting tower, and a steam drum is disposed at a top of the heat collecting tower. Wherein, the outlet of the evaporator is in communication with the inlet of the steam drum.
  • a line for the use of the evaporator is arranged on the heat collecting tower.
  • the evaporator includes a preheating section and an evaporation section.
  • the heat transfer medium water is heated to 250 to 320 ° C, and the state is liquid; in the evaporation section of the evaporator, the heat transfer medium water is 320.
  • the liquid state of °C is converted to a gaseous state of 320 °C.
  • the 320 ° C gaseous water enters the steam separator in the drum through the evaporation outlet.
  • S104 A plurality of superheaters are disposed in a set area around the bottom of the heat collecting tower, and the superheater collects heat by using a linear concentrating reflection device.
  • the inlet of the superheater is in communication with the outlet of the steam separator in the drum, and the outlet of the superheater is in communication with the work equipment.
  • the work equipment in this example includes, but is not limited to, a heat storage device and/or a steam turbine in a solar power plant, a heat device for heating, other power generation equipment, and the like.
  • the steam is introduced into the superheater through the steam drum for overheating, and the heat transfer medium after the superheat enters the work device to release heat.
  • the heat transfer medium after exothermic work equipment can also be After cooling, it enters the evaporator again through the pipeline for circulation.
  • the setting positions of a plurality of superheaters may be set at any position on the periphery of the bottom of the heat collecting tower, but based on the consideration of structural layout optimization, in some examples, a plurality of superheaters are disposed in a setting area at the periphery of the bottom of the heat collecting tower.
  • the area formed by the plurality of heliostats surrounds the set area. Considering that the heat collecting effect of the heliostat is relatively close to the heat collecting tower, the ratio of the area of the plurality of heliostats to the area of the setting area at the periphery of the bottom of the collecting tower is 2:1 ⁇ 3:1.
  • the shape of the bottom set region of the heat collecting tower may be a ring shape, a sector shape or a rectangular shape.
  • the shape of the bottom set region of the collector tower is the same as the shape of the region formed by a plurality of heliostats.
  • the shape of the bottom set region of the heat collecting tower is also circular, and the radius of the set region at the bottom of the heat collecting tower is R, and the area formed by the plurality of heliostats The radius is 2R.
  • the linear concentrating reflection device may be a linear Fresnel mirror or a trough mirror.
  • the direct steam superheat generation method of the solar power station in the present example uses the structure of the tower type heat collecting tower, and the setting of the superheating section is omitted compared with the above tower type power generation system, so the setting of the heliostat is The requirements and the requirements of the collector material are greatly reduced; at the same time, the overheating section in this example is placed close to the ground, and the linear concentrating reflector is used for heat collection, which is equivalent to using only a linear concentrating reflection device for overheating, due to this example.
  • the linear concentrating and reflecting device in the medium only performs superheating, and the medium is only in a gaseous state, so there is no problem of water hammer vibration of the collecting tube caused by the liquid boiling process, and the control of the linear concentrating and reflecting device collector to obtain direct steam overheating is very stable.
  • the present application adopts a heating mode generated by a waterless hammer phenomenon for the preheating section and the evaporation section; a stable heating method is adopted for the superheating section, and a heat transfer medium is used throughout the whole process to avoid water hammer vibration phenomenon, thereby ensuring When the overheating section is stable, it also has a simple structure. The advantage of reducing production costs.
  • FIG. 2 is a structural diagram of a direct steam superheat generating apparatus of a solar power plant according to an example.
  • Figure 3 is a schematic illustration of the flow direction of a heat transfer medium during direct steam superheat formation as shown in Figure 2.
  • the solar power plant direct steam superheat generating apparatus includes a plurality of heliostats 1, a heat collecting tower 2, an evaporator 3, and a plurality of superheaters 4.
  • a number of heliostats 1 are arranged in a set layout.
  • the shape of the area formed by the plurality of heliostats 1 may be a ring shape, a sector shape or a rectangle shape. It should be noted that the above shape is merely exemplary, and is not used to define the shape of the area formed by a plurality of heliostats, and the layout of the plurality of heliostats can be adaptively changed according to the construction requirements.
  • An evaporator is disposed at an upper portion of the heat collecting tower 2, and a steam drum 5 is disposed at a top of the heat collecting tower.
  • the evaporator 3 is disposed at an upper portion of the heat collecting tower 2, and an outlet thereof communicates with an inlet of the steam drum 5.
  • a pipe for the use of the evaporator is arranged on the heat collecting tower 2.
  • the evaporator includes a preheating section and an evaporation section.
  • the heat transfer medium water is heated to 250 to 320 ° C, and the state is liquid; in the evaporation section of the evaporator, the heat transfer medium water is 320.
  • the liquid state of °C is converted to a gaseous state of 320 °C.
  • the 320 ° C gaseous water enters the steam separator in the drum through the evaporation outlet.
  • the superheater 4 includes a linear concentrating reflector 40; the inlet of the superheater 4 is in communication with the outlet of the steam separator in the drum, and the outlet is in communication with the heat storage device 6 in the solar power plant.
  • the setting positions of a plurality of superheaters may be set at any position on the periphery of the bottom of the heat collecting tower 2, but based on the consideration of structural layout optimization, in some examples, setting of several superheaters on the periphery of the bottom of the heat collecting tower 2 is set.
  • the area, and the area formed by several heliostats surrounds the set area. Considering the poor heat collecting effect when the heliostat is close to the heat collecting tower, the area of the area formed by several heliostats in this example and the setting area of the periphery of the bottom of the heat collecting tower are The product ratio is 2:1 to 3:1.
  • the shape of the bottom set region of the heat collecting tower may be a ring shape, a sector shape or a rectangular shape.
  • the shape of the bottom set region of the collector tower is the same as the shape of the region formed by a plurality of heliostats.
  • the shape of the bottom set region of the heat collecting tower is also circular, and the radius of the set region at the bottom of the heat collecting tower is R, and the area formed by the plurality of heliostats The radius is 2R.
  • the linear concentrating reflection device may be a linear Fresnel mirror or a trough mirror.
  • the working principle of the direct steam superheat generating device of the solar power station in the present example is as described above, and the direct steam superheat generating method of the solar power station is not described herein.
  • the present invention adopts the structure arrangement of the tower type heat collecting tower, and saves the setting of the superheating section compared with the above-mentioned tower type power generation system, so its setting and requirements for heliostats and sets The requirements of the material of the heat exchanger are greatly reduced; the application sets the overheating section close to the ground, and collects heat by using a linear concentrating reflection device. Since the heat transfer medium functioning by the linear concentrating reflection device is only in a gaseous state, there is no water in the heat collecting tube. The problem of hammer vibration, and the control of the linear concentrating reflector collector to obtain direct steam overheating is very stable. Therefore, the direct steam superheat generating method and equipment in the present application neither generate water hammer vibration phenomenon nor unstable operation of the superheating section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种太阳能电站直接蒸汽过热生成方法及设备,包括按设定布局布置若干定日镜(1);在设定布局的中心设置集热塔(2);在集热塔(2)上部设置蒸发器(3),顶部设置汽包(5),蒸发器(3)的出口与汽包(5)的入口联通;在集热塔(2)底部外围的设定区域内设置若干过热器(4),过热器(4)采用线性聚光反射装置集热;过热器(4)的入口与汽包(5)的出口联通,过热器(4)的出口与做功设备联通。传热介质进入蒸发器(3)后,经汽包(5)进入过热器(4)过热,过热后的传热介质进入做功设备放热。

Description

太阳能电站直接蒸汽过热生成方法及设备
本申请要求于2016年08月01日提交中国专利局、申请号为201610620196.3、发明名称为“太阳能电站直接蒸汽过热生成方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能光热发电技术领域,特别是涉及一种太阳能电站直接蒸汽过热生成方法及设备。
背景
作为一种化石燃料替代能源,太阳能目前受到越来越多的关注。其中太阳能光热发电技术以其环境友好、易于跟现有电网对接等优点,被认为是未来人类能源需求的主要依赖之一。
太阳能光热发电是新能源利用的一个重要方向。主要形式有槽式、塔式和碟式(盘式)三种系统。光热发电最大的优势在于电力输出平稳,可做基础电力、可做调峰;另外其成熟可靠的储能(储热)配置可以在夜间持续发电。
技术内容
本申请提供了一种太阳能电站直接蒸汽过热生成方法,包括:
按设定布局布置若干定日镜;
在设定布局的中心设置集热塔;所述集热塔的上部设置蒸发器,在所述集热塔的顶部设置汽包;所述蒸发器的出口与所述汽包的入口联通;
在所述集热塔底部外围的设定区域内设置若干过热器,所述过热器 采用线性聚光反射装置集热;所述过热器的入口与所述汽包的出口联通,所述过热器的出口与做功设备联通;
传热介质进入蒸发器后,经所述汽包进入所述过热器进行过热,过热后的传热介质进入所述做功设备放热。
本申请还提供了一种太阳能电站直接蒸汽过热生成设备,包括
若干定日镜,按设定布局布置;
集热塔,设置在设定布局的中心;所述集热塔上部设置蒸发器,顶部设置汽包;蒸发器的出口与所述汽包中的汽水分离器的入口联通;
若干过热器,均匀布置在所述集热塔底部外围的设定区域内;所述过热器包括线性聚光反射装置;所述过热器的入口与所述汽包的出口联通,所述过热器的出口与做功设备联通。
附图简要说明
通过结合以下附图所作的详细描述,本申请的上述和/或其他方面和优点将变得更清楚和更容易理解,这些附图只是示意性的,并不限制本申请,其中:
图1为根据本申请一实例示出的太阳能电站直接蒸汽过热生成方法的流程图;
图2为根据本申请一实例示出的太阳能电站直接蒸汽过热生成设备的中心截面图;
图3为根据图2示出的直接蒸汽过热生成过程中传热介质的流向示意图。
实施方式
在下文中,将参照附图描述本申请的太阳能电站直接蒸汽过热生成设备的实例。
在此记载的实例为本申请的特定的具体实施方式,用于说明本申请的构思,均是解释性和示例性的,不应解释为对本申请实施方式及本申请范围的限制。除在此记载的实例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实例的做出任何显而易见的替换和修改的技术方案。
本说明书的附图为示意图,辅助说明本申请的构思,示意性地表示各部分的形状及其相互关系。请注意,为了便于清楚地表现出本申请实例的各部件的结构,各附图之间并未按照相同的比例绘制。相同的参考标记用于表示相同的部分。
在一些实例中,太阳能电站使用的是线性太阳能集热器,如抛物面槽式太阳能集热器或线性菲涅尔太阳能集热器,线性太阳能集热器中的有机传热流体通过系列的三个热交换器,其中有机传热流体在第一个热交换器中被预热到它的沸点,在第二个热交换器中沸腾,并在第三个热交换器中被过热。所生成的过热蒸汽膨胀后穿过汽轮机,进而为产生电能的发电机提供动能。
当线性太阳能集热器的有机传热流体采用水时,即水在受热面经过预热、蒸发、过热后全部变为过热蒸汽。由于线性太阳能集热器的蒸发和过热受热面没有明显的界限,在蒸发受热面有时会出现流动不稳定和脉动状态(水锤振动),从而影响线性太阳能集热器运行的稳定性和安全性。
在一些实例中,太阳能电站较常使用的另外一种发电方式为太阳能 塔式发电。塔式发电是在很大面积的场地上装有许多台大型太阳能反射镜,通常称为定日镜,每台定日镜都各自配有跟踪机构准确的将太阳光反射集中到一个高塔顶部的接收器上。接收器把吸收的太阳光能转化成热能,再将热能传给工质,经过蓄热环节,再输入热动力机,膨胀做工,带动发电机,最后以电能的形式输出。
塔式发电系统的接收器通常包括集热塔,集热塔的上部开设空腔,空腔内部设置蒸发器和过热器,集热塔的塔顶安装汽包,介质水由蒸发器蒸发进入到汽包中,汽包的出口与过热器连接,过热器通过管路与蒸发器联通形成循环回路。该循环回路由于依靠自循环原理,可以较好的避免水锤振动现象的产生。但同时,由于定日镜与集热塔的距离较远,集热塔上的集热器受太阳光光密度变化、云层遮挡、液体流量和压力等各种因素的影响,造成过热器运行不稳定,导致过热器过温损坏。同时,由于过热器所受光热流密度较高,需耐温要求较高的制作材料,例如镍基合金等,而上述材料成本高昂,使得塔式发电系统的成本较高。
能否寻找出一种既能够避免水锤振动现象产生,又能避免塔式发电系统过热器运行不稳定的过热蒸汽生成方法,成为太阳能发电行业亟待解决的问题。
通过研究发现,塔式发电系统的集热塔相较于线性太阳能集热器,其内布置的蒸发器的水管管路不会发生水锤振动的现象,但其过热段却存在上述实例所述的运行不稳定的问题。而同时,线性太阳能集热器的结构受太阳光光密度变化、云层遮挡等因素的影响较小,受热均匀,光热流密度稳定。但是线性太阳能集热器的传热采用水时,其蒸发段采用近水平设置,存在水锤振动现象。基于上述情况,本申请的实例提出一种全新的太阳能电站直接蒸汽过热生成方法。
下面对本申请中提出的太阳能电站直接蒸汽过热生成方法进行详 细阐述。
图1为根据本申请一实例示出的太阳能电站直接蒸汽过热生成方法的流程图,如图1所示,包括如下步骤:
S101:按设定布局布置若干定日镜。
在本申请中,若干定日镜的设定布局可以是指若干定日镜构成的区域形状。其中,若干定日镜构成的区域形状可以为环形、扇形或矩形。需要说明的是,上述形状只是示例性的,并不用于限定若干定日镜构成的区域形状,若干定日镜的布局可根据施工需求做适应性改变,设置为不同的区域形状。
S102:在设定布局的中心设置集热塔。
S103:在集热塔的上部设置蒸发器,在集热塔的顶部设置汽包。其中,蒸发器的出口与汽包的入口联通。
进一步,在集热塔上布置用于蒸发器使用的管路。
本实例中,蒸发器包括预热段和蒸发段,在蒸发器预热段,传热介质水被加热到250~320℃,状态为液态;在蒸发器的蒸发段,传热介质水由320℃的液态转化为320℃的气态。320℃的气态水经蒸发出口进入汽包中的汽水分离器中。
S104:在集热塔底部外围的设定区域内设置若干过热器,过热器采用线性聚光反射装置集热。过热器的入口与汽包中的汽水分离器的出口联通,过热器的出口与做功设备联通。
本实例中的做功设备包括但不限于太阳能电站中的蓄热设备和/或汽轮机、用于供热的热力设备、其他发电设备等。
经过上述设置之后,传热介质进入蒸发器后,经所述汽包进入所述过热器进行过热,过热后的传热介质进入所述做功设备放热。
进一步地,在太阳能电站中,还可将做功设备放热后的传热介质经 冷却后经管路再次进入蒸发器中进行循环。
本实例中若干过热器的设置位置可设置于集热塔底部外围的任意位置,但基于结构布局优化的考虑,在一些实例中,将若干过热器设置在集热塔底部外围的设定区域,而若干定日镜构成的区域围绕于该设定区域之外。基于定日镜距离集热塔较近时其集热效果较差的考虑,本实例中若干定日镜构成的区域面积与集热塔底部外围的设定区域的面积之比为2:1~3:1。
集热塔底部设定区域的形状可以为环形、扇形或矩形。在一些实例中,集热塔底部设定区域的形状与若干定日镜构成的区域形状相同。例如,当若干定日镜构成的区域形状为圆形时,集热塔底部设定区域的形状亦为圆形,集热塔底部设定区域的半径为R,则若干定日镜构成的区域的半径为2R。
本实例中,线性聚光反射装置可以为线性菲涅尔式反射镜或槽式反射镜。
本实例中的太阳能电站直接蒸汽过热生成方法将蒸发器采用塔式集热塔的结构布置,相较于上述塔式发电系统,省去了过热段的设置,因此其对于定日镜的设置及要求及集热器材料的要求均大幅降低;同时本实例中的过热段靠近于地面设置,并采用线性聚光反射装置集热,相当于只采用线性聚光反射装置来进行过热,由于本实例中的线性聚光反射装置只进行过热,其介质只为气态,故不存在由液态沸腾过程中导致的集热管水锤振动问题,且线性聚光反射装置集热器获得直接蒸汽过热的控制非常稳定。
需要说明的是,本申请对预热段和蒸发段采用无水锤现象产生的加热方式;对过热段采用稳定的加热方式,全程使用一种传热介质,在避免产生水锤振动现象,保证过热段运行稳定的情况下,还具有结构简单、 降低生产成本的优点。
根据本申请的另一方面,还提供了一种与上述太阳能电站直接蒸汽过热生成方法对应的设备。图2为根据一实例示出的太阳能电站直接蒸汽过热生成设备的结构图。图3为根据图2示出的直接蒸汽过热生成过程中传热介质的流向示意图。
如图2和图3所示,太阳能电站直接蒸汽过热生成设备包括若干定日镜1、集热塔2、蒸发器3和若干过热器4。
若干定日镜1按设定布局布置。在本申请中,若干定日镜1构成的区域形状可以为环形、扇形或矩形。需要说明的是,上述形状只是示例性的,并不用于限定若干定日镜构成的区域形状,若干定日镜的布局可根据施工需求做适应性改变。
集热塔2的上部设置蒸发器,在集热塔的顶部设置汽包5。
蒸发器3设置在集热塔2的上部,其出口与汽包5的入口联通。集热塔2上布置用于蒸发器使用的管路。本实例中,蒸发器包括预热段和蒸发段,在蒸发器预热段,传热介质水被加热到250~320℃,状态为液态;在蒸发器的蒸发段,传热介质水由320℃的液态转化为320℃的气态。320℃的气态水经蒸发出口进入汽包中的汽水分离器中。
若干过热器均匀布置在集热塔2底部外围的设定区域内。过热器4包括线性聚光反射装置40;过热器4的入口与汽包中的汽水分离器的出口联通,出口与太阳能电站中的蓄热设备6联通。
本实例中若干过热器的设置位置可设置于集热塔2底部外围的任意位置,但基于结构布局优化的考虑,在一些实例中,将若干过热器设置在集热塔2底部外围的设定区域,而若干定日镜构成的区域围绕于该设定区域之外。基于定日镜距离集热塔较近时其集热效果较差的考虑,本实例中若干定日镜构成的区域面积与集热塔底部外围的设定区域的面 积之比为2:1~3:1。
集热塔底部设定区域的形状可以为环形、扇形或矩形。在一些实例中,集热塔底部设定区域的形状与若干定日镜构成的区域形状相同。例如,当若干定日镜构成的区域形状为圆形时,集热塔底部设定区域的形状亦为圆形,集热塔底部设定区域的半径为R,则若干定日镜构成的区域的半径为2R。
本实例中,线性聚光反射装置可以为线性菲涅尔式反射镜或槽式反射镜。
本实例中的太阳能电站直接蒸汽过热生成设备的工作原理如上所述太阳能电站直接蒸汽过热生成方法,此处不再赘述。
由以上技术方案可知,本申请将蒸发器采用塔式集热塔的结构布置,相较于上述塔式发电系统,省去了过热段的设置,因此其对于定日镜的设置及要求及集热器材料的要求均大幅降低;本申请将过热段靠近于地面设置,并采用线性聚光反射装置集热,由于线性聚光反射装置作用的传热介质只为气态,故集热管不存在水锤振动的问题,且线性聚光反射装置集热器获得直接蒸汽过热的控制非常稳定。故本申请中的直接蒸汽过热生成方法及设备既不会产生水锤振动现象,又不会出现过热段运行不稳定的情况。
上述披露的各技术特征并不限于已披露的与其它特征的组合,本领域技术人员还可根据申请之目的进行各技术特征之间的其它组合,以实现本申请之目的为准。

Claims (14)

  1. 一种太阳能电站直接蒸汽过热生成方法,其中,所述方法包括:
    按设定布局布置若干定日镜;
    在设定布局的中心设置集热塔;所述集热塔的上部设置蒸发器,在所述集热塔的顶部设置汽包;所述蒸发器的出口与所述汽包的入口联通;
    在所述集热塔底部外围的设定区域内设置若干过热器,所述过热器采用线性聚光反射装置集热;所述过热器的入口与所述汽包的出口联通,所述过热器的出口与做功设备联通;
    传热介质进入蒸发器后,经所述汽包进入所述过热器进行过热,过热后的传热介质进入所述做功设备放热。
  2. 根据权利要求1所述的方法,其中,在所述做功设备放热后的传热介质经冷却后经管路再次进入所述蒸发器中进行循环。
  3. 根据权利要求1或2所述的方法,其中,若干定日镜构成的区域围绕于所述集热塔底部外围的设定区域之外。
  4. 根据权利要求3所述的方法,其中,若干定日镜构成的区域面积与所述集热塔底部外围的设定区域的面积之比为2:1~3:1。
  5. 根据权利要求3所述的方法,其中,若干定日镜构成的区域形状为环形、扇形或矩形;
    所述集热塔底部外围的设定区域的形状为环形、扇形或矩形。
  6. 根据权利要求5所述的方法,其中,若干定日镜构成的区域形状与所述集热塔底部外围的设定区域的形状相同。
  7. 根据权利要求1所述的方法,其中,所述线性聚光反射装置为线性菲涅尔式反射镜或槽式反射镜。
  8. 一种太阳能电站直接蒸汽过热生成设备,包括:
    若干定日镜,按设定布局布置;
    集热塔,设置在设定布局的中心;所述集热塔上部设置蒸发器,顶部设置汽包;蒸发器的出口与所述汽包中的汽水分离器的入口联通;
    若干过热器,均匀布置在所述集热塔底部外围的设定区域内;所述过热器包括线性聚光反射装置;所述过热器的入口与所述汽包的出口联通,所述过热器的出口与做功设备联通。
  9. 根据权利要求8所述的设备,其中,还包括用于联通所述做功设备与所述蒸发器的管路,在所述做功设备放热后的传热介质冷却后经所述管路进入所述蒸发器中进行循环。
  10. 根据权利要求8或9所述的设备,其中,若干定日镜构成的区域围绕于所述集热塔底部外围的设定区域之外。
  11. 根据权利要求10所述的设备,其中,若干定日镜构成的区域面积与所述集热塔底部外围的设定区域的面积之比为2:1~3:1。
  12. 根据权利要求11所述的设备,其中,若干定日镜构成的区域形状为环形、扇形或矩形;
    所述集热塔底部外围的设定区域的形状为环形、扇形或矩形。
  13. 根据权利要求12所述的设备,其中,若干定日镜构成的区域形状与所述集热塔底部外围的设定区域的形状相同。
  14. 根据权利要求10所述的设备,其中,所述线性聚光反射装置为线性菲涅尔式反射镜或槽式反射镜。
PCT/CN2017/095358 2016-08-01 2017-08-01 太阳能电站直接蒸汽过热生成方法及设备 WO2018024180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610620196.3 2016-08-01
CN201610620196.3A CN107676759A (zh) 2016-08-01 2016-08-01 太阳能电站直接蒸汽过热生成方法和设备

Publications (1)

Publication Number Publication Date
WO2018024180A1 true WO2018024180A1 (zh) 2018-02-08

Family

ID=61073410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095358 WO2018024180A1 (zh) 2016-08-01 2017-08-01 太阳能电站直接蒸汽过热生成方法及设备

Country Status (2)

Country Link
CN (1) CN107676759A (zh)
WO (1) WO2018024180A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780073A (zh) * 2020-07-07 2020-10-16 中国船舶重工集团公司第七0三研究所 一种用于大功率光热电站蒸汽发生装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283956A (zh) * 2018-08-05 2021-01-29 青岛佰腾科技有限公司 一种倾斜集热管间距的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162443A (zh) * 2011-12-16 2013-06-19 株式会社日立制作所 太阳能复合发电系统以及太阳能复合发电方法
CN103277139A (zh) * 2013-05-17 2013-09-04 杭州锅炉集团股份有限公司 一种多塔、雁阵式排列的太阳能蓄热发电系统
US9103328B1 (en) * 2011-08-15 2015-08-11 Richard D Kilgore Magnified solar energy generator
CN206234797U (zh) * 2016-08-01 2017-06-09 北京兆阳光热技术有限公司 太阳能电站直接蒸汽过热生成设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013430B9 (de) * 2007-03-13 2013-12-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks
CN101126503A (zh) * 2007-09-22 2008-02-20 包头市爱能控制工程有限责任公司 太阳能热汽包锅炉及该锅炉在发电机组中的应用
CN101354191A (zh) * 2008-09-26 2009-01-28 南京工业大学 太阳能梯级开发热利用系统
CN104612916A (zh) * 2013-11-01 2015-05-13 余华阳 复合式太阳能热发电站
CN104676568A (zh) * 2015-02-03 2015-06-03 广东电网有限责任公司电力科学研究院 基于线聚焦太阳能集热的蒸汽发生器及蒸汽发生系统
CN105736268B (zh) * 2016-03-15 2018-08-03 中国联合工程有限公司 一种基于双腔体式集热器的高效塔式太阳能热发电系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103328B1 (en) * 2011-08-15 2015-08-11 Richard D Kilgore Magnified solar energy generator
CN103162443A (zh) * 2011-12-16 2013-06-19 株式会社日立制作所 太阳能复合发电系统以及太阳能复合发电方法
CN103277139A (zh) * 2013-05-17 2013-09-04 杭州锅炉集团股份有限公司 一种多塔、雁阵式排列的太阳能蓄热发电系统
CN206234797U (zh) * 2016-08-01 2017-06-09 北京兆阳光热技术有限公司 太阳能电站直接蒸汽过热生成设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780073A (zh) * 2020-07-07 2020-10-16 中国船舶重工集团公司第七0三研究所 一种用于大功率光热电站蒸汽发生装置

Also Published As

Publication number Publication date
CN107676759A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN208578679U (zh) 一种基于塔式定日镜的改良布雷顿光热发电系统
WO2015154585A1 (zh) 一种太阳能与生物质能联合发电的优化集成系统
CN204186541U (zh) 熔融盐储热太阳能热发电系统
CN103277272A (zh) 风能及槽式太阳能一体化发电系统
WO2015154600A1 (zh) 一种两回路式太阳能热发电系统
WO2019080809A1 (zh) 太阳能光热-生物质发电系统
CN209586603U (zh) 三罐式熔盐储热的塔槽耦合光热发电系统
WO2018024180A1 (zh) 太阳能电站直接蒸汽过热生成方法及设备
WO2016106745A1 (zh) 一种模块化塔式太阳能光热发电系统
CN114094915A (zh) 一种储能型高温光伏光热一体化发电系统及方法
CN106121942A (zh) 一种采用液态铅铋传热和储热的超临界太阳能电站
CN105736268A (zh) 一种基于双腔体式集热器的高效塔式太阳能热发电系统及方法
CN102042184A (zh) 太阳能光汇聚系统
CN201983475U (zh) 一种线性聚焦的太阳能聚热装置
CN204555374U (zh) 线性菲涅尔式太阳能集热反应装置
CN103953909A (zh) 一种分布式全天候太阳能蒸汽机组
CN109812789B (zh) 一种槽式太阳能光热发电蒸汽发生系统
CN209145782U (zh) 一种地热能与太阳能耦合发电装置
CN210440172U (zh) 一种能实现全天发电的太阳能发电系统
CN206234797U (zh) 太阳能电站直接蒸汽过热生成设备
CN202709496U (zh) 高效太阳能热电冷联用工艺集成装置
CN104613656A (zh) 线性菲涅尔式太阳能集热反应装置
CN207333115U (zh) 太阳能槽式集热装置与低温斯特林发电机组联合发电系统
CN206320945U (zh) 一种管子背面聚光塔式太阳能吸热器受热面模块
CN106288441B (zh) 一种管子背面聚光塔式太阳能吸热器受热面模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17836362

Country of ref document: EP

Kind code of ref document: A1