CN103375369B - 一种太阳能辅助燃煤电站发电系统 - Google Patents

一种太阳能辅助燃煤电站发电系统 Download PDF

Info

Publication number
CN103375369B
CN103375369B CN201210129341.XA CN201210129341A CN103375369B CN 103375369 B CN103375369 B CN 103375369B CN 201210129341 A CN201210129341 A CN 201210129341A CN 103375369 B CN103375369 B CN 103375369B
Authority
CN
China
Prior art keywords
steam
solar energy
import
fired power
coal fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210129341.XA
Other languages
English (en)
Other versions
CN103375369A (zh
Inventor
邹江
王景鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Heji Investment Management Co., Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Priority to CN201210129341.XA priority Critical patent/CN103375369B/zh
Publication of CN103375369A publication Critical patent/CN103375369A/zh
Application granted granted Critical
Publication of CN103375369B publication Critical patent/CN103375369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

一种太阳能辅助燃煤电站发电系统,包括燃煤发电热力系统与太阳能集热与蒸汽发生系统,太阳能集热与蒸汽发生系统包括用于吸收太阳能的太阳能接收器,燃煤发电热力系统包括锅炉、汽轮机、发电机、凝汽器,所述汽轮机至少包括两个蒸汽进口:主蒸汽进口、次级蒸汽进口,所述太阳能集热与蒸汽发生系统吸收太阳能热量后产生的过热蒸汽可以选择性地通过蒸汽管路连接到所述汽轮机的主蒸汽进口,与从所述锅炉产生的过热蒸汽一起驱动所述汽轮机并发电。使太阳能集热系统产生的热量直接用于驱动汽轮机,从而提高太阳能实际利用的温度,提高太阳能辅助发电的转换效率。

Description

一种太阳能辅助燃煤电站发电系统
技术领域
本发明涉及太阳能发电技术领域,具体是一种针对太阳能与煤炭互补发电的热力系统,尤其是以煤炭为主、太阳能为补充的大型太阳能辅助燃煤电站发电系统。
背景技术
中国能源结构以煤炭为主,大部份电力通过燃煤发电提供,燃煤发电占比超过70%,因此借助燃煤电站来利用太阳能发电具有广阔的应用基础。
图7所示为一种燃煤电站的热力系统的连接结构示意图,该系统由锅炉1、汽轮机2、发电机3、凝汽器4、多级低压加热器6、除氧器8、凝结水泵5、给水泵9、多级高压加热器7、再热蒸汽管路11、主蒸汽管路10等部件组成,锅炉1经煤炭燃烧产生高温主蒸汽与再热蒸汽分别通过主蒸汽管路10、再热蒸汽管路11进入并驱动汽轮机2,从汽轮机出来的乏汽在凝汽器4冷凝,接着在凝结水泵5的驱动下流过各级加热器进行预热,加热器的热源来自从汽轮机抽出的蒸汽,该部分的蒸汽流量相对蒸汽总流量来说较小,一般占5%-20%,这样的热力循环系统对于燃煤电站来说发电效率相对较高。
太阳能与煤炭互补发电相比太阳能单独发电,具有以下几个特点:
首先,由于互补发电不必单独为太阳能系统配备汽轮机、发电机、并网设备等主机设备,可以大幅减少投资额,目前各种太阳能发电技术成本普遍处于高位,寻求相对低成本的技术方案具有显著的市场优势;
其次,太阳能发电的输出会随着输入条件即太阳辐照的变化而波动,这非常不利于电的并网或使用,通常的解决方法采取额外增添设备,如补燃或储热系统,来调整热力系统的输入,而这会增大大量投资。而在大型燃煤电站的基础上进行互补发电可以在不增加投资额的情况下,有效解决太阳能发电的不稳定性问题。
另外,在大型燃煤电站的基础上进行互补发电可以利用高效率的大机组,实现较高的太阳能发电效率。因此,互补发电被认为是相对最为经济的太阳能光热发电方式。
太阳能与煤炭互补发电有多种技术方案,在以煤炭为主太阳能为补充的系统中,其热力系统一般都是在常规燃煤电站热力系统的基础上进行适当改动。做功工质一般为水,它在热力系统中吸热过程可分为预热、汽化、过热3个阶段,太阳能热量利用在不同阶段中其热经济性也就不同。如有的方案中是把太阳能集热系统产生的热量作为加热器的热源来利用,减少从汽轮机汽缸中抽出的蒸汽量,即太阳能热量应用在做功工质的预热阶段。而有的是把太阳能集热系统产生的热量用在做功工质的汽化段,或者混合用在做功工质的预热段和汽化段。太阳能实际利用温度决定于太阳能集热系统与燃煤电站的接入特征点,对于典型的亚临界燃煤电站,温度最高一级的加热器里的做功工作工质的出口温度一般不超过300℃,锅炉汽化段的特征温度(相应压力下的饱和温度)也不超过400℃,这意味着太阳能实际利用温度肯定不会超过400℃。根据热力学基本原理,利用温度越高,其热到电的转换效率也相对越高,能量利用率也相应越高,因此现有技术的缺点主要可归结为太阳能实际利用的温度较低,从而使转换效率相对不高。
因此,如何提高太阳能辅助发电的效率,在不增加煤耗的条件下增加燃煤电站的发电量,或者在保证发电量的条件下进一步减少煤炭的消耗并减少温室气体排放,是本领域技术人员所要解决的技术问题。
发明内容
本发明要解决的技术问题是提供一种太阳能辅助燃煤电站发电系统,使太阳能集热系统产生的热量通过管道可直接连接到汽轮机的主蒸汽进口,使太阳能集热系统产生的热量直接用于驱动汽轮机,从而提高太阳能实际利用的温度,提高太阳能辅助发电的转换效率。为此,本发明采用以下技术方案:
一种太阳能辅助燃煤电站发电系统,包括燃煤发电热力系统与太阳能集热与蒸汽发生系统,太阳能集热与蒸汽发生系统包括用于吸收太阳能的太阳能接收器,燃煤发电热力系统包括锅炉、汽轮机、发电机、凝汽器,所述汽轮机至少包括两个蒸汽进口:主蒸汽进口、次级蒸汽进口,所述太阳能集热与蒸汽发生系统吸收太阳能热量后产生的过热蒸汽可以选择性地通过蒸汽管路连接到所述汽轮机的主蒸汽进口,与从所述锅炉产生的过热蒸汽一起驱动所述汽轮机发电。
可选地,所述燃煤发电热力系统还包括凝结水泵、多级低压加热器、除氧器、多级高压加热器、给水泵,所述燃煤发电热力系统的做功工质从所述凝汽器出来通过管路连接所述凝结水泵,通过所述凝结水泵后通过管路连接所述多级低压加热器,然后再通过管路连接到所述除氧器除氧,然后再通过管路连接到多级高压加热器;在多级高压加热器之前,做功工质分成两路:一路通过管路连接流向多级高压加热器进行再次升温、升压,经多级高压加热器预热后进入锅炉,加热后成为高压高温的蒸汽,高压高温的蒸汽通过主蒸汽管路连接到汽轮机的主蒸汽进口;而另一路则通过管路连接到所述太阳能集热与蒸汽发生系统,通过所述太阳能接收器吸收太阳能,变成高压高温的蒸汽后通过控制阀及管路可选择地连接到汽轮机的主蒸汽进口。
可选地,所述燃煤发电热力系统还包括凝结水泵、多级低压加热器、除氧器、多级高压加热器、给水泵,所述燃煤发电热力系统的做功工质从所述凝汽器出来通过管路连接所述凝结水泵,通过所述凝结水泵后通过管路连接所述多级低压加热器,然后再通过管路连接到所述除氧器除氧,然后再通过管路连接到多级高压加热器;在经过多级高压加热器加热后,做功工质分成两路:一路通过管路连接流向锅炉,加热后成为高压高温的蒸汽,高压高温的蒸汽通过主蒸汽管路通到汽轮机的主蒸汽进口;而另一路则通过管路连接到所述太阳能集热与蒸汽发生系统,通过所述太阳能接收器吸收太阳能,变成高压高温的蒸汽后通过控制阀及管路可选择地连接到汽轮机的主蒸汽进口。
进一步地,所述太阳能集热与蒸汽发生系统加热系统是通过将做功工质连接到所述太阳能接收器,在太阳能接收器经加热后变成高温高压的蒸汽后,并通过控制阀及管路选择性地连接到汽轮机的主蒸汽进口。
可选地,所述太阳能集热与蒸汽发生系统包括太阳能接收器、泵、换热器,所述换热器包括传热介质流道与第二流体流道;所述太阳能接收器、泵、换热器的传热介质流道通过管路连接构成的子系统为一闭式流体循环系统,从所述太阳能接收器接收的热量通过传热介质带到所述换热器,在换热器传热介质流道内的传热介质与第二流体流道的做功工质进行热交换;所述换热器的第二流体流道的进口连接所述燃煤发电热力系统过来的做功工质出口,所述换热器的第二流体流道的出口通过控制阀及管路选择性地连接到汽轮机的主蒸汽进口。
优选地,所述换热器的第二流体流道与换热器的传热介质流道在换热器的流动方向相反,第二流体流道的出口靠近传热介质流道的进口设置,而第二流体流道的进口靠近传热介质流道的出口设置。
优选地,所述太阳能集热与蒸汽发生系统加热系统的传热介质为熔融盐或空气;
所述燃煤发电热力系统的做功工质为水,所述燃煤发电热力系统提供的热源超过总热源的70%,而所述太阳能集热与蒸汽发生系统提供辅助或补充热源。
优选地,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来连接到燃煤发电热力系统的蒸汽管路中还设置有三通切换阀,三通切换阀的进口连接到太阳能集热与蒸汽发生系统过来的蒸汽管路,其中第一出口连接到汽轮机的主蒸汽进口,而另外一个第二出口则连接到汽轮机上的第二主蒸汽进口。
可选地,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来的蒸汽管路可选择性地连接到燃煤发电热力系统的主蒸汽进口或第二主蒸汽进口,太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的主蒸汽进口之间的管路中及太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的第二主蒸汽进口之间的管路中分别设置有控制阀控制该管路的通断。
可选地,所述太阳能集热与蒸汽发生系统的太阳能接收器为采用具有高倍聚光以及双轴向日跟踪系统特征的高温集热系统,太阳能集热与蒸汽发生系统输出的过热蒸汽与从所述锅炉中出来的主过热蒸汽的参数相当:太阳能集热与蒸汽发生系统输出的过热蒸汽温度范围在500 -620℃,压力比主过热蒸汽的压力高2-8%。
该系统的基本原理是,在燃煤发电热力系统的基础上增设太阳能集热与蒸汽发生系统,太阳能集热与蒸汽发生系统收集太阳能并直接提供给电站的汽轮机做功,从而可以减少燃煤发电热力系统的耗能。利用太阳能可以在不增加煤耗的条件下增加燃煤电站的发电量,或者在保证发电量的条件下减少煤炭的消耗并减少温室气体排放。根据热力学原理,在给定的环境条件下,热量的最大可能的转换能力,即参数“热量火用”,它与温度有关,热的温度越高,其品质越高,热转换为功的效率越可能高。
,其中E为“火用”,表征热量的最大可用功;Q为热量,在本文中,它表示为给做功工质加热的太阳能;To为环境温度;T为热量的利用温度,T>To。可以看出,热量的利用温度T越大,热量的最大可用功E越大。
把太阳能采集的热量主要应用在做功工质的汽化与过热这两个高温的吸热阶段,假设汽化平均温度为T1,过热阶段平均温度为T2,则这两个阶段吸收的太阳能的最大可用功可分别用E1、E2来表征:
而相应的,对于用于预热做功工质的太阳能,假设平均预热温度为T3,则这个阶段吸收的太阳能的最大可用功可分别用E3表征:
由于预热温度T3总是要低于T1、T2,因此E1、E2要高于E3,也就是说,从热功转换的角度,把太阳能采集的热量主要应用在做功工质的汽化与过热这两个高温的吸热阶段要比应用在预热阶段具有更大的做功发电潜力。
举例,在环境温度为25摄氏度情况下,太阳能预热段做功工质平均温度为150摄氏度,汽化段平均温度为300摄氏度,过热段平均温度为420摄氏度,则预热段吸收的太阳能潜在最大的做功效率E/Q=1- (25+273)/(150+273) = 29.6%,汽化段的效率为48.0%,过热段为57.0%。
附图说明
图1是本发明第一种具体实施方式的连接结构示意图;
图2是本发明第二种具体实施方式的连接结构示意图;
图3是本发明第三种具体实施方式的连接结构示意图;
图4是本发明第四种具体实施方式的连接结构示意图;
图5是本发明第五种具体实施方式的连接结构示意图;
图6是本发明第五种具体实施方式的连接结构示意图;
图7是一种现有的燃煤电站的热力系统的连接结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
本发明的太阳能辅助燃煤电站发电系统的第一种实施方式如图1所示,图1是本发明第一种具体实施方式的连接结构示意图。太阳能辅助燃煤电站发电系统包括燃煤发电热力系统19与太阳能集热与蒸汽发生系统18,太阳能集热与蒸汽发生系统18利用太阳能集热场采集到的太阳能加热从燃煤发电热力系统19过来的过冷水后为汽轮机2提供蒸汽,太阳能集热与蒸汽发生系统18包括太阳能接收器15、泵14、换热器13,连接太阳能接收器15、泵14、换热器13的传热介质流道131的传热介质管路16,太阳能接收器15、泵14、换热器13的传热介质流道131、传热介质管路16所构成的子系统为一闭式流体循环系统,其传热介质可以是熔融盐、或空气,回路配置有泵14或风机来维持流体传热介质的循环。燃煤发电热力系统19的做功工质可以为水,水的吸热过程分为预热、汽化、过热等三个阶段,煤炭为水吸热提供主要热源,一般超过总热源的70%,太阳能提供辅助或补充热源。太阳能集热与蒸汽发生系统18通过过冷水管路12从燃煤发电热力系统19引来过冷水,过冷水经过换热器13的第二流体流道132与换热器13的传热介质流道131中的介质进行热交换,经过换热器13的第二流体流道132的过冷水经过预热、汽化、过热等三个阶段,变成过热蒸汽,供给电站。换热器13的第二流体流道132与换热器13的传热介质流道131在换热器13的流动方向相反,第二流体流道132的出口与换热器13的传热介质流道131的进口靠近设置,而第二流体流道132的进口与换热器13的传热介质流道131的出口靠近设置,这样可以提高这两种介质在换热器内的热交换效率,保证第二流体流道132的出口蒸汽的温度与压力。
燃煤发电热力系统19包括锅炉1、汽轮机2、发电机3、凝汽器4、凝结水泵5、多级低压加热器6、除氧器8、多级高压加热器7、给水泵9,汽轮机2包括两个进口:主蒸汽进口21、次级蒸汽进口23;该系统流程为:给水从凝汽器4在凝结水泵5的作用下流向多级低压加热器6进行初步升温、升压后,进入除氧器8除氧,经过给水泵9后过冷水分成两路,一路流向多级高压加热器7进行再次升温、升压,经多级高压加热器7预热后进入锅炉1,加热后成为高压高温的蒸汽,高压高温的蒸汽通过主蒸汽管路10通到汽轮机2的主蒸汽进口21,进入汽轮机2做功,驱动发电机3发电;另外一路通向太阳能集热与蒸汽发生系统18的换热器13的第二流体流道132。从汽轮机2中做完功的蒸汽排往凝汽器4,给水从凝汽器4在凝结水泵5的作用下流向多级低压加热器6进行初步升温、升压,从而完成一个循环。而通向太阳能集热与蒸汽发生系统18的第二流体流道132的水,经与换热器13的传热介质流道131的介质进行热交换,经历预热、汽化、过热,并达到与主蒸汽管路10中的蒸汽相匹配的状态后,通过控制阀20与锅炉1出来的高压高温的蒸汽汇合后通过主蒸汽管路10通到汽轮机2的主蒸汽进口21,两路相匹配的高温蒸汽汇合后流向汽轮机带动其做功,完成一次做功循环。如果太阳能比较充足,就可以通过控制阀20控制太阳能集热与蒸汽发生系统18产生的蒸汽的量多一些,从而可减少通过锅炉1产生的高温蒸汽的量;而如果太阳能不太充足,则相应减小太阳能集热与蒸汽发生系统18产生的蒸汽的量,而如果太阳能集热与蒸汽发生系统18产生的蒸汽达不到主蒸汽进口的蒸汽的温度与压力要求的话,则通过控制阀20关闭这一路蒸汽,而只靠锅炉1出来的高压高温的蒸汽进行发电。
太阳能集热与蒸汽发生系统18的高温太阳能集热系统可以采用塔式技术、或者碟式技术等具有高倍聚光比(一般超过500)、双轴向日跟踪特征的集热技术,这些技术用玻璃镜面通过反射聚光的方式把近似平行的太阳直射光汇聚到太阳能接收器15,光转化成热量,并加热流过太阳能接收器15的传热介质。另外,太阳能集热与蒸汽发生系统18对做功工质加热的方式可以是直接加热、或者间接加热的方式;而所谓间接加热是指,太阳能集热与蒸汽发生系统18内有一封闭的流体回路,里面的传热介质可以是高压空气、或者是熔融盐,它流过太阳能接收器15时被加热升温,它通过一换热器13(组)把热量传递给从发电系统引过来的水,并把水预热、汽化并过热,即如图1所示的一种实施方式;所谓直接加热是指,从发电系统引出的过冷水直接流过太阳能集热与蒸汽发生系统18的太阳能接收器15,从中接收热量经历预热、汽化、过热过程,如图2所示的一种实施方式,图2是本发明第二种具体实施方式的连接结构示意图。
如图2所示,该实施方式与上面所介绍的第一实施方式的主要区别是太阳能集热与蒸汽发生系统18a的布置,太阳能集热与蒸汽发生系统18a中没有设置换热器,而是利用太阳能接收器15a直接产生过热蒸汽,即做功工质直接从太阳能接收器接收到热量并经历预热、汽化、过热等阶段变成过热蒸汽,太阳能接收器15a产生的过热蒸汽通过控制阀20接入到主蒸汽管路10而供给汽轮机2。相应地,从燃煤发电热力系统19过来的过冷水接入太阳能接收器15a中,且在太阳能接收器15a中设置有使过冷水预热、蒸发、过热的装置;而该实施方式的其他流程也基本相同,区别在于太阳能集热与蒸汽发生系统18a中没有设置换热器。
这样,本实施方式中使高温太阳能集热系统与燃煤电站相结合,采集太阳能生产高品质的热能,并把它应用在做功工质的预热、汽化与过热阶段,由太阳能集热与蒸汽发生系统生成温度范围在500℃-620℃,压力范围在8 MPa-24 MPa的一路过热蒸汽并连接通到汽轮机2的主蒸汽进口21,太阳能集热与蒸汽发生系统生成的典型温度为540℃,这样比现有的系统中使用的太阳能用于预热等系统的利用温度要高出许多,这样就实现了很高的太阳能利用温度,从而提高了应用效率;同时,太阳能集热与蒸汽发生系统18从燃煤发电热力系统19引入的过冷水温度也相应较高,一般超过150℃;另外,太阳能集热与蒸汽发生系统18引入的过冷水可来自燃煤发电热力系统19的给水泵9出口,或者多级高压加热器7出口,或者多级高压加热器7的几个加热器之间均可,具体可根据系统工况选择。太阳能集热与蒸汽发生系统18产生的过热蒸汽与燃煤发电热力系统19的主过热蒸汽参数相匹配,也就是说这两路蒸汽的温度、压力相近。
另外上面的实施方式中,多级低压加热器与多级高压加热器可以组合在一起,而并不是一定要分开设置;给水泵的设置位置也可以作些调整如分别设置在分开之后的管路中也同样可以实现发明目的;还有控制阀20可以经单身控制阀替代,另外也可以设置管路的其他位置;另外太阳能集热与蒸汽发生系统18过来的蒸汽管路17也并不是一定要与从锅炉1过来的蒸汽汇合一起连接到主蒸汽管路10;而是可以直接连接到汽轮机的主蒸汽进口21。
下面介绍本发明的第三种具体实施方式,如图3所示,图3是本发明第三种具体实施方式的连接结构示意图。该实施方式与上面所介绍的第一实施方式的主要区别是汽轮机上还增设有第二主蒸汽进口22,从太阳能集热与蒸汽发生系统18过来的蒸汽先通过控制阀20,然后在该蒸汽管路上还增设有三通切换阀30,三通切换阀30的进口连接到太阳能集热与蒸汽发生系统18过来的蒸汽管路17,其中第一出口与从锅炉1过来的蒸汽汇合一起连接到主蒸汽管路10,而另外一个第二出口则连接到汽轮机上的第二主蒸汽进口22。当太阳能集热与蒸汽发生系统18产生的蒸汽与锅炉1产生的蒸汽相匹配时,则可以通过控制三通切换阀30,使三通切换阀30连接到主蒸汽管路10的第一出口导通,太阳能集热与蒸汽发生系统18产生的蒸汽与锅炉1相汇合一起进入汽轮机2的主蒸汽进口21,驱动发电;而当太阳能集热与蒸汽发生系统18产生的蒸汽温度、压力略低于锅炉1产生的蒸汽时,则通过控制三通切换阀30,使三通切换阀30连接到第二主蒸汽进口10的第二出口导通,第一出口则关闭,太阳能集热与蒸汽发生系统18产生的蒸汽进入汽轮机的第二主蒸汽进口22,驱动发电,这样可以避免两种蒸汽之间因温度、压力波动而产生的扰动,并且在太阳能集热与蒸汽发生系统18产生的蒸汽温度、压力稍低时也同样能驱动汽轮机进行发电,从而提高整机效率。而在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17中的蒸汽温度相对较低而不宜驱动汽轮机发电时,则将三通切换阀30的两个出口全部关闭。
下面介绍本发明的第四种具体实施方式,如图4所示,图4是本发明第四种具体实施方式的连接结构示意图。该实施方式与上面所介绍的第三实施方式的主要区别是通向太阳能集热与蒸汽发生系统18的给水是从燃煤发电热力系统19的锅炉给水前引出的,即是通过多级高压加热器7加热的给水,即本实施方式中,太阳能集热与蒸汽发生系统18与锅炉1并联设置。间接加热的太阳能集热与蒸汽发生系统1辅助燃煤发电热力系统19发电,这样,提高了供给太阳能集热与蒸汽发生系统18的给水的温度,也可以相应地增加太阳能集热与蒸汽发生系统18出来的蒸汽的量,从而提高高品位蒸汽的量,提高整体的发电效率。一般地,燃煤发电热力系统19的主蒸汽管路10内蒸汽的参数为:温度540℃,压力18.0 MPa。该系统中太阳能集热与蒸汽发生系统18可以采用塔式太阳能集热技术,即利用一定规模的定日镜与接收器来采集太阳能,根据加热量需要设定规模,该子系统中有一闭式流体循环,传热介质是是熔融盐,回路配置有泵14来维持流体传热介质的循环。太阳能接收系统15采集的热量把熔融盐加热至550℃-600℃,它通过换热器13把热量传递给做功工质;换热器类型可以是管壳式换热器、套管式换热器、或者板式换热器,一般采用管壳式换热器,因为它换热性能与可靠性都相对较好,且维护相对方便容易。做功工质的水是从燃煤发电热力系统19的多级高压加热器7出口引出,该处的温度约为200℃-250℃,水在换热器13里经历加热、汽化、过热等三个阶段,产生一路主过热蒸汽,蒸汽温度540℃±10℃,压力18.1-18.2 MPa;相应地熔融盐从换热器13出来的温度超过300℃。太阳能集热与蒸汽发生系统18加热生成的蒸汽的压力可以比锅炉1生成的过热蒸汽高约2-8%,更加优选地太阳能集热与蒸汽发生系统18加热生成的蒸汽的压力控制在比锅炉1生成的过热蒸汽高3-6%的范围,同样地,太阳能集热与蒸汽发生系统18出来的主蒸汽管路与燃煤发电热力系统19的主蒸汽管路接口处设有控制阀20、安全阀等控制部件,以防止主蒸汽管路10里的蒸汽倒流入太阳能集热与蒸汽发生系统18,及当太阳能集热与蒸汽发生系统18无法提供足够能量、无法使该路蒸汽与主蒸汽管路10中的高温蒸汽相匹配时,防止因太阳能集热与蒸汽发生系统18的主蒸汽管路17中的不匹配蒸汽使主蒸汽管路10中的蒸汽降低温度。另外,通过在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17设置三通切换阀30,可以在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17中的蒸汽略低于燃煤发电热力系统19的主蒸汽温度时,可以将太阳能集热与蒸汽发生系统18出来的主蒸汽切换到汽轮机的第二主蒸汽进口22,以驱动发电。
下面介绍本发明的第五种具体实施方式,如图5所示,图5是本发明第五种具体实施方式的连接结构示意图。该实施方式是在上面介绍的第二种具体实施方式上的改进,与上面所介绍的第二实施方式的主要区别是在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17设置了三通切换阀30,以控制太阳能集热与蒸汽发生系统18出来的主蒸汽管路17过来的蒸汽接入的管路,这样可以在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17中的蒸汽略低于燃煤发电热力系统19的主蒸汽温度时,可以将太阳能集热与蒸汽发生系统18出来的主蒸汽切换到汽轮机的第二主蒸汽进口22,以驱动发电。而具体的可以参照上面所介绍的其他实施方式进行组合,这里不再详细介绍。
下面介绍本发明的第六种具体实施方式,如图6所示,图6是本发明第六种具体实施方式的连接结构示意图。该实施方式是在上面介绍的第五种具体实施方式的主要区别是本实施方式中采用了两个自动控制阀:第一自动控制阀31、第二自动控制阀32来分别控制从太阳能集热与蒸汽发生系统18过来的蒸汽管路,太阳能集热与蒸汽发生系统18过来的蒸汽管路可选择性地连接到燃煤发电热力系统的主蒸汽进口21或第二主蒸汽进口22,太阳能集热与蒸汽发生系统18的蒸汽管路与燃煤发电热力系统19的主蒸汽进口21之间的管路中设置了第一自动控制阀31控制该管路的通断,太阳能集热与蒸汽发生系统18的蒸汽管路与燃煤发电热力系统19的第二主蒸汽进口22之间的管路中设置有第二自动控制阀32控制该管路的通断,这两路管路可根据太阳能集热与蒸汽发生系统18所产生的蒸汽的情况进行控制,如选择一路导通或全部关闭:在太阳能集热与蒸汽发生系统18出来的主蒸汽达到燃煤发电热力系统19的主蒸汽管路中的蒸汽温度时,第一自动控制阀31导通,太阳能集热与蒸汽发生系统18出来的主蒸汽连接到汽轮机2的主蒸汽进口21,而在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17中的蒸汽略低于燃煤发电热力系统19的主蒸汽温度时,可以将太阳能集热与蒸汽发生系统18出来的主蒸汽切换到汽轮机2的第二主蒸汽进口22,以驱动发电。而在太阳能集热与蒸汽发生系统18出来的主蒸汽管路17中的蒸汽相对较低时,则将这两个自动控制阀全部关闭。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,如将上面所描述的实施方式进行组合、或替代等等。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (15)

1.一种太阳能辅助燃煤电站发电系统,包括燃煤发电热力系统与太阳能集热与蒸汽发生系统,太阳能集热与蒸汽发生系统包括用于吸收太阳能的太阳能接收器,燃煤发电热力系统包括锅炉、汽轮机、发电机、凝汽器,所述汽轮机至少包括两个蒸汽进口:主蒸汽进口、次级蒸汽进口,所述太阳能集热与蒸汽发生系统吸收太阳能热量后产生的过热蒸汽可以选择性地通过蒸汽管路连接到所述汽轮机的主蒸汽进口,与从所述锅炉产生的过热蒸汽一起驱动所述汽轮机发电。
2.根据权利要求1所述的太阳能辅助燃煤电站发电系统,其特征在于,所述燃煤发电热力系统还包括凝结水泵、多级低压加热器、除氧器、多级高压加热器、给水泵,所述燃煤发电热力系统的做功工质从所述凝汽器出来通过管路连接所述凝结水泵,通过所述凝结水泵后通过管路连接所述多级低压加热器,然后再通过管路连接到所述除氧器除氧,然后再通过管路连接到多级高压加热器;在多级高压加热器之前,做功工质分成两路:一路通过管路连接流向多级高压加热器进行再次升温、升压,经多级高压加热器预热后进入锅炉,加热后成为高压高温的蒸汽,高压高温的蒸汽通过主蒸汽管路连接到汽轮机的主蒸汽进口;而另一路则通过管路连接到所述太阳能集热与蒸汽发生系统,通过所述太阳能接收器吸收太阳能,变成高压高温的蒸汽后通过控制阀及管路可选择地连接到汽轮机的主蒸汽进口。
3.根据权利要求1所述的太阳能辅助燃煤电站发电系统,其特征在于,所述燃煤发电热力系统还包括凝结水泵、多级低压加热器、除氧器、多级高压加热器、给水泵,所述燃煤发电热力系统的做功工质从所述凝汽器出来通过管路连接所述凝结水泵,通过所述凝结水泵后通过管路连接所述多级低压加热器,然后再通过管路连接到所述除氧器除氧,然后再通过管路连接到多级高压加热器;在经过多级高压加热器加热后,做功工质分成两路:一路通过管路连接流向锅炉,加热后成为高压高温的蒸汽,高压高温的蒸汽通过主蒸汽管路通到汽轮机的主蒸汽进口;而另一路则通过管路连接到所述太阳能集热与蒸汽发生系统,通过所述太阳能接收器吸收太阳能,变成高压高温的蒸汽后通过控制阀及管路可选择地连接到汽轮机的主蒸汽进口。
4.根据权利要求2或3所述的太阳能辅助燃煤电站发电系统,其特征在 于,所述太阳能集热与蒸汽发生系统加热系统是通过将做功工质连接到所述太阳能接收器,在太阳能接收器经加热后变成高温高压的蒸汽后,并通过控制阀及管路选择性地连接到汽轮机的主蒸汽进口。
5.根据权利要求2或3所述的太阳能辅助燃煤电站发电系统,其特征在于,所述太阳能集热与蒸汽发生系统包括太阳能接收器、泵、换热器,所述换热器包括传热介质流道与第二流体流道;所述太阳能接收器、泵、换热器的传热介质流道通过管路连接构成的子系统为一闭式流体循环系统,从所述太阳能接收器接收的热量通过传热介质带到所述换热器,在换热器传热介质流道内的传热介质与第二流体流道的做功工质进行热交换;所述换热器的第二流体流道的进口连接所述燃煤发电热力系统过来的做功工质出口,所述换热器的第二流体流道的出口通过控制阀及管路选择性地连接到汽轮机的主蒸汽进口。
6.根据权利要求5所述的太阳能辅助燃煤电站发电系统,其特征在于,所述换热器的第二流体流道与换热器的传热介质流道在换热器的流动方向相反,第二流体流道的出口靠近传热介质流道的进口设置,而第二流体流道的进口靠近传热介质流道的出口设置。
7.根据权利要求6所述的太阳能辅助燃煤电站发电系统,其特征在于,所述太阳能集热与蒸汽发生系统加热系统的传热介质为熔融盐或空气;
所述燃煤发电热力系统的做功工质为水,所述燃煤发电热力系统提供的热源超过总热源的70%,而所述太阳能集热与蒸汽发生系统提供辅助或补充热源。
8.根据权利要求1-3、6-7任一项所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来连接到燃煤发电热力系统的蒸汽管路中还设置有三通切换阀,三通切换阀的进口连接到太阳能集热与蒸汽发生系统过来的蒸汽管路,其中第一出口连接到汽轮机的主蒸汽进口,而另外一个第二出口则连接到汽轮机上的第二主蒸汽进口。
9.根据权利要求1-3、6-7任一项所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来的蒸汽管路可选择性地连接到燃煤发电热力系统的主蒸汽进口或第二主蒸汽进口,太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力 系统的主蒸汽进口之间的管路中及太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的第二主蒸汽进口之间的管路中分别设置有控制阀控制该管路的通断。
10.根据权利要求8所述的太阳能辅助燃煤电站发电系统,其特征在于,所述太阳能集热与蒸汽发生系统的太阳能接收器为采用具有高倍聚光以及双轴向日跟踪系统特征的高温集热系统,太阳能集热与蒸汽发生系统输出的过热蒸汽与从所述锅炉中出来的主过热蒸汽的参数相当:太阳能集热与蒸汽发生系统输出的过热蒸汽温度范围在500-620℃,压力比主过热蒸汽的压力高2-8%。
11.根据权利要求4所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来连接到燃煤发电热力系统的蒸汽管路中还设置有三通切换阀,三通切换阀的进口连接到太阳能集热与蒸汽发生系统过来的蒸汽管路,其中第一出口连接到汽轮机的主蒸汽进口,而另外一个第二出口则连接到汽轮机上的第二主蒸汽进口。
12.根据权利要求5所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来连接到燃煤发电热力系统的蒸汽管路中还设置有三通切换阀,三通切换阀的进口连接到太阳能集热与蒸汽发生系统过来的蒸汽管路,其中第一出口连接到汽轮机的主蒸汽进口,而另外一个第二出口则连接到汽轮机上的第二主蒸汽进口。
13.根据权利要求4所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来的蒸汽管路可选择性地连接到燃煤发电热力系统的主蒸汽进口或第二主蒸汽进口,太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的主蒸汽进口之间的管路中及太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的第二主蒸汽进口之间的管路中分别设置有控制阀控制该管路的通断。
14.根据权利要求5所述的太阳能辅助燃煤电站发电系统,其特征在于,所述汽轮机上还设置有第二主蒸汽进口,从所述太阳能集热与蒸汽发生系统过来的蒸汽管路可选择性地连接到燃煤发电热力系统的主蒸汽进口或第二主蒸 汽进口,太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的主蒸汽进口之间的管路中及太阳能集热与蒸汽发生系统的蒸汽管路与燃煤发电热力系统的第二主蒸汽进口之间的管路中分别设置有控制阀控制该管路的通断。
15.根据权利要求9所述的太阳能辅助燃煤电站发电系统,其特征在于,所述太阳能集热与蒸汽发生系统的太阳能接收器为采用具有高倍聚光以及双轴向日跟踪系统特征的高温集热系统,太阳能集热与蒸汽发生系统输出的过热蒸汽与从所述锅炉中出来的主过热蒸汽的参数相当:太阳能集热与蒸汽发生系统输出的过热蒸汽温度范围在500-620℃,压力比主过热蒸汽的压力高2-8%。
CN201210129341.XA 2012-04-28 2012-04-28 一种太阳能辅助燃煤电站发电系统 Active CN103375369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210129341.XA CN103375369B (zh) 2012-04-28 2012-04-28 一种太阳能辅助燃煤电站发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210129341.XA CN103375369B (zh) 2012-04-28 2012-04-28 一种太阳能辅助燃煤电站发电系统

Publications (2)

Publication Number Publication Date
CN103375369A CN103375369A (zh) 2013-10-30
CN103375369B true CN103375369B (zh) 2017-02-08

Family

ID=49461031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210129341.XA Active CN103375369B (zh) 2012-04-28 2012-04-28 一种太阳能辅助燃煤电站发电系统

Country Status (1)

Country Link
CN (1) CN103375369B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332865B (zh) * 2014-08-06 2019-01-01 烟台龙源电力技术股份有限公司 塔式太阳能与燃煤锅炉光热联产系统
CN105863977B (zh) * 2016-04-05 2018-11-09 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环发电系统及方法
CN105736267A (zh) * 2016-04-05 2016-07-06 西安热工研究院有限公司 一种互补型超临界二氧化碳布雷顿循环发电系统及方法
CN105840442B (zh) * 2016-05-12 2018-11-09 西安热工研究院有限公司 互补型的超临界二氧化碳和有机朗肯联合发电系统及方法
CN106100539A (zh) * 2016-07-19 2016-11-09 卢敏 一种塔式太阳能辅助燃煤混合发电系统
CN110886631A (zh) * 2018-09-07 2020-03-17 上海明华电力技术工程有限公司 一种光热嵌入式火电调峰系统和方法
CN109958593B (zh) * 2019-03-11 2020-06-02 西安交通大学 一种太阳能燃煤耦合灵活发电系统及运行方法
CN113931709B (zh) * 2021-09-26 2024-04-09 国核电力规划设计研究院有限公司 一种太阳能辅助压水堆核电站二回路发电系统及方法
CN114961908B (zh) * 2022-06-07 2023-05-05 华能国际电力股份有限公司 一种太阳能燃煤耦合发电系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201448131U (zh) * 2009-05-22 2010-05-05 西安交通大学 考虑余热利用的太阳能热力发电装置
CN101846044A (zh) * 2010-04-16 2010-09-29 华中科技大学 应用于火力发电机组的太阳能集热储能回热加热系统
CN101968041A (zh) * 2010-09-29 2011-02-09 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608490T3 (es) * 2007-09-11 2017-04-11 Siemens Concentrated Solar Power Ltd. Centrales termoeléctricas solares

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201448131U (zh) * 2009-05-22 2010-05-05 西安交通大学 考虑余热利用的太阳能热力发电装置
CN101846044A (zh) * 2010-04-16 2010-09-29 华中科技大学 应用于火力发电机组的太阳能集热储能回热加热系统
CN101968041A (zh) * 2010-09-29 2011-02-09 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统

Also Published As

Publication number Publication date
CN103375369A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
CN103375369B (zh) 一种太阳能辅助燃煤电站发电系统
CN103511208B (zh) 一种可在全参数范围内变负荷运行的熔盐蒸汽发生系统
AU2008299321B2 (en) Solar thermal power plants
WO2015154585A1 (zh) 一种太阳能与生物质能联合发电的优化集成系统
CN104963776B (zh) 一种太阳能热互补联合循环发电系统
CN101270675A (zh) 太阳能和燃煤机组混合的热发电系统
CN102828925B (zh) 一种二元工质塔式太阳能发电系统
CN107989667A (zh) 集成超临界co2循环的燃煤二次再热汽轮发电机组
CN103939306B (zh) 一种两回路式太阳能热发电系统
CN108533467A (zh) 一种功率调控的槽式、塔式光热与光伏可储热发电系统
CN207944993U (zh) 一种集成超临界co2循环的燃煤二次再热汽轮发电机组
CN109296511A (zh) 一种超临界二氧化碳布雷顿循环塔式太阳能热发电系统
CN108507198B (zh) 一种光热发电高温固体蓄热系统
CN108561282A (zh) 一种槽式直接蒸汽与熔融盐联合热发电系统
CN104179646A (zh) 一种光热地热结合互补再生能源电站系统
CN107401488A (zh) 基于全程带压运行的全天候太阳能发电方法和系统
CN111456818A (zh) 火力发电厂双源加热熔盐储能系统
CN112502800A (zh) 火力发电厂灵活性大规模高参数供热系统
CN105649901B (zh) 一种基于吸收式热泵的太阳能聚光集热发电装置
CN202811236U (zh) 一种用于塔式太阳能的双工质发电系统
CN202349992U (zh) 吸收式热泵回收电站排汽余热并加热锅炉给水的系统
CN209540991U (zh) 一种供热机组热电解耦系统
CN207701181U (zh) 一种热电解耦系统
CN212318103U (zh) 火力发电厂双源加热熔盐储能系统
CN113623032B (zh) 一种燃煤锅炉烟气储热发电一体化系统及运行方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171220

Address after: 312500 Xinchang County, Zhejiang Province under the streets of Liquan Village

Patentee after: Sanhua Holding Group Co., Ltd.

Address before: 310018 289-2, Hangzhou Economic Development Zone, Zhejiang, No. 12

Patentee before: Hangzhou Sanhua Institute Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200515

Address after: Room 1901-6, No.19, West Lake Cultural Plaza, Xiacheng District, Hangzhou, Zhejiang

Patentee after: Zhejiang Heji Investment Management Co., Ltd

Address before: 312500 Liquan village, Qixing street, Xinchang County, Zhejiang Province

Patentee before: SANHUA HOLDING GROUP Co.,Ltd.