WO2016106745A1 - 一种模块化塔式太阳能光热发电系统 - Google Patents

一种模块化塔式太阳能光热发电系统 Download PDF

Info

Publication number
WO2016106745A1
WO2016106745A1 PCT/CN2014/096055 CN2014096055W WO2016106745A1 WO 2016106745 A1 WO2016106745 A1 WO 2016106745A1 CN 2014096055 W CN2014096055 W CN 2014096055W WO 2016106745 A1 WO2016106745 A1 WO 2016106745A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
photothermal
class
type
module
Prior art date
Application number
PCT/CN2014/096055
Other languages
English (en)
French (fr)
Inventor
曾智勇
崔小敏
黄贝
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Priority to PCT/CN2014/096055 priority Critical patent/WO2016106745A1/zh
Priority to US15/540,357 priority patent/US10364803B2/en
Publication of WO2016106745A1 publication Critical patent/WO2016106745A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to the field of power technology, and more particularly to a modular tower solar thermal power generation system.
  • Tower solar thermal power generation system has a wide temperature field and energy field matching setting, large concentration ratio, high focusing temperature, high energy density, high thermal conversion efficiency, wide application range, etc. It can be used on a large scale: many solar energy applications such as solar thermal power generation, water hydrogen production, seawater desalination, and metal smelting. Therefore, the tower solar thermal power generation system is a solar energy diversified utilization platform with great potential.
  • the technical problem to be solved by the present invention is to provide a modular tower solar thermal power generation system capable of sustainable, stable, and high-efficiency power generation in view of the above-mentioned drawbacks of the prior art.
  • a modular tower solar thermal power generation system comprising: a solar thermal collector for collecting solar thermal energy, a heat exchanger connected to the solar thermal collector for generating superheated saturated steam, and a thermodynamic conversion device coupled to the heat exchanger for converting the superheated saturated steam into electrical energy; wherein the solar thermal collector comprises a plurality of tower photothermal modules having solar thermal energy collected.
  • the photothermal power generation system of the present invention wherein a plurality of the tower type photothermal modules include a class A tower type photothermal module;
  • the class A tower photothermal module includes a first heliostat for focusing sunlight and a first photothermal tower provided with a first collector;
  • a plurality of the Class A tower photothermal modules are commonly connected to the heat exchanger through a centralized heat storage unit for storing the heat energy of the heated thermal mass in the first heat collector.
  • the photothermal power generation system of the present invention wherein a plurality of the tower type photothermal modules include a class B tower type photothermal module;
  • each of the Class B tower photothermal modules includes a second heliostat for focusing sunlight, and a second photothermal tower including a second collector, further comprising the second light
  • the heat tower is connected to a distributed heat storage unit for storing the heat energy of the heated hot working medium in the second heat collector.
  • thermothermal power generation system of the present invention wherein the heat exchanger includes a plurality of sub heat exchangers, each of which
  • the Class B tower photothermal module includes one of the sub heat exchangers.
  • thermodynamic conversion device is connected.
  • the photothermal power generation system of the present invention wherein a plurality of the tower type photothermal modules are all class A tower type photothermal modules, and some of the class A tower type photothermal modules use molten salt as the thermal working medium. Another part of the Class A tower photothermal module uses steam as the hot working fluid;
  • a type of tower type photothermal module using molten salt as a hot working medium is connected in series; a type A tower type photothermal module using molten salt as a hot working substance and a type A tower type photothermal using steam as a hot working substance; Modules are connected in parallel.
  • the photothermal power generation system of the present invention wherein the plurality of the tower type photothermal modules include a class A tower type photothermal module and a class B tower type photothermal module;
  • All Class A tower photothermal modules use molten salt as the thermal working medium, and all Class B tower photothermal modules use molten salt as the thermal working medium, and the Class A tower photothermal module and the B The tower-like photothermal modules are connected in series or in parallel.
  • the photothermal power generation system of the present invention wherein the plurality of the tower type photothermal modules include a class A tower type photothermal module and a class B tower type photothermal module;
  • a part of the type A tower type photothermal module uses a molten salt as a thermal working medium, and another part of the type A tower type photothermal module uses steam as a thermal working medium, and the type B tower type photothermal module adopts a molten salt as a thermal working fluid; [0021] wherein the class A tower type photothermal module using a molten salt as a thermal working substance and all the type A tower type photothermal module using steam as a thermal working medium are all connected in parallel, The class B tower photothermal modules are connected in series,
  • a class A tower photothermal module is connected in parallel with the class B tower photothermal module.
  • the power plant construction process can be simplified, the construction period can be reduced, the investment cost of the power station design can be reduced, and the efficiency of the mirror field can be improved, and when one single tower appears
  • the problem is that it will not affect the working state of other tower-type photothermal modules, ensuring the continuity and stability of the power supply of the entire power generation system.
  • FIG. 1 is a schematic diagram showing the principle of a modular tower solar thermal power generation system including a class A tower type photothermal module according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the principle of a modular tower solar thermal power generation system including a class B tower photothermal module according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the principle of a single class B tower type photothermal module according to a preferred embodiment of the present invention
  • FIG. 4 is a schematic diagram 1 of a modularized tower solar thermal power generation system including a class A tower type photothermal module and a class B tower type photothermal module according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic diagram 2 of a modular tower solar thermal power generation system including a class A tower type photothermal module and a class B tower type photothermal module according to a preferred embodiment of the present invention.
  • the principle of the modular tower solar thermal power generation system is as shown in FIG. 1 and FIG. 2, and includes: a solar heat collecting device for collecting solar thermal energy, which is connected with a solar thermal collecting device. a heat exchanger for generating superheated saturated steam, and a thermodynamic conversion device 24 connected to the heat exchanger for converting superheated saturated steam into electrical energy; the solar thermal collector includes a plurality of tower photothermal modules having solar heat energy collected 11, 12.
  • a modular solar power generation system with a modular solar collector (hereinafter referred to as a modular solar power generation system)
  • simply copying the tower-type photothermal module can simplify the construction process and reduce the construction process. The construction period can reduce the investment cost of power generation system design.
  • the stability of the entire power generation system will be affected in any part of the problem.
  • the problem of the single tower will not affect the working state of other modules. It ensures the continuity and stability of the power supply of the entire power generation system.
  • the efficiency of the heliostat mirror field can also be improved.
  • the far-end mirror field is very far from the top of the tower, and the efficiency is very low.
  • thermodynamic conversion device 24 of the modular solar power generation system is preferably a turbo generator set, and the specific model is not limited.
  • the plurality of tower photothermal modules 11, 12 constituting the solar heat collecting device in the above modular solar power generation system includes: a class A tower type photothermal module 11.
  • Each of the Class A tower photothermal modules 11 includes a first heliostat 111 for focusing sunlight and a first photothermal tower 112 provided with a first collector; a plurality of Class A tower photothermal modules 11 Together with the heat exchanger 22, a centralized heat storage unit 113 for storing the heat energy of the heated hot working fluid in the first heat collector is connected.
  • the working process of the above-mentioned Class A tower photothermal module 11 is: reflecting sunlight by the first heliostat 111, focusing sunlight, and heating the first collector of the first photothermal tower 112 in the top of the tower.
  • the hot working medium, the heated heat medium in the first collector of all the class A tower type photothermal modules 11 is stored in the common centralized heat storage unit 113.
  • the stored heat energy generates superheated saturated steam through the heat exchanger 22 to drive the thermodynamic conversion device 24 to generate electricity.
  • a low temperature steam heat storage device 23 is further connected between the heat exchanger and the first photothermal tower 111 of the class A tower photothermal module 11 , and is exchanged by the heat exchanger 22 .
  • the hot working fluid is then pumped to the top of the photothermal tower 112 for heating.
  • the plurality of tower-type photothermal modules 11, 12 constituting the solar heat collecting device in the above-described modular solar power generation system include: Class B tower light thermal module 12.
  • each of the class B tower photothermal modules 12 includes a second heliostat 121 for focusing sunlight, a photothermal tower 122 provided with a second heat collector, and is connected to the second photothermal tower 122 for A distributed heat storage unit 124 that heats the thermal energy of the thermal medium in the second heat collector is stored.
  • the above-mentioned class A tower type photothermal module 11 is a photothermal module that does not have a heat storage unit alone, but realizes centralized heat storage by using a centralized heat storage unit 113;
  • the class B tower type photothermal module 12 It is a photothermal module with a distributed heat storage unit 124 alone.
  • each of the B-type tower photothermal modules 12 is connected to one sub-heat exchanger 123, and the sub-heat exchangers 123 of each of the B-type tower photothermal modules 12 have a common
  • the high-temperature steam heat storage device 13 is connected to the thermodynamic conversion device 24 to store the super-saturated hot steam generated by each of the sub-heat exchangers 123 and then to the thermo-dynamic conversion device 24 for power generation.
  • the working process of the above-mentioned B-type tower photothermal module 12 is: reflecting sunlight by the second heliostat 121, focusing sunlight and heating the second tower of the second photothermal tower 122.
  • the hot working medium in the heat exchanger, the heated hot working medium partially stores heat through the distributed heat storage unit 124, and the other portion generates superheated saturated steam through the heat exchanger 123 to drive the thermodynamic conversion device 24 to generate electricity.
  • a sub-heat exchanger 123 of each type B tower photothermal module 12 and a photothermal tower 122 are connected to a low temperature steam heat storage device 125, The heat medium after heat exchange by the heat exchanger 123 is pumped to the top of the tower of the photothermal tower 122 for recycling.
  • the modular solar power generation system high temperature steam heat storage device 13 includes a heat storage tank or is composed of a plurality of heat storage tanks.
  • the solar heat collecting devices of the modular solar power generation system are all constituted by a class A tower type photothermal module 11. Wherein all of the Class A tower photothermal modules 11 are produced
  • the superheated saturated steam is directly stored in the high temperature steam heat storage device of the modular solar power generation system to drive the thermodynamic conversion device 24 (turbine generator set) to generate electricity.
  • the use of the Class A tower photothermal module 11 will reduce the utilization of superheated saturated steam generated by each tower photothermal module, but the entire modular solar power generation can be saved. The construction cost of the system.
  • the Class A tower photothermal module 11 preferably uses steam or molten salt as the thermal medium of the heat collector and the centralized heat storage unit.
  • all Class A tower photothermal modules 11 use steam as the thermal medium, and Class A tower photothermal modules 11 are all connected in series; in the modular solar power system, all A The tower-type photothermal module 11 uses molten salt as the thermal working medium, and at least two Class A tower-type photothermal modules 11 are connected in series; in the modular solar power generation system, some of the Class A tower-type photothermal modules 11 are adopted.
  • the molten salt is used as the thermal working medium, and some of the Class A tower type photothermal modules 11 use steam as the thermal working medium, and the molten salt is used as the thermal working substance, and the type A tower type photothermal module 11 is connected in series, and steam is used as the thermal working medium. At least two of the Class A tower photothermal modules 11 are connected in series, between a Class A tower photothermal module 11 using molten salt as the hot working substance and a Class A tower photothermal module 11 using steam as the hot working medium. Connected in parallel.
  • all of the Class A tower photothermal modules 11 use steam as the thermal working medium, and the Class A tower photothermal modules 11 are all connected in parallel; when modular solar power generation In the system, all Class A tower photothermal modules 11 use molten salt as the thermal working medium, and at least two Class A tower photothermal modules 11 are connected in parallel; in the modular solar power generation system, some Class A towers The photothermal module 11 uses molten salt as the thermal working medium, and some of the class A tower type photothermal modules 11 use steam as the thermal working medium, and the molten salt as the thermal working medium type A tower type photothermal module 11 is connected in series, using steam.
  • At least two of the Class A tower-type photothermal modules 11 as thermal working fluids are connected in parallel, a class A tower-type photothermal module 11 using molten salt as a thermal working substance and a class A tower-type light using steam as a thermal working substance.
  • the thermal modules 11 are connected in parallel.
  • the solar heat collecting devices of the modular solar power generation system are all constituted by the class B tower type photothermal module 12.
  • part of the superheated saturated steam generated by all the B-type tower photothermal modules 12 is first stored in the distributed heat storage unit, and the other part is stored in the high-temperature steam heat storage device of the modular solar power generation system to promote the thermal power.
  • the conversion device 24 turbine generator set
  • the use of the Class B tower-type photothermal module 12 increases the construction cost of the entire modular solar power system compared to the Class A tower light-heat module 11, it can increase the overheating of each tower-type photothermal module.
  • the utilization of saturated steam which can improve the overall modular solar energy Power generation efficiency of electrical systems.
  • the Class B tower photothermal module 12 preferably uses a molten salt as a thermal medium of a heat collector and a distributed heat storage unit.
  • all Class B tower light modules 12 use molten salt as the thermal mass, and at least two of the Class B tower light modules 12 are connected in series or in parallel.
  • the solar collector device of the above modular solar power generation system includes the class A. Tower type photothermal module 11 and class B tower type photothermal module 12.
  • the single class A tower type photothermal module 11 and the single class B tower type photothermal module 12 refer to the description of the previous embodiment, and details are not described herein again.
  • all of the Class A tower type photothermal modules 11 use steam as the thermal working medium
  • all the Class B tower type photothermal modules 12 use the molten salt as the thermal working medium
  • at least Two Class A tower photothermal modules 11 are connected in series, or at least two Class B tower light heat modules 12 are connected in series, and a Class A tower light heat module 11 is connected in parallel with the Class B tower light heat module 12.
  • all Class A tower photothermal modules 11 use steam as the thermal medium
  • all Class B tower photothermal modules 12 use molten salt as the thermal medium.
  • At least two Class A tower photothermal modules 11 are connected in parallel. Connected, or at least two Class B tower light modules 12 are connected in parallel, and the Class A tower light module 11 is connected in parallel with the Class B tower light module 12.
  • all of the Class A tower photothermal modules 11 use molten salt as the thermal working medium
  • all the B-type tower photothermal modules 12 use the molten salt as the thermal working medium
  • all Class A tower-type photothermal modules 11 use molten salt as the thermal working medium
  • all Class B tower-type photothermal modules 12 use molten salt as the thermal working medium
  • a part of the Class A tower type photothermal module 11 uses molten salt as the thermal working medium
  • another part of the Class A tower type photothermal module 11 uses steam as the thermal working medium
  • all Class B The tower type photothermal module 12 uses molten salt as the thermal working medium; the class A tower type photothermal module 11 using the molten salt as the hot working substance and the class A tower type photothermal module 11 using the steam as the thermal working substance
  • Parallel connection the B-type tower type photothermal module 12 is connected in series or in parallel, and the class A tower type photothermal module 11 and the class B tower type photothermal module 12 are connected in parallel.
  • Class A tower photothermal modules 11 use molten salt as the thermal working medium, and another part of the Class A tower photothermal module 11 uses steam as the thermal working medium. All the Class B tower photothermal modules 12 use molten salt as the molten salt. Hot working fluid; A type of tower photothermal module 11 using molten salt as thermal working medium and all parallel connection of class A tower type photothermal module 11 using steam as thermal working medium, B type tower type photothermal module 12 Connected in series or in parallel, the Class A tower photothermal module 11 and the Class B tower photothermal module 12 are connected in parallel.
  • the above modular solar power generation system comprises 20 tower photothermal modules, each of which has a power generation power of 10 MW; including 10 Class A tower photothermal modules. 11 and 10 Class B tower-type light-heat modules 12, 10 Class B tower-type light-heat modules with heat storage 12, 8 hours of heat storage, 10 Class A tower-type light-heat modules without heat storage Power generation by superheated steam, concentrated heat storage is 2 hours.
  • the power consumption of the single tower photothermal module may be 5-100.
  • the MW preferably 10-25 MW, is used to achieve optimal power generation, but is not limited to tower light thermal modules using other power.
  • the present invention can simplify the construction process, reduce the construction period, reduce the investment cost of the power station design, and improve the efficiency of the mirror field by using a solar power generation system with a modular solar heat collecting device, and If there is a problem with a single tower, it will not affect the working state of other tower-type photothermal modules, ensuring the continuity and stability of the power supply of the entire power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种模块化塔式太阳能光热发电系统,包括:用于收集太阳热能的太阳能集热装置,与太阳能集热装置连接、用于产生过热饱和蒸汽的换热器(22),和与换热器(22)连接、用于将过热饱和蒸汽转换成电能的热动力转换装置(24);太阳能集热装置包括多个塔式光热模块(11、12)。该光热发电系统通过采用具有模块化太阳能集热装置的太阳能发电系统,可以简化建设流程,减少建设工期,更可以减少电站设计投资成本,还能提高镜场的效率,而且当其中一个单塔出现问题时,不会影响到其他塔式光热模块的工作状态,保证了整个发电系统供电的持续性和稳定性。

Description

一种模块化塔式太阳能光热发电系统 技术领域
[0001] 本发明涉及电力技术领域, 更具体地说, 涉及一种模块化塔式太阳能光热发电 系统。
背景技术
[0002] 塔式太阳能光热发电系统具有宽泛的温场与能场匹配设定、 聚光比大、 聚焦温 度高、 能流密度大、 热工转换效率高、 应用范围广等等优长特点, 可进行大规 模: 光热发电、 水制氢、 海水淡化、 金属冶炼等众多太阳能用途幵发。 因此, 塔式太阳能光热发电系统是一种极具价值潜力的太阳能多元化利用平台。
[0003] 曾先后有许多发达国家, 幵展过塔式太阳能发电技术研究。 然而至今该项技术 的发展仍受到诸多阻困, 其原因主要有两点: 一是定日镜跟踪成本过高, 这是 由于远距离跟踪的精度要求极高, 必须达到齿轮无间隙传动, 由此所引起的苛 刻制作是推高跟踪成本的原因; 二是发电规模太小, 发电扩容受到极大限制, 由于塔式发电规模取决于定日镜场规模, 光热发电规模越大, 成本下降空间越 大, 但是当定日镜场规模扩大到一定程度之后, 其整体效率呈现锐减下降趋势 。 因此, 目前的塔式太阳能发电系统发电成本居高不下, 离市场化要求仍有较 大的距离。
问题的解决方案
技术解决方案
[0004] 本发明要解决的技术问题在于, 针对现有技术的上述缺陷, 提供一种可持续、 稳定、 高效发电的模块化塔式太阳能光热发电系统。
[0005] 本发明解决其技术问题所采用的技术方案是:
[0006] 构造一种模块化塔式太阳能光热发电系统, 包括: 用于收集太阳热能的太阳能 集热装置, 与所述太阳能集热装置连接、 用于产生过热饱和蒸汽的换热器, 和 与所述换热器连接、 用于将所述过热饱和蒸汽转换成电能的热动力转换装置; 其中, 所述太阳能集热装置包括多个具有收集太阳热能的塔式光热模块。 [0007] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块中包括 A类塔式光 热模块; 其中,
[0008] 所述 A类塔式光热模块包括用于聚焦阳光的第一定日镜和设置有第一集热器的 第一光热塔;
[0009] 多个所述 A类塔式光热模块共同通过一个用于储存所述第一集热器中被加热热 工质热能的集中式储热单元与所述换热器连接。
[0010] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块中包括 B类塔式光 热模块; 其中,
[0011] 每个所述 B类塔式光热模块包括用于聚焦阳光的第二定日镜, 以及包括设置有 第二集热器的第二光热塔, 还包括与所述第二光热塔连接、 用于存储所述第二 集热器中被加热热工质热能的分布式储热单元。
[0012] 本发明所述的光热发电系统, 其中, 所述换热器包括多个子换热器, 每个所述
B类塔式光热模块包含一个所述子换热器。
[0013] 本发明所述的光热发电系统, 其中, 每个所述 B类塔式光热模块的所述子换热 器共同通过一个用于存储过饱和热蒸汽的高温蒸汽储热装置与所述热动力转换 装置连接。
[0014] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块全部为 A类塔式光 热模块, 其中一部分 A类塔式光热模块采用熔盐作为热工质, 另一部分 A类塔式 光热模块采用蒸汽作为热工质;
[0015] 采用熔盐作为热工质的 A类塔式光热模块串联连接; 采用熔盐作为热工质的 A 类塔式光热模块与采用蒸汽作为热工质的 A类塔式光热模块之间并联连接。
[0016] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块全部为 B类塔式光 热模块。
[0017] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块同吋包括 A类塔式 光热模块和 B类塔式光热模块; 其中,
[0018] 所有 A类塔式光热模块都采用熔盐作为热工质, 所有 B类塔式光热模块都采用 熔盐作为热工质, 所述 A类塔式光热模块与所述 B类塔式光热模块之间串联或并 联连接。 [0019] 本发明所述的光热发电系统, 其中, 多个所述塔式光热模块同吋包括 A类塔式 光热模块和 B类塔式光热模块; 其中,
[0020] 一部分所述 A类塔式光热模块采用熔盐作为热工质, 另一部分所述 A类塔式光 热模块采用蒸汽作为热工质, 所述 B类塔式光热模块都采用熔盐作为热工质; [0021] 采用熔盐作为热工质的所述 A类塔式光热模块与采用蒸汽作为热工质的所述 A 类塔式光热模块之间全部并联连接, 所述 B类塔式光热模块之间串联连接, 所述
A类塔式光热模块与所述 B类塔式光热模块之间并联连接。
[0022] 本发明所述的光热发电系统, 其中, 单个所述塔式光热模块发电功率为 10-25M
W。
发明的有益效果
有益效果
[0023] 通过采用具有模块化太阳能集热装置的太阳能发电系统, 可以简化电站建设流 程, 减少建设工期, 更可以减少电站设计投资成本, 还能提高镜场的效率, 而 且当其中一个单塔出现问题吋, 不会影响到其他塔式光热模块的工作状态, 保 证了整个发电系统供电的持续性和稳定性。
对附图的简要说明
附图说明
[0024] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0025] 图 1是本发明较佳实施例的包含 A类塔式光热模块的模块化塔式太阳能光热发电 系统原理示意图;
[0026] 图 2是本发明较佳实施例的包含 B类塔式光热模块的模块化塔式太阳能光热发电 系统原理示意图;
[0027] 图 3是本发明较佳实施例的单个 B类塔式光热模块原理示意图;
[0028] 图 4是本发明较佳实施例的同吋包含 A类塔式光热模块和 B类塔式光热模块的模 块化塔式太阳能光热发电系统原理示意图一;
[0029] 图 5是本发明较佳实施例的同吋包含 A类塔式光热模块和 B类塔式光热模块的模 块化塔式太阳能光热发电系统原理示意图二。 本发明的实施方式
[0030] 本发明较佳实施例的模块化塔式太阳能光热发电系统原理如图 1和图 2所示, 包 括: 用于收集太阳热能的太阳能集热装置, 与太阳能集热装置连接、 用于产生 过热饱和蒸汽的换热器, 和与换热器连接、 用于将过热饱和蒸汽转换成电能的 热动力转换装置 24; 太阳能集热装置包括多个具有收集太阳热能的塔式光热模 块 11、 12。 通过采用具有模块化太阳能集热装置的太阳能光热发电系统 (以下 简称模块化太阳能发电系统) , 当再建设大型光热电站吋, 只需将塔式光热模 块复制, 可以简化建设流程, 减少建设工期, 更可以减少发电系统设计投资成 本。
[0031] 同吋, 采用上述模块化太阳能发电系统, 还可以增加整个发电系统的供电稳定 性。 如果是单塔的光热电站, 无论哪一部分出现问题, 整个发电系统的稳定性 都会受到影响, 当采用模块化太阳能光热发电系统后, 单塔出现问题不会影响 到其他模块的工作状态, 保证了整个发电系统供电的持续性和稳定性。 另外, 采用上述模块化太阳能发电系统, 还可以提高定日镜镜场的效率。 如果是大型 的单塔光热发电系统, 远端的镜场离塔顶的距离非常远, 效率很低, 当采用模 块化太阳能发电系统后, 可以减小镜场离塔顶的距离, 提高镜场的效率, 减小 镜场面积和投资。
[0032] 上述实施例中, 模块化太阳能发电系统的热动力转换装置 24优选为汽轮发电机 组, 具体型号不限。
[0033] 在进一步的实施例中, 如图 1所示, 构成上述模块化太阳能发电系统中的太阳 能集热装置的多个塔式光热模块 11、 12中包括: A类塔式光热模块 11。 其中, 每 个 A类塔式光热模块 11包括用于聚焦阳光的第一定日镜 111和设置有第一集热器 的第一光热塔 112; 多个 A类塔式光热模块 11共同通过一个用于储存第一集热器 中被加热热工质热能的集中式储热单元 113与换热器 22连接。
[0034] 请参阅图 1, 上述 A类塔式光热模块 11工作流程为: 由第一定日镜 111反射阳光 、 聚焦阳光并加热第一光热塔 112塔顶第一集热器中的热工质, 所有 A类塔式光 热模块 11的第一集热器中被加热热工质热能储存于共同的集中式储热单元 113中 , 储存的热能通过换热器 22产生过热饱和蒸汽, 以推动热动力转换装置 24发电
[0035] 优选地, 如图 1所示, 上述换热器与 A类塔式光热模块 11的第一光热塔 111之间 还连接有低温蒸汽储热装置 23, 经换热器 22换热后的热工质再被泵到光热塔 112 塔顶加热, 以进行循环利用。
[0036] 在进一步的实施例中, 如图 2和图 3所示, 构成上述模块化太阳能发电系统中的 太阳能集热装置的多个塔式光热模块 11、 12中单独或同吋包括: B类塔式光热模 块 12。 其中, 每个 B类塔式光热模块 12包括用于聚焦阳光的第二定日镜 121、 设 置有第二集热器的光热塔 122, 和与第二光热塔 122连接、 用于存储第二集热器 中被加热热工质热能的分布式储热单元 124。
[0037] 即, 上述 A类塔式光热模块 11是不单独带储热单元的光热模块, 只是通过采用 一个集中式储热单元 113实现集中式储热; B类塔式光热模块 12是单独带分布式 储热单元 124的光热模块。
[0038] 优选地, 上述实施例中, 每个 B类塔式光热模块 12均连接一个子换热器 123, 每 个 B类塔式光热模块 12的子换热器 123经一个共同的高温蒸汽储热装置 13连接至 热动力转换装置 24, 以将各个子换热器 123所产生的过饱和热蒸汽储存后输送至 热动力转换装置 24进行发电。
[0039] 如图 2和图 3所示, 上述 B类塔式光热模块 12工作流程为: 由第二定日镜 121反射 阳光, 聚焦阳光并加热第二光热塔 122塔顶第二集热器中的热工质, 被加热的热 工质, 一部分通过分布式储热单元 124储存热量, 另一部分通过换热器 123产生 过热饱和蒸汽, 以推动热动力转换装置 24发电。
[0040] 优选地, 如图 3所示, 上述实施例中, 每个 B类塔式光热模块 12的子换热器 123 与光热塔 122之间均连接一个低温蒸汽储热装置 125, 经子换热器 123换热后的热 工质再被泵到光热塔 122塔顶加热, 以进行循环利用。
[0041] 上述实施例中, 模块化太阳能发电系统高温蒸汽储热装置 13包括一个储热罐, 或者由多个储热罐组成。
[0042] 在一个具体的实施例 1中, 如图 1所示, 上述模块化太阳能发电系统的太阳能集 热装置全部由 A类塔式光热模块 11构成。 其中, 全部 A类塔式光热模块 11产生的 过热饱和蒸汽直接存储于模块化太阳能发电系统的高温蒸汽储热装置中, 以推 动热动力转换装置 24 (汽轮发电机组) 进行发电。 虽然与 B类塔式光热模块 12相 比, 全部采用 A类塔式光热模块 11对各个塔式光热模块所产生的过热饱和蒸汽利 用率会相对降低, 但是可以节省整个模块化太阳能发电系统的建设成本。
[0043] 进一步地, 在上述实施例 1中, A类塔式光热模块 11优选采用蒸汽或熔盐作为集 热器和集中式储热单元的热工质。 当模块化太阳能发电系统中, 所有 A类塔式光 热模块 11都采用蒸汽作为热工质吋, A类塔式光热模块 11之间全部串联连接; 当 模块化太阳能发电系统中, 所有 A类塔式光热模块 11都采用熔盐作为热工质吋, 至少有两个 A类塔式光热模块 11串联连接; 当模块化太阳能发电系统中, 部分 A 类塔式光热模块 11采用熔盐作为热工质, 部分 A类塔式光热模块 11采用蒸汽作为 热工质吋, 采用熔盐作为热工质的 A类塔式光热模块 11串联连接, 采用蒸汽作为 热工质的 A类塔式光热模块 11中至少有两个串联连接, 采用熔盐作为热工质的 A 类塔式光热模块 11与采用蒸汽作为热工质的 A类塔式光热模块 11之间并联连接。
[0044] 或者, 当模块化太阳能发电系统中, 所有 A类塔式光热模块 11都采用蒸汽作为 热工质吋, A类塔式光热模块 11之间全部并联连接; 当模块化太阳能发电系统中 , 所有 A类塔式光热模块 11都采用熔盐作为热工质吋, 至少有两个 A类塔式光热 模块 11并联连接; 当模块化太阳能发电系统中, 部分 A类塔式光热模块 11采用熔 盐作为热工质, 部分 A类塔式光热模块 11采用蒸汽作为热工质吋, 采用熔盐作为 热工质的 A类塔式光热模块 11串联连接, 采用蒸汽作为热工质的 A类塔式光热模 块 11中至少有两个并联连接, 采用熔盐作为热工质的 A类塔式光热模块 11与采用 蒸汽作为热工质的 A类塔式光热模块 11之间并联连接。
[0045] 在另一个具体的实施例 2中, 如图 2所示, 上述模块化太阳能发电系统的太阳能 集热装置全部由 B类塔式光热模块 12构成。 其中, 全部 B类塔式光热模块 12产生 的过热饱和蒸汽中的一部分先存储于分布式储热单元中, 另一部分存储于模块 化太阳能发电系统的高温蒸汽储热装置中, 以推动热动力转换装置 24 (汽轮发 电机组) 进行发电。 虽然与 A类塔式光热模块 11相比, 全部采用 B类塔式光热模 块 12会增加整个模块化太阳能发电系统的建设成本, 但由于可以提高对各个塔 式光热模块所产生的过热饱和蒸汽的利用率, 从而能提高整个模块化太阳能发 电系统的发电效率。
[0046] 进一步地, 在上述实施例 2中, B类塔式光热模块 12优选采用熔盐作为集热器和 分布式储热单元的热工质。 当模块化太阳能发电系统中, 所有 B类塔式光热模块 12都采用熔盐作为热工质吋, B类塔式光热模块 12中至少有两个串联或并联连接
[0047] 在另一个具体的实施例 3中, 如图 4和图 5所示, 同吋参阅图 1、 图 2和图 3, 上述 模块化太阳能发电系统的太阳能集热装置同吋包括 A类塔式光热模块 11和 B类塔 式光热模块 12。 其中, 单个 A类塔式光热模块 11和单个 B类塔式光热模块 12的工 作流程请参阅前面实施例的描述, 在此不再赘述。
[0048] 进一步地, 在上述实施例 3中, 所有 A类塔式光热模块 11都采用蒸汽作为热工质 、 所有 B类塔式光热模块 12都采用熔盐作为热工质, 至少有两个 A类塔式光热模 块 11串联连接, 或者, 至少有两个 B类塔式光热模块 12串联连接, A类塔式光热 模块 11与 B类塔式光热模块 12之间并联连接。 或者, 所有 A类塔式光热模块 11都 采用蒸汽作为热工质、 所有 B类塔式光热模块 12都采用熔盐作为热工质, 至少有 两个 A类塔式光热模块 11并联连接, 或者至少有两个 B类塔式光热模块 12并联连 接, A类塔式光热模块 11与 B类塔式光热模块 12之间并联连接。
[0049] 进一步地, 在上述实施例 3中, 所有 A类塔式光热模块 11都采用熔盐作为热工质 、 所有 B类塔式光热模块 12都采用熔盐作为热工质, 至少有两个 A类塔式光热模 块 11串联连接, 或者, 至少有两个 B类塔式光热模块 12串联连接, A类塔式光热 模块 11与 B类塔式光热模块 12之间串联或并联连接。 或者, 所有 A类塔式光热模 块 11都采用熔盐作为热工质、 所有 B类塔式光热模块 12都采用熔盐作为热工质, 至少有两个 A类塔式光热模块 11并联连接, 或者, 至少有两个 B类塔式光热模块 1 2并联连接, A类塔式光热模块 11与 B类塔式光热模块 12之间串联或并联连接。
[0050] 进一步地, 在上述实施例 3中, 一部分 A类塔式光热模块 11采用熔盐作为热工质 , 另一部分 A类塔式光热模块 11采用蒸汽作为热工质, 所有 B类塔式光热模块 12 都采用熔盐作为热工质; 采用熔盐作为热工质的 A类塔式光热模块 11与采用蒸汽 作为热工质的 A类塔式光热模块 11之间全部并联连接, B类塔式光热模块 12之间 串联或并联连接, A类塔式光热模块 11与 B类塔式光热模块 12之间并联连接。 或 者, 一部分 A类塔式光热模块 11采用熔盐作为热工质, 另一部分 A类塔式光热模 块 11采用蒸汽作为热工质, 所有 B类塔式光热模块 12都采用熔盐作为热工质; 采 用熔盐作为热工质的 A类塔式光热模块 11与采用蒸汽作为热工质的 A类塔式光热 模块 11之间全部并联连接, B类塔式光热模块 12之间串联或并联连接, A类塔式 光热模块 11与 B类塔式光热模块 12之间并联连接。
[0051] 在另一优选实施例中, 上述模块化太阳能发电系统包含 20个塔式光热模块, 每 个塔式光热模块的发电功率为 10MW; 其中包括 10个 A类塔式光热模块 11和 10个 B类塔式光热模块 12, 10个带储热的 B类塔式光热模块 12储热吋间为 8小吋, 10个 不带储热的 A类塔式光热模块通过过热蒸汽发电, 集中储热吋间为 2小吋。
[0052] 上述各实施例中, 单个塔式光热模块发电功率可以为 5-100
MW, 优选为 10-25MW, 以达到最优发电效果, 但不限于采用其他功率的塔式 光热模块。
[0053] 综上, 本发明通过采用具有模块化太阳能集热装置的太阳能发电系统, 可以简 化建设流程, 减少建设工期, 更可以减少电站设计投资成本, 还能提高镜场的 效率, 而且当其中一个单塔出现问题吋, 不会影响到其他塔式光热模块的工作 状态, 保证了整个发电系统供电的持续性和稳定性。
[0054] 应当理解的是, 对本领域普通技术人员来说, 可以根据上述说明加以改进或变 换, 而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims

权利要求书
一种模块化塔式太阳能光热发电系统, 包括: 用于收集太阳热能 的太阳能集热装置, 与所述太阳能集热装置连接、 用于产生过热 饱和蒸汽的换热器, 和与所述换热器连接、 用于将所述过热饱和 蒸汽转换成电能的热动力转换装置; 其特征在于, 所述太阳能集 热装置包括多个具有收集太阳热能的塔式光热模块。
根据权利要求 1所述的光热发电系统, 其特征在于, 多个所述塔式 光热模块中包括 A类塔式光热模块; 其中,
所述 A类塔式光热模块包括用于聚焦阳光的第一定日镜和设置有第 一集热器的第一光热塔;
多个所述 A类塔式光热模块共同通过一个用于储存所述第一集热器 中被加热热工质热能的集中式储热单元与所述换热器连接。
根据权利要求 1或 2所述的光热发电系统, 其特征在于, 多个所述 塔式光热模块中包括 B类塔式光热模块; 其中,
每个所述 B类塔式光热模块包括用于聚焦阳光的第二定日镜, 以及 包括设置有第二集热器的第二光热塔, 还包括与所述第二光热塔 连接、 用于存储所述第二集热器中被加热热工质热能的分布式储 热单元。
根据权利要求 3所述的光热发电系统, 其特征在于, 所述换热器包 括多个子换热器, 每个所述 B类塔式光热模块包含一个所述子换热 器。
根据权利要求 4所述的光热发电系统, 其特征在于, 每个所述 B类 塔式光热模块的所述子换热器共同通过一个用于存储过饱和热蒸 汽的高温蒸汽储热装置与所述热动力转换装置连接。
根据权利要求 5所述的光热发电系统, 其特征在于, 多个所述塔式 光热模块全部为 A类塔式光热模块, 其中一部分 A类塔式光热模块 采用熔盐作为热工质, 另一部分 A类塔式光热模块采用蒸汽作为热 工质; 采用熔盐作为热工质的 A类塔式光热模块串联连接;
采用熔盐作为热工质的 A类塔式光热模块与采用蒸汽作为热工质的
A类塔式光热模块之间并联连接。
根据权利要求 5所述的光热发电系统, 其特征在于, 多个所述塔式 光热模块全部为 B类塔式光热模块。
根据权利要求 5所述的光热发电系统, 其特征在于, 多个所述塔式 光热模块同吋包括 A类塔式光热模块和 B类塔式光热模块; 其中, 所有 A类塔式光热模块都采用熔盐作为热工质, 所有 B类塔式光热 模块都采用熔盐作为热工质, 所述 A类塔式光热模块与所述 B类塔 式光热模块之间串联或并联连接。
根据权利要求 5所述的光热发电系统, 其特征在于, 多个所述塔式 光热模块同吋包括 A类塔式光热模块和 B类塔式光热模块; 其中, 一部分所述 A类塔式光热模块采用熔盐作为热工质, 另一部分所述 A类塔式光热模块采用蒸汽作为热工质, 所述 B类塔式光热模块都 采用熔盐作为热工质;
采用熔盐作为热工质的所述 A类塔式光热模块与采用蒸汽作为热工 质的所述 A类塔式光热模块之间全部并联连接, 所述 B类塔式光热 模块之间串联连接, 所述 A类塔式光热模块与所述 B类塔式光热模 块之间并联连接。
根据权利要求 1所述的光热发电系统, 其特征在于, 单个所述塔式 光热模块发电功率为 10-25MW。
PCT/CN2014/096055 2014-12-31 2014-12-31 一种模块化塔式太阳能光热发电系统 WO2016106745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/096055 WO2016106745A1 (zh) 2014-12-31 2014-12-31 一种模块化塔式太阳能光热发电系统
US15/540,357 US10364803B2 (en) 2014-12-31 2014-12-31 Modular tower-type solar thermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/096055 WO2016106745A1 (zh) 2014-12-31 2014-12-31 一种模块化塔式太阳能光热发电系统

Publications (1)

Publication Number Publication Date
WO2016106745A1 true WO2016106745A1 (zh) 2016-07-07

Family

ID=56284015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/096055 WO2016106745A1 (zh) 2014-12-31 2014-12-31 一种模块化塔式太阳能光热发电系统

Country Status (2)

Country Link
US (1) US10364803B2 (zh)
WO (1) WO2016106745A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030169A (zh) * 2019-04-16 2019-07-19 东方电气集团东方锅炉股份有限公司 一种塔式太阳能光热发电联合循环系统及其运行方法
CN110207404A (zh) * 2019-06-13 2019-09-06 东方电气集团东方锅炉股份有限公司 一种塔式太阳能光热发电熔盐吸热器循环系统
US11578704B2 (en) 2019-12-02 2023-02-14 Cosmic Energy Power Inc. Solar powered energy generator
CN113153675A (zh) * 2020-01-22 2021-07-23 电力规划总院有限公司 一种发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200946553Y (zh) * 2006-07-04 2007-09-12 吴耀琪 簇式储热太阳能光热发电装置
CN101825072A (zh) * 2010-04-16 2010-09-08 华中科技大学 焦点固定的槽碟结合太阳能热发电系统
EP2258947A1 (de) * 2009-06-03 2010-12-08 Thilo Dr. Ittner Modularer thermoelektrischer Wandler
CN203296823U (zh) * 2013-05-17 2013-11-20 杭州锅炉集团股份有限公司 一种多塔、雁阵式排列的太阳能蓄热发电系统
WO2014052902A1 (en) * 2012-09-30 2014-04-03 Taber William Stevens Jr Radiation collection utilizing total internal reflection and other techniques for the purpose of dispatchble electricity generation and other uses
CN103726998A (zh) * 2012-10-12 2014-04-16 上海工电能源科技有限公司 集群式太阳能热发电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117682A (en) * 1976-11-01 1978-10-03 Smith Otto J M Solar collector system
US20100319684A1 (en) * 2009-05-26 2010-12-23 Cogenra Solar, Inc. Concentrating Solar Photovoltaic-Thermal System
ES2425996B1 (es) * 2012-03-01 2014-12-05 Abengoa Solar New Technologies, S.A. Receptor solar de placas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200946553Y (zh) * 2006-07-04 2007-09-12 吴耀琪 簇式储热太阳能光热发电装置
EP2258947A1 (de) * 2009-06-03 2010-12-08 Thilo Dr. Ittner Modularer thermoelektrischer Wandler
CN101825072A (zh) * 2010-04-16 2010-09-08 华中科技大学 焦点固定的槽碟结合太阳能热发电系统
WO2014052902A1 (en) * 2012-09-30 2014-04-03 Taber William Stevens Jr Radiation collection utilizing total internal reflection and other techniques for the purpose of dispatchble electricity generation and other uses
CN103726998A (zh) * 2012-10-12 2014-04-16 上海工电能源科技有限公司 集群式太阳能热发电系统
CN203296823U (zh) * 2013-05-17 2013-11-20 杭州锅炉集团股份有限公司 一种多塔、雁阵式排列的太阳能蓄热发电系统

Also Published As

Publication number Publication date
US20170350375A1 (en) 2017-12-07
US10364803B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN208380763U (zh) 一种改良的布雷顿光热发电系统
CN203964402U (zh) 利用太阳能聚光装置为化学蓄电池提供热能的装置
CN103939306B (zh) 一种两回路式太阳能热发电系统
WO2019080809A1 (zh) 太阳能光热-生物质发电系统
WO2016106745A1 (zh) 一种模块化塔式太阳能光热发电系统
CN204460763U (zh) 采用熔盐工质的塔式太阳能光热发电系统
CN105444428B (zh) 采用熔盐工质的塔式太阳能光热发电系统
CN204532724U (zh) 槽式太阳能中高温一体化热发电装置
CN104764218B (zh) 利用太阳能聚光装置为化学蓄电池提供热能的装置
CN202280589U (zh) 一种太阳能和生物质能互补热电联产装置
CN204458230U (zh) 一种带集中储热的太阳能光热发电系统
CN105091356A (zh) 一种太阳能聚光集热与常规能源耦合发电系统
CN204458228U (zh) 带分布式储热的太阳能光热发电系统
CN204458232U (zh) 塔式太阳能光热发电系统
CN204830511U (zh) 一种太阳能聚光集热与常规能源耦合发电系统
CN101388626A (zh) 一种太阳能发电装置
CN209145782U (zh) 一种地热能与太阳能耦合发电装置
CN204458233U (zh) 采用多种传热工质的塔式太阳能光热发电系统
CN207333115U (zh) 太阳能槽式集热装置与低温斯特林发电机组联合发电系统
CN204458231U (zh) 一种塔式太阳能光热发电系统
CN201396950Y (zh) 一种太阳能中低温热源发电系统
CN105370519A (zh) 带分布式储热的太阳能光热发电系统
CN204460762U (zh) 一种模块化塔式太阳能光热发电系统
CN105317637A (zh) 塔式太阳能光热发电系统
WO2018024180A1 (zh) 太阳能电站直接蒸汽过热生成方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909552

Country of ref document: EP

Kind code of ref document: A1