CN110030169A - 一种塔式太阳能光热发电联合循环系统及其运行方法 - Google Patents

一种塔式太阳能光热发电联合循环系统及其运行方法 Download PDF

Info

Publication number
CN110030169A
CN110030169A CN201910301662.5A CN201910301662A CN110030169A CN 110030169 A CN110030169 A CN 110030169A CN 201910301662 A CN201910301662 A CN 201910301662A CN 110030169 A CN110030169 A CN 110030169A
Authority
CN
China
Prior art keywords
working medium
heat
unit
heat exchange
fused salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910301662.5A
Other languages
English (en)
Inventor
臧平伟
华文瀚
孙登科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Boiler Group Co Ltd
Original Assignee
Dongfang Boiler Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Boiler Group Co Ltd filed Critical Dongfang Boiler Group Co Ltd
Priority to CN201910301662.5A priority Critical patent/CN110030169A/zh
Publication of CN110030169A publication Critical patent/CN110030169A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了塔式太阳能光热发电联合循环系统及其运行方法,循环系统包括水工质聚光集热单元、熔盐工质聚光集热单元、储换热单元和发电单元,水工质聚光集热单元和熔盐工质聚光集热单元并联设置,储换热单元包括储热子单元和换热子单元,水工质聚光集热单元的出口与储换热单元的蒸汽母管相连,熔盐工质聚光集热单元与储热子单元相连,储换热单元与发电单元相连并将换热子单元产生的第二过热蒸汽和/或水工质聚光集热单元产生的第一过热蒸汽通过蒸汽母管送入发电单元供给发电。运行方法则在于对循环系统的运行控制。本发明可简化电站循环系统布置及辅助系统配置,降低投资成本,实现全天不间断发电,延长运行时间提高收益。

Description

一种塔式太阳能光热发电联合循环系统及其运行方法
技术领域
本发明涉及太阳能光热发电的技术领域,更具体地讲,涉及一种塔式太阳能光热发电联合循环系统及其运行方法。
背景技术
太阳能光热发电技术是通过聚光的方式将太阳能转换为高品位的热能,进而通过热-功-电转换来实现电力生产的技术,该发电技术在上世纪90年代在国外就已经开始发展起来,目前国内外已经有多个光热发电站成功投入商业化运行,一个完整的太阳能光热发电站包括聚光集热系统、储热换热系统、发电系统等几部分。
塔式太阳能光热发电技术由于使用了高塔聚焦,可以实现较高的聚光比和高达1200kW/m2的辐射热流密度,因此发展迅速且已广泛应用。塔式光热电站可采用水工质吸热器直接或间接产生过热蒸汽推动汽轮机发电;也可以采用熔盐吸热器系统和储热换热系统,由换热系统产生过热蒸汽推动汽轮机发电。
太阳能光热电站站址选择时,需尽量选择荒漠化或沙漠化地区,要求地势平坦开阔最为适宜,对于塔式光热电站坡度一般不超过5%。但有些预选站址无法满足这个要求,比如光照资源条件较好的沿海山地地区,典型条件就是光照好但是地形复杂、坡度大。根据实际情况可按双塔设计聚光集热系统,而动力区仍需按单区域设置,则两塔中间势必会有大量的熔盐输送管道及辅助系统。
以希腊minos熔盐塔式光热电站为例,根据地形及用地限制,该电站可依推荐按东西双塔设计,东塔距离西塔约300m,站址地势呈东高西低走向且高差达30米,不但两塔之间熔盐管道难以布置,由于动力岛布置在东塔处,还导致西塔熔盐系统排净问题也成为设计难点。因熔盐管道复杂、辅助设备多,特别是低点位的熔盐排净系统造成该电站按双塔熔盐系统设计投资成本高,经济性差。
虽然国内外的熔盐塔式聚光集热系统已有较多设计及建设,但其设计复杂、辅助设备多、建造周期长、运维困难等问题仍然存在,因此,目前熔盐塔式光热发电站建设和运维成本仍居高不下,后续项目建设及运营需考虑如何降低各项成本问题。
发明内容
为了解决现有技术中的问题,本发明的目的是提供一种将水工质塔式吸热器系统和熔盐塔式吸热器系统有机结合起来且充分利用二者优势避免劣势的塔式太阳能光热发电联合循环系统及其运行方法。
本发明的一方面提供了一种塔式太阳能光热发电联合循环系统,所述循环系统包括水工质聚光集热单元、熔盐工质聚光集热单元、储换热单元和发电单元,其中,所述水工质聚光集热单元和熔盐工质聚光集热单元并联设置,所述储换热单元包括储热子单元和换热子单元,水工质聚光集热单元的出口与储换热单元的蒸汽母管相连,熔盐工质聚光集热单元与储换热单元中的储热子单元相连,所述储换热单元与发电单元相连并将储换热单元中换热子单元产生的第二过热蒸汽和/或水工质聚光集热单元产生的第一过热蒸汽通过所述蒸汽母管送入发电单元供给发电。
根据本发明塔式太阳能光热发电联合循环系统的一个实施例,所述水工质聚光集热单元包括第一定日镜场、水工质吸热器支撑塔和水工质吸热器,所述水工质吸热器设置在水工质吸热器支撑塔上,所述第一定日镜场布置为能够将太阳光聚焦至水工质吸热器上加热给水,所述水工质吸热器的入口通过水工质吸热器给水管与给水泵相连且出口通过水工质吸热器过热蒸汽出口管与储换热单元的过热蒸汽母管相连。
根据本发明塔式太阳能光热发电联合循环系统的一个实施例,所述熔盐工质聚光集热单元包括第二定日镜场、熔盐工质吸热器支撑塔和熔盐工质吸热器,所述储热子单元包括低温熔盐储罐和高温熔盐储罐,所述熔盐工质吸热器设置在熔盐工质吸热器支撑塔上,所述第二定日镜场布置为能够将太阳光聚焦至熔盐工质吸热器上加热熔盐,所述熔盐工质吸热器的入口通过低温熔盐泵和上塔熔盐管与储换热单元的低温熔盐储罐相连且出口通过下塔熔盐管与储换热单元的高温熔盐储罐相连。
根据本发明塔式太阳能光热发电联合循环系统的一个实施例,所述换热子单元包括预热器、蒸发器、过热器和再热器,所述预热器、蒸发器和过热器之间通过蒸汽管路和熔盐管路顺次相连,预热器通过预热器给水管与给水泵相连并且通过低温熔盐管与低温熔盐储罐相连,过热器通过过热蒸汽出口管与储换热单元的过热蒸汽母管相连并且通过高温熔盐泵和高温熔盐管与高温熔盐储罐相连;所述再热器通过熔盐管路与过热器串联或并联设置,再热器通过低温再热蒸汽进口管与发电单元的汽轮机高压缸相连并且通过高温再热蒸汽出口管与发电单元的汽轮机低压缸相连。
根据本发明塔式太阳能光热发电联合循环系统的一个实施例,所述储换热单元的过热蒸汽母管通过高压缸进汽管与发电单元的汽轮机高压缸相连,所述发电单元的汽轮机低压缸通过冷凝管道与冷凝排水单元相连。
根据本发明塔式太阳能光热发电联合循环系统的一个实施例,所述换热子单元的预热器、蒸发器、过热器和再热器采取双列布置形式或单列布置形式,所述循环系统适用于双塔或多塔式光热发电站。
本发明的另一方面提供了上述塔式太阳能光热发电联合循环系统的运行方法。
根据本发明塔式太阳能光热发电联合循环系统的运行方法的一个实施例,在发电单元运行时,控制所述水工质聚光集热单元、储换热单元以及熔盐工质聚光集热单元与储换热单元的组合分别单独运行或者一起运行;在发电单元不运行时,控制所述熔盐工质聚光集热单元单独运行。
根据本发明塔式太阳能光热发电联合循环系统的运行方法的一个实施例,控制来自水工质聚光集热单元的第一过热蒸汽与来自储换热单元的第二过热蒸汽混合后进入或者分别单独进入发电单元供给发电。
与现有技术相比,本发明特别适用于地势不平的双塔或多塔式光热发电站,以双塔为例,一塔设置为水工质吸热器系统,直接出产过热蒸汽;另一塔按熔盐吸热器系统设置,提供高温熔盐供储换热系统用。该循环系统将水工质塔式吸热器系统和熔盐塔式吸热器系统优点有机结合起来,充分利用二者优势避免劣势。一方面,采用水工质系统可简化电站循环系统布置及辅助系统配置,有效降低投资成本提高经济效益;另一方面,采用熔盐系统可降低储热难度,实现全天不间断发电,延长电站运行时间提高收益。
附图说明
图1示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统的整体结构流程图。
图2示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中水工质聚光集热单元的结构示意图。
图3示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中熔盐工质聚光集热单元的结构示意图。
图4示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中储换热单元的结构示意图。
图5示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中发电单元的结构示意图。
附图标记说明:
100-水工质聚光集热单元、101-第一定日镜场、102-水工质吸热器支撑塔、103-水工质吸热器、104-水工质吸热器过热蒸汽出口管、105-水工质吸热器给水管;
200-熔盐工质聚光集热单元、201-第二定日镜场、202-熔盐工质吸热器支撑塔、203-熔盐工质吸热器、204-下塔熔盐管、205-上塔熔盐管;
300-储换热单元、301-高温熔盐储罐、302-低温熔盐储罐、303-高温熔盐管、304-高温熔盐泵、305-低温熔盐泵、306-过热器、307-再热器、308-蒸发器、309-预热器、310-低温熔盐管、311-预热器给水管、312-过热蒸汽出口管、313-过热蒸汽母管、314-低温再热蒸汽进口管、315-高温再热蒸汽出口管;
400-发电单元、401-汽轮机高压缸、402-汽轮机低压缸、403-发电机、404-冷凝管道、405-高压缸进汽管、406-高压缸排汽管、407-低压缸进汽管。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
在下文中,先对本发明的塔式太阳能光热发电联合循环系统进行具体描述和说明。
图1示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统的整体结构流程图。
如图1所示,根据本发明的示例性实施例,所述塔式太阳能光热发电联合循环系统包括水工质聚光集热单元100、熔盐工质聚光集热单元200、储换热单元300和发电单元400。其中,水工质聚光集热单元100用于直接出产过热蒸汽,熔盐工质聚光集热单元200用于储存太阳能并提供高温熔盐供储换热单元300使用,储换热单元300也用于产生过热蒸汽并且包括用于储存太阳能的储热子单元和用于将太阳能利用产生过热蒸汽的换热子单元,来自水工质聚光集热单元100和储换热单元300的过热蒸汽用于发动单元400的发电。本发明的循环系统尤其适用于双塔或多塔式光热发电站。
具体地,本发明中的水工质聚光集热单元100和熔盐工质聚光集热单元200并联设置,可以采用双塔或多塔布置,可有效利用山地等大坡度场地,降低用地成本。水工质聚光集热单元100的出口与储换热单元300的蒸汽母管相连并将第一过热蒸汽送入储换热单元300的蒸汽母管,熔盐工质聚光集热单元200与储换热单元300的储热子单元相连并与储换热单元300进行熔盐供给,储换热单元300与发电单元400相连并将储换热单元300中换热子单元产生的第二过热蒸汽和/或水工质聚光集热单元产生的第一过热蒸汽送入发电单元400供给发电。
下面分别对各单元的结构和工作模式进行说明。
图2示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中水工质聚光集热单元的结构示意图。
如图2所示,本发明中的水工质聚光集热单元100包括第一定日镜场101、水工质吸热器支撑塔102和水工质吸热器103,当然还包括上下塔管道以及相关附件。水工质吸热器103设置在水工质吸热器支撑塔102上,第一定日镜场101布置为能够将太阳光聚焦至水工质吸热器103上加热给水,水工质吸热器103的入口通过水工质吸热器给水管105与给水泵相连且出口通过水工质吸热器过热蒸汽出口管104与储换热单元300的过热蒸汽母管313相连。其中,水工质吸热器的入口优选为锅炉给水,出口为满足汽轮机需求的第一过热蒸汽。
图3示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中熔盐工质聚光集热单元的结构示意图。
如图3所示,本发明的熔盐工质聚光集热单元200包括第二定日镜场201、熔盐工质吸热器支撑塔202和熔盐工质吸热器203,当然也包括上下塔管道及相关附件。熔盐工质吸热器203设置在熔盐工质吸热器支撑塔203上,第二定日镜场201布置为能够将太阳光聚焦至熔盐工质吸热器203上加热熔盐,熔盐工质吸热器203的入口通过低温熔盐泵305和上塔熔盐管205与储换热单元300的低温熔盐储罐302相连且出口通过下塔熔盐管204与储换热单元300的高温熔盐储罐301相连。其中,熔盐工质吸热器的入口为低温熔盐(也称为冷熔盐),出口为高温熔盐(也称为热熔盐)。
图4示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中储换热单元的结构示意图,图5示出了根据本发明示例性实施例的塔式太阳能光热发电联合循环系统中发电单元的结构示意图。
如图4所示,本发明的储换热单元300实际上包括用于储存太阳能的储热子单元和用于与给水换热得到过热蒸汽的换热子单元,其中,储热子单元包括低温熔盐储罐302和高温熔盐储罐301,换热子单元包括预热器309、蒸发器308、过热器306和再热器307,换热子单元的水侧入口为锅炉给水且出口为满足汽轮机需求的过热蒸汽,换热子单元的盐侧入口为高温熔盐且出口为低温熔盐。
具体地,预热器309、蒸发器308和过热器306之间通过蒸汽管路和熔盐管路顺次相连,则锅炉给水依次通过预热器309、蒸发器308、过热器306与来自高温熔盐储罐的高温熔盐换热并被加热变成过热蒸汽,而高温熔盐换热后的低温熔盐则返回至低温熔盐储罐。其中,换热子单元的预热器309、蒸发器308、过热器306和再热器307可以根据电站容量大小采取双列布置形式或单列布置形式,
预热器309通过预热器给水管311与给水泵相连以对锅炉给水进行预热并且通过低温熔盐管310与低温熔盐储罐302相连以将换热后的低温熔盐返回,过热器306通过过热蒸汽出口管312与储换热单元300的过热蒸汽母管313相连以将换热子单元产生的第二过热蒸汽送入发电单元400并且通过高温熔盐泵304和高温熔盐管303与高温熔盐储罐310相连以使高温熔盐能够从过热器306进入并将来自蒸发器308的蒸汽加热为过热蒸汽。也即,预热器309、蒸发器308和过热器306中的熔盐与水和/或蒸汽是逆流换热。
如图4和图5所示,再热器307通过熔盐管路与过热器306串联或并联设置,再热器307通过低温再热蒸汽进口管314与发电单元400的汽轮机高压缸401相连,并且通过高温再热蒸汽出口管315与发电单元400的汽轮机低压缸402相连。由此,在汽轮机高压缸401中做功推动发电后的乏汽能够在再热器307中再热后继续进入汽轮机低压缸402做功推动发电,提高蒸汽的热效率。
如图5所示,根据本发明,储换热单元400的过热蒸汽母管301通过高压缸进汽管405与发电单元400的汽轮机高压缸401相连以将储换热单元300产生的第二过热蒸汽和/或上述第一过热蒸汽送入汽轮机高压缸做功发电,发电单元400的汽轮机低压缸402通过冷凝管道404与冷凝排水单元(未示出)相连以排出冷凝水。也即,本发明可以采用来自水工质聚光集热单元的第一过热蒸汽与来自储换热单元的第二过热蒸汽单独地或者共同地进行发电单元的汽轮机发电,同时发电单元中汽轮机高压缸的排汽可以进入换热子单元再热后进入汽轮机低压缸继续做功。
上述结构设计不仅使得两个聚光集热单元之间的干扰较小,有利于分别单独控制并可单独运行、发电,而且还采用了再热机组提高电厂热效率及发电量,可使系统简化、建设成本降低的同时提高经济效益。
本发明同时提供了上述塔式太阳能光热发电联合循环系统的运行方法。具体地是在发电单元300运行时,控制水工质聚光集热单元100、储换热单元300以及熔盐工质聚光集热单元200与储换热单元300的组合分别单独运行或者一起运行,此时可单独由水工质聚光集热单元100出产的第一过热蒸汽供发电单元400发电,或者单独由储换热单元300出产的第二过热蒸汽供发电系统400发电。在发电单元300不运行时,控制熔盐工质聚光集热单元200单独运行,此时可以利用熔盐工质聚光集热单元200向储换热单元300的储热子单元提供高温熔盐,利于换热及储热一体化并可实现太阳能电站24h连续运行。在本循环系统运行时,各单元可以单独运行和控制,不会对其他单元产生影响。
并且,控制来自水工质聚光集热单元100的第一过热蒸汽与来自储换热单元300的第二过热蒸汽混合后进入或者分别单独进入发电单元400供给发电。当水工质聚光集热单元100或储换热单元300单独运行时,则可以利用其中任一产生的过热蒸汽进行发电;当各单元一起运行时,则优选地利用水工质聚光集热单元100和储换热单元300产生的蒸汽混合后进行发电。
下面对本发明的塔式太阳能光热发电联合循环系统的运行方式进行具体说明。
如图2所示,锅炉给水自水工质吸热器给水管105进入水工质吸热器103,太阳光经第一定日镜场101聚焦至水工质吸热器103上加热给水,给水吸热、过热后成为第一过热蒸汽从水工质吸热器过热蒸汽出口管104引出进入储换热单元300内的过热蒸汽母管313。
如图3和图4所示,储存于低温熔盐储罐302内的低温熔盐经低温熔盐泵305、上塔熔盐管205进入熔盐工质吸热器203,太阳光经第二定日镜场201聚焦至熔盐工质吸热器203上加热低温熔盐,熔盐吸热后成为高温熔盐从下塔熔盐管204引出并进入高温熔盐储罐301。高温熔盐储罐301内高温熔盐经高温熔盐泵304、高温熔盐管303进入过热器306、再热器307与蒸汽换热,然后再依次进入蒸发器308、预热器309加热给水使之蒸发为饱和蒸汽,换热后的低温熔盐经低温熔盐管310流回至低温熔盐储罐302内进入下一个循环。
如图4所示,锅炉给水自预热器给水管311依次通过预热器309、蒸发器308、过热器306被加热变成第二过热蒸汽从过热蒸汽出口管312进入过热蒸汽母管313与来自水工质吸热器过热蒸汽出口管104的第一过热蒸汽混合后进入发电单元400。当然,也可以仅将第一过热蒸汽或第二过热蒸汽送入发电单元400。
如图4、图5所示,自过热蒸汽母管313引出的过热蒸汽通过高压缸进汽管405进入汽轮机高压缸401做功推动发电机403发电,乏汽经高压缸排汽管406排出并经低温再热蒸汽进口管314进入再热器307,蒸汽再热后高温再热蒸汽出口管315进入汽轮机低压缸402做功推动发电机403发电,最终乏汽经冷凝管道404进入后续系统单元。
其中,在发电单元400运行时,水工质聚光集热单元100、熔盐工质聚光集热单元200和储换热单元300均可单独运行,任意解列其中两个单元而其它单元不受影响。可单独由水工质聚光集热单元100出产的第一过热蒸汽供发电单元400发电,也可单独由储换热单元300出产的第二过热蒸汽供发电单元400发电。又或者,在发电单元400不运行时,也可单独运行熔盐工质聚光集热单元200对储换热单元300提供热熔盐。
综上所述,本发明具有如下有益效果:
1)采用双塔或多塔布置,可有效利用山地等大坡度场地,降低用地成本;
2)采用水工质吸热器的聚光集热单元可以直接产生过热蒸汽,系统简单、设备造价低廉且技术成熟度高;熔盐工质聚光集热系单元采用熔盐介质进行换热储能,有利于换热及储热一体化并可实现太阳能电站24h的连续运行;本发明同时利用两组聚光集热系统并分设多个聚光场,有利于单独控制,实现出产过热蒸汽、熔盐储换热的灵活调度且互不干扰,可使系统简化并建设成本降低。
3)来自水工质聚光集热单元的第一过热蒸汽与来自熔盐工质聚光集热单元的第二过热蒸汽可以在混合后再进入发电单元,对两个聚光集热单元的干扰较小,利于分别控制并可单独运行、发电;并且采用再热机组可提高电厂热效率及发电量。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (8)

1.一种塔式太阳能光热发电联合循环系统,其特征在于,所述循环系统包括水工质聚光集热单元、熔盐工质聚光集热单元、储换热单元和发电单元,其中,所述水工质聚光集热单元和熔盐工质聚光集热单元并联设置,所述储换热单元包括储热子单元和换热子单元,水工质聚光集热单元的出口与储换热单元的蒸汽母管相连,熔盐工质聚光集热单元与储换热单元中的储热子单元相连,所述储换热单元与发电单元相连并将储换热单元中换热子单元产生的第二过热蒸汽和/或水工质聚光集热单元产生的第一过热蒸汽通过所述蒸汽母管送入发电单元供给发电。
2.根据权利要求1所述的塔式太阳能光热发电联合循环系统,其特征在于,所述水工质聚光集热单元包括第一定日镜场、水工质吸热器支撑塔和水工质吸热器,所述水工质吸热器设置在水工质吸热器支撑塔上,所述第一定日镜场布置为能够将太阳光聚焦至水工质吸热器上加热给水,所述水工质吸热器的入口通过水工质吸热器给水管与给水泵相连且出口通过水工质吸热器过热蒸汽出口管与储换热单元的过热蒸汽母管相连。
3.根据权利要求1或2所述的塔式太阳能光热发电联合循环系统,其特征在于,所述熔盐工质聚光集热单元包括第二定日镜场、熔盐工质吸热器支撑塔和熔盐工质吸热器,所述储热子单元包括低温熔盐储罐和高温熔盐储罐,所述熔盐工质吸热器设置在熔盐工质吸热器支撑塔上,所述第二定日镜场布置为能够将太阳光聚焦至熔盐工质吸热器上加热熔盐,所述熔盐工质吸热器的入口通过低温熔盐泵和上塔熔盐管与低温熔盐储罐相连且出口通过下塔熔盐管与高温熔盐储罐相连。
4.根据权利要求3所述的塔式太阳能光热发电联合循环系统,其特征在于,所述换热子单元包括预热器、蒸发器、过热器和再热器,所述预热器、蒸发器和过热器之间通过蒸汽管路和熔盐管路顺次相连,预热器通过预热器给水管与给水泵相连并且通过低温熔盐管与低温熔盐储罐相连,过热器通过过热蒸汽出口管与储换热单元的过热蒸汽母管相连并且通过高温熔盐泵和高温熔盐管与高温熔盐储罐相连;所述再热器通过熔盐管路与过热器串联或并联设置,再热器通过低温再热蒸汽进口管与发电单元的汽轮机高压缸相连并且通过高温再热蒸汽出口管与发电单元的汽轮机低压缸相连。
5.根据权利要求2或4所述的塔式太阳能光热发电联合循环系统,其特征在于,所述储换热单元的过热蒸汽母管通过高压缸进汽管与发电单元的汽轮机高压缸相连,所述发电单元的汽轮机低压缸通过冷凝管道与冷凝排水单元相连。
6.根据权利要求1所述的塔式太阳能光热发电联合循环系统,其特征在于,所述换热子单元的预热器、蒸发器、过热器和再热器采取双列布置形式或单列布置形式,所述循环系统适用于双塔或多塔式光热发电站。
7.如权利要求1至6中任一项所述塔式太阳能光热发电联合循环系统的运行方法,其特征在于,控制来自水工质聚光集热单元的第一过热蒸汽与来自储换热单元的第二过热蒸汽混合后进入或者分别单独进入发电单元供给发电。
8.根据权利要求7所述塔式太阳能光热发电联合循环系统的运行方法,其特征在于,在发电单元运行时,控制所述水工质聚光集热单元、储换热单元以及熔盐工质聚光集热单元与储换热单元的组合分别单独运行或者一起运行;在发电单元不运行时,控制所述熔盐工质聚光集热单元单独运行。
CN201910301662.5A 2019-04-16 2019-04-16 一种塔式太阳能光热发电联合循环系统及其运行方法 Pending CN110030169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910301662.5A CN110030169A (zh) 2019-04-16 2019-04-16 一种塔式太阳能光热发电联合循环系统及其运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910301662.5A CN110030169A (zh) 2019-04-16 2019-04-16 一种塔式太阳能光热发电联合循环系统及其运行方法

Publications (1)

Publication Number Publication Date
CN110030169A true CN110030169A (zh) 2019-07-19

Family

ID=67238524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910301662.5A Pending CN110030169A (zh) 2019-04-16 2019-04-16 一种塔式太阳能光热发电联合循环系统及其运行方法

Country Status (1)

Country Link
CN (1) CN110030169A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406125A (zh) * 2022-09-13 2022-11-29 东营市港城热力有限公司 一种太阳能光热熔盐储热系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072115A (zh) * 2009-11-23 2011-05-25 张建城 槽式太阳能聚热发电装置
CN102146899A (zh) * 2011-01-30 2011-08-10 杭州锅炉集团股份有限公司 多塔式二元工质太阳能高温热发电系统
JP2013147996A (ja) * 2012-01-19 2013-08-01 Hitachi Ltd 太陽熱複合発電システム及び太陽熱複合発電方法
CN203394692U (zh) * 2013-08-28 2014-01-15 中国电力工程顾问集团华北电力设计院工程有限公司 采用两种不同熔盐的塔式太阳能发电系统
EP2963290A1 (en) * 2014-07-03 2016-01-06 NEM Energy B.V. Solar tower plant
US20170002799A1 (en) * 2015-06-30 2017-01-05 Mitsubishi Hitachi Power Systems, Ltd. Solar Thermal Power Generation System and Solar Thermal Power Generation Method
US20170350375A1 (en) * 2014-12-31 2017-12-07 Shenzhen Enesoon Science &Technology Co., Ltd Modular tower-type solar thermal power generation system
CN107939623A (zh) * 2017-10-30 2018-04-20 中国科学院电工研究所 带熔融盐储热的太阳能水工质塔式热发电装置
CN108533467A (zh) * 2018-02-26 2018-09-14 华北电力大学 一种功率调控的槽式、塔式光热与光伏可储热发电系统
CN209943013U (zh) * 2019-04-16 2020-01-14 东方电气集团东方锅炉股份有限公司 一种塔式太阳能光热发电联合循环系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072115A (zh) * 2009-11-23 2011-05-25 张建城 槽式太阳能聚热发电装置
CN102146899A (zh) * 2011-01-30 2011-08-10 杭州锅炉集团股份有限公司 多塔式二元工质太阳能高温热发电系统
JP2013147996A (ja) * 2012-01-19 2013-08-01 Hitachi Ltd 太陽熱複合発電システム及び太陽熱複合発電方法
CN203394692U (zh) * 2013-08-28 2014-01-15 中国电力工程顾问集团华北电力设计院工程有限公司 采用两种不同熔盐的塔式太阳能发电系统
EP2963290A1 (en) * 2014-07-03 2016-01-06 NEM Energy B.V. Solar tower plant
US20170350375A1 (en) * 2014-12-31 2017-12-07 Shenzhen Enesoon Science &Technology Co., Ltd Modular tower-type solar thermal power generation system
US20170002799A1 (en) * 2015-06-30 2017-01-05 Mitsubishi Hitachi Power Systems, Ltd. Solar Thermal Power Generation System and Solar Thermal Power Generation Method
CN107939623A (zh) * 2017-10-30 2018-04-20 中国科学院电工研究所 带熔融盐储热的太阳能水工质塔式热发电装置
CN108533467A (zh) * 2018-02-26 2018-09-14 华北电力大学 一种功率调控的槽式、塔式光热与光伏可储热发电系统
CN209943013U (zh) * 2019-04-16 2020-01-14 东方电气集团东方锅炉股份有限公司 一种塔式太阳能光热发电联合循环系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
汪琦;张慧芬;俞红啸;汪育佑;: "熔盐塔式太阳能发电站与熔盐吸热器的研究", 化工装备技术, no. 03 *
白杨;曹培庆;赵勇纲;孙希强;: "太阳能光热与大型燃煤发电机组集成系统可行性研究", 煤炭工程, no. 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406125A (zh) * 2022-09-13 2022-11-29 东营市港城热力有限公司 一种太阳能光热熔盐储热系统及方法

Similar Documents

Publication Publication Date Title
CN108316980B (zh) 一种火电机组熔盐蓄热放热调峰系统
CN106089340B (zh) 槽式太阳能导热油与熔盐混合热发电系统
AU2008228211B2 (en) Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant
CN107100684A (zh) 一种热电厂利用锅炉旁路循环深度调峰改造系统
CN108625911A (zh) 一种提升供热机组电出力调节能力的热力系统
CN102822521A (zh) 具有间接蒸发的太阳能热发电站和运行这种太阳能热发电站的方法
CN103375369B (zh) 一种太阳能辅助燃煤电站发电系统
CN103912464A (zh) 太阳能光热与bigcc集成的联合发电系统
CN106523053B (zh) 太阳能热与热电厂耦合发电和热储能组合系统及实现方法
CN108561282A (zh) 一种槽式直接蒸汽与熔融盐联合热发电系统
CN110779009A (zh) 火力发电厂高温高压蒸汽加热熔盐储能系统
CN108507198B (zh) 一种光热发电高温固体蓄热系统
CN207830046U (zh) 槽式太阳能热发电系统
CN114909193B (zh) 一种基于熔盐储热的火电机组灵活运行系统
CN107401488A (zh) 基于全程带压运行的全天候太阳能发电方法和系统
CN107191342A (zh) 基于热机膨胀做功的全天候太阳能发电方法和系统
CN111456818A (zh) 火力发电厂双源加热熔盐储能系统
CN112502800A (zh) 火力发电厂灵活性大规模高参数供热系统
CN114592934B (zh) 基于高低参数组合熔盐实现火电机组改造的系统及方法
CN104179646A (zh) 一种光热地热结合互补再生能源电站系统
CN205823354U (zh) 槽式太阳能导热油与熔盐混合热发电系统
CN209943013U (zh) 一种塔式太阳能光热发电联合循环系统
CN213953702U (zh) 火力发电厂灵活性大规模高参数供热系统
CN110030169A (zh) 一种塔式太阳能光热发电联合循环系统及其运行方法
CN212318103U (zh) 火力发电厂双源加热熔盐储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination