WO2018021801A1 - Intelligent hydraulic breaker using proximity sensor and construction equipment comprising same - Google Patents

Intelligent hydraulic breaker using proximity sensor and construction equipment comprising same Download PDF

Info

Publication number
WO2018021801A1
WO2018021801A1 PCT/KR2017/008003 KR2017008003W WO2018021801A1 WO 2018021801 A1 WO2018021801 A1 WO 2018021801A1 KR 2017008003 W KR2017008003 W KR 2017008003W WO 2018021801 A1 WO2018021801 A1 WO 2018021801A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
hitting
proximity sensor
stroke
Prior art date
Application number
PCT/KR2017/008003
Other languages
French (fr)
Korean (ko)
Inventor
임훈
윤복중
주진무
Original Assignee
재단법인 건설기계부품연구원
대모 엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 건설기계부품연구원, 대모 엔지니어링 주식회사 filed Critical 재단법인 건설기계부품연구원
Publication of WO2018021801A1 publication Critical patent/WO2018021801A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/305Arrangements for breaking-up hard ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators

Definitions

  • the present invention relates to an intelligent hydraulic breaker using a proximity sensor and a construction equipment including the same. More specifically, the stroke distance, the hitting distance or the hitting speed is manually or automatically depending on the hitting condition including the rigidity of the hitting ground.
  • the present invention relates to an intelligent hydraulic breaker using an adjustable proximity sensor and construction equipment including the same.
  • the present invention is the result of the research carried out with the support of the Ministry of Knowledge Economy and the Korea Institute of Industrial Technology Promotion, "Next Generation Construction Machinery Parts Specialized Complex Development Project.”
  • a breaker is a device used to crush a rock or ground by striking a chisel in contact with an object through a reciprocating motion of a piston, and is mounted on a heavy equipment vehicle such as an excavator in a large construction site. Hydraulic attachment forms are mainly used.
  • the conventional breaker has a long stroke mode that increases the stroke distance of the piston so that the impact force is strengthened for hard rock fracture according to the operator's operation, and a shot speed is improved even if the impact force is somewhat sacrificed for soft rock fracture. It is configured to change the stroke mode (short stroke).
  • the present applicant has proposed a technique for a hydraulic breaker or a striking device that can adjust the stroke distance according to the rigidity or state of the ground in order to solve the problem as described above, and as a reference related to the prior art
  • a 'hydraulic control valve for a breaker' of Patent No. 10-1332260 is proposed.
  • the present invention has been proposed to solve the above problems, and provides an intelligent hydraulic breaker using a proximity sensor in which the stroke distance of the piston is adjusted according to the hitting condition, and construction equipment including the same.
  • the present invention provides an intelligent hydraulic breaker using a proximity sensor that can be mounted to the sensor in an optimal position when using a plurality of proximity sensors and construction equipment including the same.
  • the present invention provides an intelligent hydraulic breaker using a proximity sensor that controls the on / off of the solenoid valve by using the return point of the piston to adjust the stroke distance of the piston in multiple stages, and construction equipment including the same.
  • the present invention provides an intelligent hydraulic breaker using a proximity sensor that can distinguish the rigidity of the ground or rock using one proximity sensor and thus vary the stroke distance of the piston in multiple stages, and construction equipment comprising the same.
  • the hydraulic pressure is supplied to the cylinder;
  • a controller configured to transmit a control signal to the solenoid valve based on the received sensing value of the sensor, wherein the controller includes a stroke distance of the piston based on a sensing value at which the sensor detects a bottom dead center of the piston.
  • the sensor may be formed in the cylinder such that the front end of the piston strikes the
  • the sensor may be formed in the cylinder to be positioned between the long stroke port and the short stroke port.
  • the sensor is a plurality of proximity sensors, one of the proximity sensor is provided near the long stroke port, the other is provided near the short stroke port and the other is the long stroke port and the short stroke port Can be provided between.
  • the proximity sensor provided near the long stroke port of the proximity sensor detects hard rock of the hitting object
  • the proximity sensor provided near the short stroke port detects soft rock of the hitting object
  • the long stroke port and the short stroke port Proximity sensors provided in between can detect the heavy cancer of the hitting object.
  • the sensor may be a single proximity sensor formed in the cylinder, and the controller may determine the state or the strike condition of the hitting object based on the time duration of the sensing value at which the proximity sensor detects the large diameter portion of the piston.
  • the proximity sensor may be formed in the cylinder such that the piston is located at one side of the lower edge of the large diameter portion adjacent to the front end of the piston in the large diameter portion of the piston while the piston is in contact with the chisel.
  • the controller may determine the state or the strike condition of the hitting object from the duration of the ON or OFF state of the proximity sensor, and may determine that the longest duration is soft rock, the shortest is hard cancer, and the middle time is medium cancer.
  • the controller may be configured to determine the state or rigidity of the hitting object depending on whether the proximity sensor of a plurality of the proximity sensors is turned on when the chisel first penetrates the hitting object while the piston descends to contact the chisel. After the piston is raised, the solenoid valve may be turned on or off according to the required size of the lowering stroke of the piston, and the solenoid valve may be turned on when the hitting object is not hard rock.
  • the controller may control the stroke size when the piston descends by adjusting the ON / OFF state or duration of the solenoid valve when the hitting object is not hard rock.
  • the controller may control the stroke size when the piston descends by combining the ON / OFF state of the solenoid valve and the ON / OFF state of the main valve when the hitting object is not hard rock.
  • the controller may control the stroke size in multiple stages when the piston descends by adjusting the conversion speed or frequency of the ON / OFF state of the solenoid valve when the hitting target is not hard rock.
  • the controller may control the time required for the lowering of the piston to be shorter than the time required for the ascending when the piston descends while hitting the chisel.
  • the present invention the intelligent hydraulic breaker; And an excavator equipped with the intelligent hydraulic breaker.
  • Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same it is possible to automatically adjust the stroke distance or the size of the piston in accordance with the rigidity of the object or the impact conditions.
  • Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same, when using a plurality of proximity sensors can provide the optimum position that can be mounted proximity sensor.
  • Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same, multi-stage the stroke of the piston by controlling the on / off of the solenoid valve using the return point of the piston to adjust the stroke distance of the piston in multiple stages Can be controlled by
  • Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment comprising the same even if only one proximity sensor is used to distinguish the rigidity of the ground or rock and accordingly can maintain the piston stroke distance in multiple stages It can improve maintenance convenience and reduce manufacturing cost or operating cost.
  • FIG. 1 is a view showing the construction equipment according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of an intelligent hydraulic breaker according to an embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to an embodiment of the present invention.
  • 4A and 4B are views for explaining the proximity sensor position of the intelligent hydraulic breaker according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a process of determining the hitting object according to the position of the piston and the sensing value of the proximity sensor of the intelligent hydraulic breaker according to an embodiment of the present invention.
  • 6a to 6c and 7 are views for explaining the positional relationship between the solenoid valve operation and the piston of the intelligent hydraulic breaker according to an embodiment of the present invention.
  • FIG. 8 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to another embodiment of the present invention.
  • 9A to 9C are views for explaining the relationship between the piston position and the proximity sensor of the intelligent hydraulic breaker according to FIG. 8.
  • 10A to 10C are views showing signals of a proximity sensor according to the piston position of the intelligent hydraulic breaker according to FIG. 8.
  • FIG. 11 is a block diagram illustrating a schematic configuration of a controller of the intelligent hydraulic breaker according to FIG. 8.
  • FIG. 12 is a flow chart for explaining the operation of the intelligent hydraulic breaker according to FIG.
  • Construction equipment 100 is equipment for performing a blow operation on the object.
  • the construction equipment 100 for the impact work may be implemented in a form in which the intelligent hydraulic breaker 1000 is mounted as an attachment to a heavy-duty vehicle such as an excavator.
  • Intelligent hydraulic breaker 1000 is a device that performs the operation of hitting the object.
  • Representative examples of the intelligent hydraulic breaker 1000 may be a hydraulic breaker (crushing rock) or a hydraulic hammer (hydraulic hammer) to press the pile (pile).
  • the intelligent hydraulic breaker 1000 in the present invention is not limited to the above-described examples, it should be understood as a concept encompassing all other types of hitting device that performs a function of hitting the object in addition to the hydraulic breaker or hydraulic hammer.
  • the intelligent hydraulic breaker 1000 is a heavy-duty vehicle, that is, an attachment type mounted on the carrier 120, but is not necessarily the same, and may be independent from the carrier 120, such as a form directly handled by an operator.
  • the carrier 120 may be largely divided into a driving body 121 and a rotating body 122.
  • the traveling body 121 is mainly provided in a crawler type or a wheel type, and in some cases, may be a crane type or a truck type.
  • the rotating body 122 is mounted on the traveling body 121 so as to be rotatable in the vertical direction.
  • the rotating body 122 is provided with a connecting member 123 such as a boom or an arm.
  • the intelligent hydraulic breaker 1000 may be detachably attached to the end of the connection member 123 in a manner of being directly fastened in an attachment form or fastened through the coupler 140.
  • connection member 123 is mainly two or more members are fastened in a link manner, connected to the hydraulic cylinder 1430 may be bent or stretched by the expansion and contraction of the hydraulic cylinder 1430, stretching operation and the like. .
  • the connection member 123 may position the intelligent hydraulic breaker 1000 attached to the end by the operation on the hitting object.
  • the carrier 120 applies hydraulic pressure to the intelligent hydraulic breaker 1000 so that the mounted intelligent hydraulic breaker 1000 can operate, or in addition to each part or coupler 140 of the carrier 120 including a boom or an arm.
  • a hydraulic source 160 for supplying hydraulic pressure and a hydraulic tank 160a for storing hydraulic oil are installed.
  • a cabin on which the operator rides is provided on the rotating body 122, so that the operator can operate the carrier 120 or the intelligent hydraulic breaker 1000 by using an operation facility such as a handle, a lever, or a button in the cabin.
  • the carrier 120 may include an outrigger (not shown) for stably fixing the construction equipment 100 to the ground or a counter weight (not shown) for stabilizing the balance of the construction equipment 100.
  • the intelligent hydraulic breaker 1000 may include a mounting bracket 1200, a housing 1410, and a chisel 1600.
  • the housing 1410 is a site for generating a striking force in the intelligent hydraulic breaker 1000, and has a cylinder 1430 and a piston 1440 accommodated in the cylinder 1430 therein to be applied to the hydraulic pressure applied from the hydraulic source 160. As a result, the piston 1440 reciprocates to generate a striking force.
  • the chisel 1600 is a portion directly hitting a hitting object such as ground or rock, and the front end of the housing 1410 so that its rear end is hit by the front end of the piston 1440 when the piston 1440 is extended (in the following description)
  • the direction in which the piston 1440 is advanced (extended) is defined as the front, and the direction in which the piston 1440 is reversed (reduced) is defined as the rear.
  • the mounting bracket 1200 is coupled to the rear end of the housing 1410 and serves as a connection between the carrier 120 and the intelligent hydraulic breaker 1000.
  • the cylinder 1430 and the piston 1440 may be accommodated in the housing 1410.
  • the piston 1440 is provided in a cylindrical shape, the cylinder 1430 is provided in a hollow cylindrical shape so that the piston 1440 is inserted to reciprocate.
  • the inner wall of the cylinder 1430 is provided with various hydraulic ports for supplying hydraulic pressure to the interior of the cylinder 1430 or for discharging the hydraulic pressure from the interior of the cylinder 1430.
  • the piston 1440 is provided with at least two large diameter portions 1442 and 1444 and a small diameter portion 1446 therebetween along the longitudinal direction of the piston 1440. As the hydraulic pressure applied into the cylinder 1430 through the hydraulic port acts on the stepped surfaces 1442a and 1444a formed by the large diameter portions 1442 and 1444, the piston 1440 reciprocates back and forth in the cylinder 1430. To do.
  • the front head 1450 and the head cap 1420 are connected to the front and rear ends of the cylinder 1430, respectively.
  • the front head 1450 is provided with a chisel pin (not shown) on which the chisel 1600 is placed, and the chisel 1600 is hit by the front end of the piston 1440 when the piston 1440 is advanced by the chisel pin (not shown). Be placed in the proper position.
  • the front head 1450 may further include a dust protector (not shown) for preventing foreign matter from entering the cylinder 1430 when the piston 1440 is reciprocated, or a sound absorbing member (not shown) for reducing the impact sound. Can be installed.
  • the head cap 1420 has a gas chamber (not shown) therein, and the gas chamber imparts an appropriate damping effect to the piston 1440 as the volume thereof is compressed upon retraction of the piston 1440, so that the rear end of the piston 1440 is Prevents collisions.
  • the head cap 1420, the cylinder 1430, and the front head 1450 are sequentially connected by the long bolts 1402, and the housing 1410 is configured by covering the connecting body.
  • the housing 1410 is configured by covering the connecting body.
  • the configuration or structure of the intelligent hydraulic breaker 1000 described above is only one embodiment of the intelligent hydraulic breaker 1000 according to the present invention, and the intelligent hydraulic breaker 1000 according to the present invention is somewhat different from the above-described configuration or structure. It should be understood that other intelligent hydraulic breakers 1000 having similar functions, although different, are also included.
  • a long stroke may be required if the rock is a hard bedrock, and a short stroke may be necessary for a soft bedrock. This is because, in the case of hard rock, high hitting force is required, and in the case of short stroke, it is more advantageous to improve the working speed.
  • the hydraulic breaker uses a process larger than the energy required for crushing, the breaker is stressed due to repulsion of residual energy after crushing, and a cavity is generated in the cylinder 1430. This eventually leads to equipment damage, so adjusting the stroke distance is not just for improving work efficiency.
  • the automatic stroke distance adjusting function can automatically adjust the stroke distance of the piston 1440 according to the hitting condition.
  • the stroke distance can be adjusted using the hardness of the hitting object as the hitting condition.
  • the stroke distance may be adjusted based on the striking force required for pressing the pile.
  • the automatic stroke distance adjustment function may be performed by first detecting the signal reflecting the hitting condition by the intelligent hydraulic breaker 1000 and determining the hitting condition according to the detected result, and selecting the appropriate stroke mode for the determined hitting condition.
  • representative examples of the signal reflecting the hitting condition may include vibration generated during the hitting or a distance in which the piston 1440 retreats due to the repulsive force after the hitting.
  • the volume of the sound generated by the hitting, the piston ( 1440) A forward distance (maximum forward position, bottom dead center) when moving forward may also be used as a signal reflecting a hit condition.
  • FIG. 3 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to an embodiment of the present invention.
  • a piston 1440 is inserted into the cylinder 1430, and a chisel 1600 is disposed at the front end of the piston 1440, and the front end of the chisel 1600 is located at the front end of the cylinder 1430. May be arranged to be exposed.
  • the front large diameter portion 1442 and the rear large diameter portion 1444 are formed in the piston 1440, and the small diameter portion 1446 may be formed between the front large diameter portion 1442 and the rear large diameter portion 1444.
  • the outer diameter of the large diameter is substantially the same as the inner diameter of the cylinder 1430, so that the inside of the cylinder 1430, the front chamber 1431 is formed between the entire cylinder 1430 and the front large diameter portion 1442, the cylinder A rear chamber 1432 may be formed between the rear portion of the 1430 and the rear large diameter portion 1444.
  • a reverse port 1433 is formed in the front chamber 1431, and the reverse port 1433 may be connected to the hydraulic source 160 through the reverse line 1433a.
  • Hydraulic pressure may be applied to the front chamber 1431 by hydraulic oil flowing from the hydraulic source 160 to the reverse port 1433 via the reverse line 1433a.
  • the hydraulic pressure applied to the front chamber 1431 acts on the stepped surface 1442a of the front large-diameter portion 1442, whereby a reverse force is applied to the piston 1440.
  • a forward port 1434 is formed in the rear chamber 1432, and the forward port 1434 is connected to the main valve 1460 through the forward line 1434a.
  • the main valve 1460 can be switched to either the forward position 1460-2 or the reverse position 1460-1, and the forward position 1460-2 transfers the forward line 1434a to the hydraulic source. And the forward line 1434a to the hydraulic tank 160a at the reverse position 1460-1.
  • the rear chamber 1432 flows into the forward port 1434 from the hydraulic source 160 through the main valve 1460 and the forward line 1434a through the main valve 1460.
  • Hydraulic pressure may be applied by the working oil to be.
  • the hydraulic pressure applied to the rear chamber 1432 acts on the stepped surface 1444a of the rear large-diameter portion 1444, and forward force is applied to the piston 1440.
  • the rear chamber 1432 is connected to the hydraulic tank 160a via the forward line 1434a and the main valve 1460 to move the forward position 1460-1.
  • the hydraulic oil introduced from 2) is discharged to the hydraulic tank 160a.
  • the main valve 1460 when the stepped surface 1444a of the rear large-diameter portion 1444 has an area larger than the stepped surface 1442a of the front large-diameter portion 1442, the main valve 1460 is converted to the forward position 1460-2.
  • the forward force may be greater than the reverse force so that the piston 1440 may advance.
  • the main valve 1460 when the main valve 1460 is converted to the reverse position 1460-1, the hydraulic pressure applied from the hydraulic source 160 acts only on the step surface 1442a of the front large diameter portion 1442 so that the piston 1440 may reverse. Can be.
  • the main valve 1460 is converted to the forward position 1460-2 or the backward position 1460-1, the reciprocating motion of the piston 1440 may be induced.
  • Position control of the main valve 1460 may be made hydraulic. That is, the main valve 1460 may be a hydraulic valve in which the forward position 1460-2 and the reverse position 1460-1 may be selected according to the input hydraulic signal.
  • Both ends of the hydraulic main valve 1460 may be provided with a forward action surface 1464 and a reverse action surface 1462 respectively connected to the hydraulic line.
  • the forward action surface 1464 is connected to the forward control line 1464a branched into the long stroke line 1435a and the short stroke line 1434a.
  • Reverse action surface 1462 is also connected to hydraulic source 160 via reverse control line 1462a.
  • the forward acting surface 1464 has an area larger than the backward acting surface 1462, so that when the hydraulic pressure is applied to both the acting surfaces 1462 and 1464, the main valve 1460 moves forward 1460-2. Piston 1440 may be advanced accordingly. On the contrary, if the hydraulic pressure applied from the hydraulic source 160 is applied only to the reverse action surface 1462, the main valve 1460 may be converted to the reverse position 1460-1, and thus the piston 1440 may reverse.
  • the piston 1440 may perform the forward operation.
  • the piston 1440 may perform the reverse operation.
  • the long stroke line 1435a is connected to the long stroke port 1435 formed in the cylinder 1430.
  • the long stroke port 1435 may be formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected or disconnected from the front chamber 1431 according to the position of the piston 1440.
  • the long stroke port 1435 is disconnected from the front chamber 1431 when the piston 1440 is advanced so that the front large diameter portion 1442 is on the long stroke port 1435 or located ahead of the long stroke.
  • the long stroke port 1435 is connected to the front chamber 1431 when the piston 1440 is reversed and the front large diameter portion 1442 is located behind the long stroke port 1435.
  • the hydraulic pressure from the hydraulic source 160 is reverse line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435.
  • the main valve 1460 may be converted to the forward position 1460-2 by being applied to the forward action surface 1464 via the long stroke line 1435a and the forward control line 1464a.
  • the short stroke line 1436a may be connected to the short stroke port 1434 formed in the cylinder 1430.
  • the short stroke port 1436 is formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected to or disconnected from the front chamber 1431 according to the position of the piston 1440, and the long stroke Rather, it may be formed at a position closer to the reverse port 1433.
  • the short stroke port 1436 is disconnected from the front chamber 1431 when the piston 1440 is advanced so that the front large diameter portion 1442 is on the short stroke port 1434 or located ahead of the short stroke.
  • the short stroke port 1434 may be connected to the front chamber 1431 when the piston 1440 is backward and the front large diameter portion 1442 is positioned behind the short stroke port 1434.
  • a solenoid valve 1470 may be installed on the short stroke line 1436a to control a short circuit of the short stroke line 1436a.
  • the solenoid valve 1470 may be switched to any one of the long stroke position 1470-1 and the short stroke position 1470-2, and the short stroke line 1436a at the long stroke position 1470-1.
  • the short stroke line 1436a can be connected at the short stroke position 1470-2.
  • the hydraulic line 160 retracts the line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435, and the long from the hydraulic source 160.
  • the solenoid valve 1470 may determine whether hydraulic pressure is applied to the forward action surface 1464 via the stroke line 1435a and the forward control line 1464a. At this time, when the solenoid valve 1470 is converted to the short stroke position 1470-2, the short stroke line 1434a is blocked so that the main valve 1460 is reversed by the hydraulic pressure applied through the reverse control line 1462a. Position 1460-1, and when the solenoid valve 1470 is switched to the on position, the main valve 1460 is converted to the forward position 1460-2 by hydraulic pressure applied through the forward control line 1464a. Can be.
  • the piston 1440 may perform reciprocating motion in the long stroke mode and the short stroke mode according to the setting change of the solenoid valve 1470.
  • the solenoid valve 1470 is switched to the long stroke position 1470-1.
  • the long stroke port 1435 is blocked by the front large diameter portion 1442 from the front chamber 1431, and the main valve 1460 is converted to the reverse position 1460-1. Hydraulic pressure from the hydraulic source 160 is not transmitted to the stepped surface 1444a of the rear large diameter portion 1444 of the piston 1440 so that the piston 1440 performs the reverse operation.
  • the front large diameter portion 1442 passes through the short stroke port 1434 before passing through the long stroke port 1435, but since the short stroke line 1436a is blocked by the solenoid valve 1470, hydraulic transmission is performed. There is no support.
  • the forward operation is started based on the position of the front large diameter portion 1442 of the piston 1440 passing through the long stroke port 1435.
  • the solenoid valve 1470 is switched to the short stroke position 1470-2.
  • the short stroke port 1434 is blocked by the front large diameter portion 1442 from the front chamber 1431, and the main valve 1460 is converted to the reverse position 1460-1. Hydraulic pressure from the hydraulic source 160 is not transmitted to the stepped surface 1444a of the rear large diameter portion 1444 of the piston 1440 so that the piston 1440 performs the reverse operation.
  • the short stroke port 1434 is connected to the front chamber 1431 and is shortened by the solenoid valve 1470.
  • the forward operation is started based on the position of the front large diameter portion 1442 of the piston 1440 passing through the short stroke port 1434.
  • the start of the forward operation is started earlier in the short stroke mode than in the long stroke mode, and consequently the backward distance of the piston 1440 is reduced.
  • the stroke distance becomes smaller.
  • the adjustment of the stroke distance may be made by mode selection between the long stroke mode and the short stroke mode, and mode switching is dependent on the solenoid valve 1470. That is, it may be made by the ON / OFF control of the solenoid valve 1470.
  • the solenoid valve 1470 may automatically convert between the long stroke position 1470-1 and the short stroke position 1470-2 according to the strike condition.
  • the intelligent hydraulic breaker 1000 may include sensors 2202, 2204, and 2206 to detect a strike condition or a rigidity of the hitting object.
  • the sensors 2202, 2204, and 2206 detect a hitting condition and transmit a signal related to the hitting condition to the controller 180, and the controller 180 transmits a control signal to the solenoid valve 1470 based on the hitting condition to solenoid.
  • the position or ON / OFF of the valve 1470 can be controlled.
  • Proximity sensors may be used as the sensors 2202, 2204, and 2206.
  • Proximity sensors 2202, 2204, and 2206 may be mounted on the intelligent hydraulic breaker 1000 to detect the position of the piston 1440 upon hitting.
  • the proximity sensors 2202, 2204, and 2206 may detect the position of the maximum forward position (hereinafter, referred to as 'lower dead center') when the piston 1440 strikes the rock through the chisel 1600.
  • the proximity sensors 2202, 2204, and 2206 may be inserted into grooves or holes formed in the cylinder 1430 and installed in a direction perpendicular to the reciprocating direction of the piston 1440. Accordingly, the proximity sensors 2202, 2204 and 2206 pass through the small diameter portion 1446 or the large diameter portions 1442 and 1444 through the installation point of the proximity sensors 2202, 2204 and 2206 during the reciprocating motion of the piston. You can detect if you are.
  • a plurality of proximity sensors 2202, 2204, and 2206 may be disposed on the cylinder 1430 along the reciprocating direction of the piston 1440.
  • the proximity sensors 2202, 2204, and 2206 may include the first sensor 2202, the second sensor 2204, and the third sensor disposed in order from the side close to the rear end of the cylinder 1430 to the side close to the front end. 2206).
  • three proximity sensors 2202, 2204, and 2206 sequentially disposed from the rear side to the front side of the cylinder 1430 may detect the front large diameter portion 1442.
  • the arrangement of the proximity sensors 2202, 2204, and 2206 is such that the rear stepped surface 1442a of the front large-diameter portion 1442 is disposed by the proximity sensors 2202, 2204, and 2206 when the piston 1440 is in the maximum forward position. It may be arranged to be located near the area.
  • the maximum forward position of the piston 1440 when the intelligent hydraulic breaker 1000 strikes hard rock is formed behind the maximum forward position of the piston 1440 when hitting soft rock. This is because chisels penetrate the hard rock to be weaker than penetrating soft rock.
  • the proximity sensors 2202, 2204, and 2206 are arranged as illustrated in FIG. 3, the proximity sensors 2202, 2204, and 2206 are sequentially turned on from the first sensor 2202 as the piston 1440 moves forward.
  • the more signals detected by each of the proximity sensors 2202, 2204, and 2206 the closer the hitting object is to hard rock, and the smaller the hitting object is to be closer to soft rock.
  • the proximity sensors 2202, 2204, and 2206 may be disposed to detect the rear large diameter part 1444 of the piston 1440.
  • Proximity sensors 2202, 2204, and 2206 may be disposed at positions for detecting the front large diameter portion 1442 when the piston 1440 moves forward and for detecting the rear large diameter portion 1444 when the piston 1440 moves backward.
  • a plurality of proximity sensors 2202, 2204, and 2206 may be disposed in the cylinder 1430 along the longitudinal direction thereof.
  • the striking condition may be determined according to whether the front large diameter portion 1442 is detected by each of the proximity sensors 2202, 2204, and 2206 when the piston 1440 is moved forward. have.
  • the proximity sensors 2202, 2204, and 2206 are not limited to those illustrated in FIG. 3, and may be disposed at various points of the cylinder 1430 as needed.
  • a plurality of proximity sensors (2202, 2204, 2206) for detecting the position of the piston 1140 in the cylinder 1430, the front end of the piston 1440 hit the chisel 1600, the chisel 1600 ) Is preferably formed in the cylinder 1440 such that the piston 1440 is located within a moving stroke distance when traveling through the hitting object.
  • the cylinder 1430 is supplied with hydraulic pressure; A piston 1440 accommodated in the cylinder 1430 and moving forward or backward by hydraulic pressure; A chisel 1600 positioned in front of the piston 1440 so as to be hit by the piston 1440, one end of which is positioned inside the cylinder 1430 and the other end of which is exposed at the front end of the cylinder 1430; A main valve 1460 for controlling forward or backward movement of the piston 1440 by intermittent hydraulic pressure connected to the long stroke port 1435 and the short stroke port 1434 formed in the cylinder 1430; Sensors (2202, 2204, 2206) formed in the cylinder (1430) for detecting the position of the piston (1440) in the cylinder (1430); A solenoid valve 1470 connected to the main valve 1460 and hydraulic pressure to regulate the hydraulic pressure connected to the short stroke port 1434; And a controller 180 that transmits a control signal to the solenoid valve 1470 based on the sensed values of the received sensors 2
  • the controller 180 includes the sensors 2202, 2204, and 2206. Controls the stroke distance of the piston 1440 based on the sensing value of sensing the bottom dead center of the piston 1440, the sensor (2202, 2204, 2206) the front end of the piston 1440 hit the chisel 1600
  • the chisel 1600 may be formed in the cylinder 1430 such that the piston 1440 is located within a moving stroke distance when the chisel 1600 passes through the hitting object.
  • the intelligent hydraulic breaker 1000 when the chisel 1600 hits the hitting object of various conditions, the degree to which the chisel 1600 penetrates the hitting object is different, and the proximity sensors 2202, 2204, and 2206 are used. Should be able to detect all positions of the piston 1440 and minimize the shaded area that the sensor does not detect. To this end, when the actual chisel 1600 is in contact with the piston 1440 in the intelligent hydraulic breaker 1000, the piston 1440 hits the chisel 1600 so that the chisel 1600 penetrates the rock, that is, the hitting object. It is best to install a proximity sensor within a range that can detect the movement of the piston 1440 within a stroke distance that can be lowered.
  • the stroke distance that the piston 1440 hits the chisel 1600 and the chisel 1600 can penetrate the hitting object may vary depending on the capacity of the intelligent hydraulic breaker 1000.
  • the 45-ton machine is about 55 mm and the 50-ton machine Is about 60mm. Therefore, when installing a plurality of proximity sensors (2202, 2204, 2206) to the cylinder 1430, it is necessary to ensure that all the proximity sensors are within the stroke range of 55mm or 60mm. As long as the plurality of proximity sensors 2202, 2204, and 2206 are installed within the above-described stroke distance, the proximity sensors 2202, 2204, and 2206 may operate regardless of whether the proximity sensor 1242 or the rear diameter 1444 are detected.
  • a plurality of proximity sensors When installing a plurality of proximity sensors within the stroke distance of the piston 1440, it is possible to accurately detect the state of the hitting object depending on how and where each proximity sensor is disposed.
  • a plurality of proximity sensors may be spaced apart at equal intervals within the stroke distance.
  • the plurality of proximity sensors 2202, 2204, and 2206 may be formed in the cylinder 1430 to be positioned between the long stroke port 1435 and the short stroke port 1434. That is, any one of a plurality of proximity sensors 2202, 2204, and 2206 is provided near the long stroke port 1435, the other is provided near the short stroke port 1434, and the other is a long stroke port. 1435 and the short stroke port 1434.
  • 3 illustrates a case in which three proximity sensors 2202, 2204, and 2206 are formed (S1, S2, and S3), and four or more proximity sensors may be installed. When four or more proximity sensors are installed, the rearmost sensor S1 is located near the long stroke port 1435 and the frontmost sensor S3 is located near the short stroke port 1436. The remaining sensors may be located at equal intervals between the two sensors mentioned above.
  • the use of three proximity sensors 2202, 2204, and 2206 can detect up to four sections, which in turn can control the movement of the piston 1440 in four stages for the conditions of the hitting object. It means that there is. If only the proximity sensors 2202 and S1 located near the long stroke port 1435 detect the piston 1440 and the remaining sensors S2 and S3 do not detect the piston 1440, the hitting object is determined as hard rock. Accordingly, the piston 1440 may be driven to move to the first position. If all of the proximity sensors S1, S2, and S3 detect the piston 1440, it is determined that the hitting object is soft rock, and the piston 1440 is driven to move to the third position accordingly.
  • the piston 1440 may be driven to move to the second stage position.
  • the proximity sensor 2202 provided near the long stroke port 1435 among the proximity sensors 2202, 2204, and 2206 senses hard rock among the hitting objects
  • the proximity sensor 2206 provided near the short stroke port 1436 Detects soft rock among the hitting objects
  • the proximity sensor 2204 provided between the long stroke port 1435 and the short stroke port 1436 may detect the heavy rock among the hitting objects.
  • FIG. 4B shows three proximity sensors 2202 within a stroke distance in which the chisel 1600 penetrates the hitting object while the piston 1440 is in contact with the chisel 1600 when the intelligent hydraulic breaker 1000 is 50 ton.
  • the optimal location of 2204, 2206 is shown by way of example.
  • the rearmost proximity sensors 2202 and S1 are located at a distance of 8.5 mm from the long stroke port 1435 and the frontmost proximity sensor located near the short stroke port 1434 ( 2206 and S3 may be installed 51 mm apart from the long stroke port 1435, and the proximity sensors 2204 and S2 located in the middle may be installed 31 mm apart from the long stroke port 1435. It is not limited to.
  • the piston 1440 contacts the chisel 1600 according to the capacity of the intelligent hydraulic breaker 1000, and the chisel 1600 penetrates the hitting object and enters within the stroke distance.
  • Sensors should be installed but preferably located between long stroke port 1435 and short stroke port 1434.
  • Figure 5 is a view for explaining the process of determining the hitting object according to the position of the piston and the sensing value of the proximity sensor of the intelligent hydraulic breaker according to an embodiment of the present invention
  • Figures 6a to 6c and 7 is a view for explaining the positional relationship between the solenoid valve operation and the piston of the intelligent hydraulic breaker according to an embodiment of the present invention.
  • Intelligent hydraulic breaker 1000 has one advantage that it can be driven in multiple stages by automatically adjusting the stroke of the piston 1440 according to the rigidity of the hitting object.
  • the piston 1440 is lowered in contact with the chisel 1600, the proximity sensor (2202, 2204, 2206) detects the piston 1440 in the process of entering the chisel 1600 through the hitting object to hit the hitting object
  • the controller 180 operates the main valve 1460 and the solenoid valve 1470 to control the hydraulic pressure transmitted to the piston 1440 consequently multi-stage operation This becomes possible.
  • the solenoid valve 1470 is ON / OFF or control timing of the ON time and the OFF time according to the state of the hitting object, and when the piston 1440 descends, the proximity sensors 2002, 2204, 2206 It may be determined by the sensing value.
  • the piston 1440 descends to measure the rigidity or state of the object to be hit, and the stroke is raised again according to the state of the object to be hit. Will be determined. For example, if only the sensor S1 is ON and the other two sensors are OFF for the three proximity sensors S1, S2, and S3 sequentially installed from the rear of the cylinder 1430 to the front, the hitting object is hard rock. At this time, the piston 1440 is raised to a long stroke distance to strike the hard rock. On the contrary, when all three sensors are turned on, the hitting object may be called soft rock.
  • the piston 1440 may rise to the short stroke distance to hit the soft rock, and hit the soft rock while repeatedly rising and falling at high speed. Get ready.
  • the two sensors S1 and S2 are turned on, but the other sensor S3 is turned off.
  • the piston 1440 senses the state of the hitting object while descending and drives the piston 1440 in multiple stages according to the result.
  • the multi-stage driving of the piston 1440 is determined by the operation of the solenoid valve 1470. Can be.
  • FIG. 6A to 6C illustrate the multi-stage driving of the piston 1440 when the hitting object is hard rock, medium rock, or soft rock. That is, when the strike object is hard rock, medium rock, soft rock, the piston 1440 may be driven in one stage, two stages, and three stages, respectively.
  • FIG. 6A shows that the piston 1440 is sensed only by the sensor S1 when the piston 1440 is lowered when the hitting object is hard rock (stage 1), and when raised, the piston 1440 is raised to the sensor S1 position to strike the hard rock with a long stroke. do.
  • FIG. 6B shows that the piston 1440 is sensed only by the sensors S1 and S2 when the piston 1440 is lowered when the hitting object is the middle arm (two stages). Will be hit.
  • FIG. 1 shows that the piston 1440 is sensed only by the sensors S1 and S2 when the piston 1440 is lowered when the hitting object is the middle arm (two stages). Will be hit.
  • 6C shows that the piston 1440 is sensed by all of the sensors S1 to S3 when the piston 1440 is lowered when the hitting object is hard rock (stage 1), and when raised, the piston 1440 is raised to the position of the sensor S3 and the light stroke is short stroke. Will hit.
  • the controller 180 of the intelligent hydraulic breaker 1000 For the multi-stage control of the piston 1440, the controller 180 of the intelligent hydraulic breaker 1000 according to the present invention, the chisel 1600 hits for the first time while the piston 1440 is lowered and in contact with the chisel 1600.
  • the proximity sensor of the plurality of proximity sensors (2202, 2204, 2206) is turned on, and after the piston 1440 is raised piston 1440 required
  • the solenoid valve 1470 may be turned on or off depending on the size of the lower stroke, and the solenoid valve 1470 may be turned on when the strike object is not hard rock.
  • the piston 1440 measures the state of the hitting object while initially rising and falling, and accordingly as a result, the piston 1440 repeatedly strikes and descends at the stroke distance according to the hitting object during the next lowering. If the hitting object is hard rock, the piston 1440 rises and descends to one section (see FIG. 4A). In the case of hard rock, the solenoid valve 1470 remains OFF and only the main valve 1460 operates to operate the longest long rod. Strike the hitting object.
  • the piston 1440 When it is measured that the hitting object is soft rock, the piston 1440 ascends to the 4th section and repeatedly hits the hitting object while repeatedly lifting at the short stroke distance. For this, the main valve 1460 and the solenoid valve 1470 are All works.
  • both the main valve 1460 and the solenoid valve 1407 operate to drive the piston 1440 with a stroke suitable for the hitting target. That is, except in the case of hard rock, the solenoid valve 1470 is operated. In the case of medium or soft rock, the piston 1440 suitable for the middle rock or soft rock is controlled by adjusting the ON time or the ON holding time of the solenoid valve 1470. Multi-stage drive by the stroke of.
  • the controller 180 may control the stroke size when the piston 1440 descends by adjusting the ON / OFF state or duration of the solenoid valve 1470 when the hitting target is not hard rock. .
  • the controller 180 may combine the ON / OFF state of the solenoid valve 1470 and the ON / OFF state of the main valve 1460 when the strike object is not hard rock. Can be controlled in multiple stages.
  • the controller 180 may control the stroke size when the piston 1440 descends by adjusting the conversion speed or frequency of the ON / OFF state of the solenoid valve 1470. have.
  • the solenoid valve 1470 When the hitting target is hard rock, the solenoid valve 1470 is turned off to operate only the main valve 1460, and the piston 1440 descends by a long stroke. However, when the hitting target is medium or soft rock, the solenoid valve 1470. ) Is turned on to lower the piston 1440 in the middle stroke or the short stroke. At this time, in the case of soft rock, since the solenoid valve 1470 is always kept in the ON state, the piston 1440 can move quickly in a short stroke. In the case of the middle arm, the solenoid valve 1470 is switched to the ON state and the OFF state, so that the piston 1440 can be lowered by the middle stroke. The solenoid valve 14700 can increase or decrease the ON / OFF conversion speed of the middle stroke. The size can be made more varied, and as a result, multi-stage operation of more various sizes is possible.
  • the controller 180 may control the time required for the lowering of the piston 1440 to be shorter than the time required for the ascending. Referring to FIG. 7, it can be seen that after the initial first measurement blow, the piston 1440 slowly rises to the stroke distance according to the state of the hitting object, while rapidly descending when the piston descends. As such, when the piston 1440 descends relatively quickly when descending, the piston may hit the object with a greater hitting force.
  • FIG. 8 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to another embodiment of the present invention
  • Figures 9a to 9c is a view for explaining the relationship between the piston position and the proximity sensor of the intelligent hydraulic breaker according to Figure 8
  • Figures 10a to 10c 8 is a view showing a signal of a proximity sensor according to the piston position of the intelligent hydraulic breaker according to Figure 8
  • Figure 11 is a block diagram showing a schematic configuration of the controller of the intelligent hydraulic breaker according to Figure 8
  • Figure 12 is an intelligent according to Figure 8 A flowchart for explaining the operation of the hydraulic breaker.
  • a single proximity sensor 3202 is formed in the cylinder 1430.
  • the proximity sensor 3202 detects the large diameter portions 1442 and 1444 of the piston 1440 when the piston 1440 descends, and senses that the proximity sensor 3202 detects the large diameter portions 1442 and 1444.
  • the controller 180 may determine the state or the hitting condition of the hitting object based on the time duration of the value. That is, unlike the case of FIG. 3, in the case of FIG. 8, the single proximity sensor 3202 is not used as a sensing value when the piston 1440 is lowered, but the single proximity sensor 3202 is used as the sensing value. There is a difference in detecting large diameter portions 1442 and 1444 and using the duration of the detection state as a sensing value.
  • the single proximity sensor 3202 has a large diameter portion 1442 adjacent to the front end of the piston 1440 among the large diameter portions 1442 and 1444 of the piston 1440 while the piston 1440 is in contact with the chisel 1600. It may be formed in the cylinder 1430 to be located on one side of the lower edge. However, the position of the proximity sensor 3202 is not necessarily at one side of the lower edge of the front large diameter portion 1442, but may be formed at one side of the lower edge of the rear large diameter portion 1444, and the large diameter portions 1442 and 1444. It may be formed on one side of the upper edge.
  • the proximity sensor 3202 When the proximity sensor 3202 is formed at one side of the lower edge of the rear large diameter portion 1442 as shown in FIG. 8, when the piston 1440 is lowered, the proximity sensor 3202 is turned on by detecting the large diameter portion 1442.
  • the controller 180 may detect the time that the ON state of the proximity sensor 3202 lasts to drive the piston 1440 in multiple stages according to the hitting object.
  • 9A to 9C illustrate a sensing value of the proximity sensor 3202 as the piston 1440 descends when a single proximity sensor 3202 is installed at one side of the lower edge of the rear large diameter portion 1442 of the piston 1440.
  • 10 is a graph illustrating a change in time of a proximity sensor signal for each state.
  • FIG. 9A illustrates a case in which the hitting target is hard rock. Since the distance at which the piston 1440 descends is short, the proximity sensor 3202 detects the rear large diameter portion 1442 and the ON state is short (see FIG. 10A).
  • FIG. 9B illustrates a case in which the hitting object is a heavy rock, and since the piston 1440 descends longer than the hard rock, the proximity sensor 3202 detects the rear large-diameter portion 1442 so that the ON state is longer than the hard rock (FIG. 10b).
  • 9C illustrates a case in which the hitting object is soft rock, the proximity sensor 3202 detects the rear large-diameter portion 1442 so that the ON state lasts the longest time (see FIG. 10C).
  • a single proximity sensor 3202 detects the large diameter portions 1442 and 1444 to determine the state of the hitting object from the time that the ON state is maintained, and multiply the piston 1440.
  • the single proximity sensor 3202 may detect the small diameter portion 1446 of the piston 1440.
  • the piston 1440 descends to determine the length of time that the OFF state of the proximity sensor 3202 lasts, thereby determining the length of the piston 1440 according to the hitting object.
  • the movement can be controlled in multiple stages.
  • the controller 180 determines the condition or the hitting condition of the hitting target from the duration of the ON or OFF state of the single proximity sensor. If the duration is the longest, soft rock, the minimum is the hard rock, and the duration is the middle cancer. Judging by
  • the controller 180 may include a micro control unit (181), a power supply unit 182, a communication unit 183, a solenoid valve control unit 1884, and a sensor signal input unit 185. have.
  • the controller 180 illustrated in FIG. 11 may correspond to both the controller 180 of FIGS. 3 and 8.
  • the sensor signal input unit 185 receives sensing values of the proximity sensors 2202, 2204, 2206, and 3202, which are transmitted to the MCU 181 to determine whether the piston 1440 is driven in multiple stages.
  • the value determined by the MCU 181 may be transferred to the solenoid valve control unit 184 to control whether the solenoid valve 1470 is ON / OFF or the ON / OFF state change time to control the multi-stage driving of the piston 1440. .
  • the signal of the proximity sensors 2202, 2204, 2206, and 3202 may be received by wire or wirelessly through the communication unit 183.
  • a wireless communication method all known wireless communication methods may be used.
  • FIG. 12 illustrates a method of controlling the driving of the piston 1440 when using a single proximity sensor 3202 as in the case of FIG. 8.
  • the proximity sensor 3202 detects that the piston 1440 is lowered (S110).
  • the ON signal of the proximity sensor 3202 is input to the controller 180 by the rear large diameter portion 1442 (S120).
  • the controller 180 calculates a width of the ON signal of the proximity sensor 3202 (S130). By this calculation, it is possible to know the time duration of the ON state of the proximity sensor 3202 and determine the length of the duration to determine the strength of the rock, that is, the hitting object (S140).
  • the controller 180 calculates the ON timing of the solenoid valve 1470 according to the strength determination result of the hitting object (S150). That is, if the hitting object is hard rock, the solenoid valve 1470 is maintained in the OFF state, but in the case of medium or soft rock, the solenoid valve 1470 is turned on. do.
  • the piston 1440 After calculating the ON time of the solenoid valve 1470, the piston 1440 is raised to strike the stroke according to the strength of the hitting object (S160).
  • the controller 180 turns on the solenoid valve 1470 according to the strength of the hitting object while the piston 1440 is rising (S170).
  • the process of turning ON the solenoid valve 1470 is as shown in FIG.
  • the solenoid valve 1470 is turned on and the main valve 1460 is switched to control the rising or falling of the piston 1440 (S180).
  • the piston 1440 is lowered to hit the hitting object (S190).
  • the present invention can be used in construction machinery, heavy equipment, fork cranes, excavators and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

An intelligent hydraulic breaker according to an embodiment of the present invention comprises: a cylinder supplied with hydraulic pressure; a piston contained in the cylinder and moved forward or backward by the hydraulic pressure; a chisel positioned in front of the piston such that the same is struck by the piston, one end of the chisel being positioned inside the cylinder, and the other end thereof being positioned on the front end of the cylinder while being exposed; a main valve for allowing/blocking supply of hydraulic pressure through a long-stroke port and to a short-stroke port, which are formed in the cylinder, thereby controlling the forward or backward movement of the piston; a sensor formed on the cylinder so as to sense the position of the piston inside the cylinder; a solenoid valve having a hydraulic pressure connection with the main valve so as to allow/block supply of hydraulic pressure through the short-stroke port; and a controller for delivering a control signal to the solenoid valve on the basis of a sensing value delivered from the sensor, wherein the controller controls the stroke distance of the piston on the basis of a sensing value obtained when the sensor senses the bottom dead center of the piston, and the sensor may be formed on the cylinder such that, when striking of the chisel by the front end of the piston is followed by movement of the chisel through a striking object, the sensor is positioned within the stroke distance moved by the piston.

Description

근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비Intelligent Hydraulic Breaker Using Proximity Sensor and Construction Equipment Containing It
본 발명은 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비에 관한 것으로, 보다 구체적으로는 타격 대상지반의 단단한 정도를 포함하는 타격 조건에 따라 스트로크 거리, 타격 거리 또는 타격 속도가 수동 또는 자동으로 조정되는 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비에 관한 것이다.The present invention relates to an intelligent hydraulic breaker using a proximity sensor and a construction equipment including the same. More specifically, the stroke distance, the hitting distance or the hitting speed is manually or automatically depending on the hitting condition including the rigidity of the hitting ground. The present invention relates to an intelligent hydraulic breaker using an adjustable proximity sensor and construction equipment including the same.
본 발명은 지식경제부와 한국산업기술진흥원의 "차세대건설기계부품 특화단지조성사업"의 지원을 받아 수행된 연구로부터 도출된 결과이다.The present invention is the result of the research carried out with the support of the Ministry of Knowledge Economy and the Korea Institute of Industrial Technology Promotion, "Next Generation Construction Machinery Parts Specialized Complex Development Project."
브레이커(breaker)는 피스톤(piston)의 왕복 운동을 통해 대상물에 접촉되는 치즐(chisel)을 타격하여 암반 또는 지반 등을 파쇄하기 위해 사용되는 장치로, 대형 건설 현장 등에서는 굴삭기 등 중장비 차량에 장착되는 유압식 어태치먼트(hydraulic attachment) 형태가 주로 이용되고 있다.A breaker is a device used to crush a rock or ground by striking a chisel in contact with an object through a reciprocating motion of a piston, and is mounted on a heavy equipment vehicle such as an excavator in a large construction site. Hydraulic attachment forms are mainly used.
암반 파쇄 작업은 건설 기한 등으로 인하여 그 작업 속도가 작업효율을 결정하는 중요한 요인의 하나로 작용한다. 따라서, 종래의 브레이커는 작업자의 조작에 따라 경암 파쇄를 위해 타격력이 강화되도록 피스톤의 스트로크 거리를 길게 하는 롱 스트로크(long stroke) 모드와 연암 파쇄를 위해 다소 간의 타격력을 희생하더라도 타격 속도가 향상되는 숏 스트로크 모드(short stroke)를 변경하도록 구성되어 있다.Rock crushing work is one of the important factors that determine the work efficiency due to the construction period. Therefore, the conventional breaker has a long stroke mode that increases the stroke distance of the piston so that the impact force is strengthened for hard rock fracture according to the operator's operation, and a shot speed is improved even if the impact force is somewhat sacrificed for soft rock fracture. It is configured to change the stroke mode (short stroke).
그러나, 이러한 종래의 브레이커는 모드 선택이 작업자의 임의적 판단에 전적으로 의존하기 때문에 비숙련자의 경우에는 이용하기 어려울 뿐 아니라 타격 시 잦은 모드 변경이 필요한 경우 조작이 번거로운 문제점이 있다.However, such a conventional breaker is not only difficult to use in the case of a non-skilled person because the mode selection depends entirely on the discretion of the operator, there is a problem that the operation is cumbersome when frequent mode changes are required.
따라서, 본 출원인은, 상기와 같이 문제를 해결하기 위해서 지반의 단단한 정도 또는 상태에 따라서 스트로크 거리를 조정할 수 있는 유압식 브레이커 내지 타격기기에 대한 기술을 제안하게 되었으며, 종래기술과 관련된 참고문헌으로는 한국등록특허 제10-1332260호의 '브레이커용 유압 컨트롤 밸브'가 있다.Accordingly, the present applicant has proposed a technique for a hydraulic breaker or a striking device that can adjust the stroke distance according to the rigidity or state of the ground in order to solve the problem as described above, and as a reference related to the prior art There is a 'hydraulic control valve for a breaker' of Patent No. 10-1332260.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 타격 조건에 따라 피스톤의 스트로크 거리가 조정되는 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비를 제공한다.The present invention has been proposed to solve the above problems, and provides an intelligent hydraulic breaker using a proximity sensor in which the stroke distance of the piston is adjusted according to the hitting condition, and construction equipment including the same.
본 발명은 복수개의 근접센서를 사용하는 경우에 최적의 위치에 센서를 장착할 수 있는 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비를 제공한다.The present invention provides an intelligent hydraulic breaker using a proximity sensor that can be mounted to the sensor in an optimal position when using a plurality of proximity sensors and construction equipment including the same.
본 발명은 피스톤의 스트로크 거리를 다단으로 조정하기 위해 피스톤의 리턴 포인트를 이용하여 솔레노이드 밸브의 온/오프를 제어하는 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비를 제공한다.The present invention provides an intelligent hydraulic breaker using a proximity sensor that controls the on / off of the solenoid valve by using the return point of the piston to adjust the stroke distance of the piston in multiple stages, and construction equipment including the same.
본 발명은 1개의 근접센서를 사용하여 지반 또는 암반의 단단한 정도를 구별하고 그에 따라 피스톤의 스트로크 거리를 다단으로 가변할 수 있는 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비를 제공한다.The present invention provides an intelligent hydraulic breaker using a proximity sensor that can distinguish the rigidity of the ground or rock using one proximity sensor and thus vary the stroke distance of the piston in multiple stages, and construction equipment comprising the same.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-described problem, the objects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings. .
상기한 바와 같은 과제를 달성하기 위한 본 발명의 일 실시예에 따른 지능형 유압 브레이커는, 유압이 공급되는 실린더; 상기 실린더 내에 수용되며, 유압에 의해 전진 또는 후진하는 피스톤; 상기 피스톤에 의해 타격되도록 상기 피스톤의 전방에 위치하며, 일단은 상기 실린더의 내부에 위치하고 타단은 상기 실린더의 전방단에서 노출된 상태로 위치하는 치즐; 상기 실린더에 형성된 롱 스트로크 포트 및 숏 스트로크 포트에 연결되는 유압을 단속하여 상기 피스톤의 전진 또는 후진을 제어하는 메인 밸브; 상기 실린더에 형성되어 상기 실린더 내에서 상기 피스톤의 위치를 감지하는 센서; 상기 메인 밸브와 유압이 연결되며, 상기 숏 스트로크 포트에 연결되는 유압을 단속하는 솔레노이드 밸브; 및 전달받은 상기 센서의 센싱값에 기초하여 상기 솔레노이드 밸브에 제어신호를 전달하는 콘트롤러;를 포함하며, 상기 콘트롤러는 상기 센서가 상기 피스톤의 하사점을 감지한 센싱값에 기초하여 상기 피스톤의 스트로크 거리를 제어하고, 상기 센서는, 상기 피스톤의 전단이 상기 치즐을 타격하여 상기 치즐이 타격대상물을 관통하여 진행할 때 상기 피스톤이 움직이는 스트로크 거리 내에 위치하도록 상기 실린더에 형성될 수 있다.Intelligent hydraulic breaker according to an embodiment of the present invention for achieving the above object, the hydraulic pressure is supplied to the cylinder; A piston housed in the cylinder and forward or backward by hydraulic pressure; A chisel positioned in front of the piston to be hit by the piston, one end of which is located inside the cylinder and the other end of which is exposed from the front end of the cylinder; A main valve controlling the forward or backward of the piston by controlling the hydraulic pressure connected to the long stroke port and the short stroke port formed in the cylinder; A sensor formed in the cylinder to sense a position of the piston in the cylinder; A solenoid valve connected to the main valve and hydraulic pressure to regulate hydraulic pressure connected to the short stroke port; And a controller configured to transmit a control signal to the solenoid valve based on the received sensing value of the sensor, wherein the controller includes a stroke distance of the piston based on a sensing value at which the sensor detects a bottom dead center of the piston. And the sensor may be formed in the cylinder such that the front end of the piston strikes the chisel and the piston moves within a stroke distance when the chisel moves through the hitting object.
상기 센서는, 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 위치하도록 상기 실린더에 형성될 수 있다.The sensor may be formed in the cylinder to be positioned between the long stroke port and the short stroke port.
상기 센서는 복수개로 마련되는 근접센서이며, 상기 근접센서 중 어느 하나는 상기 롱 스트로크 포트 가까이에 마련되고 다른 하나는 상기 숏 스트로크 포트 가까이에 마련되며 또 다른 하나는 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 마련될 수 있다.The sensor is a plurality of proximity sensors, one of the proximity sensor is provided near the long stroke port, the other is provided near the short stroke port and the other is the long stroke port and the short stroke port Can be provided between.
상기 근접센서 중 상기 롱 스트로크 포트 가까이에 마련되는 근접센서는 타격대상물 중 경암 감지하고, 상기 숏 스트로크 포트 가까이에 마련되는 근접센서는 타격대상물 중 연암을 감지하며, 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 마련되는 근접센서는 타격대상물 중 중암을 감지할 수 있다.The proximity sensor provided near the long stroke port of the proximity sensor detects hard rock of the hitting object, and the proximity sensor provided near the short stroke port detects soft rock of the hitting object, and the long stroke port and the short stroke port Proximity sensors provided in between can detect the heavy cancer of the hitting object.
상기 센서는 상기 실린더에 형성되는 단일의 근접센서이며, 상기 근접센서가 상기 피스톤의 대경부를 감지한 센싱값이 지속된 시간에 기초하여 상기 콘트롤러는 타격대상물의 상태 또는 타격조건을 판단할 수 있다.The sensor may be a single proximity sensor formed in the cylinder, and the controller may determine the state or the strike condition of the hitting object based on the time duration of the sensing value at which the proximity sensor detects the large diameter portion of the piston.
상기 근접센서는, 상기 피스톤이 상기 치즐에 맞닿은 상태에서 상기 피스톤의 대경부 중에서 상기 피스톤의 전방단에 인접한 대경부의 하단 모서리 일측에 위치하도록 상기 실린더에 형성될 수 있다.The proximity sensor may be formed in the cylinder such that the piston is located at one side of the lower edge of the large diameter portion adjacent to the front end of the piston in the large diameter portion of the piston while the piston is in contact with the chisel.
상기 콘트롤러는, 상기 근접센서의 ON 또는 OFF 상태의 지속시간으로부터 타격대상물의 상태 또는 타격조건을 판단하며, 지속시간이 가장 길면 연암, 가장 짧으면 경암, 지속시간이 중간이면 중암으로 판단할 수 있다.The controller may determine the state or the strike condition of the hitting object from the duration of the ON or OFF state of the proximity sensor, and may determine that the longest duration is soft rock, the shortest is hard cancer, and the middle time is medium cancer.
상기 콘트롤러는, 상기 피스톤이 하강하여 상기 치즐과 맞닿은 상태에서 상기 치즐이 최초로 타격대상물을 뚫고 들어갈 때 복수개의 상기 근접센서 중 어떤 위치의 근접센서가 ON 되는지 여부에 따라 타격대상물의 상태 또는 단단한 정도를 판단하고, 상기 피스톤이 상승한 후 필요한 상기 피스톤의 하강 스트로크 크기에 따라 상기 솔레노이드 밸브를 ON 또는 OFF시키며, 타격대상물이 경암이 아닌 경우에 상기 솔레노이드 밸브를 ON시킬 수 있다.The controller may be configured to determine the state or rigidity of the hitting object depending on whether the proximity sensor of a plurality of the proximity sensors is turned on when the chisel first penetrates the hitting object while the piston descends to contact the chisel. After the piston is raised, the solenoid valve may be turned on or off according to the required size of the lowering stroke of the piston, and the solenoid valve may be turned on when the hitting object is not hard rock.
상기 콘트롤러는, 타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태 또는 지속시간을 조절하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어할 수 있다.The controller may control the stroke size when the piston descends by adjusting the ON / OFF state or duration of the solenoid valve when the hitting object is not hard rock.
상기 콘트롤러는, 타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태와 상기 메인 밸브의 ON/OFF 상태를 조합하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어할 수 있다.The controller may control the stroke size when the piston descends by combining the ON / OFF state of the solenoid valve and the ON / OFF state of the main valve when the hitting object is not hard rock.
상기 콘트롤러는, 타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태의 변환 속도 또는 빈도를 조절하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어할 수 있다.The controller may control the stroke size in multiple stages when the piston descends by adjusting the conversion speed or frequency of the ON / OFF state of the solenoid valve when the hitting target is not hard rock.
상기 콘트롤러는, 상기 피스톤이 상기 치즐을 타격하면서 하강하는 경우에 상기 피스톤의 하강에 소요되는 시간이 상승에 소요되는 시간 보다 짧도록 제어할 수 있다.The controller may control the time required for the lowering of the piston to be shorter than the time required for the ascending when the piston descends while hitting the chisel.
한편, 본 발명은, 상기한 지능형 유압 브레이커; 및 상기 지능형 유압 브레이커가 장착되는 굴삭기를 포함하는 건설 장비를 제공할 수 있다.On the other hand, the present invention, the intelligent hydraulic breaker; And an excavator equipped with the intelligent hydraulic breaker.
본 발명에 따른 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비는, 타격대상물의 단단한 정도 또는 타격 조건에 따라 피스톤의 스트로크 거리 내지 크기를 자동으로 조정할 수 있다.Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same, it is possible to automatically adjust the stroke distance or the size of the piston in accordance with the rigidity of the object or the impact conditions.
본 발명에 따른 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비는, 복수개의 근접센서를 사용하는 경우에 근접센서가 장착될 수 있는 최적의 위치를 제공할 수 있다.Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same, when using a plurality of proximity sensors can provide the optimum position that can be mounted proximity sensor.
본 발명에 따른 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비는, 피스톤의 스트로크 거리를 다단으로 조정하기 위해 피스톤의 리턴 포인트를 이용하여 솔레노이드 밸브의 온/오프를 제어함으로써 피스톤의 스트로크를 다단으로 제어할 수 있다.Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment including the same, multi-stage the stroke of the piston by controlling the on / off of the solenoid valve using the return point of the piston to adjust the stroke distance of the piston in multiple stages Can be controlled by
본 발명에 따른 근접센서를 이용한 지능형 유압 브레이커 및 이를 포함하는 건설 장비는, 1개의 근접센서만을 사용하더라도 지반 또는 암반의 단단한 정도를 구별하고 그에 따라 피스톤의 스트로크 거리를 다단으로 가변할 수 있기 때문에 유지 보수 편의성을 높일 수 있고 제조 원가 또는 운영 비용을 절감할 수 있다.Intelligent hydraulic breaker using a proximity sensor according to the present invention and construction equipment comprising the same, even if only one proximity sensor is used to distinguish the rigidity of the ground or rock and accordingly can maintain the piston stroke distance in multiple stages It can improve maintenance convenience and reduce manufacturing cost or operating cost.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-described effects, and effects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings.
도 1은 본 발명의 실시예에 따른 건설 장비를 도시한 도면이다.1 is a view showing the construction equipment according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 지능형 유압 브레이커의 분해 사시도이다.2 is an exploded perspective view of an intelligent hydraulic breaker according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 유압회로도이다.3 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to an embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 근접센서 위치를 설명하기 위한 도면이다.4A and 4B are views for explaining the proximity sensor position of the intelligent hydraulic breaker according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 피스톤의 위치와 근접센서의 센싱값에 따라 타격대상물을 판단하는 과정을 설명하기 위한 도면이다.5 is a view for explaining a process of determining the hitting object according to the position of the piston and the sensing value of the proximity sensor of the intelligent hydraulic breaker according to an embodiment of the present invention.
도 6a 내지 도 6c 및 도 7은 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 솔레노이드 밸브 작동과 피스톤의 위치 관계를 설명하기 위한 도면이다.6a to 6c and 7 are views for explaining the positional relationship between the solenoid valve operation and the piston of the intelligent hydraulic breaker according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 지능형 유압 브레이커의 유압회로도이다.8 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to another embodiment of the present invention.
도 9a 내지 도 9c는 도 8에 따른 지능형 유압 브레이커의 피스톤 위치와 근접센서의 관계를 설명하기 위한 도면이다.9A to 9C are views for explaining the relationship between the piston position and the proximity sensor of the intelligent hydraulic breaker according to FIG. 8.
도 10a 내지 도 10c는 도 8에 따른 지능형 유압 브레이커의 피스톤 위치에 따른 근접센서의 신호를 보여주는 도면이다.10A to 10C are views showing signals of a proximity sensor according to the piston position of the intelligent hydraulic breaker according to FIG. 8.
도 11은 도 8에 따른 지능형 유압 브레이커의 콘트롤러의 개략적인 구성을 보여주는 블록도이다.FIG. 11 is a block diagram illustrating a schematic configuration of a controller of the intelligent hydraulic breaker according to FIG. 8.
도 12는 도 8에 따른 지능형 유압 브레이커의 작동을 설명하기 위한 순서도이다.12 is a flow chart for explaining the operation of the intelligent hydraulic breaker according to FIG.
이하에서, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다. Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; However, the present invention is not limited or limited by the embodiments. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 일 실시예에 따른 지능형 유압 브레이커(1000)가 장착된 건설 장비(100)의 개략도이다. 본 발명의 일 실시예에 따른 건설 장비(100)는 대상물에 대한 타격 작업을 수행하는 장비이다. 타격 작업을 위한 건설 장비(100)는 주로 굴삭기 등의 중장비 차량에 지능형 유압 브레이커(1000)가 어태치먼트(attachment)로 장착되는 형태로 구현될 수 있다.1 is a schematic diagram of construction equipment 100 equipped with an intelligent hydraulic breaker 1000 in accordance with one embodiment of the present invention. Construction equipment 100 according to an embodiment of the present invention is equipment for performing a blow operation on the object. The construction equipment 100 for the impact work may be implemented in a form in which the intelligent hydraulic breaker 1000 is mounted as an attachment to a heavy-duty vehicle such as an excavator.
지능형 유압 브레이커(1000)는 대상물을 타격하는 동작을 수행하는 기기이다. 지능형 유압 브레이커(1000)의 대표적인 예로는 암반을 파쇄하는 유압 브레이커(hydraulic breaker)나 파일(pile)을 압입하는 유압 해머(hydraulic hammer)를 들 수 있다. 물론, 본 발명에서 지능형 유압 브레이커(1000)가 상술한 예로 한정되는 것은 아니며 유압 브레이커나 유압 해머 이외에도 대상물을 타격하는 기능을 수행하는 다른 종류의 타격 기기도 모두 포괄하는 개념으로 이해되어야 할 것이다. Intelligent hydraulic breaker 1000 is a device that performs the operation of hitting the object. Representative examples of the intelligent hydraulic breaker 1000 may be a hydraulic breaker (crushing rock) or a hydraulic hammer (hydraulic hammer) to press the pile (pile). Of course, the intelligent hydraulic breaker 1000 in the present invention is not limited to the above-described examples, it should be understood as a concept encompassing all other types of hitting device that performs a function of hitting the object in addition to the hydraulic breaker or hydraulic hammer.
지능형 유압 브레이커(1000)는 중장비 차량, 즉 캐리어(120)에 장착되는 어태치먼트 타입이 일반적이지만 반드시 그러한 것은 아니며, 작업자가 직접 다루는 형태와 같이 캐리어(120)로부터 독립적인 형태도 존재할 수 있다.The intelligent hydraulic breaker 1000 is a heavy-duty vehicle, that is, an attachment type mounted on the carrier 120, but is not necessarily the same, and may be independent from the carrier 120, such as a form directly handled by an operator.
캐리어(120)는 크게 주행체(121)와 회전체(122)로 구분될 수 있다. 주행체(121)는 주로 크롤러 타입이나 휠 타입으로 제공되며 경우에 따라서는 크레인 타입이나 트럭 타입인 것도 가능하다. 회전체(122)는 수직 방향을 축으로 회전 가능하게 주행체(121) 상에 얹혀진다. The carrier 120 may be largely divided into a driving body 121 and a rotating body 122. The traveling body 121 is mainly provided in a crawler type or a wheel type, and in some cases, may be a crane type or a truck type. The rotating body 122 is mounted on the traveling body 121 so as to be rotatable in the vertical direction.
회전체(122)에는 붐이나 암 등의 연결 부재(123)가 설치된다. 연결 부재(123)의 단부에는 지능형 유압 브레이커(1000)가 어태치먼트 형태로 직접 체결되거나 커플러(140)를 통해 체결되는 식으로 탈부착될 수 있다. The rotating body 122 is provided with a connecting member 123 such as a boom or an arm. The intelligent hydraulic breaker 1000 may be detachably attached to the end of the connection member 123 in a manner of being directly fastened in an attachment form or fastened through the coupler 140.
연결 부재(123)는 주로 2개 이상의 부재가 링크 방식으로 체결되며, 유압 실린더(1430)와 연결되어 유압 실린더(1430)의 신축에 의해 굽혀지거나 또는 펴지는 동작, 신축 동작 등을 수행할 수 있다. 연결 부재(123)는 이러한 동작에 의해 그 단부에 부착된 지능형 유압 브레이커(1000)를 타격대상물 상에 위치시킬 수 있다. The connection member 123 is mainly two or more members are fastened in a link manner, connected to the hydraulic cylinder 1430 may be bent or stretched by the expansion and contraction of the hydraulic cylinder 1430, stretching operation and the like. . The connection member 123 may position the intelligent hydraulic breaker 1000 attached to the end by the operation on the hitting object.
또 캐리어(120)에는 장착된 지능형 유압 브레이커(1000)가 동작할 수 있도록 지능형 유압 브레이커(1000)에 유압을 인가하거나 그 밖에도 붐이나 암을 비롯한 캐리어(120)의 각 부위나 커플러(140) 등에 유압을 공급하는 유압 소스(160)와 작동유를 저장하는 유압 탱크(160a)가 설치된다.In addition, the carrier 120 applies hydraulic pressure to the intelligent hydraulic breaker 1000 so that the mounted intelligent hydraulic breaker 1000 can operate, or in addition to each part or coupler 140 of the carrier 120 including a boom or an arm. A hydraulic source 160 for supplying hydraulic pressure and a hydraulic tank 160a for storing hydraulic oil are installed.
또 회전체(122) 상에는 작업자가 탑승하는 캐빈이 마련되어 있어 작업자가 캐빈 내의 핸들이나 레버, 버튼 따위의 조작 설비를 이용해 캐리어(120)나 지능형 유압 브레이커(1000)를 조종할 수 있다. In addition, a cabin on which the operator rides is provided on the rotating body 122, so that the operator can operate the carrier 120 or the intelligent hydraulic breaker 1000 by using an operation facility such as a handle, a lever, or a button in the cabin.
이외에도 캐리어(120)에는 건설 장비(100)를 지면에 안정적으로 고정시키기 위한 아우트리거(미도시)나 건설 장비(100)의 균형을 안정화시키기 위한 카운터 웨이트(미도시) 등이 있을 수 있다.In addition, the carrier 120 may include an outrigger (not shown) for stably fixing the construction equipment 100 to the ground or a counter weight (not shown) for stabilizing the balance of the construction equipment 100.
도 2 및 도 3을 참조하면, 지능형 유압 브레이커(1000)는 마운팅 브라켓(1200), 하우징(1410) 및 치즐(1600)을 포함할 수 있다. 하우징(1410)은 지능형 유압 브레이커(1000)에서 타격력을 발생시키는 부위로, 그 내부에 실린더(1430)와 실린더(1430)에 수용되는 피스톤(1440)을 가져 유압 소스(160)로부터 인가되는 유압에 의해 피스톤(1440)이 왕복 운동함에 따라 타격력을 발생시킨다. 치즐(1600)은 지반이나 암반 등의 타격대상물을 직접 타격하는 부위로, 그 후단이 피스톤(1440) 신장 시 피스톤(1440)의 전단에 의해 타격되도록 하우징(1410)의 전방단(이하의 설명에서 피스톤(1440)이 전진(신장)하는 방향을 전방으로 정의하고, 피스톤(1440)이 후진(축소)하는 방향을 후방으로 정의함)에 배치될 수 있다.2 and 3, the intelligent hydraulic breaker 1000 may include a mounting bracket 1200, a housing 1410, and a chisel 1600. The housing 1410 is a site for generating a striking force in the intelligent hydraulic breaker 1000, and has a cylinder 1430 and a piston 1440 accommodated in the cylinder 1430 therein to be applied to the hydraulic pressure applied from the hydraulic source 160. As a result, the piston 1440 reciprocates to generate a striking force. The chisel 1600 is a portion directly hitting a hitting object such as ground or rock, and the front end of the housing 1410 so that its rear end is hit by the front end of the piston 1440 when the piston 1440 is extended (in the following description) The direction in which the piston 1440 is advanced (extended) is defined as the front, and the direction in which the piston 1440 is reversed (reduced) is defined as the rear.
마운팅 브라켓(1200)은 하우징(1410)의 후단에 결합되며, 캐리어(120)와 지능형 유압 브레이커(1000)의 연결 역할을 하는 부위이다.The mounting bracket 1200 is coupled to the rear end of the housing 1410 and serves as a connection between the carrier 120 and the intelligent hydraulic breaker 1000.
하우징(1410)의 내부에 실린더(1430)와 피스톤(1440)이 수용될 수 있다. 피스톤(1440)은 원통 형상으로 제공되며, 실린더(1430)는 피스톤(1440)이 삽입되어 왕복 운동할 수 있도록 중공 원통 형상으로 제공된다. 실린더(1430)의 내벽에는 실린더(1430)의 내부로 유압을 공급하거나 실린더(1430) 내부로부터 유압을 배출하기 위한 각종 유압 포트들이 마련되어 있다. 피스톤(1440)에는 적어도 두 개의 대경부(1442,1444)와 그 사이의 소경부(1446)가 피스톤(1440)의 길이 방향에 따라 마련된다. 유압 포트를 통해 실린더(1430) 내부로 인가되는 유압이 대경부(1442,1444)에 의해 형성되는 단차면(1442a,1444a)에 작용함에 따라 피스톤(1440)이 실린더(1430) 안에서 전후진 왕복 운동을 하는 것이다.The cylinder 1430 and the piston 1440 may be accommodated in the housing 1410. The piston 1440 is provided in a cylindrical shape, the cylinder 1430 is provided in a hollow cylindrical shape so that the piston 1440 is inserted to reciprocate. The inner wall of the cylinder 1430 is provided with various hydraulic ports for supplying hydraulic pressure to the interior of the cylinder 1430 or for discharging the hydraulic pressure from the interior of the cylinder 1430. The piston 1440 is provided with at least two large diameter portions 1442 and 1444 and a small diameter portion 1446 therebetween along the longitudinal direction of the piston 1440. As the hydraulic pressure applied into the cylinder 1430 through the hydraulic port acts on the stepped surfaces 1442a and 1444a formed by the large diameter portions 1442 and 1444, the piston 1440 reciprocates back and forth in the cylinder 1430. To do.
따라서, 실린더(1430)에 형성되는 유압 포트나 피스톤(1440)의 단차면(1442a,1444a)을 적절히 설계함에 따라 단순 피스톤(1440) 왕복 뿐만 아니라 피스톤(1440)의 스트로크 거리의 제어도 가능해질 수 있는데, 이에 관한 구체적인 설명은 후술하기로 한다. Therefore, according to the proper design of the stepped surfaces (1442a, 1444a) of the hydraulic port or the piston 1440 formed in the cylinder 1430, it is possible not only to reciprocate the simple piston 1440 but also to control the stroke distance of the piston 1440. There is a detailed description thereof will be described later.
실린더(1430)의 전단과 후단에는 각각 프론트 헤드(1450)와 헤드 캡(1420)이 연결된다. 프론트 헤드(1450)에는 치즐(1600)이 걸치는 치즐 핀(미도시)이 마련되며, 치즐(1600)은 치즐 핀(미도시)에 의해 피스톤(1440) 전진 시 피스톤(1440)의 전단에 의해 타격되기 적절한 위치에 배치된다. 또 프론트 헤드(1450)에는 피스톤(1440)의 왕복 시 외부 이물질이 실린더(1430) 내로 유입되는 것을 방지하기 위한 더스트 프로텍터(미도시)나 타격음을 저감하기 위한 흡음 부재(미도시) 등이 추가로 설치될 수 있다. The front head 1450 and the head cap 1420 are connected to the front and rear ends of the cylinder 1430, respectively. The front head 1450 is provided with a chisel pin (not shown) on which the chisel 1600 is placed, and the chisel 1600 is hit by the front end of the piston 1440 when the piston 1440 is advanced by the chisel pin (not shown). Be placed in the proper position. In addition, the front head 1450 may further include a dust protector (not shown) for preventing foreign matter from entering the cylinder 1430 when the piston 1440 is reciprocated, or a sound absorbing member (not shown) for reducing the impact sound. Can be installed.
헤드 캡(1420)은 그 내부에 가스실(미도시)을 가지며, 가스실은 피스톤(1440)의 후퇴 시 그 체적이 압축됨에 따라 피스톤(1440)에 적절한 댐핑 효과를 부여하여 피스톤(1440)의 후단이 충돌을 일으키는 것을 방지한다. The head cap 1420 has a gas chamber (not shown) therein, and the gas chamber imparts an appropriate damping effect to the piston 1440 as the volume thereof is compressed upon retraction of the piston 1440, so that the rear end of the piston 1440 is Prevents collisions.
헤드 캡(1420), 실린더(1430), 프론트 헤드(1450)는 장 볼트(1402)에 의해 순차적으로 연결되며, 하우징(1410)이 이 연결체를 커버함으로써 구성된다. 또 하우징(1410)의 전측으로 프론트 헤드(1450) 측을 통해 치즐(1600)을 삽입하여 치즐 핀(미도시)에 걸고, 하우징(1410)의 후단에 마운팅 브라켓(1200)을 조립함으로써 지능형 유압 브레이커(1000)가 구성될 수 있다. The head cap 1420, the cylinder 1430, and the front head 1450 are sequentially connected by the long bolts 1402, and the housing 1410 is configured by covering the connecting body. In addition, by inserting the chisel 1600 into the front side of the housing 1410 through the front head (1450) side and hooks to the chisel pin (not shown), by mounting the mounting bracket 1200 to the rear end of the housing 1410 intelligent hydraulic breaker 1000 may be configured.
이상에서 설명한 지능형 유압 브레이커(1000)의 구성이나 구조는 본 발명에 따른 지능형 유압 브레이커(1000)의 일 실시예에 불과하며, 본 발명에 따른 지능형 유압 브레이커(1000)에는 상술한 구성이나 구조와 다소 상이하더라도 유사한 기능을 갖는 다른 지능형 유압 브레이커(1000) 역시 포함되는 것으로 이해되어야 한다.The configuration or structure of the intelligent hydraulic breaker 1000 described above is only one embodiment of the intelligent hydraulic breaker 1000 according to the present invention, and the intelligent hydraulic breaker 1000 according to the present invention is somewhat different from the above-described configuration or structure. It should be understood that other intelligent hydraulic breakers 1000 having similar functions, although different, are also included.
이하에서는 본 발명의 실시예에 따른 지능형 유압 브레이커(1000)에 의해 수행되는 자동 스트로크 거리 조절 기능에 관하여 설명하기로 한다. Hereinafter, an automatic stroke distance adjustment function performed by the intelligent hydraulic breaker 1000 according to an embodiment of the present invention will be described.
유압 브레이커를 이용한 암반 파쇄 작업 시 암반이 경암(hard bedrock)인 경우에는 롱 스트로크(long stroke)가 필요하며 연암(soft bedrock)인 경우에는 숏 스트로크(short stroke)가 필요할 수 있다. 이는 경암의 경우 높은 타격력을 필요로 하며 숏 스트로크인 경우에는 그렇지 않기 때문에 작업 속도를 향상시키는 것이 더 이득이기 때문이다. 뿐만 아니라 유압 브레이커에서 파쇄에 필요한 에너지보다 큰 공정을 사용하게 되면, 파쇄 후 잔류 에너지의 반발로 인해 브레이커에 응력이 걸리고 실린더(1430) 내에 캐비티가 발생하게 된다. 이는 결국 기기 손상으로 이어지기 때문에 스트로크 거리를 조정하는 것이 단순히 작업 효율 향상만을 위한 것은 아니기도 하다.In rock crushing operations using hydraulic breakers, a long stroke may be required if the rock is a hard bedrock, and a short stroke may be necessary for a soft bedrock. This is because, in the case of hard rock, high hitting force is required, and in the case of short stroke, it is more advantageous to improve the working speed. In addition, if the hydraulic breaker uses a process larger than the energy required for crushing, the breaker is stressed due to repulsion of residual energy after crushing, and a cavity is generated in the cylinder 1430. This eventually leads to equipment damage, so adjusting the stroke distance is not just for improving work efficiency.
본 발명의 실시예에 따른 자동 스트로크 거리 조절 기능은 타격 조건에 따라 피스톤(1440)의 스트로크 거리를 자동으로 적절하게 조절할 수 있다. 예를 들면, 지능형 유압 브레이커(1000)가 암반 파쇄 작업에 이용되는 유압 브레이커인 경우에는 타격대상물의 단단한 정도를 타격 조건으로 하여 스트로크 거리를 조절할 수 있다. 다른 예로, 지능형 유압 브레이커(1000)가 파일이나 말뚝의 항타 작업에 이용되는 유압 해머인 경우에는 파일의 압입에 필요한 타격력을 타격 조건으로 하여 스트로크 거리를 조절할 수 있을 것이다.The automatic stroke distance adjusting function according to the embodiment of the present invention can automatically adjust the stroke distance of the piston 1440 according to the hitting condition. For example, when the intelligent hydraulic breaker 1000 is a hydraulic breaker used for rock crushing work, the stroke distance can be adjusted using the hardness of the hitting object as the hitting condition. As another example, in the case where the intelligent hydraulic breaker 1000 is a hydraulic hammer used for driving a pile or pile, the stroke distance may be adjusted based on the striking force required for pressing the pile.
구체적으로 자동 스트로크 거리 조절 기능은 먼저 지능형 유압 브레이커(1000)가 타격 조건을 반영하는 신호를 감지하여 감지된 결과에 따라 타격 조건을 판단하고 판단된 타격 조건에 적절한 스트로크 모드를 선택함에 따라 이루어질 수 있다. 여기서, 타격 조건을 반영하는 신호의 대표적인 예로는 타격 시 발생하는 진동이나 타격 후 피스톤(1440)이 반발력에 의해 후퇴하는 거리 등을 들 수 있으며, 그 밖에도 타격에 의해 발생하는 소리의 크기, 피스톤(1440) 전진 시 전진 거리(최대 전진 위치, 하사점) 등도 타격 조건을 반영하는 신호로서 이용할 수 있다.In detail, the automatic stroke distance adjustment function may be performed by first detecting the signal reflecting the hitting condition by the intelligent hydraulic breaker 1000 and determining the hitting condition according to the detected result, and selecting the appropriate stroke mode for the determined hitting condition. . Here, representative examples of the signal reflecting the hitting condition may include vibration generated during the hitting or a distance in which the piston 1440 retreats due to the repulsive force after the hitting. In addition, the volume of the sound generated by the hitting, the piston ( 1440) A forward distance (maximum forward position, bottom dead center) when moving forward may also be used as a signal reflecting a hit condition.
이하에서는 상술한 본 발명의 실시예에 따른 자동 스트로크 거리 조절 기능을 구현하기 위한 지능형 유압 브레이커(1000)의 회로의 다양한 예에 관하여 설명하기로 한다. 다만, 이하에서 설명되는 유압 회로도 등은 자동 스트로크 거리 조절 기능을 구현하기 위한 예시적인 것에 불과하므로 본 발명이 이에 한정되는 것은 아니며, 본 발명의 사상에 벗어나지 아니하는 한 후술되는 회로도의 변형예들 역시 본 발명에 속하는 것으로 이해되어야 할 것이다.Hereinafter, various examples of the circuit of the intelligent hydraulic breaker 1000 for implementing the automatic stroke distance adjustment function according to the embodiment of the present invention will be described. However, since the hydraulic circuit diagrams described below are merely exemplary for implementing the automatic stroke distance adjustment function, the present invention is not limited thereto, and variations of the circuit diagrams to be described below are also provided without departing from the spirit of the present invention. It should be understood that it belongs to the present invention.
도 3은 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 유압회로도이다.3 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to an embodiment of the present invention.
도 3을 참조하면, 실린더(1430)에는 피스톤(1440)이 삽입되며 피스톤(1440)의 전방단에는 치즐(1600)이 배치되는데, 치즐(1600)의 전방단이 실린더(1430)의 전방단에서 노출되도록 배치될 수 있다. Referring to FIG. 3, a piston 1440 is inserted into the cylinder 1430, and a chisel 1600 is disposed at the front end of the piston 1440, and the front end of the chisel 1600 is located at the front end of the cylinder 1430. May be arranged to be exposed.
피스톤(1440)에는 전방 대경부(1442)와 후방 대경부(1444)가 형성되며, 전방 대경부(1442)와 후방 대경부(1444) 사이에는 소경부(1446)가 형성될 수 있다. 대경부는 그 외경이 실린더(1430)의 내경과 실질적으로 동일하며, 이에 따라 실린더(1430)의 내부에는 실린더(1430)의 전부와 전방 대경부(1442) 사이에 프론트 챔버(1431)가 형성되며 실린더(1430)의 후부와 후방 대경부(1444) 사이에 리어 챔버(1432)가 형성될 수 있다.The front large diameter portion 1442 and the rear large diameter portion 1444 are formed in the piston 1440, and the small diameter portion 1446 may be formed between the front large diameter portion 1442 and the rear large diameter portion 1444. The outer diameter of the large diameter is substantially the same as the inner diameter of the cylinder 1430, so that the inside of the cylinder 1430, the front chamber 1431 is formed between the entire cylinder 1430 and the front large diameter portion 1442, the cylinder A rear chamber 1432 may be formed between the rear portion of the 1430 and the rear large diameter portion 1444.
프론트 챔버(1431)에는 후진 포트(1433)가 형성되며, 후진 포트(1433)는 후진 라인(1433a)을 통해 유압 소스(160)와 연결될 수 있다. 프론트 챔버(1431)에는 유압 소스(160)로부터 후진 라인(1433a)을 거쳐 후진 포트(1433)로 유입되는 작동유에 의해 유압이 인가될 수 있다. 프론트 챔버(1431)에 인가된 유압은 전방 대경부(1442)의 단차면(1442a)에 작용하게 되고, 그에 따라 피스톤(1440)에 후진력이 인가된다.A reverse port 1433 is formed in the front chamber 1431, and the reverse port 1433 may be connected to the hydraulic source 160 through the reverse line 1433a. Hydraulic pressure may be applied to the front chamber 1431 by hydraulic oil flowing from the hydraulic source 160 to the reverse port 1433 via the reverse line 1433a. The hydraulic pressure applied to the front chamber 1431 acts on the stepped surface 1442a of the front large-diameter portion 1442, whereby a reverse force is applied to the piston 1440.
리어 챔버(1432)에는 전진 포트(1434)가 형성되며, 전진 포트(1434)는 전진 라인(1434a)을 통해 메인 밸브(1460)와 연결된다. 메인 밸브(1460)는 전진 위치(1460-2) 또는 후진 위치(1460-1) 중 어느 하나의 위치로 설정이 변환될 수 있으며, 전진 위치(1460-2)에서는 전진 라인(1434a)을 유압 소스(160)로 연결하고 후진 위치(1460-1)에서는 전진 라인(1434a)을 유압 탱크(160a)로 연결한다. A forward port 1434 is formed in the rear chamber 1432, and the forward port 1434 is connected to the main valve 1460 through the forward line 1434a. The main valve 1460 can be switched to either the forward position 1460-2 or the reverse position 1460-1, and the forward position 1460-2 transfers the forward line 1434a to the hydraulic source. And the forward line 1434a to the hydraulic tank 160a at the reverse position 1460-1.
따라서, 메인 밸브(1460)가 전진 위치(1460-2)로 변환되면 리어 챔버(1432)에는 유압 소스(160)로부터 메인 밸브(1460)와 전진 라인(1434a)을 거쳐 전진 포트(1434)로 유입되는 작동유에 의해 유압이 인가될 수 있다. 리어 챔버(1432)에 인가되는 유압은 후방 대경부(1444)의 단차면(1444a)에 작용하게 되고, 피스톤(1440)에 전진력이 인가된다.Accordingly, when the main valve 1460 is converted to the forward position 1460-2, the rear chamber 1432 flows into the forward port 1434 from the hydraulic source 160 through the main valve 1460 and the forward line 1434a through the main valve 1460. Hydraulic pressure may be applied by the working oil to be. The hydraulic pressure applied to the rear chamber 1432 acts on the stepped surface 1444a of the rear large-diameter portion 1444, and forward force is applied to the piston 1440.
또한, 메인 밸브(1460)가 후진 위치(1460-1)로 변환되면 리어 챔버(1432)는 전진 라인(1434a)과 메인 밸브(1460)를 거쳐 유압 탱크(160a)로 연결되어 전진 위치(1460-2)에서 유입된 작동유를 유압 탱크(160a)로 배출하게 된다.In addition, when the main valve 1460 is converted to the reverse position 1460-1, the rear chamber 1432 is connected to the hydraulic tank 160a via the forward line 1434a and the main valve 1460 to move the forward position 1460-1. The hydraulic oil introduced from 2) is discharged to the hydraulic tank 160a.
이러한 구조에서 후방 대경부(1444)의 단차면(1444a)이 전방 대경부(1442)의 단차면(1442a)보다 큰 면적을 가지고 있어 메인 밸브(1460)가 전진 위치(1460-2)로 변환되면 전진력이 후진력보다 커져 피스톤(1440)이 전진할 수 있다. 반대로 메인 밸브(1460)가 후진 위치(1460-1)로 변환되면 유압 소스(160)로부터 인가되는 유압이 전방 대경부(1442)의 단차면(1442a)에만 작용하게 되어 피스톤(1440)이 후진할 수 있다. 이와 같이, 메인 밸브(1460)가 전진 위치(1460-2) 또는 후진 위치(1460-1)로 변환됨에 따라 피스톤(1440)의 왕복 운동이 유도될 수 있다.In this structure, when the stepped surface 1444a of the rear large-diameter portion 1444 has an area larger than the stepped surface 1442a of the front large-diameter portion 1442, the main valve 1460 is converted to the forward position 1460-2. The forward force may be greater than the reverse force so that the piston 1440 may advance. On the contrary, when the main valve 1460 is converted to the reverse position 1460-1, the hydraulic pressure applied from the hydraulic source 160 acts only on the step surface 1442a of the front large diameter portion 1442 so that the piston 1440 may reverse. Can be. As such, as the main valve 1460 is converted to the forward position 1460-2 or the backward position 1460-1, the reciprocating motion of the piston 1440 may be induced.
메인 밸브(1460)의 위치 제어는 유압식으로 이루어질 수 있다. 즉, 메인 밸브(1460)는 입력되는 유압 신호에 따라 전진 위치(1460-2)와 후진 위치(1460-1)가 선택될 수 있는 유압 밸브일 수 있다. Position control of the main valve 1460 may be made hydraulic. That is, the main valve 1460 may be a hydraulic valve in which the forward position 1460-2 and the reverse position 1460-1 may be selected according to the input hydraulic signal.
유압식인 메인 밸브(1460)의 양단에는 각각 유압 라인에 연결되는 전진 작용면(1464)과 후진 작용면(1462)이 마련될 수 있다. 여기서, 전진 작용면(1464)은 롱 스트로크 라인(1435a)과 숏 스트로크 라인(1436a)으로 분기되는 전진 제어 라인(1464a)과 연결된다. 또 후진 작용면(1462)은 후진 제어 라인(1462a)을 통해 유압 소스(160)에 연결된다. Both ends of the hydraulic main valve 1460 may be provided with a forward action surface 1464 and a reverse action surface 1462 respectively connected to the hydraulic line. Here, the forward action surface 1464 is connected to the forward control line 1464a branched into the long stroke line 1435a and the short stroke line 1434a. Reverse action surface 1462 is also connected to hydraulic source 160 via reverse control line 1462a.
이러한 구조에서 전진 작용면(1464)이 후진 작용면(1462)보다 큰 면적을 가지고 있어, 양 작용면(1462,1464)에 유압이 함께 인가되면 메인 밸브(1460)는 전진 위치(1460-2)로 변환될 수 있으며 이에 따라 피스톤(1440)이 전진할 수 있다. 반대로 유압 소스(160)로부터 인가되는 유압이 후진 작용면(1462)에만 인가되면 메인 밸브(1460)는 후진 위치(1460-1)로 변환될 수 있으며 이에 따라 피스톤(1440)이 후진할 수 있다.In this structure, the forward acting surface 1464 has an area larger than the backward acting surface 1462, so that when the hydraulic pressure is applied to both the acting surfaces 1462 and 1464, the main valve 1460 moves forward 1460-2. Piston 1440 may be advanced accordingly. On the contrary, if the hydraulic pressure applied from the hydraulic source 160 is applied only to the reverse action surface 1462, the main valve 1460 may be converted to the reverse position 1460-1, and thus the piston 1440 may reverse.
다시 말해, 전진 제어 라인(1464a)과 연결되는 롱 스트로크 라인(1435a)과 숏 스트로크 라인(1436a) 중 적어도 하나가 유압 소스(160)와 연결되면 피스톤(1440)이 전진 동작을 수행할 수 있다. 또 롱 스트로크 라인(1435a)과 숏 스트로크 라인(1436a)이 모두 유압 소스(160)와 차단되면 피스톤(1440)이 후진 동작을 수행할 수 있다.In other words, when at least one of the long stroke line 1435a and the short stroke line 1434a connected to the forward control line 1464a is connected to the hydraulic source 160, the piston 1440 may perform the forward operation. In addition, when both the long stroke line 1435a and the short stroke line 1434a are blocked from the hydraulic source 160, the piston 1440 may perform the reverse operation.
롱 스트로크 라인(1435a)은 실린더(1430)에 형성되는 롱 스트로크 포트(1435)로 연결된다. 롱 스트로크 포트(1435)는 피스톤(1440)의 위치에 따라 프론트 챔버(1431)와 연결 또는 차단될 수 있도록 실린더(1430)의 전진 포트(1434)와 후진 포트(1433) 사이에 형성될 수 있다. The long stroke line 1435a is connected to the long stroke port 1435 formed in the cylinder 1430. The long stroke port 1435 may be formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected or disconnected from the front chamber 1431 according to the position of the piston 1440.
구체적으로 롱 스트로크 포트(1435)는 피스톤(1440)이 전진해 전방 대경부(1442)가 롱 스트로크 포트(1435) 상에 있거나 롱 스트로크 보다 전방에 위치하면 프론트 챔버(1431)와 연결이 차단된다. 반대로 롱 스트로크 포트(1435)는 피스톤(1440)이 후진해 전방 대경부(1442)가 롱 스트로크 포트(1435)보다 후방에 위치하면 프론트 챔버(1431)와 연결된다. Specifically, the long stroke port 1435 is disconnected from the front chamber 1431 when the piston 1440 is advanced so that the front large diameter portion 1442 is on the long stroke port 1435 or located ahead of the long stroke. On the contrary, the long stroke port 1435 is connected to the front chamber 1431 when the piston 1440 is reversed and the front large diameter portion 1442 is located behind the long stroke port 1435.
따라서, 롱 스트로크 포트(1435)가 프론트 챔버(1431)와 연결되면, 유압 소스(160)로부터 유압이 후진 라인(1433a), 후진 포트(1433), 프론트 챔버(1431), 롱 스트로크 포트(1435), 롱 스트로크 라인(1435a), 전진 제어 라인(1464a)을 거쳐 전진 작용면(1464)에 인가되어 메인 밸브(1460)가 전진 위치(1460-2)로 변환될 수 있다.Therefore, when the long stroke port 1435 is connected with the front chamber 1431, the hydraulic pressure from the hydraulic source 160 is reverse line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435. The main valve 1460 may be converted to the forward position 1460-2 by being applied to the forward action surface 1464 via the long stroke line 1435a and the forward control line 1464a.
숏 스트로크 라인(1436a)은 실린더(1430)에 형성되는 숏 스트로크 포트(1436)로 연결될 수 있다. 숏 스트로크 포트(1436)는 피스톤(1440)의 위치에 따라 프론트 챔버(1431)와 연결 또는 차단될 수 있도록 실린더(1430)의 전진 포트(1434)와 후진 포트(1433) 사이에 형성되되, 롱 스트로크 보다는 후진 포트(1433)에 가까운 위치에 형성될 수 있다. The short stroke line 1436a may be connected to the short stroke port 1434 formed in the cylinder 1430. The short stroke port 1436 is formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected to or disconnected from the front chamber 1431 according to the position of the piston 1440, and the long stroke Rather, it may be formed at a position closer to the reverse port 1433.
구체적으로 숏 스트로크 포트(1436)는 피스톤(1440)이 전진해 전방 대경부(1442)가 숏 스트로크 포트(1436) 상에 있거나 숏 스트로크 보다 전방에 위치하면 프론트 챔버(1431)와 연결이 차단된다. 반대로 숏 스트로크 포트(1436)는 피스톤(1440)이 후진해 전방 대경부(1442)가 숏 스트로크 포트(1436)보다 후방에 위치하면 프론트 챔버(1431)와 연결될 수 있다.Specifically, the short stroke port 1436 is disconnected from the front chamber 1431 when the piston 1440 is advanced so that the front large diameter portion 1442 is on the short stroke port 1434 or located ahead of the short stroke. On the contrary, the short stroke port 1434 may be connected to the front chamber 1431 when the piston 1440 is backward and the front large diameter portion 1442 is positioned behind the short stroke port 1434.
여기서, 숏 스트로크 라인(1436a) 상에는 숏 스트로크 라인(1436a)의 단락을 제어하는 솔레노이드 밸브(1470)가 설치될 수 있다. 솔레노이드 밸브(1470)는 롱 스트로크 위치(1470-1)와 숏 스트로크 위치(1470-2) 중 어느 하나의 위치로 설정이 변환될 수 있으며, 롱 스트로크 위치(1470-1)에서는 숏 스트로크 라인(1436a)을 차단하고 숏 스트로크 위치(1470-2)에서는 숏 스트로크 라인(1436a)을 연결할 수 있다.Here, a solenoid valve 1470 may be installed on the short stroke line 1436a to control a short circuit of the short stroke line 1436a. The solenoid valve 1470 may be switched to any one of the long stroke position 1470-1 and the short stroke position 1470-2, and the short stroke line 1436a at the long stroke position 1470-1. ) And the short stroke line 1436a can be connected at the short stroke position 1470-2.
따라서, 숏 스트로크 포트(1436)가 프론트 챔버(1431)와 연결되면, 유압 소스(160)로부터 후진 라인(1433a), 후진 포트(1433), 프론트 챔버(1431), 롱 스트로크 포트(1435), 롱 스트로크 라인(1435a), 전진 제어 라인(1464a)을 거쳐 전진 작용면(1464)으로 유압이 인가될지 여부가 솔레노이드 밸브(1470)에 의해 결정될 수 있다. 이때, 솔레노이드 밸브(1470)가 숏 스트로크 위치(1470-2)로 변환된 경우에는 숏 스트로크 라인(1436a)이 차단되어 메인 밸브(1460)는 후진 제어 라인(1462a)을 통해 인가되는 유압에 의해 후진 위치(1460-1)로 변환되며, 솔레노이드 밸브(1470)가 온 위치로 변환된 경우 메인 밸브(1460)는 전진 제어 라인(1464a)을 통해 인가되는 유압에 의해 전진 위치(1460-2)로 변환될 수 있다.Thus, when the short stroke port 1434 is connected with the front chamber 1431, the hydraulic line 160 retracts the line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435, and the long from the hydraulic source 160. The solenoid valve 1470 may determine whether hydraulic pressure is applied to the forward action surface 1464 via the stroke line 1435a and the forward control line 1464a. At this time, when the solenoid valve 1470 is converted to the short stroke position 1470-2, the short stroke line 1434a is blocked so that the main valve 1460 is reversed by the hydraulic pressure applied through the reverse control line 1462a. Position 1460-1, and when the solenoid valve 1470 is switched to the on position, the main valve 1460 is converted to the forward position 1460-2 by hydraulic pressure applied through the forward control line 1464a. Can be.
상기한 바와 같이 피스톤(1440)은 솔레노이드 밸브(1470)의 설정 변환에 따라 롱 스트로크 모드와 숏 스트로크 모드로 왕복 운동을 수행할 수 있다.As described above, the piston 1440 may perform reciprocating motion in the long stroke mode and the short stroke mode according to the setting change of the solenoid valve 1470.
롱 스트로크 모드에서는 솔레노이드 밸브(1470)가 롱 스트로크 위치(1470-1)로 설정이 변환된다. 이 상태에서 피스톤(1440)이 전진하면 전방 대경부(1442)에 의해 롱 스트로크 포트(1435)가 프론트 챔버(1431)로부터 차단되어 메인 밸브(1460)가 후진 위치(1460-1)로 변환되고, 유압 소스(160)로부터의 유압이 피스톤(1440)의 후방 대경부(1444)의 단차면(1444a)에 전달되지 않아 피스톤(1440)이 후진 동작을 수행한다. In the long stroke mode, the solenoid valve 1470 is switched to the long stroke position 1470-1. In this state, when the piston 1440 is advanced, the long stroke port 1435 is blocked by the front large diameter portion 1442 from the front chamber 1431, and the main valve 1460 is converted to the reverse position 1460-1. Hydraulic pressure from the hydraulic source 160 is not transmitted to the stepped surface 1444a of the rear large diameter portion 1444 of the piston 1440 so that the piston 1440 performs the reverse operation.
이 상태에서 피스톤(1440)이 후진하여 전방 대경부(1442)가 롱 스트로크 포트(1435)를 통과하면, 롱 스트로크 포트(1435)가 프론트 챔버(1431)에 연결되어 메인 밸브(1460)가 전진 위치(1460-2)로 변환되고, 유압 소스(160)로부터의 유압이 피스톤(1440)의 후방 대경부(1444)의 단차면(1444a)에 전달되어 피스톤(1440)이 전진 동작을 수행한다. In this state, when the piston 1440 reverses and the front large diameter portion 1442 passes through the long stroke port 1435, the long stroke port 1435 is connected to the front chamber 1431, and the main valve 1460 is in the forward position. 1460-2, the hydraulic pressure from the hydraulic source 160 is transmitted to the step surface 1444a of the rear large diameter portion 1444 of the piston 1440 so that the piston 1440 performs the forward operation.
이때, 전방 대경부(1442)는 롱 스트로크 포트(1435)를 통과하기 전에 숏 스트로크 포트(1436)를 통과하지만, 숏 스트로크 라인(1436a)이 솔레노이드 밸브(1470)에 의해 차단되어 있으므로 유압 전달이 이루어지지는 않는다.At this time, the front large diameter portion 1442 passes through the short stroke port 1434 before passing through the long stroke port 1435, but since the short stroke line 1436a is blocked by the solenoid valve 1470, hydraulic transmission is performed. There is no support.
즉, 롱 스트로크 모드에서는 피스톤(1440)의 전방 대경부(1442)의 위치가 롱 스트로크 포트(1435)를 통과하는 것을 기점으로 전진 동작이 시작된다.That is, in the long stroke mode, the forward operation is started based on the position of the front large diameter portion 1442 of the piston 1440 passing through the long stroke port 1435.
한편, 숏 스트로크 모드에서는 솔레노이드 밸브(1470)가 숏 스트로크 위치(1470-2)로 설정이 변환된다. 이 상태에서 피스톤(1440)이 전진하면 전방 대경부(1442)에 의해 숏 스트로크 포트(1436)가 프론트 챔버(1431)로부터 차단되어 메인 밸브(1460)가 후진 위치(1460-1)로 변환되고, 유압 소스(160)로부터의 유압이 피스톤(1440)의 후방 대경부(1444)의 단차면(1444a)에 전달되지 않아 피스톤(1440)이 후진 동작을 수행한다. 이 상태에서 피스톤(1440)이 후진하여 전방 대경부(1442)가 숏 스트로크 포트(1436)를 통과하면, 숏 스트로크 포트(1436)가 프론트 챔버(1431)에 연결되고 솔레노이드 밸브(1470)에 의해 숏 스트로크 라인(1436a)이 연결되어 있으므로 유압원으로부터 메인 밸브(1460)의 전진 작용면(1464)에 유압이 인가되어 메인 밸브(1460)가 전진 위치(1460-2)로 변환되고, 유압 소스(160)로부터의 유압이 피스톤(1440)의 후방 대경부(1444)의 단차면(1444a)에 전달되어 피스톤(1440)이 전진 동작을 수행한다.On the other hand, in the short stroke mode, the solenoid valve 1470 is switched to the short stroke position 1470-2. In this state, when the piston 1440 is advanced, the short stroke port 1434 is blocked by the front large diameter portion 1442 from the front chamber 1431, and the main valve 1460 is converted to the reverse position 1460-1. Hydraulic pressure from the hydraulic source 160 is not transmitted to the stepped surface 1444a of the rear large diameter portion 1444 of the piston 1440 so that the piston 1440 performs the reverse operation. In this state, when the piston 1440 is reversed and the front large diameter portion 1442 passes through the short stroke port 1434, the short stroke port 1434 is connected to the front chamber 1431 and is shortened by the solenoid valve 1470. Since the stroke line 1436a is connected, hydraulic pressure is applied from the hydraulic source to the forward action surface 1464 of the main valve 1460 to convert the main valve 1460 to the forward position 1460-2, and the hydraulic source 160 The hydraulic pressure from) is transmitted to the step surface 1444a of the rear large-diameter portion 1444 of the piston 1440 so that the piston 1440 performs the forward operation.
즉, 숏 스트로크 모드에서는 피스톤(1440)의 전방 대경부(1442)의 위치가 숏 스트로크 포트(1436)를 통과하는 것을 기점으로 전진 동작이 시작된다. That is, in the short stroke mode, the forward operation is started based on the position of the front large diameter portion 1442 of the piston 1440 passing through the short stroke port 1434.
여기서, 롱 스트로크 포트(1435)가 숏 스트로크 포트(1436)보다 후방에 위치하므로, 롱 스트로크 모드에서 보다 숏 스트로크 모드에서 전진 동작의 시작이 빨리 시작되며, 결과적으로 피스톤(1440)의 후진 거리가 감소하여 스트로크 거리가 작아지는 것이다.Here, since the long stroke port 1435 is located behind the short stroke port 1434, the start of the forward operation is started earlier in the short stroke mode than in the long stroke mode, and consequently the backward distance of the piston 1440 is reduced. The stroke distance becomes smaller.
이와 같이 스트로크 거리의 조절은 롱 스트로크 모드와 숏 스트로크 모드 간의 모드 선택에 의해 이루어질 수 있으며, 모드 전환은 솔레노이드 밸브(1470)에 의존한다. 즉, 솔레노이드 밸브(1470)의 ON/OFF 제어에 의해서 이루어질 수 있다.As such, the adjustment of the stroke distance may be made by mode selection between the long stroke mode and the short stroke mode, and mode switching is dependent on the solenoid valve 1470. That is, it may be made by the ON / OFF control of the solenoid valve 1470.
솔레노이드 밸브(1470)는 타격 조건에 따라 자동적으로 롱 스트로크 위치(1470-1)와 숏 스트로크 위치(1470-2) 간의 변환을 수행할 수 있다. The solenoid valve 1470 may automatically convert between the long stroke position 1470-1 and the short stroke position 1470-2 according to the strike condition.
본 발명의 일 실시예에 따른 지능형 유압 브레이커(1000)는 타격 조건 또는 타격대상물의 단단한 정도를 감지하기 센서(2202,2204,2206)를 포함할 수 있다. 센서(2202,2204,2206)는 타격 조건을 감지하여 타격 조건에 관한 신호를 콘트롤러(180)에 전달하고, 콘트롤러(180)는 타격 조건에 기초하여 솔레노이드 밸브(1470)에 콘트롤 신호를 송신하여 솔레노이드 밸브(1470)의 위치 또는 ON/OFF를 제어할 수 있다. The intelligent hydraulic breaker 1000 according to an embodiment of the present invention may include sensors 2202, 2204, and 2206 to detect a strike condition or a rigidity of the hitting object. The sensors 2202, 2204, and 2206 detect a hitting condition and transmit a signal related to the hitting condition to the controller 180, and the controller 180 transmits a control signal to the solenoid valve 1470 based on the hitting condition to solenoid. The position or ON / OFF of the valve 1470 can be controlled.
상기 센서(2202,2204,2206)로는 근접센서를 이용할 수 있다. 근접 센서(2202,2204,2206)는 지능형 유압 브레이커(1000)에 장착되어 타격 시 피스톤(1440)의 위치를 감지할 수 있다.Proximity sensors may be used as the sensors 2202, 2204, and 2206. Proximity sensors 2202, 2204, and 2206 may be mounted on the intelligent hydraulic breaker 1000 to detect the position of the piston 1440 upon hitting.
일 예로, 근접 센서(2202,2204,2206)는 피스톤(1440)이 치즐(1600)을 통해 암반을 타격 할 때 최대 전진 위치(이하 ‘하사점’이라 함)의 위치를 감지할 수 있다. 구체적으로 근접 센서(2202,2204,2206)는 실린더(1430)에 형성된 홈이나 홀에 삽입되어 피스톤(1440)의 왕복 운동 방향과 수직한 방향을 향해 설치될 수 있다. 이에 따라 근접 센서(2202,2204,2206)는 피스톤의 왕복 운동 중 근접 센서(2202,2204,2206)의 설치 지점 상에 소경부(1446)가 통과하고 있는지 또는 대경부(1442,1444)가 통과하고 있는지를 감지할 수 있다. For example, the proximity sensors 2202, 2204, and 2206 may detect the position of the maximum forward position (hereinafter, referred to as 'lower dead center') when the piston 1440 strikes the rock through the chisel 1600. In detail, the proximity sensors 2202, 2204, and 2206 may be inserted into grooves or holes formed in the cylinder 1430 and installed in a direction perpendicular to the reciprocating direction of the piston 1440. Accordingly, the proximity sensors 2202, 2204 and 2206 pass through the small diameter portion 1446 or the large diameter portions 1442 and 1444 through the installation point of the proximity sensors 2202, 2204 and 2206 during the reciprocating motion of the piston. You can detect if you are.
또한 근접 센서(2202,2204,2206)는 실린더(1430) 상에 피스톤(1440)의 왕복 운동 방향을 따라 복수 개가 배치될 수 있다. 예를 들어, 근접 센서(2202,2204,2206)는 실린더(1430)의 후단에 가까운 측에서부터 전단에 가까운 측으로 순서대로 배치되는 제1 센서(2202), 제2 센서(2204), 제3 센서(2206)를 포함할 수 있다.In addition, a plurality of proximity sensors 2202, 2204, and 2206 may be disposed on the cylinder 1430 along the reciprocating direction of the piston 1440. For example, the proximity sensors 2202, 2204, and 2206 may include the first sensor 2202, the second sensor 2204, and the third sensor disposed in order from the side close to the rear end of the cylinder 1430 to the side close to the front end. 2206).
도 3을 살펴보면, 실린더(1430)의 후측에 후방으로부터 전방을 향해 차례로 배치되는 3개의 근접센서(2202,2204,2206)가 전방 대경부(1442)를 감지할 수 있다. 여기서, 근접센서(2202,2204,2206)의 배치는 피스톤(1440)이 최대 전진 위치에 있을 때 전방 대경부(1442)의 후단 단차면(1442a)이 근접센서(2202,2204,2206)가 배치된 영역 부근에 위치하도록 배치될 수 있다. 지능형 유압 브레이커(1000)가 경암을 타격할 때의 피스톤(1440)의 최대 전진 위치는 연암을 타격할 때의 피스톤(1440)의 최대 전진 위치보다 후측에 형성된다. 이는 치즐이 경암을 뚫고 들어가는 정도가 연암을 뚫고 들어가는 정도보다 약하기 때문이다. 따라서, 도 3과 같이 근접센서(2202,2204,2206)를 배치하면, 피스톤(1440)의 전진 위치가 전단에 가까워질수록 제1 센서(2202)로부터 차례로 ON된다. 예를 들어, 각 근접 센서들(2202,2204,2206)에서 감지되는 신호가 많을수록 타격대상물이 경암에 가깝고 적을수록 타격대상물이 연암에 가까운 것을 알 수 있게 된다.Referring to FIG. 3, three proximity sensors 2202, 2204, and 2206 sequentially disposed from the rear side to the front side of the cylinder 1430 may detect the front large diameter portion 1442. Here, the arrangement of the proximity sensors 2202, 2204, and 2206 is such that the rear stepped surface 1442a of the front large-diameter portion 1442 is disposed by the proximity sensors 2202, 2204, and 2206 when the piston 1440 is in the maximum forward position. It may be arranged to be located near the area. The maximum forward position of the piston 1440 when the intelligent hydraulic breaker 1000 strikes hard rock is formed behind the maximum forward position of the piston 1440 when hitting soft rock. This is because chisels penetrate the hard rock to be weaker than penetrating soft rock. Accordingly, when the proximity sensors 2202, 2204, and 2206 are arranged as illustrated in FIG. 3, the proximity sensors 2202, 2204, and 2206 are sequentially turned on from the first sensor 2202 as the piston 1440 moves forward. For example, the more signals detected by each of the proximity sensors 2202, 2204, and 2206, the closer the hitting object is to hard rock, and the smaller the hitting object is to be closer to soft rock.
한편, 근접센서(2202,2204,2206)는 피스톤(1440)의 후방 대경부(1444)를 감지하도록 배치되는 것도 가능하다. 근접센서(2202,2204,2206)는 피스톤(1440) 전진 시에는 전방 대경부(1442)를 감지하고 피스톤(1440) 후진 시에는 후방 대경부(1444)를 감지하는 위치에 배치될 수 있다. 이때에도, 근접센서(2202,2204,2206)는 실린더(1430)에 그 길이 방향을 따라 복수 개 배치될 수 있다. Meanwhile, the proximity sensors 2202, 2204, and 2206 may be disposed to detect the rear large diameter part 1444 of the piston 1440. Proximity sensors 2202, 2204, and 2206 may be disposed at positions for detecting the front large diameter portion 1442 when the piston 1440 moves forward and for detecting the rear large diameter portion 1444 when the piston 1440 moves backward. In this case, a plurality of proximity sensors 2202, 2204, and 2206 may be disposed in the cylinder 1430 along the longitudinal direction thereof.
도 3과 같은 근접 센서(2200)의 배치 상태에 의하면, 피스톤(1440) 전진 시에 각 근접센서(2202,2204,2206)에서 전방 대경부(1442)가 감지되는지 여부에 따라 타격 조건을 파악할 수 있다.According to the arrangement state of the proximity sensor 2200 as shown in FIG. 3, the striking condition may be determined according to whether the front large diameter portion 1442 is detected by each of the proximity sensors 2202, 2204, and 2206 when the piston 1440 is moved forward. have.
다만, 근접센서(2202,2204,2206)는 도 3에 도시된 경우에 한정되는 것은 아니며, 필요에 따라 적절히 실린더(1430)의 다양한 지점에 배치될 수 있다. However, the proximity sensors 2202, 2204, and 2206 are not limited to those illustrated in FIG. 3, and may be disposed at various points of the cylinder 1430 as needed.
상기와 같이, 실린더(1430)에 복수개의 근접센서(2202,2204,2206)이 설치되는 경우에 각 근접센서를 최적의 위치에 설치하는 것이 매우 중요하다. 본 발명의 경우에 실린더(1430) 내에서 피스톤(1140)의 위치를 감지하는 복수개의 근접센서(2202,2204,2206)는, 피스톤(1440)의 전단이 치즐(1600)을 타격하여 치즐(1600)이 타격대상물을 관통하여 진행할 때 피스톤(1440)이 움직이는 스트로크 거리 내에 위치하도록 실린더(1440)에 형성되는 것이 바람직하다.As described above, in the case where the plurality of proximity sensors 2202, 2204, and 2206 are installed in the cylinder 1430, it is very important to install each proximity sensor in an optimal position. In the case of the present invention, a plurality of proximity sensors (2202, 2204, 2206) for detecting the position of the piston 1140 in the cylinder 1430, the front end of the piston 1440 hit the chisel 1600, the chisel 1600 ) Is preferably formed in the cylinder 1440 such that the piston 1440 is located within a moving stroke distance when traveling through the hitting object.
다시 설명하면, 본 발명의 일 실시예에 따른 지능형 유압 브레이커(1000)는, 유압이 공급되는 실린더(1430); 실린더(1430) 내에 수용되며, 유압에 의해 전진 또는 후진하는 피스톤(1440); 피스톤(1440)에 의해 타격되도록 피스톤(1440)의 전방에 위치하며, 일단은 실린더(1430)의 내부에 위치하고 타단은 실린더(1430)의 전방단에서 노출된 상태로 위치하는 치즐(1600); 실린더(1430)에 형성된 롱 스트로크 포트(1435) 및 숏 스트로크 포트(1436)에 연결되는 유압을 단속하여 피스톤(1440)의 전진 또는 후진을 제어하는 메인 밸브(1460); 실린더(1430)에 형성되어 실린더(1430) 내에서 피스톤(1440)의 위치를 감지하는 센서(2202,2204,2206); 메인 밸브(1460)와 유압이 연결되며, 숏 스트로크 포트(1436)에 연결되는 유압을 단속하는 솔레노이드 밸브(1470); 및 전달받은 센서(2202,2204,2206)의 센싱값에 기초하여 솔레노이드 밸브(1470)에 제어신호를 전달하는 콘트롤러(180);를 포함하며, 콘트롤러(180)는 센서(2202,2204,2206)가 피스톤(1440)의 하사점을 감지한 센싱값에 기초하여 피스톤(1440)의 스트로크 거리를 제어하고, 센서(2202,2204,2206)는 피스톤(1440)의 전단이 치즐(1600)을 타격하여 치즐(1600)이 타격대상물을 관통하여 진행할 때 피스톤(1440)이 움직이는 스트로크 거리 내에 위치하도록 실린더(1430)에 형성될 수 있다.In other words, the intelligent hydraulic breaker 1000 according to an embodiment of the present invention, the cylinder 1430 is supplied with hydraulic pressure; A piston 1440 accommodated in the cylinder 1430 and moving forward or backward by hydraulic pressure; A chisel 1600 positioned in front of the piston 1440 so as to be hit by the piston 1440, one end of which is positioned inside the cylinder 1430 and the other end of which is exposed at the front end of the cylinder 1430; A main valve 1460 for controlling forward or backward movement of the piston 1440 by intermittent hydraulic pressure connected to the long stroke port 1435 and the short stroke port 1434 formed in the cylinder 1430; Sensors (2202, 2204, 2206) formed in the cylinder (1430) for detecting the position of the piston (1440) in the cylinder (1430); A solenoid valve 1470 connected to the main valve 1460 and hydraulic pressure to regulate the hydraulic pressure connected to the short stroke port 1434; And a controller 180 that transmits a control signal to the solenoid valve 1470 based on the sensed values of the received sensors 2202, 2204, and 2206. The controller 180 includes the sensors 2202, 2204, and 2206. Controls the stroke distance of the piston 1440 based on the sensing value of sensing the bottom dead center of the piston 1440, the sensor (2202, 2204, 2206) the front end of the piston 1440 hit the chisel 1600 The chisel 1600 may be formed in the cylinder 1430 such that the piston 1440 is located within a moving stroke distance when the chisel 1600 passes through the hitting object.
본 발명에 따른 지능형 유압 브레이커(1000)에 있어서, 치즐(1600)이 다양한 조건의 타격대상물을 타격할 때 치즐(1600)이 타격대상물을 뚫고 들어가는 정도가 다르게 되는데, 근접센서(2202,2204,2206)가 피스톤(1440)의 모든 위치를 감지할 수 있어야 하고 센서가 감지하지 못하는 음영영역을 최소화해야 한다. 이를 위해서, 지능형 유압 브레이커(1000)에 있어서 실제 치즐(1600)이 피스톤(1440)과 맞닿아 있을 때 피스톤(1440)이 치즐(1600)을 타격하여 치즐(1600)이 암반 즉, 타격대상물을 뚫고 내려갈 수 있는 스트로크 거리 내에서의 피스톤(1440)의 움직임을 감지할 수 있는 범위 내에 근접센서를 설치하는 것이 가장 좋다.In the intelligent hydraulic breaker 1000 according to the present invention, when the chisel 1600 hits the hitting object of various conditions, the degree to which the chisel 1600 penetrates the hitting object is different, and the proximity sensors 2202, 2204, and 2206 are used. Should be able to detect all positions of the piston 1440 and minimize the shaded area that the sensor does not detect. To this end, when the actual chisel 1600 is in contact with the piston 1440 in the intelligent hydraulic breaker 1000, the piston 1440 hits the chisel 1600 so that the chisel 1600 penetrates the rock, that is, the hitting object. It is best to install a proximity sensor within a range that can detect the movement of the piston 1440 within a stroke distance that can be lowered.
피스톤(1440)이 치즐(1600)을 타격하여 치즐(1600)이 타격대상물을 뚫고 내려갈 수 있는 스트로크 거리는 지능형 유압 브레이커(1000)의 용량에 따라 달라질 수 있는데, 45톤급 기기는 약 55mm이고 50톤급 기기는 약 60mm이다. 따라서, 복수개의 근접센서(2202,2204,2206)를 실린더(1430)에 설치하는 경우에 55mm 또는 60mm의 스트로크 범위 내에 모든 근접센서가 있도록 해야 한다. 복수개의 근접센서(2202,2204,2206)가 상기한 스트로크 거리 내에 설치되기만 하면, 근접센서가 전방 대경부(1442)를 감지하느냐 후방 대경부(1444)를 감지하느냐에 무관하게 작동할 수 있다.The stroke distance that the piston 1440 hits the chisel 1600 and the chisel 1600 can penetrate the hitting object may vary depending on the capacity of the intelligent hydraulic breaker 1000. The 45-ton machine is about 55 mm and the 50-ton machine Is about 60mm. Therefore, when installing a plurality of proximity sensors (2202, 2204, 2206) to the cylinder 1430, it is necessary to ensure that all the proximity sensors are within the stroke range of 55mm or 60mm. As long as the plurality of proximity sensors 2202, 2204, and 2206 are installed within the above-described stroke distance, the proximity sensors 2202, 2204, and 2206 may operate regardless of whether the proximity sensor 1242 or the rear diameter 1444 are detected.
상기한 피스톤(1440)의 스트로크 거리 내에 복수개의 근접센서를 설치하는 경우에, 각각의 근접센서를 어떠한 위치에 어떻게 배치하느냐에 따라서 타격대상물의 상태를 정확히 감지할 수 있다. 우선, 상기 스트로크 거리 내에 복수개의 근접센서를 동일한 간격으로 이격 설치할 수 있다.When installing a plurality of proximity sensors within the stroke distance of the piston 1440, it is possible to accurately detect the state of the hitting object depending on how and where each proximity sensor is disposed. First, a plurality of proximity sensors may be spaced apart at equal intervals within the stroke distance.
도 3에 도시된 바와 같이, 상기한 복수개의 근접센서(2202,2204,2206)는, 롱 스트로크 포트(1435)와 숏 스트로크 포트(1436) 사이에 위치하도록 실린더(1430)에 형성될 수 있다. 즉, 복수개로 마련되는 근접센서(2202,2204,2206) 중 어느 하나는 롱 스트로크 포트(1435) 가까이에 마련되고 다른 하나는 숏 스트로크 포트(1436) 가까이에 마련되며, 또 다른 하나는 롱 스트로크 포트(1435)와 숏 스트로크 포트(1436) 사이에 마련될 수 있다. 도 3에는 근접센서(2202,2204,2206)가 3개(S1,S2,S3) 형성된 경우가 도시되어 있는데, 4개 이상의 근접센서가 설치될 수도 있다. 4개 이상의 근접센서가 설치되는 경우에는 가장 후방에 위치하는 센서(S1)는 롱 스트로크 포트(1435) 가까이에 위치하고 가장 전방에 위치하는 센서(S3)는 숏 스트로크 포트(1436) 가까이에 위치하며, 나머지 센서들은 앞서 언급한 2개 센서의 사이에 등간격으로 위치할 수 있다.As shown in FIG. 3, the plurality of proximity sensors 2202, 2204, and 2206 may be formed in the cylinder 1430 to be positioned between the long stroke port 1435 and the short stroke port 1434. That is, any one of a plurality of proximity sensors 2202, 2204, and 2206 is provided near the long stroke port 1435, the other is provided near the short stroke port 1434, and the other is a long stroke port. 1435 and the short stroke port 1434. 3 illustrates a case in which three proximity sensors 2202, 2204, and 2206 are formed (S1, S2, and S3), and four or more proximity sensors may be installed. When four or more proximity sensors are installed, the rearmost sensor S1 is located near the long stroke port 1435 and the frontmost sensor S3 is located near the short stroke port 1436. The remaining sensors may be located at equal intervals between the two sensors mentioned above.
도 4a를 참조하면, 3개의 근접센서(2202,2204,2206)를 사용하면 최대 4개 구간을 감지할 수 있고 이는 결국 타격대상물의 조건에 대해서 피스톤(1440)의 움직임을 4단으로 제어할 수 있음을 의미한다. 롱 스트로크 포트(1435) 가까이에 위치하는 근접센서(2202,S1)만 피스톤(1440)을 감지하고 나머지 센서들(S2,S3)은 피스톤(1440)을 감지하지 못하면 타격대상물이 경암이라고 판단하고 그에 따라 피스톤(1440)이 1단 위치까지 움직이도록 구동하면 된다. 만약, 모든 근접센서(S1,S2,S3)가 피스톤(1440)을 감지하면 타격대상물이 연암이라고 판단하고 그에 따라 피스톤(1440)이 3단 위치까지 움직이도록 구동하면 된다. 타격대상물이 경암과 연암의 중간 단단함을 가지는 중암인 경우에는 롱 스트로크 포트(1435) 가까이에 있는 센서(S1) 및 이 보다 전방에 있는 센서(S2)만 피스톤(1440)을 감지하고 되고 그 결과에 따라서 피스톤(1440)이 2단 위치까지 움직이도록 구동하면 된다.Referring to FIG. 4A, the use of three proximity sensors 2202, 2204, and 2206 can detect up to four sections, which in turn can control the movement of the piston 1440 in four stages for the conditions of the hitting object. It means that there is. If only the proximity sensors 2202 and S1 located near the long stroke port 1435 detect the piston 1440 and the remaining sensors S2 and S3 do not detect the piston 1440, the hitting object is determined as hard rock. Accordingly, the piston 1440 may be driven to move to the first position. If all of the proximity sensors S1, S2, and S3 detect the piston 1440, it is determined that the hitting object is soft rock, and the piston 1440 is driven to move to the third position accordingly. In the case where the hitting target is a middle rock having a hardness between the hard and soft rocks, only the sensor S1 near the long stroke port 1435 and the sensor S2 in front of the long stroke port 1435 detect the piston 1440. Therefore, the piston 1440 may be driven to move to the second stage position.
이와 같이, 근접센서(2202,2204,2206) 중 롱 스트로크 포트(1435) 가까이에 마련되는 근접센서(2202)는 타격대상물 중 경암 감지하고, 숏 스트로크 포트(1436) 가까이에 마련되는 근접센서(2206)는 타격대상물 중 연암을 감지하며, 롱 스트로크 포트(1435)와 숏 스트로크 포트(1436) 사이에 마련되는 근접센서(2204)는 타격대상물 중 중암을 감지할 수 있다.As such, the proximity sensor 2202 provided near the long stroke port 1435 among the proximity sensors 2202, 2204, and 2206 senses hard rock among the hitting objects, and the proximity sensor 2206 provided near the short stroke port 1436. ) Detects soft rock among the hitting objects, and the proximity sensor 2204 provided between the long stroke port 1435 and the short stroke port 1436 may detect the heavy rock among the hitting objects.
도 4b에는 지능형 유압 브레이커(1000)가 50톤급인 경우에 치즐(1600)에 피스톤(1440)이 맞닿은 상태에서 치즐(1600)이 타격대상물을 뚫고 진입하는 스트로크 거리 내에서 3개의 근접센서(2202,2204,2206)의 최적 위치가 예시적으로 도시되어 있다. 예를 들면, 가장 후방에 위치하는 근접센서(2202,S1)는 롱 스트로크 포트(1435)와 8.5mm 이격된 위치에, 숏 스트로크 포트(1436)의 가까이에 위치하는 가장 전방에 위치하는 근접센서(2206,S3)는 롱 스트로크 포트(1435)에서부터 51mm 이격된 위치, 그리고 가운데 위치하는 근접센서(2204,S2)는 롱 스트로크 포트(1435)에서부터 31mm 이격된 위치에 설치될 수 있으나, 반드시 이러한 수치값에 한정되는 것은 아니다. 이와 같이, 복수개의 근접센서를 설치하는 경우에는 지능형 유압 브레이커(1000)의 용량에 따라 치즐(1600)에 피스톤(1440)이 맞닿은 상태에서 치즐(1600)이 타격대상물을 뚫고 진입하는 스트로크 거리 내에 근접센서들을 설치해야 하되, 롱 스트로크 포트(1435)와 숏 스트로크 포트(1436) 사이에 위치하는 것이 바람직하다.4B shows three proximity sensors 2202 within a stroke distance in which the chisel 1600 penetrates the hitting object while the piston 1440 is in contact with the chisel 1600 when the intelligent hydraulic breaker 1000 is 50 ton. The optimal location of 2204, 2206 is shown by way of example. For example, the rearmost proximity sensors 2202 and S1 are located at a distance of 8.5 mm from the long stroke port 1435 and the frontmost proximity sensor located near the short stroke port 1434 ( 2206 and S3 may be installed 51 mm apart from the long stroke port 1435, and the proximity sensors 2204 and S2 located in the middle may be installed 31 mm apart from the long stroke port 1435. It is not limited to. As described above, in the case of installing a plurality of proximity sensors, the piston 1440 contacts the chisel 1600 according to the capacity of the intelligent hydraulic breaker 1000, and the chisel 1600 penetrates the hitting object and enters within the stroke distance. Sensors should be installed but preferably located between long stroke port 1435 and short stroke port 1434.
한편, 도 5에는 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 피스톤의 위치와 근접센서의 센싱값에 따라 타격대상물을 판단하는 과정을 설명하기 위한 도면이 도시되어 있고, 도 6a 내지 도 6c 및 도 7에는 본 발명의 일 실시예에 따른 지능형 유압 브레이커의 솔레노이드 밸브 작동과 피스톤의 위치 관계를 설명하기 위한 도면이 도시되어 있다.On the other hand, Figure 5 is a view for explaining the process of determining the hitting object according to the position of the piston and the sensing value of the proximity sensor of the intelligent hydraulic breaker according to an embodiment of the present invention, Figures 6a to 6c and 7 is a view for explaining the positional relationship between the solenoid valve operation and the piston of the intelligent hydraulic breaker according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 지능형 유압 브레이커(1000)는 타격대상물의 단단한 정도에 따라서 피스톤(1440)의 스트로크를 자동으로 조절하여 다단으로 구동할 수 있다는 것에 하나의 장점이 있다. 이를 위해, 치즐(1600)과 맞닿은 상태에서 피스톤(1440)이 하강하여 치즐(1600)이 타격대상물을 뚫고 진입하는 과정에서 근접센서(2202,2204,2206)가 피스톤(1440)을 감지하여 타격대상물의 상태를 감지하고, 그 결과를 콘트롤러(180)에 전달하면 콘트롤러(180)는 메인 밸브(1460)와 솔레노이드 밸브(1470)를 작동시켜서 피스톤(1440)에 전달되는 유압을 제어함으로써 결과적으로 다단 운전이 가능하게 된다. 이 때, 타격대상물의 상태에 따라서 솔레노이드 밸브(1470)의 ON/OFF 여부 또는 ON시간과 OFF시간의 제어 타이밍을 결정해야 하는데, 피스톤(1440)의 하강시 근접센서(2002,2204,2206)의 센싱값에 의해 결정될 수 있다.Intelligent hydraulic breaker 1000 according to an embodiment of the present invention has one advantage that it can be driven in multiple stages by automatically adjusting the stroke of the piston 1440 according to the rigidity of the hitting object. To this end, the piston 1440 is lowered in contact with the chisel 1600, the proximity sensor (2202, 2204, 2206) detects the piston 1440 in the process of entering the chisel 1600 through the hitting object to hit the hitting object When the state of the sensing unit and transmits the result to the controller 180, the controller 180 operates the main valve 1460 and the solenoid valve 1470 to control the hydraulic pressure transmitted to the piston 1440 consequently multi-stage operation This becomes possible. At this time, it is necessary to determine whether the solenoid valve 1470 is ON / OFF or control timing of the ON time and the OFF time according to the state of the hitting object, and when the piston 1440 descends, the proximity sensors 2002, 2204, 2206 It may be determined by the sensing value.
도 5를 참조하면, 치즐(1600)과 피스톤(1440)이 맞닿은 상태에서 피스톤(1440)이 하강하면서 타격대상물의 단단한 정도 또는 상태에 대한 측정을 하고, 다시 상승하면서 타격대상물의 상태에 따른 타격 스트로크를 결정하게 된다. 예를 들면, 실린더(1430)의 후방에서부터 전방을 향해 차례대로 설치된 3개의 근접센서(S1,S2,S3)에 대해서 센서 S1만 ON되고 나머지 2개의 센서는 OFF이면 타격대상물은 경암이라고 할 수 있고 이 때 피스톤(1440)은 경암을 타격할 수 있도록 롱 스트로크 거리까지 상승하게 된다. 반대로 3개의 센서가 모두 ON이 되면 타격대상물은 연암이라고 할 수 있고, 이 때 피스톤(1440)은 연암을 타격할 수 있도록 숏 스트로크 거리까지 상승하여 빠른 속도로 상승과 하강을 반복하면서 연암을 타격할 준비를 하게 된다. 타격대상물이 중암인 경우에는 2개의 센서(S1,S2)는 ON이 되지만 나머지 1개의 센서(S3)는 OFF가 되는 상태이다. 이와 같이, 피스톤(1440)이 하강하면서 타격대상물의 상태를 감지하고 그 결과에 따라 다단으로 피스톤(1440)을 구동하게 되는데, 피스톤(1440)의 다단 구동은 솔레노이드 밸브(1470)의 작동에 의해서 결정될 수 있다.Referring to FIG. 5, while the chisel 1600 and the piston 1440 are in contact with each other, the piston 1440 descends to measure the rigidity or state of the object to be hit, and the stroke is raised again according to the state of the object to be hit. Will be determined. For example, if only the sensor S1 is ON and the other two sensors are OFF for the three proximity sensors S1, S2, and S3 sequentially installed from the rear of the cylinder 1430 to the front, the hitting object is hard rock. At this time, the piston 1440 is raised to a long stroke distance to strike the hard rock. On the contrary, when all three sensors are turned on, the hitting object may be called soft rock. At this time, the piston 1440 may rise to the short stroke distance to hit the soft rock, and hit the soft rock while repeatedly rising and falling at high speed. Get ready. When the hitting target is a heavy rock, the two sensors S1 and S2 are turned on, but the other sensor S3 is turned off. As such, the piston 1440 senses the state of the hitting object while descending and drives the piston 1440 in multiple stages according to the result. The multi-stage driving of the piston 1440 is determined by the operation of the solenoid valve 1470. Can be.
도 6a 내지 도 6c에는 타격대상물이 경암, 중암, 연암일 때 피스톤(1440)의 다단 구동에 대해서 도시되어 있다. 즉, 타격대상물이 경암, 중암, 연암일 때 피스톤(1440)은 각각 1단, 2단, 3단으로 구동할 수 있다. 도 6a는, 타격대상물이 경암(1단)인 경우에 피스톤(1440)이 하강할 때 센서 S1에 의해서만 피스톤(1440)이 감지되고, 상승시에는 센서 S1위치까지 상승하여 롱 스트로크로 경암을 타격하게 된다. 도 6b는, 타격대상물이 중암(2단)인 경우에 피스톤(1440)이 하강할 때 센서 S1 및 S2에 의해서만 피스톤(1440)이 감지되고, 상승시에는 센서 S2위치까지 상승하여 미들 스트로크로 경암을 타격하게 된다. 도 6c는, 타격대상물이 경암(1단)인 경우에 피스톤(1440)이 하강할 때 센서 S1~S3 모두에 의해서 피스톤(1440)이 감지되고, 상승시에는 센서 S3위치까지 상승하여 숏 스트로크로 경암을 타격하게 된다.6A to 6C illustrate the multi-stage driving of the piston 1440 when the hitting object is hard rock, medium rock, or soft rock. That is, when the strike object is hard rock, medium rock, soft rock, the piston 1440 may be driven in one stage, two stages, and three stages, respectively. FIG. 6A shows that the piston 1440 is sensed only by the sensor S1 when the piston 1440 is lowered when the hitting object is hard rock (stage 1), and when raised, the piston 1440 is raised to the sensor S1 position to strike the hard rock with a long stroke. do. FIG. 6B shows that the piston 1440 is sensed only by the sensors S1 and S2 when the piston 1440 is lowered when the hitting object is the middle arm (two stages). Will be hit. FIG. 6C shows that the piston 1440 is sensed by all of the sensors S1 to S3 when the piston 1440 is lowered when the hitting object is hard rock (stage 1), and when raised, the piston 1440 is raised to the position of the sensor S3 and the light stroke is short stroke. Will hit.
이러한 피스톤(1440)의 다단 제어를 위해서, 본 발명에 따른 지능형 유압 브레이커(1000)의 콘트롤러(180)는, 피스톤(1440)이 하강하여 치즐(1600)과 맞닿은 상태에서 치즐(1600)이 최초로 타격대상물을 뚫고 들어갈 때 복수개의 근접센서(2202,2204,2206) 중 어떤 위치의 근접센서가 ON 되는지 여부에 따라 타격대상물의 상태 또는 단단한 정도를 판단하고, 피스톤(1440)이 상승한 후 필요한 피스톤(1440)의 하강 스트로크 크기에 따라 솔레노이드 밸브(1470)를 ON 또는 OFF시키며, 타격대상물이 경암이 아닌 경우에 솔레노이드 밸브(1470)를 ON시킬 수 있다.For the multi-stage control of the piston 1440, the controller 180 of the intelligent hydraulic breaker 1000 according to the present invention, the chisel 1600 hits for the first time while the piston 1440 is lowered and in contact with the chisel 1600. When penetrating the object, judging the state or degree of rigidity of the object to be hit according to whether the proximity sensor of the plurality of proximity sensors (2202, 2204, 2206) is turned on, and after the piston 1440 is raised piston 1440 required The solenoid valve 1470 may be turned on or off depending on the size of the lower stroke, and the solenoid valve 1470 may be turned on when the strike object is not hard rock.
도 7을 참조하면, 피스톤(1440)이 초기 1번째로 상승 및 하강하면서 타격대상물의 상태를 측정하고 그 결과에 따라 다음 하강시에 타격대상물에 따른 스트로크 거리에서 반복적으로 승강하면서 타격을 하게 되는데, 타격대상물이 경암이면 피스톤(1440)은 1구간(도 4a 참조)까지 상승하여 하강하게 되는데, 경암인 경우에는 솔레노이드 밸브(1470)는 OFF 상태를 유지하고 메인 밸브(1460)만 작동하여 가장 긴 롱 스트로크로 타격대상물을 타격하게 된다. Referring to FIG. 7, the piston 1440 measures the state of the hitting object while initially rising and falling, and accordingly as a result, the piston 1440 repeatedly strikes and descends at the stroke distance according to the hitting object during the next lowering. If the hitting object is hard rock, the piston 1440 rises and descends to one section (see FIG. 4A). In the case of hard rock, the solenoid valve 1470 remains OFF and only the main valve 1460 operates to operate the longest long rod. Strike the hitting object.
타격대상물이 연암인 것으로 측정되는 경우에는, 피스톤(1440)은 4구간까지 상승한 후에 숏 스트로크 거리에서 반복적으로 승강하면서 타격대상물을 타격하게 되는데, 이를 위해 메인 밸브(1460)와 솔레노이드 밸브(1470)가 모두 작동하게 된다. When it is measured that the hitting object is soft rock, the piston 1440 ascends to the 4th section and repeatedly hits the hitting object while repeatedly lifting at the short stroke distance. For this, the main valve 1460 and the solenoid valve 1470 are All works.
마찬가지로 타격대상물이 중암인 경우에도 메인 밸브(1460)와 솔레노이드 밸브(1407)가 모두 작동하여 타격대상물에 적합한 스트로크로 피스톤(1440)을 구동하게 된다. 즉, 경암인 경우를 제외하고는 솔레노이드 밸브(1470)가 작동하게 되는데, 중암 또는 연암인 경우에 솔레노이드 밸브(1470)의 ON 시점 또는 ON 유지 시간 등을 조절하여 중암 또는 연암에 맞는 피스톤(1440)의 스트로크로 다단 구동하게 된다.Similarly, even when the hitting target is a heavy rock, both the main valve 1460 and the solenoid valve 1407 operate to drive the piston 1440 with a stroke suitable for the hitting target. That is, except in the case of hard rock, the solenoid valve 1470 is operated. In the case of medium or soft rock, the piston 1440 suitable for the middle rock or soft rock is controlled by adjusting the ON time or the ON holding time of the solenoid valve 1470. Multi-stage drive by the stroke of.
이와 같이, 콘트롤러(180)는, 타격대상물이 경암이 아닌 경우에, 솔레노이드 밸브(1470)의 ON/OFF 상태 또는 지속시간을 조절하여 피스톤(1440)의 하강시 스트로크 크기를 다단으로 제어할 수 있다.As such, the controller 180 may control the stroke size when the piston 1440 descends by adjusting the ON / OFF state or duration of the solenoid valve 1470 when the hitting target is not hard rock. .
또는, 콘트롤러(180)는, 타격대상물이 경암이 아닌 경우에, 솔레노이드 밸브(1470)의 ON/OFF 상태와 메인 밸브(1460)의 ON/OFF 상태를 조합하여 피스톤(1440)의 하강시 스트로크 크기를 다단으로 제어할 수 있다.Alternatively, the controller 180 may combine the ON / OFF state of the solenoid valve 1470 and the ON / OFF state of the main valve 1460 when the strike object is not hard rock. Can be controlled in multiple stages.
또는, 콘트롤러(180)는, 타격대상물이 경암이 아닌 경우에, 솔레노이드 밸브(1470)의 ON/OFF 상태의 변환 속도 또는 빈도를 조절하여 피스톤(1440)의 하강시 스트로크 크기를 다단으로 제어할 수 있다.Alternatively, when the hitting target is not hard rock, the controller 180 may control the stroke size when the piston 1440 descends by adjusting the conversion speed or frequency of the ON / OFF state of the solenoid valve 1470. have.
타격대상물이 경암인 경우에는 솔레노이드 밸브(1470)가 OFF된 상태에서 메인 밸브(1460)만 작동하여 롱 스트로크로 피스톤(1440)이 하강하게 되지만, 타격대상물이 중암 또는 연암인 경우에는 솔레노이드 밸브(1470)가 ON 되어서 미들 스트로크 또는 숏 스트로크로 피스톤(1440)이 하강하게 된다. 이 때, 연암의 경우에는 솔레노이드 밸브(1470)가 항상 ON 상태를 유지하기 때문에 숏 스트로크로 피스톤(1440)이 빠르게 움직일 수 있다. 중암의 경우에는 솔레노이드 밸브(1470)가 ON 상태 및 OFF 상태로 변환되어서 미들 스트로크로 피스톤(1440)을 하강시킬 수 있는데, 솔레노이드 밸브(14700)의 ON/OFF 변환 속도를 빠르게 하거나 느리게 하여 미들 스트로크의 크기를 더욱더 다양하게 만들 수 있고, 그 결과 더욱 다양한 크기의 다단 운전이 가능하게 된다.When the hitting target is hard rock, the solenoid valve 1470 is turned off to operate only the main valve 1460, and the piston 1440 descends by a long stroke. However, when the hitting target is medium or soft rock, the solenoid valve 1470. ) Is turned on to lower the piston 1440 in the middle stroke or the short stroke. At this time, in the case of soft rock, since the solenoid valve 1470 is always kept in the ON state, the piston 1440 can move quickly in a short stroke. In the case of the middle arm, the solenoid valve 1470 is switched to the ON state and the OFF state, so that the piston 1440 can be lowered by the middle stroke.The solenoid valve 14700 can increase or decrease the ON / OFF conversion speed of the middle stroke. The size can be made more varied, and as a result, multi-stage operation of more various sizes is possible.
한편, 콘트롤러(180)는, 피스톤(1440)이 치즐(1600)을 타격하면서 하강하는 경우에 피스톤(1440)의 하강에 소요되는 시간이 상승에 소요되는 시간 보다 짧도록 제어할 수 있다. 도 7을 참조하면, 초기 1번째 측정 타격을 한 후에, 타격대상물의 상태에 따른 스트로크 거리까지 피스톤(1440)이 천천히 상승하는 반면에 하강할 때는 빠르게 하강함을 알 수 있다. 이와 같이, 상승할 때 보다 하강할 때 피스톤(1440)이 상대적으로 빠르게 하강하기 때문에 보다 큰 타격력으로 타격대상물을 타격할 수 있다.On the other hand, when the piston 1440 descends while hitting the chisel 1600, the controller 180 may control the time required for the lowering of the piston 1440 to be shorter than the time required for the ascending. Referring to FIG. 7, it can be seen that after the initial first measurement blow, the piston 1440 slowly rises to the stroke distance according to the state of the hitting object, while rapidly descending when the piston descends. As such, when the piston 1440 descends relatively quickly when descending, the piston may hit the object with a greater hitting force.
지금까지는 복수개의 근접센서를 사용하여 타격대상물의 상태에 따라 피스톤을 다단으로 제어하는 것에 대해 설명하였는데, 근접센서를 복수개 사용하지 않고 1개 즉, 단일의 근접센서를 사용해서도 타격대상물의 상태에 따라 피스톤을 다단으로 제어할 수 있다. 이에 대해서는 도면을 참조하여 이하에서 설명한다.Up to now, the use of a plurality of proximity sensors to control the piston in multiple stages according to the state of the hitting object has been described. Therefore, the piston can be controlled in multiple stages. This will be described below with reference to the drawings.
도 8은 본 발명의 다른 실시예에 따른 지능형 유압 브레이커의 유압회로도, 도 9a 내지 도 9c는 도 8에 따른 지능형 유압 브레이커의 피스톤 위치와 근접센서의 관계를 설명하기 위한 도면, 도 10a 내지 도 10c는 도 8에 따른 지능형 유압 브레이커의 피스톤 위치에 따른 근접센서의 신호를 보여주는 도면, 도 11은 도 8에 따른 지능형 유압 브레이커의 콘트롤러의 개략적인 구성을 보여주는 블록도, 도 12는 도 8에 따른 지능형 유압 브레이커의 작동을 설명하기 위한 순서도이다.8 is a hydraulic circuit diagram of an intelligent hydraulic breaker according to another embodiment of the present invention, Figures 9a to 9c is a view for explaining the relationship between the piston position and the proximity sensor of the intelligent hydraulic breaker according to Figure 8, Figures 10a to 10c 8 is a view showing a signal of a proximity sensor according to the piston position of the intelligent hydraulic breaker according to Figure 8, Figure 11 is a block diagram showing a schematic configuration of the controller of the intelligent hydraulic breaker according to Figure 8, Figure 12 is an intelligent according to Figure 8 A flowchart for explaining the operation of the hydraulic breaker.
도 8을 참조하면, 단일의 근접센서(3202)가 실린더(1430)에 형성되어 있다. 여기서, 근접센서(3202)는 피스톤(1440)이 하강할 때 피스톤(1440)의 대경부(1442,1444)를 감지하게 되고, 근접센서(3202)가 대경부(1442,1444)를 감지한 센싱값이 지속된 시간에 기초하여 콘트롤러(180)는 타격대상물의 상태 또는 타격조건을 판단할 수 있다. 즉, 도 3의 경우와 달리 도 8의 경우에는 피스톤(1440)이 하강할 때 단일 근접센서(3202)가 ON된 상태를 센싱값으로 이용하는 것이 아니라 단일 근접센서(3202)가 피스톤(1440)의 대경부(1442,1444)를 감지하고 그 감지상태가 지속된 시간을 센싱값으로 이용하는 점에서 차이가 있다.Referring to FIG. 8, a single proximity sensor 3202 is formed in the cylinder 1430. Here, the proximity sensor 3202 detects the large diameter portions 1442 and 1444 of the piston 1440 when the piston 1440 descends, and senses that the proximity sensor 3202 detects the large diameter portions 1442 and 1444. The controller 180 may determine the state or the hitting condition of the hitting object based on the time duration of the value. That is, unlike the case of FIG. 3, in the case of FIG. 8, the single proximity sensor 3202 is not used as a sensing value when the piston 1440 is lowered, but the single proximity sensor 3202 is used as the sensing value. There is a difference in detecting large diameter portions 1442 and 1444 and using the duration of the detection state as a sensing value.
상기 단일의 근접센서(3202)는, 피스톤(1440)이 치즐(1600)에 맞닿은 상태에서 피스톤(1440)의 대경부(1442,1444) 중에서 피스톤(1440)의 전방단에 인접한 대경부(1442)의 하단 모서리 일측에 위치하도록 실린더(1430)에 형성될 수 있다. 다만, 근접센서(3202)의 위치가 반드시 전방 대경부(1442)의 하단 모서리 일측에 있어야 하는 것은 아니며, 후방 대경부(1444)의 하단 모서리 일측에 형성될 수도 있고, 대경부(1442,1444)의 상단 모서리 일측에 형성될 수도 있다.The single proximity sensor 3202 has a large diameter portion 1442 adjacent to the front end of the piston 1440 among the large diameter portions 1442 and 1444 of the piston 1440 while the piston 1440 is in contact with the chisel 1600. It may be formed in the cylinder 1430 to be located on one side of the lower edge. However, the position of the proximity sensor 3202 is not necessarily at one side of the lower edge of the front large diameter portion 1442, but may be formed at one side of the lower edge of the rear large diameter portion 1444, and the large diameter portions 1442 and 1444. It may be formed on one side of the upper edge.
도 8과 같이 근접센서(3202)가 후방 대경부(1442)의 하단 모서리 일측에 형성되는 경우, 피스톤(1440)이 하강하면 근접센서(3202)는 대경부(1442)를 감지하여 ON이 되며, 콘트롤러(180)는 근접센서(3202)의 ON 상태가 지속된 시간을 감지하여 타격대상물에 따라 피스톤(1440)을 다단으로 구동할 수 있다.When the proximity sensor 3202 is formed at one side of the lower edge of the rear large diameter portion 1442 as shown in FIG. 8, when the piston 1440 is lowered, the proximity sensor 3202 is turned on by detecting the large diameter portion 1442. The controller 180 may detect the time that the ON state of the proximity sensor 3202 lasts to drive the piston 1440 in multiple stages according to the hitting object.
도 9a 내지 도 9c는 단일의 근접센서(3202)가 피스톤(1440)의 후방 대경부(1442) 하단 모서리 일측에 설치된 경우에, 피스톤(1440)이 하강함에 따라 근접센서(3202)의 센싱값을 설명하기 위한 도면이고, 도 10은 각 상태에 대한 근접센서 신호의 시간에 대한 변화를 보여주는 그래프이다. 9A to 9C illustrate a sensing value of the proximity sensor 3202 as the piston 1440 descends when a single proximity sensor 3202 is installed at one side of the lower edge of the rear large diameter portion 1442 of the piston 1440. 10 is a graph illustrating a change in time of a proximity sensor signal for each state.
도 9a는 타격대상물이 경암인 경우인데, 피스톤(1440)이 하강하는 거리가 짧기 때문에 근접센서(3202)가 후방 대경부(1442)를 감지하여 ON 상태가 지속된 시간이 짧다(도 10a 참조). 도 9b는 타격대상물이 중암인 경우인데, 피스톤(1440)은 경암 보다는 길게 하강하기 때문에 근접센서(3202)가 후방 대경부(1442)를 감지하여 ON 상태가 지속된 시간은 경암 보다는 길게 된다(도 10b 참조). 도 9c는 타격대상물이 연암인 경우인데, 근접센서(3202)가 후방 대경부(1442)를 감지하여 ON 상태가 지속된 시간이 가장 길게 된다(도 10c 참조). FIG. 9A illustrates a case in which the hitting target is hard rock. Since the distance at which the piston 1440 descends is short, the proximity sensor 3202 detects the rear large diameter portion 1442 and the ON state is short (see FIG. 10A). . FIG. 9B illustrates a case in which the hitting object is a heavy rock, and since the piston 1440 descends longer than the hard rock, the proximity sensor 3202 detects the rear large-diameter portion 1442 so that the ON state is longer than the hard rock (FIG. 10b). 9C illustrates a case in which the hitting object is soft rock, the proximity sensor 3202 detects the rear large-diameter portion 1442 so that the ON state lasts the longest time (see FIG. 10C).
도 9a 내지 도 9c 및 도 10a 내지 도 10c에는 단일의 근접센서(3202)가 대경부(1442,1444)를 감지하여 ON 상태가 지속된 시간으로부터 타격대상물의 상태를 판별하고 피스톤(1440)을 다단으로 구동하는 경우가 도시되어 있는데, 단일의 근접센서(3202)가 피스톤(1440)의 소경부(1446)를 감지할 수도 있다. 근접센서(3202)가 소경부(1446)를 감지하는 경우에는 피스톤(1440)이 하강함에 따라 근접센서(3202)의 OFF 상태가 지속된 시간의 길이를 판별하여 타격대상물에 따른 피스톤(1440)의 움직임을 다단으로 제어할 수 있다.9A to 9C and 10A to 10C, a single proximity sensor 3202 detects the large diameter portions 1442 and 1444 to determine the state of the hitting object from the time that the ON state is maintained, and multiply the piston 1440. In this case, the single proximity sensor 3202 may detect the small diameter portion 1446 of the piston 1440. When the proximity sensor 3202 detects the small diameter portion 1446, the piston 1440 descends to determine the length of time that the OFF state of the proximity sensor 3202 lasts, thereby determining the length of the piston 1440 according to the hitting object. The movement can be controlled in multiple stages.
이와 같이, 콘트롤러(180)는, 단일 근접센서(의 ON 또는 OFF 상태의 지속시간으로부터 타격대상물의 상태 또는 타격조건을 판단하며, 지속시간이 가장 길면 연암, 가장 짧으면 경암, 지속시간이 중간이면 중암으로 판단할 수 있다.As such, the controller 180 determines the condition or the hitting condition of the hitting target from the duration of the ON or OFF state of the single proximity sensor. If the duration is the longest, soft rock, the minimum is the hard rock, and the duration is the middle cancer. Judging by
도 11에 도시된 바와 같이, 상기 콘트롤러(180)는 MCU(Micro Control Unit, 181), 전원부(182), 통신부(183), 솔레노이드 밸브 제어부(1884) 및 센서신호 입력부(185)를 포함할 수 있다. As shown in FIG. 11, the controller 180 may include a micro control unit (181), a power supply unit 182, a communication unit 183, a solenoid valve control unit 1884, and a sensor signal input unit 185. have.
도 11에 도시된 콘트롤러(180)는 도 3 및 도 8의 콘트롤러(180)에 모두 해당될 수 있다. 센서신호 입력부(185)에는 근접센서(2202,2204,2206,3202)의 센싱값이 입력되고, 이는 다시 MCU(181)로 전달되어 피스톤(1440)의 다단 구동 여부를 결정하게 된다. MCU(181)에서 결정한 값은 솔레노이드 밸브 제어부(184)로 전달되어 솔레노이드 밸브(1470)의 ON/OFF 여부 또는 ON/OFF 상태 변환 시간 등을 제어하여 피스톤(1440)의 다단 구동을 제어할 수 있다.The controller 180 illustrated in FIG. 11 may correspond to both the controller 180 of FIGS. 3 and 8. The sensor signal input unit 185 receives sensing values of the proximity sensors 2202, 2204, 2206, and 3202, which are transmitted to the MCU 181 to determine whether the piston 1440 is driven in multiple stages. The value determined by the MCU 181 may be transferred to the solenoid valve control unit 184 to control whether the solenoid valve 1470 is ON / OFF or the ON / OFF state change time to control the multi-stage driving of the piston 1440. .
또한, 통신부(183)를 통해서 근접센서(2202,2204,2206,3202)의 신호를 유선 또는 무선으로 전달 받을 수 있다. 무선 통신 방식은 공지의 무선 통신 방식이 모두 이용될 수 있다.In addition, the signal of the proximity sensors 2202, 2204, 2206, and 3202 may be received by wire or wirelessly through the communication unit 183. As a wireless communication method, all known wireless communication methods may be used.
도 12에는 도 8의 경우와 같이 단일의 근접센서(3202)를 이용하는 경우에 피스톤(1440)의 구동을 제어하는 방법이 도시되어 있다. 도 12를 참조하면, 우선 피스톤(1440)이 하강하는 것을 근접센서(3202)가 감지하게 된다(S110). 피스톤(1440)이 하강하게 되면 후방 대경부(1442)에 의해 근접센서(3202)의 ON 신호가 콘트롤러(180)에 입력된다(S120). 콘트롤러(180)는 근접센서(3202)의 ON 신호의 폭을 계산한다(S130). 이러한 계산에 의해서 근접센서(3202)의 ON 상태가 지속된 시간을 알 수 있고, 지속 시간의 길이를 판별하여 암반 즉, 타격대상물의 강도를 판단하게 된다(S140). 타격대상물의 강도 판단 결과에 따라 콘트롤러(180)는 솔레노이드 밸브(1470)의 ON 시점을 계산하게 된다(S150). 즉, 타격대상물이 경암이면 솔레노이드 밸브(1470)를 OFF 상태로 유지하지만, 중암 또는 연암인 경우에는 솔레노이드 밸브(1470)를 ON하게 되는데 각 경우에 따라 솔레노이드 밸브(1470)의 ON 시점을 다르게 결정하게 된다. FIG. 12 illustrates a method of controlling the driving of the piston 1440 when using a single proximity sensor 3202 as in the case of FIG. 8. Referring to FIG. 12, first, the proximity sensor 3202 detects that the piston 1440 is lowered (S110). When the piston 1440 is lowered, the ON signal of the proximity sensor 3202 is input to the controller 180 by the rear large diameter portion 1442 (S120). The controller 180 calculates a width of the ON signal of the proximity sensor 3202 (S130). By this calculation, it is possible to know the time duration of the ON state of the proximity sensor 3202 and determine the length of the duration to determine the strength of the rock, that is, the hitting object (S140). The controller 180 calculates the ON timing of the solenoid valve 1470 according to the strength determination result of the hitting object (S150). That is, if the hitting object is hard rock, the solenoid valve 1470 is maintained in the OFF state, but in the case of medium or soft rock, the solenoid valve 1470 is turned on. do.
솔레노이드 밸브(1470)의 ON 시점을 계산한 후에는 타격대상물의 강도에 따른 스트로크로 타격하기 위해서 피스톤(1440)을 상승시키게 된다(S160). 콘트롤러(180)는 피스톤(1440)이 상승하는 중에 타격대상물의 강도에 따라 솔레노이드 밸브(1470)를 ON시키게 된다(S170). 솔레노이드 밸브(1470)를 ON시키는 과정은 도 7에 도시된 바와 같다. 솔레노이드 밸브(1470)의 ON과 함께 메인 밸브(1460)의 방향을 전환하여 피스톤(1440)의 상승 또는 하강을 제어하게 된다(S180). 최종적으로 타격 스트로크까지 피스톤(1440)이 상승한 후에는 피스톤(1440)은 하강하면서 타격대상물을 타격하게 된다(S190).After calculating the ON time of the solenoid valve 1470, the piston 1440 is raised to strike the stroke according to the strength of the hitting object (S160). The controller 180 turns on the solenoid valve 1470 according to the strength of the hitting object while the piston 1440 is rising (S170). The process of turning ON the solenoid valve 1470 is as shown in FIG. The solenoid valve 1470 is turned on and the main valve 1460 is switched to control the rising or falling of the piston 1440 (S180). Finally, after the piston 1440 is raised to the stroke stroke, the piston 1440 is lowered to hit the hitting object (S190).
이상과 같이 본 발명의 일 실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.As described above, in one embodiment of the present invention has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention in the above embodiment The present invention is not limited thereto, and various modifications and variations are possible to those skilled in the art. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention.
본 발명은 건설기계, 건설중장비, 포크레인, 굴삭기 등에 이용될 수 있다.The present invention can be used in construction machinery, heavy equipment, fork cranes, excavators and the like.

Claims (13)

  1. 유압이 공급되는 실린더;A cylinder to which hydraulic pressure is supplied;
    상기 실린더 내에 수용되며, 유압에 의해 전진 또는 후진하는 피스톤;A piston housed in the cylinder and forward or backward by hydraulic pressure;
    상기 피스톤에 의해 타격되도록 상기 피스톤의 전방에 위치하며, 일단은 상기 실린더의 내부에 위치하고 타단은 상기 실린더의 전방단에서 노출된 상태로 위치하는 치즐;A chisel positioned in front of the piston to be hit by the piston, one end of which is located inside the cylinder and the other end of which is exposed from the front end of the cylinder;
    상기 실린더에 형성된 롱 스트로크 포트 및 숏 스트로크 포트에 연결되는 유압을 단속하여 상기 피스톤의 전진 또는 후진을 제어하는 메인 밸브;A main valve controlling the forward or backward of the piston by controlling the hydraulic pressure connected to the long stroke port and the short stroke port formed in the cylinder;
    상기 실린더에 형성되어 상기 실린더 내에서 상기 피스톤의 위치를 감지하는 센서;A sensor formed in the cylinder to sense a position of the piston in the cylinder;
    상기 메인 밸브와 유압이 연결되며, 상기 숏 스트로크 포트에 연결되는 유압을 단속하는 솔레노이드 밸브; 및A solenoid valve connected to the main valve and hydraulic pressure to regulate hydraulic pressure connected to the short stroke port; And
    전달받은 상기 센서의 센싱값에 기초하여 상기 솔레노이드 밸브에 제어신호를 전달하는 콘트롤러;를 포함하며,And a controller configured to transmit a control signal to the solenoid valve based on the sensed value of the sensor.
    상기 콘트롤러는 상기 센서가 상기 피스톤의 하사점을 감지한 센싱값에 기초하여 상기 피스톤의 스트로크 거리를 제어하고,The controller controls the stroke distance of the piston based on a sensing value of the sensor detects the bottom dead center of the piston,
    상기 센서는, 상기 피스톤의 전단이 상기 치즐을 타격하여 상기 치즐이 타격대상물을 관통하여 진행할 때 상기 피스톤이 움직이는 스트로크 거리 내에 위치하도록 상기 실린더에 형성되는, 지능형 유압 브레이커.And the sensor is formed in the cylinder such that the front end of the piston strikes the chisel and the piston moves within the stroke distance that the piston moves as it travels through the hitting object.
  2. 제1항에 있어서,The method of claim 1,
    상기 센서는, 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 위치하도록 상기 실린더에 형성되는, 지능형 유압 브레이커.And the sensor is formed in the cylinder to be positioned between the long stroke port and the short stroke port.
  3. 제2항에 있어서,The method of claim 2,
    상기 센서는 복수개로 마련되는 근접센서이며, 상기 근접센서 중 어느 하나는 상기 롱 스트로크 포트 가까이에 마련되고 다른 하나는 상기 숏 스트로크 포트 가까이에 마련되며 또 다른 하나는 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 마련되는, 지능형 유압 브레이커.The sensor is a plurality of proximity sensors, one of the proximity sensor is provided near the long stroke port, the other is provided near the short stroke port and the other is the long stroke port and the short stroke port Being arranged between, intelligent hydraulic breaker.
  4. 제3항에 있어서,The method of claim 3,
    상기 근접센서 중 상기 롱 스트로크 포트 가까이에 마련되는 근접센서는 타격대상물 중 경암 감지하고, 상기 숏 스트로크 포트 가까이에 마련되는 근접센서는 타격대상물 중 연암을 감지하며, 상기 롱 스트로크 포트와 상기 숏 스트로크 포트 사이에 마련되는 근접센서는 타격대상물 중 중암을 감지하는, 지능형 유압 브레이커.The proximity sensor provided near the long stroke port of the proximity sensor detects hard rock of the hitting object, and the proximity sensor provided near the short stroke port detects soft rock of the hitting object, and the long stroke port and the short stroke port Proximity sensor provided between the intelligent hydraulic breaker, which detects the heavy of the hitting object.
  5. 제1항에 있어서,The method of claim 1,
    상기 센서는 상기 실린더에 형성되는 단일의 근접센서이며, The sensor is a single proximity sensor formed in the cylinder,
    상기 근접센서가 상기 피스톤의 대경부를 감지한 센싱값이 지속된 시간에 기초하여 상기 콘트롤러는 타격대상물의 상태 또는 타격조건을 판단하는, 지능형 유압 브레이커.And the controller determines a state or a hitting condition of the hitting target based on a time duration of the sensing value of the proximity sensor detecting the large diameter portion of the piston.
  6. 제5항에 있어서,The method of claim 5,
    상기 근접센서는, 상기 피스톤이 상기 치즐에 맞닿은 상태에서 상기 피스톤의 대경부 중에서 상기 피스톤의 전방단에 인접한 대경부의 하단 모서리 일측에 위치하도록 상기 실린더에 형성되는, 지능형 유압 브레이커.The proximity sensor is formed in the cylinder so that the piston is located on one side of the lower edge of the large diameter portion adjacent to the front end of the piston of the large diameter portion of the piston in contact with the chisel, intelligent hydraulic breaker.
  7. 제6항에 있어서,The method of claim 6,
    상기 콘트롤러는, 상기 근접센서의 ON 또는 OFF 상태의 지속시간으로부터 타격대상물의 상태 또는 타격조건을 판단하며, The controller determines the state or the strike condition of the hitting object from the duration of the ON or OFF state of the proximity sensor,
    지속시간이 가장 길면 연암, 가장 짧으면 경암, 지속시간이 중간이면 중암으로 판단하는, 지능형 유압 브레이커.Intelligent hydraulic breaker, judging by soft rock if the longest duration, hard rock if the shortest, and medium cancer if the duration is medium.
  8. 제3항에 있어서,The method of claim 3,
    상기 콘트롤러는, The controller,
    상기 피스톤이 하강하여 상기 치즐과 맞닿은 상태에서 상기 치즐이 최초로 타격대상물을 뚫고 들어갈 때 복수개의 상기 근접센서 중 어떤 위치의 근접센서가 ON 되는지 여부에 따라 타격대상물의 상태 또는 단단한 정도를 판단하고, 상기 피스톤이 상승한 후 필요한 상기 피스톤의 하강 스트로크 크기에 따라 상기 솔레노이드 밸브를 ON 또는 OFF시키며, 타격대상물이 경암이 아닌 경우에 상기 솔레노이드 밸브를 ON시키는, 지능형 유압 브레이커.The state of the hitting object or the degree of rigidity is determined according to whether the proximity sensor of a plurality of the proximity sensor is turned on when the chisel is first penetrating the hitting object while the piston is lowered and in contact with the chisel. An intelligent hydraulic breaker for turning on or off the solenoid valve according to the required down stroke size of the piston after the piston is raised, and turning on the solenoid valve when the object to be hit is not hard rock.
  9. 제8항에 있어서,The method of claim 8,
    상기 콘트롤러는, The controller,
    타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태 또는 지속시간을 조절하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어하는, 지능형 유압 브레이커.Intelligent hydraulic breaker to control the stroke size when the piston descends by adjusting the ON / OFF state or duration of the solenoid valve when the object is not hard rock.
  10. 제8항에 있어서,The method of claim 8,
    상기 콘트롤러는, The controller,
    타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태와 상기 메인 밸브의 ON/OFF 상태를 조합하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어하는, 지능형 유압 브레이커.Intelligent hydraulic breaker for controlling the stroke size when the piston descends by combining the ON / OFF state of the solenoid valve and the ON / OFF state of the main valve when the hitting object is not hard rock.
  11. 제8항에 있어서,The method of claim 8,
    상기 콘트롤러는, The controller,
    타격대상물이 경암이 아닌 경우에, 상기 솔레노이드 밸브의 ON/OFF 상태의 변환 속도 또는 빈도를 조절하여 상기 피스톤의 하강시 스트로크 크기를 다단으로 제어하는, 지능형 유압 브레이커.Intelligent hydraulic breaker for controlling the stroke size when the piston descends by adjusting the conversion speed or frequency of the ON / OFF state of the solenoid valve when the hitting object is not hard rock.
  12. 제8항에 있어서,The method of claim 8,
    상기 콘트롤러는,The controller,
    상기 피스톤이 상기 치즐을 타격하면서 하강하는 경우에 상기 피스톤의 하강에 소요되는 시간이 상승에 소요되는 시간 보다 짧도록 제어하는, 지능형 유압 브레이커.And when the piston descends while hitting the chisel, controlling the time required for the lowering of the piston to be shorter than the time required for the ascending.
  13. 제1항 내지 제12항 중 어느 하나에 따른 지능형 유압 브레이커; 및 An intelligent hydraulic breaker according to any one of claims 1 to 12; And
    상기 지능형 유압 브레이커가 장착되는 굴삭기를 포함하는, 건설 장비.And an excavator equipped with said intelligent hydraulic breaker.
PCT/KR2017/008003 2016-07-27 2017-07-25 Intelligent hydraulic breaker using proximity sensor and construction equipment comprising same WO2018021801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0095623 2016-07-27
KR1020160095623A KR101799576B1 (en) 2016-07-27 2016-07-27 Intelligent hydraulic breaker equipped with proximity sensor and construction equipment having the same

Publications (1)

Publication Number Publication Date
WO2018021801A1 true WO2018021801A1 (en) 2018-02-01

Family

ID=60808719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008003 WO2018021801A1 (en) 2016-07-27 2017-07-25 Intelligent hydraulic breaker using proximity sensor and construction equipment comprising same

Country Status (2)

Country Link
KR (1) KR101799576B1 (en)
WO (1) WO2018021801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005015A (en) * 2019-05-07 2019-07-12 徐州徐工挖掘机械有限公司 A kind of the quartering hammer control system and control method of double gear frequency modulation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986093B1 (en) 2018-04-02 2019-06-07 대모 엔지니어링 주식회사 Self generation electricty type hydraulic breaker
KR102027230B1 (en) 2018-06-27 2019-10-02 대모 엔지니어링 주식회사 Charging system for electrnic hydraulic breaker
KR102027229B1 (en) 2018-06-27 2019-10-02 대모 엔지니어링 주식회사 Hydraulic breaker having a self generator
KR102072601B1 (en) 2018-11-09 2020-02-03 가천대학교 산학협력단 4 step variable intelligent auto stroke hydraulic breaker
KR102219022B1 (en) 2019-09-24 2021-02-23 대모 엔지니어링 주식회사 Anti-vibration structure for sensor of hydraulic breaker
KR102219023B1 (en) 2019-09-24 2021-02-23 대모 엔지니어링 주식회사 Fixing structure for sensor of hydraulic breaker
KR102416376B1 (en) 2020-05-15 2022-07-05 대모 엔지니어링 주식회사 Hydraulic Breaker having solenoid valve connection structure
KR102368922B1 (en) 2020-05-15 2022-03-03 대모 엔지니어링 주식회사 Stroke-number measurement method for hydraulic breaker using pressure pulse of nitrogen gas
KR102299173B1 (en) 2021-05-28 2021-09-09 대모 엔지니어링 주식회사 2 step auto stroke type hydraulic breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842277A (en) * 1994-07-28 1996-02-13 Mitsubishi Heavy Ind Ltd Hydraulic drive in drifter
KR100966740B1 (en) * 2007-11-26 2010-06-29 대모 엔지니어링 주식회사 Two stroke valve of hydraulic breaker
KR101138987B1 (en) * 2009-11-30 2012-04-25 주식회사 에버다임 Hydraulic breaker with function for changing piston stroke automatic
JP2013233595A (en) * 2010-08-27 2013-11-21 Teisaku:Kk Fluid pressure hammering device
KR101550899B1 (en) * 2015-07-23 2015-09-08 대모 엔지니어링 주식회사 2 step auto stroke hydraulic breaker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035306A1 (en) * 2004-07-21 2006-03-16 Atlas Copco Construction Tools Gmbh Pressure medium operated impact device, in particular hydraulic hammer
FI121978B (en) * 2009-12-21 2011-06-30 Sandvik Mining & Constr Oy Method for determining the degree of use of a refractive hammer, refractive hammer and measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842277A (en) * 1994-07-28 1996-02-13 Mitsubishi Heavy Ind Ltd Hydraulic drive in drifter
KR100966740B1 (en) * 2007-11-26 2010-06-29 대모 엔지니어링 주식회사 Two stroke valve of hydraulic breaker
KR101138987B1 (en) * 2009-11-30 2012-04-25 주식회사 에버다임 Hydraulic breaker with function for changing piston stroke automatic
JP2013233595A (en) * 2010-08-27 2013-11-21 Teisaku:Kk Fluid pressure hammering device
KR101550899B1 (en) * 2015-07-23 2015-09-08 대모 엔지니어링 주식회사 2 step auto stroke hydraulic breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005015A (en) * 2019-05-07 2019-07-12 徐州徐工挖掘机械有限公司 A kind of the quartering hammer control system and control method of double gear frequency modulation
CN110005015B (en) * 2019-05-07 2023-06-06 徐州徐工挖掘机械有限公司 Breaking hammer control system and control method for double-gear frequency modulation

Also Published As

Publication number Publication date
KR101799576B1 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2018021801A1 (en) Intelligent hydraulic breaker using proximity sensor and construction equipment comprising same
KR101780154B1 (en) Hydraulic percussion device and construction equipment having the same
CN101203358B (en) Percussive hammer provided with idle operation control device
WO2018021643A1 (en) Method for monitoring hydraulic hammer, and system performing same
WO2014007477A1 (en) Impact body for hydraulic impact device
CN111197327B (en) Anti-sticking bucket for loader and loader
WO2018143768A1 (en) Breaker including intermediate transmission unit
WO2007106574A2 (en) Jackhammer with a lift assist
JPH03208572A (en) Hand-carrying hammering machine
CA1113832A (en) Demolition tool for breaking solid materials
KR102379351B1 (en) Hydraulic percussion device and construction equipment having the same
CN201921963U (en) Device for processing workpieces
US4548279A (en) Tool extractor
US4802538A (en) Piling hammer
KR102245287B1 (en) Hybrid underwater rock crushing device and method
KR102072601B1 (en) 4 step variable intelligent auto stroke hydraulic breaker
KR102299173B1 (en) 2 step auto stroke type hydraulic breaker
US6568615B2 (en) Hydraulic breaker
KR101780153B1 (en) Hydraulic percussion device and construction equipment having the same
WO2010064873A2 (en) Apparatus for preventing a clearance of a rod of a breaker
JPH11270505A (en) Hydraulic control circuit in expansion arm type deep-hole excavator
KR102379349B1 (en) Hydraulic percussion device and construction equipment having the same
US11724373B2 (en) Mobile pin pulling device
KR101899384B1 (en) Hydraulic percussion device and construction equiqment having the same
WO2018182110A1 (en) Operation time recording device and hydraulic breaker comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834743

Country of ref document: EP

Kind code of ref document: A1