WO2018024060A1 - Oled器件衰减测试装置及衰减测试方法 - Google Patents

Oled器件衰减测试装置及衰减测试方法 Download PDF

Info

Publication number
WO2018024060A1
WO2018024060A1 PCT/CN2017/091065 CN2017091065W WO2018024060A1 WO 2018024060 A1 WO2018024060 A1 WO 2018024060A1 CN 2017091065 W CN2017091065 W CN 2017091065W WO 2018024060 A1 WO2018024060 A1 WO 2018024060A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled device
aging
luminance
magnetic field
brightness
Prior art date
Application number
PCT/CN2017/091065
Other languages
English (en)
French (fr)
Inventor
许凯
彭锐
叶志杰
胡月
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/736,349 priority Critical patent/US10396285B2/en
Publication of WO2018024060A1 publication Critical patent/WO2018024060A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to an OLED device attenuation test device and an attenuation test method.
  • the OLED display is an active light-emitting display device, which has a fast response speed, a high contrast ratio, a wide viewing angle, and the like, and is widely favored by people.
  • each OLED unit includes an anode layer, a cathode layer, and an organic layer disposed between the anode layer and the cathode layer, the organic layer including the electron transport layer and the hole transport layer, and the electron transport layer and the hole.
  • the luminescent layer between the transmission layers and since the OLED device of the OLED display increases with the use time, the organic layer will be attenuated to a certain extent, so that the service life of the OLED display is greatly affected. Therefore, an OLED device is currently required.
  • the attenuation test device can determine whether the luminescent material of the luminescent layer in the OLED device has intrinsic attenuation.
  • An object of the present disclosure is to provide an OLED device attenuation test device and an attenuation test method for determining whether an intrinsic attenuation of a light-emitting material of a light-emitting layer in an OLED device occurs.
  • an OLED device attenuation test apparatus includes: a difference function construction unit for OLED device under OLED device luminescence brightness and second luminescence limitation condition according to OLED device aging before aging of OLED device a difference in luminance of the luminance, constructing a first luminance difference function f 1 (x); a difference between the luminance of the OLED device and the luminance of the OLED device under the first illumination limitation condition after the OLED device is aged Constructing a second illumination luminance difference function f 2 (x); wherein the first illumination limitation condition comprises a variable magnetic field, the second illumination limitation condition comprises a constant microwave and a variable magnetic field, and x is a magnetic field strength of the variable magnetic field And an integrating unit configured to integrate the first illuminating luminance difference function f 1 (x) within a range of the magnetic field strength of the variable magnetic field to obtain a first integrated result Ena, and a second illuminating luminance difference function f 2 (x) performs integration to obtain
  • an OLED device attenuation test method comprising: constructing a difference between an OLED device illuminating brightness and a second illuminating limiting OLED device illuminating brightness according to an OLED device before aging; a first illuminance difference function f 1 (x); according to the difference between the luminescence brightness of the OLED device and the illuminance of the OLED device under the first illuminating condition after the OLED device is aged, the second illuminance difference is constructed a value function f 2 (x); wherein the first illumination limiting condition comprises a variable magnetic field, the second illumination limiting condition comprises a constant microwave and a variable magnetic field, x is a magnetic field strength of the variable magnetic field; Within the range of the magnetic field strength, the first illuminance difference function f 1 (x) is integrated to obtain a first integration result Ena, and the second illuminance difference function f 2 (x) is integrated to obtain a second integration result.
  • Lna is the illuminating brightness of the OLED device before aging under non-light-emitting constraints
  • La is the illuminating brightness of the OLED device after aging under non-light-emitting constraints
  • FIG. 1 is a block diagram of an OLED device attenuation test apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram of a function construction unit according to an embodiment of the present disclosure
  • FIG. 3 is a graph of a function constructed by an OLED device attenuation test apparatus under two illumination limiting conditions according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an OLED light-emitting luminance measuring unit in an OLED device attenuation test device according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for testing attenuation of an OLED device according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of constructing an aging luminance difference function function f1(x) in an OLED device attenuation test method according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of constructing a second luminance difference function f2(x) in an OLED device attenuation test method according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of determining whether an OLED device is aged in an OLED device attenuation test method according to an embodiment of the present disclosure.
  • an OLED device attenuation test apparatus provided by an embodiment of the present disclosure includes a difference function construction unit 200 , an integration unit 300 , a comparison unit 400 , and a determination unit 500 .
  • the difference function constructing unit 200 is configured to construct a pre-aging luminance difference function f 1 according to the difference between the OLED device illuminating brightness and the illuminating brightness of the OLED device under the first illuminating constraint condition before the OLED device aging.
  • the illuminating brightness difference after aging is constructed a value function f 2 (x) (ie, a second illuminance difference function); wherein the first illuminating constraint is a single-constrained environment, the single-constrained environment is a variable magnetic field, and the second illuminating constraint is a dual constraint Environment, the dual constraint environment includes a constant microwave and a variable magnetic field, and x is the magnetic field strength of the variable magnetic field.
  • the integrating unit 300 is configured to integrate the pre-aging luminance luminance difference function f 1 (x) within a range of the magnetic field strength of the variable magnetic field to obtain a first integration result Ena, and a second luminance luminance difference function f 2 (x) ) Perform integration to obtain a second integration result Ea.
  • the "non-light-emitting constraint" is different from the first and second light-emitting constraints, for example, a constant current or a constant voltage.
  • the determining unit 500 is configured to versus As a result of the comparison, it is judged whether or not the luminescent material of the light-emitting layer of the OLED device has intrinsic attenuation.
  • the determining unit 500 determines that the luminescent material of the luminescent layer in the OLED device does not undergo intrinsic attenuation; At the time, it is determined that the luminescent material of the light-emitting layer in the OLED device undergoes intrinsic attenuation.
  • the OLED device attenuation test device provided by the above embodiment is used to analyze the OLED device before aging, including:
  • the difference function building unit 200 constructs a pre-aging luminance difference function f 1 according to the difference between the luminescence brightness of the OLED device under the first illumination constraint and the luminescence brightness of the OLED device under the first illumination constraint condition before aging of the OLED device. );
  • the integration unit 300 integrates the pre-ageing luminance difference function f 1 (x) within the range of the magnetic field strength of the variable magnetic field to obtain a first integration result Ena.
  • the OLED device attenuation test apparatus provided by the above embodiment is used to analyze the aged OLED device as follows:
  • difference function construction unit 200 uses the difference function construction unit 200 to construct a second illumination luminance difference function f 2 according to the difference between the luminescence brightness of the OLED device under the first illumination constraint and the illumination luminance of the OLED device under the first illumination constraint condition. );
  • the second illumination luminance difference function f 2 (x) is integrated by the integration unit 300 within the magnetic field strength range of the variable magnetic field to obtain a first integration result Ea.
  • the OLED device attenuation test device is used to compare the OLED device before and after aging, and then compared by the comparison unit 400. versus Then, the determining unit 500 is used according to versus As a result of the comparison, it is judged whether or not the luminescent material of the light-emitting layer of the OLED device has intrinsic attenuation.
  • the first illuminating constraint condition is a single-constrained environment of a variable magnetic field, so that both the electrons and the holes in which the excitons are formed can respond in the OLED device before or after aging.
  • the change in magnetic field strength shown as b in Figure 3
  • the second illuminating constraint is a dual-constrained environment of constant microwave and variable magnetic field, so that the OLED device is either before or after aging.
  • the electrons and holes in which the excitons are formed are not only capable of responding to changes in the strength of the magnetic field, but also capable of causing a sudden change in the luminance of the emitted light within a certain range of magnetic field strength under the action of a constant microwave (as shown in a of FIG. 3).
  • the difference between the luminescence brightness of the OLED device and the luminescence brightness of the OLED device under the first luminescent constraint condition before and after aging of the OLED device by the difference function constructing unit 200 Construction emission luminance difference value of the first function f 1 (x) and a second light emission luminance difference function f 2 (x), and the variable range of the magnetic field strength Integral, a first integration result Ena characterizing the number of excitons in the OLED device before aging, and a second integration result Ea characterizing the number of excitons in the OLED device after aging are obtained, and FIG. 4 shows a difference function. Graph.
  • the probability of the radiant transition in the exciton formation process is relatively reduced relative to the non-radiative transition probability, and the luminescence brightness of the OLED device can characterize the radiant transition. Probability, therefore, by comparing the ratio of the luminance Lna of the OLED device before aging to the first integration result Ena Ratio of luminescence luminance La and second integration result Ea of the OLED device after aging A comparison is made to determine whether the luminescent material in the luminescent layer of the OLED device has intrinsic attenuation.
  • the electrons and holes in which the excitons are formed can be excited by the constant microwave, so that the luminescence brightness is abrupt within a certain range of magnetic field strength, which is Because of the dual confinement environment of constant microwave and variable magnetic field under the second illumination constraint, the electrons and holes forming excitons in the OLED device resonate, so that the luminance of the OLED device appears within a certain range of magnetic field strength. mutation.
  • the excitons in the OLED device there are a radiation transition kp and a non-radiative transition knp, and the radiation transition kp emits photons, and the corresponding non-radiative transition knp will diffuse away in the device, if the OLED In the device, the luminescent material contained in the luminescent layer is deteriorated, and the probability of the non-radiative transition knp is increased relative to the probability of the radiation transition kp, so that the luminescence brightness of the OLED device is lowered, that is, the luminescence brightness of the OLED device can characterize the probability of the radiation transition.
  • the microwave frequency of the constant microwave in the above embodiment is about 10 GHz-20 GHz, for example, 10 GHz, 20 GHz or 15 GHz, and the magnetic field strength of the variable magnetic field is about 0-500 mT, which can be selected according to actual conditions.
  • the OLED device before and after aging is the same OLED device. Therefore, after the OLED device is used to complete the above analysis using the OLED device attenuation test device, the OLED device is aged and reused.
  • the OLED device attenuation test device performs the above analysis on the OLED device before and after aging.
  • the OLED device before aging and the OLED device after aging are the same batch of OLED devices of the same model, that is, the OLED device attenuation test device can be used to perform the above analysis on the OLED device before aging, or The OLED device attenuation test device is first used to perform the above analysis on the aging OLED device, but this will result in poor accuracy of the OLED device attenuation analysis due to individual differences.
  • the difference function construction unit 200 in the above embodiment includes a function construction module 201 and a difference operation module 202 connected to the output end of the function construction module 201;
  • the output of the difference calculation module 202 is coupled to the input of the integration unit 300.
  • the function construction module 201 is configured to store a magnetic field strength of the variable magnetic field, and construct a characterization of the first aging pre-luminescence luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the first luminescent constraint condition before aging of the OLED device.
  • a first aging pre-luminescence luminance function f 11 (x) constructing a second aging characterizing the second aging pre-luminescence luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the second illumination constraint condition before aging of the OLED device a front illuminance luminance function f 21 (x); constructing a first aging post-luminescence luminance characterizing the first aging post-luminescence luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the first luminescent constraint condition after aging of the OLED device a function f 12 (x), constructing a second post-aging luminescence luminance function f 22 characterizing the second aging post-luminescence luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the second illumination constraint condition after aging of the OLED device (x).
  • the difference operation module 202 is configured to construct a first illumination luminance difference function f 1 (x) according to the first pre-aging luminance luminance function f 11 (x) and the second pre-aluminescence luminance luminance function f 21 (x);
  • An aging luminance function f 12 (x) and a second aging luminance luminance function f 22 (x) construct a second luminance luminance difference function f 2 (x); wherein f 1 (x)
  • , f 2 (x)
  • the first illumination luminance difference function f 1 (x) is constructed by the function construction unit 200 by the following method:
  • first pre-aging luminance luminance function f 11 (x) that characterizes the first pre-aging luminance luminance curve according to the magnetic field strength of the variable magnetic field and the luminance of the OLED device under the first illumination constraint condition before aging of the OLED device.
  • a second pre-aging luminance luminance function f 21 (x) that characterizes the second pre-aging luminance luminance curve according to the magnetic field strength of the variable magnetic field and the luminance of the OLED device under the second illumination constraint before aging of the OLED device.
  • the second illumination luminance difference function f 2 (x) is constructed by the function construction unit 200 by the following method:
  • a first post-aging luminescence luminance function f 12 (x) that characterizes the first aging post-luminescence luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the first luminescent constraint condition after aging of the OLED device.
  • a second post-aging luminance luminance function f 22 (x) that characterizes the second aging luminance luminance curve according to the magnetic field strength of the variable magnetic field and the luminescence brightness of the OLED device under the second illumination constraint condition after aging of the OLED device );
  • Curve b of Figure 3 shows the illuminance of the OLED device corresponding to the first illuminating constraint.
  • Curve a of Figure 3 shows the corresponding luminance curve of the OLED device under the second illumination constraint.
  • the illuminance brightness curve of the OLED device is relatively stable under the first illuminating constraint condition, and the illuminance brightness of the OLED device is gradually increased as the magnetic field strength increases.
  • the electrons and holes forming excitons in the luminescent material can respond not only to the change of the magnetic field strength but also under the action of constant microwave.
  • the luminescence brightness of the OLED device is abruptly changed within a certain range of magnetic field strength.
  • the embodiments of the present disclosure first obtain the function under the first illumination constraint and the first illumination constraint function, and then subtract the two functions to obtain the corresponding difference function.
  • the embodiment of the present disclosure utilizes The difference in response of electrons and holes forming excitons in the OLED device to the first luminescence constraint and the second luminescence constraint, obtaining a difference function capable of reflecting the number of excitons, and by performing finite integration on the difference function, The obtained integration result is capable of characterizing the number of excitons in the OLED device.
  • the OLED device attenuation test apparatus provided by the above embodiment further includes a data acquisition unit 100.
  • the output ends of the data acquisition unit 100 are respectively connected to the input end of the difference function construction unit 200 and the input end of the comparison unit 400. See Figures 1 and 9.
  • the output of the data acquisition unit 100 is connected to the input of the function construction module 201.
  • the data acquisition unit 100 is configured to obtain, after the aging of the OLED device, the illuminating brightness of the OLED device under the first illuminating constraint condition and the illuminating brightness of the OLED device under the second illuminating constraint condition; Obtaining the luminescence brightness of the OLED device under the first illuminating constraint and the illuminating brightness of the OLED device under the second illuminating constraint condition after the OLED device is aged.
  • the data acquiring unit 100 is further configured to acquire the illuminating brightness Lna of the OLED device before aging under the non-lighting constraint condition, and the illuminating brightness La of the OLED device after aging under the non-lighting constraint condition.
  • the comparing unit 400 further For storing the illuminating brightness Lna of the OLED device before aging, and the illuminating brightness La of the OLED device after aging, and comparing the Lna and La;
  • the determining unit 500 is further configured to judge the OLED according to the comparison result of the Lna and the La Whether the device is aging.
  • the above step of determining whether the OLED is aged may be performed simultaneously with determining whether the luminescent material of the luminescent layer of the OLED device is intrinsic decay; or, thereafter, performing the verification, so that the result can be further verified.
  • the data acquisition unit 100 obtains the OLED device illuminating brightness under the first illuminating constraint condition and the OLED device illuminating brightness under the first illuminating constraint condition before the OLED device ages; and obtaining the OLED device aging, the first illuminating constraint Under the condition of the OLED device illuminating brightness and the illuminating brightness of the OLED device under the second illuminating constraint condition, the illuminating brightness Lna of the pre-presby OLED device under the non-lighting constraint condition and the illuminating brightness La of the OLED device after aging are obtained,
  • comparing unit 400 uses the comparing unit 400 to store the illuminating brightness Lna of the OLED device before aging, and the illuminating brightness La of the OLED device after aging, and comparing Lna and La;
  • the determination unit 500 determines whether or not the OLED device is aged based on the comparison result of Lna and La.
  • the OLED device attenuation test apparatus can obtain the illuminance of the OLED device before and after aging under the non-light-emitting constraint condition by the data acquisition unit 100 by connecting the output end of the data acquisition unit 100 to the input end of the comparison unit 400. And determining whether it actually ages by the comparing unit 400 and the determining unit 500; moreover, it is also possible to store the illuminating brightness of the OLED device before and after aging under the non-lighting constraint condition by the comparing unit, so as to participate in determining the luminescent material of the luminescent layer in the OLED device. Whether intrinsic attenuation occurs.
  • the data acquiring unit 100 acquires the illuminating brightness of the OLED device, which can be implemented by the OLED illuminating brightness measuring unit as shown in FIG. 5.
  • the OLED The lightness measuring unit includes a magnetic field generating unit 2, a microwave generating unit 1 and an optical measuring unit 3; the output of the optical measuring unit 3 is connected to the data acquiring unit 100.
  • the magnetic field generating unit 2 is used to supply a variable magnetic field to the OLED device.
  • the microwave generating unit 1 is used to supply a constant microwave to the OLED device.
  • the microblog generating unit can be realized, for example, by a conventional microwave generator that is capable of providing a microwave of a constant wavelength.
  • the optical measuring unit 3 is configured to measure the illuminating brightness of the OLED device under the first luminescent constraint and the illuminating brightness of the OLED device under the first illuminating constraint condition before and after aging of the OLED device; and/or measuring the OLED before and after aging of the OLED device
  • the brightness of the device may be an optical power meter or a photomultiplier tube, or other device capable of measuring the brightness of the light.
  • a power supply for supplying power to the OLED device can be further added, so that the OLED illuminating brightness measuring unit can work independently;
  • the power source can be a high-precision source meter, such as keithley 2400, to ensure constant supply to the OLED device.
  • the current or constant voltage makes the OLED device unaffected by magnetic fields and other factors.
  • the correspondence between the OLED device and the test condition is performed according to the following table.
  • the magnetic field generating unit 2 in the above embodiment is a controllable excitation power source, and the magnetic field provided by the controllable excitation power source is provided with a microwave stage 11 for carrying the OLED device 4, and the transmitting end of the microwave generating unit 1 passes through the waveguide. 10 is connected to the microwave stage 11.
  • the optical measuring unit 3 collects the light emitted by the OLED device through the optical fiber 30.
  • the magnetic field generating unit is a controllable excitation power source to ensure that a variable magnetic field can be provided to the OLED device, the OLED device can emit light of different brightness in response to different magnetic field strengths.
  • the microwave stage 11 can carry the OLED device
  • the microwave generating unit 1 emits The emitter end is connected to the microwave stage 11 through the waveguide 10 such that the microwave stage 11 is again equivalent to an injection member that injects a constant microwave into the OLED device, and the microwave stage 11 is located in a variable magnetic field.
  • the range of the microwave wavelength and the magnetic field strength in the above embodiment is specifically selected.
  • the microwave generator provides microwaves of any of 10 GHz to 20 GHz, such as 10 GHz, 13 GHz or 20 GHz.
  • the magnetic field strength of the variable magnetic field ranges from 0 to 500 mT.
  • an embodiment of the present disclosure provides a method for testing an OLED device attenuation, including:
  • the first illuminance difference function f 1 (x) is constructed; according to the aging of the OLED device a difference between the luminance of the OLED device and the luminance of the OLED device under the first illumination constraint, and a second luminance difference function f 2 (x) is constructed; wherein a constrained environment, the single-constrained environment is a variable magnetic field, and the second illuminating constraint is a dual constrained environment, the dual constrained environment includes a constant microwave and a variable magnetic field, and x is a variable magnetic field magnetic field strength;
  • Lna is the illuminating brightness of the OLED device before aging under non-light-emitting constraints
  • La is the illuminating brightness of the OLED device after aging under non-light-emitting constraints
  • the OLED device before constructing the first and second illuminance difference functions f 1 (x), f 2 (x), it is necessary to obtain OLED device illuminating brightness and second illuminating constraint before and after aging of the OLED device.
  • the OLED device emits light under conditions.
  • the method for determining whether the luminescent material of the luminescent layer of the OLED device is intrinsic attenuation includes:
  • the range of the microwave wavelength and the magnetic field strength in the above embodiment is specifically selected.
  • the microwave generator provides microwaves of any frequency from 10 GHz to 20 GHz, such as 10 GHz, 13 GHz or 20 GHz.
  • the magnetic field strength of the variable magnetic field ranges from 0 to 500 mT.
  • the first luminance difference function is constructed according to the difference between the luminance of the OLED device and the luminance of the OLED device under the first illumination constraint before the OLED device is aged.
  • the method of f 1 (x) includes:
  • the second illumination luminance difference function is constructed according to the difference between the luminescence brightness of the OLED device under the first illumination constraint and the luminescence luminance of the OLED device under the second illumination constraint condition after aging of the OLED device.
  • the method of f 2 (x) includes:
  • the OLED device attenuation measurement provided by the above embodiment
  • the test method also includes:
  • the above step of determining whether the OLED is aged may be performed simultaneously with determining whether the luminescent material of the luminescent layer of the OLED device is intrinsic attenuation; or performing after determining whether the luminescent material of the luminescent layer of the OLED device has intrinsic attenuation, further verifying the OLED device result.
  • the method for determining whether the OLED device is aged according to the comparison result of Lna and La includes:
  • the first illumination limitation condition is a single-constrained environment of a variable magnetic field, such that an OLED device before or after aging, in which an exciton is formed Both the holes and the holes can respond to changes in the strength of the magnetic field to emit light of different brightness; and the second illuminating restriction condition is a dual-constrained environment of constant microwave and variable magnetic field, so that the OLED device is formed before or after aging.
  • the electrons and holes of the excitons can not only respond to changes in the strength of the magnetic field, but also cause the luminescence brightness to change within a certain range of magnetic field strength under the action of a constant microwave.
  • the aging of the OLED device is performed by the difference function building unit.
  • the difference between the luminescence brightness of the OLED device under the first illuminating restriction condition and the illuminance brightness of the OLED device under the second illuminating limiting condition constructing a first illuminating luminance difference function f 1 (x) and a second illuminating luminance difference function f 2 (x), and integrate it in the range of the magnetic field strength corresponding to the variable magnetic field, which can be used to characterize the aging of the OLED device before aging.
  • the first integral result Ena of the quantity, and the second integration result Ea characterizing the number of excitons in the OLED device after aging, and considering the exciton formation process in which the luminescent material in the luminescent layer in the OLED device undergoes intrinsic attenuation In the middle, the probability of radiation transition is relatively reduced relative to the probability of non-radiative transition, and the luminance of the OLED device can characterize the probability of radiation transition. Therefore, the ratio of the luminance Lna of the OLED device before aging to the first integration result Ena can be obtained.
  • the ratio of the luminescence luminance La of the OLED device after aging to the second integration result Ea A comparison is made to determine whether the luminescent material in the luminescent layer of the OLED device has intrinsic attenuation.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of the flowchart or in a block or blocks of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件衰减测试装置及衰减测试方法。该OLED器件衰减测试装置,包括差值函数构建单元(200)、积分单元(300)、比较单元(400)和判定单元(500)。OLED器件衰减测试方法包括:构建老化前后的第一和第二发光亮度差值函数,并对第一和第二函数进行积分,比较两个积分,根据比较结果判断OLED器件的发光层的发光材料是否发生本征衰减。OLED器件衰减测试装置用于执行OLED器件衰减方法。

Description

OLED器件衰减测试装置及衰减测试方法 技术领域
本公开实施例涉及显示技术领域,尤其涉及一种OLED器件衰减测试装置及衰减测试方法。
背景技术
OLED显示器是一种主动发光的显示器件,其相对于液晶显示器来说,具有反应速度快、对比度高、视角较广等,受到人们的广泛青睐。
现有OLED显示器中,每个OLED单元包括阳极层、阴极层以及设在阳极层和阴极层之间的有机层,有机层包括电子传输层和空穴传输层,以及位于电子传输层和空穴传输层之间的发光层;而由于OLED显示器这类OLED器件随着使用时间增加,有机层会发生一定的衰减,使得OLED显示器的使用寿命受到很大的影响,因此,目前需要一种OLED器件衰减测试装置,能够判断OLED器件中发光层的发光材料是否发生本征衰减。
发明内容
本公开的目的在于提供一种OLED器件衰减测试装置及衰减测试方法,以判断OLED器件中发光层的发光材料是否发生本征衰减。
根据本公开第一方面,一种OLED器件衰减测试装置,包括:差值函数构建单元,用于根据OLED器件老化前,第一发光限制条件下OLED器件发光亮度和第二发光限制条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x);根据OLED器件老化后,第一发光限制条件下OLED器件发光亮度和第二发光限制条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);其中,第一发光限制条件包括可变磁场,第二发光限制条件包括恒定微波和可变磁场,x为所述可变磁场的磁场强度;积分单元,用于在所述可变磁场的磁场强度范围内,对第一发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea;比较单元,用于比较
Figure PCTCN2017091065-appb-000001
Figure PCTCN2017091065-appb-000002
其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光限制条件下,老化后OLED器件的发光亮度;判定单元,用于根据
Figure PCTCN2017091065-appb-000003
Figure PCTCN2017091065-appb-000004
比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
根据本公开第二方面,提供一种OLED器件衰减测试方法,包括:根据OLED器件老化前,第一发光限制条件下OLED器件发光亮度和第二发光限制条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x);根据OLED器件老化后,第一发光限制条件下OLED器件发光亮度和第二发光限制条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);其中,第一发光限制条件包括可变磁场,第二发光限制条件包括恒定微波和可变磁场,x为所述可变磁场的磁场强度;在所述可变磁场的磁场强度范围内,对第一发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea;比较
Figure PCTCN2017091065-appb-000005
Figure PCTCN2017091065-appb-000006
其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光约束条件下,老化后OLED器件的发光亮度;根据
Figure PCTCN2017091065-appb-000007
Figure PCTCN2017091065-appb-000008
比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的OLED器件衰减测试装置的框图;
图2为本公开实施例提供的函数构建单元的框图;
图3为本公开实施例提供的OLED器件衰减测试装置在两种发光限制条件下所构建的函数的曲线图;
图4为本公开实施例提供的OLED器件衰减测试装置所构建的差值函数的曲线图;
图5为本公开实施例提供的OLED器件衰减测试装置中OLED发光亮度测量单元的结构示意图;
图6为本公开实施例提供的OLED器件衰减测试方法的流程图;
图7为本公开实施例提供的OLED器件衰减测试方法中构建老化前发光亮度差值函数f1(x)的流程图;
图8为本公开实施例提供的OLED器件衰减测试方法中构建第二发光亮度差值函数f2(x)的流程图;
图9为本公开实施例提供的OLED器件衰减测试方法中判断OLED器件是否发生老化的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
实施例一
请参阅图1和图6,本公开实施例提供的OLED器件衰减测试装置包括:差值函数构建单元200、积分单元300、比较单元400和判定单元500。差值函数构建单元200用于根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建老化前发光亮度差值函数f1(x)(即第一发光亮度差值函数);根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建老化后发光亮度差值函数f2(x)(即第二发光亮度差值函数);其中,第一发光约束条件为单重约束环境,所述单重约束环境为可变磁场,第二发光约束条件为双重约束环境,所述双重约束环境包括恒定微波和可变磁场,x为可变磁场的磁场强度。
积分单元300用于在可变磁场的磁场强度范围内,对老化前发光亮度 差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea。
比较单元400用于比较
Figure PCTCN2017091065-appb-000009
Figure PCTCN2017091065-appb-000010
其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光约束条件下,老化后OLED器件的发光亮度。此处“非发光约束条件”不同于第一和第二发光约束条件,例如指恒定电流或者恒定电压。
判定单元500用于根据
Figure PCTCN2017091065-appb-000011
Figure PCTCN2017091065-appb-000012
比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
示例性的,在
Figure PCTCN2017091065-appb-000013
时,判定单元500判定OLED器件中发光层的发光材料未发生本征衰减;在
Figure PCTCN2017091065-appb-000014
时,判定OLED器件中发光层的发光材料发生本征衰减。
至少一些实施例中,利用上述实施例提供的OLED器件衰减测试装置对老化前的OLED器件进行分析,包括:
利用差值函数构建单元200根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建老化前发光亮度差值函数f1(x);
利用积分单元300在可变磁场的磁场强度范围内,对老化前发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena。
至少一些实施例中,利用上述实施例提供的OLED器件衰减测试装置对老化后的OLED器件进行如下分析,包括:
利用差值函数构建单元200根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);
利用积分单元300在可变磁场的磁场强度范围内,对第二发光亮度差值函数f2(x)进行积分,得到第一积分结果Ea。
至少一些实施例中,利用OLED器件衰减测试装置对老化前后的OLED 器件完成上述分析后,利用比较单元400比较
Figure PCTCN2017091065-appb-000015
Figure PCTCN2017091065-appb-000016
然后,利用判定单元500根据
Figure PCTCN2017091065-appb-000017
Figure PCTCN2017091065-appb-000018
比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
示例性的,在
Figure PCTCN2017091065-appb-000019
时,判定OLED器件中发光层的发光材料未发生本征衰减;在
Figure PCTCN2017091065-appb-000020
时,判定OLED器件中发光层的发光材料发生本征衰减,而不是的电子传输层、空穴传输层、层界面,或者其他部分发生衰减。
在本公开实施例提供的OLED器件中,第一发光约束条件为可变磁场的单重约束环境,使得无论是老化前还是老化后的OLED器件,其中形成激子的电子和空穴均能响应磁场强度的变化(如图3中b所示),以发出不同亮度的光;而第二发光约束条件为恒定微波和可变磁场的双重约束环境,使得无论是老化前还是老化后的OLED器件,其中形成激子的电子和空穴不仅能够响应磁场强度的变化,而且还能够在恒定微波的作用下,使得发光亮度在一定的磁场强度范围内出现突变(如图3中a所示),因此,本公开提供的OLED器件衰减分析装置中,通过差值函数构建单元200根据OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x)和第二发光亮度差值函数f2(x),并在可变磁场的磁场强度范围内对其积分,即可得到表征老化前OLED器件内激子的数量的第一积分结果Ena,以及表征老化后OLED器件内激子的数量的第二积分结果Ea,图4示出了一个差值函数的曲线图。而考虑到OLED器件中发光层中发光材料发生本征衰减后,其中的激子形成过程中,所存在的辐射跃迁机率相对非辐射跃迁概率相对减少,而OLED器件的发光亮度可以表征辐射跃迁的概率,因此,可以通过将老化前OLED器件的发光亮度Lna和第一积分结果Ena的比值
Figure PCTCN2017091065-appb-000021
与老化后OLED器件的发光亮度La和第二积分结果Ea的比 值
Figure PCTCN2017091065-appb-000022
进行对比,以判断出OLED器件的发光层中发光材料是否发生本征衰减。
第二发光约束条件下,无论是老化前还是老化后的OLED器件,其中形成激子的电子和空穴能够在恒定微波的作用下,使得发光亮度在一定的磁场强度范围内出现突变,这是因为在第二发光约束条件下的恒定微波和可变磁场的双重约束环境,OLED器件中形成激子的电子和空穴发生共振响应,从而使得OLED器件的发光亮度在一定的磁场强度范围内出现突变。
可以理解的是,OLED器件中激子在形成后,存在辐射跃迁kp和非辐射跃迁knp,辐射跃迁kp会发射光子,而相应的非辐射跃迁knp则会在器件内形成热量扩散掉,如果OLED器件中发光层所含有的发光材料出现变质,则非辐射跃迁knp的概率相对于辐射跃迁kp的概率会增加,使得OLED器件的发光亮度降低,即OLED器件的发光亮度可以表征辐射跃迁的概率。
需要说明的是,上述实施例中的恒定微波的微波频率大约为10GHz-20GHz,例如10GHz、20GHz或15GHz,而可变磁场的磁场强度范围大约为0-500mT,二者可以根据实际情况选择。
为了提高OLED器件衰减分析的准确性,老化前后的OLED器件为同一个OLED器件,因此,在利用OLED器件衰减测试装置对老化前的OLED器件完成上述分析后,对OLED器件进行老化处理,再利用OLED器件衰减测试装置对老化前后的OLED器件完成上述分析。
可以理解的是,老化前的OLED器件和老化后的OLED器件为同一型号同一批次的OLED器件即可,即可以先利用OLED器件衰减测试装置对对老化前的OLED器件进行上述分析,也可以先利用OLED器件衰减测试装置对老化后的OLED器件进行上述分析,但这样会因为个体差异,导致OLED器件衰减分析准确性差。
至少一些实施例中,请参阅图2、图7和图8,上述实施例中的差值函数构建单元200包括函数构建模块201以及与函数构建模块201的输出端相连的差值运算模块202;差值运算模块202的输出端与积分单元300的输入端相连。
函数构建模块201用于存储所述可变磁场的磁场强度,根据所述可变 磁场的磁场强度和OLED器件老化前第一发光约束条件下OLED器件发光亮度构建表征第一老化前发光亮度曲线的第一老化前发光亮度函数f11(x),根据所述可变磁场的磁场强度和OLED器件老化前第二发光约束条件下OLED器件发光亮度构建表征第二老化前发光亮度曲线的第二老化前发光亮度函数f21(x);根据所述可变磁场的磁场强度和OLED器件老化后第一发光约束条件下OLED器件发光亮度构建表征第一老化后发光亮度曲线的第一老化后发光亮度函数f12(x),根据所述可变磁场的磁场强度和OLED器件老化后第二发光约束条件下OLED器件发光亮度构建表征第二老化后发光亮度曲线的第二老化后发光亮度函数f22(x)。
差值运算模块202用于根据第一老化前发光亮度函数f11(x)与第二老化前发光亮度函数f21(x)构建第一发光亮度差值函数f1(x);以及根据第一老化后发光亮度函数f12(x)与第二老化后发光亮度函数f22(x)构建第二发光亮度差值函数f2(x);其中,f1(x)=|f11(x)-f21(x)|,f2(x)=|f12(x)-f22(x)|。
至少一些实施例中,请参阅图7,利用函数构建单元200构建第一发光亮度差值函数f1(x)采用如下方法:
利用函数构建模块201根据所述可变磁场的磁场强度和OLED器件老化前第一发光约束条件下OLED器件发光亮度构建表征第一老化前发光亮度曲线的第一老化前发光亮度函数f11(x);第一老化前发光亮度函数f11(x);
利用函数构建模块201根据所述可变磁场的磁场强度和OLED器件老化前第二发光约束条件下OLED器件发光亮度构建表征第二老化前发光亮度曲线的第二老化前发光亮度函数f21(x);
利用差值运算模块202根据第一老化前发光亮度函数f11(x)与第二老化前发光亮度函数f21(x)构建第一发光亮度差值函数f1(x);其中,f1(x)=|f11(x)-f21(x)|。
请参阅图8,利用函数构建单元200构建第二发光亮度差值函数f2(x)采用如下方法:
利用函数构建模块201根据所述可变磁场的磁场强度和OLED器件老化后第一发光约束条件下OLED器件发光亮度构建表征第一老化后发光亮度曲线的第一老化后发光亮度函数f12(x);
利用函数构建模块201根据所述可变磁场的磁场强度和OLED器件老化后第二发光约束条件下OLED器件发光亮度构建表征第二老化后发光亮度曲线的第二老化后发光亮度函数f22(x);
利用差值运算模块202根据第一老化后发光亮度函数f12(x)与第二老化后发光亮度函数f22(x)构建第二发光亮度差值函数f2(x);其中,f2(x)=|f12(x)-f22(x)|。
图3的曲线b示出了第一发光约束条件下的OLED器件对应的发光亮度。
图3的曲线a示出了第二发光约束条件下的OLED器件对应的发光亮度曲线。
通过对比曲线a和b可以发现,第一发光约束条件下,OLED器件的发光亮度曲线比较平稳,且随着磁场强度的增加,OLED器件的发光亮度也在逐渐增加。第二发光约束条件下,由于在恒定微波和可变磁场的双重约束环境的作用,发光材料中形成激子的电子和空穴不仅能够响应磁场强度的变化,而且还在恒定微波的作用下,使OLED器件的发光亮度在一定的磁场强度范围内出现突变。
通过上述实施例中构建第一发光亮度差值函数f1(x)和构建第二发光亮度差值函数f2(x)的具体过程可知,不管是OLED器件老化前,还是OLED器件老化后,本公开实施例均是先得到第一发光约束条件下的函数和第一发光约束条件函数,然后将这两个函数相减,即可得到对应的差值函数,可见,本公开实施例利用了OLED器件中形成激子的电子和空穴对第一发光约束条件和第二发光约束条件的响应差异性,获取能够反映激子数量的差值函数,而通过对该差值函数进行有限积分,所获取的积分结果就能够表征OLED器件内激子的数量。
至少一些实施例中,上述实施例提供的OLED器件衰减测试装置还包括数据获取单元100,数据获取单元100的输出端分别与差值函数构建单元200的输入端和比较单元400的输入端相连,参阅图1和图9。
示例性的,数据获取单元100的输出端与函数构建模块201的输入端相连。数据获取单元100用于获取OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;以及 获取OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度。
示例性的,数据获取单元100还用于获取非发光约束条件下老化前OLED器件的发光亮度Lna,和非发光约束条件下老化后OLED器件的发光亮度La,在此情况下,比较单元400还用于存储非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La,以及比较Lna与La;判定单元500还用于根据Lna与La的比较结果,判断OLED器件是否发生老化。以上判断OLED是否发生老化的步骤可以与判断OLED器件的发光层的发光材料是否发生本征衰减同时执行;或者,在其后执行,这样能进一步核验其结果。
至少一些实施例中,数据获取单元100除了获取OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;以及获取OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度外,还获取非发光约束条件下老花前OLED器件发光亮度Lna,以及老化后OLED器件发光亮度La,
利用比较单元400存储非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La,以及比较Lna与La;
利用判定单元500根据Lna与La的比较结果,判断OLED器件是否发生老化。
本公开实施例提供的OLED器件衰减测试装置通过将数据获取单元100的输出端与比较单元400的输入端相连,就能够通过数据获取单元100获取非发光约束条件下,老化前后OLED器件的发光亮度,并通过比较单元400和判定单元500判断其是否真正发生老化;而且,还能够通过比较单元存储非发光约束条件下,老化前后OLED器件的发光亮度,以便参与确定OLED器件中发光层的发光材料是否发生本征衰减。
在La<Lna时,判定单元500判定所述OLED器件发生老化;在La=Lna时,判定所述OLED器件未发生老化。
需要说明的是,上述实施例中数据获取单元100获取OLED器件发光亮度,可以通过如图5所示的OLED发光亮度测量单元实现。该OLED发 光亮度测量单元包括磁场生成单元2、微波发生单元1以及光学测量单元3;光学测量单元3的输出端与数据获取单元100相连。磁场生成单元2用于给OLED器件提供可变磁场。微波发生单元1用于给OLED器件提供恒定微波。微博发生单元例如可通过普通的微波发生器实现,该微波发生器需能够提供恒定波长的微波。光学测量单元3用于测量OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;和/或,测量OLED器件老化前后,非发光约束条件下OLED器件发光亮度。例如,光学测量装置可以为光功率计或光电倍增管,也可以为其他能够测量发光亮度的装置。
可以理解的是,为了便于OLED器件发光,可以进一步增设向OLED器件供电的电源,使得该OLED发光亮度测量单元可以独立工作;电源可以为高精度源表,如keithley2400,以保证向OLED器件提供恒定电流或者恒定电压,使得OLED器件不会受到除磁场和微波其他因素的影响。
该OLED发光亮度测量单元各次测量中,OLED器件与测试条件对应关系按照下表进行。
表1各次测量OLED器件与测试条件对应关系
Figure PCTCN2017091065-appb-000023
例如,上述实施例中的磁场生成单元2为可控励磁电源,可控励磁电源所提供的磁场环境中设有用于承载OLED器件4的微波载台11,微波发生单元1的发射端通过波导管10与微波载台11相连。光学测量单元3通过光纤30收集OLED器件所放出的光。
由于磁场生成单元为可控励磁电源,以保证能够给OLED器件提供可变化的磁场,使得OLED器件能够因响应不同磁场强度,而发出不同亮度的光。
而且,由于微波载台11能够承载OLED器件,而微波发生单元1的发 射端通过波导管10与微波载台11相连,这样微波载台11又相当于一个向OLED器件注入恒定微波的注入部件,且微波载台11位于可变磁场中。
需要说明的是,上述实施例中的微波波长和磁场强度的范围是特定选择的。例如,该微波发生器提供10GHz-20GHz中任一频率的微波,如10GHz、13GHz或20GHz。可变磁场的磁场强度范围为0-500mT。
实施例二
请参阅图6,本公开实施例提供一种OLED器件衰减测试方法,包括:
根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x);根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);其中,第一发光约束条件为单重约束环境,所述单重约束环境为可变磁场,第二发光约束条件为双重约束环境,所述双重约束环境包括恒定微波和可变磁场,x为可变磁场磁场强度;
在可变磁场的磁场强度范围内,对第一发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea;
比较
Figure PCTCN2017091065-appb-000024
Figure PCTCN2017091065-appb-000025
其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光约束条件下,老化后OLED器件的发光亮度;
根据
Figure PCTCN2017091065-appb-000026
Figure PCTCN2017091065-appb-000027
比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
本公开实施例提供的OLED器件衰减测试方法的有益效果与上述实施例一提供的OLED器件衰减测试装置的有益效果相同,在此不做赘述。
上述实施例在构建第一和第二发光亮度差值函数f1(x)、f2(x)前,需要获取OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度。
至少一些实施例中,根据
Figure PCTCN2017091065-appb-000028
Figure PCTCN2017091065-appb-000029
的比较结果,判断OLED器件的发 光层的发光材料是否发生本征衰减的方法包括:
Figure PCTCN2017091065-appb-000030
时,判定OLED器件中发光层的发光材料未发生本征衰减;在
Figure PCTCN2017091065-appb-000031
时,判定OLED器件中发光层的发光材料发生本征衰减。
需要说明的是,上述实施例中的微波波长和磁场强度的范围是特定选择的。例如,该微波发生器提供10GHz-20GHz中任意频率的微波,如10GHz、13GHz或20GHz。可变磁场的磁场强度范围为0-500mT。
至少一些实施例中,请参阅图7,根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x)的方法包括:
根据所述可变磁场的磁场强度和OLED器件老化前第一发光约束条件下OLED器件发光亮度构建表征第一老化前发光亮度曲线的第一老化前发光亮度函数f11(x);
根据所述可变磁场的磁场强度和OLED器件老化前第二发光约束条件下OLED器件发光亮度构建表征第二老化前发光亮度曲线的第二老化前发光亮度函数f21(x);
根据第一老化前发光亮度函数f11(x)与第二老化前发光亮度函数f21(x)构建第一发光亮度差值函数f1(x);其中,f1(x)=|f11(x)-f21(x)|。
至少一些实施例中,请参阅图8,根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x)的方法包括:
根据所述可变磁场的磁场强度和OLED器件老化后第一发光约束条件下OLED器件发光亮度构建表征第一老化后发光亮度曲线的第一老化后发光亮度函数f12(x),根据所述可变磁场的磁场强度和OLED器件老化后第二发光约束条件下OLED器件发光亮度构建表征第二老化后发光亮度曲线的第二老化后发光亮度函数f22(x);
根据第一老化后发光亮度函数f12(x)与第二老化后发光亮度函数f22(x)构建第二发光亮度差值函数f2(x);其中,f2(x)=|f12(x)-f22(x)|。
至少一些实施例中,请参阅图9,上述实施例提供的OLED器件衰减测 试方法还包括:
获取非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La;
存储非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La,以及比较Lna与La;
根据Lna与La的比较结果,判断OLED器件是否发生老化。
以上判断OLED是否发生老化的步骤可以与判断OLED器件的发光层的发光材料是否发生本征衰减同时执行;或者,在判断OLED器件的发光层的发光材料是否发生本征衰减之后执行,进一步核验其结果。
至少一些实施例中,根据Lna与La的比较结果,判断OLED器件是否发生老化的方法包括:
在La<Lna时,判定所述OLED器件发生老化;在La=Lna时,判定所述OLED器件未发生老化。
本公开实施例提供的OLED器件的衰减测试装置和检测方法中,第一发光限制条件为可变磁场的单重约束环境,使得无论是老化前还是老化后的OLED器件,其中形成激子的电子和空穴均能响应磁场强度的变化,以发出不同亮度的光;而第二发光限制条件为恒定微波和可变磁场的双重约束环境,使得无论是老化前还是老化后的OLED器件,其中形成激子的电子和空穴不仅能够响应磁场强度的变化,而且还能够在恒定微波的作用下,使得发光亮度在一定的磁场强度范围内出现突变,因此,通过差值函数构建单元根据OLED器件老化前后,第一发光限制条件下OLED器件发光亮度和第二发光限制条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x)和第二发光亮度差值函数f2(x),并在可变磁场对应的磁场强度范围内对其积分,即可得到表征老化前OLED器件内激子的数量的第一积分结果Ena,以及表征老化后OLED器件内激子的数量的第二积分结果Ea,而考虑到OLED器件中发光层中发光材料发生本征衰减后,其中的激子形成过程中,所存在的辐射跃迁机率相对非辐射跃迁概率相对减少,而OLED器件的发光亮度可以表征辐射跃迁的概率,因此,可以通过将老化前OLED器件的发光亮度Lna和第一积分结果Ena的比值
Figure PCTCN2017091065-appb-000032
与老化后 OLED器件的发光亮度La和第二积分结果Ea的比值
Figure PCTCN2017091065-appb-000033
进行对比,以判断出OLED器件的发光层中发光材料是否发生本征衰减。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图的一个流程或多个流程和/或方框图的一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请基于并且要求于2016年8月4日递交的中国专利申请第201610634740.X号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (17)

  1. 一种OLED器件衰减测试装置,包括:
    差值函数构建单元,用于根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x);根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);其中,第一发光约束条件包括可变磁场,第二发光约束条件包括恒定微波和可变磁场,x为所述可变磁场的磁场强度;
    积分单元,用于在所述可变磁场的磁场强度范围内,对第一发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea;
    比较单元,用于比较
    Figure PCTCN2017091065-appb-100001
    Figure PCTCN2017091065-appb-100002
    其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光约束条件下,老化后OLED器件的发光亮度;
    判定单元,用于根据
    Figure PCTCN2017091065-appb-100003
    Figure PCTCN2017091065-appb-100004
    比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减。
  2. 根据权利要求1所述的OLED器件衰减测试装置,其中,所述差值函数构建单元包括函数构建模块以及与函数构建模块的输出端相连的差值运算模块;所述差值运算模块的输出端与积分单元的输入端相连;
    所述函数构建模块用于存储所述可变磁场的磁场强度、根据所述可变磁场的磁场强度和OLED器件老化前第一发光约束条件下OLED器件发光亮度构建表征第一老化前发光亮度曲线的第一老化前发光亮度函数f11(x),根据所述可变磁场的磁场强度和OLED器件老化前第二发光约束条件下OLED器件发光亮度构建表征第二老化前发光亮度曲线的第二老化前发光亮度函数f21(x)、以及根据所述可变磁场的磁场强度和OLED器件老化后第一发光约束条件下OLED器件发光亮度构建表征第一老化后发光亮度曲 线的第一老化后发光亮度函数f12(x),根据所述可变磁场的磁场强度和OLED器件老化后第二发光约束条件下OLED器件发光亮度构建表征第二老化后发光亮度曲线的第二老化后发光亮度函数f22(x);
    所述差值运算模块用于根据第一老化前发光亮度函数f11(x)与第二老化前发光亮度函数f21(x)构建第一发光亮度差值函数f1(x);以及根据第一老化后发光亮度函数f12(x)与第二老化后发光亮度函数f22(x)构建第二发光亮度差值函数f2(x);其中,f1(x)=|f11(x)-f21(x)|,f2(x)=|f12(x)-f22(x)|。
  3. 根据权利要求1或2所述的OLED器件衰减测试装置,其中,所述判定单元用于在
    Figure PCTCN2017091065-appb-100005
    时,判定OLED器件中发光层的发光材料未发生本征衰减;在
    Figure PCTCN2017091065-appb-100006
    时,判定OLED器件中发光层的发光材料发生本征衰减。
  4. 根据权利要求1所述的OLED器件衰减测试装置,其中,所述OLED器件衰减测试装置还包括数据获取单元,所述数据获取单元的输出端分别与差值函数构建单元的输入端和比较单元的输入端相连;
    所述数据获取单元用于获取OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;还用于获取非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La;
    所述比较单元还用于存储非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La,以及比较Lna与La;
    所述判定单元还用于根据Lna与La的比较结果,判断OLED器件是否发生老化。
  5. 根据权利要求4所述的OLED器件衰减测试装置,其中,所述判定单元用于在La<Lna时,判定所述OLED器件发生老化;在La=Lna时,判定所述OLED器件未发生老化。
  6. 根据权利要求4所述的OLED器件衰减测试装置,其中,所述OLED器件衰减测试装置还包括:磁场生成单元、微波发生单元、以及与光学测量单元;所述光学测量单元的输出端与所述数据获取单元相连;
    所述磁场生成单元用于给OLED器件提供可变磁场;
    所述微波发生单元用于给OLED器件提供恒定微波;
    所述光学测量单元用于测量OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;以及测量OLED器件老化前后,非发光约束条件下OLED器件发光亮度。
  7. 根据权利要求6所述的OLED器件衰减测试装置,其中,所述磁场生成单元为可控励磁电源,所述可控励磁电源所提供的磁场中设有用于承载OLED器件的微波载台,所述微波发生单元的发射端通过波导管与微波载台相连。
  8. 根据权利要求6所述的OLED器件衰减测试装置,其中,所述光学测量装置为光功率计或光电倍增管。
  9. 根据权利要求6~8中任一项所述的OLED器件衰减测试装置,其中,所述OLED器件衰减测试装置还包括向OLED器件供电的电源。
  10. 根据权利要求1所述的OLED器件衰减测试装置,其中,所述恒定微波的微波频率为10GHz-20GHz,所述可变磁场的磁场强度范围为0-500mT。
  11. 一种OLED器件衰减测试方法,包括:
    根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x);根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x);其中,第一发光约束条件包括可变磁场,第二发光约束条件包括恒定微波和可变磁场,x为所述可变磁场的磁场强度;
    在所述可变磁场的磁场强度范围内,对第一发光亮度差值函数f1(x)进行积分,得到第一积分结果Ena,对第二发光亮度差值函数f2(x)进行积分,得到第二积分结果Ea;
    比较
    Figure PCTCN2017091065-appb-100007
    Figure PCTCN2017091065-appb-100008
    其中,Lna为非发光约束条件下,老化前OLED器件的发光亮度,La为非发光约束条件下,老化后OLED器件的发光亮度;
    根据
    Figure PCTCN2017091065-appb-100009
    Figure PCTCN2017091065-appb-100010
    比较结果,判断OLED器件的发光层的发光材料是否发 生本征衰减。
  12. 根据权利要求11所述的OLED器件衰减测试方法,其中,根据OLED器件老化前,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第一发光亮度差值函数f1(x)的方法包括:
    根据所述可变磁场的磁场强度和OLED器件老化前第一发光约束条件下OLED器件发光亮度构建表征第一老化前发光亮度曲线的第一老化前发光亮度函数f11(x);
    根据所述可变磁场的磁场强度和OLED器件老化前第二发光约束条件下OLED器件发光亮度构建表征第二老化前发光亮度曲线的第二老化前发光亮度函数f21(x);
    根据第一老化前发光亮度函数f11(x)与第二老化前发光亮度函数f21(x)构建第一发光亮度差值函数f1(x);其中,f1(x)=|f11(x)-f21(x)|。
  13. 根据权利要求11或12所述的OLED器件衰减测试方法,其中,根据OLED器件老化后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度的差值,构建第二发光亮度差值函数f2(x)的方法包括:
    根据所述可变磁场的磁场强度和OLED器件老化后第一发光约束条件下OLED器件发光亮度构建表征第一老化后发光亮度曲线的第一老化后发光亮度函数f12(x),根据所述可变磁场的磁场强度和OLED器件老化后第二发光约束条件下OLED器件发光亮度构建表征第二老化后发光亮度曲线的第二老化后发光亮度函数f22(x);
    根据第一老化后发光亮度函数f12(x)与第二老化后发光亮度函数f22(x)构建第二发光亮度差值函数f2(x);其中,f2(x)=|f12(x)-f22(x)|。
  14. 根据权利要求11所述的OLED器件衰减测试方法,其中,根据
    Figure PCTCN2017091065-appb-100011
    Figure PCTCN2017091065-appb-100012
    比较结果,判断OLED器件的发光层的发光材料是否发生本征衰减的方法包括:
    Figure PCTCN2017091065-appb-100013
    时,判定OLED器件中发光层的发光材料未发生本征衰减; 在
    Figure PCTCN2017091065-appb-100014
    时,判定OLED器件中发光层的发光材料发生本征衰减。
  15. 根据权利要求11所述的OLED器件衰减测试方法,其中,所述OLED器件衰减测试方法还包括:
    获取OLED器件老化前后,第一发光约束条件下OLED器件发光亮度和第二发光约束条件下OLED器件发光亮度;获取非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La;
    存储非发光约束条件下,老化前OLED器件的发光亮度Lna,和老化后OLED器件的发光亮度La,以及比较Lna与La;
    根据Lna与La的比较结果,判断OLED器件是否发生老化。
  16. 根据权利要求15所述的OLED器件衰减测试方法,其中,根据Lna与La的比较结果,判断OLED器件是否发生老化的方法包括:
    在La<Lna时,判定所述OLED器件发生老化;在La=Lna时,判定所述OLED器件未发生老化。
  17. 根据权利要求11所述的OLED器件衰减测试方法,其中,所述可变磁场的磁场强度范围为0-500mT,恒定微波的微波频率为10GHz-20GHz。
PCT/CN2017/091065 2016-08-04 2017-06-30 Oled器件衰减测试装置及衰减测试方法 WO2018024060A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,349 US10396285B2 (en) 2016-08-04 2017-06-30 Apparatus and method for detecting presence of attenuation in OLED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610634740.X 2016-08-04
CN201610634740.XA CN106250641B (zh) 2016-08-04 2016-08-04 一种oled器件衰减分析装置及衰减分析方法

Publications (1)

Publication Number Publication Date
WO2018024060A1 true WO2018024060A1 (zh) 2018-02-08

Family

ID=58078676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091065 WO2018024060A1 (zh) 2016-08-04 2017-06-30 Oled器件衰减测试装置及衰减测试方法

Country Status (3)

Country Link
US (1) US10396285B2 (zh)
CN (1) CN106250641B (zh)
WO (1) WO2018024060A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250641B (zh) * 2016-08-04 2019-03-08 京东方科技集团股份有限公司 一种oled器件衰减分析装置及衰减分析方法
CN107315139B (zh) * 2017-05-24 2020-11-13 东莞市艾百人工智能科技有限公司 一种oled显示器件失效检测探测系统及其检测方法
CN111369939A (zh) * 2018-12-26 2020-07-03 武汉华星光电半导体显示技术有限公司 显示设备和显示设备的补偿方法
US11362313B2 (en) 2019-03-27 2022-06-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Manufacturing method and processing device for display substrate each applying magnetic field during aging current being generated

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278035A (ja) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd 発光分布推定方法、発光分布推定装置、発光分布推定プログラム、記録媒体、表示素子、画像表示装置
CN101900786A (zh) * 2010-06-02 2010-12-01 华南理工大学 基于虚拟仪器控制的发光二极管寿命测试方法及系统
CN102222455A (zh) * 2011-06-14 2011-10-19 云南北方奥雷德光电科技股份有限公司 一种amoled微型显示器的寿命评估方法
CN103954898A (zh) * 2013-07-23 2014-07-30 彩虹(佛山)平板显示有限公司 一种oled产品寿命的测试方法
CN104617226A (zh) * 2015-02-28 2015-05-13 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置及显示补偿方法
CN106250641A (zh) * 2016-08-04 2016-12-21 京东方科技集团股份有限公司 一种oled器件衰减分析装置及衰减分析方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2688870A1 (en) * 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
CN102243278B (zh) * 2011-04-20 2014-04-09 上海电力学院 预测有机电致发光显示器的寿命方法
US9240568B2 (en) * 2011-11-10 2016-01-19 Corning Incorporated Opal glasses for light extraction
KR102054849B1 (ko) * 2013-06-03 2019-12-12 삼성디스플레이 주식회사 유기 발광 표시 패널
KR102050365B1 (ko) * 2013-08-23 2020-01-09 삼성디스플레이 주식회사 유기 발광 표시 장치의 불량 검출 방법 및 유기 발광 표시 장치
KR102222075B1 (ko) * 2014-10-10 2021-03-04 삼성디스플레이 주식회사 유기 발광 다이오드의 품질 검사 방법 및 이를 수행하기 위한 유기 발광 다이오드의 품질 검사 장치
KR102270083B1 (ko) * 2014-10-13 2021-06-29 삼성디스플레이 주식회사 유기 발광 표시 패널 및 테스트 방법
CN104409649B (zh) * 2014-11-20 2016-08-24 天津理工大学 一种低压有机发光二极管及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278035A (ja) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd 発光分布推定方法、発光分布推定装置、発光分布推定プログラム、記録媒体、表示素子、画像表示装置
CN101900786A (zh) * 2010-06-02 2010-12-01 华南理工大学 基于虚拟仪器控制的发光二极管寿命测试方法及系统
CN102222455A (zh) * 2011-06-14 2011-10-19 云南北方奥雷德光电科技股份有限公司 一种amoled微型显示器的寿命评估方法
CN103954898A (zh) * 2013-07-23 2014-07-30 彩虹(佛山)平板显示有限公司 一种oled产品寿命的测试方法
CN104617226A (zh) * 2015-02-28 2015-05-13 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置及显示补偿方法
CN106250641A (zh) * 2016-08-04 2016-12-21 京东方科技集团股份有限公司 一种oled器件衰减分析装置及衰减分析方法

Also Published As

Publication number Publication date
US10396285B2 (en) 2019-08-27
US20190006595A1 (en) 2019-01-03
CN106250641A (zh) 2016-12-21
CN106250641B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2018024060A1 (zh) Oled器件衰减测试装置及衰减测试方法
Ahn et al. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements
WO2016197700A1 (zh) 柔性显示器及其柔性显示屏的弯曲状态检测方法
US9128144B2 (en) System and method of quantifying color and intensity of light sources
RU2012114864A (ru) Способ управления распределением света в пространстве, включающем в себя множество установленных источников света и внешний источник света
WO2018228076A1 (zh) 发光器件的老化测试方法和老化测试系统
US11991801B2 (en) Lifetime color stabilization of color-shifting artificial light sources
TW201940848A (zh) 光測定裝置及光測定方法
KR101116840B1 (ko) 광소자의 내부 양자 우물 효율을 측정하는 방법 및 장치
US20120264236A1 (en) Fluorescent powder applying device and method capable of detecting instantly color temperature of white light in a manufacturing process
CN103792003B (zh) 基于led系统的照明效率和光通量的预测方法
KR101194349B1 (ko) 광소자의 내부양자효율 및 재결합율을 산출하는 방법
Zhu et al. Re-excitation of trivalent europium ions doped into gallium nitride revealed through photoluminescence under pulsed laser excitation
JP2007263624A (ja) 内部量子効率測定装置及び方法
KR101513242B1 (ko) 광소자의 내부양자효율을 측정하는 방법 및 장치
CN114117711A (zh) 发光器件寿命测试方法、系统、终端设备及存储介质
Chatzizyrli et al. Opto-thermal simulation model for optimizing the thermal response of the optical properties of Ce: YAG single-crystal phosphors
CN106102289B (zh) 一种无极灯光路方法及装置
CN109212402B (zh) 评测发光二极管内量子效率的方法
KR101735183B1 (ko) 발광 다이오드의 저항 측정 방법 및 장치
Chen et al. Optical Model of Laminated Remote Phosphor Films and Its Application in White LED
CN107132856A (zh) 水平度调整装置及水平度调整方法
CN112097911A (zh) 微型led阵列热稳定性判定方法、装置、计算机设备及介质
JP2002286640A (ja) 2波長励起フォトルミネッセンスによる禁制帯内準位の測定方法及びその装置
US20080191701A1 (en) Method and Apparatus for Inspecting Light-Emitting Element and Method and Apparatus for Burn-In

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17836242

Country of ref document: EP

Kind code of ref document: A1