WO2019080809A1 - 太阳能光热-生物质发电系统 - Google Patents

太阳能光热-生物质发电系统

Info

Publication number
WO2019080809A1
WO2019080809A1 PCT/CN2018/111266 CN2018111266W WO2019080809A1 WO 2019080809 A1 WO2019080809 A1 WO 2019080809A1 CN 2018111266 W CN2018111266 W CN 2018111266W WO 2019080809 A1 WO2019080809 A1 WO 2019080809A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
molten salt
heat exchanger
biomass
solar thermal
Prior art date
Application number
PCT/CN2018/111266
Other languages
English (en)
French (fr)
Inventor
曾智勇
李珂
崔小敏
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2019080809A1 publication Critical patent/WO2019080809A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the utility model belongs to the technical field of energy storage equipment, and more particularly to a solar thermal-biomass power generation system.
  • the steam temperature generated by the conventional trough type photothermal power generation system is usually only about 380 ° C, and the pressure is only 10 MPa, which causes the thermal efficiency of the steam turbine to be too low, and the utilization rate of solar energy is not high; moreover, the general trough type photothermal power generation system requires heat transfer oil and Molten salt two working fluids, cost and high, heat transfer oil is organic, molten salt is oxidant, the two meet the danger of explosion.
  • the tower type CSP system generates steam with a sufficiently high temperature (can be greater than 400 ° C) and a sufficiently large pressure to meet the requirements of the steam turbine.
  • the tower photothermal power generation is susceptible to environmental conditions such as weather, such as winter. Or when the lighting conditions are not good, absolute stability cannot be guaranteed, especially in densely populated areas.
  • biomass energy utilization rate is very low, causing too much energy waste. If properly handled, it can not only save energy, create benefits, but also reduce environmental pollution. However, biomass energy also has some instability, and transportation, handling and storage costs are relatively high.
  • the purpose of the utility model is to provide a solar thermal-biomass power generation system, which solves the technical problem that the existing power generation system cannot simultaneously take into consideration the solar energy utilization efficiency and the power generation stability.
  • a solar thermal-biomass power generation system comprising: a tower photothermal module and a biomass module; wherein
  • the tower type photothermal module includes a heat collecting tower in which loops are sequentially connected, a first molten salt tank, a first heat exchanger, a second heat exchanger, and a second molten salt tank, and is used for collecting sunlight rays and The solar light is reflected to a mirror field on the heat collecting tower;
  • the biomass module comprises a biomass boiler, a steam turbine, a cooling water tower, a waste heat utilization device and a steam drum which are sequentially connected in a loop;
  • the biomass boiler is connected to the first heat exchanger and the waste heat utilization device, and the steam drum is connected to the second heat exchanger.
  • first molten salt tank is connected with a first valley electricity utilization device
  • second molten salt salt tank is connected with a second valley electricity utilization device
  • a heating device is disposed in both the first molten salt tank and the second molten salt tank.
  • the heater is an electric heater.
  • the first molten salt tank is a high temperature molten salt tank
  • the second molten salt tank is a low temperature molten salt tank.
  • first heat exchanger is a high temperature heat exchanger
  • second heat exchanger is a low temperature heat exchanger
  • the heat collecting tower is also connected to the first heat exchanger and the second heat exchanger at the same time.
  • the biomass power generation module further includes a steam treatment device for collecting water vapor and supplying heat to the outside.
  • waste heat utilization device is connected to the exhaust gas treatment device.
  • a water treatment device for hydrating is further connected between the waste heat utilization device and the cooling water tower.
  • the solar thermal-biomass power generation system provided by the utility model combines tower photothermal power generation with biomass power generation, and the heat collecting tower uses the sunlight reflected by the mirror field to heat the molten salt in the molten salt tank, and the molten salt can be directly used. It is used to generate steam to generate electricity.
  • the excess high-temperature molten salt can be stored for nighttime power generation. It is equipped with two molten salt tanks to form a molten salt circulation process. It can store high-temperature molten salt for night use when there is sufficient light.
  • the system includes a multi-stage heat exchange device, that is, the first heat exchanger is used to heat the steam, the steam temperature is increased, and the power is directly generated or sent to the biomass boiler, and the second heat exchanger is used to heat the water or steam sent by the steam drum.
  • the water is converted into steam or heated steam, and the lower temperature steam is stored in the steam drum, and then heated by the biomass boiler or the first heat exchanger, thus forming a steam cycle process, and the generated superheated steam drives the steam turbine to generate electricity.
  • the biomass boiler can be combined with the treated straw, municipal waste, and the biogas produced by the large farm manure to heat and generate superheated steam.
  • the tower type photothermal power generation temperature is higher, and when the light is good, the generated steam can directly generate electricity, and when the light is poor, if the generated steam directly generates power, the power generation efficiency is low.
  • the steam is sent to the biomass boiler for superheating, and then the power is generated after the requirement is reached.
  • the combination of the photothermal power generation and the biomass power generation and the molten salt heat storage peaking can complement each other and significantly enhance the solar thermal energy and biomass energy generation. Stability and power generation efficiency.
  • FIG. 1 is a schematic diagram of a solar thermal-biomass power generation system according to an embodiment of the present invention
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality or more means two or more, unless specifically defined otherwise.
  • the solar photothermal-biomass power generation system includes: a tower type photothermal power generation module 1 and a biomass power generation module 2; wherein the tower type photothermal power generation module 1 includes a heat collecting tower 12 in which loops are sequentially connected, and a first molten salt a tank 13, a first heat exchanger 14, a second heat exchanger 15 and a second molten salt tank 16, for collecting sunlight and reflecting the sunlight to the mirror field 11 of the heat collecting tower 12;
  • the material power generation module 2 includes a biomass boiler 21, a steam turbine 22, a cooling water tower 24, a waste heat utilization device 26, and a steam drum 27 that are sequentially connected in a loop; the biomass boiler 21 is connected to the first heat exchanger 14 and the waste heat utilization device phase 26.
  • the drum 27 is connected to the second heat exchanger 25.
  • the tower photothermal power generation is combined with the biomass power generation, and the heat collecting tower 12 heats the molten salt in the molten salt tank by using the sunlight reflected by the mirror field 11.
  • the molten salt can be directly used for heating to generate steam for power generation.
  • the excess high-temperature molten salt can be stored for nighttime power generation.
  • Two molten salt cans are provided to form a molten salt circulation process, which can be used for high-temperature molten salt when the light is sufficient. It stores electricity for peak power generation at night to improve power generation efficiency.
  • tower-type photothermal power generation eliminates the need for heat transfer oil, reducing energy loss due to heat transfer between molten salt and heat transfer oil, while eliminating molten salt and The potential danger of heat transfer oil together.
  • the system includes a multi-stage heat exchange device, that is, the first heat exchanger 14 is used to heat the steam, the steam temperature is increased, and the power is directly generated or sent to the biomass boiler 21, and the second heat exchanger 15 is used to heat the steam drum.
  • the water or steam is transferred, and then the water is converted into steam or heated steam, and the lower temperature steam is stored in the steam drum 27, and then heated by the biomass boiler 21 or the first heat exchanger 14, thus forming a steam cycle.
  • the generated superheated steam drives the steam turbine 22 to generate electricity
  • the biomass boiler 21 can be combined with the treated straw, municipal waste, and the biogas produced by the large farm manure for heating to generate superheated steam.
  • the tower type photothermal power generation temperature is higher, and when the light is good, the generated steam can directly generate electricity, and when the light is poor, if the generated steam directly generates power, the power generation efficiency is low.
  • the steam is sent to the biomass boiler 21 for superheating, and then the power is generated after the requirement is reached. That is, the combination of the photothermal power generation and the biomass power generation and the molten salt heat storage peak-sharing can complement each other, and can significantly enhance the solar thermal energy and biomass energy generation. Stability and power generation efficiency.
  • the first molten salt tank 13 is connected to the first valley electricity utilization device 17, and the second molten salt salt tank 16 is connected to the second The valley electricity utilization device 18.
  • the system can use high-temperature molten salt for energy storage to generate electricity during the peak hours of the night, and the two valley electricity utilization devices can more effectively improve energy efficiency.
  • the first molten salt tank 13 and the second molten salt tank 16 are each provided with a heating device (not shown).
  • the two molten salt tanks are equipped with heating devices, which can be heated by the cheap valley electricity at the midnight electricity valley, and then used for power generation during peak hours. This not only ensures the good running state of the molten salt, but also effectively improves the storage. The effect of peaking can further enhance the intelligence of the power grid.
  • the heater is an electric heater.
  • the first molten salt tank 13 is a high-temperature molten salt tank
  • the second molten salt tank 16 is a low-temperature molten salt tank. Equipped with two high-temperature and low-temperature molten salt tanks, it can adapt to various conditions of sufficient or insufficient light, and can store high-temperature molten salt more efficiently for power generation during peak hours at night.
  • the main function of the electric heater in the high-temperature molten salt tank is for energy storage heating.
  • the main function of the electric heater in the low-temperature melting salt tank is to prevent the bottom of the tank, the tank wall, the tank top and the like due to long-term operation. Heat conduction, convection, heat radiation, etc. cause heat loss, which causes the molten salt to solidify.
  • the electric heater needs to ensure that the temperature inside the tank is maintained above -20 °C.
  • the side of the electric heater is installed within 1 m of the tank wall from the bottom of the tank. Inside the space, there should be a jacket to facilitate maintenance.
  • In the low-temperature molten salt tank four 100KW electric heaters are installed to ensure that the temperature in the whole salt tank is balanced, which is higher than -20 °C to prevent the molten salt from solidifying.
  • the first heat exchanger 14 is a high temperature heat exchanger
  • the second heat exchanger 15 is a low temperature heat exchanger.
  • the high temperature heat exchanger is connected to the high temperature molten salt tank
  • the low temperature heat exchanger is connected to the low temperature molten salt tank, which can better form a steam circulation process and form superheated steam for the biomass boiler 21.
  • the first heat exchanger 14 and the second heat exchanger 15 are fixed tube-and-plate heat exchangers.
  • the fixed tube plate heat exchanger has better heat exchange effect through the tube plate heat exchange.
  • the heat collecting tower 12 is also connected to the first heat exchanger 14 and the second heat exchanger 15 at the same time.
  • the system can stop generating electricity according to the season, and collect the collected solar energy directly to the city through the heat exchanger, so that energy can be used more effectively.
  • the biomass power generation module 2 further includes a steam treatment device 23 for collecting water vapor and supplying heat to the outside.
  • the steam treatment device 23 the energy can be sufficiently transferred to the city for heating, and the energy utilization rate can be further improved.
  • the steam treatment unit 23 can be coupled to the first heat exchanger 13, the biomass boiler 21, and the steam turbine 22 to take full advantage of the steam produced by these equipment.
  • the waste heat utilization device 26 is connected to the exhaust gas treatment device 28.
  • the exhaust gas can be used for preheating the water and preheating the air used by the biomass boiler 21, and the waste heat utilization device 26 can fully utilize the waste heat to prevent its loss; however, the exhaust gas of the biomass boiler 21 is strictly treated by the exhaust gas treatment device 28 and discharged. It can prevent air pollution and further achieve environmental protection effects.
  • a water treatment device 25 for hydrating is further connected between the waste heat utilization device 26 and the cooling water tower 24. After the system is operated for a long time, there will be a certain water loss, and the water is replenished by the water treatment device 25 to prevent the power generation system from stopping due to lack of water, thereby further improving the power generation stability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种太阳能光热-生物质发电系统,包括:塔式光热发电模块(1)和生物质发电模块(2);其中,塔式光热发电模块(1)包括环路顺次连接的集热塔(12)、第一熔盐罐(13)、第一换热器(14)、第二换热器(15)和第二熔盐罐(16),以及用于聚集太阳光线并将太阳光线反射至集热塔(12)上的镜场(11);生物质发电模块(2)包括环路顺次连接的生物质锅炉(21)、汽轮机(22)、冷却水塔(24)、余热利用装置(26)和汽包(27);生物质锅炉(21)与第一换热器(14)和余热利用装置(26)相连接,汽包(27)与第二换热器(15)相连接。该系统将光热发电和生物质发电与熔盐储热调峰相结合,多能互补,可增强太阳能光热和生物质能源发电的稳定性和发电效率。

Description

太阳能光热-生物质发电系统 技术领域
本实用新型属于储能设备技术领域,更具体地说,是涉及一种太阳能光热-生物质发电系统。
背景技术
目前,常规槽式光热发电系统产生的蒸汽温度通常只有380℃左右,压力只有10MPa,这样导致汽轮机热效率过低,太阳能的利用率不高;而且,一般槽式光热发电系统需要导热油和熔盐两种工质,成本及高,导热油为有机物,熔盐为氧化剂,两者相遇有爆炸的危险。塔式光热发电系统相对槽式产生温度足够高(可大于400℃)、压力足够大的蒸汽,基本能满足汽轮机的要求,然而塔式光热发电容易受天气等环境条件的影响,如冬天或光照条件不好时,不能保证绝对的稳定性,尤其是在人口更为密集的地区。
目前我国的生物质能源利用率很低,造成了太多的能源浪费,如果能妥善处理,不仅能够节约能源,创造效益,还能减少环境污染。然而,生物质能源也具有一定的不稳定性,运输、处理和存储成本会相对偏高。
技术问题
本实用新型的目的在于提供一种太阳能光热-生物质发电系统,以解决现有发电系统不能同时兼顾太阳能利用效率和发电稳定性的技术问题。
技术解决方案
为实现上述实用新型目的,本实用新型采用的技术方案如下:
一种太阳能光热-生物质发电系统,包括:塔式光热模块和生物质模块;其中,
所述塔式光热模块包括环路顺次连接的集热塔、第一熔盐罐、第一换热器、第二换热器和第二熔盐罐,以及用于聚集太阳光线并将所述太阳光线反射至所述集热塔上的镜场;所述生物质模块包括环路顺次连接的生物质锅炉、汽轮机、冷却水塔、余热利用装置和汽包;
所述生物质锅炉与所述第一换热器和所述余热利用装置相连接,所述汽包与所述第二换热器相连接。
进一步地,所述第一熔盐罐连接有第一谷电利用装置,所述第二熔盐罐连接有第二谷电利用装置。
进一步地,所述第一熔盐罐和所述第二熔盐罐内均设置有加热装置。
进一步地,所述加热器为电加热器。
进一步地,所述第一熔盐罐为高温熔盐罐,所述第二熔盐罐为低温熔盐罐。
进一步地,所述第一换热器为高温换热器,所述第二换热器为低温换热器。
进一步地,所述集热塔还同时与所述第一换热器和所述第二换热器相连接。
进一步地,所述生物质发电模块还包括用于收集水蒸汽、并给外界供热的蒸汽处理装置。
进一步地,所述余热利用装置连接有废气处理装置。
进一步地,所述余热利用装置与所述冷却水塔之间还连接有用于补水的水处理装置。
有益效果
本实用新型提供的太阳能光热-生物质发电系统,将塔式光热发电与生物质发电联用,集热塔利用镜场反射的太阳光加热熔盐罐中的熔盐,熔盐可以直接用来加热产生蒸汽发电,多余的高温熔盐可以存储用于夜间的发电,配备两个熔盐罐,形成一个熔盐循环过程,可在光照充足时,将高温熔盐进行存储用于夜晚用电高峰期的发电,以提高发电效率;另外,利用塔式光热发电无需导热油,减少了因熔盐和导热油之间换热产生的能量损失,同时消除熔盐和导热油在一起的潜在危险。同时,该系统中包含多级换热装置,即第一换热器用来加热蒸汽,提高蒸汽温度后直接发电或送入生物质锅炉,第二换热器用来加热汽包输送过来的水或者蒸汽,再将水转化成蒸汽或加热蒸汽,得到较低温度的蒸汽存储于汽包中,然后通过生物质锅炉或第一换热器加热,如此形成一个蒸汽循环过程,产生的过热蒸汽推动汽轮机发电,而生物质锅炉可以与处理后的秸秆、城市垃圾、大型养殖场粪便产生的沼气相结合,用于加热产生过热蒸汽。这样,本发明的太阳能光热-生物质发电系统中,塔式光热发电温度更高,光照好时,产生的蒸汽可直接发电,光照差时,如产生的蒸汽直接发电效率低,可将蒸汽送入生物质锅炉进行过热加热,达到要求后再发电,即将光热发电和生物质发电与熔盐储热调峰相结合,多能互补,可显著增强太阳能光热和生物质能源发电的稳定性和发电效率。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例提供的太阳能光热-生物质发电系统的示意图;
其中,图中各附图标记:
1-塔式光热发电模块;2-生物质发电模块;
11-镜场;12-集热塔;13-第一熔盐罐;14-第一换热器;15-第二换热器;16-第二熔盐罐;17-第一谷电利用装置;18-第二谷电利用装置;21-生物质锅炉;22-汽轮机;23-蒸汽处理装置;24-冷却水塔;25-水处理装置;26-余热利用装置;27-汽包;28-废气处理装置。
本发明的实施方式
为了使本实用新型要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图和实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“若干或多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1,现对本实用新型实施例提供的太阳能光热-生物质发电系统进行说明。该太阳能光热-生物质发电系统包括:塔式光热发电模块1和生物质发电模块2;其中,塔式光热发电模块1包括环路顺次连接的集热塔12、第一熔盐罐13、第一换热器14、第二换热器15和第二熔盐罐16,用于聚集太阳光线并将所述太阳光线反射至所述集热塔上12的镜场11;生物质发电模块2包括环路顺次连接的生物质锅炉21、汽轮机22、冷却水塔24、余热利用装置26和汽包27;生物质锅炉21与第一换热器14和余热利用装置相26连接,汽包27与第二换热器25相连接。
本实用新型实施例提供的上述太阳能光热-生物质发电系统,将塔式光热发电与生物质发电联用,集热塔12利用镜场11反射的太阳光加热熔盐罐中的熔盐,熔盐可以直接用来加热产生蒸汽发电,多余的高温熔盐可以存储用于夜间的发电,配备两个熔盐罐,形成一个熔盐循环过程,可在光照充足时,将高温熔盐进行存储用于夜晚用电高峰期的发电,以提高发电效率;另外,利用塔式光热发电无需导热油,减少了因熔盐和导热油之间换热产生的能量损失,同时消除熔盐和导热油在一起的潜在危险。同时,该系统中包含多级换热装置,即第一换热器14用来加热蒸汽,提高蒸汽温度后直接发电或送入生物质锅炉21,第二换热器15用来加热汽包27输送过来的水或者蒸汽,再将水转化成蒸汽或加热蒸汽,得到较低温度的蒸汽存储于汽包27中,然后通过生物质锅炉21或第一换热器14加热,如此形成一个蒸汽循环过程,产生的过热蒸汽推动汽轮机22发电,而生物质锅炉21可以与处理后的秸秆、城市垃圾、大型养殖场粪便产生的沼气相结合,用于加热产生过热蒸汽。这样,本发明的太阳能光热-生物质发电系统中,塔式光热发电温度更高,光照好时,产生的蒸汽可直接发电,光照差时,如产生的蒸汽直接发电效率低,可将蒸汽送入生物质锅炉21进行过热加热,达到要求后再发电,即将光热发电和生物质发电与熔盐储热调峰相结合,多能互补,可显著增强太阳能光热和生物质能源发电的稳定性和发电效率。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,第一熔盐罐13连接有第一谷电利用装置17,第二熔盐罐16连接有第二谷电利用装置18。在光照充足时,该系统可利用高温熔盐进行储能以备夜晚的电高峰期发电,而该两个谷电利用装置,可更有效地提高能源利用效率。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,第一熔盐罐13和第二熔盐罐16内均设置有加热装置(图未标注)。该两个熔盐罐都配备加热装置,可利用午夜用电低谷时便宜的谷电进行加热,然后再用于高峰期的发电,这样,不仅保证熔盐的良好运转状态,更能有效提高储能调峰的效果,进一步地促进电网的智能化。更进一步地,该加热器为电加热器。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,第一熔盐罐13为高温熔盐罐,第二熔盐罐16为低温熔盐罐。配备高温和低温两个熔盐罐,可适应各种光照充足或不充足的条件,可更有效地将高温熔盐进行存储,用于夜晚用电高峰期的发电。
另外,高温熔盐罐中的电加热器的主要作用是用于储能加热,低温熔盐罐中的电加热器的主要作用是防止由于长期运行时罐底、罐壁、罐顶等部位因热传导、对流、热辐射等引起热量损失而导致熔盐凝固的现象发生,且电加热器需保证罐体内的温度维持在-20℃以上,电加热器侧面安装在罐壁离罐底1m内的空间内,且应带夹套,以利于检修。在低温熔盐罐中,设置4个100KW电加热器,保证整个盐罐内温度均衡,都高于-20℃,防止熔盐凝固。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,第一换热器14为高温换热器,第二换热器15为低温换热器。高温换热器连接高温熔盐罐,低温换热器连接低温熔盐罐,可更好形成蒸汽循环过程,为生物质锅炉21形成过热蒸汽。更进一步地,第一换热器14和第二换热器15为固定管板式换热器。固定管板式换热器通过管板换热,换热效果更好。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,所述集热塔12还同时与第一换热器14和第二换热器15相连接。在冬天光照不足或生物质能源不足以维持高品质发电时,本系统可以根据时令,停止发电,将收集的太阳能直接通过换热器向城市供热,这样可以更有效地利用能源。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,生物质发电模块2还包括用于收集水蒸汽、并给外界供热的蒸汽处理装置23。利用蒸汽处理装置23,可充分地将能源转向城市供热,可进一步提高能源的利用率。该蒸汽处理装置23可与第一换热器13、生物质锅炉21以及汽轮机22连接,以充分利用这些设备生产的蒸汽。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,余热利用装置26连接有废气处理装置28。本系统中,废气可以用于预加热水和预加热生物质锅炉21所用空气,余热利用装置26可以充分利用余热,防止其损失;然而生物质锅炉21的废气通过废气处理装置28严格处理后排放,可防止空气污染,进一步实现环境保护效果。
进一步地,作为本实用新型提供的太阳能光热-生物质发电系统的一种具体实施方式,余热利用装置26与冷却水塔24之间还连接有用于补水的水处理装置25。该系统长时间工作后,会存在一定的水分损失,通过水处理装置25对该系统补水,可防止发电系统因缺水而停止工作,这样进一步提高该系统的发电稳定性。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种太阳能光热-生物质发电系统,其特征在于,包括:塔式光热发电模块和生物质发电模块;其中,
    所述塔式光热发电模块包括环路顺次连接的集热塔、第一熔盐罐、第一换热器、第二换热器和第二熔盐罐,以及用于聚集太阳光线并将所述太阳光线反射至所述集热塔上的镜场;所述生物质发电模块包括环路顺次连接的生物质锅炉、汽轮机、冷却水塔、余热利用装置和汽包;
    所述生物质锅炉与所述第一换热器和所述余热利用装置相连接,所述汽包与所述第二换热器相连接。
  2. 如权利要求1所述的太阳能光热-生物质发电系统,其特征在于:所述第一熔盐罐连接有第一谷电利用装置,所述第二熔盐罐连接有第二谷电利用装置。
  3. 如权利要求1所述的太阳能光热-生物质发电系统,其特征在于:所述第一熔盐罐和所述第二熔盐罐内均设置有加热装置。
  4. 如权利要求3所述的太阳能光热-生物质发电系统,其特征在于:所述加热器为电加热器。
  5. 如权利要求1所述的太阳能光热-生物质发电系统,其特征在于:所述第一熔盐罐为高温熔盐罐,所述第二熔盐罐为低温熔盐罐。
  6. 如权利要求5所述的太阳能光热-生物质发电系统,其特征在于:所述第一换热器为高温换热器,所述第二换热器为低温换热器。
  7. 如权利要求1-6任一项所述的太阳能光热-生物质发电系统,其特征在于:所述集热塔还同时与所述第一换热器和所述第二换热器相连接。
  8. 如权利要求1-6任一项所述的太阳能光热-生物质发电系统,其特征在于:所述生物质发电模块还包括用于收集水蒸汽、并给外界供热的蒸汽处理装置。
  9. 如权利要求1-6任一项所述的太阳能光热-生物质发电系统,其特征在于:所述余热利用装置连接有废气处理装置。
  10. 如权利要求1-6任一项所述的太阳能光热-生物质发电系统,其特征在于:所述余热利用装置与所述冷却水塔之间还连接有用于补水的水处理装置。
PCT/CN2018/111266 2017-10-24 2018-10-22 太阳能光热-生物质发电系统 WO2019080809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721390865.9U CN207568779U (zh) 2017-10-24 2017-10-24 太阳能光热-生物质发电系统
CN201721390865.9 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019080809A1 true WO2019080809A1 (zh) 2019-05-02

Family

ID=62696118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111266 WO2019080809A1 (zh) 2017-10-24 2018-10-22 太阳能光热-生物质发电系统

Country Status (2)

Country Link
CN (1) CN207568779U (zh)
WO (1) WO2019080809A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207568779U (zh) * 2017-10-24 2018-07-03 深圳市爱能森科技有限公司 太阳能光热-生物质发电系统
CN110848098A (zh) * 2019-09-24 2020-02-28 浙江中光新能源科技有限公司 一种沼气-塔式光热互补的发电系统
CN111740436B (zh) * 2020-08-24 2020-12-15 杭州华源前线能源设备有限公司 生物质气化炉与高压熔融盐电极锅炉耦合的储能调峰系统
CN112431731A (zh) * 2020-10-30 2021-03-02 南方电网电动汽车服务有限公司 太阳能发电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
CN201730779U (zh) * 2010-05-24 2011-02-02 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的系统
CN202645896U (zh) * 2012-05-29 2013-01-02 中海阳新能源电力股份有限公司 生物质与太阳能光热混合发电系统
JP2013147996A (ja) * 2012-01-19 2013-08-01 Hitachi Ltd 太陽熱複合発電システム及び太陽熱複合発電方法
CN104266358A (zh) * 2014-09-24 2015-01-07 山东省汶上重力机械厂 一种熔盐储能加热换热系统
CN106123040A (zh) * 2016-06-27 2016-11-16 中国科学院工程热物理研究所 集成双炉膛生物质锅炉的太阳能热发电系统
CN205744321U (zh) * 2016-06-27 2016-11-30 武汉凯迪电力工程有限公司 一种生物质能太阳能互补发电系统
CN207568779U (zh) * 2017-10-24 2018-07-03 深圳市爱能森科技有限公司 太阳能光热-生物质发电系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
CN201730779U (zh) * 2010-05-24 2011-02-02 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的系统
JP2013147996A (ja) * 2012-01-19 2013-08-01 Hitachi Ltd 太陽熱複合発電システム及び太陽熱複合発電方法
CN202645896U (zh) * 2012-05-29 2013-01-02 中海阳新能源电力股份有限公司 生物质与太阳能光热混合发电系统
CN104266358A (zh) * 2014-09-24 2015-01-07 山东省汶上重力机械厂 一种熔盐储能加热换热系统
CN106123040A (zh) * 2016-06-27 2016-11-16 中国科学院工程热物理研究所 集成双炉膛生物质锅炉的太阳能热发电系统
CN205744321U (zh) * 2016-06-27 2016-11-30 武汉凯迪电力工程有限公司 一种生物质能太阳能互补发电系统
CN207568779U (zh) * 2017-10-24 2018-07-03 深圳市爱能森科技有限公司 太阳能光热-生物质发电系统

Also Published As

Publication number Publication date
CN207568779U (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
CN208380764U (zh) 一种基于槽式定日镜的改良的布雷顿光热发电系统
CN106014891B (zh) 一种槽式太阳能联合循环发电系统
WO2015154585A1 (zh) 一种太阳能与生物质能联合发电的优化集成系统
WO2019080809A1 (zh) 太阳能光热-生物质发电系统
CN103939306B (zh) 一种两回路式太阳能热发电系统
CN203964402U (zh) 利用太阳能聚光装置为化学蓄电池提供热能的装置
CN102400872A (zh) 太阳能和风能互补储能热发电装置
CN101907075A (zh) 多级耦合蓄热式太阳能热电联供系统
CN209586603U (zh) 三罐式熔盐储热的塔槽耦合光热发电系统
CN203214254U (zh) 一种用于太阳能光热发电的熔盐和导热油热交换装置
CN204460763U (zh) 采用熔盐工质的塔式太阳能光热发电系统
CN212508674U (zh) 一种太阳能光热、光伏和生物质联合发电系统
WO2016106745A1 (zh) 一种模块化塔式太阳能光热发电系统
CN202280589U (zh) 一种太阳能和生物质能互补热电联产装置
CN205478136U (zh) 一种降低熔盐塔式太阳能光热发电站热损的结构
CN105444428B (zh) 采用熔盐工质的塔式太阳能光热发电系统
CN110108045A (zh) 一种太阳能供能装置
CN202747471U (zh) 太阳能储热供暖系统
CN105091356A (zh) 一种太阳能聚光集热与常规能源耦合发电系统
CN115573874A (zh) 一种全天运行的熔盐光热发电系统及其运行方法
WO2019085785A1 (zh) 碟式光热发电系统
CN204830511U (zh) 一种太阳能聚光集热与常规能源耦合发电系统
CN103511207A (zh) 一种蓄热换热一体化的塔式太阳能发电系统
CN204458230U (zh) 一种带集中储热的太阳能光热发电系统
CN208486987U (zh) 一种基于太阳能集热的熔盐储能发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18869863

Country of ref document: EP

Kind code of ref document: A1