WO2018021449A1 - Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body - Google Patents

Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body Download PDF

Info

Publication number
WO2018021449A1
WO2018021449A1 PCT/JP2017/027148 JP2017027148W WO2018021449A1 WO 2018021449 A1 WO2018021449 A1 WO 2018021449A1 JP 2017027148 W JP2017027148 W JP 2017027148W WO 2018021449 A1 WO2018021449 A1 WO 2018021449A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic resin
film
mass
resin composition
methacrylic
Prior art date
Application number
PCT/JP2017/027148
Other languages
French (fr)
Japanese (ja)
Inventor
直人 福原
展史 川北
淳裕 中原
達 阿部
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020197005433A priority Critical patent/KR102346225B1/en
Priority to CN201780046768.4A priority patent/CN109563328A/en
Priority to JP2018530373A priority patent/JP7045994B2/en
Publication of WO2018021449A1 publication Critical patent/WO2018021449A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a methacrylic resin composition and a production method thereof, a molded body, a film, a laminated film, and a laminated molded body.
  • Methacrylic resin has high transparency and is suitable as a material for optical members, lighting members, signboard members, decorative members, and the like.
  • a general-purpose methacrylic resin has a low glass transition temperature (Tg) of about 110 ° C. and is not very good in heat resistance, so that the dimensional stability of the molded product against heat is not good.
  • Tg glass transition temperature
  • a methacrylic resin having a high Tg a methacrylic resin having a high syndiotacticity (rr) is known.
  • An anionic polymerization method is mentioned as a manufacturing method of a methacryl resin with high syndiotacticity (rr) (refer patent documents 1 and 2).
  • a methacrylic resin having a high syndiotacticity (rr) obtained by this method has poor moldability, and the resulting molded product tends to have poor surface smoothness.
  • the moldability can be improved by lowering the molecular weight, the mechanical strength of the resulting molded product tends to decrease. Therefore, the present condition is that the molded object which consists of a methacryl resin with high syndiotacticity (rr) is not put into practical use.
  • a methacrylic resin composition containing methacrylic resin [2] in a mass ratio of 40/60 to 70/30 of methacrylic resin [1] / methacrylic resin [2] is disclosed (claim 1).
  • the methacrylic resin [1] having a high syndiotacticity (rr) and the atactic methacrylic resin [2] in the above mass ratio, it is possible to achieve both improved heat resistance and good moldability.
  • the present invention has been made in view of the above problems, and provides a methacrylic resin composition capable of obtaining a molded article having good high-temperature moldability and high dimensional stability against heat, and a method for producing the same.
  • the purpose is to provide.
  • the present invention provides the following methacrylic resin composition and method for producing the same, molded body, film, laminated film, and laminated molded body.
  • PC polycarbonate resin
  • PR phenoxy resin
  • BP block copolymer
  • LA ultraviolet absorber
  • a molded article comprising the methacrylic resin composition according to any one of [1] to [7].
  • a film comprising the methacrylic resin composition according to any one of [1] to [7].
  • the film according to [10] which is a stretched film.
  • a laminated film having a layer comprising the film of [10] or [11].
  • the laminated film according to [12] further comprising a layer made of a metal and / or a metal oxide.
  • the laminated film of [12] or [13] further having an adhesive layer.
  • ⁇ relaxation temperature (T ⁇ ) “melt viscosity ( ⁇ )”, “weight average molecular weight (Mw)”, and “molecular weight distribution (Mw / Mn)” are the items in [Example]. It shall be measured by the method described in 1.
  • a methacrylic resin composition capable of obtaining a molded article having good high temperature moldability and high dimensional stability against heat, and a method for producing the same.
  • the methacrylic resin composition of the present invention is composed of a methacrylic resin (M1) having an ⁇ relaxation temperature T ⁇ 1 of 137 ° C. or higher when measured in a dynamic mode at a tensile mode and 1 Hz, and a dynamic viscoelasticity measurement at a tensile mode and 1 Hz. And a methacrylic resin (M2) having an ⁇ relaxation temperature T ⁇ 2 of 132 ° C. or lower.
  • the “ ⁇ relaxation temperature (T ⁇ )” is the peak top temperature of relaxation ( ⁇ relaxation) due to segment motion of the polymer main chain.
  • the ⁇ relaxation temperature (T ⁇ ) can be measured by the method described in the [Example] section. In general, there is a correlation between the glass transition temperature (Tg) obtained from the DSC curve and the ⁇ relaxation temperature (T ⁇ ), but in the present invention, instead of the ⁇ relaxation temperature (T ⁇ ). Tg is not used as an index.
  • the methacrylic resin (M1) is not particularly limited as long as the ⁇ relaxation temperature T ⁇ 1 is 137 ° C. or higher when dynamic viscoelasticity measurement is performed in a tensile mode and a sine wave of 1 Hz.
  • One or more methacrylic resins (M1) can be used.
  • the methacrylic resin (M1) includes one or more methacrylic acid ester monomer units such as a methyl methacrylate (MMA) monomer unit.
  • MMA methyl methacrylate
  • methacrylic acid esters examples include MMA, ethyl methacrylate and butyl methacrylate alkyl esters; phenyl methacrylate and other methacrylic acid aryl esters; methacrylic acid cyclohexyl and methacrylic acid cycloalkyl esters such as norbornenyl Is mentioned.
  • methacrylic acid alkyl ester is preferable, and MMA is most preferable.
  • the content of the methacrylic acid ester monomer unit in the methacrylic resin (M1) is preferably 20% by mass or more, more preferably 50% by mass or more.
  • ⁇ Methacrylic copolymer (A1)> Monomer units that increase the ⁇ relaxation temperature (T ⁇ ) in the methacrylic copolymer (A1) include 2-isobornyl methacrylate and 8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate.
  • Methacrylic acid cycloalkyl esters such as 2-norbornyl methacrylate and 2-adamantyl methacrylate; (meth) acrylic acids such as acrylic acid and methacrylic acid; acrylamide, methacrylamide, N-methylmethacrylamide, and N, N- Examples include structural units derived from monomers such as (meth) acrylamides such as dimethylmethacrylamide.
  • ⁇ Methacrylic copolymer (A2)> As the structural unit having a ring structure in the main chain in the methacrylic copolymer (A2), as the ring structure, a lactone ring unit, a maleic anhydride unit, a glutaric anhydride unit, a glutarimide unit, an N-substituted maleimide unit, Or the structural unit containing a tetrahydropyran ring unit is preferable.
  • the methacrylic copolymer (A2) As a method for producing the methacrylic copolymer (A2), a method of copolymerizing a cyclic monomer having a polymerizable unsaturated carbon-carbon double bond such as maleic anhydride and N-substituted maleimide with MMA or the like; And a method of intramolecular cyclization of a part of the molecular chain of the methacrylic resin obtained by the above.
  • the content of the MMA monomer unit in the methacrylic copolymer (A2) is preferably 20 to 99% by mass, more preferably 30 to 95% by mass, and particularly preferably 40 to 90% by mass.
  • the content of structural units in the chain is preferably 1 to 80% by mass, more preferably 5 to 70% by mass, and particularly preferably 10 to 60% by mass.
  • the content of the MMA monomer unit in the methacrylic copolymer (A2) is the MMA monomer unit converted into a structural unit having a ring structure in the main chain by intramolecular cyclization. Not included.
  • structural units having a ring structure in the main chain structural units containing> CH—O—C ( ⁇ O) — group in the ring structure, and —C ( ⁇ O) —O—C ( ⁇ O) — groups are cyclic
  • a structural unit containing a structure, a structural unit containing a —C ( ⁇ O) —N—C ( ⁇ O) — group in the ring structure, or a structural unit containing a> CH—O—CH ⁇ group in the ring structure is preferable.
  • Structural units containing a CH—O—C ( ⁇ O) — group in the ring structure include ⁇ -propiolactone diyl (also known as oxooxetanediyl) structural unit, ⁇ -butyrolactone diyl (also known as 2-oxodihydrofurandi) Yl) structural unit, and lactone diyl structural unit such as ⁇ -valerolactone diyl (also known as 2-oxodihydropyrandiyl) structural unit.
  • “> C” means that the carbon atom C has two bonds.
  • Examples of the ⁇ -valerolactone diyl structural unit include structural units represented by the following formula (I).
  • R 14 and R 15 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably R 14 is a hydrogen atom and R 15 is a methyl group.
  • R 16 is —COOR, R is a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably a methyl group.
  • “*” Means a bond. Examples of the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The carbon number of the organic residue is preferably 1 to 10, more preferably 1 to 5.
  • the ⁇ -valerolactone diyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of two adjacent MMA monomer units.
  • the structural unit containing a —C ( ⁇ O) —O—C ( ⁇ O) — group in the ring structure includes 2,5-dioxodihydrofurandiyl structural unit, 2,6-dioxodihydropyrandiyl structural unit, And 2,7-dioxooxepanediyl structural unit.
  • Examples of the 2,5-dioxodihydrofurandiyl structural unit include structural units represented by the following formula (II).
  • R 21 and R 22 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • “*” Means a bond.
  • the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups.
  • the organic residue may contain an oxygen atom.
  • “Ac” represents an acetyl group.
  • the carbon number of the organic residue is preferably 1 to 10, more preferably 1 to 5.
  • R 21 and R 22 are preferably both hydrogen atoms. In that case, styrene or the like is preferably copolymerized from the viewpoints of ease of production and adjustment of intrinsic birefringence.
  • a copolymer having a styrene monomer unit, a MMA monomer unit, and a maleic anhydride monomer unit described in International Publication No. 2014/021264 is exemplified.
  • the 2,5-dioxodihydrofurandiyl structural unit can be contained in the methacrylic resin by copolymerization using maleic anhydride or the like.
  • Examples of the 2,6-dioxodihydropyrandiyl structural unit include structural units represented by the following formula (III).
  • R 33 and R 34 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • “*” Means a bond.
  • the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups.
  • the organic residue may contain an oxygen atom.
  • “Ac” represents an acetyl group.
  • the organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably a methyl group.
  • the 2,6-dioxodihydropyrandiyl structural unit can be contained in the methacrylic resin by intramolecular cyclization of two adjacent MMA monomers.
  • 2,5-dioxopyrrolidine is a structural unit containing a —C ( ⁇ O) —N—C ( ⁇ O) — group in a ring structure (note that another bond of N is omitted).
  • Examples thereof include a diyl structural unit, a 2,6-dioxopiperidinediyl structural unit, and a 2,7-dioxoazepandiyl structural unit.
  • Examples of the 2,6-dioxopiperidinediyl structural unit include structural units represented by the following formula (IV).
  • R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 43 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms. A cycloalkyl group or an aryl group having 6 to 10 carbon atoms. “*” Means a bond. From the viewpoints of easy availability of raw materials, cost, heat resistance, etc., R 41 and R 42 are preferably each independently a hydrogen atom or a methyl group, and R 41 is a methyl group and R 42 is a hydrogen atom. Is more preferable.
  • R 43 is preferably a hydrogen atom, a methyl group, an n-butyl group, a cyclohexyl group, or a benzyl group, and more preferably a methyl group.
  • Examples of the 2,5-dioxopyrrolidinediyl structural unit include structural units represented by the following formula (V).
  • R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkyl group having 6 to 14 carbon atoms.
  • R 51 is an arylalkyl group having 7 to 14 carbon atoms or an unsubstituted or substituted aryl group having 6 to 14 carbon atoms.
  • the substituent mentioned here is a halogeno group, a hydroxyl group, a nitro group, an alkoxy group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 14 carbon atoms.
  • “*” Means a bond.
  • R 51 is preferably a phenyl group or a cyclohexyl group, and both R 52 and R 53 are preferably hydrogen atoms.
  • the 2,5-dioxopyrrolidinediyl structural unit can be contained in the methacrylic resin by copolymerization using N-substituted maleimide or the like.
  • Examples of the structural unit containing a> CH—O—CH ⁇ group in the ring structure include an oxetanediyl structural unit, a tetrahydrofurandiyl structural unit, a tetrahydropyrandiyl structural unit, and an oxepandiyl structural unit.
  • > C means that the carbon atom C has two bonds.
  • Examples of the tetrahydropyrandiyl structural unit include a structural unit represented by the following formula (VI).
  • R 61 and R 62 are each independently a hydrogen atom, a linear or branched hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 20 carbon atoms having a ring structure. It is. “*” Means a bond.
  • R 61 and R 62 are each independently a tricyclo [5.2.1.0 2,6 ] decanyl group, a 1,7,7-trimethylbicyclo [2.2.1] heptan-3-yl group, t A -butyl group and a 4-t-butylcyclohexanyl group are preferred.
  • ⁇ -valerolactone diyl structural unit and 2,5-dioxodihydrofurandiyl structural unit are preferable.
  • the molecular weight distribution (the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), Mw / Mn) of the methacrylic copolymers (A1) and (A2) is preferably 1.2 to 5.0, more preferably Is 1.3 to 3.5.
  • Mw / Mn the better the impact resistance and toughness of the resulting molded article.
  • Mw and Mn are values obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene. Mw and Mw / Mn can be measured by the method described in the [Example] section.
  • the glass transition temperature (Tg) of the methacrylic copolymer (A2) is preferably 120 ° C. or higher, more preferably 123 ° C. or higher, and particularly preferably 124 ° C. or higher.
  • the upper limit of Tg of the methacrylic copolymer (A2) is preferably 160 ° C.
  • the glass transition temperature (Tg) shall be measured in accordance with JIS K7121 at a temperature of room temperature or higher.
  • the first temperature increase (1st run) was performed at a temperature increase rate of 10 ° C./min to 230 ° C., and after cooling to room temperature, the second temperature increase from room temperature to 230 ° C. at a temperature increase rate of 10 ° C./min ( 2nd run).
  • the midpoint glass transition temperature of 2nd run is determined as Tg.
  • the methacrylic resin (A3) has a syndiotacticity (rr) expressed in triplets of 65% or more, preferably 70 to 90%, more preferably 72 to 85%.
  • the syndiotacticity (rr) is 65% or more, the ⁇ relaxation temperature (T ⁇ ) is significantly increased, and the surface hardness of the obtained molded body is significantly increased.
  • the molecular weight distribution (Mw / Mn) of the methacrylic resin (A3) is preferably 1.0 to 1.8, more preferably 1.0 to 1.4, and particularly preferably 1.03 to 1.3.
  • the resulting methacrylic resin composition has excellent mechanical strength.
  • Mw and Mw / Mn can be controlled by adjusting the type and / or amount of the polymerization initiator used during production.
  • the methacrylic resin (M1) may contain one or more other monomer units other than those mentioned above for the methacrylic copolymers (A1), (A2) and the methacrylic resin (A3).
  • Other monomer units include: alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; Acrylic cycloalkyl esters such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyl compounds such as styrene and ⁇ -methyl styrene; nitriles such as acrylonitrile and methacrylonitrile; -Structural units derived from vinyl monomers having only one carbon double bond.
  • the Mw of the methacrylic resin (M1) is preferably 40,000 to 200,000, more preferably 40,000 to 150,000, and particularly preferably 50,000 to 120,000.
  • Mw is 40000 or more, the mechanical strength (impact resistance, toughness, etc.) of the obtained molded product tends to be improved, and when it is 200000 or less, the fluidity of the methacrylic resin composition is improved and the moldability is improved. There is a tendency to improve.
  • the melt flow rate (MFR) of the methacrylic resin (M1) measured at 230 ° C.
  • a load of 3.8 kg is preferably 0.1 g / 10 min or more, more preferably 0.2 to 30 g / 10 min, particularly Preferably it is 0.5 to 20 g / 10 min, and most preferably 1.0 to 15 g / 10 min.
  • the methacrylic resin (M1) can be produced by a known polymerization method such as a radical polymerization method or an anionic polymerization method.
  • a polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method is selected as the radical polymerization method
  • a polymerization method such as a bulk polymerization method and a solution polymerization method is selected as the anionic polymerization method.
  • the radical polymerization method can be carried out without a solvent or in a solvent, and is preferably carried out without a solvent since a methacrylic resin (M1) having a low impurity concentration can be obtained.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen gas with a low dissolved oxygen content.
  • Examples of the polymerization initiator used in the radical polymerization method include t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxy 2-ethylhexa Noate, t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, 1,1,3,3-tetra Methylbutylperoxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis ( 2-methylpropionitrile), 2,2'-azobis (2-methylbutyroni) Lil), and dimethyl 2,2'-
  • t-hexylperoxy 2-ethylhexanoate 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
  • One or more polymerization initiators can be used.
  • the 1-hour half-life temperature of the polymerization initiator is preferably 60 to 140 ° C, more preferably 80 to 120 ° C.
  • the polymerization initiator preferably has a hydrogen abstraction capacity of 20% or less, more preferably 10% or less, and particularly preferably 5% or less.
  • the amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 based on 100 parts by mass of one or more monomers to be subjected to the polymerization reaction. Part by mass, particularly preferably 0.005 to 0.007 part by mass.
  • the hydrogen abstraction ability is known from the technical data of the polymerization initiator manufacturer (for example, the technical data of Nippon Oil & Fats Co., Ltd. “Hydrogen abstraction capacity and initiator efficiency of organic peroxide” (created in April 2003)). Can do. Further, it can be measured by a radical trapping method ( ⁇ -methylstyrene dimer trapping method) using ⁇ -methylstyrene dimer. This measurement is generally performed as follows. First, the polymerization initiator is cleaved in the presence of ⁇ -methylstyrene dimer as a radical trapping agent to generate radical fragments.
  • radical fragments having a low hydrogen abstraction ability are added to and trapped by the double bond of ⁇ -methylstyrene dimer.
  • a radical fragment having a high hydrogen abstraction capacity abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, which is added to and trapped by the double bond of ⁇ -methylstyrene dimer to generate a cyclohexane capture product. Therefore, the ratio (molar fraction) of the radical fragment having a high hydrogen abstraction capacity with respect to the theoretical radical fragment generation amount, which is determined by quantifying cyclohexane or the cyclohexane-trapped product, is determined as the hydrogen abstraction capacity.
  • Chain transfer agents used in the radical polymerization method include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butane.
  • alkyl mercaptans such as nates. Of these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable.
  • One or more chain transfer agents can be used.
  • the amount of the chain transfer agent used is preferably 0.01 to 1 mass with respect to 100 mass parts of one or more monomers used for the polymerization reaction. Parts, more preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.6 parts by mass, and most preferably 0.10 to 0.5 parts by mass.
  • the amount of the chain transfer agent used is preferably 2500 to 10,000 parts by mass, more preferably 3000 to 9000 parts by mass, and particularly preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
  • aromatic hydrocarbons such as benzene, toluene, and ethylbenzene are preferable.
  • One or more solvents can be used.
  • the amount of the solvent used is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, with respect to 100 parts by mass of the polymerization reaction raw material from the viewpoint of the viscosity of the reaction solution and productivity.
  • the polymerization reaction temperature is preferably 100 to 200 ° C, more preferably 110 to 180 ° C.
  • productivity tends to be improved by improving the polymerization rate and lowering the viscosity of the polymerization solution.
  • the polymerization temperature is 200 ° C. or less, the control of the polymerization rate is facilitated, the generation of by-products is further suppressed, and the coloring of the resin can be suppressed.
  • the polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and particularly preferably 1.5 to 3 hours.
  • the polymerization reaction time in the case of a continuous flow reactor is an average residence time in the reactor.
  • the polymerization conversion rate in the radical polymerization method is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 35 to 65% by mass.
  • the polymerization conversion rate is 20% by mass or more, the remaining unreacted monomer can be easily removed, and the appearance of the obtained molded product tends to be good.
  • the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution tends to be low and the productivity tends to be improved.
  • the reaction apparatus may be either a batch reaction apparatus or a continuous flow reaction apparatus, and a continuous flow reaction apparatus is preferable from the viewpoint of productivity.
  • a continuous flow reaction a polymerization reaction raw material (mixed solution containing one or more monomers, a polymerization initiator, a chain transfer agent, etc.) is prepared in an inert atmosphere such as nitrogen, and this is fixed in a reactor. Supply at a flow rate, and extract the liquid in the reactor at a flow rate corresponding to the supply rate.
  • the reactor include a tubular reactor that can be in a state close to plug flow or a tank reactor that can be in a state close to complete mixing.
  • the number of reactors may be one or two or more, and at least one reactor preferably employs a continuous flow tank reactor.
  • the amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor.
  • the reactor is usually equipped with a stirring device.
  • the stirring device include a static stirring device and a dynamic stirring device.
  • the dynamic stirrer include a Max blend stirrer, a stirrer having a grid-like blade rotating around a vertical rotation shaft arranged in the center, a propeller stirrer, and a screw stirrer.
  • a max blend type stirring device is preferable from the viewpoint of uniform mixing.
  • a heat devolatilization method is preferable.
  • the devolatilization method include an equilibrium flash method and an adiabatic flash method.
  • the devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C.
  • the heating time of the resin in the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and particularly preferably 0.5 to 2 minutes.
  • M1 methacrylic resin
  • the removed unreacted monomer can be recovered and used again for the polymerization reaction.
  • the yellow index of the recovered monomer may be high due to heat applied during the recovery operation.
  • the recovered monomer is preferably purified by a known method to reduce the yellow index.
  • a controlled polymerization method As a method for controlling the molecular weight distribution (Mw / Mn), a controlled polymerization method is exemplified, and a living radical polymerization method and a living anion polymerization are preferable.
  • Living radical polymerization methods include atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer polymerization (RAFT), nitroxide mediated polymerization (NMP), boron mediated polymerization, and catalyst transfer polymerization (CCT). Is mentioned.
  • ARP atom transfer radical polymerization
  • RAFT reversible addition fragmentation chain transfer polymerization
  • NMP nitroxide mediated polymerization
  • CCT catalyst transfer polymerization
  • Anionic polymerization is a method in which an organic alkali metal compound is used as a polymerization initiator in the presence of a mineral salt such as an alkali metal or alkaline earth metal salt (see Japanese Patent Publication No.
  • the polymerization initiator used in the anionic polymerization method is preferably alkyllithium such as n-butyllithium, sec-butyllithium, isobutyllithium, and tert-butyllithium. From the viewpoint of productivity, it is preferable to coexist an organoaluminum compound.
  • organoaluminum compound a compound represented by the formula: AlR 1 R 2 R 3 (wherein R 1 to R 3 are each independently an unsubstituted or substituted alkyl group, an unsubstituted or substituted group, A good cycloalkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted aralkyl group, an unsubstituted or substituted alkoxyl group, an unsubstituted or substituted aryloxy Or an N, N-disubstituted amino group, wherein R 2 and R 3 may be an unsubstituted or substituted aryleneoxy group formed by combining them. .
  • organoaluminum compound examples include isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, and isobutyl [2,2′- Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum and the like.
  • anionic polymerization method an ether and a nitrogen-containing compound can coexist in order to control the polymerization reaction.
  • the methacrylic resin (M2) is not particularly limited as long as the ⁇ relaxation temperature T ⁇ 2 is 132 ° C. or lower when the dynamic viscoelasticity measurement is performed in a tensile mode and a sine wave of 1 Hz.
  • One or more methacrylic resins (M2) can be used.
  • the methacrylic resin (M2) contains one or more methacrylic acid ester monomer units such as MMA monomer units.
  • methacrylic acid esters examples include MMA, ethyl methacrylate, and methacrylic acid alkyl esters such as butyl methacrylate; aryl methacrylates such as phenyl methacrylate; methacrylic acid cycloalkyl esters such as cyclohexyl methacrylate and norbornenyl methacrylate. Is mentioned. Among these, methacrylic acid alkyl ester is preferable, and MMA is most preferable.
  • the content of the methacrylic acid ester monomer unit in the methacrylic resin (M2) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, particularly preferably 99% by mass or more, Most preferably, it is 100 mass%.
  • the content of the MMA monomer unit in the methacrylic resin (M2) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, particularly preferably 99% by mass or more, and most preferably. Is 100% by mass.
  • the methacrylic resin (M2) may contain one or more monomer units other than the methacrylic acid ester monomer unit.
  • Other monomer units include: alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; In one molecule such as cycloalkyl acrylate such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; acrylamide and methacrylamide; nitriles such as acrylonitrile and methacrylonitrile And structural units derived from vinyl monomers having only one polymerizable carbon-carbon double bond.
  • the Mw of the methacrylic resin (M2) is preferably 40,000 to 200,000, more preferably 50,000 to 150,000, and particularly preferably 50,000 to 120,000.
  • Mw The mechanical strength (impact resistance, toughness, etc.) of the molded object obtained by Mw to be 40,000 or more, and when it is 200,000 or less, the fluidity of the methacrylic resin composition is improved and the moldability is increased. Tend to improve.
  • the molecular weight distribution (Mw / Mn) of the methacrylic resin (M2) is preferably 1.6 to 5.0, more preferably 1.7 to 4.0, and particularly preferably 1.7 to 3.0.
  • Mw and Mw / Mn can be controlled by adjusting the type and / or amount of the polymerization initiator used in the production of the methacrylic resin (M2).
  • the melt flow rate (MFR) of the methacrylic resin (M2) measured under the conditions of 230 ° C. and 3.8 kg load is preferably 0.1 g / 10 min or more, more preferably 0.2 to 30 g / 10 min, especially Preferably it is 0.5 to 20 g / 10 min, and most preferably 1.0 to 15 g / 10 min.
  • the radical polymerization method As a method for producing the methacrylic resin (M2), from the viewpoint of productivity, in the radical polymerization method, the polymerization temperature, the polymerization time, the type and / or amount of the chain transfer agent, the type and / or amount of the polymerization initiator are adjusted. Is preferred. The details of the radical polymerization method are as described above.
  • the methacrylic resin composition of the present invention has a methacrylic resin (M1) / methacrylic resin (M2) mass ratio of 2/98 to 29/71, preferably 5/95 to 28/72, particularly preferably 10/90 to 25. / 75.
  • the methacrylic resin (M1) having a high ⁇ relaxation temperature (T ⁇ ) and low thermal decomposition resistance improves the heat resistance of the resin composition.
  • T ⁇ ⁇ relaxation temperature
  • T ⁇ the amount of the methacrylic resin (M1) having a high ⁇ relaxation temperature (T ⁇ ) is excessive, the viscosity of the resin composition at the time of molding increases and the moldability deteriorates.
  • the methacrylic resin (M1) having a high ⁇ relaxation temperature (T ⁇ ) has low heat decomposability, if the amount is excessive, it may be decomposed and foamed during high temperature molding, and the appearance of the resulting molded product may be deteriorated. . If the amount of the methacrylic resin (M1) is too small, desired dimensional stability against heat cannot be obtained.
  • the methacrylic resin (M2) having a low ⁇ relaxation temperature (T ⁇ ) improves the moldability of the resin composition. When the mass ratio of the methacrylic resins (M1) and (M2) is within the above range, a methacrylic resin composition having both good high-temperature moldability and high dimensional stability against heat of the molded body can be obtained.
  • the methacrylic resin composition of the present invention has ⁇ 1 > ⁇ 2 when the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec ⁇ 1 is ⁇ 1 and ⁇ 2 , respectively. It is.
  • melt viscosity eta 1 of the methacrylic resin (M2) from ⁇ relaxation temperature is high methacrylic resin (M1) is higher than the melt viscosity eta 2 of the methacrylic resin (M2)
  • a methacrylic resin during molding of the methacrylic resin composition (M1) Are easy to orient and difficult to relax, the resulting molded product can exhibit good mechanical strength and high dimensional stability. In addition, this effect can be expressed even if the content ratio of the methacrylic resin (M1) is not large.
  • the total amount of the methacrylic resins (M1) and (M2) in the methacrylic resin composition of the present invention is preferably 80% by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and most preferably 92%. It is at least mass%.
  • the methacrylic resin composition comprising only the methacrylic resins (M1) and (M2) has an Mw of preferably 50,000 to 200,000, more preferably 52,000 to 150,000, particularly preferably 55,000 to 120,000, and a molecular weight distribution (Mw / Mn). Preferably it is 1.2 to 2.0, more preferably 1.3 to 1.8.
  • the methacrylic resin composition consisting only of the methacrylic resins (M1) and (M2) has a melt flow rate (MFR) measured at 230 ° C. and a load of 3.8 kg, preferably 0.1 g / 10 min or more. It is preferably 0.2 to 30 g / 10 minutes, particularly preferably 0.5 to 20 g / 10 minutes, and most preferably 1.0 to 10 g / 10 minutes.
  • the methacrylic resin composition of this invention can contain 1 or more types of other polymers other than a methacrylic resin (M1) and (M2) as needed.
  • the other polymer may be added during or after polymerization of the methacrylic resin (M1) and / or methacrylic resin (M2), or may be added during kneading of the methacrylic resins (M1) and (M2). Good.
  • polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, and MBS resin; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamide resins such as nylon 6, nylon 66, and polyamide elastomer; Polycarbonate; polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl phenol, and ethylene Polyacetal; polyurethane; modified polyphenylene ether and polyphenylene sulfide; silicone modified resin; acrylic rubber,
  • the methacrylic resin composition of the present invention can contain methacrylic resins (M1) and (M2) and a polycarbonate resin (PC) and / or a phenoxy resin (PR).
  • M1 and M2 methacrylic resins
  • PC polycarbonate resin
  • PR phenoxy resin
  • One or two or more of polycarbonate resin (PC) and phenoxy resin (PR) can be used.
  • the amount of the polycarbonate resin (PC) and / or the phenoxy resin (PR) is preferably 1.0 to 10 parts by mass, more preferably 1 with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). 0.5 to 7 parts by mass, particularly preferably 2.0 to 6 parts by mass.
  • PC Polycarbonate resin
  • PC polycarbonate resin
  • MVR melt volume flow rate
  • the polycarbonate resin (PC) has a polystyrene-equivalent Mw of preferably 15000 to 28000, more preferably 18000 to 27000, particularly from the viewpoints of compatibility with the methacrylic resin and the transparency and surface smoothness of the resulting molded product. Preferably it is 20000-24000.
  • the MVR and Mw of the polycarbonate resin (PC) can be controlled by adjusting the amount of the terminal terminator and / or branching agent.
  • the Tg of the polycarbonate resin (PC) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and particularly preferably 140 ° C. or higher.
  • the upper limit of Tg is usually 180 ° C.
  • Examples of the method for producing the polycarbonate resin (PC) include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method).
  • the aromatic polycarbonate resin can be produced by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups.
  • the polycarbonate resin (PC) may contain other structural units such as polyester, polyurethane, polyether, or polysiloxane in addition to the polycarbonate structural unit.
  • the phenoxy resin (PR) is a thermoplastic polyhydroxy polyether resin.
  • a phenoxy resin (PR) can contain 50 mass% or more of 1 or more types of structural units represented by following formula (1).
  • X is a divalent group containing at least one benzene ring
  • R is a linear or branched alkylene group having 1 to 6 carbon atoms.
  • the structural unit represented by the formula (1) may be connected in any form of random, alternating, or block.
  • the phenoxy resin (PR) preferably contains 10 to 1000 structural units represented by the formula (1), more preferably 15 to 500, and particularly preferably 30 to 300.
  • the phenoxy resin (PR) does not have an epoxy group at the terminal because it is easy to obtain a molded product with few gel defects.
  • Mn in terms of polystyrene of the phenoxy resin (PR) is preferably 3000 to 2000000, more preferably 5000 to 100,000, and particularly preferably 10,000 to 50000. When Mn is in such a range, a methacrylic resin composition having high heat resistance and high strength can be obtained.
  • the Tg of the phenoxy resin (PR) is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and particularly preferably 95 ° C. or higher.
  • Tg of the phenoxy resin (PR) If the Tg of the phenoxy resin (PR) is too low, the heat resistance of the methacrylic resin composition tends to be low.
  • the upper limit of Tg is preferably 150 ° C.
  • Tg of the phenoxy resin (PR) is excessively high, the obtained molded product tends to become brittle.
  • the phenoxy resin (PR) can be obtained from, for example, a condensation reaction between a dihydric phenol compound and an epihalohydrin or a polyaddition reaction between a dihydric phenol compound and a bifunctional epoxy resin. This reaction can be carried out without solvent or in a solvent.
  • Dihydric phenol compounds include hydroquinone, resorcin, 4,4-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ketone, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) ) Cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) Propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propa 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 1,3-bis (2- (4-hydroxyphenyl) propyl)
  • bifunctional epoxy resins include epoxy oligomers obtained by condensation reaction of the above divalent phenol compound and epihalohydrin. Specifically, hydroquinone diglycidyl ether, resorcin diglycidyl ether, bisphenol S type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, methyl hydroquinone diglycidyl ether, chlorohydroquinone diglycidyl ether, 4,4'- Dihydroxydiphenyl oxide diglycidyl ether, 2,6-dihydroxynaphthalenediglycidyl ether, dichlorobisphenol A diglycidyl ether, and tetrabromobisphenol A type epoxy resin, 9,9′-bis (4) -hydroxyphenyl) fluorenediglycidyl ether Etc.
  • bisphenol A type epoxy resin bisphenol S type epoxy resin, hydroquinone diglycidyl ether, bisphenol F type epoxy resin, tetrabromobisphenol A type epoxy resin, and 9,9'-bis (4)- Hydroxyphenyl) full orange glycidyl ether is preferred.
  • Examples of the solvent used for the production of the phenoxy resin (PR) include aprotic organic solvents such as methyl ethyl ketone, dioxane, tetrahydrofuran, acetophenone, N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylacetamide, and sulfolane.
  • Examples of the catalyst used for the production of the phenoxy resin (PR) include alkali metal hydroxides, tertiary amine compounds, quaternary ammonium compounds, tertiary phosphine compounds, and quaternary phosphonium compounds.
  • X in the formula (1) is preferably a divalent group derived from the compounds represented by the following formulas (2) to (4).
  • the position of the two bonds constituting the divalent group is not particularly limited as long as it is a chemically possible position.
  • X in the formula (1) is preferably a divalent group having two bonds formed by extracting two hydrogen atoms from the benzene ring in the compounds represented by the formulas (2) to (4).
  • a divalent group having two bonds formed by extracting one hydrogen atom from any two benzene rings in the compounds represented by formulas (3) to (4) is preferable.
  • R 4 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched alkenyl group having 2 to 6 carbon atoms.
  • p is an integer of 1 to 4.
  • R 1 is a single bond, a linear or branched alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or a cycloalkylidene group having 3 to 20 carbon atoms.
  • R 2 and R 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched chain having 2 to 6 carbon atoms.
  • n and m are each independently an integer of 1 to 4.
  • X may be a divalent group derived from a compound in which a plurality of benzene rings are condensed with an alicyclic ring or a heterocyclic ring.
  • a divalent group derived from a compound having a fluorene structure or a carbazole structure can be given.
  • the structural unit represented by the formula (1) is preferably a structural unit represented by the following formulas (5) and (6), more preferably a structural unit represented by the following formula (7).
  • the phenoxy resin (PR) of a preferred embodiment preferably contains 10 to 1000 such structural units.
  • R 9 is a single bond, a linear or branched alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or a cycloalkylidene group having 3 to 20 carbon atoms.
  • R 10 is a linear or branched alkylene group having 1 to 6 carbon atoms.
  • Examples of commercially available phenoxy resins (PR) include YP-50 and YP-50S manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., jER series manufactured by Mitsubishi Chemical Co., Ltd., PKFE and PKHJ manufactured by InChem.
  • the methacrylic resin composition of the present invention can include methacrylic resins (M1) and (M2) and a crosslinked rubber (CR) and / or a block copolymer (BP). Either one or two or more of the crosslinked rubber (CR) and the block copolymer (BP) can be used.
  • Crosslinked rubber is a polymer having rubber elasticity in which a plurality of polymer chains are crosslinked by a crosslinkable monomer having a plurality of polymerizable functional groups in one monomer.
  • the crosslinked rubber (CR) an acrylic crosslinked rubber containing an alkyl acrylate monomer unit and a crosslinkable monomer unit, a diene containing a conjugated diene monomer unit and a crosslinkable monomer unit
  • examples thereof include a crosslinked rubber, a crosslinked rubber containing an alkyl acrylate monomer unit, a conjugated diene monomer unit, and a crosslinkable monomer unit.
  • These cross-linked rubbers can contain other vinyl monomer units as required.
  • the crosslinked rubber (CR) is preferably in the form of particles.
  • the cross-linked rubber particles (CRp) may be single-layer particles composed only of a cross-linked rubber polymer, or may be multi-layer particles of two or more layers composed of a cross-linked rubber polymer and another polymer.
  • the multilayer particle is preferably a core-shell type particle composed of a core part made of a crosslinked rubber polymer and a shell part made of another polymer.
  • the core part may have a center core part and, if necessary, one or more inner shell layers covering the center core part, and the shell part may have one outer shell layer covering the core part. . There are preferably no gaps between the layers.
  • acrylic multilayer polymer particles (CRa) are particularly preferable.
  • the core-shell type particles at least a part of the core portion composed of the center core portion and, if necessary, one or more inner shell layers contains the crosslinked rubber polymer (i).
  • this remainder contains another polymer (iii).
  • the kind and physical properties of the crosslinked rubber polymer (i) contained therein may be the same or non-identical.
  • the plurality of remaining portions of the core portion contain other polymer (iii)
  • the types and physical properties of the other polymer (iii) contained therein may be the same or non-identical.
  • crosslinked rubber polymer (i) those containing an alkyl acrylate monomer unit and / or a conjugated diene monomer unit and a crosslinkable monomer unit are preferable.
  • the carbon number of the alkyl group of the acrylic acid alkyl ester monomer used in the crosslinked rubber polymer (i) is preferably 1-8.
  • the alkyl acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. These can be used alone or in combination of two or more.
  • the conjugated diene monomer include butadiene and isoprene. These can be used alone or in combination of two or more.
  • the amount of the acrylic acid alkyl ester monomer unit and / or the conjugated diene monomer unit in the crosslinked rubber polymer (i) is preferably 60% by mass or more, more preferably 70 to 99% by mass, particularly preferably. 80 to 98% by mass.
  • Crosslinkable monomers include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1, 2-Diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene glycol di Examples include methacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, and triallyl isocyanate.
  • the amount of the crosslinkable monomer unit in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0.5 to 7% by mass, and particularly preferably 1 to 5% by mass. .
  • the crosslinked rubber polymer (i) can contain other vinyl monomer units as necessary.
  • Other vinyl monomers include MMA, ethyl methacrylate, butyl methacrylate, and methacrylic acid ester monomers such as cyclohexyl methacrylate; aromatic vinyl such as styrene, p-methylstyrene, and o-methylstyrene.
  • Monomers; maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide, and No-chlorophenylmaleimide. These can be used alone or in combination of two or more.
  • the other polymer (iii) is preferably one having a methacrylic acid alkyl ester monomer unit.
  • the other polymer (iii) can contain a crosslinkable monomer unit and / or other vinyl monomer units as required.
  • the methacrylic acid alkyl ester monomer used in the other polymer (iii) preferably has 1 to 8 carbon atoms.
  • Such methacrylic acid alkyl ester monomers include MMA, ethyl methacrylate, butyl methacrylate and the like, and MMA is preferred. These can be used alone or in combination of two or more.
  • the amount of the methacrylic acid alkyl ester monomer unit in the other polymer (iii) is preferably 80 to 100% by mass, more preferably 85 to 99% by mass, and particularly preferably 90 to 98% by mass.
  • the crosslinkable monomer used in the other polymer (iii) the same crosslinkable monomers as exemplified in the crosslinked rubber polymer (i) can be used.
  • the amount of the crosslinkable monomer unit in the other polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and particularly preferably 0.02 to 2% by mass. .
  • vinyl monomers used in other polymers (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, acrylic acid Acrylic ester monomers such as benzyl and 2-ethylhexyl acrylate; vinyl acetate; aromatic vinyl such as styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and vinylnaphthalene Monomers; Nitriles such as acrylonitrile and methacrylonitrile; ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; maleimide monomers such as N-ethylmaleimide and N-cyclohexylmaleimide Is mentioned. These can be used alone or in combination
  • the shell portion composed of one or more outer shell layers preferably contains the thermoplastic polymer (ii).
  • the thermoplastic polymer (ii) those having a methacrylic acid alkyl ester monomer unit and, if necessary, other vinyl monomer units are preferred.
  • At least a part of the thermoplastic polymer (ii) is preferably grafted to the center core layer or inner shell layer adjacent to the inside.
  • the carbon number of the methacrylic acid alkyl ester monomer unit in the thermoplastic polymer (ii) is preferably 1 to 8.
  • Such methacrylic acid alkyl ester monomers include MMA and butyl methacrylate, and MMA is preferred. These can be used alone or in combination of two or more.
  • the amount of the methacrylic acid alkyl ester monomer unit in the thermoplastic polymer (ii) is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
  • the same vinyl monomers as those exemplified in the other polymer (iii) described above can be used.
  • the amount of other vinyl monomer units in the thermoplastic polymer (ii) is preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the core part and the shell part are composed of two-layer polymer particles in which the center core part is made of a crosslinked rubber polymer (i) and the outer shell layer is made of a thermoplastic polymer (ii); Is composed of another polymer (iii), the inner shell layer is composed of a crosslinked rubber polymer (i), and the outer shell layer is composed of a thermoplastic polymer (ii); Three-layer polymer particles comprising a kind of crosslinked rubber polymer (i), the inner shell layer comprising another kind of crosslinked rubber polymer (i), and the outer shell layer comprising a thermoplastic polymer (ii); Three-layer polymer particles in which the center core portion is composed of a crosslinked rubber polymer (i), the inner shell layer is composed of another polymer (iii), and the outer shell layer is composed of a thermoplastic polymer (ii); Consists of a crosslinked rubber polymer (i) and has a first inner sheath.
  • the second layer is made of another polymer (iii)
  • the second inner shell layer is made of a crosslinked rubber polymer (i)
  • the outer shell layer is made of a thermoplastic polymer (ii). It is done.
  • the other polymer (iii) in the center core portion is an acrylate monomer unit having an MMA monomer unit of 80 to 99.95% by mass and having an alkyl group having 1 to 8 carbon atoms.
  • a copolymer of 80 to 98% by mass of an alkyl ester monomer unit, 1 to 19% by mass of an aromatic vinyl monomer unit and 1 to 5% by mass of a crosslinkable monomer unit, and the thermoplastic weight of the outer shell layer Acrylic three-layer copolymer in which the compound (ii) is a copolymer of 80 to 100% by mass of MMA monomer units and 0 to 20% by mass of alkyl acrylate monomer units having an alkyl group having 1 to 8 carbon atoms Combined particles are particularly preferred.
  • the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and particularly preferably less than 0.003. It is preferred to select a polymer.
  • the proportion of the outer shell layer in the core-shell type particle is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and particularly preferably 20 to 40% by mass.
  • the ratio of the portion containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
  • the volume-based average particle diameter of the crosslinked rubber particles (CRp) is preferably 0.02 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, and particularly preferably 0.1 to 0.3 ⁇ m.
  • the “volume reference average particle size” is a value calculated based on particle size distribution data measured by a light scattering method.
  • the emulsion polymerization method is a method for producing an emulsion containing polymer particles by emulsion polymerization of one or more raw material monomers.
  • seed particles are obtained by emulsion polymerization of one or more kinds of raw material monomers, and then emulsion polymerization of other raw material monomers in the presence of the seed particles.
  • An emulsion containing core-shell polymer particles comprising a shell layer covering the same can be produced.
  • Emulsion comprising core-shell multilayer polymer particles comprising seed particles and a plurality of shell layers covering them by repeating the step of emulsion polymerization of one or more raw material monomers in the presence of the obtained core-shell polymer particles Can be manufactured.
  • Examples of the emulsifier used in the emulsion polymerization method include an anionic emulsifier, a nonionic emulsifier, and a nonionic anionic emulsifier.
  • anionic emulsifiers include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate; alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate; alkyl sulfates such as sodium dodecyl sulfate.
  • nonionic emulsifiers include polyoxyethylene alkyl ether and polyoxyethylene nonylphenyl ether.
  • Nonionic and anionic emulsifiers include polyoxyethylene nonylphenyl ether sulfate such as sodium polyoxyethylene nonylphenyl ether sulfate; polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate: polyoxyethylene tridecyl ether Examples thereof include alkyl ether carboxylates such as sodium acetate. These can be used alone or in combination of two or more.
  • the average number of repeating units of ethylene oxide (EO) units in the exemplified compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably in order to prevent the foaming property of the emulsifier from becoming extremely large. 20 or less, particularly preferably 10 or less.
  • the polymerization initiator used in emulsion polymerization include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite. It is done.
  • Examples of the method for separating the crosslinked rubber particles (CRp) from the emulsion obtained by emulsion polymerization include a salting out coagulation method, a freeze coagulation method, and a spray drying method.
  • the salting-out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable because impurities contained in the crosslinked rubber particles (CRp) can be easily removed by washing with water.
  • the freeze coagulation method without using a flocculant a resin composition excellent in water resistance can be easily obtained.
  • the crosslinked rubber particles (CRp) are preferably aggregates having a diameter of 1000 ⁇ m or less, more preferably 500 ⁇ m or less. It is preferable to take it out in the form of a collection. In addition, as an aggregation form, the form which shell parts mutually fused is mentioned. Examples of the shape of the crosslinked rubber particle aggregate include pellets, powders, and granules.
  • the amount of the crosslinked rubber (CR) in the methacrylic resin composition of the present invention is preferably 5 to 30 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2).
  • the amount is 25 parts by mass, particularly preferably 15 to 20 parts by mass.
  • dispersion auxiliary particles (DA) such as methacrylic resin particles can be added in order to improve the uniform dispersibility of the crosslinked rubber particles (CRp).
  • the volume-based average particle diameter of the dispersion assisting particles (DA) is preferably smaller than the crosslinked rubber particles (CRp), preferably 0.04 to 0.12 ⁇ m, more preferably 0.05 to 0.1 ⁇ m.
  • the mass ratio of dispersion aid particles (DA) / crosslinked rubber particles (CRp) is preferably 0/100 to 60/40, more preferably 10/90 to 50/50, and particularly preferably. Is 20/80 to 40/60.
  • the block copolymer (BP) is a copolymer in which a plurality of types of polymer molecular chains (polymer blocks) are connected in a chain or radial form as a whole. From the viewpoint of compatibility with the methacrylic resins (M1) and (M2), at least one of the polymer blocks constituting the block copolymer (BP) has a weight containing 90% by mass or more of a methacrylic acid ester monomer unit.
  • the block copolymer (BP) may be one or more polymer blocks (b1) (methacrylic ester polymer) comprising a polymethacrylic ester such as polymethyl methacrylate (PMMA).
  • a block copolymer (BPa) containing a block) and one or more polymer blocks (b2) (acrylic acid ester polymer block) made of polyacrylic acid ester is preferable.
  • a method for producing a block copolymer (BPa) a polymerization initiation point is created at the end of one polymer block using living polymerization, and a monomer is polymerized from this initiation point to connect the other polymer block.
  • a method of producing a method of preparing a plurality of types of polymer blocks and subjecting them to addition reaction or condensation reaction, and the like.
  • the amount of the block copolymer (BP) is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). Particularly preferred is 1 to 20 parts by mass.
  • the methacrylic resin composition of the present invention can contain other optional components as required.
  • Other optional components include fillers, antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, and light diffusion.
  • various additives such as agents, organic dyes, matting agents, impact modifiers, and phosphors. The total amount of these various additives is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
  • the molecular weight of the ultraviolet absorber (LA) is preferably more than 200, more preferably 300 or more, particularly preferably 500 or more, and most preferably 600 or more.
  • An ultraviolet absorber (LA) is a compound said to have a function of converting light energy into heat energy. Examples of the ultraviolet absorber (LA) include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, and formamidines. These can be used alone or in combination of two or more.
  • Benzotriazoles compounds having a benzotriazole skeleton
  • triazines compounds having a triazine skeleton
  • benzotriazoles examples include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2 -Yl) -4-tert-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like Can be mentioned.
  • triazines examples include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and its analogs. Certain hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; CGL777, TINUVIN460, TINUVIN479, etc.), 2,4-diphnyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, etc. Is mentioned.
  • ultraviolet absorbers having a maximum molar extinction coefficient ⁇ max at wavelengths of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less.
  • examples of such an ultraviolet absorber include 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, trade name: Sundebore VSU).
  • WO 2011/089794, WO 2012/124395, JP 2012-012476, JP 2013-023461, JP 2013-112790, JP 2013-194037 examples thereof include metal complexes having a heterocyclic ligand as described in JP-A No. 2014-62228, JP-A No. 2014-88542, JP-A No. 2014-88543, and the like.
  • metal complexes include compounds represented by the following formula (A).
  • M is a metal atom.
  • Y 1 to Y 4 are each independently a divalent group other than a carbon atom (oxygen atom, sulfur atom, NH, NR 5, etc.).
  • R 5 is a substituent such as an alkyl group, an aryl group, a heteroaryl group, a heteroaralkyl group, and an araryl group.
  • the substituent may further have a substituent.
  • Z 1 and Z 2 are each independently a trivalent group (such as a nitrogen atom, CH, and CR 6 ).
  • R 6 is a substituent such as an alkyl group, an aryl group, a heteroaryl group, a heteroaralkyl group, and an araryl group.
  • the substituent may further have a substituent.
  • R 1 to R 4 are each independently a hydrogen atom, alkyl group, hydroxyl group, carboxyl group, alkoxyl group, halogeno group, alkylsulfonyl group, monomorpholinosulfonyl group, piperidinosulfonyl group, thiomorpholinosulfonyl group, and A substituent such as a piperazinosulfonyl group.
  • the substituent may further have a substituent. a to d each represent the number of R 1 to R 4 and are each independently an integer of 1 to 4.
  • the metal complex is preferably used by being dispersed in a medium such as a low molecular compound or a polymer.
  • the amount of the metal complex added is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the methacrylic resin composition of the present invention. Since the metal complex has a large molar extinction coefficient at a wavelength of 380 to 400 nm, the amount to be added is small in order to obtain a desired ultraviolet absorption effect. Therefore, it is possible to suppress deterioration of the appearance of the molded body due to bleeding out or the like. Further, since the metal complex has high heat resistance, there is little deterioration and decomposition during molding. Furthermore, since the metal complex has high light resistance, it can maintain ultraviolet absorption performance for a long time.
  • Polymer processing aid (PA) As the polymer processing aid (PA), polymer particles (non-crosslinked rubber particles) having a particle diameter of 0.05 to 0.5 ⁇ m, which can be produced by an emulsion polymerization method, can be used.
  • the polymer particle may be a single-layer particle composed of a polymer having a single composition and a single intrinsic viscosity, or may be a multilayer particle composed of two or more layers composed of two or more polymers having different compositions or intrinsic viscosities. May be.
  • particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid (PA) preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the moldability improving effect may be insufficient, and if it is too large, the moldability of the methacrylic resin composition may be lowered.
  • Specific examples include the Metablene-P series manufactured by Mitsubishi Rayon Co., and the Paraloid series manufactured by Dow.
  • the amount of the polymer processing aid (PA) is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). If the amount is too small, good processing characteristics cannot be obtained, and if the amount is too large, the appearance of the molded article may be deteriorated.
  • the filler examples include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate.
  • the amount of the filler in the methacrylic resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
  • antioxidants examples include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants.
  • One type or two or more types of antioxidants can be used.
  • a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable.
  • the mass ratio of phosphorus antioxidant: hindered phenol antioxidant is preferably 1: 5 to 2: 1, and 1: 2. ⁇ 1: 1 is more preferred.
  • Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: ADK STAB HP-10), tris (2,4-di-t- Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168) and 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa3 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) and the like.
  • hindered phenol-based antioxidant pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX 1010), and octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076).
  • the thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals that are generated when exposed to high heat under substantially oxygen-free conditions.
  • the thermal deterioration preventive agent include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GM), and 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GS) .
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated by oxidation by light.
  • hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • the lubricant include stearic acid, behenic acid, stearamic acid, methylene bisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hardened oil.
  • the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • the combined use of higher alcohols and glycerin fatty acid monoester is preferred.
  • the mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1, more preferably 2.8 / 1 to 3.2 / 1.
  • the organic dye a compound that converts ultraviolet light into visible light is preferably used.
  • the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
  • the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent whitening agent, and a fluorescent bleaching agent.
  • the methacrylic resin composition of the present invention preferably has an Mw of 50,000 to 200,000, more preferably 55,000 to 160000, particularly preferably 60000 to 120,000, most preferably 70000 to 100,000, and preferably has a molecular weight distribution (Mw / Mn). It is 1.0 to 5.0, more preferably 1.2 to 3.0, particularly preferably 1.3 to 2.0, and most preferably 1.3 to 1.7.
  • Mw and Mn molecular weight distribution
  • the melt flow rate (MFR) measured under the conditions of 230 ° C. and 3.8 kg load of the methacrylic resin composition of the present invention is preferably 0.1 to 30 g / 10 minutes, more preferably 0.5 to 20 g / 10. Min, particularly preferably 1.0 to 15 g / 10 min.
  • the haze when processed into a film having a thickness of 3.2 mm is preferably 3.0% or less, more preferably 2.0% or less, and particularly preferably 1.5% or less. is there.
  • Method for producing methacrylic resin composition As a manufacturing method of the methacrylic resin composition of this invention, the method of melt-kneading a methacryl resin (M1) and (M2) and another polymer as needed is mentioned.
  • the melt kneading can be performed using a melt kneading apparatus such as a kneader ruder, an extruder, a mixing roll, and a Banbury mixer.
  • the kneading temperature can be appropriately adjusted according to the softening temperature of the methacrylic resins (M1) and (M2) and other polymers used as necessary, and is usually within the range of 150 ° C to 300 ° C.
  • the shear rate during kneading can be adjusted within a range of 10 to 5000 sec ⁇ 1 .
  • the methacrylic resin composition of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
  • Molding methods include T-die method (lamination method and coextrusion method, etc.), inflation method (coextrusion method, etc.), compression molding method, blow molding method, calender molding method, vacuum molding method, injection molding method (insert method, A melt molding method such as a two-color method, a press method, a core back method, and a sandwich method; and a solution casting method.
  • T-die method lamination method and coextrusion method, etc.
  • inflation method coextrusion method, etc.
  • compression molding method blow molding method
  • calender molding method vacuum molding method
  • injection molding method insert method, A melt molding method such as a two-color method, a press method, a core back method, and a sandwich method
  • a solution casting method a solution casting method.
  • the T-die method, the inflation method, the injection molding method, and the like are preferable from the viewpoints of productivity and cost.
  • the film The form of the molded body is arbitrary, and examples thereof include a film.
  • the film of this invention is a film which consists of said methacryl resin composition of this invention.
  • a planar molded body having a thickness of 5 to 250 ⁇ m is mainly classified as “film”, and a planar molded body thicker than 250 ⁇ m is mainly classified as “sheet”. It is called “film”.
  • Examples of the film forming method include a melt film forming method and a solution film forming method, and the melt film forming method is preferable from the viewpoint of productivity.
  • Examples of the melt film forming method include an inflation method, a T-die method, a calendar method, and a cutting method. Of these, the T-die method is preferable.
  • Examples of the melt film forming apparatus include an extruder type melt extrusion apparatus having a single screw or a twin screw. The melt extrusion temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
  • melt-kneading using a melt-extrusion apparatus it is preferable to perform melt-kneading under reduced pressure or inert atmosphere, such as nitrogen, from a viewpoint of coloring suppression. It is preferable to install a polymer filter for removing foreign substances and a gear pump for increasing the thickness accuracy in the melt extrusion apparatus.
  • the methacrylic resin composition is extruded from a T-die in a molten state, and this is one or more mirror surfaces for cooling.
  • a method of cooling by contacting or pinching with a roll or a mirror belt is preferable.
  • the mirror roll or mirror belt preferably has at least a mirror surface made of chrome-plated metal.
  • the thickness of the methacrylic resin film (unstretched film) formed by the above method is preferably 10 to 500 ⁇ m, more preferably 20 to 200 ⁇ m from the viewpoints of mechanical strength, film uniformity, and winding property. .
  • the thickness distribution is preferably within ⁇ 10%, more preferably within ⁇ 5%, and particularly preferably within ⁇ 3% with respect to the average value. If the thickness distribution exceeds ⁇ 10%, stretching unevenness may occur when stretching is performed.
  • the methacrylic resin film (unstretched film) formed by the above method may be stretched. Stretching increases the mechanical strength (impact resistance and toughness, etc.) and thermophysical properties, and a film that is difficult to crack is obtained.
  • the stretching process includes a stretching process, a heat setting process, and a relaxation process. Examples of the stretching method include a sequential biaxial stretching method, a simultaneous biaxial stretching method, and a tuber stretching method.
  • the stretching speed is preferably 1 to 8,000% / min, more preferably 100 to 6,000% / min in any stretching direction.
  • the stretching speed may be the same or non-identical in the two directions.
  • the stretching speed is preferably 1 to 8,000% / min, more preferably 50 to 6,000% / min. In either method, productivity is not good if the stretching speed is too low, and film breakage may occur if the stretching speed is too high.
  • the stretching temperature is preferably Tg to (Tg + 30 ° C.), more preferably (Tg + 5 ° C.) to (Tg + 25 ° C.) in any of the sequential / simultaneous biaxial stretching methods based on the Tg of the methacrylic resin composition of the present invention. It is. In such a range, thickness unevenness is suppressed. If the stretching temperature is too low, the film may be broken, and if it is too high, the effect of improving the mechanical strength and thermophysical properties by the stretching process may be insufficient.
  • the area ratio of the stretched film to the unstretched film is preferably 1.01 to 12.25 times, more preferably 1.10 to 9 times. If the draw ratio is less than 1.01, the effect of improving the mechanical strength of the film is insufficient, and if it exceeds 12.25, the mechanical strength may be lowered. In the case of biaxial stretching, the stretching ratio in each axial direction is preferably 1.01 to 3.5 times.
  • the film of the present invention is coated with a polarizer protective film, a retardation film, a liquid crystal protective film, a surface material for a portable information terminal, a display window protective film for a portable information terminal, a light guide film, silver nanowires or carbon nanotubes on the surface. It is suitable for a transparent conductive film and a front film for various displays, and is particularly suitable for a polarizer protective film and the like.
  • the film of the present invention includes an IR (infrared) cut film, a crime prevention film, a scattering prevention film, a decorative film, a metal decorative film, a solar battery back sheet, a flexible solar battery front sheet, a shrink film, and an in-mold. It is suitable for a label film and a gas barrier film.
  • the film of the present invention is also suitable for an optical film for an organic electroluminescence (EL) lighting device.
  • EL organic electroluminescence
  • the film (unstretched film or stretched film) of the present invention may be in the form of a laminated film in which another layer is laminated on at least one surface.
  • the laminated film of the present invention has a layer comprising the above-described film of the present invention (unstretched film or stretched film).
  • other layers include various functional layers.
  • the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an antisticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, and a slippery layer containing fine particles.
  • the other layer may be a polarizer made of a polyvinyl alcohol film doped with iodine.
  • multilayer film of this invention has the said polarizer and the polarizer protective film which consists of said film of this invention laminated
  • an optional optical film other than the film of the present invention can be laminated on the other surface of the polarizer as necessary.
  • the optional optical film include a polarizer protective film other than the film of the present invention, a viewing angle adjustment film, a retardation film, and a brightness enhancement film. Lamination can be performed via an adhesive layer as required.
  • the polarizing plate of the above aspect can be used for an image display device.
  • the image display device include self-luminous display devices such as (organic) electroluminescence display (ELD), plasma display (PD), and field emission display (FED); liquid crystal display (LCD) and the like. It is done.
  • the LCD has a liquid crystal cell and a polarizing plate disposed on at least one side thereof.
  • the other layer may be a layer made of metal and / or metal oxide.
  • the metal include aluminum, silicon, magnesium, palladium, zinc, tin, nickel, silver, copper, gold, indium, stainless steel, chromium, and titanium.
  • the metal oxide include aluminum oxide, zinc oxide, antimony oxide, indium oxide, calcium oxide, cadmium oxide, silver oxide, gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide, tin oxide, titanium oxide, Examples thereof include iron oxide, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, molybdenum oxide, vanadium oxide, and barium oxide. These metals and metal oxides can be used alone or in combination.
  • indium is excellent because it has excellent luster, and thus has excellent design properties, and it is preferable because the gloss is not easily lost when a laminated film obtained by laminating a metal layer on the film of the present invention by vapor deposition or the like is deeply drawn.
  • Aluminum is excellent in luster, has excellent design properties, and can be obtained industrially at a low price, and therefore is preferable for applications that do not require deep drawing.
  • a vacuum deposition method is usually used, but a method such as ion plating, sputtering, and CVD (Chemical Vapor Deposition) may be used. Good.
  • the film of the present invention may be subjected to surface treatment such as corona treatment.
  • the thickness of the layer made of metal and / or metal oxide is generally about 5 to 100 nm, and preferably 5 to 250 nm when deep drawing is performed after the layer is formed.
  • the other layer may be a layer made of another thermoplastic resin.
  • Other thermoplastic resins suitable for lamination include polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, other (meth) acrylic resins, ABS (acrylonitrile-butadiene- Styrene copolymer) resin, ethylene vinyl alcohol resin, polyvinyl butyral resin, polyvinyl acetal resin, styrene thermoplastic elastomer, olefin thermoplastic elastomer, acrylic thermoplastic elastomer, and the like.
  • the thickness of the layer made of these thermoplastic resins is appropriately designed depending on the application and is not particularly limited, and is preferably 500 ⁇ m or less from the viewpoint of secondary workability.
  • the method for producing a laminated film having a layer made of another thermoplastic resin is not particularly limited. For example, (1) A method of laminating separately prepared films of the present invention and other thermoplastic resin films between a pair of heating rolls; (2) Separately prepared films of the present invention and others (3) A film of the present invention and another thermoplastic resin film are prepared separately, and one film is formed by pressure forming or vacuum forming at the same time as the other.
  • the laminated molded body of the present invention is obtained by laminating the above-described film of the present invention or the above-described laminated film of the present invention on a substrate. It does not restrict
  • a laminated molded body can be obtained by subjecting the (laminate) film of the present invention to vacuum heating, pressure molding, compression molding or the like under heating through an adhesive layer as necessary on the substrate. it can.
  • the (laminated) film of the present invention is inserted between male and female molds for injection molding, and a molten thermoplastic resin is injected into one side of the (laminated) film in this mold.
  • an injection molding simultaneous laminating method in which the formation of an injection molded body and the injection molded body and (laminate) film are simultaneously bonded.
  • the (laminated) film of the present invention used in this method may be a flat film, or may be preformed by vacuum forming, pressure forming, etc.
  • the preforming of the (laminated) film of the present invention may be performed in a mold of an injection molding machine used in the simultaneous injection molding method, or may be performed using another molding machine.
  • a method of injecting a molten resin on one side after preforming a (laminate) film is called an insert molding method.
  • the layer made of the film of the present invention it is preferable that the layer made of the film of the present invention be the outermost layer.
  • the laminated molded body of the present invention is excellent in surface smoothness, surface hardness, surface gloss, and the like. When the laminated film of the present invention has a printed layer, a pattern or the like is clearly displayed.
  • the laminated film which has a layer which consists of a metal or a metal oxide is used, mirror surface glossiness equivalent to a metal is obtained.
  • a methacrylic resin composition capable of obtaining a molded article having good high temperature moldability and high dimensional stability against heat. Even if the methacrylic resin composition of the present invention is exposed to a higher temperature than before or has a heat history of, for example, about 280 ° C. when passing through a polymer filter, for example, it has good moldability. It can cope with complications. Moreover, the obtained molded object can have high dimensional stability also with respect to a heat
  • a sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 ml of tetrahydrofuran (THF) and filtering it with a filter having a pore size of 0.1 ⁇ m.
  • THF tetrahydrofuran
  • HLC-8320 manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used.
  • RI detector differential refractive index detector
  • THF Tetrahydrofuran
  • the column oven temperature was set at 40 ° C., 20 ⁇ l of sample solution was injected into the apparatus at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
  • the chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the sample solution and the reference solution is plotted against the retention time X.
  • GPC measurement was performed using 10 standard polystyrenes having a molecular weight in the range of 400 to 5000000, and a calibration curve showing the relationship between retention time and molecular weight was created. Based on this calibration curve, Mw and Mw / Mn of the measurement target resin were determined.
  • the baseline of the chromatogram is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the lower molecular weight side has the earlier retention time. From the point of view, the point that changes from minus to zero is taken as a connecting line. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
  • the area (X) of the region of 0.6 to 0.95 ppm and the area (Y) of the region of 0.6 to 1.35 ppm when the reference substance (TMS) is 0 ppm are measured, and the formula: (X / The value calculated by Y) ⁇ 100 was defined as syndiotacticity (rr) (%) in triplet display.
  • a strip-shaped test piece having a width of 5 mm was cut out from a hot-press molded film having a thickness of 1 mm, and dynamic viscoelasticity measurement was performed.
  • a measuring device a forced vibration type dynamic viscoelasticity measuring device (“Rheogel-E4000” manufactured by UBM Co., Ltd.) was used.
  • the test piece was set in the apparatus with a distance between chucks of 20 mm. Fundamental frequency: 1 Hz, measurement mode: tensile mode, strain control: 5 ⁇ m, strain waveform: sine wave, static load control: automatic temperature increase from 50 ° C. to 230 ° C. at a rate of 3 ° C./min The temperature dependence was measured.
  • the storage elastic modulus (E ′), loss elastic modulus (E ′′), and tan ⁇ were plotted, and the peak of tan ⁇ appearing from 100 ° C. to 180 ° C. was defined as an ⁇ relaxation peak.
  • This ⁇ relaxation peak top temperature was defined as an ⁇ relaxation temperature.
  • melt flow rate (MFR) Based on JIS K7210, MFR of measurement object resin was measured on condition of 230 degreeC, 3.8kg load, and 10 minutes.
  • Melt viscosity ⁇ After the measurement target resin was dried at 80 ° C. for 12 hours, melt viscosity ⁇ was measured using “Capillograph 1D” manufactured by Toyo Seiki Co., Ltd. under the conditions of 260 ° C. and shear rate of 122 sec ⁇ 1 .
  • thermogravimetric measuring device As a measuring device, a thermogravimetric measuring device (“TGA-50” manufactured by Shimadzu Corporation) was used. Under an air atmosphere, the temperature was increased from 50 ° C. to 290 ° C. at a rate of temperature increase of 20 ° C./min, and then the thermal weight reduction of the measurement target resin was measured with a temperature profile held at 290 ° C. for 20 minutes. Using the weight at the time of 50 ° C. as a reference (retention rate 100%), the weight retention after holding at 290 ° C. for 20 minutes was determined, and the high temperature moldability (heat decomposition resistance) was evaluated according to the following criteria.
  • thermomechanical analysis TMA (“Q400EM” manufactured by TA Instruments) was used as a measuring device. Under conditions of a distance between chucks of 8 mm and a load of 0.01 N, the temperature was raised from 25 ° C. to 130 ° C. at a heating rate of 10 ° C./min, and the dimensional change of the test piece was measured. The linear thermal expansion coefficient was calculated from the slope of the dimensional change in the temperature range of 50 to 90 ° C.
  • shock resistance shock resistance value
  • a test piece of 80 mm ⁇ 80 mm ⁇ thickness 40 ⁇ m was cut out from the biaxially stretched film.
  • a film impact tester manufactured by Yasuda Seiki Co., Ltd.
  • the impact resistance value when the test piece was broken with a sphere having a diameter of 12.7 ⁇ 0.2 mm ⁇ was measured.
  • n x is the in-plane slow axis direction of the refractive index
  • n z is the thickness direction of the refractive index
  • the thickness of d is the test piece [nm] is there.
  • the thickness d [nm] of the test piece was measured using a digimatic indicator (manufactured by Mitutoyo Corporation).
  • the average refractive index n was measured using a digital precision refractometer (“KPR-20” manufactured by Kalnew Optical Industry Co., Ltd.).
  • the methacrylic resin (M1-1) has an Mw of 70000, a melt viscosity ⁇ of 1200 Pa ⁇ s, an Mw / Mn of 1.06, a syndiotacticity (rr) of 75%, and an ⁇ relaxation temperature of 142 ° C.
  • the content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)).
  • Table 1 shows the physical properties of the methacrylic resin (M1-1).
  • the methacrylic resin (M1-2) has an Mw of 36000, a melt viscosity ⁇ of 400 Pa ⁇ s, an Mw / Mn of 1.07, a syndiotacticity (rr) of 75%, and an ⁇ relaxation temperature of 138 ° C.
  • the content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)).
  • Table 1 shows the physical properties of the methacrylic resin (M1-2).
  • the polymerization reaction was first started by a batch method.
  • the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes while maintaining the temperature at 140 ° C., and at the same time, equivalent to the supply flow rate of the raw material liquid
  • the reaction solution was withdrawn from the tank reactor at a flow rate to switch to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 48% by mass.
  • the reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C.
  • the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin.
  • the molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped methacrylic resin (M2-1).
  • the methacrylic resin (M2-1) has an Mw of 112,000, a melt viscosity ⁇ of 1000 Pa ⁇ s, an Mw / Mn of 1.86, a syndiotacticity (rr) of 52%, and an ⁇ relaxation temperature of 129 ° C.
  • the content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)).
  • Table 1 shows the physical properties of the methacrylic resin (M2-1).
  • the polymerization reaction was first started in a batch mode.
  • the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate of 120 minutes while maintaining the temperature at 120 ° C., and at the same time, equivalent to the supply flow rate of the raw material liquid
  • the reaction solution was withdrawn from the tank reactor at a flow rate to switch to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 45% by mass.
  • the reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes.
  • the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin.
  • the molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into a strand, and cut with a pelletizer to obtain a pellet-like methacrylic resin (M2-2).
  • the methacrylic resin (M2-2) has an Mw of 83,000, a melt viscosity ⁇ of 700 Pa ⁇ s, an Mw / Mn of 1.87, a syndiotacticity (rr) of 55%, and an ⁇ relaxation temperature of 130 ° C.
  • the content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)).
  • Table 1 shows the physical properties of the methacrylic resin (M2-2).
  • PC Polycarbonate resin
  • the internal temperature increased due to heat generated by the polymerization, and then the internal temperature began to decrease.
  • the mixture was stirred at 70 ° C. for 30 minutes for emulsion polymerization to obtain an emulsion containing seed particles.
  • 720 g of a 2% aqueous sodium persulfate solution was added to the emulsion containing seed particles.
  • a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene, and 280 g of allyl methacrylate was dropped over 60 minutes.
  • the mixture was stirred for 60 minutes for emulsion polymerization to obtain an emulsion containing core-shell bilayer particles.
  • a surfactant (“PEREX SS-H” manufactured by Kao Corporation)
  • DA-1 acrylic polymer particles having a volume-based average particle size of 0.12 ⁇ m and an intrinsic viscosity of 0.44 g / dl was obtained.
  • the Mw of the MMA polymer (b1-1) was 45800.
  • the reaction solution was cooled to ⁇ 25 ° C., and a mixed solution of 29.0 kg of n-butyl acrylate and 10.0 kg of benzyl acrylate was added dropwise over 0.5 hour to obtain an MMA polymer (b1-1).
  • the polymerization reaction was continued from the end of the polymer. Thereafter, 4 kg of methanol was added to the reaction solution to stop the polymerization reaction, and the reaction solution was poured into a large amount of methanol to precipitate a block copolymer (BP-1). The resulting precipitate was filtered off and dried at 80 ° C. and 1 torr (about 133 Pa) for 12 hours.
  • a diblock copolymer (b1-1) comprising a MMA polymer block (b1-1) and an acrylate polymer block (b2-1) comprising an n-butyl acrylate unit and a benzyl acrylate unit ( BP-1) was obtained.
  • the block copolymer (BP-1) had Mw of 92000 and Mw / Mn of 1.06. Since the Mw of the MMA polymer (b1-1) was 45800, the Mw of the acrylate polymer (b2-1) was determined to be 46200.
  • the proportion of benzyl acrylate units in the acrylate polymer (b2-1) was 25.6% by mass.
  • the mass ratio of (b1-1) / (b2-1) was 50/50.
  • LA ultraviolet absorber
  • LA-31 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (manufactured by ADEKA)
  • LA-F70 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA).
  • PA Polymer processing aid
  • PA-1 “Metabrene P550A” manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, MMA monomer unit content: 88 mass%, butyl acrylate monomer unit content: 12 mass%).
  • Example 1 20 parts by weight of methacrylic resin (M1-1), 80 parts by weight of methacrylic resin (M2-1), 1.0 part by weight of block copolymer (BP-1), 0.9 part by weight of UV absorber (LA-F70) And 2 parts by mass of polymer processing aid (PA-1) are mixed and melt kneaded at 250 ° C. using a twin-screw extruder (“KZW20TW-45MG-NH-600” manufactured by Technobel Co., Ltd.). The melt-kneaded product was extruded to produce a methacrylic resin composition (R11). The physical properties of the methacrylic resin composition (R11) were evaluated.
  • Table 2 shows the composition and evaluation results of the methacrylic resin composition (R11).
  • the obtained methacrylic resin composition (R11) was dried at 80 ° C. for 12 hours.
  • OCS 20 mm ⁇ single screw extruder
  • the methacrylic resin composition (R11) was extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and taken up with a roll having a surface temperature of 100 ° C.
  • An unstretched film having a thickness of 160 ⁇ m was obtained.
  • the obtained unstretched film was cut out to 100 mm ⁇ 100 mm. Biaxial stretching was performed on this film using a two-tank batch biaxial stretching tester.
  • Examples 2 to 4 In each of Examples 2 to 4, methacrylic resin compositions (R12) to (R14) and biaxially stretched films (F12) to (F14) were obtained in the same manner as in Example 1 except that the composition and stretching conditions were changed. ) And evaluated. Tables 2 and 3 show the composition, stretching conditions and evaluation results. (Comparative Examples 1 to 4) In each of Comparative Examples 1 to 4, methacrylic resin compositions (R21) to (R24) and biaxially stretched films (F21) to (F24) were obtained in the same manner as in Example 1 except that the composition and stretching conditions were changed. ) And evaluated. Tables 2 and 3 show the composition, stretching conditions and evaluation results.
  • Examples 1 to 4 include a methacrylic resin (M1) having an ⁇ relaxation temperature of 137 ° C. or higher and a methacrylic resin (M2) having an ⁇ relaxation temperature of 132 ° C. or lower, and a melt viscosity ⁇ of the methacrylic resin (M1).
  • Methacrylic resin compositions (R11) to (R14) in which 1 is greater than the melt viscosity ⁇ 2 of the methacrylic resin (M2) and the weight ratio of methacrylic resin (M1) / methacrylic resin (M2) is 2/98 to 29/71. ) Was manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a methacrylate resin composition from which a molded body having excellent high-temperature formability and high dimensional stability against heat can be obtained. This methacrylate resin composition is made of a methacrylate resin (M1) having an α relaxation temperature Tα1 of at least 137oC at the time of dynamic viscoelastic measurement in a tensile mode at 1 Hz, and a methacrylate resin (M2) having an α relaxation temperature Tα2 of 132oC or lower at the time of dynamic viscoelastic measurement in a tensile mode at 1 Hz. When the melt viscosities of the methacrylate resin (M1) and the methacrylate resin (M2) at a temperature of 260oC and a shear rate of 122 sec-1 are η1 and η2, respectively, η1 is greater than η2, and the mass ratio of the methacrylate resin (M1)/the methacrylate (M2) ranges from 2/98 to 30/70.

Description

メタクリル樹脂組成物とその製造方法、成形体、フィルム、積層フィルム、積層成形体Methacrylic resin composition and production method thereof, molded product, film, laminated film, laminated molded product
 本発明は、メタクリル樹脂組成物とその製造方法、成形体、フィルム、積層フィルム、積層成形体に関する。 The present invention relates to a methacrylic resin composition and a production method thereof, a molded body, a film, a laminated film, and a laminated molded body.
 メタクリル樹脂は高い透明性を有し、光学部材、照明部材、看板部材、および装飾部材等の材料として好適である。しかしながら、汎用のメタクリル樹脂はガラス転移温度(Tg)が約110℃と低く耐熱性があまり良くないため、成形体の熱に対する寸法安定性が良くない。Tgが高いメタクリル樹脂として、シンジオタクティシティ(rr)が高いメタクリル樹脂が知られている。シンジオタクティシティ(rr)が高いメタクリル樹脂の製造方法としては、アニオン重合法が挙げられる(特許文献1、2を参照)。しかしながら、この方法で得られるシンジオタクティシティ(rr)が高いメタクリル樹脂は成形性が良くなく、得られる成形体は表面平滑性等に劣る傾向がある。分子量を下げることで成形性を改善できるものの、得られる成形体の機械的強度が低下する傾向がある。そのため、シンジオタクティシティ(rr)が高いメタクリル樹脂からなる成形体は実用化されていないのが現状である。 Methacrylic resin has high transparency and is suitable as a material for optical members, lighting members, signboard members, decorative members, and the like. However, a general-purpose methacrylic resin has a low glass transition temperature (Tg) of about 110 ° C. and is not very good in heat resistance, so that the dimensional stability of the molded product against heat is not good. As a methacrylic resin having a high Tg, a methacrylic resin having a high syndiotacticity (rr) is known. An anionic polymerization method is mentioned as a manufacturing method of a methacryl resin with high syndiotacticity (rr) (refer patent documents 1 and 2). However, a methacrylic resin having a high syndiotacticity (rr) obtained by this method has poor moldability, and the resulting molded product tends to have poor surface smoothness. Although the moldability can be improved by lowering the molecular weight, the mechanical strength of the resulting molded product tends to decrease. Therefore, the present condition is that the molded object which consists of a methacryl resin with high syndiotacticity (rr) is not put into practical use.
 特許文献3には、三連子表示のシンジオタクティシティ(rr)が65%以上であるメタクリル樹脂〔1〕と、三連子表示のシンジオタクティシティ(rr)が45~58%であるメタクリル樹脂〔2〕とを、メタクリル樹脂〔1〕/メタクリル樹脂〔2〕の質量比40/60~70/30で含有するメタクリル樹脂組成物が開示されている(請求項1)。シンジオタクティシティ(rr)が高いメタクリル樹脂〔1〕と、アタクチックなメタクリル樹脂〔2〕とを上記質量比で配合することで、耐熱性向上と良好な成形性とを両立することができる。 In Patent Document 3, a methacrylic resin [1] having a triplet display syndiotacticity (rr) of 65% or more, and a triplet display syndiotacticity (rr) of 45 to 58%. A methacrylic resin composition containing methacrylic resin [2] in a mass ratio of 40/60 to 70/30 of methacrylic resin [1] / methacrylic resin [2] is disclosed (claim 1). By blending the methacrylic resin [1] having a high syndiotacticity (rr) and the atactic methacrylic resin [2] in the above mass ratio, it is possible to achieve both improved heat resistance and good moldability.
特開平3-263412号公報Japanese Patent Laid-Open No. 3-26312 特開2002-327012号公報Japanese Patent Laid-Open No. 2002-327012 国際公開第2014/185509号International Publication No. 2014/185509
 上記のように、一般的にメタクリル樹脂においては、耐熱性(熱に対する寸法安定性)と成形性は背反する特性であり、これらを両立することが難しい。また近年、形状の複雑化および熱に対する高寸法安定性等、成形体に対する要求が高まっている。そのため、高温で良好な成形性を有し、かつ、熱に対して高い寸法安定性を有する成形体を成形できることが求められるようになってきている。 As described above, generally in methacrylic resins, heat resistance (dimensional stability against heat) and moldability are contradictory properties, and it is difficult to achieve both. In recent years, there has been an increasing demand for molded articles such as complicated shapes and high dimensional stability against heat. Therefore, it has been demanded that a molded article having good moldability at high temperature and having high dimensional stability against heat can be molded.
 本発明は上記課題に鑑みてなされたものであり、高温成形性が良好で、かつ、熱に対して高い寸法安定性を有する成形体を得ることが可能なメタクリル樹脂組成物とその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a methacrylic resin composition capable of obtaining a molded article having good high-temperature moldability and high dimensional stability against heat, and a method for producing the same. The purpose is to provide.
 本発明は、以下のメタクリル樹脂組成物とその製造方法、成形体、フィルム、積層フィルム、積層成形体を提供する。
[1] 引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であるメタクリル樹脂(M1)と、
 引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であるメタクリル樹脂(M2)とのメタクリル樹脂組成物であり、
 メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122sec-1での溶融粘度をそれぞれη1およびη2とした場合に、η>ηであり、
 メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比が2/98~29/71である、メタクリル樹脂組成物。
The present invention provides the following methacrylic resin composition and method for producing the same, molded body, film, laminated film, and laminated molded body.
[1] A methacrylic resin (M1) having an α relaxation temperature T α1 of 137 ° C. or higher when measured in a dynamic mode at 1 Hz in a tensile mode,
A tensile mode, a methacrylic resin composition with a methacrylic resin (M2) having an α relaxation temperature Tα2 of 132 ° C. or lower when dynamic viscoelasticity is measured at 1 Hz,
When the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec −1 is η 1 and η 2 , respectively, η 1 > η 2
A methacrylic resin composition having a methacrylic resin (M1) / methacrylic resin (M2) mass ratio of 2/98 to 29/71.
[2] メタクリル樹脂(M1)の分子量分布(Mw/Mn)が1.0~1.4である、[1]のメタクリル樹脂組成物。
[3] メタクリル樹脂(M1)の重量平均分子量(Mw)が40000~200000である、[1]または[2]のメタクリル樹脂組成物。
[4] メタクリル樹脂(M2)のメタクリル酸メチル単量体単位の含有量が99質量%以上である、[1]~[3]のいずれかのメタクリル樹脂組成物。
[5] ポリカーボネート樹脂(PC)および/またはフェノキシ樹脂(PR)をさらに含む、[1]~[4]のいずれかのメタクリル樹脂組成物。
[6] 架橋ゴム(CR)および/またはブロック共重合体(BP)をさらに含む、[1]~[5]のいずれかのメタクリル樹脂組成物。
[7] 紫外線吸収剤(LA)をさらに含む、[1]~[6]のいずれかのメタクリル樹脂組成物。
[2] The methacrylic resin composition according to [1], wherein the molecular weight distribution (Mw / Mn) of the methacrylic resin (M1) is 1.0 to 1.4.
[3] The methacrylic resin composition according to [1] or [2], wherein the methacrylic resin (M1) has a weight average molecular weight (Mw) of 40,000 to 200,000.
[4] The methacrylic resin composition according to any one of [1] to [3], wherein the content of the methyl methacrylate monomer unit in the methacrylic resin (M2) is 99% by mass or more.
[5] The methacrylic resin composition according to any one of [1] to [4], further comprising a polycarbonate resin (PC) and / or a phenoxy resin (PR).
[6] The methacrylic resin composition according to any one of [1] to [5], further comprising a crosslinked rubber (CR) and / or a block copolymer (BP).
[7] The methacrylic resin composition according to any one of [1] to [6], further comprising an ultraviolet absorber (LA).
[8] メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122sec-1での溶融粘度をη1およびη2とした場合に、η1>ηである、
 引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であるメタクリル樹脂(M1)と、
 引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であるメタクリル樹脂(M2)とを、
 メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比2/98~29/71で溶融混練する、メタクリル樹脂組成物の製造方法。
[8] When the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec −1 is η 1 and η 2 , η 1 > η 2
A methacrylic resin (M1) having an α relaxation temperature T α1 of 137 ° C. or higher when measured in a tensile mode and dynamic viscoelasticity at 1 Hz;
A methacrylic resin (M2) having an α relaxation temperature T α2 of 132 ° C. or lower when a dynamic viscoelasticity measurement is performed at a tensile mode of 1 Hz.
A method for producing a methacrylic resin composition, comprising melt-kneading a methacrylic resin (M1) / methacrylic resin (M2) in a mass ratio of 2/98 to 29/71.
[9] [1]~[7]のいずれかのメタクリル樹脂組成物からなる成形体。
[10] [1]~[7]のいずれかのメタクリル樹脂組成物からなるフィルム。
[11] 延伸フィルムである[10]のフィルム。
[12] [10]または[11]のフィルムからなる層を有する積層フィルム。
[13] さらに金属および/または金属酸化物からなる層を有する[12]の積層フィルム。
[14] さらに接着層を有する[12]または[13]の積層フィルム。
[15] 基材上に、[12]~[14]のいずれかの積層フィルムが積層された積層成形体。
[9] A molded article comprising the methacrylic resin composition according to any one of [1] to [7].
[10] A film comprising the methacrylic resin composition according to any one of [1] to [7].
[11] The film according to [10], which is a stretched film.
[12] A laminated film having a layer comprising the film of [10] or [11].
[13] The laminated film according to [12], further comprising a layer made of a metal and / or a metal oxide.
[14] The laminated film of [12] or [13] further having an adhesive layer.
[15] A laminated molded body in which the laminated film of any one of [12] to [14] is laminated on a substrate.
 本明細書において、「α緩和温度(Tα)」、「溶融粘度(η)」、「重量平均分子量(Mw)」、および「分子量分布(Mw/Mn)」は、[実施例]の項に記載の方法にて測定するものとする。 In the present specification, “α relaxation temperature (T α )”, “melt viscosity (η)”, “weight average molecular weight (Mw)”, and “molecular weight distribution (Mw / Mn)” are the items in [Example]. It shall be measured by the method described in 1.
 本発明によれば、高温成形性が良好で、かつ、熱に対して高い寸法安定性を有する成形体を得ることが可能なメタクリル樹脂組成物とその製造方法を提供することができる。 According to the present invention, it is possible to provide a methacrylic resin composition capable of obtaining a molded article having good high temperature moldability and high dimensional stability against heat, and a method for producing the same.
「メタクリル樹脂組成物」
 本発明のメタクリル樹脂組成物は、引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であるメタクリル樹脂(M1)と、引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であるメタクリル樹脂(M2)とを含む。
"Methacrylic resin composition"
The methacrylic resin composition of the present invention is composed of a methacrylic resin (M1) having an α relaxation temperature T α1 of 137 ° C. or higher when measured in a dynamic mode at a tensile mode and 1 Hz, and a dynamic viscoelasticity measurement at a tensile mode and 1 Hz. And a methacrylic resin (M2) having an α relaxation temperature T α2 of 132 ° C. or lower.
 本明細書において、「α緩和温度(Tα)」とは、ポリマー主鎖のセグメント運動に起因する緩和(α緩和)のピークトップの温度である。α緩和温度(Tα)は、[実施例]の項に記載の方法にて測定することができる。
 なお、一般的に、DSC曲線から求められるガラス転移温度(Tg)とα緩和温度(Tα)との間には相関が認められるが、本発明では、α緩和温度(Tα)の代りにTgを指標としては用いない。
In the present specification, the “α relaxation temperature (T α )” is the peak top temperature of relaxation (α relaxation) due to segment motion of the polymer main chain. The α relaxation temperature (T α ) can be measured by the method described in the [Example] section.
In general, there is a correlation between the glass transition temperature (Tg) obtained from the DSC curve and the α relaxation temperature (T α ), but in the present invention, instead of the α relaxation temperature (T α ). Tg is not used as an index.
(メタクリル樹脂(M1))
 メタクリル樹脂(M1)は、引張りモード、正弦波1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であれば特に制限されない。メタクリル樹脂(M1)は、1種または2種以上用いることができる。メタクリル樹脂(M1)は、メタクリル酸メチル(MMA)単量体単位等の1種以上のメタクリル酸エステル単量体単位を含む。メタクリル酸エステルとしては、MMA、メタクリル酸エチル、およびメタクリル酸ブチル等のメタクリル酸アルキルエステル;メタクリル酸フェニル等のメタクリル酸アリールエステル;メタクリル酸シクロへキシルおよびメタクリル酸ノルボルネニル等のメタクリル酸シクロアルキルエステル等が挙げられる。中でも、メタクリル酸アルキルエステルが好ましく、MMAが最も好ましい。
(Methacrylic resin (M1))
The methacrylic resin (M1) is not particularly limited as long as the α relaxation temperature T α1 is 137 ° C. or higher when dynamic viscoelasticity measurement is performed in a tensile mode and a sine wave of 1 Hz. One or more methacrylic resins (M1) can be used. The methacrylic resin (M1) includes one or more methacrylic acid ester monomer units such as a methyl methacrylate (MMA) monomer unit. Examples of methacrylic acid esters include MMA, ethyl methacrylate and butyl methacrylate alkyl esters; phenyl methacrylate and other methacrylic acid aryl esters; methacrylic acid cyclohexyl and methacrylic acid cycloalkyl esters such as norbornenyl Is mentioned. Among these, methacrylic acid alkyl ester is preferable, and MMA is most preferable.
 メタクリル樹脂(M1)中のメタクリル酸エステル単量体単位の含有量は、好ましくは20質量%以上、より好ましくは50質量%以上である。メタクリル樹脂(M1)としては、MMA単量体単位とα緩和温度(Tα)を高める単量体単位とを含むメタクリル系共重合体(A1)、MMA単量体単位と環構造を主鎖に有する構造単位とを含むメタクリル系共重合体(A2)、および三連子表示のシンジオタクティシティ(rr)の高いメタクリル樹脂(A3)等が挙げられる。 The content of the methacrylic acid ester monomer unit in the methacrylic resin (M1) is preferably 20% by mass or more, more preferably 50% by mass or more. As the methacrylic resin (M1), a methacrylic copolymer (A1) containing a MMA monomer unit and a monomer unit that increases the α relaxation temperature (T α ), a MMA monomer unit and a ring structure as a main chain And a methacrylic resin (A3) having a high syndiotacticity (rr) in triplet display, and the like.
<メタクリル系共重合体(A1)>
 メタクリル系共重合体(A1)中のα緩和温度(Tα)を高める単量体単位としては、メタクリル酸2-イソボルニル、メタクリル酸8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸2-ノルボルニル、およびメタクリル酸2-アダマンチル等のメタクリル酸シクロアルキルエステル;アクリル酸およびメタクリル酸等の(メタ)アクリル酸類;アクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、およびN,N-ジメチルメタクリルアミド等の(メタ)アクリルアミド類等の単量体に由来する構造単位が挙げられる。
<Methacrylic copolymer (A1)>
Monomer units that increase the α relaxation temperature (T α ) in the methacrylic copolymer (A1) include 2-isobornyl methacrylate and 8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate. Methacrylic acid cycloalkyl esters such as 2-norbornyl methacrylate and 2-adamantyl methacrylate; (meth) acrylic acids such as acrylic acid and methacrylic acid; acrylamide, methacrylamide, N-methylmethacrylamide, and N, N- Examples include structural units derived from monomers such as (meth) acrylamides such as dimethylmethacrylamide.
<メタクリル系共重合体(A2)>
 メタクリル系共重合体(A2)中の環構造を主鎖に有する構造単位としては、環構造として、ラクトン環単位、無水マレイン酸単位、無水グルタル酸単位、グルタルイミド単位、N-置換マレイミド単位、またはテトラヒドロピラン環単位を含む構造単位が好ましい。メタクリル系共重合体(A2)の製造方法としては、無水マレイン酸およびN-置換マレイミド等の重合性不飽和炭素-炭素二重結合を有する環状単量体をMMA等と共重合させる方法;重合によって得られたメタクリル樹脂の分子鎖の一部を分子内環化させる方法等が挙げられる。
<Methacrylic copolymer (A2)>
As the structural unit having a ring structure in the main chain in the methacrylic copolymer (A2), as the ring structure, a lactone ring unit, a maleic anhydride unit, a glutaric anhydride unit, a glutarimide unit, an N-substituted maleimide unit, Or the structural unit containing a tetrahydropyran ring unit is preferable. As a method for producing the methacrylic copolymer (A2), a method of copolymerizing a cyclic monomer having a polymerizable unsaturated carbon-carbon double bond such as maleic anhydride and N-substituted maleimide with MMA or the like; And a method of intramolecular cyclization of a part of the molecular chain of the methacrylic resin obtained by the above.
 メタクリル系共重合体(A2)のMMA単量体単位の含有量は好ましくは20~99質量%、より好ましくは30~95質量%、特に好ましくは40~90質量%であり、環構造を主鎖に有する構造単位の含有量は好ましくは1~80質量%、より好ましくは5~70質量%、特に好ましくは10~60質量%である。なお、メタクリル系共重合体(A2)中のMMA単量体単位の含有量には、MMA単量体単位のうち分子内環化によって環構造を主鎖に有する構造単位に転換されたものは含まれない。 The content of the MMA monomer unit in the methacrylic copolymer (A2) is preferably 20 to 99% by mass, more preferably 30 to 95% by mass, and particularly preferably 40 to 90% by mass. The content of structural units in the chain is preferably 1 to 80% by mass, more preferably 5 to 70% by mass, and particularly preferably 10 to 60% by mass. The content of the MMA monomer unit in the methacrylic copolymer (A2) is the MMA monomer unit converted into a structural unit having a ring structure in the main chain by intramolecular cyclization. Not included.
 環構造を主鎖に有する構造単位としては、>CH-O-C(=O)-基を環構造に含む構造単位、-C(=O)-O-C(=O)-基を環構造に含む構造単位、-C(=O)-N-C(=O)-基を環構造に含む構造単位、または>CH-O-CH<基を環構造に含む構造単位が好ましい。 As structural units having a ring structure in the main chain, structural units containing> CH—O—C (═O) — group in the ring structure, and —C (═O) —O—C (═O) — groups are cyclic A structural unit containing a structure, a structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure is preferable.
 >CH-O-C(=O)-基を環構造に含む構造単位としては、β-プロピオラクトンジイル(別名:オキソオキセタンジイル)構造単位、γ-ブチロラクトンジイル(別名:2-オキソジヒドロフランジイル)構造単位、およびδ-バレロラクトンジイル(別名:2-オキソジヒドロピランジイル)構造単位等のラクトンジイル構造単位が挙げられる。なお、式中の「>C」は炭素原子Cに結合手が2つあることを意味する。 > Structural units containing a CH—O—C (═O) — group in the ring structure include β-propiolactone diyl (also known as oxooxetanediyl) structural unit, γ-butyrolactone diyl (also known as 2-oxodihydrofurandi) Yl) structural unit, and lactone diyl structural unit such as δ-valerolactone diyl (also known as 2-oxodihydropyrandiyl) structural unit. In the formula, “> C” means that the carbon atom C has two bonds.
 δ-バレロラクトンジイル構造単位としては、下記式(I)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the δ-valerolactone diyl structural unit include structural units represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
 式(I)中、R14およびR15はそれぞれ独立に水素原子または炭素数1~20の有機残基であり、R14が水素原子、R15がメチル基であるのが好ましい。R16は-COORであり、Rは水素原子または炭素数1~20の有機残基であり、好ましくはメチル基である。「*」は結合手を意味する。
 上記有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等が挙げられる。有機残基は酸素原子を含んでいてもよい。「Ac」はアセチル基を示す。有機残基の炭素数は、好ましくは1~10、より好ましくは1~5である。
 δ-バレロラクトンジイル構造単位は、互いに隣り合う2つのMMA単量体単位の分子内環化等によって、メタクリル樹脂に含有させることができる。
In the formula (I), R 14 and R 15 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably R 14 is a hydrogen atom and R 15 is a methyl group. R 16 is —COOR, R is a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably a methyl group. “*” Means a bond.
Examples of the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The carbon number of the organic residue is preferably 1 to 10, more preferably 1 to 5.
The δ-valerolactone diyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of two adjacent MMA monomer units.
 -C(=O)-O-C(=O)-基を環構造に含む構造単位としては、2,5-ジオキソジヒドロフランジイル構造単位、2,6-ジオキソジヒドロピランジイル構造単位、および2,7-ジオキソオキセパンジイル構造単位等が挙げられる。 The structural unit containing a —C (═O) —O—C (═O) — group in the ring structure includes 2,5-dioxodihydrofurandiyl structural unit, 2,6-dioxodihydropyrandiyl structural unit, And 2,7-dioxooxepanediyl structural unit.
 2,5-ジオキソジヒドロフランジイル構造単位としては、下記式(II)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Examples of the 2,5-dioxodihydrofurandiyl structural unit include structural units represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000002
 式(II)中、R21およびR22はそれぞれ独立に水素原子または炭素数1~20の有機残基である。「*」は結合手を意味する。
 上記有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等が挙げられる。有機残基は酸素原子を含んでいてもよい。「Ac」はアセチル基を示す。有機残基の炭素数は、好ましくは1~10、より好ましくは1~5である。
 R21およびR22はいずれも水素原子であるのが好ましい。その場合、製造容易性および固有複屈折の調節等の観点から、スチレン等が共重合されていることが好ましい。具体的には、国際公開第2014/021264号等に記載の、スチレン単量体単位とMMA単量体単位と無水マレイン酸単量体単位とを有する共重合体が挙げられる。
 2,5-ジオキソジヒドロフランジイル構造単位は、無水マレイン酸を用いた共重合等によって、メタクリル樹脂に含有させることができる。
In formula (II), R 21 and R 22 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. “*” Means a bond.
Examples of the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The carbon number of the organic residue is preferably 1 to 10, more preferably 1 to 5.
R 21 and R 22 are preferably both hydrogen atoms. In that case, styrene or the like is preferably copolymerized from the viewpoints of ease of production and adjustment of intrinsic birefringence. Specifically, a copolymer having a styrene monomer unit, a MMA monomer unit, and a maleic anhydride monomer unit described in International Publication No. 2014/021264 is exemplified.
The 2,5-dioxodihydrofurandiyl structural unit can be contained in the methacrylic resin by copolymerization using maleic anhydride or the like.
 2,6-ジオキソジヒドロピランジイル構造単位としては、下記式(III)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Examples of the 2,6-dioxodihydropyrandiyl structural unit include structural units represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000003
 式(III)中、R33およびR34はそれぞれ独立に水素原子または炭素数1~20の有機残基である。「*」は結合手を意味する。
 上記有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等が挙げられる。有機残基は酸素原子を含んでいてもよい。「Ac」はアセチル基を示す。有機残基は、炭素数が好ましくは1~10、より好ましくは1~5であり、特に好ましくはメチル基である。
 2,6-ジオキソジヒドロピランジイル構造単位は、互いに隣り合う2つのMMA単量体の分子内環化等によって、メタクリル樹脂に含有させることができる。
In the formula (III), R 33 and R 34 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. “*” Means a bond.
Examples of the organic residue include linear or branched alkyl groups, linear or branched alkylene groups, aryl groups, —OAc groups, and —CN groups. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably a methyl group.
The 2,6-dioxodihydropyrandiyl structural unit can be contained in the methacrylic resin by intramolecular cyclization of two adjacent MMA monomers.
 -C(=O)-N-C(=O)-基を環構造に含む構造単位(なお、Nが有するもう1つ結合手は表記を省略。)としては、2,5-ジオキソピロリジンジイル構造単位、2,6-ジオキソピペリジンジイル構造単位、および2,7-ジオキソアゼパンジイル構造単位等が挙げられる。 2,5-dioxopyrrolidine is a structural unit containing a —C (═O) —N—C (═O) — group in a ring structure (note that another bond of N is omitted). Examples thereof include a diyl structural unit, a 2,6-dioxopiperidinediyl structural unit, and a 2,7-dioxoazepandiyl structural unit.
 2,6-ジオキソピペリジンジイル構造単位としては、下記式(IV)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Examples of the 2,6-dioxopiperidinediyl structural unit include structural units represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000004
 式(IV)中、R41およびR42はそれぞれ独立に水素原子または炭素数1~8のアルキル基であり、R43は水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基である。「*」は結合手を意味する。
 原料入手の容易さ、コスト、および耐熱性等の観点から、R41およびR42はそれぞれ独立に水素原子またはメチル基であることが好ましく、R41がメチル基、R42が水素原子であることがより好ましい。R43は水素原子、メチル基、n-ブチル基、シクロへキシル基、またはベンジル基であることが好ましく、メチル基であることがより好ましい。
In the formula (IV), R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 43 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms. A cycloalkyl group or an aryl group having 6 to 10 carbon atoms. “*” Means a bond.
From the viewpoints of easy availability of raw materials, cost, heat resistance, etc., R 41 and R 42 are preferably each independently a hydrogen atom or a methyl group, and R 41 is a methyl group and R 42 is a hydrogen atom. Is more preferable. R 43 is preferably a hydrogen atom, a methyl group, an n-butyl group, a cyclohexyl group, or a benzyl group, and more preferably a methyl group.
 2,5-ジオキソピロリジンジイル構造単位としては、下記式(V)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Examples of the 2,5-dioxopyrrolidinediyl structural unit include structural units represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000005
 式(V)中、R52およびR53はそれぞれ独立に水素原子、炭素数1~12のアルキル基、または炭素数6~14のアルキル基である。R51は、炭素数7~14のアリールアルキル基、または、無置換の若しくは置換基を有する炭素数6~14のアリール基である。ここで言う置換基は、ハロゲノ基、ヒドロキシル基、ニトロ基、炭素数1~12のアルコキシ基、炭素数1~12のアルキル基、または炭素数7~14のアリールアルキル基である。「*」は結合手を意味する。R51はフェニル基またはシクロヘキシル基であるのが好ましく、R52およびR53は共に水素原子であるのが好ましい。
 2,5-ジオキソピロリジンジイル構造単位は、N-置換マレイミドを用いた共重合等によって、メタクリル樹脂に含有させることができる。
In the formula (V), R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkyl group having 6 to 14 carbon atoms. R 51 is an arylalkyl group having 7 to 14 carbon atoms or an unsubstituted or substituted aryl group having 6 to 14 carbon atoms. The substituent mentioned here is a halogeno group, a hydroxyl group, a nitro group, an alkoxy group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 14 carbon atoms. “*” Means a bond. R 51 is preferably a phenyl group or a cyclohexyl group, and both R 52 and R 53 are preferably hydrogen atoms.
The 2,5-dioxopyrrolidinediyl structural unit can be contained in the methacrylic resin by copolymerization using N-substituted maleimide or the like.
 >CH-O-CH<基を環構造に含む構造単位としては、オキセタンジイル構造単位、テトラヒドロフランジイル構造単位、テトラヒドロピランジイル構造単位、およびオキセパンジイル構造単位等が挙げられる。なお、式中の「>C」は炭素原子Cに結合手が2つあることを意味する。 Examples of the structural unit containing a> CH—O—CH <group in the ring structure include an oxetanediyl structural unit, a tetrahydrofurandiyl structural unit, a tetrahydropyrandiyl structural unit, and an oxepandiyl structural unit. In the formula, “> C” means that the carbon atom C has two bonds.
 テトラヒドロピランジイル構造単位としては、下記式(VI)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Examples of the tetrahydropyrandiyl structural unit include a structural unit represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000006
 式(VI)中、R61およびR62はそれぞれ独立に水素原子、炭素数1~20の直鎖状若しくは分岐鎖状の炭化水素基、または環構造を有する炭素数3~20の炭化水素基である。「*」は結合手を意味する。R61およびR62としてはそれぞれ独立に、トリシクロ[5.2.1.02,6]デカニル基、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-3-イル基、t-ブチル基、および4-t-ブチルシクロヘキサニル基が好ましい。 In the formula (VI), R 61 and R 62 are each independently a hydrogen atom, a linear or branched hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 20 carbon atoms having a ring structure. It is. “*” Means a bond. R 61 and R 62 are each independently a tricyclo [5.2.1.0 2,6 ] decanyl group, a 1,7,7-trimethylbicyclo [2.2.1] heptan-3-yl group, t A -butyl group and a 4-t-butylcyclohexanyl group are preferred.
 上記の環構造を主鎖に有する構造単位のうち、原料および製造容易性の観点から、δ-バレロラクトンジイル構造単位および2,5-ジオキソジヒドロフランジイル構造単位が好ましい。 Among the structural units having the above ring structure in the main chain, from the viewpoint of raw materials and ease of production, δ-valerolactone diyl structural unit and 2,5-dioxodihydrofurandiyl structural unit are preferable.
 メタクリル系共重合体(A1)および(A2)の分子量分布(数平均分子量(Mn)に対する重量平均分子量(Mw)の比、Mw/Mn)は、好ましくは1.2~5.0、より好ましくは1.3~3.5である。Mw/Mnが低くなるほど、得られる成形体の耐衝撃性および靭性が良好になる傾向がある。Mw/Mnが高くなるほど、メタクリル樹脂組成物の溶融流動性が高くなり、得られる成形体の表面平滑性が良好になる傾向がある。
 本明細書において、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。MwおよびMw/Mnは、[実施例]の項に記載の方法にて測定することができる。
The molecular weight distribution (the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), Mw / Mn) of the methacrylic copolymers (A1) and (A2) is preferably 1.2 to 5.0, more preferably Is 1.3 to 3.5. The lower the Mw / Mn, the better the impact resistance and toughness of the resulting molded article. As Mw / Mn increases, the melt fluidity of the methacrylic resin composition increases, and the surface smoothness of the resulting molded product tends to improve.
In this specification, Mw and Mn are values obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene. Mw and Mw / Mn can be measured by the method described in the [Example] section.
 メタクリル系共重合体(A2)のガラス転移温度(Tg)は、好ましくは120℃以上、より好ましくは123℃以上、特に好ましくは124℃以上である。メタクリル系共重合体(A2)のTgの上限は、好ましくは160℃である。
 本明細書において、ガラス転移温度(Tg)は、室温以上の温度にて、JIS K7121に準拠して測定するものとする。230℃まで昇温速度10℃/分で1回目の昇温(1stラン)を実施し、室温まで冷却し後、室温から230℃までを昇温速度10℃/分で2回目の昇温(2ndラン)を実施する。2ndランの中間点ガラス転移温度をTgとして求める。
The glass transition temperature (Tg) of the methacrylic copolymer (A2) is preferably 120 ° C. or higher, more preferably 123 ° C. or higher, and particularly preferably 124 ° C. or higher. The upper limit of Tg of the methacrylic copolymer (A2) is preferably 160 ° C.
In this specification, the glass transition temperature (Tg) shall be measured in accordance with JIS K7121 at a temperature of room temperature or higher. The first temperature increase (1st run) was performed at a temperature increase rate of 10 ° C./min to 230 ° C., and after cooling to room temperature, the second temperature increase from room temperature to 230 ° C. at a temperature increase rate of 10 ° C./min ( 2nd run). The midpoint glass transition temperature of 2nd run is determined as Tg.
<メタクリル樹脂(A3)>
 メタクリル樹脂(A3)は、三連子表示のシンジオタクティシティ(rr)が65%以上、好ましくは70~90%、より好ましくは72~85%である。シンジオタクティシティ(rr)が65%以上の場合、α緩和温度(Tα)が有意に高まり、得られる成形体の表面硬度が有意に高まる。
 メタクリル樹脂(A3)の分子量分布(Mw/Mn)は、好ましくは1.0~1.8、より好ましくは1.0~1.4、特に好ましくは1.03~1.3である。かかる範囲内の分子量分布(Mw/Mn)を有するメタクリル樹脂(A3)を用いると、得られるメタクリル樹脂組成物が力学強度に優れるものとなる。MwおよびMw/Mnは、製造時に使用する重合開始剤の種類および/または量を調整することによって制御できる。
<Methacrylic resin (A3)>
The methacrylic resin (A3) has a syndiotacticity (rr) expressed in triplets of 65% or more, preferably 70 to 90%, more preferably 72 to 85%. When the syndiotacticity (rr) is 65% or more, the α relaxation temperature (T α ) is significantly increased, and the surface hardness of the obtained molded body is significantly increased.
The molecular weight distribution (Mw / Mn) of the methacrylic resin (A3) is preferably 1.0 to 1.8, more preferably 1.0 to 1.4, and particularly preferably 1.03 to 1.3. When a methacrylic resin (A3) having a molecular weight distribution (Mw / Mn) within such a range is used, the resulting methacrylic resin composition has excellent mechanical strength. Mw and Mw / Mn can be controlled by adjusting the type and / or amount of the polymerization initiator used during production.
 メタクリル樹脂(M1)は、メタクリル系共重合体(A1)、(A2)およびメタクリル樹脂(A3)で挙げた単量体単位上記以外の他の1種以上の単量体単位を含んでいてもよい。他の単量体単位としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、およびアクリル酸2-エチルへキシル等のアクリル酸アルキルエステル;アクリル酸フェニル等のアクリル酸アリールエステル;アクリル酸シクロへキシルおよびアクリル酸ノルボルネニル等のアクリル酸シクロアルキルエステル;スチレンおよびα-メチルスチレン等の芳香族ビニル化合物;アクリロニトリルおよびメタクリロニトリル等のニトリル類等の、一分子中に重合性の炭素-炭素二重結合を1つだけ有するビニル系単量体に由来する構造単位が挙げられる。 The methacrylic resin (M1) may contain one or more other monomer units other than those mentioned above for the methacrylic copolymers (A1), (A2) and the methacrylic resin (A3). Good. Other monomer units include: alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; Acrylic cycloalkyl esters such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyl compounds such as styrene and α-methyl styrene; nitriles such as acrylonitrile and methacrylonitrile; -Structural units derived from vinyl monomers having only one carbon double bond.
 メタクリル樹脂(M1)のMwは、好ましくは40000~200000、より好ましくは40000~150000、特に好ましくは50000~120000である。Mwが40000以上であると、得られる成形体の機械的強度(耐衝撃性および靭性等)が向上する傾向があり、200000以下であるとメタクリル樹脂組成物の流動性が向上して成形性が向上する傾向がある。
 メタクリル樹脂(M1)の230℃および3.8kg荷重の条件で測定されるメルトフローレート(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.2~30g/10分、特に好ましくは0.5~20g/10分、最も好ましくは1.0~15g/10分である。
The Mw of the methacrylic resin (M1) is preferably 40,000 to 200,000, more preferably 40,000 to 150,000, and particularly preferably 50,000 to 120,000. When Mw is 40000 or more, the mechanical strength (impact resistance, toughness, etc.) of the obtained molded product tends to be improved, and when it is 200000 or less, the fluidity of the methacrylic resin composition is improved and the moldability is improved. There is a tendency to improve.
The melt flow rate (MFR) of the methacrylic resin (M1) measured at 230 ° C. and a load of 3.8 kg is preferably 0.1 g / 10 min or more, more preferably 0.2 to 30 g / 10 min, particularly Preferably it is 0.5 to 20 g / 10 min, and most preferably 1.0 to 15 g / 10 min.
 メタクリル樹脂(M1)は、ラジカル重合法およびアニオン重合法の公知の重合方法により、製造することができる。なお、ラジカル重合法としては塊状重合法、溶液重合法、懸濁重合法、および乳化重合法等の重合方法を、アニオン重合法としては塊状重合法および溶液重合法等の重合方法を選択することができる。
 ラジカル重合法は無溶媒または溶媒中で行うことができ、低不純物濃度のメタクリル樹脂(M1)が得られることから無溶媒で行うことが好ましい。成形体のシルバー化または着色の抑制の観点から、重合反応は溶存酸素量を低くし、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。
The methacrylic resin (M1) can be produced by a known polymerization method such as a radical polymerization method or an anionic polymerization method. In addition, a polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method is selected as the radical polymerization method, and a polymerization method such as a bulk polymerization method and a solution polymerization method is selected as the anionic polymerization method. Can do.
The radical polymerization method can be carried out without a solvent or in a solvent, and is preferably carried out without a solvent since a methacrylic resin (M1) having a low impurity concentration can be obtained. From the viewpoint of suppressing the silvering or coloring of the molded article, the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen gas with a low dissolved oxygen content.
 ラジカル重合法で用いられる重合開始剤としては、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、およびジメチル2,2’-アゾビス(2-メチルプロピオネート)等が挙げられる。中でも、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、およびジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。重合開始剤は、1種または2種以上用いることができる。 Examples of the polymerization initiator used in the radical polymerization method include t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxy 2-ethylhexa Noate, t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, 1,1,3,3-tetra Methylbutylperoxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis ( 2-methylpropionitrile), 2,2'-azobis (2-methylbutyroni) Lil), and dimethyl 2,2'-azobis (2-methylpropionate), and the like. Of these, t-hexylperoxy 2-ethylhexanoate, 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable. One or more polymerization initiators can be used.
 重合開始剤の1時間半減期温度は、好ましくは60~140℃、より好ましくは80~120℃である。重合開始剤は、水素引抜き能が好ましくは20%以下、より好ましくは10%以下、特に好ましくは5%以下である。重合開始剤の使用量は、重合反応に供される1種以上の単量体100質量部に対して、好ましくは0.0001~0.02質量部、より好ましくは0.001~0.01質量部、特に好ましくは0.005~0.007質量部である。 The 1-hour half-life temperature of the polymerization initiator is preferably 60 to 140 ° C, more preferably 80 to 120 ° C. The polymerization initiator preferably has a hydrogen abstraction capacity of 20% or less, more preferably 10% or less, and particularly preferably 5% or less. The amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 based on 100 parts by mass of one or more monomers to be subjected to the polymerization reaction. Part by mass, particularly preferably 0.005 to 0.007 part by mass.
 なお、水素引抜き能は重合開始剤製造業者の技術資料(例えば、日本油脂株式会社の技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成))等によって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法(α-メチルスチレンダイマートラッピング法)によって測定することができる。この測定は、一般的に次のように行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち水素引抜き能が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き能が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、このシクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサンまたはシクロヘキサン捕捉生成物を定量することで求められる、理論的なラジカル断片発生量に対する水素引抜き能が高いラジカル断片の割合(モル分率)を水素引抜き能として求める。 The hydrogen abstraction ability is known from the technical data of the polymerization initiator manufacturer (for example, the technical data of Nippon Oil & Fats Co., Ltd. “Hydrogen abstraction capacity and initiator efficiency of organic peroxide” (created in April 2003)). Can do. Further, it can be measured by a radical trapping method (α-methylstyrene dimer trapping method) using α-methylstyrene dimer. This measurement is generally performed as follows. First, the polymerization initiator is cleaved in the presence of α-methylstyrene dimer as a radical trapping agent to generate radical fragments. Of the generated radical fragments, radical fragments having a low hydrogen abstraction ability are added to and trapped by the double bond of α-methylstyrene dimer. On the other hand, a radical fragment having a high hydrogen abstraction capacity abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, which is added to and trapped by the double bond of α-methylstyrene dimer to generate a cyclohexane capture product. Therefore, the ratio (molar fraction) of the radical fragment having a high hydrogen abstraction capacity with respect to the theoretical radical fragment generation amount, which is determined by quantifying cyclohexane or the cyclohexane-trapped product, is determined as the hydrogen abstraction capacity.
 ラジカル重合法で用いられる連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、およびペンタエリスリトールテトラキスチオプロピオネート等のアルキルメルカプタン類等が挙げられる。中でも、n-オクチルメルカプタンおよびn-ドデシルメルカプタン等の単官能アルキルメルカプタンが好ましい。連鎖移動剤は、1種または2種以上用いることができる。 Chain transfer agents used in the radical polymerization method include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butane. Diol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- (β-thiopropionate), and pentaerythritol tetrakisthiopropioate Examples include alkyl mercaptans such as nates. Of these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable. One or more chain transfer agents can be used.
 樹脂の成形性と成形体の機械的強度の観点から、連鎖移動剤の使用量は重合反応に供される1種以上の単量体100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.05~0.8質量部、特に好ましくは0.1~0.6質量部、最も好ましくは0.10~0.5質量部である。連鎖移動剤の使用量は、重合開始剤100質量部に対して、好ましくは2500~10000質量部、より好ましくは3000~9000質量部、特に好ましくは3500~6000質量部である。 From the viewpoint of the moldability of the resin and the mechanical strength of the molded body, the amount of the chain transfer agent used is preferably 0.01 to 1 mass with respect to 100 mass parts of one or more monomers used for the polymerization reaction. Parts, more preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.6 parts by mass, and most preferably 0.10 to 0.5 parts by mass. The amount of the chain transfer agent used is preferably 2500 to 10,000 parts by mass, more preferably 3000 to 9000 parts by mass, and particularly preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
 ラジカル重合法において用いられる溶媒としては、ベンゼン、トルエン、およびエチルベンゼン等の芳香族炭化水素が好ましい。溶媒は、1種または2種以上用いることができる。溶媒の使用量は、反応液の粘度と生産性との観点から、重合反応原料100質量部に対して、好ましくは100質量部以下、より好ましくは90質量部以下である。 As the solvent used in the radical polymerization method, aromatic hydrocarbons such as benzene, toluene, and ethylbenzene are preferable. One or more solvents can be used. The amount of the solvent used is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, with respect to 100 parts by mass of the polymerization reaction raw material from the viewpoint of the viscosity of the reaction solution and productivity.
 重合反応温度は、好ましくは100~200℃、より好ましくは110~180℃である。重合温度が100℃以上であることで、重合速度の向上および重合液の低粘度化により生産性が向上する傾向となる。重合温度が200℃以下であることで、重合速度の制御が容易になり、さらに副生成物の生成が抑制され、樹脂の着色を抑制できる。生産効率の観点から、重合反応時間は、好ましくは0.5~4時間、より好ましくは1.5~3.5時間、特に好ましくは1.5~3時間である。なお、連続流通式反応装置の場合の重合反応時間は、反応器内の平均滞留時間である。 The polymerization reaction temperature is preferably 100 to 200 ° C, more preferably 110 to 180 ° C. When the polymerization temperature is 100 ° C. or higher, productivity tends to be improved by improving the polymerization rate and lowering the viscosity of the polymerization solution. When the polymerization temperature is 200 ° C. or less, the control of the polymerization rate is facilitated, the generation of by-products is further suppressed, and the coloring of the resin can be suppressed. From the viewpoint of production efficiency, the polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and particularly preferably 1.5 to 3 hours. The polymerization reaction time in the case of a continuous flow reactor is an average residence time in the reactor.
 ラジカル重合法における重合転化率は、好ましくは20~80質量%、より好ましくは30~70質量%、特に好ましくは35~65質量%である。重合転化率が20質量%以上であることで残存する未反応単量体の除去が容易となり、得られる成形体の外観が良好となる傾向がある。重合転化率が70質量%以下であることで、重合液の粘度が低くなり生産性が向上する傾向がある。 The polymerization conversion rate in the radical polymerization method is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 35 to 65% by mass. When the polymerization conversion rate is 20% by mass or more, the remaining unreacted monomer can be easily removed, and the appearance of the obtained molded product tends to be good. When the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution tends to be low and the productivity tends to be improved.
 反応装置は回分式反応装置と連続流通式反応装置のいずれでもよく、生産性の観点から連続流通式反応装置が好ましい。連続流通式反応では、窒素等の不活性雰囲気下で重合反応原料(1種以上の単量体、重合開始剤、および連鎖移動剤等を含む混合液)を調製し、これを反応器に一定流量で供給し、供給量に相当する流量で反応器内の液を抜き出す。反応器としては、栓流に近い状態にできる管型反応器または完全混合に近い状態にできる槽型反応器が挙げられる。反応器の数は1基でも2基以上でもよく、少なくとも1基は連続流通式の槽型反応器を採用することが好ましい。重合反応時における槽型反応器内の液量は、槽型反応器の容積に対して、好ましくは1/4~3/4、より好ましくは1/3~2/3である。反応器には通常、撹拌装置が取り付けられている。撹拌装置としては、静的撹拌装置および動的撹拌装置が挙げられる。動的撹拌装置としては、マックスブレンド式撹拌装置、中央に配した縦型回転軸の回りを回転する格子状の翼を有する撹拌装置、プロペラ式撹拌装置、およびスクリュー式撹拌装置等が挙げられる。中でも、均一混合性の観点から、マックスブレンド式撹拌装置が好ましい。 The reaction apparatus may be either a batch reaction apparatus or a continuous flow reaction apparatus, and a continuous flow reaction apparatus is preferable from the viewpoint of productivity. In a continuous flow reaction, a polymerization reaction raw material (mixed solution containing one or more monomers, a polymerization initiator, a chain transfer agent, etc.) is prepared in an inert atmosphere such as nitrogen, and this is fixed in a reactor. Supply at a flow rate, and extract the liquid in the reactor at a flow rate corresponding to the supply rate. Examples of the reactor include a tubular reactor that can be in a state close to plug flow or a tank reactor that can be in a state close to complete mixing. The number of reactors may be one or two or more, and at least one reactor preferably employs a continuous flow tank reactor. The amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor. The reactor is usually equipped with a stirring device. Examples of the stirring device include a static stirring device and a dynamic stirring device. Examples of the dynamic stirrer include a Max blend stirrer, a stirrer having a grid-like blade rotating around a vertical rotation shaft arranged in the center, a propeller stirrer, and a screw stirrer. Among these, a max blend type stirring device is preferable from the viewpoint of uniform mixing.
 重合終了後、必要に応じて、未反応単量体等の揮発分を除去する。除去方法としては、加熱脱揮法が好ましい。脱揮方式としては、平衡フラッシュ方式および断熱フラッシュ方式が挙げられる。断熱フラッシュ方式による脱揮温度は、好ましくは200~280℃、より好ましくは220~260℃である。断熱フラッシュ方式における樹脂の加熱時間は、好ましくは0.3~5分間、より好ましくは0.4~3分間、特に好ましくは0.5~2分間である。かかる温度範囲および加熱時間で脱揮させると、着色の少ないメタクリル樹脂(M1)を得やすい。除去した未反応単量体は、回収して再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収操作時等に加えられる熱によって高くなっていることがある。回収された単量体は公知方法で精製して、イエロインデックスを小さくすることが好ましい。 After completion of polymerization, volatile components such as unreacted monomers are removed as necessary. As a removal method, a heat devolatilization method is preferable. Examples of the devolatilization method include an equilibrium flash method and an adiabatic flash method. The devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C. The heating time of the resin in the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and particularly preferably 0.5 to 2 minutes. When devolatilization is performed within such a temperature range and heating time, a methacrylic resin (M1) with little coloring is easily obtained. The removed unreacted monomer can be recovered and used again for the polymerization reaction. The yellow index of the recovered monomer may be high due to heat applied during the recovery operation. The recovered monomer is preferably purified by a known method to reduce the yellow index.
 分子量分布(Mw/Mn)の制御方法としては制御重合法が挙げられ、リビングラジカル重合法およびリビングアニオン重合が好ましい。リビングラジカル重合法としては、原子移動ラジカル重合(ATRP)法、可逆付加フラグメント化連鎖移動重合(RAFT)法、ニトロキシド介在重合(NMP)法、硼素介在重合法、および触媒移動重合(CCT)法等が挙げられる。(リビング)アニオン重合法としては、有機アルカリ金属化合物を重合開始剤として用いアルカリ金属またはアルカリ土類金属の塩等の鉱酸塩の存在下でアニオン重合する方法(特公平7-25859号公報参照)、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11-335432号公報参照)、および有機希土類金属錯体を重合開始剤としてアニオン重合する方法(特開平6-93060号公報参照)等が挙げられる。 As a method for controlling the molecular weight distribution (Mw / Mn), a controlled polymerization method is exemplified, and a living radical polymerization method and a living anion polymerization are preferable. Living radical polymerization methods include atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer polymerization (RAFT), nitroxide mediated polymerization (NMP), boron mediated polymerization, and catalyst transfer polymerization (CCT). Is mentioned. (Living) Anionic polymerization is a method in which an organic alkali metal compound is used as a polymerization initiator in the presence of a mineral salt such as an alkali metal or alkaline earth metal salt (see Japanese Patent Publication No. 7-25859). ), Anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound (see JP-A-11-335432), and anionic polymerization using an organic rare earth metal complex as a polymerization initiator (special feature). No. 6-93060) and the like.
 アニオン重合法で用いられる重合開始剤としては、n-ブチルリチウム、sec-ブチルリチウム、イソブチルリチウム、およびtert-ブチルリチウム等のアルキルリチウムが好ましい。生産性の観点から、有機アルミニウム化合物を共存させることが好ましい。
 有機アルミニウム化合物としては、式:AlR123で表される化合物(式中、R1~R3はそれぞれ独立に、無置換の若しくは置換基を有するアルキル基、無置換の若しくは置換基を有するよいシクロアルキル基、無置換の若しくは置換基を有するアリール基、無置換の若しくは置換基を有するアラルキル基、無置換の若しくは置換基を有するアルコキシル基、無置換の若しくは置換基を有するアリールオキシ基、またはN,N-二置換アミノ基を表す。R2およびR3は、これらが結合してなる、無置換の若しくは置換基を有するアリーレンジオキシ基であってもよい。)が挙げられる。
 有機アルミニウム化合物としては、イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、およびイソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム等が挙げられる。
 アニオン重合法においては、重合反応を制御するために、エーテルおよび含窒素化合物等を共存させることもできる。
The polymerization initiator used in the anionic polymerization method is preferably alkyllithium such as n-butyllithium, sec-butyllithium, isobutyllithium, and tert-butyllithium. From the viewpoint of productivity, it is preferable to coexist an organoaluminum compound.
As the organoaluminum compound, a compound represented by the formula: AlR 1 R 2 R 3 (wherein R 1 to R 3 are each independently an unsubstituted or substituted alkyl group, an unsubstituted or substituted group, A good cycloalkyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted aralkyl group, an unsubstituted or substituted alkoxyl group, an unsubstituted or substituted aryloxy Or an N, N-disubstituted amino group, wherein R 2 and R 3 may be an unsubstituted or substituted aryleneoxy group formed by combining them. .
Examples of the organoaluminum compound include isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, and isobutyl [2,2′- Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum and the like.
In the anionic polymerization method, an ether and a nitrogen-containing compound can coexist in order to control the polymerization reaction.
(メタクリル樹脂(M2))
 メタクリル樹脂(M2)は、引張りモード、正弦波1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であれば特に制限されない。メタクリル樹脂(M2)は、1種または2種以上用いることができる。メタクリル樹脂(M2)は、MMA単量体単位等の1種以上のメタクリル酸エステル単量体単位を含む。メタクリル酸エステルとしては、MMA、メタクリル酸エチル、およびメタクリル酸ブチル等のメタクリル酸アルキルエステル;メタクリル酸フェニル等のメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニル等のメタクリル酸シクロアルキルエステル等が挙げられる。中でも、メタクリル酸アルキルエステルが好ましく、MMAが最も好ましい。
(Methacrylic resin (M2))
The methacrylic resin (M2) is not particularly limited as long as the α relaxation temperature T α2 is 132 ° C. or lower when the dynamic viscoelasticity measurement is performed in a tensile mode and a sine wave of 1 Hz. One or more methacrylic resins (M2) can be used. The methacrylic resin (M2) contains one or more methacrylic acid ester monomer units such as MMA monomer units. Examples of methacrylic acid esters include MMA, ethyl methacrylate, and methacrylic acid alkyl esters such as butyl methacrylate; aryl methacrylates such as phenyl methacrylate; methacrylic acid cycloalkyl esters such as cyclohexyl methacrylate and norbornenyl methacrylate. Is mentioned. Among these, methacrylic acid alkyl ester is preferable, and MMA is most preferable.
 メタクリル樹脂(M2)中のメタクリル酸エステル単量体単位の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、特に好ましくは99質量%以上、最も好ましくは100質量%である。
 メタクリル樹脂(M2)中のMMA単量体単位の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、特に好ましくは99質量%以上、最も好ましくは100質量%である。
The content of the methacrylic acid ester monomer unit in the methacrylic resin (M2) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, particularly preferably 99% by mass or more, Most preferably, it is 100 mass%.
The content of the MMA monomer unit in the methacrylic resin (M2) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, particularly preferably 99% by mass or more, and most preferably. Is 100% by mass.
 メタクリル樹脂(M2)は、メタクリル酸エステル単量体単位以外の他の1種以上の単量体単位を含んでいてもよい。他の単量体単位としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、およびアクリル酸2-エチルへキシル等のアクリル酸アルキルエステル;アクリル酸フェニル等のアクリル酸アリールエステル;アクリル酸シクロへキシルおよびアクリル酸ノルボルネニル等のアクリル酸シクロアルキルエステル;スチレンおよびα-メチルスチレン等の芳香族ビニル化合物;アクリルアミドおよびメタクリルアミド;アクリロニトリルおよびメタクリロニトリル等のニトリル類等の、一分子中に重合性の炭素-炭素二重結合を1つだけ有するビニル系単量体に由来する構造単位が挙げられる。 The methacrylic resin (M2) may contain one or more monomer units other than the methacrylic acid ester monomer unit. Other monomer units include: alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; In one molecule such as cycloalkyl acrylate such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyl compounds such as styrene and α-methylstyrene; acrylamide and methacrylamide; nitriles such as acrylonitrile and methacrylonitrile And structural units derived from vinyl monomers having only one polymerizable carbon-carbon double bond.
 メタクリル樹脂(M2)のMwは、好ましくは40000~200000、より好ましくは50000~150000、特に好ましくは50000~120000である。Mwが40000以上であることで得られる成形体の機械的強度(耐衝撃性および靭性等)が向上する傾向があり、200000以下であることでメタクリル樹脂組成物の流動性が向上して成形性が向上する傾向がある。 The Mw of the methacrylic resin (M2) is preferably 40,000 to 200,000, more preferably 50,000 to 150,000, and particularly preferably 50,000 to 120,000. There exists a tendency for the mechanical strength (impact resistance, toughness, etc.) of the molded object obtained by Mw to be 40,000 or more, and when it is 200,000 or less, the fluidity of the methacrylic resin composition is improved and the moldability is increased. Tend to improve.
 メタクリル樹脂(M2)の分子量分布(Mw/Mn)は、好ましくは1.6~5.0、より好ましくは1.7~4.0、特に好ましくは1.7~3.0である。かかる範囲内にある分子量分布(Mw/Mn)を有するメタクリル樹脂(M2)を用いると、得られる成形体が機械的強度に優れたものとなる。MwおよびMw/Mnは、メタクリル樹脂(M2)の製造時に使用する重合開始剤の種類および/または量を調整することによって制御できる。 The molecular weight distribution (Mw / Mn) of the methacrylic resin (M2) is preferably 1.6 to 5.0, more preferably 1.7 to 4.0, and particularly preferably 1.7 to 3.0. When a methacrylic resin (M2) having a molecular weight distribution (Mw / Mn) within such a range is used, the resulting molded article is excellent in mechanical strength. Mw and Mw / Mn can be controlled by adjusting the type and / or amount of the polymerization initiator used in the production of the methacrylic resin (M2).
 メタクリル樹脂(M2)の230℃および3.8kg荷重の条件で測定されるメルトフローレート(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.2~30g/10分、特に好ましくは0.5~20g/10分、最も好ましくは1.0~15g/10分である。 The melt flow rate (MFR) of the methacrylic resin (M2) measured under the conditions of 230 ° C. and 3.8 kg load is preferably 0.1 g / 10 min or more, more preferably 0.2 to 30 g / 10 min, especially Preferably it is 0.5 to 20 g / 10 min, and most preferably 1.0 to 15 g / 10 min.
 メタクリル樹脂(M2)の製造方法としては、生産性の観点から、ラジカル重合法において、重合温度、重合時間、連鎖移動剤の種類および/または量、重合開始剤の種類および/または量等を調整する方法が好ましい。ラジカル重合法の詳細は、前述の通りである。 As a method for producing the methacrylic resin (M2), from the viewpoint of productivity, in the radical polymerization method, the polymerization temperature, the polymerization time, the type and / or amount of the chain transfer agent, the type and / or amount of the polymerization initiator are adjusted. Is preferred. The details of the radical polymerization method are as described above.
(質量比)
 本発明のメタクリル樹脂組成物は、メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比が2/98~29/71、好ましくは5/95~28/72、特に好ましくは10/90~25/75である。α緩和温度(Tα)が高く耐熱分解性が低いメタクリル樹脂(M1)は、樹脂組成物の耐熱性を向上させる。しかしながら、α緩和温度(Tα)が高いメタクリル樹脂(M1)が過多では、成形時の樹脂組成物の粘度が高くなり成形性が悪化する。また、α緩和温度(Tα)の高いメタクリル樹脂(M1)は耐熱分解性が低いため、その量が過多では、高温成形時に分解・発泡し、得られる成形体の外観が悪化する恐れもある。メタクリル樹脂(M1)が過少では、所望の熱に対する寸法安定性が得られない。α緩和温度(Tα)が低いメタクリル樹脂(M2)は、樹脂組成物の成形性を向上させる。メタクリル樹脂(M1)、(M2)の質量比を上記範囲にすると、良好な高温成形性と成形体の熱に対する高い寸法安定性とを両立させたメタクリル樹脂組成物が得られる。
(Mass ratio)
The methacrylic resin composition of the present invention has a methacrylic resin (M1) / methacrylic resin (M2) mass ratio of 2/98 to 29/71, preferably 5/95 to 28/72, particularly preferably 10/90 to 25. / 75. The methacrylic resin (M1) having a high α relaxation temperature (T α ) and low thermal decomposition resistance improves the heat resistance of the resin composition. However, when the amount of the methacrylic resin (M1) having a high α relaxation temperature (T α ) is excessive, the viscosity of the resin composition at the time of molding increases and the moldability deteriorates. In addition, since the methacrylic resin (M1) having a high α relaxation temperature (T α ) has low heat decomposability, if the amount is excessive, it may be decomposed and foamed during high temperature molding, and the appearance of the resulting molded product may be deteriorated. . If the amount of the methacrylic resin (M1) is too small, desired dimensional stability against heat cannot be obtained. The methacrylic resin (M2) having a low α relaxation temperature (T α ) improves the moldability of the resin composition. When the mass ratio of the methacrylic resins (M1) and (M2) is within the above range, a methacrylic resin composition having both good high-temperature moldability and high dimensional stability against heat of the molded body can be obtained.
 本発明のメタクリル樹脂組成物は、メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122sec-1での溶融粘度をそれぞれη1およびη2とした場合に、η1>ηである。メタクリル樹脂(M2)よりα緩和温度が高いメタクリル樹脂(M1)の溶融粘度η1がメタクリル樹脂(M2)の溶融粘度ηよりも高いことで、メタクリル樹脂組成物の成形時にメタクリル樹脂(M1)が配向しやすく、緩和し難いため、得られる成形体は良好な機械的強度と高い寸法安定性を発現することができる。なお、かかる作用効果は、メタクリル樹脂(M1)の含有割合が多くなくても発現できる。 The methacrylic resin composition of the present invention has η 1 > η 2 when the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec −1 is η 1 and η 2 , respectively. It is. By melt viscosity eta 1 of the methacrylic resin (M2) from α relaxation temperature is high methacrylic resin (M1) is higher than the melt viscosity eta 2 of the methacrylic resin (M2), a methacrylic resin during molding of the methacrylic resin composition (M1) Are easy to orient and difficult to relax, the resulting molded product can exhibit good mechanical strength and high dimensional stability. In addition, this effect can be expressed even if the content ratio of the methacrylic resin (M1) is not large.
 本発明のメタクリル樹脂組成物中のメタクリル樹脂(M1)、(M2)の合計量は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上、最も好ましくは92質量%以上である。
 メタクリル樹脂(M1)、(M2)のみからなるメタクリル樹脂組成物は、Mwが好ましくは50000~200000、より好ましくは52000~150000、特に好ましくは55000~120000であり、分子量分布(Mw/Mn)が好ましくは1.2~2.0、より好ましくは1.3~1.8である。Mwおよび分子量分布(Mw/Mn)がかかる範囲にあると、メタクリル樹脂組成物の成形性が良好となり、機械的強度(耐衝撃性および靭性等)に優れた成形体を得易くなる。
 メタクリル樹脂(M1)、(M2)のみからなるメタクリル樹脂組成物は、230℃および3.8kg荷重の条件で測定されるメルトフローレート(MFR)が、好ましくは0.1g/10分以上、より好ましくは0.2~30g/10分、特に好ましくは0.5~20g/10分、最も好ましくは1.0~10g/10分である。
The total amount of the methacrylic resins (M1) and (M2) in the methacrylic resin composition of the present invention is preferably 80% by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and most preferably 92%. It is at least mass%.
The methacrylic resin composition comprising only the methacrylic resins (M1) and (M2) has an Mw of preferably 50,000 to 200,000, more preferably 52,000 to 150,000, particularly preferably 55,000 to 120,000, and a molecular weight distribution (Mw / Mn). Preferably it is 1.2 to 2.0, more preferably 1.3 to 1.8. When the Mw and the molecular weight distribution (Mw / Mn) are in such ranges, the moldability of the methacrylic resin composition becomes good, and it becomes easy to obtain a molded body excellent in mechanical strength (impact resistance, toughness, etc.).
The methacrylic resin composition consisting only of the methacrylic resins (M1) and (M2) has a melt flow rate (MFR) measured at 230 ° C. and a load of 3.8 kg, preferably 0.1 g / 10 min or more. It is preferably 0.2 to 30 g / 10 minutes, particularly preferably 0.5 to 20 g / 10 minutes, and most preferably 1.0 to 10 g / 10 minutes.
(他の重合体)
 本発明のメタクリル樹脂組成物は必要に応じて、メタクリル樹脂(M1)、(M2)以外の1種以上の他の重合体を含むことができる。なお、他の重合体は、メタクリル樹脂(M1)および/またはメタクリル樹脂(M2)の重合時または重合後に添加してもよいし、メタクリル樹脂(M1)、(M2)の混練時に添加してもよい。
(Other polymers)
The methacrylic resin composition of this invention can contain 1 or more types of other polymers other than a methacrylic resin (M1) and (M2) as needed. The other polymer may be added during or after polymerization of the methacrylic resin (M1) and / or methacrylic resin (M2), or may be added during kneading of the methacrylic resins (M1) and (M2). Good.
 他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、およびポリノルボルネン等のポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、およびMBS樹脂等のスチレン系樹脂;ポリエチレンテレフタレートおよびポリブチレンテレフタレート等のポリエステル樹脂;ナイロン6、ナイロン66、およびポリアミドエラストマー等のポリアミド樹脂;ポリカーボネート;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、ポリビニルアセタール、ポリビニルフェノール、およびエチレン-ビニルアルコール共重合体;ポリアセタール;ポリウレタン;変性ポリフェニレンエーテルおよびポリフェニレンスルフィド;シリコーン変性樹脂;アクリルゴム、アクリル系熱可塑性エラストマー、およびシリコーンゴム;SEPS、SEBS、およびSIS等のスチレン系熱可塑性エラストマー;IR、EPR、およびEPDM等のオレフィン系ゴム等が挙げられる。本発明のメタクリル樹脂組成物中の他の重合体の量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは0質量%である。 Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, and MBS resin; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamide resins such as nylon 6, nylon 66, and polyamide elastomer; Polycarbonate; polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl phenol, and ethylene Polyacetal; polyurethane; modified polyphenylene ether and polyphenylene sulfide; silicone modified resin; acrylic rubber, acrylic thermoplastic elastomer, and silicone rubber; styrene thermoplastic elastomer such as SEPS, SEBS, and SIS; Examples thereof include olefinic rubbers such as IR, EPR, and EPDM. The amount of the other polymer in the methacrylic resin composition of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 0% by mass.
(好ましい一態様)
 好ましい一態様において、本発明のメタクリル樹脂組成物は、メタクリル樹脂(M1)、(M2)と、ポリカーボネート樹脂(PC)および/またはフェノキシ樹脂(PR)とを含むことができる。ポリカーボネート樹脂(PC)およびフェノキシ樹脂(PR)はいずれも、1種または2種以上用いることができる。ポリカーボネート樹脂(PC)および/またはフェノキシ樹脂(PR)を含むことによって、位相差の調整が容易なメタクリル樹脂組成物を得ることができる。ポリカーボネート樹脂(PC)および/またはフェノキシ樹脂(PR)の量は、メタクリル樹脂(M1)、(M2)の合計量100質量部に対して、好ましくは1.0~10質量部、より好ましくは1.5~7質量部、特に好ましくは2.0~6質量部である。
(Preferred embodiment)
In a preferred embodiment, the methacrylic resin composition of the present invention can contain methacrylic resins (M1) and (M2) and a polycarbonate resin (PC) and / or a phenoxy resin (PR). One or two or more of polycarbonate resin (PC) and phenoxy resin (PR) can be used. By including the polycarbonate resin (PC) and / or the phenoxy resin (PR), it is possible to obtain a methacrylic resin composition in which the retardation can be easily adjusted. The amount of the polycarbonate resin (PC) and / or the phenoxy resin (PR) is preferably 1.0 to 10 parts by mass, more preferably 1 with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). 0.5 to 7 parts by mass, particularly preferably 2.0 to 6 parts by mass.
<ポリカーボネート樹脂(PC)>
 ポリカーボネート樹脂(PC)としては、多官能ヒドロキシ化合物と炭酸エステル形成性化合物との反応によって得られる重合体が挙げられる。メタクリル樹脂との相溶性および得られる成形体の透明性の観点から、芳香族ポリカーボネート樹脂が好ましい。
 ポリカーボネート樹脂(PC)は、メタクリル樹脂との相溶性および得られる成形体の透明性・表面平滑性等の観点から、300℃および1.2Kg荷重の条件で測定されるメルトボリュームフローレート(MVR)が、好ましくは130~250cm3/10分、
より好ましくは150~230cm3/10分、特に好ましくは180~220cm3/10分である。
 ポリカーボネート樹脂(PC)は、メタクリル樹脂との相溶性および得られる成形体の透明性・表面平滑性等の観点から、ポリスチレン換算のMwが、好ましくは15000~28000、より好ましくは18000~27000、特に好ましくは20000~24000である。
 なお、ポリカーボネート樹脂(PC)のMVRおよびMwは、末端停止剤および/または分岐剤の量を調整することによって制御することができる。
 ポリカーボネート樹脂(PC)のTgは、好ましくは130℃以上、より好ましくは135℃以上、特に好ましくは140℃以上である。Tgの上限は、通常180℃である。
<Polycarbonate resin (PC)>
Examples of the polycarbonate resin (PC) include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound. From the viewpoint of compatibility with methacrylic resins and the transparency of the resulting molded article, aromatic polycarbonate resins are preferred.
Polycarbonate resin (PC) is melt volume flow rate (MVR) measured under conditions of 300 ° C. and 1.2 kg load from the viewpoints of compatibility with methacrylic resin and transparency and surface smoothness of the resulting molded product. but preferably 130 ~ 250cm 3/10 min,
More preferably 150 ~ 230cm 3/10 min, particularly preferably 180 ~ 220cm 3/10 min.
The polycarbonate resin (PC) has a polystyrene-equivalent Mw of preferably 15000 to 28000, more preferably 18000 to 27000, particularly from the viewpoints of compatibility with the methacrylic resin and the transparency and surface smoothness of the resulting molded product. Preferably it is 20000-24000.
The MVR and Mw of the polycarbonate resin (PC) can be controlled by adjusting the amount of the terminal terminator and / or branching agent.
The Tg of the polycarbonate resin (PC) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and particularly preferably 140 ° C. or higher. The upper limit of Tg is usually 180 ° C.
 ポリカーボネート樹脂(PC)の製造方法としては、ホスゲン法(界面重合法)および溶融重合法(エステル交換法)等が挙げられる。芳香族ポリカーボネート樹脂は、溶融重合法で製造したポリカーボネート樹脂原料に、末端ヒドロキシ基量を調整する処理を施して、製造することができる。
 ポリカーボネート樹脂(PC)は、ポリカーボネート構造単位以外に、ポリエステル、ポリウレタン、ポリエーテル、またはポリシロキサン等の他の構造単位を含んでいてもよい。
Examples of the method for producing the polycarbonate resin (PC) include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method). The aromatic polycarbonate resin can be produced by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups.
The polycarbonate resin (PC) may contain other structural units such as polyester, polyurethane, polyether, or polysiloxane in addition to the polycarbonate structural unit.
<フェノキシ樹脂(PR)>
 フェノキシ樹脂(PR)は、熱可塑性ポリヒドロキシポリエーテル樹脂である。フェノキシ樹脂(PR)は、下記式(1)で表される1種以上の構造単位を50質量%以上含むことができる。
Figure JPOXMLDOC01-appb-C000007
<Phenoxy resin (PR)>
The phenoxy resin (PR) is a thermoplastic polyhydroxy polyether resin. A phenoxy resin (PR) can contain 50 mass% or more of 1 or more types of structural units represented by following formula (1).
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Xは少なくとも1つのベンゼン環を含む2価基であり、Rは炭素数1~6の直鎖または分岐鎖のアルキレン基である。式(1)で表される構造単位は、ランダム、交互、またはブロックのいずれの形態で繋がっていてもよい。
 フェノキシ樹脂(PR)は、式(1)で表される構造単位を、好ましくは10~1000個、より好ましくは15~500個、特に好ましくは30~300個含む。
In the formula (1), X is a divalent group containing at least one benzene ring, and R is a linear or branched alkylene group having 1 to 6 carbon atoms. The structural unit represented by the formula (1) may be connected in any form of random, alternating, or block.
The phenoxy resin (PR) preferably contains 10 to 1000 structural units represented by the formula (1), more preferably 15 to 500, and particularly preferably 30 to 300.
 ゲル欠点の少ない成形体を得やすいことから、フェノキシ樹脂(PR)は、末端にエポキシ基を有しないことが好ましい。
 フェノキシ樹脂(PR)のポリスチレン換算のMnは、好ましくは3000~2000000、より好ましくは5000~100000、特に好ましくは10000~50000である。Mnがかかる範囲にあることで、耐熱性が高く、強度が高いメタクリル樹脂組成物を得ることができる。
 フェノキシ樹脂(PR)のTgは、好ましくは80℃以上、より好ましくは90℃以上、特に好ましくは95℃以上である。フェノキシ樹脂(PR)のTgが過低では、メタクリル樹脂組成物の耐熱性が低くなる傾向がある。Tgの上限は、好ましくは150℃である。フェノキシ樹脂(PR)のTgが過高では、得られる成形体が脆くなる傾向がある。
It is preferable that the phenoxy resin (PR) does not have an epoxy group at the terminal because it is easy to obtain a molded product with few gel defects.
Mn in terms of polystyrene of the phenoxy resin (PR) is preferably 3000 to 2000000, more preferably 5000 to 100,000, and particularly preferably 10,000 to 50000. When Mn is in such a range, a methacrylic resin composition having high heat resistance and high strength can be obtained.
The Tg of the phenoxy resin (PR) is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and particularly preferably 95 ° C. or higher. If the Tg of the phenoxy resin (PR) is too low, the heat resistance of the methacrylic resin composition tends to be low. The upper limit of Tg is preferably 150 ° C. When the Tg of the phenoxy resin (PR) is excessively high, the obtained molded product tends to become brittle.
 フェノキシ樹脂(PR)は例えば、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得ることができる。この反応は無溶媒または溶媒中で行うことができる。 The phenoxy resin (PR) can be obtained from, for example, a condensation reaction between a dihydric phenol compound and an epihalohydrin or a polyaddition reaction between a dihydric phenol compound and a bifunctional epoxy resin. This reaction can be carried out without solvent or in a solvent.
 2価フェノール化合物としては、ヒドロキノン、レゾルシン、4,4-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルケトン、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、1、3-ビス(2-(4-ヒドロキシフェニル)プロピル)ベンゼン、1、4-ビス(2-(4-ヒドロキシフェニル)プロピル)ベンゼン、2,2-ビス(4-ヒドロキシフェニル)-1,1、1-3、3、3-ヘキサフルオロプロパン、および9,9’-ビス(4-ヒドロキシフェニル)フルオレン等が挙げられる。中でも、物性およびコスト面から、4,4-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルケトン、2,2-ビス(4-ヒドロキシフェニル)プロパン、および9,9’-ビス(4-ヒドロキシフェニル)フルオレンが好ましい。 Dihydric phenol compounds include hydroquinone, resorcin, 4,4-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ketone, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) ) Cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) Propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propa 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 1,3-bis (2- (4-hydroxyphenyl) propyl) benzene, 1,4-bis (2- (4-hydroxy) Phenyl) propyl) benzene, 2,2-bis (4-hydroxyphenyl) -1,1,1-3,3,3-hexafluoropropane, 9,9′-bis (4-hydroxyphenyl) fluorene, etc. Can be mentioned. Among these, 4,4-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ketone, 2,2-bis (4-hydroxyphenyl) propane, and 9,9′-bis (4-hydroxyphenyl) are considered in view of physical properties and cost. Fluorene is preferred.
 2官能エポキシ樹脂類としては、上記の2価フェノール化合物とエピハロヒドリンとの縮合反応で得られるエポキシオリゴマーが挙げられる。具体的には、ハイドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル、ビスフェノールSタイプエポキシ樹脂、ビスフェノールAタイプエポキシ樹脂、ビスフェノールFタイプエポキシ樹脂、メチルハイドロキノンジグリシジルエーテル、クロロハイドロキノンジグリシジルエーテル、4,4’-ジヒドロキシジフェニルオキシドジグリシジルエーテル、2,6-ジヒドロキシナフタレンジグリシジルエーテル、ジクロロビスフェノールAジグリシジルエーテル、およびテトラブロモビスフェノールAタイプエポキシ樹脂、9,9’-ビス(4)-ヒドロキシフェニル)フルオレンジグリシジルエーテル等が挙げられる。中でも、物性およびコスト面から、ビスフェノールAタイプエポキシ樹脂、ビスフェノールSタイプエポキシ樹脂、ハイドロキノンジグリシジルエーテル、ビスフェノールFタイプエポキシ樹脂、テトラブロモビスフェノールAタイプエポキシ樹脂、および9,9’-ビス(4)-ヒドロキシフェニル)フルオレンジグリシジルエーテルが好ましい。 Examples of the bifunctional epoxy resins include epoxy oligomers obtained by condensation reaction of the above divalent phenol compound and epihalohydrin. Specifically, hydroquinone diglycidyl ether, resorcin diglycidyl ether, bisphenol S type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, methyl hydroquinone diglycidyl ether, chlorohydroquinone diglycidyl ether, 4,4'- Dihydroxydiphenyl oxide diglycidyl ether, 2,6-dihydroxynaphthalenediglycidyl ether, dichlorobisphenol A diglycidyl ether, and tetrabromobisphenol A type epoxy resin, 9,9′-bis (4) -hydroxyphenyl) fluorenediglycidyl ether Etc. Among these, bisphenol A type epoxy resin, bisphenol S type epoxy resin, hydroquinone diglycidyl ether, bisphenol F type epoxy resin, tetrabromobisphenol A type epoxy resin, and 9,9'-bis (4)- Hydroxyphenyl) full orange glycidyl ether is preferred.
 フェノキシ樹脂(PR)の製造に用いられる溶媒としては、メチルエチルケトン、ジオキサン、テトラヒドロフラン、アセトフェノン、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルアセトアミド、およびスルホラン等の非プロトン性有機溶媒が挙げられる。
 フェノキシ樹脂(PR)の製造に用いられる触媒としては、アルカリ金属水酸化物、第三アミン化合物、第四アンモニウム化合物、第三ホスフィン化合物、および第四ホスホニウム化合物等が挙げられる。
Examples of the solvent used for the production of the phenoxy resin (PR) include aprotic organic solvents such as methyl ethyl ketone, dioxane, tetrahydrofuran, acetophenone, N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylacetamide, and sulfolane.
Examples of the catalyst used for the production of the phenoxy resin (PR) include alkali metal hydroxides, tertiary amine compounds, quaternary ammonium compounds, tertiary phosphine compounds, and quaternary phosphonium compounds.
 式(1)中のXは、下記式(2)~(4)に示す化合物に由来する2価基であることが好ましい。なお、2価基を構成する2つの結合手の位置は化学的に可能な位置であれば特に限定されない。式(1)中のXは、式(2)~(4)に示す化合物中のベンゼン環上から2つの水素原子が引き抜かれてできる2つの結合手を有する2価基であることが好ましい。特に、式(3)~(4)に示す化合物中のいずれか2つのベンゼン環上からそれぞれ1つの水素原子が引き抜かれてできる2つの結合手を有する2価基であることが好ましい。 X in the formula (1) is preferably a divalent group derived from the compounds represented by the following formulas (2) to (4). In addition, the position of the two bonds constituting the divalent group is not particularly limited as long as it is a chemically possible position. X in the formula (1) is preferably a divalent group having two bonds formed by extracting two hydrogen atoms from the benzene ring in the compounds represented by the formulas (2) to (4). In particular, a divalent group having two bonds formed by extracting one hydrogen atom from any two benzene rings in the compounds represented by formulas (3) to (4) is preferable.
Figure JPOXMLDOC01-appb-C000008
 式(2)中、Rは、水素原子、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、または炭素数2~6の直鎖若しくは分岐鎖のアルケニル基である。pは、1~4の整数である。
Figure JPOXMLDOC01-appb-C000008
In formula (2), R 4 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched alkenyl group having 2 to 6 carbon atoms. p is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000009
 式(3)中、Rは、単結合、炭素数1~6の直鎖若しくは分岐鎖のアルキレン基、炭素数3~20のシクロアルキレン基、または炭素数3~20のシクロアルキリデン基である。式(3)および(4)中、R及びRはそれぞれ独立に、水素原子、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、または炭素数2~6の直鎖若しくは分岐鎖のアルケニル基である。nおよびmはそれぞれ独立に、1~4の整数である。
Figure JPOXMLDOC01-appb-C000009
In Formula (3), R 1 is a single bond, a linear or branched alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or a cycloalkylidene group having 3 to 20 carbon atoms. . In formulas (3) and (4), R 2 and R 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched chain having 2 to 6 carbon atoms. Of the alkenyl group. n and m are each independently an integer of 1 to 4.
 式(1)中、Xは、複数のベンゼン環が脂環またはヘテロ環と縮合してなる化合物に由来する2価基であってもよい。例えば、フルオレン構造またはカルバゾール構造を有する化合物に由来する2価基が挙げられる。 In formula (1), X may be a divalent group derived from a compound in which a plurality of benzene rings are condensed with an alicyclic ring or a heterocyclic ring. For example, a divalent group derived from a compound having a fluorene structure or a carbazole structure can be given.
 式(1)で表される構造単位は、好ましくは下記式(5)、(6)で表される構造単位、より好ましくは下記式(7)で表される構造単位である。好ましい態様のフェノキシ樹脂(PR)は、かかる構造単位を10~1000個含むことが好ましい。 The structural unit represented by the formula (1) is preferably a structural unit represented by the following formulas (5) and (6), more preferably a structural unit represented by the following formula (7). The phenoxy resin (PR) of a preferred embodiment preferably contains 10 to 1000 such structural units.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(5)中、Rは、単結合、炭素数1~6の直鎖若しくは分岐鎖のアルキレン基、炭素数3~20のシクロアルキレン基、または炭素数3~20のシクロアルキリデン基である。式(5)および(6)中、R10は、炭素数1~6の直鎖または分岐鎖のアルキレン基である。 In formula (5), R 9 is a single bond, a linear or branched alkylene group having 1 to 6 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or a cycloalkylidene group having 3 to 20 carbon atoms. . In the formulas (5) and (6), R 10 is a linear or branched alkylene group having 1 to 6 carbon atoms.
 市販のフェノキシ樹脂(PR)としては、新日鉄住金化学社製のYP-50およびYP-50S、三菱化学社製のjERシリーズ、InChem社製のPKFEおよびPKHJ等が挙げられる。 Examples of commercially available phenoxy resins (PR) include YP-50 and YP-50S manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., jER series manufactured by Mitsubishi Chemical Co., Ltd., PKFE and PKHJ manufactured by InChem.
(好ましい他の態様)
 好ましい他の態様において、本発明のメタクリル樹脂組成物は、メタクリル樹脂(M1)、(M2)と、架橋ゴム(CR)および/またはブロック共重合体(BP)とを含むことができる。架橋ゴム(CR)およびブロック共重合体(BP)はいずれも、1種または2種以上用いることができる。
(Other preferred embodiments)
In another preferred embodiment, the methacrylic resin composition of the present invention can include methacrylic resins (M1) and (M2) and a crosslinked rubber (CR) and / or a block copolymer (BP). Either one or two or more of the crosslinked rubber (CR) and the block copolymer (BP) can be used.
<架橋ゴム(CR)>
 架橋ゴム(CR)は、1つの単量体中に複数の重合性官能基を有する架橋性単量体によって複数の高分子鎖が架橋された、ゴム弾性を有する重合体である。架橋ゴム(CR)としては、アクリル酸アルキルエステル単量体単位と架橋性単量体単位とを含むアクリル系架橋ゴム、共役ジエン系単量体単位と架橋性単量体単位とを含むジエン系架橋ゴム、アクリル酸アルキルエステル単量体単位と共役ジエン系単量体単位と架橋性単量体単位とを含む架橋ゴム等が挙げられる。これら架橋ゴムは必要に応じて、他のビニル系単量体単位を含むことができる。
<Crosslinked rubber (CR)>
Crosslinked rubber (CR) is a polymer having rubber elasticity in which a plurality of polymer chains are crosslinked by a crosslinkable monomer having a plurality of polymerizable functional groups in one monomer. As the crosslinked rubber (CR), an acrylic crosslinked rubber containing an alkyl acrylate monomer unit and a crosslinkable monomer unit, a diene containing a conjugated diene monomer unit and a crosslinkable monomer unit Examples thereof include a crosslinked rubber, a crosslinked rubber containing an alkyl acrylate monomer unit, a conjugated diene monomer unit, and a crosslinkable monomer unit. These cross-linked rubbers can contain other vinyl monomer units as required.
 架橋ゴム(CR)は、粒子形態であることが好ましい。架橋ゴム粒子(CRp)は、架橋ゴム重合体のみからなる単層粒子であってもよいし、架橋ゴム重合体と他の重合体とからなる2層以上の多層粒子であってもよい。多層粒子としては、架橋ゴム重合体からなるコア部と他の重合体からなるシェル部とからなるコアシェル型粒子が好ましい。コアシェル型粒子において、コア部はセンターコア部および必要に応じてセンターコア部を覆う1層以上のインナーシェル層を有し、シェル部はコア部を覆う1層のアウターシェル層を有することができる。各層間には隙間がないことが好ましい。コアシェル型粒子としては、アクリル系多層重合体粒子(CRa)が特に好ましい。 The crosslinked rubber (CR) is preferably in the form of particles. The cross-linked rubber particles (CRp) may be single-layer particles composed only of a cross-linked rubber polymer, or may be multi-layer particles of two or more layers composed of a cross-linked rubber polymer and another polymer. The multilayer particle is preferably a core-shell type particle composed of a core part made of a crosslinked rubber polymer and a shell part made of another polymer. In the core-shell type particle, the core part may have a center core part and, if necessary, one or more inner shell layers covering the center core part, and the shell part may have one outer shell layer covering the core part. . There are preferably no gaps between the layers. As the core-shell type particles, acrylic multilayer polymer particles (CRa) are particularly preferable.
 コアシェル型粒子においては、センターコア部および必要に応じて1層以上のインナーシェル層からなるコア部の少なくとも一部が、架橋ゴム重合体(i)を含む。コア部において、架橋ゴム重合体(i)を含まない残部がある場合、この残部は他の重合体(iii)を含む。なお、コア部の複数の部分が架橋ゴム重合体(i)を含むとき、それらに含まれる架橋ゴム重合体(i)の種類および物性は同一でも非同一でもよい。同様に、コア部の複数の残部が他の重合体(iii)を含むとき、それらに含まれる他の重合体(iii)の種類および物性は同一でも非同一でもよい。 In the core-shell type particles, at least a part of the core portion composed of the center core portion and, if necessary, one or more inner shell layers contains the crosslinked rubber polymer (i). When there is a remainder that does not contain the crosslinked rubber polymer (i) in the core part, this remainder contains another polymer (iii). When a plurality of portions of the core portion contain the crosslinked rubber polymer (i), the kind and physical properties of the crosslinked rubber polymer (i) contained therein may be the same or non-identical. Similarly, when the plurality of remaining portions of the core portion contain other polymer (iii), the types and physical properties of the other polymer (iii) contained therein may be the same or non-identical.
 架橋ゴム重合体(i)としては、アクリル酸アルキルエステル単量体単位および/または共役ジエン系単量体単位と、架橋性単量体単位とを含むものが好ましい。架橋ゴム重合体(i)に用いられるアクリル酸アルキルエステル単量体のアルキル基の炭素数は、好ましくは1~8である。かかるアクリル酸アルキルエステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、およびアクリル酸2-エチルヘキシル等が挙げられる。これらは、1種または2種以上用いることができる。共役ジエン系単量体としては、ブタジエンおよびイソプレン等が挙げられる。これらは、1種または2種以上用いることができる。架橋ゴム重合体(i)中のアクリル酸アルキルエステル単量体単位および/または共役ジエン系単量体単位の量は、好ましくは60質量%以上、より好ましくは70~99質量%、特に好ましくは80~98質量%である。 As the crosslinked rubber polymer (i), those containing an alkyl acrylate monomer unit and / or a conjugated diene monomer unit and a crosslinkable monomer unit are preferable. The carbon number of the alkyl group of the acrylic acid alkyl ester monomer used in the crosslinked rubber polymer (i) is preferably 1-8. Examples of the alkyl acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. These can be used alone or in combination of two or more. Examples of the conjugated diene monomer include butadiene and isoprene. These can be used alone or in combination of two or more. The amount of the acrylic acid alkyl ester monomer unit and / or the conjugated diene monomer unit in the crosslinked rubber polymer (i) is preferably 60% by mass or more, more preferably 70 to 99% by mass, particularly preferably. 80 to 98% by mass.
 架橋性単量体としては、アクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、トリエチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ジビニルベンゼン、1,4-ペンタジエン、およびトリアリルイソシアネート等が挙げられる。これらは、1種または2種以上用いることができる。架橋ゴム重合体(i)中の架橋性単量体単位の量は、好ましくは0.05~10質量%、より好ましくは0.5~7質量%、特に好ましくは1~5質量%である。 Crosslinkable monomers include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1, 2-Diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene glycol di Examples include methacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, and triallyl isocyanate. These can be used alone or in combination of two or more. The amount of the crosslinkable monomer unit in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0.5 to 7% by mass, and particularly preferably 1 to 5% by mass. .
 架橋ゴム重合体(i)は必要に応じて、他のビニル系単量体単位を含むことができる。他のビニル系単量体としては、MMA、メタクリル酸エチル、メタクリル酸ブチル、およびメタクリル酸シクロヘキシル等のメタクリル酸エステル単量体;スチレン、p-メチルスチレン、およびo-メチルスチレン等の芳香族ビニル単量体;N-プロピルマレイミド、N-シクロヘキシルマレイミド、およびN-o-クロロフェニルマレイミド等のマレイミド系単量体が挙げられる。これらは、1種または2種以上用いることができる。 The crosslinked rubber polymer (i) can contain other vinyl monomer units as necessary. Other vinyl monomers include MMA, ethyl methacrylate, butyl methacrylate, and methacrylic acid ester monomers such as cyclohexyl methacrylate; aromatic vinyl such as styrene, p-methylstyrene, and o-methylstyrene. Monomers; maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide, and No-chlorophenylmaleimide. These can be used alone or in combination of two or more.
 他の重合体(iii)としては、メタクリル酸アルキルエステル単量体単位を有するものが好ましい。他の重合体(iii)は必要に応じて、架橋性単量体単位および/または他のビニル系単量体単位を含むことができる。
 他の重合体(iii)に用いられるメタクリル酸アルキルエステル単量体の炭素数は、好ましくは1~8である。かかるメタクリル酸アルキルエステル単量体としては、MMA、メタクリル酸エチル、およびメタクリル酸ブチル等が挙げられ、MMAが好ましい。これらは、1種または2種以上用いることができる。他の重合体(iii)中のメタクリル酸アルキルエステル単量体単位の量は、好ましくは80~100質量%、より好ましくは85~99質量%、特に好ましくは90~98質量%である。
 他の重合体(iii)に用いられる架橋性単量体としては、架橋ゴム重合体(i)において例示した架橋性単量体と同様のものを用いることができる。他の重合体(iii)中の架橋性単量体単位の量は、好ましくは0~5質量%、より好ましくは0.01~3質量%、特に好ましくは0.02~2質量%である。
The other polymer (iii) is preferably one having a methacrylic acid alkyl ester monomer unit. The other polymer (iii) can contain a crosslinkable monomer unit and / or other vinyl monomer units as required.
The methacrylic acid alkyl ester monomer used in the other polymer (iii) preferably has 1 to 8 carbon atoms. Such methacrylic acid alkyl ester monomers include MMA, ethyl methacrylate, butyl methacrylate and the like, and MMA is preferred. These can be used alone or in combination of two or more. The amount of the methacrylic acid alkyl ester monomer unit in the other polymer (iii) is preferably 80 to 100% by mass, more preferably 85 to 99% by mass, and particularly preferably 90 to 98% by mass.
As the crosslinkable monomer used in the other polymer (iii), the same crosslinkable monomers as exemplified in the crosslinked rubber polymer (i) can be used. The amount of the crosslinkable monomer unit in the other polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and particularly preferably 0.02 to 2% by mass. .
 他の重合体(iii)に用いられる他のビニル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、およびアクリル酸2-エチルヘキシル等のアクリル酸エステル単量体;酢酸ビニル;スチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、およびα-メチルスチレン、ビニルナフタレン等の芳香族ビニル単量体;アクリロニトリルおよびメタクリロニトリル等のニトリル類;アクリル酸、メタクリル酸、およびクロトン酸等のα,β-不飽和カルボン酸;N-エチルマレイミドおよびN-シクロヘキシルマレイミド等のマレイミド系単量体が挙げられる。これらは、1種または2種以上用いることができる。 Other vinyl monomers used in other polymers (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, acrylic acid Acrylic ester monomers such as benzyl and 2-ethylhexyl acrylate; vinyl acetate; aromatic vinyl such as styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, α-methylstyrene, and vinylnaphthalene Monomers; Nitriles such as acrylonitrile and methacrylonitrile; α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; maleimide monomers such as N-ethylmaleimide and N-cyclohexylmaleimide Is mentioned. These can be used alone or in combination of two or more.
 コアシェル型粒子において、1層以上のアウターシェル層からなるシェル部は、熱可塑性重合体(ii)を含むことが好ましい。熱可塑性重合体(ii)としては、メタクリル酸アルキルエステル単量体単位を有し、必要に応じて他のビニル系単量体単位を含むものが好ましい。熱可塑性重合体(ii)の少なくとも一部は、内部に隣接するセンターコア層またはインナーシェル層にグラフトされていることが好ましい。 In the core-shell type particle, the shell portion composed of one or more outer shell layers preferably contains the thermoplastic polymer (ii). As the thermoplastic polymer (ii), those having a methacrylic acid alkyl ester monomer unit and, if necessary, other vinyl monomer units are preferred. At least a part of the thermoplastic polymer (ii) is preferably grafted to the center core layer or inner shell layer adjacent to the inside.
 熱可塑性重合体(ii)中のメタクリル酸アルキルエステル単量体単位の炭素数は、好ましくは1~8である。かかるメタクリル酸アルキルエステル単量体としては、MMAおよびメタクリル酸ブチル等が挙げられ、MMAが好ましい。これらは、1種または2種以上用いることができる。熱可塑性重合体(ii)中のメタクリル酸アルキルエステル単量体単位の量は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。 The carbon number of the methacrylic acid alkyl ester monomer unit in the thermoplastic polymer (ii) is preferably 1 to 8. Such methacrylic acid alkyl ester monomers include MMA and butyl methacrylate, and MMA is preferred. These can be used alone or in combination of two or more. The amount of the methacrylic acid alkyl ester monomer unit in the thermoplastic polymer (ii) is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
 熱可塑性重合体(ii)に用いられる他のビニル系単量体としては、前述の他の重合体(iii)において例示した他のビニル系単量体と同様のものを用いることができる。熱可塑性重合体(ii)中の他のビニル系単量体単位の量は、好ましくは20質量%以下、より好ましくは15質量%以下、特に好ましくは10質量%以下である。 As other vinyl monomers used in the thermoplastic polymer (ii), the same vinyl monomers as those exemplified in the other polymer (iii) described above can be used. The amount of other vinyl monomer units in the thermoplastic polymer (ii) is preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
 コアシェル型粒子におけるコア部とシェル部の構成態様としては、センターコア部が架橋ゴム重合体(i)からなりアウターシェル層が熱可塑性重合体(ii)からなる2層重合体粒子;センターコア部が他の重合体(iii)からなり、インナーシェル層が架橋ゴム重合体(i)からなり、アウターシェル層が熱可塑性重合体(ii)からなる3層重合体粒子;センターコア部がある1種の架橋ゴム重合体(i)からなり、インナーシェル層が別の1種の架橋ゴム重合体(i)からなり、アウターシェル層が熱可塑性重合体(ii)からなる3層重合体粒子;センターコア部が架橋ゴム重合体(i)からなり、インナーシェル層が他の重合体(iii)からなり、アウターシェル層が熱可塑性重合体(ii)からなる3層重合体粒子;センターコア部が架橋ゴム重合体(i)からなり、第1インナーシェル層が他の重合体(iii)からなり、第2インナーシェル層が架橋ゴム重合体(i)からなり、アウターシェル層が熱可塑性重合体(ii)からなる4層重合体粒子等が挙げられる。 In the core-shell type particle, the core part and the shell part are composed of two-layer polymer particles in which the center core part is made of a crosslinked rubber polymer (i) and the outer shell layer is made of a thermoplastic polymer (ii); Is composed of another polymer (iii), the inner shell layer is composed of a crosslinked rubber polymer (i), and the outer shell layer is composed of a thermoplastic polymer (ii); Three-layer polymer particles comprising a kind of crosslinked rubber polymer (i), the inner shell layer comprising another kind of crosslinked rubber polymer (i), and the outer shell layer comprising a thermoplastic polymer (ii); Three-layer polymer particles in which the center core portion is composed of a crosslinked rubber polymer (i), the inner shell layer is composed of another polymer (iii), and the outer shell layer is composed of a thermoplastic polymer (ii); Consists of a crosslinked rubber polymer (i) and has a first inner sheath. For example, four layer polymer particles in which the second layer is made of another polymer (iii), the second inner shell layer is made of a crosslinked rubber polymer (i), and the outer shell layer is made of a thermoplastic polymer (ii). It is done.
 上記の中でも、センターコア部が他の重合体(iii)からなり、インナーシェル層が架橋ゴム重合体(i)からなり、アウターシェル層が熱可塑性重合体(ii)からなるアクリル系3層重合体粒子が好ましい。さらに、センターコア部の他の重合体(iii)が、MMA単量体単位80~99.95質量%、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位0~19.95質量%、および架橋性単量体単位0.05~2質量%の共重合体であり、インナーシェル層の架橋ゴム重合体(i)が、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位80~98質量%、芳香族ビニル単量体単位1~19質量%および架橋性単量体単位1~5質量%の共重合体であり、アウターシェル層の熱可塑性重合体(ii)がMMA単量体単位80~100質量%および炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単量体単位0~20質量%の共重合体であるアクリル系3層重合体粒子が特に好ましい。 Among these, an acrylic three-layer structure in which the center core portion is made of another polymer (iii), the inner shell layer is made of a crosslinked rubber polymer (i), and the outer shell layer is made of a thermoplastic polymer (ii). Combined particles are preferred. Further, the other polymer (iii) in the center core portion is an acrylate monomer unit having an MMA monomer unit of 80 to 99.95% by mass and having an alkyl group having 1 to 8 carbon atoms. Acrylic acid having 95% by mass and a crosslinkable monomer unit of 0.05 to 2% by mass, wherein the crosslinked rubber polymer (i) of the inner shell layer has an alkyl group having 1 to 8 carbon atoms. A copolymer of 80 to 98% by mass of an alkyl ester monomer unit, 1 to 19% by mass of an aromatic vinyl monomer unit and 1 to 5% by mass of a crosslinkable monomer unit, and the thermoplastic weight of the outer shell layer Acrylic three-layer copolymer in which the compound (ii) is a copolymer of 80 to 100% by mass of MMA monomer units and 0 to 20% by mass of alkyl acrylate monomer units having an alkyl group having 1 to 8 carbon atoms Combined particles are particularly preferred.
 コアシェル型粒子の透明性の観点から、互いに隣り合う層の屈折率の差が、好ましくは0.005未満、より好ましくは0.004未満、特に好ましくは0.003未満となるように、各層の重合体を選択することが好ましい。
 コアシェル型粒子におけるアウターシェル層の割合は、好ましくは10~60質量%、より好ましくは15~50質量%、特に好ましくは20~40質量%である。コア部中の架橋ゴム重合体(i)を含む部分の割合は、好ましくは20~100質量%、より好ましくは30~70質量%である。
From the viewpoint of transparency of the core-shell type particles, the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and particularly preferably less than 0.003. It is preferred to select a polymer.
The proportion of the outer shell layer in the core-shell type particle is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and particularly preferably 20 to 40% by mass. The ratio of the portion containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
 架橋ゴム粒子(CRp)の体積基準平均粒子径は、好ましくは0.02~1μm、より好ましくは0.05~0.5μm、特に好ましくは0.1~0.3μmである。かかる体積基準平均粒子径を有する架橋ゴム粒子(CRp)を用いると、得られる成形体の外観欠点を著しく低減できる。なお、本明細書において、「体積基準平均粒子径」は、光散乱光法によって測定される粒径分布データに基いて算出される値である。 The volume-based average particle diameter of the crosslinked rubber particles (CRp) is preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm, and particularly preferably 0.1 to 0.3 μm. When cross-linked rubber particles (CRp) having such a volume-based average particle diameter are used, the appearance defect of the obtained molded product can be remarkably reduced. In the present specification, the “volume reference average particle size” is a value calculated based on particle size distribution data measured by a light scattering method.
 架橋ゴム粒子(CRp)の製造方法としては、粒子径制御および多層構造の製造しやすさ等の観点から、乳化重合法またはシード乳化重合法が好適である。乳化重合法は、1種以上の原料単量体を乳化重合させて、重合体粒子を含むエマルジョンを製造する方法である。シード乳化重合法では、1種以上の原料単量体を乳化重合させてシード粒子を得た後、このシード粒子の存在下に他の原料単量体を乳化重合することによって、シード粒子とそれを覆うシェル層とからなるコアシェル重合体粒子を含むエマルジョンを製造できる。得られたコアシェル重合体粒子の存在下にさらに1種以上の原料単量体を乳化重合する工程を繰り返すによって、シード粒子とそれを覆う複数のシェル層とからなるコアシェル多層重合体粒子を含むエマルジョンを製造できる。 As a method for producing the crosslinked rubber particles (CRp), an emulsion polymerization method or a seed emulsion polymerization method is preferable from the viewpoints of particle diameter control and ease of production of a multilayer structure. The emulsion polymerization method is a method for producing an emulsion containing polymer particles by emulsion polymerization of one or more raw material monomers. In the seed emulsion polymerization method, seed particles are obtained by emulsion polymerization of one or more kinds of raw material monomers, and then emulsion polymerization of other raw material monomers in the presence of the seed particles. An emulsion containing core-shell polymer particles comprising a shell layer covering the same can be produced. Emulsion comprising core-shell multilayer polymer particles comprising seed particles and a plurality of shell layers covering them by repeating the step of emulsion polymerization of one or more raw material monomers in the presence of the obtained core-shell polymer particles Can be manufactured.
 乳化重合法に用いられる乳化剤としては、アニオン系乳化剤、ノニオン系乳化剤、およびノニオン・アニオン系乳化剤が挙げられる。アニオン系乳化剤としては、ジオクチルスルホコハク酸ナトリウム、およびジラウリルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ドデシル硫酸ナトリウム等のアルキル硫酸塩等が挙げられる。ノニオン系乳化剤としては、ポリオキシエチレンアルキルエーテルおよびポリオキシエチレンノニルフェニルエーテル等が挙げられる。ノニオン・アニオン系乳化剤としては、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンノニルフェニルエーテル硫酸塩;ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩:ポリオキシエチレントリデシルエーテル酢酸ナトリウム等のアルキルエーテルカルボン酸塩等が挙げられる。これらは、1種または2種以上用いることができる。なお、ノニオン系乳化剤およびノニオン・アニオン系乳化剤の例示化合物におけるエチレンオキシド(EO)単位の平均繰返し単位数は、乳化剤の発泡性が極端に大きくならないようにするために、好ましくは30以下、より好ましくは20以下、特に好ましくは10以下である。
 乳化重合に用いられる重合開始剤としては、過硫酸カリウムおよび過硫酸アンモニウム等の過硫酸塩系開始剤;パースルホキシレート/有機過酸化物および過硫酸塩/亜硫酸塩等のレドックス系開始剤が挙げられる。
Examples of the emulsifier used in the emulsion polymerization method include an anionic emulsifier, a nonionic emulsifier, and a nonionic anionic emulsifier. Examples of anionic emulsifiers include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate; alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate; alkyl sulfates such as sodium dodecyl sulfate. Examples of nonionic emulsifiers include polyoxyethylene alkyl ether and polyoxyethylene nonylphenyl ether. Nonionic and anionic emulsifiers include polyoxyethylene nonylphenyl ether sulfate such as sodium polyoxyethylene nonylphenyl ether sulfate; polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate: polyoxyethylene tridecyl ether Examples thereof include alkyl ether carboxylates such as sodium acetate. These can be used alone or in combination of two or more. The average number of repeating units of ethylene oxide (EO) units in the exemplified compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably in order to prevent the foaming property of the emulsifier from becoming extremely large. 20 or less, particularly preferably 10 or less.
Examples of the polymerization initiator used in emulsion polymerization include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite. It is done.
 乳化重合によって得られるエマルジョンからの架橋ゴム粒子(CRp)の分離方法としては、塩析凝固法、凍結凝固法、および噴霧乾燥法等が挙げられる。中でも、架橋ゴム粒子(CRp)に含まれる不純物を水洗により容易に除去できる点から、塩析凝固法および凍結凝固法が好ましく、凍結凝固法がより好ましい。凝集剤を用いない凍結凝固法によれば、耐水性に優れた樹脂組成物が得られやすい。なお、凝固工程前に、目開き50μm以下の金網等でエマルジョンを濾過すると、エマルジョンに混入した異物を除去することができ、好ましい。 Examples of the method for separating the crosslinked rubber particles (CRp) from the emulsion obtained by emulsion polymerization include a salting out coagulation method, a freeze coagulation method, and a spray drying method. Among these, the salting-out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable because impurities contained in the crosslinked rubber particles (CRp) can be easily removed by washing with water. According to the freeze coagulation method without using a flocculant, a resin composition excellent in water resistance can be easily obtained. In addition, it is preferable to filter the emulsion with a wire mesh or the like having an opening of 50 μm or less before the coagulation step because foreign matters mixed in the emulsion can be removed.
 メタクリル樹脂(M1)、(M2)と架橋ゴム粒子(CRp)との溶融混練における粒子分散性の観点から、架橋ゴム粒子(CRp)は、好ましくは1000μm以下、より好ましくは500μm以下の径の凝集体の形態で取り出すことが好ましい。なお、凝集形態としては、シェル部同士が相互融着した形態が挙げられる。架橋ゴム粒子凝集体の形状としては、ペレット状、粉末状、およびグラニュール状等が挙げられる。 From the viewpoint of particle dispersibility in the melt kneading of the methacrylic resins (M1) and (M2) and the crosslinked rubber particles (CRp), the crosslinked rubber particles (CRp) are preferably aggregates having a diameter of 1000 μm or less, more preferably 500 μm or less. It is preferable to take it out in the form of a collection. In addition, as an aggregation form, the form which shell parts mutually fused is mentioned. Examples of the shape of the crosslinked rubber particle aggregate include pellets, powders, and granules.
 本発明のメタクリル樹脂組成物中の架橋ゴム(CR)の量は、メタクリル樹脂(M1)、(M2)の合計量100質量部に対して、好ましくは5~30質量部、より好ましくは10~25質量部、特に好ましくは15~20質量部である。 The amount of the crosslinked rubber (CR) in the methacrylic resin composition of the present invention is preferably 5 to 30 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). The amount is 25 parts by mass, particularly preferably 15 to 20 parts by mass.
 本発明のメタクリル樹脂組成物には、架橋ゴム粒子(CRp)の均一分散性を高めるために、メタクリル樹脂粒子等の分散補助粒子(DA)を添加することができる。分散補助粒子(DA)の体積基準平均粒子径は、架橋ゴム粒子(CRp)より小さいことが好ましく、好ましくは0.04~0.12μm、より好ましくは0.05~0.1μmである。分散性向上効果等の観点から、分散補助粒子(DA)/架橋ゴム粒子(CRp)の質量比は、好ましくは0/100~60/40、より好ましくは10/90~50/50、特に好ましくは20/80~40/60である。 In the methacrylic resin composition of the present invention, dispersion auxiliary particles (DA) such as methacrylic resin particles can be added in order to improve the uniform dispersibility of the crosslinked rubber particles (CRp). The volume-based average particle diameter of the dispersion assisting particles (DA) is preferably smaller than the crosslinked rubber particles (CRp), preferably 0.04 to 0.12 μm, more preferably 0.05 to 0.1 μm. From the viewpoint of improving dispersibility and the like, the mass ratio of dispersion aid particles (DA) / crosslinked rubber particles (CRp) is preferably 0/100 to 60/40, more preferably 10/90 to 50/50, and particularly preferably. Is 20/80 to 40/60.
<ブロック共重合体(BP)>
 ブロック共重合体(BP)は、複数種の重合体分子鎖(重合体ブロック)が全体として鎖状または放射状に繋がった共重合体である。メタクリル樹脂(M1)、(M2)との相容性の観点から、ブロック共重合体(BP)を構成する重合体ブロックの少なくとも1つが、メタクリル酸エステル単量体単位を90質量%以上含む重合体、スチレン単量体単位とアクリロニトリル単量体単位とを含む重合体、スチレン単量体単位と無水マレイン酸単量体単位とを含む重合体、スチレン単量体単位と無水マレイン酸単量体単位とMMA単量体単位とを含む重合体、またはポリビニルブチラールを含むことが好ましい。
<Block copolymer (BP)>
The block copolymer (BP) is a copolymer in which a plurality of types of polymer molecular chains (polymer blocks) are connected in a chain or radial form as a whole. From the viewpoint of compatibility with the methacrylic resins (M1) and (M2), at least one of the polymer blocks constituting the block copolymer (BP) has a weight containing 90% by mass or more of a methacrylic acid ester monomer unit. Polymers containing styrene monomer units and acrylonitrile monomer units, polymers containing styrene monomer units and maleic anhydride monomer units, styrene monomer units and maleic anhydride monomers It is preferable to include a polymer containing units and MMA monomer units, or polyvinyl butyral.
 成形体の強度向上の観点から、ブロック共重合体(BP)としては、ポリメタクリル酸メチル(PMMA)等のポリメタクリル酸エステルからなる1つ以上の重合体ブロック(b1)(メタクリル酸エステル重合体ブロック)と、ポリアクリル酸エステルからなる1つ以上の重合体ブロック(b2)(アクリル酸エステル重合体ブロック)とを含むブロック共重合体(BPa)が好ましい。
 ブロック共重合体(BPa)の製造方法としては、リビング重合を利用して一方の重合体ブロックの末端に重合開始点をつくり、この開始点からモノマーを重合させて他方の重合体ブロックを繋げて生成する方法;複数種の重合体ブロックを用意し、これらを付加反応または縮合反応させる方法等が挙げられる。
From the viewpoint of improving the strength of the molded product, the block copolymer (BP) may be one or more polymer blocks (b1) (methacrylic ester polymer) comprising a polymethacrylic ester such as polymethyl methacrylate (PMMA). A block copolymer (BPa) containing a block) and one or more polymer blocks (b2) (acrylic acid ester polymer block) made of polyacrylic acid ester is preferable.
As a method for producing a block copolymer (BPa), a polymerization initiation point is created at the end of one polymer block using living polymerization, and a monomer is polymerized from this initiation point to connect the other polymer block. A method of producing: a method of preparing a plurality of types of polymer blocks and subjecting them to addition reaction or condensation reaction, and the like.
 ブロック共重合体(BP)の量は、メタクリル樹脂(M1)、(M2)の合計量100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~25質量部、特に好ましくは1~20質量部である。 The amount of the block copolymer (BP) is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). Particularly preferred is 1 to 20 parts by mass.
(他の任意成分)
 本発明のメタクリル樹脂組成物は必要に応じて、他の任意成分を含むことができる。他の任意成分としては、フィラー、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、および蛍光体等の各種添加剤が挙げられる。これら各種添加剤の合計量は、好ましくは7質量%以下、より好ましくは5質量%以下、特に好ましくは4質量%以下である。
(Other optional ingredients)
The methacrylic resin composition of the present invention can contain other optional components as required. Other optional components include fillers, antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, and light diffusion. And various additives such as agents, organic dyes, matting agents, impact modifiers, and phosphors. The total amount of these various additives is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
<紫外線吸収剤(LA)>
 紫外線吸収剤(LA)の分子量が過小では、メタクリル樹脂組成物の成形時に発泡が生じる恐れがある。そのため、紫外線吸収剤(LA)の分子量は、好ましくは200超、より好ましくは300以上、特に好ましくは500以上、最も好ましくは600以上である。
 紫外線吸収剤(LA)は、光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。紫外線吸収剤(LA)としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、およびホルムアミジン類等が挙げられる。これらは、1種または2種以上用いることができる。紫外線による樹脂の劣化(黄変等)の抑制効果が高いことから、ベンゾトリアゾール類(ベンゾトリアゾール骨格を有する化合物)およびトリアジン類(トリアジン骨格を有する化合物)が好ましい。
<Ultraviolet absorber (LA)>
If the molecular weight of the ultraviolet absorber (LA) is too small, foaming may occur during molding of the methacrylic resin composition. Therefore, the molecular weight of the ultraviolet absorber (LA) is preferably more than 200, more preferably 300 or more, particularly preferably 500 or more, and most preferably 600 or more.
An ultraviolet absorber (LA) is a compound said to have a function of converting light energy into heat energy. Examples of the ultraviolet absorber (LA) include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, and formamidines. These can be used alone or in combination of two or more. Benzotriazoles (compounds having a benzotriazole skeleton) and triazines (compounds having a triazine skeleton) are preferable because they have a high effect of suppressing deterioration (such as yellowing) of the resin due to ultraviolet rays.
 ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール〕(ADEKA社製;LA-31)、および2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノール等が挙げられる。 Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2 -Yl) -4-tert-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like Can be mentioned.
 トリアジン類としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;CGL777、TINUVIN460、TINUVIN479等)、および2,4-ジフニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazines include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and its analogs. Certain hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; CGL777, TINUVIN460, TINUVIN479, etc.), 2,4-diphnyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, etc. Is mentioned.
 その他、波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤が挙げられる。かかる紫外線吸収剤としては、2-エチル-2’-エトキシ-オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)等が挙げられる。 Other examples include ultraviolet absorbers having a maximum molar extinction coefficient ε max at wavelengths of 380 to 450 nm of 1200 dm 3 · mol −1 cm −1 or less. Examples of such an ultraviolet absorber include 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, trade name: Sundebore VSU).
 その他、国際公開第2011/089794号、国際公開第2012/124395号、特開2012-012476号公報、特開2013-023461号公報、特開2013-112790号公報、特開2013-194037号公報、特開2014-62228号公報、特開2014-88542号公報、および特開2014-88543号公報等に記載の複素環構造の配位子を有する金属錯体が挙げられる。かかる金属錯体としては、下記式(A)で表される化合物が挙げられる。 In addition, WO 2011/089794, WO 2012/124395, JP 2012-012476, JP 2013-023461, JP 2013-112790, JP 2013-194037, Examples thereof include metal complexes having a heterocyclic ligand as described in JP-A No. 2014-62228, JP-A No. 2014-88542, JP-A No. 2014-88543, and the like. Examples of such metal complexes include compounds represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(A)中、Mは金属原子である。Y1~Y4はそれぞれ独立に、炭素原子以外の2価基(酸素原子、硫黄原子、NH、およびNR5等)である。R5は、アルキル基、アリール基、ヘテロアリール基、ヘテロアラルキル基、およびアラルリル基等の置換基である。該置換基はさらに置換基を有してもよい。Z1およびZ2はそれぞれ独立に、3価基(窒素原子、CH、およびCR6等)である。R6は、アルキル基、アリール基、ヘテロアリール基、ヘテロアラルキル基、およびアラルリル基等の置換基である。該置換基はさらに置換基を有してもよい。R1~R4はそれぞれ独立に、水素原子、アルキル基、ヒドロキシル基、カルボキシル基、アルコキシル基、ハロゲノ基、アルキルスルホニル基、モノホリノスルホニル基、ピペリジノスルホニル基、チオモルホリノスルホニル基、およびピペラジノスルホニル基等の置換基である。該置換基はさらに置換基を有してもよい。a~dはそれぞれR1~R4の数を示し、それぞれ独立に1~4の整数である。 In formula (A), M is a metal atom. Y 1 to Y 4 are each independently a divalent group other than a carbon atom (oxygen atom, sulfur atom, NH, NR 5, etc.). R 5 is a substituent such as an alkyl group, an aryl group, a heteroaryl group, a heteroaralkyl group, and an araryl group. The substituent may further have a substituent. Z 1 and Z 2 are each independently a trivalent group (such as a nitrogen atom, CH, and CR 6 ). R 6 is a substituent such as an alkyl group, an aryl group, a heteroaryl group, a heteroaralkyl group, and an araryl group. The substituent may further have a substituent. R 1 to R 4 are each independently a hydrogen atom, alkyl group, hydroxyl group, carboxyl group, alkoxyl group, halogeno group, alkylsulfonyl group, monomorpholinosulfonyl group, piperidinosulfonyl group, thiomorpholinosulfonyl group, and A substituent such as a piperazinosulfonyl group. The substituent may further have a substituent. a to d each represent the number of R 1 to R 4 and are each independently an integer of 1 to 4.
 上記金属錯体における複素環構造の配位子としては、2,2’-イミノビスベンゾチアゾール、2-(2-ベンゾチアゾリルアミノ)ベンゾオキサゾール、2-(2-ベンゾチアゾリルアミノ)ベンゾイミダゾール、(2-ベンゾチアゾリル)(2-ベンゾイミダゾリル)メタン、ビス(2-ベンゾオキサゾリル)メタン、ビス(2-ベンゾチアゾリル)メタン、ビス[2-(N-置換)ベンゾイミダゾリル]メタン、およびこれらの誘導体等が挙げられる。上記金属錯体の中心金属としては、銅、ニッケル、コバルト、および亜鉛等が好ましい。上記金属錯体は、低分子化合物または重合体等の媒体に分散させて用いることが好ましい。上記金属錯体の添加量は、本発明のメタクリル樹脂組成物100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.1~2質量部である。金属錯体は380~400nmの波長におけるモル吸光係数が大きいので、所望の紫外線吸収効果を得るために添加する量が少なくて済む。そのため、ブリードアウト等による成形体の外観悪化を抑制できる。また、上記金属錯体は耐熱性が高いので、成形時の劣化および分解が少ない。さらに上記金属錯体は耐光性が高いので、紫外線吸収性能を長期間保持できる。 As the ligand of the heterocyclic structure in the above metal complex, 2,2′-iminobisbenzothiazole, 2- (2-benzothiazolylamino) benzoxazole, 2- (2-benzothiazolylamino) benzo Imidazole, (2-benzothiazolyl) (2-benzimidazolyl) methane, bis (2-benzoxazolyl) methane, bis (2-benzothiazolyl) methane, bis [2- (N-substituted) benzimidazolyl] methane, and derivatives thereof Etc. As the central metal of the metal complex, copper, nickel, cobalt, zinc and the like are preferable. The metal complex is preferably used by being dispersed in a medium such as a low molecular compound or a polymer. The amount of the metal complex added is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the methacrylic resin composition of the present invention. Since the metal complex has a large molar extinction coefficient at a wavelength of 380 to 400 nm, the amount to be added is small in order to obtain a desired ultraviolet absorption effect. Therefore, it is possible to suppress deterioration of the appearance of the molded body due to bleeding out or the like. Further, since the metal complex has high heat resistance, there is little deterioration and decomposition during molding. Furthermore, since the metal complex has high light resistance, it can maintain ultraviolet absorption performance for a long time.
 紫外線吸収剤のモル吸光係数の最大値εmaxは、次のようにして測定することができる。シクロヘキサン1Lに紫外線吸収剤10.00mgを添加し、目視観察で未溶解物がないように溶解させる。この溶液を1cm×1cm×3cmの石英ガラスセル内に注入し、日立製作所社製U-3410型分光光度計を用いて、波長380~450nmでの吸光度を測定する。紫外線吸収剤の分子量(MUV)と測定された吸光度の最大値(Amax)とから次式により、モル吸光係数の最大値εmaxを算出する。
 εmax=〔Amax/(10×10-3)〕×MUV
The maximum value ε max of the molar extinction coefficient of the ultraviolet absorber can be measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane and dissolved so that there is no undissolved substance by visual observation. This solution is poured into a 1 cm × 1 cm × 3 cm quartz glass cell, and the absorbance at a wavelength of 380 to 450 nm is measured using a U-3410 spectrophotometer manufactured by Hitachi, Ltd. The maximum value ε max of the molar extinction coefficient is calculated from the molecular weight (M UV ) of the ultraviolet absorber and the measured maximum absorbance value (A max ) according to the following equation.
ε max = [A max / (10 × 10 −3 )] × M UV
<高分子加工助剤(PA)>
 高分子加工助剤(PA)としては、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子(非架橋ゴム粒子)を用いることができる。重合体粒子は、単一組成および単一極限粘度の重合体からなる単層粒子であってもよいし、組成または極限粘度の異なる2種以上の重合体からなる2層以上の多層粒子であってもよい。中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましい。高分子加工助剤(PA)は、極限粘度が3~6dl/gであることが好ましい。極限粘度が過小では成形性の改善効果が不充分となる恐れがあり、過大ではメタクリル樹脂組成物の成形性の低下を招く恐れがある。具体的には、三菱レイヨン社製メタブレン-Pシリーズおよびダウ社製パラロイドシリーズ等が挙げられる。高分子加工助剤(PA)の量は、メタクリル樹脂(M1)、(M2)の合計量100質量部に対して、好ましくは0.1~5質量部である。配合量が過少では良好な加工特性が得られず、配合量が過多では成形体の外観が悪化する恐れがある。
<Polymer processing aid (PA)>
As the polymer processing aid (PA), polymer particles (non-crosslinked rubber particles) having a particle diameter of 0.05 to 0.5 μm, which can be produced by an emulsion polymerization method, can be used. The polymer particle may be a single-layer particle composed of a polymer having a single composition and a single intrinsic viscosity, or may be a multilayer particle composed of two or more layers composed of two or more polymers having different compositions or intrinsic viscosities. May be. Among these, particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable. The polymer processing aid (PA) preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the moldability improving effect may be insufficient, and if it is too large, the moldability of the methacrylic resin composition may be lowered. Specific examples include the Metablene-P series manufactured by Mitsubishi Rayon Co., and the Paraloid series manufactured by Dow. The amount of the polymer processing aid (PA) is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the methacrylic resins (M1) and (M2). If the amount is too small, good processing characteristics cannot be obtained, and if the amount is too large, the appearance of the molded article may be deteriorated.
<他の添加剤>
 フィラーとしては、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、および炭酸マグネシウム等が挙げられる。本発明のメタクリル樹脂組成物中のフィラーの量は、好ましくは3質量%以下、より好ましくは1.5質量%以下である。
<Other additives>
Examples of the filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate. The amount of the filler in the methacrylic resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
 酸化防止剤としては、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、およびチオエーテル系酸化防止剤等が挙げられる。酸化防止剤は、1種または2種以上用いることができる。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤およびヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤:ヒンダードフェノール系酸化防止剤の質量比は、1:5~2:1が好ましく、1:2~1:1がより好ましい。
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、および3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)等が挙げられる。
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、およびオクタデシル-3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)等が挙げられる。
Examples of the antioxidant include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. One type or two or more types of antioxidants can be used. Among these, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable. When a phosphorus antioxidant and a hindered phenol antioxidant are used in combination, the mass ratio of phosphorus antioxidant: hindered phenol antioxidant is preferably 1: 5 to 2: 1, and 1: 2. ˜1: 1 is more preferred.
Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: ADK STAB HP-10), tris (2,4-di-t- Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168) and 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa3 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) and the like.
As the hindered phenol-based antioxidant, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX 1010), and octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076).
 熱劣化防止剤は、実質的に無酸素下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止することができる。熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、および2,4-ジt-アミル-6-(3’,5’-ジt-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)等が挙げられる。 The thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals that are generated when exposed to high heat under substantially oxygen-free conditions. Examples of the thermal deterioration preventive agent include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GM), and 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy-α-methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GS) .
 光安定剤は、光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン等が挙げられる。
 滑剤としては、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、および硬化油等が挙げられる。
 離型剤としては、セチルアルコールおよびステアリルアルコール等の高級アルコール類;ステアリン酸モノグリセライドおよびステアリン酸ジグリセライド等のグリセリン高級脂肪酸エステル等が挙げられる。高級アルコール類とグリセリン脂肪酸モノエステルとの併用が好ましい。高級アルコール類/グリセリン脂肪酸モノエステルの質量比は好ましくは2.5/1~3.5/1、より好ましくは2.8/1~3.2/1である。
The light stabilizer is a compound that is said to have a function of capturing radicals generated by oxidation by light. And hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
Examples of the lubricant include stearic acid, behenic acid, stearamic acid, methylene bisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hardened oil.
Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. The combined use of higher alcohols and glycerin fatty acid monoester is preferred. The mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1, more preferably 2.8 / 1 to 3.2 / 1.
 有機色素としては、紫外線を可視光線に変換する化合物が好ましく用いられる。
 光拡散剤および艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、および硫酸バリウム等が挙げられる。
 蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、および蛍光漂白剤等が挙げられる。
As the organic dye, a compound that converts ultraviolet light into visible light is preferably used.
Examples of the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
Examples of the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent whitening agent, and a fluorescent bleaching agent.
(メタクリル樹脂組成物の物性)
 本発明のメタクリル樹脂組成物は、Mwが好ましくは50000~200000、より好ましくは55000~160000、特に好ましくは60000~120000、最も好ましくは70000~100000であり、分子量分布(Mw/Mn)が好ましくは1.0~5.0、より好ましくは1.2~3.0、特に好ましくは1.3~2.0、最も好ましくは1.3~1.7である。Mwおよび分子量分布(Mw/Mn)がかかる範囲にあると、メタクリル樹脂組成物の成形性が良好となり、機械的強度(耐衝撃性および靭性等)に優れた成形体を得易くなる。
(Physical properties of methacrylic resin composition)
The methacrylic resin composition of the present invention preferably has an Mw of 50,000 to 200,000, more preferably 55,000 to 160000, particularly preferably 60000 to 120,000, most preferably 70000 to 100,000, and preferably has a molecular weight distribution (Mw / Mn). It is 1.0 to 5.0, more preferably 1.2 to 3.0, particularly preferably 1.3 to 2.0, and most preferably 1.3 to 1.7. When the Mw and the molecular weight distribution (Mw / Mn) are in such ranges, the moldability of the methacrylic resin composition becomes good, and it becomes easy to obtain a molded body excellent in mechanical strength (impact resistance, toughness, etc.).
 本発明のメタクリル樹脂組成物の230℃および3.8kg荷重の条件で測定されるメルトフローレート(MFR)は、好ましくは0.1~30g/10分、より好ましくは0.5~20g/10分、特に好ましくは1.0~15g/10分である。
 本発明のメタクリル樹脂組成物は、3.2mm厚さのフィルムに加工したときのヘイズが、好ましくは3.0%以下、より好ましくは2.0%以下、特に好ましくは1.5%以下である。
The melt flow rate (MFR) measured under the conditions of 230 ° C. and 3.8 kg load of the methacrylic resin composition of the present invention is preferably 0.1 to 30 g / 10 minutes, more preferably 0.5 to 20 g / 10. Min, particularly preferably 1.0 to 15 g / 10 min.
In the methacrylic resin composition of the present invention, the haze when processed into a film having a thickness of 3.2 mm is preferably 3.0% or less, more preferably 2.0% or less, and particularly preferably 1.5% or less. is there.
(メタクリル樹脂組成物の製造方法)
 本発明のメタクリル樹脂組成物の製造方法としては、メタクリル樹脂(M1)、(M2)、および必要に応じて他の重合体を溶融混練する方法が挙げられる。溶融混練は、ニーダールーダ、押出機、ミキシングロール、およびバンバリーミキサー等の溶融混練装置を用いて行うことができる。混練温度は、メタクリル樹脂(M1)、(M2)、および必要に応じて用いられる他の重合体の軟化温度に応じて適宜調節でき、通常150℃~300℃の範囲内の温度である。混練時の剪断速度は10~5000sec-1の範囲内で調整可能である。
 本発明のメタクリル樹脂組成物の他の製造方法としては、メタクリル樹脂(M1)、(M2)のうちの一方のメタクリル樹脂および必要に応じて用いられる他の重合体の存在下に、他方のメタクリル樹脂を重合する方法がある。この製造方法は、上記製造方法に比べて、メタクリル樹脂に掛かる熱履歴が短くなるので、メタクリル樹脂の熱分解が抑制され、着色および異物の少ないメタクリル樹脂組成物が得られやすい。
 本発明のメタクリル樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレット等の形態にすることができる。
(Method for producing methacrylic resin composition)
As a manufacturing method of the methacrylic resin composition of this invention, the method of melt-kneading a methacryl resin (M1) and (M2) and another polymer as needed is mentioned. The melt kneading can be performed using a melt kneading apparatus such as a kneader ruder, an extruder, a mixing roll, and a Banbury mixer. The kneading temperature can be appropriately adjusted according to the softening temperature of the methacrylic resins (M1) and (M2) and other polymers used as necessary, and is usually within the range of 150 ° C to 300 ° C. The shear rate during kneading can be adjusted within a range of 10 to 5000 sec −1 .
As another production method of the methacrylic resin composition of the present invention, the other methacrylic resin (M1) and (M2) in the presence of one methacrylic resin and the other polymer used as necessary. There is a method of polymerizing a resin. Since this manufacturing method has a shorter thermal history applied to the methacrylic resin than the above manufacturing method, thermal decomposition of the methacrylic resin is suppressed, and a methacrylic resin composition with less coloring and foreign matter is easily obtained.
The methacrylic resin composition of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
「成形体」
 本発明の成形体は、上記の本発明のメタクリル樹脂組成物を成形したものである。成形法としては、Tダイ法(ラミネート法および共押出法等)、インフレーション法(共押出法等)、圧縮成形法、ブロー成形法、カレンダー成形法、真空成形法、射出成形法(インサート法、二色法、プレス法、コアバック法、およびサンドイッチ法等)等の溶融成形法;溶液キャスト法等が挙げられる。中でも、生産性およびコスト等の観点から、Tダイ法、インフレーション法、および射出成形法等が好ましい。
"Molded body"
The molded product of the present invention is obtained by molding the above methacrylic resin composition of the present invention. Molding methods include T-die method (lamination method and coextrusion method, etc.), inflation method (coextrusion method, etc.), compression molding method, blow molding method, calender molding method, vacuum molding method, injection molding method (insert method, A melt molding method such as a two-color method, a press method, a core back method, and a sandwich method; and a solution casting method. Of these, the T-die method, the inflation method, the injection molding method, and the like are preferable from the viewpoints of productivity and cost.
「フィルム」
 成形体の形態は任意であり、フィルム等が挙げられる。本発明のフィルムは、上記の本発明のメタクリル樹脂組成物からなるフィルムである。なお、通常、厚みが5~250μmの面状成形体は主に「フィルム」に分類され、250μmより厚い面状成形体は主に「シート」に分類されるが、本明細書ではこれらを総称して「フィルム」と称す。
"the film"
The form of the molded body is arbitrary, and examples thereof include a film. The film of this invention is a film which consists of said methacryl resin composition of this invention. In general, a planar molded body having a thickness of 5 to 250 μm is mainly classified as “film”, and a planar molded body thicker than 250 μm is mainly classified as “sheet”. It is called “film”.
 製膜法としては、溶融製膜法および溶液製膜法が挙げられ、生産性の観点から溶融製膜法が好ましい。溶融製膜法としては、インフレーション法、Tダイ法、カレンダー法、および切削法等が挙げられる。中でも、Tダイ法が好ましい。溶融製膜装置としては、単軸または二軸の押出スクリューを有するエクストルーダ型溶融押出装置等が挙げられる。溶融押出温度は、好ましくは150~350℃、より好ましくは200~300℃である。溶融押出装置を使用して溶融混練する場合、着色抑制の観点から、減圧下あるいは窒素等の不活性雰囲気下で溶融混練を行うことが好ましい。溶融押出装置には、異物除去のためのポリマーフィルタと、厚み精度を高めるためのギアポンプとを設置することが好ましい。 Examples of the film forming method include a melt film forming method and a solution film forming method, and the melt film forming method is preferable from the viewpoint of productivity. Examples of the melt film forming method include an inflation method, a T-die method, a calendar method, and a cutting method. Of these, the T-die method is preferable. Examples of the melt film forming apparatus include an extruder type melt extrusion apparatus having a single screw or a twin screw. The melt extrusion temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C. When melt-kneading using a melt-extrusion apparatus, it is preferable to perform melt-kneading under reduced pressure or inert atmosphere, such as nitrogen, from a viewpoint of coloring suppression. It is preferable to install a polymer filter for removing foreign substances and a gear pump for increasing the thickness accuracy in the melt extrusion apparatus.
 押出成形法において、良好な表面平滑性、良好な鏡面光沢、および低ヘイズのフィルムが得られることから、メタクリル樹脂組成物を溶融状態でTダイから押出し、これを1つ以上の冷却用の鏡面ロールまたは鏡面ベルトに接触または挟持させて冷却する方法が好ましい。鏡面ロールまたは鏡面ベルトは、少なくとも鏡面がクロムメッキ金属製であることが好ましい。 In the extrusion method, a film having good surface smoothness, good specular gloss, and low haze can be obtained. Therefore, the methacrylic resin composition is extruded from a T-die in a molten state, and this is one or more mirror surfaces for cooling. A method of cooling by contacting or pinching with a roll or a mirror belt is preferable. The mirror roll or mirror belt preferably has at least a mirror surface made of chrome-plated metal.
 上記方法にて製膜されたメタクリル樹脂フィルム(未延伸フィルム)の厚みは、機械的強度、フィルム均一性、および巻取り性の観点から、好ましくは10~500μm、より好ましくは20~200μmである。厚み分布は、平均値に対して、好ましくは±10%以内、より好ましくは±5%以内、特に好ましくは±3%以内である。厚み分布が±10%を超えると、延伸処理を行った場合に延伸ムラが生じる恐れがある。 The thickness of the methacrylic resin film (unstretched film) formed by the above method is preferably 10 to 500 μm, more preferably 20 to 200 μm from the viewpoints of mechanical strength, film uniformity, and winding property. . The thickness distribution is preferably within ± 10%, more preferably within ± 5%, and particularly preferably within ± 3% with respect to the average value. If the thickness distribution exceeds ± 10%, stretching unevenness may occur when stretching is performed.
 上記方法にて製膜されたメタクリル樹脂フィルム(未延伸フィルム)に対して、延伸処理を施してもよい。延伸処理によって機械的強度(耐衝撃性および靱性等)および熱物性が高まり、ひび割れし難いフィルムが得られる。延伸処理は、延伸工程、熱固定工程、および弛緩工程を含む。延伸方法としては、逐次二軸延伸法、同時二軸延伸法、およびチュブラー延伸法等が挙げられる。 The methacrylic resin film (unstretched film) formed by the above method may be stretched. Stretching increases the mechanical strength (impact resistance and toughness, etc.) and thermophysical properties, and a film that is difficult to crack is obtained. The stretching process includes a stretching process, a heat setting process, and a relaxation process. Examples of the stretching method include a sequential biaxial stretching method, a simultaneous biaxial stretching method, and a tuber stretching method.
 逐次二軸延伸法の場合、いずれの延伸方向についても、延伸速度は好ましくは1~8,000%/分、より好ましくは100~6,000%/分である。なお、延伸速度は二方向で同一でも非同一でもよい。同時二軸延伸法の場合、延伸速度は好ましくは1~8,000%/分、より好ましくは50~6,000%/分である。いずれの方法においても、延伸速度が過小では生産性が良くなく、延伸速度が過大ではフィルム破断が生じる恐れがある。 In the case of the sequential biaxial stretching method, the stretching speed is preferably 1 to 8,000% / min, more preferably 100 to 6,000% / min in any stretching direction. The stretching speed may be the same or non-identical in the two directions. In the case of the simultaneous biaxial stretching method, the stretching speed is preferably 1 to 8,000% / min, more preferably 50 to 6,000% / min. In either method, productivity is not good if the stretching speed is too low, and film breakage may occur if the stretching speed is too high.
 延伸温度は、本発明のメタクリル樹脂組成物のTgを基準として、逐次/同時二軸延伸法のいずれにおいても、好ましくはTg~(Tg+30℃)、より好ましくは(Tg+5℃)~(Tg+25℃)である。かかる範囲では、厚みムラが抑制される。延伸温度が過低ではフィルム破断が生じる恐れがあり、過高では延伸処理による機械的強度および熱物性の向上効果が不充分となる恐れがある。 The stretching temperature is preferably Tg to (Tg + 30 ° C.), more preferably (Tg + 5 ° C.) to (Tg + 25 ° C.) in any of the sequential / simultaneous biaxial stretching methods based on the Tg of the methacrylic resin composition of the present invention. It is. In such a range, thickness unevenness is suppressed. If the stretching temperature is too low, the film may be broken, and if it is too high, the effect of improving the mechanical strength and thermophysical properties by the stretching process may be insufficient.
 未延伸フィルムに対する延伸フィルムの面積倍率は、好ましくは1.01~12.25倍、より好ましくは1.10~9倍である。延伸倍率が1.01倍未満ではフィルムの機械的強度の向上効果が不充分となり、12.25倍超では機械的強度が低下する恐れがある。二軸延伸の場合、各軸方向の延伸倍率は、1.01~3.5倍が好ましい。 The area ratio of the stretched film to the unstretched film is preferably 1.01 to 12.25 times, more preferably 1.10 to 9 times. If the draw ratio is less than 1.01, the effect of improving the mechanical strength of the film is insufficient, and if it exceeds 12.25, the mechanical strength may be lowered. In the case of biaxial stretching, the stretching ratio in each axial direction is preferably 1.01 to 3.5 times.
 本発明のフィルムは、偏光子保護フィルム、位相差フィルム、液晶保護フィルム、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤまたはカーボンナノチューブを表面に塗布した透明導電フィルム、および各種ディスプレイの前面フィルム等に好適であり、偏光子保護フィルム等に特に好適である。
 その他、本発明のフィルムは、IR(赤外)カットフィルム、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルム、およびガスバリアフィルム等に、好適である。
 本発明のフィルムは、有機エレクトロルミネッセンス(EL)照明装置用の光学フィルムにも好適である。
The film of the present invention is coated with a polarizer protective film, a retardation film, a liquid crystal protective film, a surface material for a portable information terminal, a display window protective film for a portable information terminal, a light guide film, silver nanowires or carbon nanotubes on the surface. It is suitable for a transparent conductive film and a front film for various displays, and is particularly suitable for a polarizer protective film and the like.
In addition, the film of the present invention includes an IR (infrared) cut film, a crime prevention film, a scattering prevention film, a decorative film, a metal decorative film, a solar battery back sheet, a flexible solar battery front sheet, a shrink film, and an in-mold. It is suitable for a label film and a gas barrier film.
The film of the present invention is also suitable for an optical film for an organic electroluminescence (EL) lighting device.
「積層フィルム」
 本発明のフィルム(未延伸フィルムまたは延伸フィルム)は、少なくとも一方の面に他の層が積層された積層フィルムの形態としてもよい。本発明の積層フィルムは、上記の本発明のフィルム(未延伸フィルムまたは延伸フィルム)からなる層を有する。
 他の層としては、各種機能層が挙げられる。機能層としては、ハードコート層、アンチグレア層、反射防止層、スティッキング防止層、拡散層、防眩層、静電気防止層、防汚層、および微粒子等を含む易滑性層等が挙げられる。
"Laminated film"
The film (unstretched film or stretched film) of the present invention may be in the form of a laminated film in which another layer is laminated on at least one surface. The laminated film of the present invention has a layer comprising the above-described film of the present invention (unstretched film or stretched film).
Examples of other layers include various functional layers. Examples of the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an antisticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, and a slippery layer containing fine particles.
 他の層は、ヨウ素をドープしたポリビニルアルコールフィルムからなる偏光子であってもよい。本発明の積層フィルムの一態様である偏光板は、上記偏光子と、その少なくとも一方の表面に積層された上記の本発明のフィルムからなる偏光子保護フィルムとを有する。偏光子の一方の表面に本発明のフィルムが積層された態様では、偏光子の他方の表面に必要に応じて本発明のフィルム以外の任意の光学フィルムを積層することができる。任意の光学フィルムとしては、本発明のフィルム以外の偏光子保護フィルム、視野角調整フィルム、位相差フィルム、および輝度向上フィルム等が挙げられる。積層は必要に応じて、接着剤層を介して行うことができる。 The other layer may be a polarizer made of a polyvinyl alcohol film doped with iodine. The polarizing plate which is one aspect | mode of the laminated | multilayer film of this invention has the said polarizer and the polarizer protective film which consists of said film of this invention laminated | stacked on the at least one surface. In the aspect in which the film of the present invention is laminated on one surface of the polarizer, an optional optical film other than the film of the present invention can be laminated on the other surface of the polarizer as necessary. Examples of the optional optical film include a polarizer protective film other than the film of the present invention, a viewing angle adjustment film, a retardation film, and a brightness enhancement film. Lamination can be performed via an adhesive layer as required.
 上記態様の偏光板は、画像表示装置に使用することができる。画像表示装置としては、(有機)エレクトロルミネッセンスディスプレイ(ELD)、プラズマディスプレイ(PD)、および電界放出ディスプレイ(FED:Field Emission Display)等の自発光型表示装置;液晶表示装置(LCD)等が挙げられる。LCDは、液晶セルと、その少なくとも片側に配置された偏光板とを有する。 The polarizing plate of the above aspect can be used for an image display device. Examples of the image display device include self-luminous display devices such as (organic) electroluminescence display (ELD), plasma display (PD), and field emission display (FED); liquid crystal display (LCD) and the like. It is done. The LCD has a liquid crystal cell and a polarizing plate disposed on at least one side thereof.
 他の層は、金属および/または金属酸化物からなる層であってもよい。金属としては例えば、アルミニウム、珪素、マグネシウム、パラジウム、亜鉛、錫、ニッケル、銀、銅、金、インジウム、ステンレス鋼、クロム、およびチタン等が挙げられる。金属酸化物としては例えば、酸化アルミニウム、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化カルシウム、酸化カドミウム、酸化銀、酸化金、酸化クロム、珪素酸化物、酸化コバルト、酸化ジルコニウム、酸化スズ、酸化チタン、酸化鉄、酸化銅、酸化ニッケル、酸化白金、酸化パラジウム、酸化ビスマス、酸化マグネシウム、酸化マンガン、酸化モリブデン、酸化バナジウム、および酸化バリウム等が挙げられる。これらの金属および金属酸化物は、1種または2種以上用いることができる。中でも、インジウムは光沢に優れるため優れた意匠性を有し、本発明のフィルムに蒸着等により金属層を積層した積層フィルムを深絞り成形する際にも光沢が失われにくく、好ましい。また、アルミニウムは光沢に優れるため優れた意匠性を有し、かつ工業的にも安価に入手できるので、特に深絞り成形を要しない用途に好ましい。金属および/または金属酸化物からなる層を形成する方法としては真空蒸着法が通常用いられるが、イオンプレーティング、スパッタリング、およびCVD(Chemical Vapor Deposition:化学気相堆積)等の方法を用いてもよい。金属および/または金属酸化物からなる層を形成する前に、あらかじめ本発明のフィルムに対してコロナ処理等の表面処理を施しておいてもよい。金属および/または金属酸化物からなる層の厚さは、一般的には5~100nm程度であり、層形成後に深絞り成形を行う場合には5~250nmが好ましい。 The other layer may be a layer made of metal and / or metal oxide. Examples of the metal include aluminum, silicon, magnesium, palladium, zinc, tin, nickel, silver, copper, gold, indium, stainless steel, chromium, and titanium. Examples of the metal oxide include aluminum oxide, zinc oxide, antimony oxide, indium oxide, calcium oxide, cadmium oxide, silver oxide, gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide, tin oxide, titanium oxide, Examples thereof include iron oxide, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, molybdenum oxide, vanadium oxide, and barium oxide. These metals and metal oxides can be used alone or in combination. Among them, indium is excellent because it has excellent luster, and thus has excellent design properties, and it is preferable because the gloss is not easily lost when a laminated film obtained by laminating a metal layer on the film of the present invention by vapor deposition or the like is deeply drawn. Aluminum is excellent in luster, has excellent design properties, and can be obtained industrially at a low price, and therefore is preferable for applications that do not require deep drawing. As a method of forming a layer made of a metal and / or metal oxide, a vacuum deposition method is usually used, but a method such as ion plating, sputtering, and CVD (Chemical Vapor Deposition) may be used. Good. Before forming a layer made of metal and / or metal oxide, the film of the present invention may be subjected to surface treatment such as corona treatment. The thickness of the layer made of metal and / or metal oxide is generally about 5 to 100 nm, and preferably 5 to 250 nm when deep drawing is performed after the layer is formed.
 他の層は、他の熱可塑性樹脂からなる層であってもよい。積層に適した他の熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、他の(メタ)アクリル樹脂、ABS(アクリロニトリル-ブタジエン-スチレン共重合)樹脂、エチレンビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、およびアクリル系熱可塑性エラストマー等が挙げられる。これらの熱可塑性樹脂からなる層の厚さは、用途に応じて適宜設計され特に限定されず、二次加工性の観点からは500μm以下であることが好ましい。
 他の熱可塑性樹脂からなる層を有する積層フィルムの製法は特に制限されない。例えば、(1)別々に用意された本発明のフィルムと他の熱可塑性樹脂フィルムとを一対の加熱ロール間で連続的にラミネートする方法;(2)別々に用意された本発明のフィルムと他の熱可塑性樹脂フィルムとをホットプレスを用いて熱圧着する方法;(3)本発明のフィルムと他の熱可塑性樹脂フィルムとを別々に用意し、一方のフィルムを圧空成形または真空成形すると同時に他のフィルムを積層する方法;(4)別々に用意された本発明のフィルムと他の熱可塑性樹脂フィルムとを接着層を介してラミネートする方法(ウェットラミネーション法);(5)あらかじめ用意された本発明のフィルムにTダイから溶融押出された他の熱可塑性樹脂をラミネートする方法;(6)本発明のメタクリル樹脂組成物と他の熱可塑性樹脂とを共押出成形する方法等が挙げられる。
The other layer may be a layer made of another thermoplastic resin. Other thermoplastic resins suitable for lamination include polycarbonate resin, polyethylene terephthalate resin, polyamide resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, other (meth) acrylic resins, ABS (acrylonitrile-butadiene- Styrene copolymer) resin, ethylene vinyl alcohol resin, polyvinyl butyral resin, polyvinyl acetal resin, styrene thermoplastic elastomer, olefin thermoplastic elastomer, acrylic thermoplastic elastomer, and the like. The thickness of the layer made of these thermoplastic resins is appropriately designed depending on the application and is not particularly limited, and is preferably 500 μm or less from the viewpoint of secondary workability.
The method for producing a laminated film having a layer made of another thermoplastic resin is not particularly limited. For example, (1) A method of laminating separately prepared films of the present invention and other thermoplastic resin films between a pair of heating rolls; (2) Separately prepared films of the present invention and others (3) A film of the present invention and another thermoplastic resin film are prepared separately, and one film is formed by pressure forming or vacuum forming at the same time as the other. (4) Method of laminating separately prepared film of the present invention and another thermoplastic resin film through an adhesive layer (wet lamination method); (5) Book prepared in advance A method of laminating another thermoplastic resin melt-extruded from a T-die on the film of the invention; (6) co-combining the methacrylic resin composition of the present invention with another thermoplastic resin; And the like methods of out molding.
「積層成形体」
 本発明の積層成形体は、基材上に、上記の本発明のフィルムまたは上記の本発明の積層フィルムが積層されたものである。基材としては特に制限されず、他の熱可塑性樹脂基材、熱硬化性樹脂基材、木質基材、および非木質繊維基材等が挙げられる。基材に用いられる他の熱可塑性樹脂の例示は、積層フィルムを構成する他の層の材料として上記したものと同様である。基材に用いられる他の熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、およびメラミン樹脂等が挙げられる。
 積層成形体の製法は特に制限されない。例えば、上記基材上に、本発明の(積層)フィルムを、必要に応じ接着層を介して、加熱下で真空成形、圧空成形、または圧縮成形等することにより、積層成形体を得ることができる。
 その他の製法としては、本発明の(積層)フィルムを射出成形用雌雄金型間に挿入し、この金型内において(積層)フィルムの一方の面側に溶融した熱可塑性樹脂を射出することで、射出成形体の形成と、射出成形体と(積層)フィルムとの貼合を同時に行う射出成形同時貼合法も好ましい。この方法に使用される本発明の(積層)フィルムは、平坦フィルムであってもよいし、真空成形、および圧空成形等で予備成形して任意の凹凸形状に賦形されたものであってもよい。なお、本発明の(積層)フィルムの予備成形は、射出成形同時貼合法に用いる射出成形機の金型内で行ってもよいし、別の成形機を用いて行ってもよい。(積層)フィルムを予備成形した後、その片面に溶融樹脂を射出する方法は、インサート成形法と呼ばれる。
 本発明の積層成形体においては、本発明のフィルムからなる層を最表層とすることが好ましい。本発明の積層成形体は、表面平滑性、表面硬度、および表面光沢等に優れる。本発明の積層フィルムが印刷層を有する場合には絵柄等が鮮明に表示される。また、金属または金属酸化物からなる層を有する積層フィルムを用いた場合には、金属並みの鏡面光沢性が得られる。
"Laminated molded body"
The laminated molded body of the present invention is obtained by laminating the above-described film of the present invention or the above-described laminated film of the present invention on a substrate. It does not restrict | limit especially as a base material, Other thermoplastic resin base materials, a thermosetting resin base material, a wooden base material, a non-woody fiber base material, etc. are mentioned. The illustration of the other thermoplastic resin used for a base material is the same as that of what was mentioned above as a material of the other layer which comprises a laminated | multilayer film. Examples of other thermosetting resins used for the substrate include epoxy resins, phenol resins, and melamine resins.
The method for producing the laminated molded body is not particularly limited. For example, a laminated molded body can be obtained by subjecting the (laminate) film of the present invention to vacuum heating, pressure molding, compression molding or the like under heating through an adhesive layer as necessary on the substrate. it can.
As another manufacturing method, the (laminated) film of the present invention is inserted between male and female molds for injection molding, and a molten thermoplastic resin is injected into one side of the (laminated) film in this mold. Also preferred is an injection molding simultaneous laminating method in which the formation of an injection molded body and the injection molded body and (laminate) film are simultaneously bonded. The (laminated) film of the present invention used in this method may be a flat film, or may be preformed by vacuum forming, pressure forming, etc. and shaped into an arbitrary uneven shape. Good. In addition, the preforming of the (laminated) film of the present invention may be performed in a mold of an injection molding machine used in the simultaneous injection molding method, or may be performed using another molding machine. A method of injecting a molten resin on one side after preforming a (laminate) film is called an insert molding method.
In the laminated molded body of the present invention, it is preferable that the layer made of the film of the present invention be the outermost layer. The laminated molded body of the present invention is excellent in surface smoothness, surface hardness, surface gloss, and the like. When the laminated film of the present invention has a printed layer, a pattern or the like is clearly displayed. Moreover, when the laminated film which has a layer which consists of a metal or a metal oxide is used, mirror surface glossiness equivalent to a metal is obtained.
 以上説明したように、本発明によれば、高温成形性が良好で、かつ、熱に対して高い寸法安定性を有する成形体を得ることが可能なメタクリル樹脂組成物を提供することができる。本発明のメタクリル樹脂組成物は、従来よりも高温に晒されても、例えばポリマーフィルタ通過時等に例えば280℃程度の熱履歴があっても良好な成形性を有するので、成形体の形状の複雑化等にも対応できる。また、得られる成形体は、130℃程度の熱に対しても、高い寸法安定性を有することができる。
 本発明によれば、高温成形性が良好で、かつ、透明性、熱に対する寸法安定性、および機械的強度(耐衝撃性および靱性等)に優れた成形体を得ることが可能なメタクリル樹脂組成物を提供することができる。
As described above, according to the present invention, it is possible to provide a methacrylic resin composition capable of obtaining a molded article having good high temperature moldability and high dimensional stability against heat. Even if the methacrylic resin composition of the present invention is exposed to a higher temperature than before or has a heat history of, for example, about 280 ° C. when passing through a polymer filter, for example, it has good moldability. It can cope with complications. Moreover, the obtained molded object can have high dimensional stability also with respect to a heat | fever about 130 degreeC.
According to the present invention, a methacrylic resin composition capable of obtaining a molded article having good high-temperature moldability and excellent in transparency, dimensional stability against heat, and mechanical strength (impact resistance, toughness, etc.) Things can be provided.
 以下、本発明に係る実施例および比較例について、説明する。
[評価項目および評価方法]
 評価項目および評価方法は、以下の通りである。
(重合転化率)
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラムとしてGL Sciences Inc.製 Inert CAP 1(df=0.4μm、I.D.=0.25mm、長さ=60m)を接続した。インジェクション温度を180℃とし、検出器温度を180℃とした。カラム温度は、60℃に5分間保持した後、60℃から昇温速度10℃/分で200℃まで昇温し、200℃で10分間保持する温度プロファイルとした。これら条件下で測定を行い、得られた結果に基づいて重合転化率を算出した。
Examples of the present invention and comparative examples will be described below.
[Evaluation items and methods]
Evaluation items and evaluation methods are as follows.
(Polymerization conversion)
A gas chromatograph GC-14A manufactured by Shimadzu Corporation was used as a column and GL Sciences Inc. Inert CAP 1 (df = 0.4 μm, ID = 0.25 mm, length = 60 m) was connected. The injection temperature was 180 ° C. and the detector temperature was 180 ° C. The column temperature was kept at 60 ° C. for 5 minutes, and then the temperature profile was raised from 60 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min, and held at 200 ° C. for 10 minutes. Measurement was performed under these conditions, and the polymerization conversion was calculated based on the obtained results.
(重量平均分子量(Mw)、分子量分布(Mw/Mn))
 測定対象樹脂4mgをテトラヒドロフラン(THF)5mlに溶解させ、孔径0.1μmのフィルタでろ過したものを、試料溶液とした。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製「HLC-8320」を使用した。カラムとして、東ソー株式会社製の「TSKgel Super Multipore HZM-M」2本と「Super HZ4000」とを直列に繋いだものを用いた。溶離剤としてテトラヒドロフラン(THF)を用いた。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを装置内に注入して、クロマトグラムを測定した。クロマトグラムは、試料溶液と参照溶液との屈折率差に由来する電気信号値(強度Y)をリテンションタイムXに対してプロットしたチャートである。
 分子量が400~5000000の範囲の標準ポリスチレン10点を用いてGPC測定し、リテンションタイムと分子量との関係を示す検量線を作成した。この検量線に基づいて、測定対象樹脂のMwおよびMw/Mnを決定した。なお、クロマトグラムのベースラインは、GPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。
(Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn))
A sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 ml of tetrahydrofuran (THF) and filtering it with a filter having a pore size of 0.1 μm. As the GPC apparatus, “HLC-8320” manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used. As the column, a column in which two “TSKgel Super Multipore HZM-M” manufactured by Tosoh Corporation and “Super HZ4000” were connected in series was used. Tetrahydrofuran (THF) was used as the eluent. The column oven temperature was set at 40 ° C., 20 μl of sample solution was injected into the apparatus at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured. The chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the sample solution and the reference solution is plotted against the retention time X.
GPC measurement was performed using 10 standard polystyrenes having a molecular weight in the range of 400 to 5000000, and a calibration curve showing the relationship between retention time and molecular weight was created. Based on this calibration curve, Mw and Mw / Mn of the measurement target resin were determined. The baseline of the chromatogram is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the lower molecular weight side has the earlier retention time. From the point of view, the point that changes from minus to zero is taken as a connecting line. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
(三連子表示のシンジオタクティシティ(rr))
 測定対象樹脂について1H-NMR測定を実施した。測定装置として、核磁気共鳴装置(Bruker社製「ULTRA SHIELD 400 PLUS」)を用いた。試料10mgに対して、重水素化溶媒として重水素化クロロホルムを1mL用いた。測定温度は室温(20~25℃)、積算回数は64回とした。基準物質(TMS)を0ppmとした際の0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出した値を三連子表示のシンジオタクティシティ(rr)(%)とした。
(Syndiotacticity (rr) in triplet display)
1 H-NMR measurement was performed on the resin to be measured. As a measuring apparatus, a nuclear magnetic resonance apparatus (“ULTRA SHIELD 400 PLUS” manufactured by Bruker) was used. 1 mL of deuterated chloroform was used as a deuterated solvent for 10 mg of the sample. The measurement temperature was room temperature (20 to 25 ° C.), and the number of integration was 64 times. The area (X) of the region of 0.6 to 0.95 ppm and the area (Y) of the region of 0.6 to 1.35 ppm when the reference substance (TMS) is 0 ppm are measured, and the formula: (X / The value calculated by Y) × 100 was defined as syndiotacticity (rr) (%) in triplet display.
(動的粘弾性測定)
 厚さ1mmの熱プレス成形フィルムから幅5mmの短冊状の試験片を切り出し、動的粘弾性測定を実施した。測定装置としては、強制振動型動的粘弾性測定装置(株式会社ユービーエム社製「Rheogel-E4000」)を用いた。試験片をチャック間距離20mmで装置にセットした。基本周波数:1Hz、測定モード:引張モード、歪制御:5μm、歪波形:正弦波、静荷重制御:自動の条件で、50℃から230℃まで昇温速度を3℃/分で昇温させて、温度依存性の測定を行った。貯蔵弾性率(E’)、損失弾性率(E’’)、およびtanδをプロットし、100℃から180℃に現れるtanδのピークをα緩和ピークとした。このα緩和のピークトップ温度をα緩和温度とした。
(Dynamic viscoelasticity measurement)
A strip-shaped test piece having a width of 5 mm was cut out from a hot-press molded film having a thickness of 1 mm, and dynamic viscoelasticity measurement was performed. As a measuring device, a forced vibration type dynamic viscoelasticity measuring device (“Rheogel-E4000” manufactured by UBM Co., Ltd.) was used. The test piece was set in the apparatus with a distance between chucks of 20 mm. Fundamental frequency: 1 Hz, measurement mode: tensile mode, strain control: 5 μm, strain waveform: sine wave, static load control: automatic temperature increase from 50 ° C. to 230 ° C. at a rate of 3 ° C./min The temperature dependence was measured. The storage elastic modulus (E ′), loss elastic modulus (E ″), and tan δ were plotted, and the peak of tan δ appearing from 100 ° C. to 180 ° C. was defined as an α relaxation peak. This α relaxation peak top temperature was defined as an α relaxation temperature.
(メルトフローレート(MFR))
 JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で、測定対象樹脂のMFRを測定した。
(溶融粘度η)
 測定対象樹脂を80℃で12時間乾燥した後、東洋精機(株)社製「キャピログラフ1D」を用いて、260℃、せん断速度122sec-1の条件で、溶融粘度ηを測定した。
(Melt flow rate (MFR))
Based on JIS K7210, MFR of measurement object resin was measured on condition of 230 degreeC, 3.8kg load, and 10 minutes.
(Melt viscosity η)
After the measurement target resin was dried at 80 ° C. for 12 hours, melt viscosity η was measured using “Capillograph 1D” manufactured by Toyo Seiki Co., Ltd. under the conditions of 260 ° C. and shear rate of 122 sec −1 .
(高温成形性(熱重量保持率))
 測定装置として、熱重量測定装置(島津製作所製「TGA-50」)を用いた。空気雰囲気下にて、50℃から290℃まで昇温速度20℃/分で昇温させた後、290℃で20分間保持する温度プロファイルにて、測定対象樹脂の熱重量減少を測定した。50℃の時点の重量を基準(保持率100%)として、290℃にて20分間保持した後の重量保持率を求め、高温成形性(耐熱分解性)を下記基準によって評価した。なお、熱重量保持率が高い程、耐熱分解性が高く、高温成形性に優れると言える。
<判定基準>
A(良):熱重量保持率が80%以上、
B(不良):熱重量保持率が80%未満。
(High temperature formability (thermal weight retention))
As a measuring device, a thermogravimetric measuring device (“TGA-50” manufactured by Shimadzu Corporation) was used. Under an air atmosphere, the temperature was increased from 50 ° C. to 290 ° C. at a rate of temperature increase of 20 ° C./min, and then the thermal weight reduction of the measurement target resin was measured with a temperature profile held at 290 ° C. for 20 minutes. Using the weight at the time of 50 ° C. as a reference (retention rate 100%), the weight retention after holding at 290 ° C. for 20 minutes was determined, and the high temperature moldability (heat decomposition resistance) was evaluated according to the following criteria. It can be said that the higher the thermal weight retention, the higher the thermal decomposition resistance and the better the high temperature moldability.
<Criteria>
A (good): thermal weight retention is 80% or more,
B (defect): Thermal weight retention is less than 80%.
(ヘイズ)
 JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM-150)を用いて、二軸延伸フィルムのヘイズを測定した。
(全光線透過率)
 JIS K7361-1に準じて、ヘイズメータ(村上色彩研究所製、HM-150)を用いて、二軸延伸フィルムの全光線透過率を測定した。
(Haze)
Based on JIS K7136, the haze of the biaxially stretched film was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150).
(Total light transmittance)
The total light transmittance of the biaxially stretched film was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) in accordance with JIS K7361-1.
(寸法安定性(線熱膨張係数))
 二軸延伸フィルムから幅4mm×長さ20mm×厚さ40μmの試験片を切り出した。測定装置として、熱機械分析TMA(TAインスツルメント社製「Q400EM」)を用いた。チャック間距離8mm、荷重0.01Nの条件で、25℃から130℃まで昇温速度10℃/minで昇温させ、試験片の寸法変化量を測定した。50~90℃の温度範囲における寸法変化量の傾きから線熱膨張係数を算出した。
(Dimensional stability (linear thermal expansion coefficient))
A test piece having a width of 4 mm, a length of 20 mm, and a thickness of 40 μm was cut out from the biaxially stretched film. As a measuring device, thermomechanical analysis TMA (“Q400EM” manufactured by TA Instruments) was used. Under conditions of a distance between chucks of 8 mm and a load of 0.01 N, the temperature was raised from 25 ° C. to 130 ° C. at a heating rate of 10 ° C./min, and the dimensional change of the test piece was measured. The linear thermal expansion coefficient was calculated from the slope of the dimensional change in the temperature range of 50 to 90 ° C.
(耐衝撃性(耐衝撃値))
 二軸延伸フィルムから80mm×80mm×厚さ40μmの試験片を切り出した。フィルムインパクトテスタ(安田精機社製)を用いて、直径12.7±0.2mmφの球体で試験片を割った際の耐衝撃値を測定した。
(Shock resistance (shock resistance value))
A test piece of 80 mm × 80 mm × thickness 40 μm was cut out from the biaxially stretched film. Using a film impact tester (manufactured by Yasuda Seiki Co., Ltd.), the impact resistance value when the test piece was broken with a sphere having a diameter of 12.7 ± 0.2 mmφ was measured.
(膜厚方向の位相差(Rth))
 得られた二軸延伸フィルムから、40mm×30mmの試験片を切り出した。この試験片を自動複屈折計(王子計測(株)社製「KOBRA-WR」)にセットした。温度23±2℃、湿度50±5%、測定光の波長590nmの条件で、40°傾斜方向の位相差を測定した。この値と平均屈折率nから屈折率nx、ny、nzを算出し、厚さ方向の位相差Rth(=((nx+ny)/2-nz)×d)を算出した。なお、nxは面内遅相軸方向の屈折率、nyは面内遅相軸直交方向の屈折率、nzは厚さ方向の屈折率、dは試験片の厚さ[nm]である。試験片の厚さd[nm]は、デジマティックインジケータ(株式会社ミツトヨ社製)を用いて測定した。平均屈折率nは、デジタル精密屈折計(カルニュー光学工業株式会社社製「KPR-20」)を用いて測定した。
(Thickness direction retardation (Rth))
A test piece of 40 mm × 30 mm was cut out from the obtained biaxially stretched film. This test piece was set in an automatic birefringence meter (“KOBRA-WR” manufactured by Oji Scientific Co., Ltd.). The phase difference in the 40 ° tilt direction was measured under conditions of a temperature of 23 ± 2 ° C., a humidity of 50 ± 5%, and a measurement light wavelength of 590 nm. Refractive indices n x the value from the average refractive index n, to calculate the n y, n z, was calculated thickness direction retardation Rth (= ((n x + n y) / 2-n z) × d) . Incidentally, n x is the in-plane slow axis direction of the refractive index, n y in-plane slow axis orthogonal direction refractive index, n z is the thickness direction of the refractive index, the thickness of d is the test piece [nm] is there. The thickness d [nm] of the test piece was measured using a digimatic indicator (manufactured by Mitutoyo Corporation). The average refractive index n was measured using a digital precision refractometer (“KPR-20” manufactured by Kalnew Optical Industry Co., Ltd.).
(製造例1)(メタクリル樹脂(M1-1)の製造)
 撹拌翼および三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン80kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液73.3kg(42.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%/n-ヘキサン5質量%)8.44kg(14.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製したMMA550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点のMMAの重合転化率は100%であった。得られた溶液にトルエン1500kgを加えて希釈した。次いで、希釈液を大量のメタノール中に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、メタクリル樹脂(M1-1)を得た。
 メタクリル樹脂(M1-1)は、Mwが70000で、溶融粘度ηが1200Pa・sで、Mw/Mnが1.06で、シンジオタクティシティ(rr)が75%で、α緩和温度が142℃で、MMA単量体単位の含有量が100質量%(ポリメタクリル酸メチル(PMMA))であった。メタクリル樹脂(M1-1)の物性を表1に示す。
(Production Example 1) (Production of methacrylic resin (M1-1))
The inside of the autoclave equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, 1600 kg of toluene, 80 kg of 1,2-dimethoxyethane, and 73.3 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M at room temperature ( 42.3 mol), and a solution of 1.3-M sec-butyllithium (solvent: cyclohexane 95 mass% / n-hexane 5 mass%) 8.44 kg (14.1 mmol) were charged. While stirring, 550 kg of distilled MMA was added dropwise at 15 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion of MMA was 100%. The resulting solution was diluted by adding 1500 kg of toluene. Next, the diluted solution was poured into a large amount of methanol to obtain a precipitate. The resulting precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a methacrylic resin (M1-1).
The methacrylic resin (M1-1) has an Mw of 70000, a melt viscosity η of 1200 Pa · s, an Mw / Mn of 1.06, a syndiotacticity (rr) of 75%, and an α relaxation temperature of 142 ° C. The content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)). Table 1 shows the physical properties of the methacrylic resin (M1-1).
(製造例2)(メタクリル樹脂(M1-2)の製造)
 撹拌翼および三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン60kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液73.3kg(42.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%/n-ヘキサン5質量%)4.22kg(7.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製したMMA550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点のMMAの重合転化率は100%であった。得られた溶液にトルエン1500kgを加えて希釈した。次いで、希釈液を大量のメタノール中に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、メタクリル樹脂(M1-2)を得た。
 メタクリル樹脂(M1-2)は、Mwが36000で、溶融粘度ηが400Pa・sで、Mw/Mnが1.07で、シンジオタクティシティ(rr)が75%で、α緩和温度が138℃で、MMA単量体単位の含有量が100質量%(ポリメタクリル酸メチル(PMMA))であった。メタクリル樹脂(M1-2)の物性を表1に示す。
(Production Example 2) (Production of methacrylic resin (M1-2))
The inside of the autoclave equipped with a stirring blade and a three-way cock was replaced with nitrogen. At room temperature, 13.3 kg of toluene, 60 kg of 1,2-dimethoxyethane, 73.3 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M ( 42.3 mol) and a solution of 1.3 M sec-butyllithium (solvent: cyclohexane 95 mass% / n-hexane 5 mass%) 4.22 kg (7.1 mmol) was charged. While stirring, 550 kg of distilled MMA was added dropwise at 15 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion of MMA was 100%. The resulting solution was diluted by adding 1500 kg of toluene. Next, the diluted solution was poured into a large amount of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a methacrylic resin (M1-2).
The methacrylic resin (M1-2) has an Mw of 36000, a melt viscosity η of 400 Pa · s, an Mw / Mn of 1.07, a syndiotacticity (rr) of 75%, and an α relaxation temperature of 138 ° C. The content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)). Table 1 shows the physical properties of the methacrylic resin (M1-2).
(製造例3)(メタクリル樹脂(M2-1)の製造)
 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたMMA100質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0054質量部、およびn-オクチルメルカプタン0.200質量部を入れ、撹拌して、原料液を得た。この原料液中に窒素を送り込み、溶存酸素を除去した。
 オートクレーブと配管で接続された槽型反応器に容量の2/3まで上記原料液を入れた。温度を140℃に維持した状態で、先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度140℃に維持したまま、平均滞留時間150分となる流量で原料液をオートクレーブから槽型反応器に供給し、同時に原料液の供給流量に相当する流量で反応液を槽型反応器から抜き出して、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は48質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温260℃の二軸押出機に供給してストランド状に吐出し、ペレタイザでカットして、ペレット状のメタクリル樹脂(M2-1)を得た。
 メタクリル樹脂(M2-1)は、Mwが112000で、溶融粘度ηが1000Pa・sで、Mw/Mnが1.86で、シンジオタクティシティ(rr)が52%で、α緩和温度が129℃で、MMA単量体単位の含有量が100質量%(ポリメタクリル酸メチル(PMMA))であった。メタクリル樹脂(M2-1)の物性を表1に示す。
(Production Example 3) (Production of methacrylic resin (M2-1))
The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified MMA, 0.0054 parts by mass of 2,2′-azobis (2-methylpropionitrile (hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.), and n-octyl Mercaptan (0.200 parts by mass) was added and stirred to obtain a raw material liquid, and nitrogen was fed into the raw material liquid to remove dissolved oxygen.
The raw material liquid was put in a tank reactor connected to the autoclave by piping up to 2/3 of the capacity. While maintaining the temperature at 140 ° C., the polymerization reaction was first started by a batch method. When the polymerization conversion rate reached 55% by mass, the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes while maintaining the temperature at 140 ° C., and at the same time, equivalent to the supply flow rate of the raw material liquid The reaction solution was withdrawn from the tank reactor at a flow rate to switch to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 48% by mass.
The reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes. Next, the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin. The molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped methacrylic resin (M2-1).
The methacrylic resin (M2-1) has an Mw of 112,000, a melt viscosity η of 1000 Pa · s, an Mw / Mn of 1.86, a syndiotacticity (rr) of 52%, and an α relaxation temperature of 129 ° C. The content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)). Table 1 shows the physical properties of the methacrylic resin (M2-1).
(製造例4)(メタクリル樹脂(M2-2)の製造)
 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたMMA100質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0065質量部、およびn-オクチルメルカプタン0.290質量部を入れ、撹拌して、原料液を得た。この原料液中に窒素を送り込み、溶存酸素を除去した。
 オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を120℃に維持したまま、先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度120℃に維持したまま、平均滞留時間120分となる流量で原料液をオートクレーブから槽型反応器に供給し、同時に原料液の供給流量に相当する流量で反応液を槽型反応器から抜き出して、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は45質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温230℃の二軸押出機に供給してストランド状に吐出し、ペレタイザでカットして、ペレット状のメタクリル樹脂(M2-2)を得た。
 メタクリル樹脂(M2-2)は、Mwが83000で、溶融粘度ηが700Pa・sで、Mw/Mnが1.87で、シンジオタクティシティ(rr)が55%で、α緩和温度が130℃で、MMA単量体単位の含有量が100質量%(ポリメタクリル酸メチル(PMMA))であった。メタクリル樹脂(M2-2)の物性を表1に示す。
(Production Example 4) (Production of methacrylic resin (M2-2))
The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified MMA, 0.0065 parts by mass of 2,2′-azobis (2-methylpropionitrile (hydrogen abstraction ability: 1%, 1 hour half-life temperature: 83 ° C.), and n-octyl Mercaptan (0.290 parts by mass) was added and stirred to obtain a raw material liquid, and nitrogen was fed into the raw material liquid to remove dissolved oxygen.
The raw material liquid was put to 2/3 of the capacity in a tank reactor connected to the autoclave by piping. While maintaining the temperature at 120 ° C., the polymerization reaction was first started in a batch mode. When the polymerization conversion rate reached 55% by mass, the raw material liquid was supplied from the autoclave to the tank reactor at a flow rate of 120 minutes while maintaining the temperature at 120 ° C., and at the same time, equivalent to the supply flow rate of the raw material liquid The reaction solution was withdrawn from the tank reactor at a flow rate to switch to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 45% by mass.
The reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes. Next, the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin. The molten resin from which volatile components were removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into a strand, and cut with a pelletizer to obtain a pellet-like methacrylic resin (M2-2).
The methacrylic resin (M2-2) has an Mw of 83,000, a melt viscosity η of 700 Pa · s, an Mw / Mn of 1.87, a syndiotacticity (rr) of 55%, and an α relaxation temperature of 130 ° C. The content of the MMA monomer unit was 100% by mass (polymethyl methacrylate (PMMA)). Table 1 shows the physical properties of the methacrylic resin (M2-2).
(ポリカーボネート樹脂(PC))
 以下のポリカーボネート樹脂(PC)を用意した。
(PC-1):直鎖のポリカーボネート樹脂(住化スタイロンポリカーボネート社製「SD POLYCA TR-2201」、MVR(JIS K7210準拠して、300℃、荷重1.2Kg、10分間の条件で測定)=210cm3/10分、Mw=22000、Mw/Mn=2.0)。
(Polycarbonate resin (PC))
The following polycarbonate resin (PC) was prepared.
(PC-1): Linear polycarbonate resin (“SD POLYCA TR-2201” manufactured by Sumika Stylon Polycarbonate Co., Ltd.), MVR (measured in accordance with JIS K7210 at 300 ° C., load 1.2 Kg, 10 minutes) = 210 cm 3/10 min, Mw = 22000, Mw / Mn = 2.0).
(製造例5)(架橋ゴム粒子組成物(CD-1)の製造)
<製造例5-1>
 コンデンサ、温度計、および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルサルコシン酸ナトリウム128g、および炭酸ナトリウム16gを投入して溶解させた。次いで、MMA11.2kgおよびメタクリル酸アリル110gを投入し、撹拌しながら70℃に昇温した。その後、2%過硫酸カリウム水溶液560gを添加して乳化重合を開始させた。重合による発熱により内部温度が上昇し、その後内部温度が下降し始めた。70℃まで下がった後、70℃にて30分間撹拌して乳化重合させて、シード粒子を含むエマルジョンを得た。
 シード粒子を含むエマルジョンに、2%過硫酸ナトリウム水溶液720gを添加した。その後、アクリル酸ブチル12.4kg、スチレン1.76kg、およびメタクリル酸アリル280gからなる混合物を60分間かけて滴下した。滴下終了後60分間撹拌して乳化重合させて、コアシェル2層粒子を含むエマルジョンを得た。
 コアシェル2層粒子を含むエマルジョンに、2%過硫酸カリウム水溶液320gを添加し、さらにMMA6.2kg、アクリル酸メチル0.2kg、およびn-オクチルメルカプタン200gからなる混合物を30分間かけて添加した。添加終了後60分間撹拌して乳化重合させ、次いで室温まで冷却した。以上のようにして、体積基準平均粒径0.23μmのコアシェル3層構造の架橋ゴム粒子(アクリル系3層重合体粒子)(CR-1)を40質量%含有するエマルジョンを得た。
(Production Example 5) (Production of crosslinked rubber particle composition (CD-1))
<Production Example 5-1>
48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, thermometer, and stirrer, and then charged with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate, and 16 g of sodium carbonate. And dissolved. Next, 11.2 kg of MMA and 110 g of allyl methacrylate were added, and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization. The internal temperature increased due to heat generated by the polymerization, and then the internal temperature began to decrease. After dropping to 70 ° C., the mixture was stirred at 70 ° C. for 30 minutes for emulsion polymerization to obtain an emulsion containing seed particles.
To the emulsion containing seed particles, 720 g of a 2% aqueous sodium persulfate solution was added. Thereafter, a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene, and 280 g of allyl methacrylate was dropped over 60 minutes. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization to obtain an emulsion containing core-shell bilayer particles.
To the emulsion containing the core-shell bilayer particles, 320 g of a 2% potassium persulfate aqueous solution was added, and a mixture consisting of 6.2 kg of MMA, 0.2 kg of methyl acrylate, and 200 g of n-octyl mercaptan was added over 30 minutes. After completion of the addition, the mixture was stirred for 60 minutes for emulsion polymerization, and then cooled to room temperature. As described above, an emulsion containing 40% by mass of crosslinked rubber particles (acrylic three-layer polymer particles) (CR-1) having a core-shell three-layer structure having a volume-based average particle size of 0.23 μm was obtained.
<製造例5-2>
 コンデンサ、温度計、および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いで界面活性剤(花王株式会社製「ペレックスSS-H」)252gを投入して溶解させた。反応槽を70℃に昇温した後、これに、2%過硫酸カリウム水溶液160gを添加した後、MMA3.04kg、アクリル酸メチル0.16kg、およびn-オクチルメルカプタン15.2gからなる混合物を一括添加して、乳化重合を開始させた。重合反応による発熱がなくなった時点から30分間撹拌を続けた。
 これに2%過硫酸カリウム水溶液160gを添加した後、MMA27.4kg、アクリル酸メチル1.44kg、およびn-オクチルメルカプタン98gからなる混合物を2時間かけて連続的に滴下した。滴下終了後、60分間撹拌して乳化重合を行った。得られたエマルジョンを室温まで冷却した。以上のようにして、体積基準平均粒径0.12μm、極限粘度0.44g/dlのアクリル系重合体粒子(分散補助粒子)(DA-1)を40質量%含有するエマルジョンを得た。
<Production Example 5-2>
48 kg of ion-exchanged water is introduced into a 100-liter reaction tank equipped with a condenser, thermometer, and stirrer, and then 252 g of a surfactant (“PEREX SS-H” manufactured by Kao Corporation) is introduced. And dissolved. After raising the temperature of the reaction vessel to 70 ° C., 160 g of 2% potassium persulfate aqueous solution was added thereto, and then a mixture of MMA 3.04 kg, methyl acrylate 0.16 kg, and n-octyl mercaptan 15.2 g was batched. Addition to initiate emulsion polymerization. Stirring was continued for 30 minutes after the exotherm due to the polymerization reaction disappeared.
To this was added 160 g of 2% aqueous potassium persulfate solution, and then a mixture consisting of 27.4 kg of MMA, 1.44 kg of methyl acrylate, and 98 g of n-octyl mercaptan was continuously added dropwise over 2 hours. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization. The resulting emulsion was cooled to room temperature. As described above, an emulsion containing 40% by mass of acrylic polymer particles (dispersion auxiliary particles) (DA-1) having a volume-based average particle size of 0.12 μm and an intrinsic viscosity of 0.44 g / dl was obtained.
<製造例5-3>
 製造例5-1で得られた架橋ゴム粒子(アクリル系3層重合体粒子)(CR-1)を含有するエマルジョンと、製造例5-2で得られたアクリル系重合体粒子(分散補助粒子)(DA-1)を含有するエマルジョンとを、粒子(CR-1):粒子(DA-1)の質量比が2:1になるように混ぜ合わせた。この混合エマルジョンを-20℃で2時間かけて凍結させた。凍結した混合エマルジョンをその2倍量の80℃の温水に投入して氷解させて、スラリーを得た。このスラリーを80℃にて20分間保持した後、脱水し、70℃で乾燥させて粉末化した。以上のようにして、架橋ゴム粒子(CR-1)と分散補助粒子(DA-1)とを含む架橋ゴム粒子組成物(CD-1)を得た。
<Production Example 5-3>
An emulsion containing the crosslinked rubber particles (acrylic three-layer polymer particles) (CR-1) obtained in Production Example 5-1, and the acrylic polymer particles (dispersion aid particles) obtained in Production Example 5-2 The emulsion containing (DA-1) was mixed so that the mass ratio of particles (CR-1): particles (DA-1) was 2: 1. This mixed emulsion was frozen at −20 ° C. for 2 hours. The frozen mixed emulsion was thrown into 80 ° C. hot water twice as much as that to cause ice melting to obtain a slurry. The slurry was kept at 80 ° C. for 20 minutes, then dehydrated and dried at 70 ° C. to be powdered. As described above, a crosslinked rubber particle composition (CD-1) containing the crosslinked rubber particles (CR-1) and the dispersion auxiliary particles (DA-1) was obtained.
(製造例6)(ブロック共重合体(BP-1)の製造)
 内部を窒素で置換した三口フラスコ内に、室温(20~25℃)にて、乾燥トルエン735kgと、1,2-ジメトキシエタン36.75kgと、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム20molのトルエン溶液39.4kgとを入れた。これにsec-ブチルリチウム1.17molを加えた。さらにMMA39.0kgを加え、室温で1時間反応させて、MMA重合体(メタクリル酸エステル重合体)(b1-1)を得た。MMA重合体(b1-1)のMwは45800であった。
 次いで、反応液を-25℃に冷却し、アクリル酸n-ブチル29.0kgとアクリル酸ベンジル10.0kgとの混合液を0.5時間かけて滴下して、MMA重合体(b1-1)の末端から重合反応を継続させた。その後、反応液にメタノール4kgを添加して重合反応を停止させ、反応液を大量のメタノール中に注いでブロック共重合体(BP-1)を析出させた。得られた析出物を濾し取り、80℃、1torr(約133Pa)で、12時間乾燥させた。
 以上のようにして、MMA重合体ブロック(b1-1)と、アクリル酸n-ブチル単位およびアクリル酸ベンジル単位からなるアクリル酸エステル重合体ブロック(b2-1)とからなるジブロック共重合体(BP-1)を得た。ブロック共重合体(BP-1)は、Mwが92000、Mw/Mnが1.06であった。MMA重合体(b1-1)のMwが45800であったので、アクリル酸エステル重合体(b2-1)のMwを46200と決定した。アクリル酸エステル重合体(b2-1)中のアクリル酸ベンジル単位の割合は25.6質量%であった。(b1-1)/(b2-1)の質量比は50/50であった。
(Production Example 6) (Production of block copolymer (BP-1))
In a three-necked flask purged with nitrogen, 735 kg of dry toluene, 36.75 kg of 1,2-dimethoxyethane, isobutyl bis (2,6-di-t-butyl-) at room temperature (20 to 25 ° C.) 4-methylphenoxy) aluminum 20 mol toluene solution 39.4 kg was added. To this was added 1.17 mol of sec-butyllithium. Further, 39.0 kg of MMA was added and reacted at room temperature for 1 hour to obtain an MMA polymer (methacrylic ester polymer) (b1-1). The Mw of the MMA polymer (b1-1) was 45800.
Next, the reaction solution was cooled to −25 ° C., and a mixed solution of 29.0 kg of n-butyl acrylate and 10.0 kg of benzyl acrylate was added dropwise over 0.5 hour to obtain an MMA polymer (b1-1). The polymerization reaction was continued from the end of the polymer. Thereafter, 4 kg of methanol was added to the reaction solution to stop the polymerization reaction, and the reaction solution was poured into a large amount of methanol to precipitate a block copolymer (BP-1). The resulting precipitate was filtered off and dried at 80 ° C. and 1 torr (about 133 Pa) for 12 hours.
As described above, a diblock copolymer (b1-1) comprising a MMA polymer block (b1-1) and an acrylate polymer block (b2-1) comprising an n-butyl acrylate unit and a benzyl acrylate unit ( BP-1) was obtained. The block copolymer (BP-1) had Mw of 92000 and Mw / Mn of 1.06. Since the Mw of the MMA polymer (b1-1) was 45800, the Mw of the acrylate polymer (b2-1) was determined to be 46200. The proportion of benzyl acrylate units in the acrylate polymer (b2-1) was 25.6% by mass. The mass ratio of (b1-1) / (b2-1) was 50/50.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(紫外線吸収剤(LA))
 以下の紫外線吸収剤(LA)を用意した。
(LA-31):2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製)、
(LA-F70):2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製)。
(Ultraviolet absorber (LA))
The following ultraviolet absorber (LA) was prepared.
(LA-31): 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (manufactured by ADEKA),
(LA-F70): 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA).
(高分子加工助剤(PA))
 以下の高分子加工助剤(PA)を用意した。
(PA-1):三菱レイヨン社製「メタブレンP550A」(平均重合度:7734、MMA単量体単位の含有量:88質量%、アクリル酸ブチル単量体単位の含有量:12質量%)。
(Polymer processing aid (PA))
The following polymer processing aid (PA) was prepared.
(PA-1): “Metabrene P550A” manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, MMA monomer unit content: 88 mass%, butyl acrylate monomer unit content: 12 mass%).
(実施例1)
 メタクリル樹脂(M1-1)20質量部、メタクリル樹脂(M2-1)80質量部、ブロック共重合体(BP-1)1.0質量部、紫外線吸収剤(LA-F70)0.9質量部、および高分子加工助剤(PA-1)2質量部を混ぜ合わせ、二軸押出機((株)テクノベル社製「KZW20TW-45MG-NH-600」)を用いて、250℃で溶融混練し、溶融混練物を押出して、メタクリル樹脂組成物(R11)を製造した。メタクリル樹脂組成物(R11)の物性評価を実施した。メタクリル樹脂組成物(R11)の組成と評価結果を表2に示す。
 得られたメタクリル樹脂組成物(R11)を、80℃で12時間乾燥させた。20mmφ単軸押出機(OCS社製)を用いて、樹脂温度260℃にて、メタクリル樹脂組成物(R11)を150mm幅のTダイから押出し、表面温度100℃のロールで引き取り、幅120mm、厚さ160μmの未延伸フィルムを得た。
 得られた未延伸フィルムを100mm×100mmに切り出した。このフィルムに対して、二槽式バッチ二軸延伸試験機を用いて二軸延伸を実施した。第一槽において、延伸温度Tg+20℃、延伸速度860%/分、延伸倍率2×2の条件で同時二軸延伸を実施し、次いで、第二槽において熱固定温度Tg-10℃、90秒間の条件で熱固定を実施した後、急冷して、厚み40μmの二軸延伸フィルム(F11)を得た。延伸条件と二軸延伸フィルムの評価結果を表3に示す。さらに、得られた二軸延伸フィルム(F11)の片面にコロナ放電処理を施し、次いでアルミニウムを真空蒸着法により30nmの厚さで蒸着した。こうして得られた積層フィルムは鏡面光沢性に優れたものであった。
(Example 1)
20 parts by weight of methacrylic resin (M1-1), 80 parts by weight of methacrylic resin (M2-1), 1.0 part by weight of block copolymer (BP-1), 0.9 part by weight of UV absorber (LA-F70) And 2 parts by mass of polymer processing aid (PA-1) are mixed and melt kneaded at 250 ° C. using a twin-screw extruder (“KZW20TW-45MG-NH-600” manufactured by Technobel Co., Ltd.). The melt-kneaded product was extruded to produce a methacrylic resin composition (R11). The physical properties of the methacrylic resin composition (R11) were evaluated. Table 2 shows the composition and evaluation results of the methacrylic resin composition (R11).
The obtained methacrylic resin composition (R11) was dried at 80 ° C. for 12 hours. Using a 20 mmφ single screw extruder (OCS), the methacrylic resin composition (R11) was extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and taken up with a roll having a surface temperature of 100 ° C. An unstretched film having a thickness of 160 μm was obtained.
The obtained unstretched film was cut out to 100 mm × 100 mm. Biaxial stretching was performed on this film using a two-tank batch biaxial stretching tester. In the first tank, simultaneous biaxial stretching was performed under the conditions of a stretching temperature Tg + 20 ° C., a stretching speed of 860% / min, and a stretching ratio of 2 × 2, and then in the second tank, a heat setting temperature Tg−10 ° C. for 90 seconds. After heat setting under the conditions, the film was quenched and a biaxially stretched film (F11) having a thickness of 40 μm was obtained. Table 3 shows the stretching conditions and the evaluation results of the biaxially stretched film. Furthermore, one side of the obtained biaxially stretched film (F11) was subjected to corona discharge treatment, and then aluminum was deposited to a thickness of 30 nm by a vacuum deposition method. The laminated film thus obtained was excellent in specular gloss.
(実施例2~4)
 実施例2~4の各例においては、組成と延伸条件を変更した以外は実施例1と同様にして、メタクリル樹脂組成物(R12)~(R14)および二軸延伸フィルム(F12)~(F14)を得、評価した。組成と延伸条件と評価結果を表2、表3に示す。
(比較例1~4)
 比較例1~4の各例においては、組成と延伸条件を変更した以外は実施例1と同様にして、メタクリル樹脂組成物(R21)~(R24)および二軸延伸フィルム(F21)~(F24)を得、評価した。組成と延伸条件と評価結果を表2、表3に示す。
(Examples 2 to 4)
In each of Examples 2 to 4, methacrylic resin compositions (R12) to (R14) and biaxially stretched films (F12) to (F14) were obtained in the same manner as in Example 1 except that the composition and stretching conditions were changed. ) And evaluated. Tables 2 and 3 show the composition, stretching conditions and evaluation results.
(Comparative Examples 1 to 4)
In each of Comparative Examples 1 to 4, methacrylic resin compositions (R21) to (R24) and biaxially stretched films (F21) to (F24) were obtained in the same manner as in Example 1 except that the composition and stretching conditions were changed. ) And evaluated. Tables 2 and 3 show the composition, stretching conditions and evaluation results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(結果)
 実施例1~4では、α緩和温度が137℃以上であるメタクリル樹脂(M1)と、α緩和温度が132℃以下であるメタクリル樹脂(M2)とを含み、メタクリル樹脂(M1)の溶融粘度η1がメタクリル樹脂(M2)の溶融粘度η2より大きく、メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比が2/98~29/71である、メタクリル樹脂組成物(R11)~(R14)を製造した。実施例1~4で得られたメタクリル樹脂組成物(R11)~(R14)はいずれも、熱重量保持率が高く、高温成形性が良好であった。実施例1~4で得られた二軸延伸フィルム(F11)~(F14)はいずれも、透明性が高く、線熱膨張係数が小さく寸法安定性が良好で、耐衝撃性が良好であった。
(result)
Examples 1 to 4 include a methacrylic resin (M1) having an α relaxation temperature of 137 ° C. or higher and a methacrylic resin (M2) having an α relaxation temperature of 132 ° C. or lower, and a melt viscosity η of the methacrylic resin (M1). Methacrylic resin compositions (R11) to (R14) in which 1 is greater than the melt viscosity η 2 of the methacrylic resin (M2) and the weight ratio of methacrylic resin (M1) / methacrylic resin (M2) is 2/98 to 29/71. ) Was manufactured. All of the methacrylic resin compositions (R11) to (R14) obtained in Examples 1 to 4 had a high thermogravimetric retention and good high temperature moldability. Each of the biaxially stretched films (F11) to (F14) obtained in Examples 1 to 4 had high transparency, a small coefficient of linear thermal expansion, good dimensional stability, and good impact resistance. .
 メタクリル樹脂としてメタクリル樹脂(M2)のみを用いた比較例1では、得られた二軸延伸フィルム(F21)は、線熱膨張係数が大きく寸法安定性が不良であり、耐衝撃性も不良であった。メタクリル樹脂としてメタクリル樹脂(M1)とメタクリル樹脂(M2)とを併用したが、実施例1~3よりもメタクリル樹脂(M1)の配合量を多くした比較例2、3では、得られたメタクリル樹脂組成物(R22)~(R23)はいずれも、熱重量保持率が低く、高温成形性が不良であった。メタクリル樹脂(M1)の溶融粘度η1がメタクリル樹脂(M2)の溶融粘度η2より小さい比較例4では、線膨張係数が大きいために寸法安定性に劣り、耐衝撃性にも劣っていた。 In Comparative Example 1 in which only the methacrylic resin (M2) was used as the methacrylic resin, the obtained biaxially stretched film (F21) had a large linear thermal expansion coefficient, poor dimensional stability, and poor impact resistance. It was. In Comparative Examples 2 and 3 in which a methacrylic resin (M1) and a methacrylic resin (M2) were used in combination as the methacrylic resin, the amount of the methacrylic resin (M1) was larger than those in Examples 1 to 3, the obtained methacrylic resin All of the compositions (R22) to (R23) had a low thermogravimetric retention and poor high temperature moldability. In Comparative Example 4 where the melt viscosity η 1 of the methacrylic resin (M1) is smaller than the melt viscosity η 2 of the methacrylic resin (M2), the linear expansion coefficient is large, so that the dimensional stability is poor and the impact resistance is also poor.
 本発明は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above-described embodiments and examples, and design changes can be made as appropriate without departing from the spirit of the present invention.
 この出願は、2016年7月29日に出願された日本出願特願2016-150205号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-150205 filed on July 29, 2016, the entire disclosure of which is incorporated herein.

Claims (15)

  1.  引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であるメタクリル樹脂(M1)と、
     引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であるメタクリル樹脂(M2)とのメタクリル樹脂組成物であり、
     メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122sec-1での溶融粘度をそれぞれη1およびη2とした場合に、η>ηであり、
     メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比が2/98~29/71である、メタクリル樹脂組成物。
    A methacrylic resin (M1) having an α relaxation temperature T α1 of 137 ° C. or higher when measured in a tensile mode and dynamic viscoelasticity at 1 Hz;
    A tensile mode, a methacrylic resin composition with a methacrylic resin (M2) having an α relaxation temperature Tα2 of 132 ° C. or lower when dynamic viscoelasticity is measured at 1 Hz,
    When the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec −1 is η 1 and η 2 , respectively, η 1 > η 2
    A methacrylic resin composition having a methacrylic resin (M1) / methacrylic resin (M2) mass ratio of 2/98 to 29/71.
  2.  メタクリル樹脂(M1)の分子量分布が1.0~1.4である、請求項1に記載のメタクリル樹脂組成物。 The methacrylic resin composition according to claim 1, wherein the molecular weight distribution of the methacrylic resin (M1) is 1.0 to 1.4.
  3.  メタクリル樹脂(M1)の重量平均分子量が40000~200000である、請求項1または2に記載のメタクリル樹脂組成物。 The methacrylic resin composition according to claim 1 or 2, wherein the methacrylic resin (M1) has a weight average molecular weight of 40,000 to 200,000.
  4.  メタクリル樹脂(M2)のメタクリル酸メチル単量体単位の含有量が99質量%以上である、請求項1~3のいずれかに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 3, wherein the content of the methyl methacrylate monomer unit in the methacrylic resin (M2) is 99% by mass or more.
  5.  ポリカーボネート樹脂および/またはフェノキシ樹脂をさらに含む、請求項1~4のいずれかに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 4, further comprising a polycarbonate resin and / or a phenoxy resin.
  6.  架橋ゴムおよび/またはブロック共重合体をさらに含む、請求項1~5のいずれかに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 5, further comprising a crosslinked rubber and / or a block copolymer.
  7.  紫外線吸収剤をさらに含む、請求項1~6のいずれかに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 6, further comprising an ultraviolet absorber.
  8.  メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122sec-1での溶融粘度をη1およびη2とした場合に、η1>ηである、
     引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であるメタクリル樹脂(M1)と、
     引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であるメタクリル樹脂(M2)とを、
     メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比2/98~29/71で溶融混練する、メタクリル樹脂組成物の製造方法。
    When the melt viscosity of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 sec −1 is η 1 and η 2 , η 1 > η 2
    A methacrylic resin (M1) having an α relaxation temperature T α1 of 137 ° C. or higher when measured in a tensile mode and dynamic viscoelasticity at 1 Hz;
    A methacrylic resin (M2) having an α relaxation temperature T α2 of 132 ° C. or lower when a dynamic viscoelasticity measurement is performed at a tensile mode of 1 Hz.
    A method for producing a methacrylic resin composition, comprising melt-kneading a methacrylic resin (M1) / methacrylic resin (M2) in a mass ratio of 2/98 to 29/71.
  9.  請求項1~7のいずれかに記載のメタクリル樹脂組成物からなる成形体。 A molded body comprising the methacrylic resin composition according to any one of claims 1 to 7.
  10.  請求項1~7のいずれかに記載のメタクリル樹脂組成物からなるフィルム。 A film comprising the methacrylic resin composition according to any one of claims 1 to 7.
  11.  延伸フィルムである請求項10に記載のフィルム。 The film according to claim 10, which is a stretched film.
  12.  請求項10または11に記載のフィルムからなる層を有する積層フィルム。 A laminated film having a layer comprising the film according to claim 10 or 11.
  13.  さらに金属および/または金属酸化物からなる層を有する請求項12に記載の積層フィルム。 The laminated film according to claim 12, further comprising a layer made of a metal and / or a metal oxide.
  14.  さらに接着層を有する請求項12または13に記載の積層フィルム。 The laminated film according to claim 12 or 13, further comprising an adhesive layer.
  15.  基材上に、請求項12~14のいずれかに記載の積層フィルムが積層された積層成形体。 15. A laminated molded body in which the laminated film according to any one of claims 12 to 14 is laminated on a substrate.
PCT/JP2017/027148 2016-07-29 2017-07-27 Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body WO2018021449A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197005433A KR102346225B1 (en) 2016-07-29 2017-07-27 Methacryl resin composition and manufacturing method thereof, molded article, film, laminated film, laminated molded article
CN201780046768.4A CN109563328A (en) 2016-07-29 2017-07-27 Methacrylic resin composition and its manufacturing method, film, stacked film, are laminated into body at formed body
JP2018530373A JP7045994B2 (en) 2016-07-29 2017-07-27 Methacrylic resin composition and its manufacturing method, molded body, film, laminated film, laminated molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150205 2016-07-29
JP2016-150205 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021449A1 true WO2018021449A1 (en) 2018-02-01

Family

ID=61017014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027148 WO2018021449A1 (en) 2016-07-29 2017-07-27 Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body

Country Status (5)

Country Link
JP (1) JP7045994B2 (en)
KR (1) KR102346225B1 (en)
CN (1) CN109563328A (en)
TW (1) TWI767924B (en)
WO (1) WO2018021449A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019039550A1 (en) * 2017-08-24 2020-07-30 株式会社クラレ Laminated body and manufacturing method thereof
JPWO2020218447A1 (en) * 2019-04-24 2020-10-29
WO2021020426A1 (en) * 2019-07-30 2021-02-04 株式会社クラレ Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method
JP2021054946A (en) * 2019-09-30 2021-04-08 株式会社クラレ Thermoplastic resin composition having excellent long-term weather resistance, and molding and laminate thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890841B2 (en) * 2019-04-23 2024-02-06 Sumitomo Chemical Company, Limited Laminated body and method for producing laminated body
EP4130058A4 (en) * 2020-03-24 2024-05-08 Kuraray Co Methacrylic copolymer, composition, shaped object, method for producing film or sheet, and layered product
WO2021215435A1 (en) * 2020-04-22 2021-10-28 株式会社クラレ Laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414216A (en) * 1987-07-07 1989-01-18 Daicel Chem Water-resistant material
JP2008024861A (en) * 2006-07-24 2008-02-07 Tokyo Institute Of Technology Method for producing crystalline methacrylic resin
WO2014185509A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Methacrylic resin composition and molded body thereof
WO2016002750A1 (en) * 2014-06-30 2016-01-07 株式会社クラレ Methacrylic resin or methacrylic resin composition
JP2016094537A (en) * 2014-11-14 2016-05-26 株式会社クラレ Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2882674B2 (en) 1990-02-14 1999-04-12 昭和電工株式会社 Process for producing polymethacrylate and polyacrylate
JP2002327012A (en) 2001-05-01 2002-11-15 Kuraray Co Ltd Syndiotactic methacrylic ester polymer and polymer composition
JP2010024337A (en) * 2008-07-18 2010-02-04 Toray Ind Inc Resin composition and molded article composed therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414216A (en) * 1987-07-07 1989-01-18 Daicel Chem Water-resistant material
JP2008024861A (en) * 2006-07-24 2008-02-07 Tokyo Institute Of Technology Method for producing crystalline methacrylic resin
WO2014185509A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Methacrylic resin composition and molded body thereof
WO2016002750A1 (en) * 2014-06-30 2016-01-07 株式会社クラレ Methacrylic resin or methacrylic resin composition
JP2016094537A (en) * 2014-11-14 2016-05-26 株式会社クラレ Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019039550A1 (en) * 2017-08-24 2020-07-30 株式会社クラレ Laminated body and manufacturing method thereof
JP7177776B2 (en) 2017-08-24 2022-11-24 株式会社クラレ Laminate and its manufacturing method
JPWO2020218447A1 (en) * 2019-04-24 2020-10-29
WO2020218447A1 (en) * 2019-04-24 2020-10-29 株式会社クラレ Laminated film
JP7362729B2 (en) 2019-04-24 2023-10-17 株式会社クラレ laminated film
WO2021020426A1 (en) * 2019-07-30 2021-02-04 株式会社クラレ Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method
JP2021054946A (en) * 2019-09-30 2021-04-08 株式会社クラレ Thermoplastic resin composition having excellent long-term weather resistance, and molding and laminate thereof
JP7341827B2 (en) 2019-09-30 2023-09-11 株式会社クラレ Thermoplastic resin compositions with excellent long-term weather resistance, molded products and laminates thereof

Also Published As

Publication number Publication date
JP7045994B2 (en) 2022-04-01
KR20190035779A (en) 2019-04-03
TWI767924B (en) 2022-06-21
TW201815945A (en) 2018-05-01
CN109563328A (en) 2019-04-02
JPWO2018021449A1 (en) 2019-05-23
KR102346225B1 (en) 2021-12-31

Similar Documents

Publication Publication Date Title
CN106414599B (en) Methacrylic resin composition
JP7045994B2 (en) Methacrylic resin composition and its manufacturing method, molded body, film, laminated film, laminated molded body
KR102394025B1 (en) Methacrylic resin or methacrylic resin composition
KR102381502B1 (en) Acrylic film
JP6808613B2 (en) Methacrylic resin composition
JP6328499B2 (en) Methacrylic resin composition, molded body, resin film, polarizer protective film, and retardation film
JP7009377B2 (en) Methacrylic resin composition
JP6909209B2 (en) Methacrylic resin composition and molded article
JP6650359B2 (en) Impact modifier, thermoplastic resin composition and film
JP2017048344A (en) Methacryl resin, methacryl resin composition and molded body
JP7055108B2 (en) Acrylic resin biaxially stretched film and its manufacturing method
JP2016094537A (en) Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film
WO2017115787A1 (en) Resin composition and film
JP6649177B2 (en) Methacrylic acid ester copolymer and molded article
JP6908629B2 (en) Methacryl copolymer and molded article
JP6852997B2 (en) Impact resistance improver, thermoplastic resin composition and film
JP2016094535A (en) Thermoplastic resin composition and manufacturing method therefor, molded body, thermoplastic resin film, laminate film and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005433

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17834451

Country of ref document: EP

Kind code of ref document: A1