WO2017115787A1 - Resin composition and film - Google Patents

Resin composition and film Download PDF

Info

Publication number
WO2017115787A1
WO2017115787A1 PCT/JP2016/088858 JP2016088858W WO2017115787A1 WO 2017115787 A1 WO2017115787 A1 WO 2017115787A1 JP 2016088858 W JP2016088858 W JP 2016088858W WO 2017115787 A1 WO2017115787 A1 WO 2017115787A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
resin
crosslinked rubber
mass
Prior art date
Application number
PCT/JP2016/088858
Other languages
French (fr)
Japanese (ja)
Inventor
祐作 野本
卓郎 新村
淳裕 中原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017559199A priority Critical patent/JP6802188B2/en
Publication of WO2017115787A1 publication Critical patent/WO2017115787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a resin composition.
  • Methacrylic resin is excellent in transparency, light resistance and surface hardness.
  • various optical members such as a light guide plate and a lens can be obtained.
  • a methacrylic resin composition that is a raw material for optical members is strongly required to have high transparency, low moisture absorption, high heat resistance, small dimensional change, high impact strength, good moldability, and the like.
  • a resin material for optical members for example, an optical resin material obtained by polymerizing a polymerizable composition containing 5% by weight or more of tricyclodecanyl (meth) acrylate is known (see Patent Document 1). . Since this optical resin material is brittle, its application has been limited. As a method for improving brittleness, a resin composition to which a crosslinked rubber or the like is added is known. However, a resin composition containing a structure derived from tricyclodecanyl (meth) acrylate and a crosslinked rubber is usually easily thermally decomposed during molding, which causes coloring and gel foreign matter.
  • An object of the present invention is to provide a resin composition constituting a molded article having low hygroscopicity, small dimensional change, and excellent transparency and impact strength.
  • the present invention includes the following inventions.
  • X is a cyclic hydrocarbon group having 6 or more carbon atoms.
  • a cyclic hydrocarbon group having 6 or more carbon atoms representing X has an isobornan-2-yl group, a tricyclo [5.2.1.0 2,6 ] decan-8-yl group, or a substituent.
  • a film comprising the resin composition according to any one of [1] to [8]. [10] The film according to [9], having a thickness of 10 to 50 ⁇ m.
  • a polarizer protective film comprising the film of [9] or [10].
  • a retardation film comprising the film of [9] or [10].
  • the resin composition of the present invention can form a molded article having low transparency and moisture absorption, small dimensional change, and excellent transparency and impact strength.
  • the resin composition of the present invention comprises a structural unit (a1) 10 to 50% by mass derived from a methacrylic acid cyclic hydrocarbon ester and a structural unit (a2) 50 derived from a methacrylic acid ester other than the methacrylic acid cyclic hydrocarbon ester.
  • This is a resin composition having a mass ratio (A) / (B) of rubber (B) of 95/5 to 10/90 and an acid value measured by JIS K 0070: 1992 of 7 mg / g or less.
  • the structural unit (a1) is a structural unit derived from a methacrylic acid cyclic hydrocarbon ester.
  • the cyclic hydrocarbon group constituting the methacrylic acid cyclic hydrocarbon ester is not particularly limited, and examples thereof include an octahydropentalen-1-yl group, an octahydropentalen-2-yl group, and an octahydro-1-1H.
  • the alkyl group in the above “substituted with an alkyl group” is preferably an alkyl group having 1 to 4 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Group, tert-butyl group and the like.
  • the cyclic hydrocarbon group an aliphatic cyclic hydrocarbon group is preferable.
  • the methacrylic acid cyclic hydrocarbon ester constituting the structural unit (a1) is preferably a compound represented by the formula (1).
  • X is a cyclic hydrocarbon group having 6 or more carbon atoms.
  • X in the formula (1) is a cyclic hydrocarbon group having 6 or more carbon atoms, preferably a polycyclic aliphatic hydrocarbon group having 10 or more carbon atoms, more preferably a bridged cyclic group having 10 or more carbon atoms. It is a hydrocarbon group.
  • the bridged cyclic hydrocarbon group is an alicyclic hydrocarbon group having a structure in which two adjacent carbon atoms constituting a ring are connected by a carbon chain composed of one or more carbon atoms.
  • Such a bridged cyclic hydrocarbon group may have a condensed ring structure or a spiro ring structure in addition to a structure connected by a carbon chain.
  • the number of carbon atoms constituting the bridged cyclic hydrocarbon group is more preferably 10-20.
  • Examples of the cyclic hydrocarbon group having 6 or more carbon atoms include octahydrocyclopenta [c, d] pentalen-2A-2a (2H) -yl, 3a, 6a-dimethyloctahydropentalen-2-yl, tetra Decahydroanthracen-9-yl group, androstan-4-yl group, cholestan-2-yl group, cholestane-5-yl group, 1,3,3-trimethylnorbornan-2-yl group, 1,2,3 , 3-tetramethylnorbornan-2-yl group, 1,3,3-trimethylnorbornane-2-yl group, isobornan-2-yl group, 2-methylisobornan-2-yl group, 2-ethylisoborn Nan-2-yl group, decahydro-2,5-methano-7,10-methananaphthalen-1-yl group, tricyclo [5.2.1.0 2,6 ] decan-8-y
  • the structural unit (a2) possessed by the methacrylic resin (A) is a structural unit derived from a methacrylic acid ester (a2) other than the methacrylic acid cyclic hydrocarbon ester.
  • the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, methacrylic acid.
  • Methacrylic acid chain aliphatic hydrocarbon esters such as amyl acid, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate: 2-hydroxyethyl methacrylate, 2-methoxy methacrylate Examples thereof include ethyl, glycidyl methacrylate, allyl methacrylate, benzyl methacrylate, and phenoxyethyl methacrylate.
  • a methacrylic acid chain aliphatic hydrocarbon ester is preferable, and methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate. Is more preferred, and methyl methacrylate is most preferred.
  • the structural unit (a3) that the methacrylic resin (A) may have is a structural unit derived from an acrylate ester.
  • the acrylate esters include acrylic acid chain aliphatic hydrocarbon esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid aromatics such as phenyl acrylate.
  • Acrylic alicyclic hydrocarbon esters such as cyclohexyl acrylate and norbornenyl acrylate.
  • methyl acrylate, ethyl acrylate, and butyl acrylate are preferable, and methyl acrylate is particularly preferable from the viewpoint that thermal decomposition can be suppressed and moldability is improved.
  • the methacrylic resin (A) used in the present invention may contain a structural unit (a4) in addition to the structural unit (a1), the structural unit (a2) and the structural unit (a3).
  • the structural unit (a4) is derived from monomers other than methacrylic acid esters and acrylic acid esters. Examples of such monomers include monomers having only one polymerizable carbon-carbon double bond in one molecule such as acrylamide; methacrylamide; acrylonitrile; methacrylonitrile, styrene.
  • a structural unit having an acidic functional group such as a carboxylic acid group or a sulfonic acid group derived from acrylic acid, methacrylic acid, 4-vinylbenzenesulfonic acid or the like increases the acid value. Moreover, since a water absorption rate becomes high, it is preferable not to contain.
  • the methacrylic resin (A) used in the present invention has 10 to 50% by mass of the structural unit (a1) and the structural unit (a2) from the viewpoint of high glass transition temperature, low water absorption, and small shrinkage at high temperature and high humidity.
  • the structural unit (a3) is contained in an amount of 0 to 20% by mass, preferably the structural unit (a1) is 15 to 40% by mass, the structural unit (a2) is 60 to 85% by mass, and 0 to 10% by mass of structural unit (a3), more preferably 20 to 30% by mass of structural unit (a1), 70 to 80% by mass of structural unit (a2), and 0 to 10% of structural unit (a3) 5% by mass is contained.
  • the content of the structural unit (a4) is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably 0 to 2% by mass.
  • the methacrylic resin (A) used in the present invention has a weight average molecular weight (hereinafter sometimes referred to as “Mw”), preferably 60,000 to 200,000, more preferably 80000 to 160000, still more preferably 90000 to 150,000, Preferably it is 100,000-130,000.
  • Mw weight average molecular weight
  • the film made of the resin composition of the present invention has high strength, is difficult to break, and is easy to stretch, so that a thinner film can be obtained.
  • the moldability of a methacryl resin (A) improves because Mw is 200000 or less, it becomes the tendency for the thickness of the film which consists of a resin composition of this invention to be uniform, and to be excellent in surface smoothness.
  • the methacrylic resin (A) used in the present invention has a ratio of Mw to a number average molecular weight (hereinafter sometimes referred to as “Mn”) (Mw / Mn: hereinafter, this value may be referred to as “molecular weight distribution”). ) Is preferably 1.2 to 5.0, more preferably 1.5 to 3.5. When the molecular weight distribution is 1.2 or more, the fluidity of the methacrylic resin (A) is improved, and the film made of the resin composition of the present invention tends to be excellent in surface smoothness. When the molecular weight distribution is 5.0 or less, a film made of the resin composition of the present invention tends to be excellent in impact resistance and toughness.
  • Mw and Mn are values obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene.
  • the methacrylic resin (A) used in the present invention has a melt flow rate of preferably 0.1 to 15 g / 10 min, more preferably measured at 230 ° C. under a load of 3.8 kg in accordance with JIS K7210. Is 0.5 to 5 g / 10 min, more preferably 0.8 to 3 g / 10 min.
  • the acid value of the methacrylic resin (A) used in the present invention is measured according to JIS K 0070: 1992.
  • the acid value is preferably 7 mg / g or less, preferably 5 mg / g or less, more preferably 3 mg / g or less, further preferably 1.0 mg / g or less, and most preferably 0.5 mg / g or less.
  • thermal decomposition caused by the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) can be suppressed.
  • the glass transition temperature of the methacrylic resin (A) used in the present invention is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher.
  • the upper limit of the glass transition temperature of the methacrylic resin (A) is usually 140 ° C.
  • the glass transition temperature can be controlled by adjusting the proportion of structural units derived from methacrylic acid cyclic hydrocarbon ester. When the glass transition temperature is in this range, the heat resistance of the resulting film is improved and deformation such as heat shrinkage hardly occurs.
  • the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher.
  • the first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
  • the method for producing the methacrylic resin (A) used in the present invention is not particularly limited.
  • it can be produced by a known polymerization method such as a radical polymerization method or an anionic polymerization method.
  • the adjustment of the methacrylic resin (A) to the above-mentioned characteristic values is performed by adjusting the polymerization conditions, specifically, the polymerization temperature, the polymerization time, the type and amount of the chain transfer agent, the type and amount of the polymerization initiator, etc. Can be done by adjusting. Adjustment of resin characteristics by adjusting polymerization conditions is a technique well known to those skilled in the art.
  • a suspension polymerization method when a radical polymerization method is used, a suspension polymerization method, a bulk polymerization method, a solution polymerization method, or an emulsion polymerization method can be selected.
  • a suspension polymerization method or a bulk polymerization method it is preferable to carry out by a suspension polymerization method or a bulk polymerization method from the viewpoint of productivity and thermal decomposition resistance.
  • the bulk polymerization method is preferably performed by a continuous flow method.
  • the radical polymerization reaction is performed using a polymerization initiator, the above-described monomer, and a chain transfer agent as necessary.
  • the polymerization initiator is not particularly limited as long as it generates a reactive radical.
  • the one-hour half-life temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C.
  • examples of such a polymerization initiator include t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate.
  • t-butyl peroxypivalate t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethyl Butyl peroxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis (2 -Methylpropionitrile), 2,2'-azobis (2-methylbutyronitrile), dimethyl And the like 2,2'-azobis (2-methyl propionate).
  • t-hexylperoxy 2-ethylhexanoate 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2′-azobis (2-methylpropionate) are preferable.
  • polymerization initiators may be used alone or in combination of two or more.
  • the addition amount and addition method of the polymerization initiator are not particularly limited as long as they are appropriately set according to the purpose.
  • the amount of the polymerization initiator used in the suspension polymerization method is preferably 0.0001 to 0.1 parts by mass, more preferably 0 to 100 parts by mass of the total amount of monomers to be subjected to the polymerization reaction. 0.001 to 0.07 parts by mass.
  • the chain transfer agent used as necessary when the methacrylic resin (A) used in the present invention is produced by the radical polymerization method is not particularly limited.
  • n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiol Alkyl mercaptans such as propionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopropionate), pentaerythritol tetrakisthiopropionate; ⁇ -methylstyrene Dimer; terpinolene and the like can be mentioned.
  • alkyl mercaptans such as n-octyl mercaptan and pentaerythritol tetrakisthiopropionate are preferred.
  • chain transfer agents may be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.15 to 0.8 part by weight, based on 100 parts by weight of the total amount of monomers to be subjected to the polymerization reaction. More preferably, it is 0.2 to 0.6 parts by mass, and most preferably 0.2 to 0.5 parts by mass.
  • the amount of the chain transfer agent used is preferably 2500 to 10,000 parts by mass, more preferably 3000 to 9000 parts by mass, and further preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
  • the methacrylic resin (A) and thus the resin composition of the present invention, can have good moldability and high mechanical strength.
  • Each monomer, polymerization initiator and chain transfer agent used in the production of the methacrylic resin (A) used in the present invention may be mixed together and supplied to the reaction vessel, or they may be separated separately. You may supply to a reaction tank. In the present invention, a method of mixing all and supplying the mixture to the reaction vessel is preferable.
  • the solvent is not limited as long as it can dissolve the monomer and the methacrylic resin (A), but benzene, toluene, ethylbenzene Aromatic hydrocarbons such as are preferred. These solvents can be used alone or in combination of two or more.
  • the usage-amount of a solvent can be suitably set from a viewpoint of the viscosity and productivity of a reaction liquid.
  • the amount of the solvent used is, for example, preferably 100 parts by mass or less, more preferably 50 parts by mass or less with respect to 100 parts by mass of the total amount of the polymerization reaction raw materials.
  • the reaction temperature when producing the methacrylic resin (A) used in the present invention by radical polymerization is preferably 50 to 180 ° C., more preferably 60 to 140 ° C.
  • the temperature is preferably 100 to 200 ° C, more preferably 110 to 180 ° C.
  • productivity tends to be improved due to an increase in the polymerization rate, a decrease in the viscosity of the polymerization solution, and the like.
  • the methacrylic resin (A) used in the present invention is produced by suspension polymerization, it can be washed, dehydrated and dried by a known method after completion of the polymerization to obtain a granular polymer.
  • Radical polymerization may be performed using a batch type reaction apparatus or a continuous flow type reaction apparatus.
  • a polymerization reaction raw material (mixed solution containing a monomer, a polymerization initiator, a chain transfer agent, etc.) is prepared under a nitrogen atmosphere, and the mixture is supplied to the reactor at a constant flow rate. The liquid in the reactor is withdrawn at a flow rate corresponding to the amount.
  • a tubular reactor that can be in a state close to plug flow and / or a tank reactor that can be in a state close to complete mixing can be used.
  • continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors.
  • the amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor.
  • the reactor is usually equipped with a stirring device.
  • the stirring device include a static stirring device and a dynamic stirring device.
  • the dynamic agitation device include a Max blend type agitation device, an agitation device having a lattice-like blade rotating around a vertical rotation shaft arranged in the center, a propeller type agitation device, a screw type agitation device, and the like. .
  • a Max blend type stirring apparatus is preferably used from the point of uniform mixing property.
  • the removal method is not particularly limited, but heating devolatilization is preferable.
  • the devolatilization method include an equilibrium flash method and an adiabatic flash method.
  • the devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C. If the devolatilization temperature is too high, the acid value of the resulting methacrylic resin (A) will be high.
  • the time for heating the resin by the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and further preferably 0.5 to 2 minutes.
  • a methacrylic resin (A) with little coloring is easily obtained.
  • the removed unreacted monomer can be recovered and used again for the polymerization reaction.
  • the yellow index of the recovered monomer may be high due to heat applied during the recovery operation.
  • the recovered monomer is preferably purified by an appropriate method to reduce the yellow index.
  • Examples of the method for producing the methacrylic resin (A) used in the present invention by anionic polymerization include an anionic polymerization in the presence of a mineral acid salt such as an alkali metal or alkaline earth metal salt using an organic alkali metal compound as a polymerization initiator. (See Japanese Patent Publication No. 7-25859), anionic polymerization in the presence of an organoaluminum compound using an organic alkali metal compound as a polymerization initiator (see JP-A-11-335432), and polymerization of an organic rare earth metal complex Examples of the initiator include a method of anionic polymerization (see JP-A-6-93060).
  • the methacrylic resin (A) used in the present invention is produced by an anionic polymerization method
  • an alkyl lithium such as n-butyllithium, sec-butyllithium, isobutyllithium, or t-butyllithium
  • an organoaluminum compound coexist from a viewpoint of productivity.
  • the organoaluminum compound include compounds represented by the formula: AlR 1 R 2 R 3 .
  • R 1 , R 2 and R 3 each independently have an alkyl group which may have a substituent, an cycloalkyl group which may have a substituent, or a substituent.
  • R 2 and R 3 may be an aryleneoxy group which may have a substituent formed by bonding them.
  • organoaluminum compound examples include isobutyl bis (2,6-di-t-butyl-4-methylphenoxy) aluminum, isobutyl bis (2,6-di-t-butylphenoxy) aluminum, isobutyl [2,2 And '-methylenebis (4-methyl-6-t-butylphenoxy)] aluminum.
  • anionic polymerization method an ether or a nitrogen-containing compound can coexist in order to control the polymerization reaction.
  • the crosslinked rubber (B) used in the present invention is a polymer exhibiting rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinking monomer.
  • the crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
  • crosslinkable monomer examples include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene
  • crosslinked rubber (B) used in the present invention examples include acrylic crosslinked rubber and diene crosslinked rubber, and more specifically, an acrylate monomer, a crosslinking monomer, and other vinyl.
  • Copolymer rubber with conjugated monomer Copolymer rubber with conjugated diene monomer, crosslinkable monomer and other vinyl monomer, Acrylic acid ester monomer and conjugated diene monomer And a copolymer rubber of a polymer, a crosslinkable monomer, and other vinyl monomers.
  • a crosslinked rubber not containing a structure derived from a conjugated diene monomer is preferable.
  • the crosslinked rubber (B) is preferably contained in the resin composition in the form of particles.
  • the crosslinked rubber (B) in the form of particles may be a single layer particle composed only of the crosslinked rubber, or may be a multilayer particle composed of the crosslinked rubber and another polymer.
  • core-shell type particles comprising a core composed of the crosslinked rubber and a shell composed of the other polymer are preferable.
  • the crosslinked rubber (B) that can be suitably used in the present invention is acrylic multilayer polymer particles.
  • the acrylic multilayer polymer particles have a core part and a shell part.
  • the core portion includes a center core and, if necessary, one or more inner shells that cover the center core in a substantially concentric shape.
  • the shell portion has a one-layer outer shell that covers the core portion substantially concentrically.
  • the center core, the inner shell, and the outer shell are connected to each other without a gap.
  • the center core and the inner shell contains the crosslinked rubber polymer (i), and the remaining part contains the polymer (iii).
  • the crosslinked rubber polymer (i) contained in them has the same polymer properties. Alternatively, it may have different polymer properties. Further, when the remaining part of the center core and the inner shell is two or more, the polymer (iii) contained in them may have the same polymer properties or different polymer properties. It may be a thing.
  • the crosslinked rubber polymer (i) has at least a unit derived from an acrylate monomer and / or a unit derived from a conjugated diene monomer and a unit derived from a crosslinkable monomer. From the viewpoint of enhancing light resistance, a crosslinked rubber polymer (i) that does not contain a structure derived from a conjugated diene monomer is preferred.
  • the acrylate monomer is preferably an acrylate monomer having an alkyl group having 1 to 8 carbon atoms or an acrylate monomer having an aromatic group having 6 to 24 carbon atoms.
  • Acrylic acid ester monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, benzyl acrylate, paracumylphenol ethylene oxide modified acrylate, o-phenyl A phenol ethylene oxide modified acrylate etc. can be mentioned. These may be used alone or in combination of two or more.
  • Examples of the conjugated diene monomer include butadiene and isoprene. These may be used alone or in combination of two or more.
  • the amount of the unit derived from the acrylate monomer and / or the unit derived from the conjugated diene monomer in the crosslinked rubber polymer (i) is preferably relative to the total mass of the crosslinked rubber polymer (i). Is 60% by mass or more, more preferably 70 to 99% by mass, and still more preferably 80 to 98% by mass.
  • crosslinkable monomer examples include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene
  • the amount of the unit derived from the crosslinkable monomer in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0.8%, based on the total mass of the crosslinked rubber polymer (i). It is 5 to 7% by mass, more preferably 1 to 5% by mass.
  • the crosslinked rubber polymer (i) may have units derived from other vinyl monomers.
  • the other vinyl monomer used in the crosslinked rubber polymer (i) is not particularly limited as long as it can be copolymerized with the acrylate monomer and the crosslinkable monomer.
  • Examples of other vinyl monomers used in the crosslinked rubber polymer (i) include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, and cyclohexyl methacrylate.
  • Monomers aromatic vinyl monomers such as styrene, p-methylstyrene, o-methylstyrene; and maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide, N-o-chlorophenylmaleimide; Can be mentioned. These may be used alone or in combination of two or more.
  • the amount of units derived from other vinyl monomers in the crosslinked rubber polymer (i) includes units derived from acrylate monomers, units derived from conjugated diene monomers, and crosslinkable monomers. It is the remainder with respect to the total amount of the unit derived from.
  • the polymer (iii) is not particularly limited as long as it is other than the crosslinked rubber polymer (i), but preferably has a unit derived from a methacrylic acid ester monomer.
  • the polymer (iii) may contain, as other units, a unit derived from a crosslinkable monomer and / or a unit derived from another vinyl monomer.
  • the methacrylic acid ester monomer used for the polymer (iii) is a methacrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms or a methacrylic acid ester monomer having an aromatic group having 6 to 24 carbon atoms.
  • methacrylic acid ester monomer examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like. These may be used alone or in combination of two or more. Of these, methyl methacrylate is preferred.
  • the amount of the unit derived from the methacrylic acid ester monomer in the polymer (iii) is preferably 40 to 100% by mass, more preferably 50 to 99% by mass, and further preferably 60 to 98% by mass.
  • crosslinkable monomer used in the polymer (iii) examples include the same crosslinkable monomers exemplified in the above-mentioned crosslinked rubber polymer (i).
  • the amount of the unit derived from the crosslinkable monomer in the polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.02 to 2% by mass. .
  • the other vinyl monomer used for the polymer (iii) is not particularly limited as long as it is copolymerizable with the above-mentioned methacrylic acid ester monomer and crosslinkable monomer.
  • examples of other vinyl monomers used for the polymer (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, Acrylic acid ester monomers such as 2-ethylhexyl acrylate, paracumylphenol ethylene oxide modified acrylate, o-phenylphenol ethylene oxide modified acrylate; vinyl acetate; styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene , ⁇ -methylstyrene, vinyl naphthalene and other aromatic vinyl monomers;
  • the acrylic multilayer polymer particle has an outer shell containing the thermoplastic polymer (ii).
  • thermoplastic polymer (ii) has a unit derived from a methacrylic acid ester monomer.
  • the thermoplastic polymer (ii) may have units derived from other vinyl monomers.
  • the methacrylic acid ester monomer used for the thermoplastic polymer (ii) is a methacrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms or a methacrylic acid ester having an aromatic group having 6 to 24 carbon atoms. It is preferable that Examples of the methacrylic acid ester monomer include methyl methacrylate and butyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
  • the amount of the unit derived from the methacrylic acid ester monomer in the thermoplastic polymer (ii) is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
  • thermoplastic polymer (ii) examples include the same vinyl monomers as those exemplified in the polymer (iii).
  • the amount of units derived from other vinyl monomers in the thermoplastic polymer (ii) is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.
  • the core part and the shell part of the acrylic multilayer polymer particles for example, Two-layer polymer particles whose center core is a crosslinked rubber polymer (i) and whose outer shell is a thermoplastic polymer (ii); Three-layer polymer particles in which the center core is a polymer (iii), the inner shell is a crosslinked rubber polymer (i), and the outer shell is a thermoplastic polymer (ii); Three-layer polymer particles with one kind of crosslinked rubber polymer (i) having a center core, one inner shell being another kind of crosslinked rubber polymer (i), and outer shell being a thermoplastic polymer (ii) , Three-layer polymer particles in which the center core is a crosslinked rubber polymer (i), the inner shell is a polymer (iii), and the outer shell is a thermoplastic polymer (ii); 4 layers, the center core is a crosslinked rubber polymer (i), the inner inner shell is a polymer (iii), the outer inner shell is a
  • Examples thereof include polymer particles.
  • the difference in refractive index (absolute value) between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in each layer.
  • the ratio of the outer shell part in the acrylic multilayer polymer particles is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass.
  • the ratio of the layer containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
  • the volume-based average particle diameter of the crosslinked rubber particles (B) used in the present invention is preferably 0.02 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, still more preferably 0.1 to 0.3 ⁇ m.
  • the volume reference average particle diameter in this specification is a value calculated based on particle size distribution data measured by the light scattering light method.
  • the method for producing the crosslinked rubber particles (B) is not particularly limited. From the viewpoints of particle size control, ease of production of the multilayer structure, the emulsion polymerization method or the seed emulsion polymerization method is preferred.
  • the emulsion polymerization method is a method for producing an emulsion containing polymer particles by emulsifying a predetermined monomer and polymerizing it.
  • seed particles are obtained by emulsifying and polymerizing a predetermined monomer, and by emulsifying and polymerizing another predetermined monomer in the presence of the seed particles,
  • a method for producing an emulsion comprising core-shell polymer particles having a shell polymer coated in a substantially concentric shape.
  • Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, and the like.
  • the average number of repeating units of the ethylene oxide unit in the exemplary compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
  • the polymerization initiator used for emulsion polymerization is not particularly limited. Examples thereof include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite.
  • Separation and acquisition of the crosslinked rubber (B) from the emulsion obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method.
  • the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable from the viewpoint that impurities contained in the crosslinked rubber (B) can be easily removed by washing with water.
  • the freeze coagulation method since an aggregating agent is not used, an acrylic resin film excellent in water resistance is easily obtained.
  • the crosslinked rubber (B) is preferably taken out as an aggregate of 1000 ⁇ m or less, and 500 ⁇ m or less. It is more preferable to take out with the aggregate.
  • the form of the aggregate of the crosslinked rubber (B) is not particularly limited, and may be, for example, a pellet form fused to each other at the shell, or a powder form or a granulated form.
  • the acid value measured by JIS K 0070: 1992 of the crosslinked rubber (B) used in the present invention is preferably 10 mg / g or less, more preferably 7 mg / g or less, further preferably 5 mg / g or less, and 3 mg / g or less. Is more preferable, and 1 mg / g or less is most preferable.
  • the acid value of the crosslinked rubber can be lowered by washing, for example. In the measurement of the acid value of the crosslinked rubber, the crosslinked rubber is not completely dissolved, but the acid value is measured with stirring the crosslinked rubber in chloroform at room temperature for 12 hours or more and leaving the undissolved crosslinked rubber remaining. That's fine.
  • the refractive index (n 23 D ) of the crosslinked rubber (B) used in the present invention varies depending on the type of the matrix resin containing the methacrylic resin (A), the optimum value for ensuring transparency varies. 45 to 1.60 are preferred, 1.48 to 1.56 are more preferred, and 1.50 to 1.54 are even more preferred. The closer the refractive index (n 23 D ) of the crosslinked rubber (B) is to the refractive index (n 23 D ) of components other than the crosslinked rubber (B), the higher the transparency of the resin composition.
  • the difference (absolute value) in refractive index between the matrix resin containing the methacrylic resin (A) and the crosslinked rubber (B) is 0.05 or less, more preferably 0.02 or less, and still more preferably 0.01. In the following, it is preferable to select appropriately so that it is most preferably 0.005 or less.
  • the matrix resin containing the methacrylic resin (A) is a resin component other than the crosslinked rubber (B) in the resin composition of the present invention.
  • the matrix resin may be composed of only the methacrylic resin (A), or may be composed of a composition of the methacrylic resin (A) and another polymer such as a polycarbonate resin.
  • the refractive index values of the matrix resin and the crosslinked rubber (B) are actually measured by the method described in the examples below. If it is difficult to prepare a sample for measuring the refractive index, the refractive index of the homopolymer is conveniently determined.
  • the weight average can be obtained according to the copolymer composition or the mass ratio of the mixing ratio.
  • the mass ratio (A) / (B) of the methacrylic resin (A) and the crosslinked rubber (B) in the resin composition according to the present invention is 95/5 to 10/90 from the viewpoint of impact resistance, and 90/10 To 30/70 is more preferable, 85/15 to 40/60 is more preferable, and 80/20 to 50/50 is most preferable.
  • the total amount of the methacrylic resin (A) and the crosslinked rubber (B) contained in the resin composition according to the present invention is preferably 40 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass, most preferably 80 to 100% by mass.
  • the acid value measured by JIS K 0070: 1992 of the resin composition according to the present invention is 7 mg / g or less, preferably 5 mg / g or less, more preferably 3 mg / g or less, and 1.0 mg / g or less. More preferred is 0.5 mg / g or less.
  • thermal decomposition caused by the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) can be suppressed.
  • the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) is thermally decomposed to produce a methacrylic acid structural unit.
  • the thermal decomposition of the resin composition is promoted by the carboxylic acid group, and the production of coloring and foreign matters is promoted. What is necessary is just to measure similarly in the case of the film which is 1 aspect of a composition.
  • the resin composition contains the crosslinked rubber (B), it is not completely dissolved, but the resin composition is stirred and dissolved in chloroform at room temperature for 12 hours or more to leave undissolved crosslinked rubber (B). In this state, the acid value may be measured.
  • the acid value is within the above range, the yellow index of the resin composition can be lowered, coloring can be reduced, and the thermal decomposition resistance can be maintained high.
  • the resin composition according to the present invention may further contain a polycarbonate resin (C).
  • the polycarbonate resin (C) that may be added to the resin composition of the present invention is not particularly limited, and examples thereof include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound.
  • an aromatic polycarbonate resin is preferred from the viewpoint of compatibility with the methacrylic resin (A) and excellent transparency of the resulting film.
  • the polycarbonate resin (C) used in the present invention has a melt volume flow rate (at 300 ° C. and 1.2 kg) from the viewpoints of compatibility with the methacrylic resin (A), transparency of the resulting film, surface smoothness, and the like.
  • MVR values, preferably 1 ⁇ 250cm 3/10 min, more preferably 3 ⁇ 230cm 3/10 min.
  • the polycarbonate resin (C) used in the present invention was measured by gel permeation chromatography (GPC) from the viewpoints of compatibility with the methacrylic resin (A), transparency of the resulting film, surface smoothness, and the like.
  • the weight average molecular weight calculated by converting the chromatogram into the molecular weight of standard polystyrene is preferably 18000-75000, more preferably 20000-60000.
  • the MVR value and the weight average molecular weight of the polycarbonate resin (C) can be adjusted by adjusting the amounts of the terminal terminator and the branching agent.
  • the glass transition temperature of the polycarbonate resin (C) used in the present invention is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and further preferably 140 ° C. or higher.
  • the upper limit of the glass transition temperature of the polycarbonate resin is usually 180 ° C.
  • the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher.
  • the first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
  • the method for producing the polycarbonate resin (C) is not particularly limited. Examples thereof include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method).
  • the aromatic polycarbonate resin preferably used in the present invention may be one obtained by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups.
  • the polycarbonate resin (C) commercially available products and other known products can be used.
  • the polycarbonate resin (C) may contain a unit having a polyester, polyurethane, polyether or polysiloxane structure in addition to the polycarbonate unit.
  • the mass ratio (A) / (C) of the methacrylic resin (A) to the polycarbonate resin (C) is usually 98/2 to 50/50, preferably 98/2 to 60 /. 40.
  • the compatibility of the methacrylic resin (A) and the polycarbonate resin (C) is good, it is easy to obtain a film having high transparency, high refractive index, and good surface smoothness.
  • the mass ratio (A) / (C) 98/2 to 90/10 of the methacrylic resin (A) to the polycarbonate resin (C) is selected, the absolute value of the retardation of the film can be reduced.
  • the resin composition according to the present invention may contain a filler as necessary within a range not impairing the effects of the present invention.
  • the filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate.
  • the amount of filler that can be contained in the resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
  • the resin composition according to the present invention may contain other polymers as long as the effects of the present invention are not impaired.
  • Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate polymer other than methacrylic resin (A), methyl methacrylate-styrene copolymer; polyethylene terephthalate, polybutylene terephthalate Polyester resin such as nylon 6, nylon 66, polyamide such as polyamide elastomer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, poly Setar,
  • the resin composition according to the present invention is an antioxidant, a thermal deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic agent, as long as the effects of the present invention are not impaired. It may contain additives such as additives, flame retardants, dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors.
  • additives may be used singly or in combination of two or more. Moreover, these additives may be added to the polymerization reaction liquid when producing the methacrylic resin (A) or the crosslinked rubber (B), or the produced methacrylic resin (A) or the crosslinked rubber (B). It may be added or may be added when preparing the resin composition of the present invention.
  • the total amount of additives contained in the resin composition of the present invention is preferably 7% by mass or less, more preferably 5% by mass with respect to the methacrylic resin (A) from the viewpoint of suppressing poor appearance of the molded product. Hereinafter, it is more preferably 4% by mass or less.
  • the method for preparing the resin composition of the present invention is not particularly limited. For example, a method of polymerizing a monomer mixture containing methyl methacrylate in the presence of a crosslinked rubber (B) to produce a methacrylic resin (A), or melt-kneading a methacrylic resin (A) and a crosslinked rubber (B) The method of doing can be mentioned. In the melt-kneading, other polymers and additives may be mixed as necessary, and the methacrylic resin (A) is mixed with the other polymers and additives and then mixed with the crosslinked rubber (B).
  • the crosslinked rubber (B) may be mixed with other polymer and additive and then mixed with the methacrylic resin (A), or other methods may be used.
  • the kneading can be performed using, for example, a known mixing apparatus or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. Of these, a twin screw extruder is preferred.
  • the temperature at the time of mixing and kneading can be appropriately adjusted according to the melting temperature of the methacrylic resin (A) and the crosslinked rubber (B) to be used, but is preferably 110 ° C. to 280 ° C., more preferably 200 ° C. to 270 ° C. If the melting temperature is too high, the acid value of the resulting resin composition will be high.
  • the resin composition of the present invention has a glass transition temperature of preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 122 ° C. or higher, and particularly preferably 125 ° C. or higher.
  • the upper limit of the glass transition temperature of the resin composition of the present invention is not particularly limited, but is preferably 135 ° C.
  • the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher.
  • the first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
  • the Mw determined by gel permeation chromatography (GPC) measurement of the solvent-soluble content of the resin composition of the present invention is preferably 70000-200000, more preferably 72000-180000, and further preferably 75000-150,000.
  • the Mw / Mn determined by gel permeation chromatography (GPC) measurement of the solvent-soluble content of the resin composition of the present invention is preferably 1.2 to 5.0, more preferably 1.5 to 3.5. It is. When Mw and Mw / Mn are in this range, the molding processability of the resin composition becomes good, and it becomes easy to obtain a molded article excellent in impact resistance and toughness.
  • the resin composition of the present invention has a melt flow rate (MFR) determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 15 g / 10 min, more preferably 0.5 to 5 g / 10 min, most preferably 1.0 to 3 g / 10 min.
  • MFR melt flow rate
  • the resin composition of the present invention has a 1.0 mm thick haze, preferably 1.0% or less, more preferably 0.7% or less, and still more preferably 0.5% or less.
  • the resin composition of the present invention can be formed into a molded body such as a film in any form such as pellets, granules, and powders.
  • the resin composition of the present invention can be molded into various molded products by a known method.
  • the molding method include an extrusion molding method, an injection molding method, a calendar molding method, a blow molding method, a compression molding method, and a solution casting method.
  • a known composite molded body manufacturing method such as an insert molding method or a coating molding method can be employed.
  • a preferable molded body in the resin composition of the present invention is a film.
  • the film which concerns on one Embodiment of this invention is not specifically limited by the manufacturing method, For example, a solution cast method, a melt casting method, an extrusion molding method, an inflation molding method, a blow molding method etc. can be mentioned. Of these, the extrusion method is preferred. According to the extrusion method, a film having excellent transparency, improved toughness, excellent handleability, and excellent balance between toughness, surface hardness, and rigidity can be obtained.
  • the temperature of the resin composition according to the present invention discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C. If the temperature of the resin composition becomes too high, the acid value of the resulting film will be high.
  • the resin composition is extruded from a T die in a molten state, and then it is applied to two or more specular rolls.
  • molding is preferable.
  • the mirror roll or the mirror belt is preferably made of metal.
  • the linear pressure between the pair of mirror rolls or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more.
  • the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less.
  • the pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher. When such a surface temperature is set, the resin composition discharged from the extruder can be cooled at a speed faster than natural cooling, and the film of the present invention having excellent surface smoothness and low haze can be produced. easy.
  • the film of the present invention may be stretched in at least one direction.
  • the thickness of the film of the present invention is preferably 1 to 200 ⁇ m, more preferably 10 to 50 ⁇ m, and still more preferably 15 to 40 ⁇ m.
  • the film of the present invention has a haze at a thickness of 40 ⁇ m, preferably 0.3% or less, more preferably 0.2% or less. Thereby, it is excellent in surface glossiness and transparency. Further, in optical applications such as a liquid crystal protective film and a light guide film, the use efficiency of the light source is preferably increased. Furthermore, it is preferable because it is excellent in shaping accuracy when performing surface shaping.
  • an in-plane retardation Re at a thickness of 40 ⁇ m with respect to light having a wavelength of 590 nm is preferably 19 nm or less, more preferably 15 nm or less, still more preferably 10 nm or less, particularly Preferably it is 5 nm or less, Most preferably, it is 1 nm or less.
  • the film of the present invention has a thickness direction retardation Rth at a thickness of 40 ⁇ m with respect to light having a wavelength of 590 nm, preferably ⁇ 12 nm to 12 nm, more preferably ⁇ 5 nm to 5 nm, still more preferably ⁇ 3 nm to 3 nm, particularly It is preferably ⁇ 2 nm or more and 2 nm or less, and most preferably ⁇ 1 nm or more and 1 nm or less.
  • the in-plane direction phase difference Re and the thickness direction phase difference Rth are values defined by the following equations, respectively.
  • n x is a refractive index in a slow axis direction of the film
  • n y is a refractive index in a fast axis direction of the film
  • n z is a refractive index in the thickness direction of the film
  • d [nm ] Is the thickness of the film.
  • the slow axis is an axis in the direction in which the refractive index in the film plane becomes maximum.
  • the fast axis is an axis in a direction perpendicular to the slow axis in the plane.
  • the film of the present invention has a photoelastic coefficient ⁇ with respect to light having a wavelength of 590 nm, preferably ⁇ 3.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more and 3.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably ⁇ 2.0.
  • ⁇ 10 ⁇ 12 Pa ⁇ 1 or more and 2.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less more preferably ⁇ 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more and 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the in-plane direction phase difference Re, the thickness direction phase difference Rth, and the photoelastic coefficient ⁇ are within such ranges, the influence on the display characteristics of the image display apparatus due to the phase difference can be remarkably suppressed. More specifically, interference unevenness and 3D image distortion when used in a liquid crystal display device for 3D display can be significantly suppressed.
  • the in-plane retardation Re per 40 ⁇ m thickness is preferably 10 to 200 nm, more preferably 10 to 180 nm, and even more preferably 10 to 150 nm.
  • the thickness direction retardation is preferably ⁇ 10 to ⁇ 250 nm, more preferably ⁇ 20 to ⁇ 230 nm, and further preferably ⁇ 30 to ⁇ 200 nm.
  • a functional layer may be provided on the surface of the film of the present invention.
  • the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an anti-sticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, an anti-slip layer such as fine particles, and a gas barrier layer. it can.
  • the film of the present invention is excellent in thermal decomposition resistance and has impact resistance, a retardation film, a polarizer protective film, a liquid crystal protective plate, a surface material for a portable information terminal, a display window protective film for a portable information terminal, It is suitable for light guide films, transparent conductive films coated with silver nanowires or carbon nanotubes, optical gas barrier films, front plate applications for various displays, and the like.
  • the film of the present invention has excellent thermal decomposition resistance and impact resistance, it can be used for applications other than optical applications, such as IR cut films, crime prevention films, scattering prevention films, decorative films, metal decorative films, and solar cell backs. It can be used for sheets, front sheets for flexible solar cells, shrink films, and films for in-mold labels.
  • the polarizing plate in which the film of the present invention is used has at least a polarizer and the film of the present invention laminated on the polarizer.
  • the film of the present invention may be laminated on both sides of the polarizer or may be laminated on one side.
  • an optical film other than the film of the present invention can be laminated on another side.
  • the optical film include a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness enhancement film. Lamination can also be performed via an adhesive layer.
  • the polarizing plate in which the film of the present invention is used can be used for an image display device.
  • the image display device include a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), a field emission display (FED), and a liquid crystal display (LCD).
  • EL electroluminescence
  • PD plasma display
  • FED field emission display
  • LCD liquid crystal display
  • the liquid crystal display device includes a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
  • the film of the present invention has excellent thermal decomposition resistance and impact resistance, it is also suitable as a film used for an organic electroluminescence lighting device or an organic electroluminescence display device.
  • composition of monomer units in resin Using a nuclear magnetic resonance apparatus (ULTRA SHIELD 400 PLUS manufactured by Bruker), 1 H-NMR spectrum was measured under the conditions of 1 mL of deuterated chloroform, room temperature, and 64 times of accumulation for 10 mg of resin. The composition of monomer units in the resin was calculated.
  • Mw Weight average molecular weight (Mw) Mw was calculated from the value obtained by measuring the chromatogram under the following conditions by gel permeation chromatography (GPC) and converting it to the molecular weight of standard polystyrene.
  • GPC device manufactured by Tosoh Corporation, HLC-8320 Detector: Differential refractive index detector
  • Eluent Tetrahydrofuran Eluent flow rate: 0.35 ml / min
  • Calibration curve Created using 10 standard polystyrene data
  • Glass transition temperature (Tg) Glass transition temperature (Tg)
  • DSC-50 product number manufactured by Shimadzu Corporation
  • Total light transmittance (T t ) The total light transmittance was measured with a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1, using a test piece (optical path length: 3 mm) prepared by measuring saturated water absorption. .
  • Haze (H) Haze (H) was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) in accordance with JIS K7136, using a test piece (optical path length: 3 mm) prepared by measuring saturated water absorption.
  • the test piece prepared by measuring the saturated water absorption was measured for refractive index at a measurement wavelength of 587.6 nm (d line) at 23 ° C. using Kalnew Optical Co., Ltd. yKPR-20 ”.
  • the sample contained a crosslinked rubber it was not completely dissolved, but was stirred and dissolved in chloroform at room temperature for 12 hours or more, and the acid value was measured in a state where undissolved crosslinked rubber remained.
  • ⁇ YI A test piece prepared with a saturated water absorption rate is exposed for 200 hours at 80 mW / cm 2 and a temperature of 55 ° C. using a super UV tester (Iwasaki Electric Co., Ltd., SUV-F1). The difference of the index (YI) was set as ⁇ YI and evaluated as follows. A: ⁇ YI ⁇ 5 B: ⁇ YI> 5
  • ⁇ Production Example 1> In an autoclave, 63 parts by weight of methyl methacrylate (MMA), 35 parts by weight of dicyclopentanyl methacrylate (TCDMA), 2 parts by weight of methyl acrylate (MA), 0.47 parts by weight of pentaerythritol tetrakisthiopro Pionate, 0.06 parts by weight of azobisisobutyronitrile, 0.01 parts by weight of 1,1-bis (1,1-dimethylperoxy) cyclohexane, 231 parts by weight of water, 1.4 parts by weight And 17.5 parts by weight of a pH adjuster were added.
  • MMA methyl methacrylate
  • TCDMA dicyclopentanyl methacrylate
  • MA methyl acrylate
  • MA pentaerythritol tetrakisthiopro Pionate
  • azobisisobutyronitrile 0.01 parts by weight of 1,1-bis (1,1-dimethylperoxy) cyclo
  • the liquid temperature was raised from room temperature to 70 ° C., held at 70 ° C. for 120 minutes, and then held at 120 ° C. for 60 minutes to cause a polymerization reaction.
  • the liquid temperature was lowered to room temperature, and the polymerization reaction liquid was extracted from the autoclave.
  • the solid content was removed from the polymerization reaction solution by filtration, washed with water, and dried in hot air at 80 ° C. for 24 hours.
  • the obtained solid content was supplied to a hopper of a twin screw extruder and melt kneaded at a cylinder temperature of 230 ° C.
  • ⁇ Production Example 2 48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, a thermometer and a stirrer, and then dissolved with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate and 16 g of sodium carbonate. I let you. Next, 11.2 kg of methyl methacrylate and 110 g of allyl methacrylate were added and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization.
  • 720 g of a 2% aqueous sodium persulfate solution was added to the obtained emulsion.
  • a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene and 280 g of allyl methacrylate was dropped over 60 minutes. After completion of the dropwise addition, stirring was continued for 60 minutes to perform the second stage seed emulsion polymerization.
  • 320 g of 2% potassium persulfate aqueous solution is added to the emulsion after the seed emulsion polymerization in the second stage, and further comprises 4.2 kg of methyl methacrylate, 2.0 kg of TCDMA, 0.2 kg of methyl acrylate and 200 g of n-octyl mercaptan.
  • the mixture was added over 30 minutes. After completion of the addition, stirring was continued for 60 minutes to perform the third stage seed emulsion polymerization.
  • the resulting emulsion was cooled to room temperature.
  • an emulsion containing 40% of the core-shell three-layer structure crosslinked rubber (B-1) having a volume-based average particle size of 0.23 ⁇ m was obtained.
  • the resulting emulsion was frozen at ⁇ 20 ° C. for 2 hours.
  • the frozen emulsion was poured into 80 times hot water of twice that amount and allowed to thaw to obtain a slurry.
  • the slurry (S1) was kept at 80 ° C. for 20 minutes, then dehydrated and dried at 70 ° C. to obtain a crosslinked rubber (B-1) having a refractive index of 1.49 as particles.
  • 320 g of 2% aqueous potassium persulfate solution is added to the emulsion after seed emulsion polymerization in the first stage, and further comprises 4.2 kg of methyl methacrylate, 2.0 kg of TCDMA, 0.2 kg of methyl acrylate, and 200 g of n-octyl mercaptan.
  • the mixture was added over 30 minutes. After completion of the addition, stirring was continued for 60 minutes to perform seed emulsion polymerization in the second stage. The resulting emulsion was cooled to room temperature.
  • B-3 three-layer structure crosslinked rubber
  • the resulting emulsion was frozen at ⁇ 20 ° C. for 2 hours.
  • the frozen emulsion was poured into 80 times hot water of twice that amount and allowed to thaw to obtain a slurry.
  • the slurry was held at 80 ° C. for 20 minutes, then dehydrated, and water was added to a solids concentration of 10%. Subsequently, it was dehydrated and dried at 70 ° C. to obtain a crosslinked rubber (B-3) having a refractive index of 1.52 as particles.
  • Example 1 100 parts by weight of methacrylic resin (A-1) and 43 parts by weight of cross-linked rubber (B-2) were dry-mixed with a tumbler and a twin screw extruder with a shaft diameter of 20 mm (trade name: KZW20TW-45MG-, manufactured by Technobel Co., Ltd.).
  • NH-600 is melt kneaded under the conditions of a cylinder temperature of 200 to 250 ° C., a die temperature of 240 ° C., and a screw rotation speed of 100 rpm, and a pellet-shaped resin composition (hereinafter referred to as “resin composition (R-1)”).
  • Resin composition (R-1) a pellet-shaped resin composition
  • ⁇ Comparative Example 4 100 parts by weight of methacrylic resin (A-1) and 43 parts by weight of cross-linked rubber (B-1) were dry-mixed with a tumbler, and a twin screw extruder with a shaft diameter of 20 mm (trade name: KZW20TW-45MG-, manufactured by Technobel Co., Ltd.) NH-600) is melt kneaded under the conditions of a cylinder temperature of 200 to 280 ° C., a die temperature of 270 ° C., and a screw rotation speed of 200 rpm, and a pellet-shaped resin composition (hereinafter referred to as “resin composition (R-6)”). ) Table 1 shows the composition and physical properties of the resin composition (R-6).

Abstract

Provided is a resin composition for forming a molded article having low hygroscopicity, little dimensional variation, and superior transparency and impact strength. The resin composition contains a methacrylate resin (A) and a crosslinked rubber (B), the methacrylate resin (A) comprising 10-50 mass% of a structural unit (a1) derived from a cyclic hydrocarbon ester of methacrylic acid, 50-90 wt% of a structural unit (a2) derived from a methacrylate ester other than the cyclic hydrocarbon ester of methacrylic acid, and 0-20 wt% of a structural unit (a3) derived from an acrylate ester. The resin composition contains the methacrylate resin (A) with respect to the crosslinked rubber (B) at a mass ratio (A)/(B) of 95/5 to 10/90. The acid value of the resin composition, measured according to JIS K0070:1992, is 7 mg/g or less.

Description

樹脂組成物およびフィルムResin composition and film
 本発明は、樹脂組成物に関する。 The present invention relates to a resin composition.
 メタクリル樹脂は透明性、耐光性、表面硬度などに優れている。該メタクリル樹脂を含むメタクリル樹脂組成物を成形することによって、導光板、レンズなどの種々の光学部材を得ることができる。 Methacrylic resin is excellent in transparency, light resistance and surface hardness. By molding the methacrylic resin composition containing the methacrylic resin, various optical members such as a light guide plate and a lens can be obtained.
 軽量かつ広面積の液晶表示装置への需要が高く、それに対応して光学部材も薄肉化および広面積化が要求されている。ところが、光学部材を薄肉化および広面積化すると、僅かな湿気や熱などによって寸法変化が起きやすくなる。かかる寸法変化に伴って光学特性が変化する。表示装置の高画質化に伴って、屈折率やレタデーションなどの光学特性に高い精度が求められている。そのため、光学部材の原料であるメタクリル樹脂組成物には、高い透明性、低い吸湿性、高い耐熱性、小さい寸法変化、高い衝撃強度、良好な成形性などが強く要求される。 Demand for light-weight and wide-area liquid crystal display devices is high, and correspondingly, optical members are also required to be thinner and wider. However, when the optical member is thinned and has a large area, a dimensional change is likely to occur due to slight moisture or heat. The optical characteristics change with such dimensional changes. With higher image quality of display devices, high accuracy is required for optical characteristics such as refractive index and retardation. Therefore, a methacrylic resin composition that is a raw material for optical members is strongly required to have high transparency, low moisture absorption, high heat resistance, small dimensional change, high impact strength, good moldability, and the like.
 光学部材用の樹脂材料として、例えば、(メタ)アクリル酸トリシクロデカニルを5重量%以上含む重合性組成物を重合して得られる光学用樹脂材料が知られている(特許文献1参照)。この光学用樹脂材料は脆いため用途が限定されていた。脆さを改善する方法として、架橋ゴムなどを添加した樹脂組成物が知られている。しかし、(メタ)アクリル酸トリシクロデカニル由来の構造を含有した樹脂と架橋ゴムの樹脂組成物は、通常、成形加工時に熱分解しやすく、それが着色やゲル異物の原因となっていた。 As a resin material for optical members, for example, an optical resin material obtained by polymerizing a polymerizable composition containing 5% by weight or more of tricyclodecanyl (meth) acrylate is known (see Patent Document 1). . Since this optical resin material is brittle, its application has been limited. As a method for improving brittleness, a resin composition to which a crosslinked rubber or the like is added is known. However, a resin composition containing a structure derived from tricyclodecanyl (meth) acrylate and a crosslinked rubber is usually easily thermally decomposed during molding, which causes coloring and gel foreign matter.
特開昭61-73705号公報JP-A-61-73705
 本発明の課題は、吸湿性が低く、寸法変化が小さく、透明性及び衝撃強度に優れる成形体を構成する樹脂組成物を提供することである。 An object of the present invention is to provide a resin composition constituting a molded article having low hygroscopicity, small dimensional change, and excellent transparency and impact strength.
 すなわち、本発明は以下の発明を含有する。
[1] メタクリル酸環式炭化水素エステルに由来する構造単位(a1)10~50質量%、メタクリル酸環式炭化水素エステル以外のメタクリル酸エステルに由来する構造単位(a2)50~90質量%、およびアクリル酸エステルに由来する構造単位(a3)0~20質量%を含有してなるメタクリル樹脂(A)と、
 架橋ゴム(B)を含有し、
 メタクリル樹脂(A)と架橋ゴム(B)の質量比(A)/(B)が95/5~10/90であり、JIS K 0070:1992で測定される酸価が7mg/g以下である樹脂組成物。
That is, the present invention includes the following inventions.
[1] Structural unit derived from methacrylic acid cyclic hydrocarbon ester (a1) 10 to 50% by mass, structural unit derived from methacrylic acid ester other than methacrylic acid cyclic hydrocarbon ester (a2) 50 to 90% by mass, And a methacrylic resin (A) containing 0 to 20% by mass of a structural unit (a3) derived from an acrylate ester,
Contains a crosslinked rubber (B),
The mass ratio (A) / (B) of the methacrylic resin (A) to the crosslinked rubber (B) is 95/5 to 10/90, and the acid value measured by JIS K 0070: 1992 is 7 mg / g or less. Resin composition.
[2] メタクリル酸環式炭化水素エステルが、式(1)で表される化合物である、[1]の樹脂組成物。 [2] The resin composition according to [1], wherein the methacrylic acid cyclic hydrocarbon ester is a compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000002
 
(式(1)中、Xは炭素数6以上の環式炭化水素基である。)
Figure JPOXMLDOC01-appb-C000002

(In formula (1), X is a cyclic hydrocarbon group having 6 or more carbon atoms.)
[3] Xを表す炭素数6以上の環式炭化水素基がイソボルナン-2-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、または、置換基を有していてもよいシクロヘキシル基である、[2]の樹脂組成物。
[4] 架橋ゴム(B)がアクリル系多層重合体粒子である、[1]~[3]のいずれか1つの樹脂組成物。
[5] 架橋ゴム(B)が共役ジエン系単量体由来の構造を含有しない、[1]~[4]のいずれか1つの樹脂組成物。
[6] ポリカーボネート樹脂(C)をさらに含有する、[1]~[5]のいずれか1つの樹脂組成物。
[7] メタクリル樹脂(A)とポリカーボネート樹脂(C)の質量比(A)/(C)が98/2~50/50である、[1]~[6]のいずれか1つの樹脂組成物。
[8] 前記樹脂組成物中の架橋ゴム(B)以外の樹脂成分であるマトリクス樹脂と、架橋ゴム(B)との屈折率の差が、0.05以下である、[1]~[7]のいずれか1つの樹脂組成物。
[3] A cyclic hydrocarbon group having 6 or more carbon atoms representing X has an isobornan-2-yl group, a tricyclo [5.2.1.0 2,6 ] decan-8-yl group, or a substituent. The resin composition according to [2], which is a cyclohexyl group which may be used.
[4] The resin composition according to any one of [1] to [3], wherein the crosslinked rubber (B) is an acrylic multilayer polymer particle.
[5] The resin composition according to any one of [1] to [4], wherein the crosslinked rubber (B) does not contain a structure derived from a conjugated diene monomer.
[6] The resin composition according to any one of [1] to [5], further comprising a polycarbonate resin (C).
[7] The resin composition according to any one of [1] to [6], wherein the mass ratio (A) / (C) of the methacrylic resin (A) to the polycarbonate resin (C) is 98/2 to 50/50. .
[8] The difference in refractive index between the matrix resin, which is a resin component other than the crosslinked rubber (B) in the resin composition, and the crosslinked rubber (B) is 0.05 or less. [1] to [7 Any one resin composition of these.
[9] [1]~[8]のいずれか1つの樹脂組成物からなるフィルム。
[10] 厚さが10~50μmである、[9]のフィルム。
[9] A film comprising the resin composition according to any one of [1] to [8].
[10] The film according to [9], having a thickness of 10 to 50 μm.
[11] [9]または[10]のフィルムからなる偏光子保護フィルム。
[12] [9]または[10]のフィルムからなる位相差フィルム。
[11] A polarizer protective film comprising the film of [9] or [10].
[12] A retardation film comprising the film of [9] or [10].
[13] [9]または[10]のフィルムを構成要素として有する有機エレクトロルミネッセンス照明装置または有機エレクトロルミネッセンス表示装置。
[14] [9]~[12]のいずれか1つのフィルムを構成要素として有する液晶表示装置。
[13] An organic electroluminescence lighting device or an organic electroluminescence display device having the film according to [9] or [10] as a constituent element.
[14] A liquid crystal display device having the film according to any one of [9] to [12] as a constituent element.
 本発明の樹脂組成物は、透明性、吸湿性が低く、寸法変化が小さく、透明性および衝撃強度に優れる成形体を構成することができる。 The resin composition of the present invention can form a molded article having low transparency and moisture absorption, small dimensional change, and excellent transparency and impact strength.
 本発明の樹脂組成物は、メタクリル酸環式炭化水素エステルに由来する構造単位(a1)10~50質量%、メタクリル酸環式炭化水素エステル以外のメタクリル酸エステルに由来する構造単位(a2)50~90質量%、およびアクリル酸エステルに由来する構造単位(a3)0~20質量%を含有してなるメタクリル樹脂(A)と、架橋ゴム(B)を含有し、メタクリル樹脂(A)と架橋ゴム(B)の質量比(A)/(B)が95/5~10/90であり、JIS K 0070:1992で測定される酸価が7mg/g以下である樹脂組成物である。 The resin composition of the present invention comprises a structural unit (a1) 10 to 50% by mass derived from a methacrylic acid cyclic hydrocarbon ester and a structural unit (a2) 50 derived from a methacrylic acid ester other than the methacrylic acid cyclic hydrocarbon ester. A methacrylic resin (A) containing 90 to 20% by mass and a structural unit (a3) derived from an acrylate ester, containing 0 to 20% by mass, and a crosslinked rubber (B), and crosslinked with the methacrylic resin (A). This is a resin composition having a mass ratio (A) / (B) of rubber (B) of 95/5 to 10/90 and an acid value measured by JIS K 0070: 1992 of 7 mg / g or less.
 構造単位(a1)は、メタクリル酸環式炭化水素エステルに由来する構造単位である。
 メタクリル酸環式炭化水素エステルを構成する環式炭化水素基としては、特に限定されないが、例えば、オクタヒドロペンタレン-1-イル基、オクタヒドロペンタレン-2-イル基、オクタヒドロ-1-1H-インデン-4-イル基、オクタヒドロ-1-1H-インデン-5-イル基、ヘキサヒドロ-1,5-メタノ-ペンタレン-3A-イル基、デカヒドロナフタレン-1-イル基、デカヒドロナフタレン-2-イル基、オクタヒドロシクロペンタ[c,d]ペンタレン-2A-2a(2H)-イル基、3a,6a-ジメチルオクタヒドロペンタレン-2-イル基、テトラデカヒドロアントラセン-9-イル基、アンドロスタン-4-イル基、コレスタン-2-イル基、コレスタン-5-イル基等の縮合多環式炭化水素基;ノルボルナン-2-イル基、2-メチルノルボルナン-2-イル基、2-エチルノルボルナン-2-イル基、1,3,3-トリメチルノルボルナン-2-イル基、1,2,3,3-テトラメチルノルボルナン-2-イル基、1,3,3-トリメチルノルボルナン-2-イル基、イソボルナン-2-イル基、2-メチルイソボルナン-2-イル基、2-エチルイソボルナン-2-イル基、デカヒドロ-2,5-メタノ-7,10-メタノナフタレン-1-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、8-メチルトリシクロ[5.2.1.02,6]デカン-8-イル基、8-エチルトリシクロ[5.2.1.02,6]デカン-8-イル基、アダマンタン-1-イル基、アダマンタン-2-イル基、2-メチルアダマンタン-2-イル基、2-エチルアダマンタン-2-イル基、デカヒドロ-3,6-メタノ-2,2,7,7-テトラメチルナフタレン-1-イル基等の橋かけ環式炭化水素基;スピロビシクロペンタン-2-イル基、スピロビシクロペンタン-3-イル基、スピロビシクロヘキサン-2-イル基、スピロビシクロヘキサン-3-イル基等のスピロ構造をもつ多環式炭化水素基;シクロヘキシル基、アルキル基で置換されたシクロヘキシル基などの単環炭化水素基、フェニル基、アルキル基で置換されたフェニル基、ナフチル基、アルキル基で置換されたナフチル基等の芳香族炭化水素基;などを挙げることができる。なお、前記「アルキル基で置換された」におけるアルキル基としては、炭素数1~4のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などが挙げられる。環式炭化水素基としては、脂肪族環式炭化水素基が好ましい。
The structural unit (a1) is a structural unit derived from a methacrylic acid cyclic hydrocarbon ester.
The cyclic hydrocarbon group constituting the methacrylic acid cyclic hydrocarbon ester is not particularly limited, and examples thereof include an octahydropentalen-1-yl group, an octahydropentalen-2-yl group, and an octahydro-1-1H. -Inden-4-yl group, octahydro-1-1H-inden-5-yl group, hexahydro-1,5-methano-pentalen-3A-yl group, decahydronaphthalen-1-yl group, decahydronaphthalene-2 -Yl group, octahydrocyclopenta [c, d] pentalen-2A-2a (2H) -yl group, 3a, 6a-dimethyloctahydropentalen-2-yl group, tetradecahydroanthracen-9-yl group, Condensed polycyclic hydrocarbon groups such as androstan-4-yl group, cholestan-2-yl group, and cholestan-5-yl group; norbornane- -Yl group, 2-methylnorbornan-2-yl group, 2-ethylnorbornan-2-yl group, 1,3,3-trimethylnorbornan-2-yl group, 1,2,3,3-tetramethylnorbornane- 2-yl group, 1,3,3-trimethylnorbornan-2-yl group, isobornan-2-yl group, 2-methylisobornan-2-yl group, 2-ethylisobornan-2-yl group, Decahydro-2,5-methano-7,10-methanonaphthalen-1-yl group, tricyclo [5.2.1.0 2,6 ] decan-8-yl group, 8-methyltricyclo [5.2. 1.0 2,6 ] decan-8-yl group, 8-ethyltricyclo [5.2.1.0 2,6 ] decan-8-yl group, adamantane-1-yl group, adamantane-2-yl Group, 2-methyladamantan-2-yl group, 2-e Bridged cyclic hydrocarbon groups such as tiladamantan-2-yl group, decahydro-3,6-methano-2,2,7,7-tetramethylnaphthalen-1-yl group; spirobicyclopentan-2-yl group , A polycyclic hydrocarbon group having a spiro structure such as a spirobicyclopentan-3-yl group, a spirobicyclohexane-2-yl group, or a spirobicyclohexane-3-yl group; a cyclohexyl group or a cyclohexyl substituted with an alkyl group A monocyclic hydrocarbon group such as a group, an aromatic hydrocarbon group such as a phenyl group, a phenyl group substituted with an alkyl group, a naphthyl group, a naphthyl group substituted with an alkyl group; and the like. The alkyl group in the above “substituted with an alkyl group” is preferably an alkyl group having 1 to 4 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Group, tert-butyl group and the like. As the cyclic hydrocarbon group, an aliphatic cyclic hydrocarbon group is preferable.
 構造単位(a1)を構成するメタクリル酸環式炭化水素エステルは、式(1)で表される化合物であることが好ましい。 The methacrylic acid cyclic hydrocarbon ester constituting the structural unit (a1) is preferably a compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Xは炭素数6以上の環式炭化水素基である。)
Figure JPOXMLDOC01-appb-C000003
(In formula (1), X is a cyclic hydrocarbon group having 6 or more carbon atoms.)
 式(1)中のXは炭素数6以上の環式炭化水素基であり、好ましくは炭素数10以上の多環脂肪族炭化水素基であり、より好ましくは炭素数10以上の橋かけ環式炭化水素基である。なお、橋かけ環式炭化水素基は、環を構成する隣り合わない二つの炭素原子が1以上の炭素原子からなる炭素鎖で結ばれた構造を有する脂環式炭化水素基である。係る橋かけ環式炭化水素基は、炭素鎖で結ばれた構造以外に、縮合環構造、スピロ環構造を有してもよい。橋かけ環式炭化水素基を構成する炭素原子の数は、10~20であることがより好ましい。 X in the formula (1) is a cyclic hydrocarbon group having 6 or more carbon atoms, preferably a polycyclic aliphatic hydrocarbon group having 10 or more carbon atoms, more preferably a bridged cyclic group having 10 or more carbon atoms. It is a hydrocarbon group. The bridged cyclic hydrocarbon group is an alicyclic hydrocarbon group having a structure in which two adjacent carbon atoms constituting a ring are connected by a carbon chain composed of one or more carbon atoms. Such a bridged cyclic hydrocarbon group may have a condensed ring structure or a spiro ring structure in addition to a structure connected by a carbon chain. The number of carbon atoms constituting the bridged cyclic hydrocarbon group is more preferably 10-20.
 炭素数6以上の環式炭化水素基としては、オクタヒドロシクロペンタ[c,d]ペンタレン-2A-2a(2H)-イル基、3a,6a-ジメチルオクタヒドロペンタレン-2-イル基、テトラデカヒドロアントラセン-9-イル基、アンドロスタン-4-イル基、コレスタン-2-イル基、コレスタン-5-イル基、1,3,3-トリメチルノルボルナン-2-イル基、1,2,3,3-テトラメチルノルボルナン-2-イル基、1,3,3-トリメチルノルボルナン-2-イル基、イソボルナン-2-イル基、2-メチルイソボルナン-2-イル基、2-エチルイソボルナン-2-イル基、デカヒドロ-2,5-メタノ-7,10-メタノナフタレン-1-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、8-メチルトリシクロ[5.2.1.02,6]デカン-8-イル基、8-エチルトリシクロ[5.2.1.02,6]デカン-8-イル基、アダマンタン-1-イル基、アダマンタン-2-イル基、2-メチルアダマンタン-2-イル基、2-エチルアダマンタン-2-イル基、デカヒドロ-3,6-メタノ-2,2,7,7-テトラメチルナフタレン-1-イル基、スピロビシクロヘキサン-2-イル基、スピロビシクロヘキサン-3-イル基、シクロヘキシル基、アルキル基で置換されたシクロヘキシル基、フェニル基、アルキル基で置換されたフェニル基、ナフチル基、アルキル基で置換されたナフチル基などを挙げることができる。
 これらの中でも、1,3,3-トリメチルノルボルナン-2-イル基、1,2,3,3-テトラメチルノルボルナン-2-イル基、1,3,3-トリメチルノルボルナン-2-イル基、イソボルナン-2-イル基、2-メチルイソボルナン-2-イル基、2-エチルイソボルナン-2-イル基、デカヒドロ-2,5-メタノ-7,10-メタノナフタレン-1-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、8-メチルトリシクロ[5.2.1.02,6]デカン-8-イル基、8-エチルトリシクロ[5.2.1.02,6]デカン-8-イル基、アダマンタン-1-イル基、アダマンタン-2-イル基、2-メチルアダマンタン-2-イル基、2-エチルアダマンタン-2-イル基、シクロヘキシル基、アルキル基で置換されたシクロヘキシル基、フェニル基、アルキル基で置換されたフェニル基、ナフチル基、アルキル基で置換されたナフチル基が好ましく、イソボルナン-2-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、置換基を有していてもよいシクロヘキシル基がより好ましく、イソボルナン-2-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基がさらに好ましく、トリシクロ[5.2.1.02,6]デカン-8-イル基(慣用名:ジシクロペンタニル基)が特に好ましい。
Examples of the cyclic hydrocarbon group having 6 or more carbon atoms include octahydrocyclopenta [c, d] pentalen-2A-2a (2H) -yl, 3a, 6a-dimethyloctahydropentalen-2-yl, tetra Decahydroanthracen-9-yl group, androstan-4-yl group, cholestan-2-yl group, cholestane-5-yl group, 1,3,3-trimethylnorbornan-2-yl group, 1,2,3 , 3-tetramethylnorbornan-2-yl group, 1,3,3-trimethylnorbornane-2-yl group, isobornan-2-yl group, 2-methylisobornan-2-yl group, 2-ethylisoborn Nan-2-yl group, decahydro-2,5-methano-7,10-methananaphthalen-1-yl group, tricyclo [5.2.1.0 2,6 ] decan-8-yl group, 8-methyltrisi Chlo [5.2.1.0 2,6 ] decan-8-yl group, 8-ethyltricyclo [5.2.1.0 2,6 ] decan-8-yl group, adamantan-1-yl group Adamantane-2-yl group, 2-methyladamantan-2-yl group, 2-ethyladamantan-2-yl group, decahydro-3,6-methano-2,2,7,7-tetramethylnaphthalene-1- Yl group, spirobicyclohexane-2-yl group, spirobicyclohexane-3-yl group, cyclohexyl group, cyclohexyl group substituted with alkyl group, phenyl group, phenyl group substituted with alkyl group, naphthyl group, alkyl group And a naphthyl group substituted with.
Among these, 1,3,3-trimethylnorbornan-2-yl group, 1,2,3,3-tetramethylnorbornan-2-yl group, 1,3,3-trimethylnorbornan-2-yl group, isobornane -2-yl group, 2-methylisobornan-2-yl group, 2-ethylisobornan-2-yl group, decahydro-2,5-methano-7,10-methanonaphthalen-1-yl group, Tricyclo [5.2.1.0 2,6 ] decan-8-yl group, 8-methyltricyclo [5.2.1.0 2,6 ] decan-8-yl group, 8-ethyltricyclo [ 5.2.1.0 2,6 ] decan-8-yl group, adamantane-1-yl group, adamantane-2-yl group, 2-methyladamantan-2-yl group, 2-ethyladamantan-2-yl group Group, cyclohexyl group, substituted with alkyl group Cyclohexyl group, a phenyl group, a phenyl group substituted with an alkyl group, a naphthyl group, a naphthyl group is preferably substituted with an alkyl group, isobornane-2-yl group, tricyclo [5.2.1.0 2, 6] A decan-8-yl group and an optionally substituted cyclohexyl group are more preferable, and an isobornan-2-yl group and a tricyclo [5.2.1.0 2,6 ] decan-8-yl group are further included. A tricyclo [5.2.1.0 2,6 ] decan-8-yl group (common name: dicyclopentanyl group) is particularly preferable.
 メタクリル樹脂(A)が有する構造単位(a2)は、メタクリル酸環式炭化水素エステル以外のメタクリル酸エステル(a2)に由来する構造単位である。
 かかるメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸s-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシルなどのメタクリル酸鎖状脂肪族炭化水素エステル:メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、などを挙げることができる。これらの中でも、透明性、耐熱性を向上させる観点から、メタクリル酸鎖状脂肪族炭化水素エステルが好ましく、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチルがより好ましく、メタクリル酸メチルが最も好ましい。
The structural unit (a2) possessed by the methacrylic resin (A) is a structural unit derived from a methacrylic acid ester (a2) other than the methacrylic acid cyclic hydrocarbon ester.
Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, methacrylic acid. Methacrylic acid chain aliphatic hydrocarbon esters such as amyl acid, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate: 2-hydroxyethyl methacrylate, 2-methoxy methacrylate Examples thereof include ethyl, glycidyl methacrylate, allyl methacrylate, benzyl methacrylate, and phenoxyethyl methacrylate. Among these, from the viewpoint of improving transparency and heat resistance, a methacrylic acid chain aliphatic hydrocarbon ester is preferable, and methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate. Is more preferred, and methyl methacrylate is most preferred.
 メタクリル樹脂(A)が有してもよい構造単位(a3)は、アクリル酸エステルに由来する構造単位である。
 かかるアクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルへキシルなどのアクリル酸鎖状脂肪族炭化水素エステル;アクリル酸フェニルなどのアクリル酸芳香族炭化水素エステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸脂環式炭化水素エステルなどを挙げることができる。これらの中でも熱分解が抑制でき、成形性を向上させる点から、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルが好ましく、アクリル酸メチルが特に好ましい。
The structural unit (a3) that the methacrylic resin (A) may have is a structural unit derived from an acrylate ester.
Examples of the acrylate esters include acrylic acid chain aliphatic hydrocarbon esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid aromatics such as phenyl acrylate. Acrylic alicyclic hydrocarbon esters such as cyclohexyl acrylate and norbornenyl acrylate. Among these, methyl acrylate, ethyl acrylate, and butyl acrylate are preferable, and methyl acrylate is particularly preferable from the viewpoint that thermal decomposition can be suppressed and moldability is improved.
 本発明に用いるメタクリル樹脂(A)は、構造単位(a1)、構造単位(a2)および構造単位(a3)以外に、構造単位(a4)を含んでいてもよい。構造単位(a4)は、メタクリル酸エステル及びアクリル酸エステル以外の単量体に由来するものである。係る単量体としては、例えば、アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル、スチレンなどの一分子中に重合性の炭素-炭素二重結合を一つだけ有する単量体を挙げることができる。なお、構造単位(a4)として、アクリル酸やメタクリル酸、4-ビニルベンゼンスルホン酸などに由来するカルボン酸基やスルホン酸基などの酸性の官能基を有する構造単位は、酸価を増大させ、また吸水率が高くなるため、含まないことが好ましい。 The methacrylic resin (A) used in the present invention may contain a structural unit (a4) in addition to the structural unit (a1), the structural unit (a2) and the structural unit (a3). The structural unit (a4) is derived from monomers other than methacrylic acid esters and acrylic acid esters. Examples of such monomers include monomers having only one polymerizable carbon-carbon double bond in one molecule such as acrylamide; methacrylamide; acrylonitrile; methacrylonitrile, styrene. As the structural unit (a4), a structural unit having an acidic functional group such as a carboxylic acid group or a sulfonic acid group derived from acrylic acid, methacrylic acid, 4-vinylbenzenesulfonic acid or the like increases the acid value. Moreover, since a water absorption rate becomes high, it is preferable not to contain.
 本発明に用いるメタクリル樹脂(A)は、ガラス転移温度が高く、吸水性が低く、高温高湿度での収縮が小さいという観点から、構造単位(a1)を10~50質量%、構造単位(a2)を50~90質量%、および構造単位(a3)を0~20質量%含有し、好ましくは構造単位(a1)を15~40質量%、構造単位(a2)を60~85質量%、および構造単位(a3)を0~10質量%含有し、より好ましくは構造単位(a1)を20~30質量%、構造単位(a2)を70~80質量%、および構造単位(a3)を0~5質量%含有する。また、構造単位(a4)の含有量は、好ましくは0~10質量%、より好ましくは0~5質量%、さらに好ましくは0~2質量%である。 The methacrylic resin (A) used in the present invention has 10 to 50% by mass of the structural unit (a1) and the structural unit (a2) from the viewpoint of high glass transition temperature, low water absorption, and small shrinkage at high temperature and high humidity. ) Is contained in an amount of 50 to 90% by mass, and the structural unit (a3) is contained in an amount of 0 to 20% by mass, preferably the structural unit (a1) is 15 to 40% by mass, the structural unit (a2) is 60 to 85% by mass, and 0 to 10% by mass of structural unit (a3), more preferably 20 to 30% by mass of structural unit (a1), 70 to 80% by mass of structural unit (a2), and 0 to 10% of structural unit (a3) 5% by mass is contained. The content of the structural unit (a4) is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and still more preferably 0 to 2% by mass.
 本発明に用いるメタクリル樹脂(A)は、重量平均分子量(以下、「Mw」と称することがある。)が、好ましくは60000~200000、より好ましくは80000~160000、さらに好ましくは90000~150000、特に好ましくは100000~130000である。かかるMwが60000以上であると、本発明の樹脂組成物からなるフィルムの強度が高く、割れ難く、延伸し易いため、より薄いフィルムを得ることができる。またMwが200000以下であることで、メタクリル樹脂(A)の成形加工性が高まるので、本発明の樹脂組成物からなるフィルムの厚さが均一で且つ表面平滑性に優れる傾向となる。 The methacrylic resin (A) used in the present invention has a weight average molecular weight (hereinafter sometimes referred to as “Mw”), preferably 60,000 to 200,000, more preferably 80000 to 160000, still more preferably 90000 to 150,000, Preferably it is 100,000-130,000. When the Mw is 60000 or more, the film made of the resin composition of the present invention has high strength, is difficult to break, and is easy to stretch, so that a thinner film can be obtained. Moreover, since the moldability of a methacryl resin (A) improves because Mw is 200000 or less, it becomes the tendency for the thickness of the film which consists of a resin composition of this invention to be uniform, and to be excellent in surface smoothness.
 本発明に用いるメタクリル樹脂(A)は、数平均分子量(以下、「Mn」と称することがある。)に対するMwの比(Mw/Mn:以下、この値を「分子量分布」と称することがある。)が、好ましくは1.2~5.0、より好ましくは1.5~3.5である。分子量分布が1.2以上であると、メタクリル樹脂(A)の流動性が向上し、本発明の樹脂組成物からなるフィルムは表面平滑性に優れる傾向となる。分子量分布が5.0以下であると、本発明の樹脂組成物からなるフィルムは耐衝撃性および靭性に優れる傾向となる。なお、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。 The methacrylic resin (A) used in the present invention has a ratio of Mw to a number average molecular weight (hereinafter sometimes referred to as “Mn”) (Mw / Mn: hereinafter, this value may be referred to as “molecular weight distribution”). ) Is preferably 1.2 to 5.0, more preferably 1.5 to 3.5. When the molecular weight distribution is 1.2 or more, the fluidity of the methacrylic resin (A) is improved, and the film made of the resin composition of the present invention tends to be excellent in surface smoothness. When the molecular weight distribution is 5.0 or less, a film made of the resin composition of the present invention tends to be excellent in impact resistance and toughness. Mw and Mn are values obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene.
 本発明に用いるメタクリル樹脂(A)は、JIS K7210に準拠して、230℃、3.8kg荷重の条件において測定される、メルトフローレートが、好ましくは0.1~15g/10分、より好ましくは0.5~5g/10分、さらに好ましくは0.8~3g/10分である。 The methacrylic resin (A) used in the present invention has a melt flow rate of preferably 0.1 to 15 g / 10 min, more preferably measured at 230 ° C. under a load of 3.8 kg in accordance with JIS K7210. Is 0.5 to 5 g / 10 min, more preferably 0.8 to 3 g / 10 min.
 本発明に用いるメタクリル樹脂(A)の酸価は、JIS K 0070:1992で測定される。その酸価は、好ましくは7mg/g以下であり、5mg/g以下が好ましく、3mg/g以下がより好ましく、1.0mg/g以下がさらに好ましく、0.5mg/g以下が最も好ましい。酸価がこの範囲にあることで、メタクリル樹脂(A)中のメタクリル酸環式炭化水素エステルに由来する構造単位(a1)に起因する熱分解を抑制できる。 The acid value of the methacrylic resin (A) used in the present invention is measured according to JIS K 0070: 1992. The acid value is preferably 7 mg / g or less, preferably 5 mg / g or less, more preferably 3 mg / g or less, further preferably 1.0 mg / g or less, and most preferably 0.5 mg / g or less. When the acid value is within this range, thermal decomposition caused by the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) can be suppressed.
 本発明に用いるメタクリル樹脂(A)のガラス転移温度は、好ましくは90℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。該メタクリル樹脂(A)のガラス転移温度の上限は、通常140℃である。ガラス転移温度は、メタクリル酸環式炭化水素エステルに由来する構造単位の割合を調節することによって制御することができる。ガラス転移温度がこの範囲にあると、得られるフィルムの耐熱性が向上し、熱収縮などの変形が起こり難い。ここで、ガラス転移温度は、室温以上の領域においてJIS K7121に準拠して行うものであり、230℃まで昇温速度10℃/分で1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から230℃までを昇温速度10℃/分で昇温(2ndラン)する際の、2ndランの中間点ガラス転移温度である。 The glass transition temperature of the methacrylic resin (A) used in the present invention is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin (A) is usually 140 ° C. The glass transition temperature can be controlled by adjusting the proportion of structural units derived from methacrylic acid cyclic hydrocarbon ester. When the glass transition temperature is in this range, the heat resistance of the resulting film is improved and deformation such as heat shrinkage hardly occurs. Here, the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher. The first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
 本発明に用いるメタクリル樹脂(A)の製造方法は特に制限されない。例えば、ラジカル重合法、アニオン重合法などの公知の重合法によって製造することができる。メタクリル樹脂(A)の前述の特性値への調整は、重合条件を調整することによって、具体的には、重合温度、重合時間、連鎖移動剤の種類や量、重合開始剤の種類や量などを調整することによって行うことができる。このような重合条件の調整による樹脂特性の調整は当業者においてよく知られた技術である。 The method for producing the methacrylic resin (A) used in the present invention is not particularly limited. For example, it can be produced by a known polymerization method such as a radical polymerization method or an anionic polymerization method. The adjustment of the methacrylic resin (A) to the above-mentioned characteristic values is performed by adjusting the polymerization conditions, specifically, the polymerization temperature, the polymerization time, the type and amount of the chain transfer agent, the type and amount of the polymerization initiator, etc. Can be done by adjusting. Adjustment of resin characteristics by adjusting polymerization conditions is a technique well known to those skilled in the art.
 本発明に用いるメタクリル樹脂(A)の製造において、ラジカル重合法を用いる場合、懸濁重合法、塊状重合法、溶液重合法、乳化重合法を選択することが可能である。かかる重合方法において、生産性および耐熱分解性の観点から、懸濁重合法または塊状重合法で行うことが好ましい。塊状重合法は連続流通式で行うことが好ましい。
 ラジカル重合反応は、重合開始剤と、前述の単量体と、必要に応じて連鎖移動剤などを用いて行われる。
 重合開始剤は、反応性ラジカルを発生するものであれば特に限定されないが、1時間半減期温度が、好ましくは60~140℃、より好ましくは80~120℃である。
 このような重合開始剤としては、例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキシド、ラウロイルパーオキシド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などを挙げることができる。中でも、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。
In the production of the methacrylic resin (A) used in the present invention, when a radical polymerization method is used, a suspension polymerization method, a bulk polymerization method, a solution polymerization method, or an emulsion polymerization method can be selected. In such a polymerization method, it is preferable to carry out by a suspension polymerization method or a bulk polymerization method from the viewpoint of productivity and thermal decomposition resistance. The bulk polymerization method is preferably performed by a continuous flow method.
The radical polymerization reaction is performed using a polymerization initiator, the above-described monomer, and a chain transfer agent as necessary.
The polymerization initiator is not particularly limited as long as it generates a reactive radical. The one-hour half-life temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C.
Examples of such a polymerization initiator include t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate. Ate, t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethyl Butyl peroxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis (2 -Methylpropionitrile), 2,2'-azobis (2-methylbutyronitrile), dimethyl And the like 2,2'-azobis (2-methyl propionate). Of these, t-hexylperoxy 2-ethylhexanoate, 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2′-azobis (2-methylpropionate) are preferable.
 これら重合開始剤は1種単独でも2種以上を組み合わせて用いてもよい。また、重合開始剤の添加量や添加方法などは、目的に応じて適宜設定すればよく特に限定されない。例えば、懸濁重合法に用いる重合開始剤の量は、重合反応に供される単量体の合計量100質量部に対して、好ましくは0.0001~0.1質量部、より好ましくは0.001~0.07質量部である。 These polymerization initiators may be used alone or in combination of two or more. The addition amount and addition method of the polymerization initiator are not particularly limited as long as they are appropriately set according to the purpose. For example, the amount of the polymerization initiator used in the suspension polymerization method is preferably 0.0001 to 0.1 parts by mass, more preferably 0 to 100 parts by mass of the total amount of monomers to be subjected to the polymerization reaction. 0.001 to 0.07 parts by mass.
 本発明に用いるメタクリル樹脂(A)をラジカル重合法で製造する際に必要に応じて用いる連鎖移動剤は特に限定されない。例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類;α-メチルスチレンダイマー;テルピノレンなどを挙げることができる。これらのうちn-オクチルメルカプタン、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタンが好ましい。これら連鎖移動剤は1種単独でも2種以上を組み合わせて用いてもよい。 The chain transfer agent used as necessary when the methacrylic resin (A) used in the present invention is produced by the radical polymerization method is not particularly limited. For example, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiol Alkyl mercaptans such as propionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- (β-thiopropionate), pentaerythritol tetrakisthiopropionate; α-methylstyrene Dimer; terpinolene and the like can be mentioned. Of these, alkyl mercaptans such as n-octyl mercaptan and pentaerythritol tetrakisthiopropionate are preferred. These chain transfer agents may be used alone or in combination of two or more.
 かかる連鎖移動剤の使用量は、重合反応に供される単量体の合計量100質量部に対して、好ましくは0.1~1質量部、より好ましくは0.15~0.8質量部、さらに好ましくは0.2~0.6質量部、最も好ましくは0.2~0.5質量部である。また、該連鎖移動剤の使用量は、重合開始剤100質量部に対して、好ましくは2500~10000質量部、より好ましくは3000~9000質量部、さらに好ましくは3500~6000質量部である。連鎖移動剤の使用量を上記範囲にすると、メタクリル樹脂(A)、ひいては本発明の樹脂組成物に良好な成形加工性と高い力学強度を持たせることができる。 The amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.15 to 0.8 part by weight, based on 100 parts by weight of the total amount of monomers to be subjected to the polymerization reaction. More preferably, it is 0.2 to 0.6 parts by mass, and most preferably 0.2 to 0.5 parts by mass. The amount of the chain transfer agent used is preferably 2500 to 10,000 parts by mass, more preferably 3000 to 9000 parts by mass, and further preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator. When the amount of the chain transfer agent used is in the above range, the methacrylic resin (A), and thus the resin composition of the present invention, can have good moldability and high mechanical strength.
 本発明に用いるメタクリル樹脂(A)の製造に用いる、各単量体、重合開始剤および連鎖移動剤は、それら全てを混合しその混合物を反応槽に供給してもよいし、それらを別々に反応槽に供給してもよい。本発明においては全てを混合しその混合物を反応槽に供給する方法が好ましい。 Each monomer, polymerization initiator and chain transfer agent used in the production of the methacrylic resin (A) used in the present invention may be mixed together and supplied to the reaction vessel, or they may be separated separately. You may supply to a reaction tank. In the present invention, a method of mixing all and supplying the mixture to the reaction vessel is preferable.
 本発明に用いるメタクリル樹脂(A)をラジカル重合法で製造する際に溶媒を用いる場合、溶媒は単量体およびメタクリル樹脂(A)を溶解できるものであれば制限されないが、ベンゼン、トルエン、エチルベンゼンなどの芳香族炭化水素が好ましい。これらの溶媒は1種を単独でまたは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応液の粘度と生産性との観点から適宜設定できる。溶媒の使用量は、例えば、重合反応原料の合計量100質量部に対して、好ましくは100質量部以下、より好ましくは50質量部以下である。 When a solvent is used in producing the methacrylic resin (A) used in the present invention by radical polymerization, the solvent is not limited as long as it can dissolve the monomer and the methacrylic resin (A), but benzene, toluene, ethylbenzene Aromatic hydrocarbons such as are preferred. These solvents can be used alone or in combination of two or more. The usage-amount of a solvent can be suitably set from a viewpoint of the viscosity and productivity of a reaction liquid. The amount of the solvent used is, for example, preferably 100 parts by mass or less, more preferably 50 parts by mass or less with respect to 100 parts by mass of the total amount of the polymerization reaction raw materials.
 本発明に用いるメタクリル樹脂(A)をラジカル重合法で製造する際の反応温度は、懸濁重合の場合、好ましくは50~180℃、より好ましくは60~140℃である。
 また、塊状重合の場合、好ましくは100~200℃、より好ましくは110~180℃である。塊状重合反応時の温度が100℃以上であることで、重合速度の向上、重合液の低粘度化などに起因して生産性が向上する傾向となる。また塊状重合反応時の温度が200℃以下であることで、重合速度の制御が容易になり、さらに副生成物の生成が抑制されるので本発明の樹脂組成物の着色を抑制できる。
In the case of suspension polymerization, the reaction temperature when producing the methacrylic resin (A) used in the present invention by radical polymerization is preferably 50 to 180 ° C., more preferably 60 to 140 ° C.
In the case of bulk polymerization, the temperature is preferably 100 to 200 ° C, more preferably 110 to 180 ° C. When the temperature during the bulk polymerization reaction is 100 ° C. or higher, productivity tends to be improved due to an increase in the polymerization rate, a decrease in the viscosity of the polymerization solution, and the like. Moreover, since the temperature at the time of bulk polymerization reaction is 200 degrees C or less, control of a superposition | polymerization rate becomes easy, and also the production | generation of a by-product is suppressed, Therefore Coloration of the resin composition of this invention can be suppressed.
 本発明に用いるメタクリル樹脂(A)の製造を懸濁重合にて実施する場合、重合終了後に公知の方法で、洗浄、脱水、乾燥して粒状重合体を得ることができる。 When the methacrylic resin (A) used in the present invention is produced by suspension polymerization, it can be washed, dehydrated and dried by a known method after completion of the polymerization to obtain a granular polymer.
 ラジカル重合は回分式反応装置を用いて行ってもよいし、連続流通式反応装置を用いて行ってもよい。連続流通式反応では、例えば窒素雰囲気下などで重合反応原料(単量体、重合開始剤、連鎖移動剤などを含む混合液)を調製し、それを反応器に一定流量で供給し、該供給量に相当する流量で反応器内の液を抜き出す。反応器として、栓流に近い状態にすることができる管型反応器および/または完全混合に近い状態にすることができる槽型反応器を用いることができる。また、1基の反応器で連続流通式の重合を行ってもよいし、2基以上の反応器を繋いで連続流通式の重合を行ってもよい。本発明においては少なくとも1基は連続流通式の槽型反応器を採用することが好ましい。重合反応時における槽型反応器内の液量は、槽型反応器の容積に対して好ましくは1/4~3/4、より好ましくは1/3~2/3である。反応器には通常、撹拌装置が取り付けられている。撹拌装置としては静的撹拌装置、動的撹拌装置を挙げることができる。動的撹拌装置としては、マックスブレンド式撹拌装置、中央に配した縦型回転軸の回りを回転する格子状の翼を有する撹拌装置、プロペラ式撹拌装置、スクリュー式撹拌装置などを挙げることができる。これらのうちでマックスブレンド式撹拌装置が均一混合性の点から好ましく用いられる。 Radical polymerization may be performed using a batch type reaction apparatus or a continuous flow type reaction apparatus. In the continuous flow reaction, for example, a polymerization reaction raw material (mixed solution containing a monomer, a polymerization initiator, a chain transfer agent, etc.) is prepared under a nitrogen atmosphere, and the mixture is supplied to the reactor at a constant flow rate. The liquid in the reactor is withdrawn at a flow rate corresponding to the amount. As the reactor, a tubular reactor that can be in a state close to plug flow and / or a tank reactor that can be in a state close to complete mixing can be used. In addition, continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors. In the present invention, it is preferable to employ at least one continuous flow tank reactor. The amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor. The reactor is usually equipped with a stirring device. Examples of the stirring device include a static stirring device and a dynamic stirring device. Examples of the dynamic agitation device include a Max blend type agitation device, an agitation device having a lattice-like blade rotating around a vertical rotation shaft arranged in the center, a propeller type agitation device, a screw type agitation device, and the like. . Among these, a Max blend type stirring apparatus is preferably used from the point of uniform mixing property.
 重合終了後、必要に応じて、未反応単量体等の揮発分を除去する。除去方法は特に制限されないが、加熱脱揮が好ましい。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式を挙げることができる。断熱フラッシュ方式による脱揮温度は、好ましくは200~280℃、より好ましくは220~260℃である。脱揮する温度が高すぎると得られるメタクリル樹脂(A)の酸価が高くなってしまう。断熱フラッシュ方式で樹脂を加熱する時間は、好ましくは0.3~5分間、より好ましくは0.4~3分間、さらに好ましくは0.5~2分間である。このような温度範囲および加熱時間で脱揮させると、着色の少ないメタクリル樹脂(A)を得やすい。除去した未反応単量体は、回収して、再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収操作時などに加えられる熱によって高くなっていることがある。回収された単量体は、適切な方法で精製して、イエロインデックスを小さくすることが好ましい。 After completion of polymerization, volatile components such as unreacted monomers are removed as necessary. The removal method is not particularly limited, but heating devolatilization is preferable. Examples of the devolatilization method include an equilibrium flash method and an adiabatic flash method. The devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C. If the devolatilization temperature is too high, the acid value of the resulting methacrylic resin (A) will be high. The time for heating the resin by the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and further preferably 0.5 to 2 minutes. When devolatilization is performed within such a temperature range and heating time, a methacrylic resin (A) with little coloring is easily obtained. The removed unreacted monomer can be recovered and used again for the polymerization reaction. The yellow index of the recovered monomer may be high due to heat applied during the recovery operation. The recovered monomer is preferably purified by an appropriate method to reduce the yellow index.
 本発明に用いるメタクリル樹脂(A)をアニオン重合で製造する方法としては、例えば、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でアニオン重合する方法(特公平7-25859号公報参照)、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11-335432号公報参照)、有機希土類金属錯体を重合開始剤としてアニオン重合する方法(特開平6-93060号公報参照)などを挙げることができる。 Examples of the method for producing the methacrylic resin (A) used in the present invention by anionic polymerization include an anionic polymerization in the presence of a mineral acid salt such as an alkali metal or alkaline earth metal salt using an organic alkali metal compound as a polymerization initiator. (See Japanese Patent Publication No. 7-25859), anionic polymerization in the presence of an organoaluminum compound using an organic alkali metal compound as a polymerization initiator (see JP-A-11-335432), and polymerization of an organic rare earth metal complex Examples of the initiator include a method of anionic polymerization (see JP-A-6-93060).
 本発明に用いるメタクリル樹脂(A)をアニオン重合法で製造する場合は、アニオン重合開始剤としてn-ブチルリチウム、sec-ブチルリチウム、イソブチルリチウム、t-ブチルリチウム等のアルキルリチウムを用いることが好ましい。また、生産性の観点から有機アルミニウム化合物を共存させることが好ましい。有機アルミニウム化合物としては、例えば、式:AlR123で表わされる化合物を挙げることができる。当該式中、R1、R2およびR3は、それぞれ独立して置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基またはN,N-二置換アミノ基を表す。さらに、R2およびR3は、それらが結合してなる、置換基を有していてもよいアリーレンジオキシ基であってもよい。 When the methacrylic resin (A) used in the present invention is produced by an anionic polymerization method, it is preferable to use an alkyl lithium such as n-butyllithium, sec-butyllithium, isobutyllithium, or t-butyllithium as an anionic polymerization initiator. . Moreover, it is preferable to make an organoaluminum compound coexist from a viewpoint of productivity. Examples of the organoaluminum compound include compounds represented by the formula: AlR 1 R 2 R 3 . In the formula, R 1 , R 2 and R 3 each independently have an alkyl group which may have a substituent, an cycloalkyl group which may have a substituent, or a substituent. An aryl group, an aralkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aryloxy group which may have a substituent or an N, N-disubstituted amino group. Further, R 2 and R 3 may be an aryleneoxy group which may have a substituent formed by bonding them.
 有機アルミニウム化合物の具体例としては、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-t-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-t-ブチルフェノキシ)〕アルミニウム等を挙げることができる。
 また、アニオン重合法においては、重合反応を制御するために、エーテルや含窒素化合物などを共存させることもできる。
Specific examples of the organoaluminum compound include isobutyl bis (2,6-di-t-butyl-4-methylphenoxy) aluminum, isobutyl bis (2,6-di-t-butylphenoxy) aluminum, isobutyl [2,2 And '-methylenebis (4-methyl-6-t-butylphenoxy)] aluminum.
In the anionic polymerization method, an ether or a nitrogen-containing compound can coexist in order to control the polymerization reaction.

 本発明に用いる架橋ゴム(B)は、架橋性単量体に由来する構造単位によって高分子鎖が架橋されてなるゴム弾性を示す重合体である。なお、架橋性単量体とは、1つの単量体中に2つ以上の重合性官能基を有するものである。

The crosslinked rubber (B) used in the present invention is a polymer exhibiting rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinking monomer. The crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
 架橋性単量体としては、例えば、アクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、トリエチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ジビニルベンゼン、1,4-ペンタジエン、トリアリルイソシアネートなどを挙げることができる。これらは1種を単独で、または2種以上を組み合わせて用いてもよい。 Examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene Examples include glycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, triallyl isocyanate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
 本発明に用いる架橋ゴム(B)としては、アクリル系架橋ゴム、ジエン系架橋ゴムなどを挙げることができ、より具体的には、アクリル酸エステル単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、アクリル酸エステル単量体と共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴムなどを挙げることができる。なお、耐光性を高めるという観点からは、共役ジエン系単量体由来の構造を含有しない架橋ゴムが好ましい。 Examples of the crosslinked rubber (B) used in the present invention include acrylic crosslinked rubber and diene crosslinked rubber, and more specifically, an acrylate monomer, a crosslinking monomer, and other vinyl. Copolymer rubber with conjugated monomer, Copolymer rubber with conjugated diene monomer, crosslinkable monomer and other vinyl monomer, Acrylic acid ester monomer and conjugated diene monomer And a copolymer rubber of a polymer, a crosslinkable monomer, and other vinyl monomers. From the viewpoint of enhancing light resistance, a crosslinked rubber not containing a structure derived from a conjugated diene monomer is preferable.
 本発明では、架橋ゴム(B)は粒子形態にて樹脂組成物に含まれていることが好ましい。 In the present invention, the crosslinked rubber (B) is preferably contained in the resin composition in the form of particles.
 粒子形態である架橋ゴム(B)は、架橋ゴムのみからなる単層粒子であってもよいし、架橋ゴムと他の重合体とからなる多層粒子であってもよい。架橋ゴムと他の重合体とからなる多層粒子の形態としては、架橋ゴムからなるコアとそれ以外の重合体からなるシェルとを含んでなるコアシェル型粒子が好ましい。 The crosslinked rubber (B) in the form of particles may be a single layer particle composed only of the crosslinked rubber, or may be a multilayer particle composed of the crosslinked rubber and another polymer. As the form of the multilayer particle composed of the crosslinked rubber and other polymer, core-shell type particles comprising a core composed of the crosslinked rubber and a shell composed of the other polymer are preferable.
 本発明に好適に用いることができる架橋ゴム(B)はアクリル系多層重合体粒子である。アクリル系多層重合体粒子は、コア部とシェル部とを有するものである。コア部は、センターコアと、必要に応じてセンターコアを略同心円状に覆ってなる1層以上のインナーシェルとを有する。シェル部は、コア部を略同心円状に覆ってなる1層のアウターシェルとを有する。該アクリル系多層重合体粒子は、センターコア、インナーシェルおよびアウターシェルの相互間が隙間無く繋がっていることが好ましい。 The crosslinked rubber (B) that can be suitably used in the present invention is acrylic multilayer polymer particles. The acrylic multilayer polymer particles have a core part and a shell part. The core portion includes a center core and, if necessary, one or more inner shells that cover the center core in a substantially concentric shape. The shell portion has a one-layer outer shell that covers the core portion substantially concentrically. In the acrylic multilayer polymer particles, it is preferable that the center core, the inner shell, and the outer shell are connected to each other without a gap.
 アクリル系多層重合体粒子は、センターコアおよびインナーシェルのうちの、少なくとも1つが架橋ゴム重合体(i)を含有して成り、残り部分が重合体(iii)を含有してなる。
 センターコアおよびインナーシェルのうちの少なくとも2つが架橋ゴム重合体(i)を含有してなるものであるとき、それらに含まれる架橋ゴム重合体(i)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。また、センターコアおよびインナーシェルのうちの残部分が2つ以上である場合、それらに含まれる重合体(iii)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。
In the acrylic multilayer polymer particles, at least one of the center core and the inner shell contains the crosslinked rubber polymer (i), and the remaining part contains the polymer (iii).
When at least two of the center core and the inner shell contain the crosslinked rubber polymer (i), the crosslinked rubber polymer (i) contained in them has the same polymer properties. Alternatively, it may have different polymer properties. Further, when the remaining part of the center core and the inner shell is two or more, the polymer (iii) contained in them may have the same polymer properties or different polymer properties. It may be a thing.
 前記の架橋ゴム重合体(i)は、アクリル酸エステル単量体に由来する単位および/または共役ジエン系単量体に由来する単位と、架橋性単量体に由来する単位とを少なくとも有する。なお、耐光性を高めるという観点からは、共役ジエン系単量体由来の構造を含有しない架橋ゴム重合体(i)が好ましい。
 アクリル酸エステル単量体は、炭素数1~8のアルキル基を有するアクリル酸エステル単量体や炭素数6~24の芳香族基を有するアクリル酸エステル単量体であることが好ましい。アクリル酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸フェニル、アクリル酸ベンジル、パラクミルフェノールエチレンオキサイド変性アクリレート、o-フェニルフェノールエチレンオキサイド変性アクリレートなどを挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いてもよい。
 共役ジエン系単量体としては、ブタジエンおよびイソプレンを挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いてもよい。
 架橋ゴム重合体(i)におけるアクリル酸エステル単量体に由来する単位および/または共役ジエン系単量体に由来する単位の量は、架橋ゴム重合体(i)の全質量に対して、好ましくは60質量%以上、より好ましくは70~99質量%、さらに好ましくは80~98質量%である。
The crosslinked rubber polymer (i) has at least a unit derived from an acrylate monomer and / or a unit derived from a conjugated diene monomer and a unit derived from a crosslinkable monomer. From the viewpoint of enhancing light resistance, a crosslinked rubber polymer (i) that does not contain a structure derived from a conjugated diene monomer is preferred.
The acrylate monomer is preferably an acrylate monomer having an alkyl group having 1 to 8 carbon atoms or an acrylate monomer having an aromatic group having 6 to 24 carbon atoms. Acrylic acid ester monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, benzyl acrylate, paracumylphenol ethylene oxide modified acrylate, o-phenyl A phenol ethylene oxide modified acrylate etc. can be mentioned. These may be used alone or in combination of two or more.
Examples of the conjugated diene monomer include butadiene and isoprene. These may be used alone or in combination of two or more.
The amount of the unit derived from the acrylate monomer and / or the unit derived from the conjugated diene monomer in the crosslinked rubber polymer (i) is preferably relative to the total mass of the crosslinked rubber polymer (i). Is 60% by mass or more, more preferably 70 to 99% by mass, and still more preferably 80 to 98% by mass.
 架橋性単量体としては、例えば、アクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、トリエチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ジビニルベンゼン、1,4-ペンタジエン、トリアリルイソシアネートなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。 Examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene Examples include glycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, triallyl isocyanate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
 架橋ゴム重合体(i)における架橋性単量体に由来する単位の量は、架橋ゴム重合体(i)の全質量に対して、好ましくは0.05~10質量%、より好ましくは0.5~7質量%、さらに好ましくは1~5質量%である。 The amount of the unit derived from the crosslinkable monomer in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0.8%, based on the total mass of the crosslinked rubber polymer (i). It is 5 to 7% by mass, more preferably 1 to 5% by mass.
 架橋ゴム重合体(i)は、その他のビニル系単量体に由来する単位を有してもよい。架橋ゴム重合体(i)に用いられるその他のビニル系単量体は前記のアクリル酸エステル単量体および架橋性単量体に共重合可能なものであれば特に限定されない。架橋ゴム重合体(i)に用いられるその他のビニル系単量体の例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシルなどのメタクリル酸エステル単量体;スチレン、p-メチルスチレン、o-メチルスチレンなどの芳香族ビニル単量体;およびN-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド系単量体;を挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いてもよい。
 架橋ゴム重合体(i)におけるその他のビニル系単量体に由来する単位の量は、アクリル酸エステル単量体に由来する単位、共役ジエン系単量体に由来する単位および架橋性単量体に由来する単位の合計量に対する残部である。
The crosslinked rubber polymer (i) may have units derived from other vinyl monomers. The other vinyl monomer used in the crosslinked rubber polymer (i) is not particularly limited as long as it can be copolymerized with the acrylate monomer and the crosslinkable monomer. Examples of other vinyl monomers used in the crosslinked rubber polymer (i) include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate, and cyclohexyl methacrylate. Monomers; aromatic vinyl monomers such as styrene, p-methylstyrene, o-methylstyrene; and maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide, N-o-chlorophenylmaleimide; Can be mentioned. These may be used alone or in combination of two or more.
The amount of units derived from other vinyl monomers in the crosslinked rubber polymer (i) includes units derived from acrylate monomers, units derived from conjugated diene monomers, and crosslinkable monomers. It is the remainder with respect to the total amount of the unit derived from.
 前記の重合体(iii)は、架橋ゴム重合体(i)以外のものであれば特に制限されないが、メタクリル酸エステル単量体に由来する単位を有するものであることが好ましい。重合体(iii)は、その他の単位として、架橋性単量体に由来する単位および/またはその他のビニル系単量体に由来する単位を含有してもよい。
 重合体(iii)に用いられるメタクリル酸エステル単量体は、炭素数1~8のアルキル基を有するメタクリル酸エステル単量体や炭素数6~24の芳香族基を有するメタクリル酸エステル単量体であることが好ましい。メタクリル酸エステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジルなどを挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いてもよい。これらのうち、メタクリル酸メチルが好ましい。
 重合体(iii)におけるメタクリル酸エステル単量体に由来する単位の量は、好ましくは40~100質量%、より好ましくは50~99質量%、さらに好ましくは60~98質量%である。
The polymer (iii) is not particularly limited as long as it is other than the crosslinked rubber polymer (i), but preferably has a unit derived from a methacrylic acid ester monomer. The polymer (iii) may contain, as other units, a unit derived from a crosslinkable monomer and / or a unit derived from another vinyl monomer.
The methacrylic acid ester monomer used for the polymer (iii) is a methacrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms or a methacrylic acid ester monomer having an aromatic group having 6 to 24 carbon atoms. It is preferable that Examples of the methacrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like. These may be used alone or in combination of two or more. Of these, methyl methacrylate is preferred.
The amount of the unit derived from the methacrylic acid ester monomer in the polymer (iii) is preferably 40 to 100% by mass, more preferably 50 to 99% by mass, and further preferably 60 to 98% by mass.
 重合体(iii)に用いられる架橋性単量体としては、前述の架橋ゴム重合体(i)において例示した架橋性単量体と同じものを挙げることができる。重合体(iii)における架橋性単量体に由来する単位の量は、好ましくは0~5質量%、より好ましくは0.01~3質量%、さらに好ましくは0.02~2質量%である。 Examples of the crosslinkable monomer used in the polymer (iii) include the same crosslinkable monomers exemplified in the above-mentioned crosslinked rubber polymer (i). The amount of the unit derived from the crosslinkable monomer in the polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.02 to 2% by mass. .
 重合体(iii)に用いられるその他のビニル系単量体は、前記のメタクリル酸エステル単量体および架橋性単量体と共重合可能なものであれば特に限定されない。重合体(iii)に用いられるその他のビニル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、パラクミルフェノールエチレンオキサイド変性アクリレート、o-フェニルフェノールエチレンオキサイド変性アクリレートなどのアクリル酸エステル単量体;酢酸ビニル;スチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、α-メチルスチレン、ビニルナフタレンなどの芳香族ビニル単量体;アクリロニトリル、メタクリロニトリルなどのニトリル類;アクリル酸、メタクリル酸、クロトン酸などのα,β-不飽和カルボン酸;およびN-エチルマレイミド、N-シクロヘキシルマレイミドなどのマレイミド系単量体を挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。なお、重合体(iii)及び得られる架橋ゴム(B)の屈折率を高めたい場合、これらのうち、芳香族基を含有する単量体を用いることが好ましい。
 重合体(iii)におけるその他のビニル系単量体に由来する単位の量は、メタクリル酸エステル単量体に由来する単位、および架橋性単量体に由来する単位の合計量に対する残部である。
The other vinyl monomer used for the polymer (iii) is not particularly limited as long as it is copolymerizable with the above-mentioned methacrylic acid ester monomer and crosslinkable monomer. Examples of other vinyl monomers used for the polymer (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, Acrylic acid ester monomers such as 2-ethylhexyl acrylate, paracumylphenol ethylene oxide modified acrylate, o-phenylphenol ethylene oxide modified acrylate; vinyl acetate; styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene , Α-methylstyrene, vinyl naphthalene and other aromatic vinyl monomers; acrylonitrile, methacrylonitrile and other nitriles; acrylic acid, methacrylic acid, crotonic acid and other α, β-unsaturated carboxylic acids; and N-ethyl Maleimide, may be mentioned maleimide-based monomer such as N- cyclohexyl maleimide. You may use these individually by 1 type or in combination of 2 or more types. In addition, when it is desired to increase the refractive index of the polymer (iii) and the resulting crosslinked rubber (B), it is preferable to use a monomer containing an aromatic group.
The amount of the unit derived from the other vinyl monomer in the polymer (iii) is the balance with respect to the total amount of the unit derived from the methacrylate monomer and the unit derived from the crosslinkable monomer.
 アクリル系多層重合体粒子は、アウターシェルが、熱可塑性重合体(ii)を含有してなる。 The acrylic multilayer polymer particle has an outer shell containing the thermoplastic polymer (ii).
 前記の熱可塑性重合体(ii)は、メタクリル酸エステル単量体に由来する単位を有するものである。熱可塑性重合体(ii)は、その他のビニル系単量体に由来する単位を有してもよい。 The thermoplastic polymer (ii) has a unit derived from a methacrylic acid ester monomer. The thermoplastic polymer (ii) may have units derived from other vinyl monomers.
 熱可塑性重合体(ii)に用いられるメタクリル酸エステル単量体は、炭素数1~8のアルキル基を有するメタクリル酸エステル単量体、または炭素数6~24の芳香族基を有するメタクリル酸エステルであることが好ましい。
 メタクリル酸エステル単量体としては、メタクリル酸メチルおよびメタクリル酸ブチル、メタクリル酸フェニル、メタクリル酸ベンジルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのうちメタクリル酸メチルが好ましい。
 熱可塑性重合体(ii)におけるメタクリル酸エステル単量体に由来する単位の量は、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。
The methacrylic acid ester monomer used for the thermoplastic polymer (ii) is a methacrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms or a methacrylic acid ester having an aromatic group having 6 to 24 carbon atoms. It is preferable that
Examples of the methacrylic acid ester monomer include methyl methacrylate and butyl methacrylate, phenyl methacrylate, benzyl methacrylate and the like. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
The amount of the unit derived from the methacrylic acid ester monomer in the thermoplastic polymer (ii) is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
 熱可塑性重合体(ii)に用いられるその他のビニル系単量体としては、前述の重合体(iii)において例示したその他のビニル系単量体と同じものを挙げることができる。
 熱可塑性重合体(ii)におけるその他のビニル系単量体に由来する単位の量は、好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。
Examples of the other vinyl monomers used in the thermoplastic polymer (ii) include the same vinyl monomers as those exemplified in the polymer (iii).
The amount of units derived from other vinyl monomers in the thermoplastic polymer (ii) is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.
 アクリル系多層重合体粒子のコア部とシェル部の構成態様としては、例えば、
 センターコアが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である2層重合体粒子、
 センターコアが重合体(iii)で、インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子、
 センターコアがある1種の架橋ゴム重合体(i)で、インナーシェルが別の1種の架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子、
 センターコアが架橋ゴム重合体(i)で、インナーシェルが重合体(iii)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子、
 センターコアが架橋ゴム重合体(i)で、内側インナーシェルが重合体(iii)で、外側インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である4層重合体粒子などを挙げることができる。
 アクリル系多層重合体粒子の透明性の観点から、隣り合う層の屈折率の差(絶対値)が、好ましくは0.005未満、より好ましくは0.004未満、さらに好ましくは0.003未満になるように各層に含有される重合体を選択することが好ましい。
As a configuration aspect of the core part and the shell part of the acrylic multilayer polymer particles, for example,
Two-layer polymer particles whose center core is a crosslinked rubber polymer (i) and whose outer shell is a thermoplastic polymer (ii);
Three-layer polymer particles in which the center core is a polymer (iii), the inner shell is a crosslinked rubber polymer (i), and the outer shell is a thermoplastic polymer (ii);
Three-layer polymer particles with one kind of crosslinked rubber polymer (i) having a center core, one inner shell being another kind of crosslinked rubber polymer (i), and outer shell being a thermoplastic polymer (ii) ,
Three-layer polymer particles in which the center core is a crosslinked rubber polymer (i), the inner shell is a polymer (iii), and the outer shell is a thermoplastic polymer (ii);
4 layers, the center core is a crosslinked rubber polymer (i), the inner inner shell is a polymer (iii), the outer inner shell is a crosslinked rubber polymer (i), and the outer shell is a thermoplastic polymer (ii). Examples thereof include polymer particles.
From the viewpoint of the transparency of the acrylic multilayer polymer particles, the difference in refractive index (absolute value) between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in each layer.
 アクリル系多層重合体粒子におけるアウターシェル部の割合は、好ましくは10~60質量%、より好ましくは15~50質量%、さらに好ましくは20~40質量%である。コア部において、架橋ゴム重合体(i)を含有してなる層が占める割合は、好ましくは20~100質量%、より好ましくは30~70質量%である。 The ratio of the outer shell part in the acrylic multilayer polymer particles is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass. The ratio of the layer containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
 本発明に用いる架橋ゴム粒子(B)の体積基準平均粒子径は、好ましくは0.02~1μm、より好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。
 このような体積基準平均粒子径を有する架橋ゴム粒子(B)を用いると、成形品の外観上の欠点を著しく低減できる。なお、本明細書における体積基準平均粒子径は、光散乱光法によって測定される粒径分布データに基づいて算出される値である。
The volume-based average particle diameter of the crosslinked rubber particles (B) used in the present invention is preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm, still more preferably 0.1 to 0.3 μm.
When the crosslinked rubber particles (B) having such a volume-based average particle diameter are used, defects in the appearance of the molded product can be remarkably reduced. In addition, the volume reference average particle diameter in this specification is a value calculated based on particle size distribution data measured by the light scattering light method.
 架橋ゴム粒子(B)の製造方法に特に制限はない。粒子径制御、多層構造の製造しやすさなどの観点から、乳化重合法、またはシード乳化重合法が好適である。乳化重合法は、所定の単量体を乳化させて重合することによって重合体粒子を含むエマルジョンを製造する方法である。シード乳化重合法は、所定の単量体を乳化させ重合することによってシード粒子を得、該シード粒子の存在下に別の所定の単量体を乳化させ重合することによって、シード粒子とそれを略同心円状に被覆するシェル重合体とを有するコアシェル重合体粒子を含むエマルジョンを製造する方法である。コアシェル重合体粒子の存在下にさらに別の所定の単量体を乳化させ重合することを所望の回数で繰り返すによって、シード粒子とそれを略同心円状に被覆する複数のシェル重合体とを有するコアシェル多層重合体粒子を含むエマルジョンを製造できる。 The method for producing the crosslinked rubber particles (B) is not particularly limited. From the viewpoints of particle size control, ease of production of the multilayer structure, the emulsion polymerization method or the seed emulsion polymerization method is preferred. The emulsion polymerization method is a method for producing an emulsion containing polymer particles by emulsifying a predetermined monomer and polymerizing it. In the seed emulsion polymerization method, seed particles are obtained by emulsifying and polymerizing a predetermined monomer, and by emulsifying and polymerizing another predetermined monomer in the presence of the seed particles, A method for producing an emulsion comprising core-shell polymer particles having a shell polymer coated in a substantially concentric shape. A core-shell having seed particles and a plurality of shell polymers covering them substantially concentrically by repeating emulsification and polymerization of another predetermined monomer in the presence of the core-shell polymer particles a desired number of times Emulsions containing multi-layer polymer particles can be produced.
 乳化重合法に用いられる乳化剤としては、例えば、アニオン系乳化剤であるジオクチルスルホコハク酸ナトリウム、ジラウリルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウムなどのアルキル硫酸塩;ノニオン系乳化剤であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなど;ノニオン・アニオン系乳化剤であるポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩;を挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いてもよい。なお、ノニオン系乳化剤およびノニオン・アニオン系乳化剤の例示化合物におけるエチレンオキシド単位の平均繰返し単位数は、乳化剤の発泡性が極端に大きくならないようにするために、好ましくは30以下、より好ましくは20以下、さらに好ましくは10以下である。 Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, and the like. Nonionic emulsifier polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether, etc .; Nonionic anionic emulsifier polyoxyethylene nonyl phenyl ether sodium sulfate, such as polyoxyethylene nonyl phenyl ether sulfate, Polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate, polyoxyethylene tridecyl ether Alkyl ether carboxylates such as sodium; and the like. These may be used alone or in combination of two or more. In addition, the average number of repeating units of the ethylene oxide unit in the exemplary compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
 乳化重合に用いられる重合開始剤は特に限定されない。例えば、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩系開始剤;パースルホキシレート/有機過酸化物、過硫酸塩/亜硫酸塩などのレドックス系開始剤を挙げることができる。 The polymerization initiator used for emulsion polymerization is not particularly limited. Examples thereof include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite.
 乳化重合によって得られるエマルジョンからの架橋ゴム(B)の分離取得は、塩析凝固法、凍結凝固法、噴霧乾燥法などの公知の方法によって行うことができる。これらの中でも、架橋ゴム(B)に含まれる不純物を水洗により容易に除去できる点から、塩析凝固法および凍結凝固法が好ましく、凍結凝固法がより好ましい。凍結凝固法においては凝集剤を用いないので耐水性に優れたアクリル系樹脂フィルムが得られやすい。
 なお、凝固工程前に、目開き50μm以下の金網などでエマルジョンを濾過すると、エマルジョンに混入した異物を除去することができるので、好ましい。
Separation and acquisition of the crosslinked rubber (B) from the emulsion obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method. Among these, the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable from the viewpoint that impurities contained in the crosslinked rubber (B) can be easily removed by washing with water. In the freeze coagulation method, since an aggregating agent is not used, an acrylic resin film excellent in water resistance is easily obtained.
In addition, it is preferable to filter the emulsion with a wire mesh having an opening of 50 μm or less before the coagulation step because foreign matters mixed in the emulsion can be removed.
 架橋ゴム(B)とメタクリル樹脂(A)との溶融混練において架橋ゴム(B)を均一に分散させ易いという観点から、架橋ゴム(B)を1000μm以下の凝集体で取り出すことが好ましく、500μm以下の凝集体で取り出すことがより好ましい。なお、架橋ゴム(B)の凝集体の形態は特に限定されず、例えば、シェル部で相互に融着した状態のペレット状でもよいし、パウダー状やグラニュー状でもよい。    From the viewpoint of easily dispersing the crosslinked rubber (B) uniformly in the melt-kneading of the crosslinked rubber (B) and the methacrylic resin (A), the crosslinked rubber (B) is preferably taken out as an aggregate of 1000 μm or less, and 500 μm or less. It is more preferable to take out with the aggregate. The form of the aggregate of the crosslinked rubber (B) is not particularly limited, and may be, for example, a pellet form fused to each other at the shell, or a powder form or a granulated form. *
 本発明に用いる架橋ゴム(B)のJIS K 0070:1992で測定される酸価は、10mg/g以下が好ましく、7mg/g以下がより好ましく、5mg/g以下がさらに好ましく、3mg/g以下がよりさらに好ましく、1mg/g以下が最も好ましい。架橋ゴムは、例えば、洗浄によりその酸価を低くすることができる。架橋ゴムの酸価の測定では、架橋ゴムは完全には溶解しないが、12時間以上室温にてクロロホルム中で架橋ゴムを撹拌させ、未溶解の架橋ゴムが残った状態で、酸価を測定すればよい。 The acid value measured by JIS K 0070: 1992 of the crosslinked rubber (B) used in the present invention is preferably 10 mg / g or less, more preferably 7 mg / g or less, further preferably 5 mg / g or less, and 3 mg / g or less. Is more preferable, and 1 mg / g or less is most preferable. The acid value of the crosslinked rubber can be lowered by washing, for example. In the measurement of the acid value of the crosslinked rubber, the crosslinked rubber is not completely dissolved, but the acid value is measured with stirring the crosslinked rubber in chloroform at room temperature for 12 hours or more and leaving the undissolved crosslinked rubber remaining. That's fine.
 本発明に用いる架橋ゴム(B)の屈折率(n23 D)は、メタクリル樹脂(A)を含むマトリクス樹脂の種類によって、透明性を確保するための最適値は異なるが、一般的に1.45~1.60が好ましく、1.48~1.56がより好ましく、1.50~1.54がさらに好ましい。架橋ゴム(B)の屈折率(n23 D)は、架橋ゴム(B)以外の成分の屈折率(n23 D)に近いほど樹脂組成物の透明性が高くなる。具体的には、メタクリル樹脂(A)を含むマトリクス樹脂と架橋ゴム(B)との屈折率の差(絶対値)を0.05以下、より好ましくは0.02以下、さらに好ましくは0.01以下、最も好ましくは0.005以下になるように、適宜選択させることが好ましい。なお、メタクリル樹脂(A)を含むマトリクス樹脂とは、本発明の樹脂組成物中の架橋ゴム(B)以外の樹脂成分である。当該マトリクス樹脂は、メタクリル樹脂(A)のみで構成されてもよいし、メタクリル樹脂(A)とポリカーボネート樹脂などの他の重合体との組成物で構成されてもよい。
 マトリクス樹脂および架橋ゴム(B)の屈折率の値は、後述の実施例に記載の方法で実測するが、屈折率測定用の試料作成が困難な場合、便宜的に単独重合体の屈折率を基に共重合組成または混合割合の質量比に応じ加重平均して求めることができる。
Although the refractive index (n 23 D ) of the crosslinked rubber (B) used in the present invention varies depending on the type of the matrix resin containing the methacrylic resin (A), the optimum value for ensuring transparency varies. 45 to 1.60 are preferred, 1.48 to 1.56 are more preferred, and 1.50 to 1.54 are even more preferred. The closer the refractive index (n 23 D ) of the crosslinked rubber (B) is to the refractive index (n 23 D ) of components other than the crosslinked rubber (B), the higher the transparency of the resin composition. Specifically, the difference (absolute value) in refractive index between the matrix resin containing the methacrylic resin (A) and the crosslinked rubber (B) is 0.05 or less, more preferably 0.02 or less, and still more preferably 0.01. In the following, it is preferable to select appropriately so that it is most preferably 0.005 or less. The matrix resin containing the methacrylic resin (A) is a resin component other than the crosslinked rubber (B) in the resin composition of the present invention. The matrix resin may be composed of only the methacrylic resin (A), or may be composed of a composition of the methacrylic resin (A) and another polymer such as a polycarbonate resin.
The refractive index values of the matrix resin and the crosslinked rubber (B) are actually measured by the method described in the examples below. If it is difficult to prepare a sample for measuring the refractive index, the refractive index of the homopolymer is conveniently determined. The weight average can be obtained according to the copolymer composition or the mass ratio of the mixing ratio.
 本発明に係る樹脂組成物のメタクリル樹脂(A)と架橋ゴム(B)の質量比(A)/(B)は、耐衝撃性の観点から95/5~10/90であり、90/10~30/70がより好ましく、85/15~40/60がさらに好ましく、80/20~50/50が最も好ましい。 The mass ratio (A) / (B) of the methacrylic resin (A) and the crosslinked rubber (B) in the resin composition according to the present invention is 95/5 to 10/90 from the viewpoint of impact resistance, and 90/10 To 30/70 is more preferable, 85/15 to 40/60 is more preferable, and 80/20 to 50/50 is most preferable.
 本発明に係る樹脂組成物に含有されるメタクリル樹脂(A)と架橋ゴム(B)との合計量は、好ましくは40~100質量%、より好ましくは60~100質量%、さらに好ましくは70~100質量%、最も好ましくは80~100質量%である。 The total amount of the methacrylic resin (A) and the crosslinked rubber (B) contained in the resin composition according to the present invention is preferably 40 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass, most preferably 80 to 100% by mass.
 本発明に係る樹脂組成物のJIS K 0070:1992で測定される酸価は、7mg/g以下であり、5mg/g以下が好ましく、3mg/g以下がより好ましく、1.0mg/g以下がさらに好ましく、0.5mg/g以下が最も好ましい。酸価がこの範囲にあることで、メタクリル樹脂(A)中のメタクリル酸環式炭化水素エステルに由来する構造単位(a1)に起因する熱分解を抑制することができる。樹脂組成物の酸価が7mg/gより大きいと、メタクリル樹脂(A)中のメタクリル酸環式炭化水素エステルに由来する構造単位(a1)が熱分解してメタクリル酸構造単位が生成し、このカルボン酸基により樹脂組成物の熱分解が促進され、着色や異物の生成を促進してしまう。組成物の一態様であるフィルムの場合も、同様に測定すればよい。
 なお、樹脂組成物が架橋ゴム(B)を含む場合は、完全には溶解しないが、12時間以上室温にてクロロホルム中で樹脂組成物を撹拌溶解させ、未溶解の架橋ゴム(B)が残った状態で、酸価を測定すればよい。
 酸価が上記値の範囲にあることで、樹脂組成物のイエロインデックスを低くし、着色を低減でき、耐熱分解性を高く維持することができる。
The acid value measured by JIS K 0070: 1992 of the resin composition according to the present invention is 7 mg / g or less, preferably 5 mg / g or less, more preferably 3 mg / g or less, and 1.0 mg / g or less. More preferred is 0.5 mg / g or less. When the acid value is within this range, thermal decomposition caused by the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) can be suppressed. When the acid value of the resin composition is larger than 7 mg / g, the structural unit (a1) derived from the methacrylic acid cyclic hydrocarbon ester in the methacrylic resin (A) is thermally decomposed to produce a methacrylic acid structural unit. The thermal decomposition of the resin composition is promoted by the carboxylic acid group, and the production of coloring and foreign matters is promoted. What is necessary is just to measure similarly in the case of the film which is 1 aspect of a composition.
In addition, when the resin composition contains the crosslinked rubber (B), it is not completely dissolved, but the resin composition is stirred and dissolved in chloroform at room temperature for 12 hours or more to leave undissolved crosslinked rubber (B). In this state, the acid value may be measured.
When the acid value is within the above range, the yellow index of the resin composition can be lowered, coloring can be reduced, and the thermal decomposition resistance can be maintained high.
 本発明に係る樹脂組成物はポリカーボネート樹脂(C)をさらに含有してもよい。本発明の樹脂組成物に添加してもよいポリカーボネート樹脂(C)は特に限定されず、例えば、多官能ヒドロキシ化合物と炭酸エステル形成性化合物との反応によって得られる重合体を挙げることができる。本発明においては、メタクリル樹脂(A)との相溶性、得られるフィルムの透明性に優れるという観点から、芳香族ポリカーボネート樹脂が好ましい。 The resin composition according to the present invention may further contain a polycarbonate resin (C). The polycarbonate resin (C) that may be added to the resin composition of the present invention is not particularly limited, and examples thereof include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound. In the present invention, an aromatic polycarbonate resin is preferred from the viewpoint of compatibility with the methacrylic resin (A) and excellent transparency of the resulting film.
 本発明に用いるポリカーボネート樹脂(C)は、メタクリル樹脂(A)との相溶性、並びに得られるフィルムの透明性、表面平滑性などの観点から、300℃、1.2Kgでのメルトボリュームフローレート(MVR)値が、好ましくは1~250cm3/10分、より好ましくは3~230cm3/10分である。 The polycarbonate resin (C) used in the present invention has a melt volume flow rate (at 300 ° C. and 1.2 kg) from the viewpoints of compatibility with the methacrylic resin (A), transparency of the resulting film, surface smoothness, and the like. MVR) values, preferably 1 ~ 250cm 3/10 min, more preferably 3 ~ 230cm 3/10 min.
 また、本発明に用いられるポリカーボネート樹脂(C)は、メタクリル樹脂(A)との相溶性、並びに得られるフィルムの透明性、表面平滑性などの観点から、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算して算出される重量平均分子量が、好ましくは18000~75000、より好ましくは20000~60000である。なお、ポリカーボネート樹脂(C)のMVR値や重量平均分子量の調節は末端停止剤や分岐剤の量を調整することによって行うことができる。 The polycarbonate resin (C) used in the present invention was measured by gel permeation chromatography (GPC) from the viewpoints of compatibility with the methacrylic resin (A), transparency of the resulting film, surface smoothness, and the like. The weight average molecular weight calculated by converting the chromatogram into the molecular weight of standard polystyrene is preferably 18000-75000, more preferably 20000-60000. The MVR value and the weight average molecular weight of the polycarbonate resin (C) can be adjusted by adjusting the amounts of the terminal terminator and the branching agent.
 本発明に用いるポリカーボネート樹脂(C)のガラス転移温度は、好ましくは130℃以上、より好ましくは135℃以上、さらに好ましくは140℃以上である。該ポリカーボネート樹脂のガラス転移温度の上限は、通常180℃である。ここで、ガラス転移温度は、室温以上の領域においてJIS K7121に準拠して行うものであり、230℃まで昇温速度10℃/分で1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から230℃までを昇温速度10℃/分で昇温(2ndラン)する際の、2ndランの中間点ガラス転移温度である。 The glass transition temperature of the polycarbonate resin (C) used in the present invention is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and further preferably 140 ° C. or higher. The upper limit of the glass transition temperature of the polycarbonate resin is usually 180 ° C. Here, the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher. The first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
 ポリカーボネート樹脂(C)の製造方法は特に限定されない。例えば、ホスゲン法(界面重合法)及び溶融重合法(エステル交換法)などを挙げることができる。また、本発明に好ましく用いられる芳香族ポリカーボネート樹脂は、溶融重合法で製造したポリカーボネート樹脂原料に、末端ヒドロキシ基量を調整するための処理を施してなるものであってもよい。また、ポリカーボネート樹脂(C)は、市販品やその他公知のものを用いることができる。 The method for producing the polycarbonate resin (C) is not particularly limited. Examples thereof include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method). The aromatic polycarbonate resin preferably used in the present invention may be one obtained by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups. As the polycarbonate resin (C), commercially available products and other known products can be used.
 ポリカーボネート樹脂(C)は、ポリカーボネート単位以外に、ポリエステル、ポリウレタン、ポリエーテルまたはポリシロキサン構造を有する単位等を含有しているものであってもよい。 The polycarbonate resin (C) may contain a unit having a polyester, polyurethane, polyether or polysiloxane structure in addition to the polycarbonate unit.
 本発明に係る樹脂組成物において、ポリカーボネート樹脂(C)に対するメタクリル樹脂(A)の質量比(A)/(C)は、通常、98/2~50/50、好ましくは98/2~60/40である。この範囲にあることで、メタクリル樹脂(A)とポリカーボネート樹脂(C)の相溶性が良好であるので、透明性が高く、屈折率が高く、表面平滑性の良好なフィルムが得られやすい。またポリカーボネート樹脂(C)に対するメタクリル樹脂(A)の質量比(A)/(C)98/2~90/10を選択した場合には、フィルムの位相差の絶対値を小さくすることができる。 In the resin composition according to the present invention, the mass ratio (A) / (C) of the methacrylic resin (A) to the polycarbonate resin (C) is usually 98/2 to 50/50, preferably 98/2 to 60 /. 40. By being in this range, since the compatibility of the methacrylic resin (A) and the polycarbonate resin (C) is good, it is easy to obtain a film having high transparency, high refractive index, and good surface smoothness. When the mass ratio (A) / (C) 98/2 to 90/10 of the methacrylic resin (A) to the polycarbonate resin (C) is selected, the absolute value of the retardation of the film can be reduced.
 本発明に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じてフィラーを含んでいてもよい。フィラーとしては、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウムなどを挙げることができる。本発明の樹脂組成物に含有し得るフィラーの量は、好ましくは3質量%以下、より好ましくは1.5質量%以下である。 The resin composition according to the present invention may contain a filler as necessary within a range not impairing the effects of the present invention. Examples of the filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate. The amount of filler that can be contained in the resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
 本発明に係る樹脂組成物には、本発明の効果を損なわない範囲で、他の重合体を含んでいてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メタクリル樹脂(A)以外のメチルメタクリレート系重合体、メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、フェノキシ樹脂、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;アクリル系ブロック共重合体、シリコーンゴム;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどを挙げることができる。本発明の樹脂組成物に含有され得る他の重合体の量は、好ましくは10質量%以下、より好ましくは5質量%以下、最も好ましくは0質量%である。 The resin composition according to the present invention may contain other polymers as long as the effects of the present invention are not impaired. Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate polymer other than methacrylic resin (A), methyl methacrylate-styrene copolymer; polyethylene terephthalate, polybutylene terephthalate Polyester resin such as nylon 6, nylon 66, polyamide such as polyamide elastomer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, poly Setar, polyvinylidene fluoride, polyurethane, phenoxy resin, modified polyphenylene ether, polyphenylene sulfide, silicone modified resin; acrylic block copolymer, silicone rubber; styrene thermoplastic elastomer such as SEPS, SEBS, SIS; IR, EPR, EPDM And olefin rubbers. The amount of the other polymer that can be contained in the resin composition of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass.
 本発明に係る樹脂組成物は、本発明の効果を損なわない範囲で、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、蛍光体などの添加剤を含有していてもよい。 The resin composition according to the present invention is an antioxidant, a thermal deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic agent, as long as the effects of the present invention are not impaired. It may contain additives such as additives, flame retardants, dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors.
 これらの添加剤は、1種を単独で、または2種以上を組み合わせて用いてもよい。また、これらの添加剤は、メタクリル樹脂(A)や架橋ゴム(B)を製造する際の重合反応液に添加してもよいし、製造されたメタクリル樹脂(A)や架橋ゴム(B)に添加してもよいし、本発明の樹脂組成物を調製する際に添加してもよい。本発明の樹脂組成物に含有される添加剤の合計量は、成形体の外観不良を抑制する観点から、メタクリル樹脂(A)に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。 These additives may be used singly or in combination of two or more. Moreover, these additives may be added to the polymerization reaction liquid when producing the methacrylic resin (A) or the crosslinked rubber (B), or the produced methacrylic resin (A) or the crosslinked rubber (B). It may be added or may be added when preparing the resin composition of the present invention. The total amount of additives contained in the resin composition of the present invention is preferably 7% by mass or less, more preferably 5% by mass with respect to the methacrylic resin (A) from the viewpoint of suppressing poor appearance of the molded product. Hereinafter, it is more preferably 4% by mass or less.
 本発明の樹脂組成物の調製方法は特に限定されない。例えば、架橋ゴム(B)の存在下にメタクリル酸メチル等を含む単量体混合物を重合してメタクリル樹脂(A)を生成させる方法や、メタクリル樹脂(A)および架橋ゴム(B)を溶融混練する方法を挙げることができる。溶融混練の際に、必要に応じて他の重合体や添加剤を混合してもよいし、メタクリル樹脂(A)を他の重合体および添加剤と混合した後に架橋ゴム(B)と混合してもよいし、架橋ゴム(B)を他の重合体および添加剤と混合した後にメタクリル樹脂(A)と混合してもよいし、その他の方法でもよい。混練は、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合装置または混練装置を使用して行なうことができる。これらのうち、二軸押出機が好ましい。混合・混練時の温度は、使用するメタクリル樹脂(A)および架橋ゴム(B)の溶融温度などに応じて適宜調節することができるが、好ましくは110℃~280℃、より好ましくは200℃~270℃である。溶融温度が高すぎると、得られる樹脂組成物の酸価が高くなってしまう。 The method for preparing the resin composition of the present invention is not particularly limited. For example, a method of polymerizing a monomer mixture containing methyl methacrylate in the presence of a crosslinked rubber (B) to produce a methacrylic resin (A), or melt-kneading a methacrylic resin (A) and a crosslinked rubber (B) The method of doing can be mentioned. In the melt-kneading, other polymers and additives may be mixed as necessary, and the methacrylic resin (A) is mixed with the other polymers and additives and then mixed with the crosslinked rubber (B). Alternatively, the crosslinked rubber (B) may be mixed with other polymer and additive and then mixed with the methacrylic resin (A), or other methods may be used. The kneading can be performed using, for example, a known mixing apparatus or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. Of these, a twin screw extruder is preferred. The temperature at the time of mixing and kneading can be appropriately adjusted according to the melting temperature of the methacrylic resin (A) and the crosslinked rubber (B) to be used, but is preferably 110 ° C. to 280 ° C., more preferably 200 ° C. to 270 ° C. If the melting temperature is too high, the acid value of the resulting resin composition will be high.
 本発明の樹脂組成物は、ガラス転移温度が、好ましくは115℃以上、より好ましくは120℃以上、さらに好ましくは122℃以上、特に好ましくは125℃以上である。本発明の樹脂組成物のガラス転移温度の上限は特に制限はないが、好ましくは135℃である。ここで、ガラス転移温度は、室温以上の領域においてJIS K7121に準拠して行うものであり、230℃まで昇温速度10℃/分で1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から230℃までを昇温速度10℃/分で昇温(2ndラン)する際の、2ndランの中間点ガラス転移温度である。 The resin composition of the present invention has a glass transition temperature of preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 122 ° C. or higher, and particularly preferably 125 ° C. or higher. The upper limit of the glass transition temperature of the resin composition of the present invention is not particularly limited, but is preferably 135 ° C. Here, the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher. The first temperature increase (1 st run) is performed at a temperature increase rate of 10 ° C./min up to 230 ° C. to cool, then, a time of, 2 nd intermediate glass transition temperature of the run to increase the temperature (2 nd run) at a heating rate of 10 ° C. / min up to 230 ° C. from room temperature.
 本発明の樹脂組成物の溶媒可溶分のゲルパーミエーションクロマトグラフィ(GPC)測定にて決定されるMwは、好ましくは70000~200000、より好ましくは72000~180000、さらに好ましくは75000~150000である。本発明の樹脂組成物の溶媒可溶分のゲルパーミエーションクロマトグラフィ(GPC)測定にて決定されるMw/Mnは、好ましくは1.2~5.0、より好ましくは1.5~3.5である。MwやMw/Mnがこの範囲にあると、樹脂組成物の成形加工性が良好となり、耐衝撃性や靭性に優れた成形体を得易くなる。 The Mw determined by gel permeation chromatography (GPC) measurement of the solvent-soluble content of the resin composition of the present invention is preferably 70000-200000, more preferably 72000-180000, and further preferably 75000-150,000. The Mw / Mn determined by gel permeation chromatography (GPC) measurement of the solvent-soluble content of the resin composition of the present invention is preferably 1.2 to 5.0, more preferably 1.5 to 3.5. It is. When Mw and Mw / Mn are in this range, the molding processability of the resin composition becomes good, and it becomes easy to obtain a molded article excellent in impact resistance and toughness.
 本発明の樹脂組成物は、230℃および3.8kg荷重の条件で測定して決定されるメルトフローレート(MFR)が、好ましくは0.1~15g/10分、さらに好ましくは0.5~5g/10分、最も好ましくは1.0~3g/10分である。 The resin composition of the present invention has a melt flow rate (MFR) determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 15 g / 10 min, more preferably 0.5 to 5 g / 10 min, most preferably 1.0 to 3 g / 10 min.
 本発明の樹脂組成物は、1.0mm厚さのヘイズが、好ましくは1.0%以下、より好ましくは0.7%以下、さらに好ましくは0.5%以下である。 The resin composition of the present invention has a 1.0 mm thick haze, preferably 1.0% or less, more preferably 0.7% or less, and still more preferably 0.5% or less.
 本発明の樹脂組成物は、ペレット、顆粒、粉末などの任意の形態にして、フィルムなどの成形体に成形することができる。 The resin composition of the present invention can be formed into a molded body such as a film in any form such as pellets, granules, and powders.
 本発明の樹脂組成物は、公知の方法によって成形し、各種成形体にすることができる。成形法としては、例えば、押出成形法、射出成形法、カレンダー成形法、ブロー成形法、圧縮成形法、溶液キャスト法などが挙げられる。また、他の材料との複合成形体を得るために、インサート成形法、被覆成形法などの公知の複合成形体の製法を採用できる。 The resin composition of the present invention can be molded into various molded products by a known method. Examples of the molding method include an extrusion molding method, an injection molding method, a calendar molding method, a blow molding method, a compression molding method, and a solution casting method. In addition, in order to obtain a composite molded body with another material, a known composite molded body manufacturing method such as an insert molding method or a coating molding method can be employed.
 本発明の樹脂組成物において好ましい成形体はフィルムである。
 本発明の一実施形態に係るフィルムは、その製法によって特に限定されず、例えば、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などを挙げることができる。これらのうち、押出成形法が好ましい。押出成形法によれば、透明性に優れ、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができる。押出機から吐出される本発明に係る樹脂組成物の温度は、好ましくは160~270℃、より好ましくは220~260℃に設定する。樹脂組成物の温度が高くなりすぎると、得られるフィルムの酸価が高くなってしまう。
A preferable molded body in the resin composition of the present invention is a film.
The film which concerns on one Embodiment of this invention is not specifically limited by the manufacturing method, For example, a solution cast method, a melt casting method, an extrusion molding method, an inflation molding method, a blow molding method etc. can be mentioned. Of these, the extrusion method is preferred. According to the extrusion method, a film having excellent transparency, improved toughness, excellent handleability, and excellent balance between toughness, surface hardness, and rigidity can be obtained. The temperature of the resin composition according to the present invention discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C. If the temperature of the resin composition becomes too high, the acid value of the resulting film will be high.
 押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘイズのフィルムが得られるという観点から、前記樹脂組成物を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは、金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は、好ましくは10N/mm以上、より好ましくは30N/mm以上である。 Among the extrusion molding methods, from the viewpoint of obtaining a film having good surface smoothness, good specular gloss, and low haze, the resin composition is extruded from a T die in a molten state, and then it is applied to two or more specular rolls. Or the method including pinching with a mirror surface belt and shape | molding is preferable. The mirror roll or the mirror belt is preferably made of metal. The linear pressure between the pair of mirror rolls or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more.
 また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される前記樹脂組成物を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘイズの低い本発明のフィルムを製造し易い。 Also, the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less. The pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher. When such a surface temperature is set, the resin composition discharged from the extruder can be cooled at a speed faster than natural cooling, and the film of the present invention having excellent surface smoothness and low haze can be produced. easy.
 本発明のフィルムは少なくとも一方向に延伸処理を施したものであってもよい。 The film of the present invention may be stretched in at least one direction.
 本発明のフィルムの厚さは、好ましくは1~200μm、より好ましくは10~50μm、さらに好ましくは15~40μmである。 The thickness of the film of the present invention is preferably 1 to 200 μm, more preferably 10 to 50 μm, and still more preferably 15 to 40 μm.
 本発明のフィルムは、厚さ40μmにおけるヘイズが、好ましくは0.3%以下、より好ましくは0.2%以下である。これにより、表面光沢や透明性に優れる。また、液晶保護フィルムや導光フィルムなどの光学用途においては、光源の利用効率が高まり好ましい。さらに、表面賦形を行う際の賦形精度に優れるため好ましい。 The film of the present invention has a haze at a thickness of 40 μm, preferably 0.3% or less, more preferably 0.2% or less. Thereby, it is excellent in surface glossiness and transparency. Further, in optical applications such as a liquid crystal protective film and a light guide film, the use efficiency of the light source is preferably increased. Furthermore, it is preferable because it is excellent in shaping accuracy when performing surface shaping.
 本発明のフィルムは、低位相差の光学フィルムとして用いる場合、波長590nmの光に対する厚さ40μmにおける面内方向位相差Reが、好ましくは19nm以下、より好ましくは15nm以下、さらに好ましくは10nm以下、特に好ましくは5nm以下、最も好ましくは1nm以下である。
 本発明のフィルムは、波長590nmの光に対する厚さ40μmにおける厚さ方向位相差Rthが、好ましくは-12nm以上12nm以下、より好ましくは-5nm以上5nm以下、さらに好ましくは-3nm以上3nm以下、特に好ましくは-2nm以上2nm以下、最も好ましくは-1nm以上1nm以下である。
 なお、面内方向位相差Reおよび厚さ方向位相差Rthは、それぞれ、以下の式で定義される値である。
 Re=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×d
 ここで、nxはフィルムの遅相軸方向の屈折率であり、nyはフィルムの進相軸方向の屈折率であり、nzはフィルムの厚さ方向の屈折率であり、d[nm]はフィルムの厚さである。遅相軸はフィルム面内の屈折率が最大になる方向の軸である。進相軸は面内において遅相軸に対して直角となる方向の軸である。
When the film of the present invention is used as an optical film having a low retardation, an in-plane retardation Re at a thickness of 40 μm with respect to light having a wavelength of 590 nm is preferably 19 nm or less, more preferably 15 nm or less, still more preferably 10 nm or less, particularly Preferably it is 5 nm or less, Most preferably, it is 1 nm or less.
The film of the present invention has a thickness direction retardation Rth at a thickness of 40 μm with respect to light having a wavelength of 590 nm, preferably −12 nm to 12 nm, more preferably −5 nm to 5 nm, still more preferably −3 nm to 3 nm, particularly It is preferably −2 nm or more and 2 nm or less, and most preferably −1 nm or more and 1 nm or less.
The in-plane direction phase difference Re and the thickness direction phase difference Rth are values defined by the following equations, respectively.
Re = (n x −n y ) × d
Rth = ((n x + n y ) / 2−n z ) × d
Here, n x is a refractive index in a slow axis direction of the film, n y is a refractive index in a fast axis direction of the film, n z is a refractive index in the thickness direction of the film, d [nm ] Is the thickness of the film. The slow axis is an axis in the direction in which the refractive index in the film plane becomes maximum. The fast axis is an axis in a direction perpendicular to the slow axis in the plane.
 本発明のフィルムは、波長590nmの光に対する光弾性係数βが、好ましくは-3.0×10-12Pa-1以上3.0×10-12Pa-1以下、より好ましくは-2.0×10-12Pa-1以上2.0×10-12Pa-1以下、さらに好ましくは-1.0×10-12Pa-1以上1.0×10-12Pa-1以下である。なお、光弾性係数β[10-12Pa-1]は、次式のとおり、応力σ[Pa]を印加した際の面内方向位相差Rin〔nm〕と、フィルム厚さd[nm]との関係から算出することができる。
  Rin=β×σ×d
The film of the present invention has a photoelastic coefficient β with respect to light having a wavelength of 590 nm, preferably −3.0 × 10 −12 Pa −1 or more and 3.0 × 10 −12 Pa −1 or less, more preferably −2.0. × 10 −12 Pa −1 or more and 2.0 × 10 −12 Pa −1 or less, more preferably −1.0 × 10 −12 Pa −1 or more and 1.0 × 10 −12 Pa −1 or less. The photoelastic coefficient β [10 −12 Pa −1 ] is calculated from the following equation: the in-plane phase difference Rin [nm] when the stress σ [Pa] is applied, and the film thickness d [nm]. It can be calculated from the relationship.
Rin = β × σ × d
 面内方向位相差Re、厚さ方向位相差Rthおよび光弾性係数βがこのような範囲であれば、位相差に起因する画像表示装置の表示特性への影響が顕著に抑制され得る。より具体的には、干渉ムラや3Dディスプレイ用液晶表示装置に用いる場合の3D像の歪みが顕著に抑制され得る。 If the in-plane direction phase difference Re, the thickness direction phase difference Rth, and the photoelastic coefficient β are within such ranges, the influence on the display characteristics of the image display apparatus due to the phase difference can be remarkably suppressed. More specifically, interference unevenness and 3D image distortion when used in a liquid crystal display device for 3D display can be significantly suppressed.
 本発明のフィルムを位相差フィルムとして用いる場合、厚み40μmあたりの面内位相差Reが10~200nmであることが好ましく、10~180nmであることがより好ましく、10~150nmであることがさらに好ましい。そして、厚み方向位相差は-10~-250nmであることが好ましく、-20~-230nmであることがより好ましく、-30~-200nmであることがさらに好ましい。 When the film of the present invention is used as a retardation film, the in-plane retardation Re per 40 μm thickness is preferably 10 to 200 nm, more preferably 10 to 180 nm, and even more preferably 10 to 150 nm. . The thickness direction retardation is preferably −10 to −250 nm, more preferably −20 to −230 nm, and further preferably −30 to −200 nm.
 本発明のフィルムの表面に機能層を設けてもよい。機能層としては、ハードコート層、アンチグレア層、反射防止層、スティッキング防止層、拡散層、防眩層、静電気防止層、防汚層、微粒子などの易滑性層、ガスバリア層等を挙げることができる。 A functional layer may be provided on the surface of the film of the present invention. Examples of the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an anti-sticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, an anti-slip layer such as fine particles, and a gas barrier layer. it can.
 本発明のフィルムは、耐熱分解性に優れ、耐衝撃性を有するため、位相差フィルム、偏光子保護フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤーやカーボンナノチューブを表面に塗布した透明導電フィルム、光学用ガスバリアフィルム、各種ディスプレイの前面板用途などに好適である。 Since the film of the present invention is excellent in thermal decomposition resistance and has impact resistance, a retardation film, a polarizer protective film, a liquid crystal protective plate, a surface material for a portable information terminal, a display window protective film for a portable information terminal, It is suitable for light guide films, transparent conductive films coated with silver nanowires or carbon nanotubes, optical gas barrier films, front plate applications for various displays, and the like.
 本発明のフィルムは耐熱分解性に優れ、耐衝撃性を有するため、光学用途以外の用途として、IRカットフィルムや、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルムに使用することができる。 Since the film of the present invention has excellent thermal decomposition resistance and impact resistance, it can be used for applications other than optical applications, such as IR cut films, crime prevention films, scattering prevention films, decorative films, metal decorative films, and solar cell backs. It can be used for sheets, front sheets for flexible solar cells, shrink films, and films for in-mold labels.
 本発明のフィルムが使用される偏光板は、偏光子と、該偏光子に積層された本発明のフィルムとを少なくとも有する。本発明のフィルムは、偏光子の両面に積層されていてもよいし、片面に積層されていてもよい。偏光子の片面に本発明のフィルムを偏光子保護フィルムとして積層した場合は、別の片面に本発明のフィルム以外の光学フィルムを積層することができる。係る光学フィルムとしては、偏光子保護フィルム、視野角調整フィルム、位相差フィルム、輝度向上フィルムなどを挙げることができる。積層は接着剤層を介して行うこともできる。 The polarizing plate in which the film of the present invention is used has at least a polarizer and the film of the present invention laminated on the polarizer. The film of the present invention may be laminated on both sides of the polarizer or may be laminated on one side. When the film of the present invention is laminated on one side of the polarizer as a polarizer protective film, an optical film other than the film of the present invention can be laminated on another side. Examples of the optical film include a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness enhancement film. Lamination can also be performed via an adhesive layer.
 本発明のフィルムが使用される偏光板は、画像表示装置に使用することができる。画像表示装置の具体例としては、エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、電界放出ディスプレイ(FED:Field Emission Display)のような自発光型表示装置や、液晶表示装置(LCD)などを挙げることができる。液晶表示装置は、液晶セルと、当該液晶セルの少なくとも片側に配置された上記偏光板とを有する。 The polarizing plate in which the film of the present invention is used can be used for an image display device. Specific examples of the image display device include a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), a field emission display (FED), and a liquid crystal display (LCD). Can be mentioned. The liquid crystal display device includes a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
 本発明のフィルムは、耐熱分解性に優れ、耐衝撃性を有するため、有機エレクトロルミネッセンス照明装置または有機エレクトロルミネッセンス表示装置に使用されるフィルムとしても好適である。 Since the film of the present invention has excellent thermal decomposition resistance and impact resistance, it is also suitable as a film used for an organic electroluminescence lighting device or an organic electroluminescence display device.
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples. The physical property values and the like were measured by the following method.
(樹脂中の単量体単位の組成)
 核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)を用い、樹脂10mgに対して重水素化クロロホルム1mL、室温、積算回数64回の条件にて、1H-NMRスペクトルを測定し、そのスペクトルから樹脂中の単量体単位の組成を算出した。
(Composition of monomer units in resin)
Using a nuclear magnetic resonance apparatus (ULTRA SHIELD 400 PLUS manufactured by Bruker), 1 H-NMR spectrum was measured under the conditions of 1 mL of deuterated chloroform, room temperature, and 64 times of accumulation for 10 mg of resin. The composition of monomer units in the resin was calculated.
(重量平均分子量(Mw))
 Mwは、ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値から算出した。
 GPC装置:東ソー株式会社製、HLC-8320
 検出器:示差屈折率検出器
 カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
 溶離剤:テトラヒドロフラン
 溶離剤流量:0.35ml/分
 カラム温度:40℃
 検量線:標準ポリスチレン10点のデータを用いて作成
(Weight average molecular weight (Mw))
Mw was calculated from the value obtained by measuring the chromatogram under the following conditions by gel permeation chromatography (GPC) and converting it to the molecular weight of standard polystyrene.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data
(ガラス転移温度(Tg))
 JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、室温から230℃まで一度昇温(1stラン)し、次いで室温まで冷却し、次いで室温から230℃までを10℃/分で昇温(2ndラン)させる条件にてDSC曲線を測定した。このDSC曲線から求められる2ndランの中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(Glass transition temperature (Tg))
In accordance with JIS K7121, using a differential scanning calorimeter (DSC-50 (product number) manufactured by Shimadzu Corporation), the temperature was raised once from room temperature to 230 ° C. (1 st run), then cooled to room temperature, It was measured DSC curve at conditions for heating (2 nd run) at 10 ° C. / min from room temperature to 230 ° C.. The midpoint glass transition temperature of 2 nd run obtained from the DSC curve was taken as the glass transition temperature in the present invention.
(飽和吸水率)
 射出成形機(住友重機械工業株式会社製、SE-180DU-HP)を使用し、実施例で得られた樹脂組成物を、シリンダ温度280℃、金型温度75℃、成形サイクル1分で射出成形して、長さ50mm、幅50mm、厚さ3mmの試験片を得た。温度50℃、5mmHgの条件下において3日間試験片を真空乾燥させ、絶乾時の試験片の質量W0を測定した。その後、絶乾試験片を温度60℃、湿度90%の条件下で300時間放置した。その後、試験片の質量W1を測定した。下式により飽和吸水率(%)を算出した。
 飽和吸水率(%)={W1-W0}/W0×100
(Saturated water absorption)
Using an injection molding machine (SE-180DU-HP, manufactured by Sumitomo Heavy Industries, Ltd.), the resin composition obtained in the example was injected at a cylinder temperature of 280 ° C., a mold temperature of 75 ° C., and a molding cycle of 1 minute. Molding was performed to obtain a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 3 mm. The test piece was vacuum-dried for 3 days under conditions of a temperature of 50 ° C. and 5 mmHg, and the mass W 0 of the test piece when completely dried was measured. Then, the absolutely dry test piece was left for 300 hours under the conditions of a temperature of 60 ° C. and a humidity of 90%. Thereafter, the mass W 1 of the test piece was measured. The saturated water absorption (%) was calculated from the following formula.
Saturated water absorption (%) = {W 1 −W 0 } / W 0 × 100
(全光線透過率(Tt))
 全光線透過率は、飽和吸水率の測定で作成した試験片(光路長3mm)を用いて、JIS K7361-1に準じて、ヘイズメータ(村上色彩研究所製、HM-150)を用いて測定した。
(Total light transmittance (T t ))
The total light transmittance was measured with a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1, using a test piece (optical path length: 3 mm) prepared by measuring saturated water absorption. .
(ヘイズ(H))
 飽和吸水率の測定で作製した試験片(光路長3mm)を用いて、JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM-150)を用いてヘイズ(H)を測定した。
(Haze (H))
Haze (H) was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) in accordance with JIS K7136, using a test piece (optical path length: 3 mm) prepared by measuring saturated water absorption.
(屈折率)
 飽和吸水率の測定で作製した試験片をカルニュー光学工業株式会社yKPR-20」を用いて、23℃にて測定波長587.6nm(d線)で屈折率を測定した。
(Refractive index)
The test piece prepared by measuring the saturated water absorption was measured for refractive index at a measurement wavelength of 587.6 nm (d line) at 23 ° C. using Kalnew Optical Co., Ltd. yKPR-20 ”.
(酸価)
 樹脂試料をクロロホルムに溶解させ、JIS K0070:1992に記載の方法に準じて、水酸化カリウム水溶液で滴定することにより測定した酸価の値(Y)を得た。樹脂試料を用いずに同様にしてクロロホルムのみで測定して得られた酸価の値(X)を得て、酸価の値(Y)から酸価の値(X)を引いた数字を酸価とした。試料が架橋ゴムを含む場合は、完全に溶解しないが、12時間以上室温にてクロロホルム中で撹拌溶解させ、未溶解の架橋ゴムが残った状態で、酸価を測定した。
(Acid value)
The acid value (Y) measured by dissolving a resin sample in chloroform and titrating with an aqueous potassium hydroxide solution according to the method described in JIS K0070: 1992 was obtained. Similarly, the acid value (X) obtained by measuring only with chloroform without using a resin sample was obtained, and the number obtained by subtracting the acid value (X) from the acid value (Y) It was set as the value. When the sample contained a crosslinked rubber, it was not completely dissolved, but was stirred and dissolved in chloroform at room temperature for 12 hours or more, and the acid value was measured in a state where undissolved crosslinked rubber remained.
(耐衝撃性(シャルピー))
 射出成形機(住友重機械工業株式会社製、SE-180DU-HP)を使用し、得られた樹脂組成物をシリンダ温度230℃、金型温度65℃、成形サイクル0.5分で射出成形して、長さ80mm、幅10mm、厚さ4mmの試験片を作製し、ISO179-1に準拠し、ノッチ無しのシャルピー衝撃強度を測定した。
(Impact resistance (Charpy))
Using an injection molding machine (SE-180DU-HP, manufactured by Sumitomo Heavy Industries, Ltd.), the resulting resin composition was injection molded at a cylinder temperature of 230 ° C, a mold temperature of 65 ° C, and a molding cycle of 0.5 minutes. A test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was prepared, and the Charpy impact strength without notch was measured in accordance with ISO 179-1.
(鉛筆硬度)
 飽和吸水率の測定で作製した試験片を用いての鉛筆硬度測定は、JIS K5600-5-4に準拠し、0.75Kg荷重で測定した。
(Pencil hardness)
The pencil hardness measurement using the test piece prepared by measuring the saturated water absorption rate was performed under a load of 0.75 kg according to JIS K5600-5-4.
(ΔYI)
 飽和吸水率で作製した試験片をスーパーUVテスター(岩崎電気株式会社製、SUV-F1)を用いて80mW/cm2、温度55℃にて200時間曝露し、曝露前後の光路長3mmでのイエロインデックス(YI)の差をΔYIとし、以下のように評価した。
 A:ΔYI≦5
 B:ΔYI>5
(ΔYI)
A test piece prepared with a saturated water absorption rate is exposed for 200 hours at 80 mW / cm 2 and a temperature of 55 ° C. using a super UV tester (Iwasaki Electric Co., Ltd., SUV-F1). The difference of the index (YI) was set as ΔYI and evaluated as follows.
A: ΔYI ≦ 5
B: ΔYI> 5
<製造例1>
 オートクレーブに、63質量部のメタクリル酸メチル(MMA)、35質量部のメタクリル酸ジシクロペンタニル(TCDMA)、2質量部のアクリル酸メチル(MA)、0.47質量部のペンタエリスリトールテトラキスチオプロピオネート、0.06質量部のアゾビスイソブチロニトリル、0.01質量部の1,1-ビス(1,1-ジメチルペルオキシ)シクロへキサン、231質量部の水、1.4質量部の分散剤および17.5質量部のpH調整剤を入れた。
 オートクレーブ内を攪拌しながら、液温を室温から70℃に上げ、70℃で120分間保持し、その後120℃で60分間保持して、重合反応させた。液温を室温まで下げ、重合反応液をオートクレーブから抜き出した。重合反応液から固形分を濾過で取り出し、水で洗浄し、80℃にて24時間熱風乾燥させた。得られた固形分を2軸押出機のホッパーに供給し、シリンダ温度230℃で溶融混練した。その後、溶融樹脂を押し出して、Mw=127,000、TCDMA組成比率=32.5質量%、ガラス転移温度126℃、酸価0.1mg/g、屈折率1.500のペレット状のメタクリル樹脂(A-1)を得た。
<Production Example 1>
In an autoclave, 63 parts by weight of methyl methacrylate (MMA), 35 parts by weight of dicyclopentanyl methacrylate (TCDMA), 2 parts by weight of methyl acrylate (MA), 0.47 parts by weight of pentaerythritol tetrakisthiopro Pionate, 0.06 parts by weight of azobisisobutyronitrile, 0.01 parts by weight of 1,1-bis (1,1-dimethylperoxy) cyclohexane, 231 parts by weight of water, 1.4 parts by weight And 17.5 parts by weight of a pH adjuster were added.
While stirring the inside of the autoclave, the liquid temperature was raised from room temperature to 70 ° C., held at 70 ° C. for 120 minutes, and then held at 120 ° C. for 60 minutes to cause a polymerization reaction. The liquid temperature was lowered to room temperature, and the polymerization reaction liquid was extracted from the autoclave. The solid content was removed from the polymerization reaction solution by filtration, washed with water, and dried in hot air at 80 ° C. for 24 hours. The obtained solid content was supplied to a hopper of a twin screw extruder and melt kneaded at a cylinder temperature of 230 ° C. Thereafter, the molten resin was extruded, and a pellet-shaped methacrylic resin (Mw = 127,000, TCDMA composition ratio = 32.5% by mass, glass transition temperature 126 ° C., acid value 0.1 mg / g, refractive index 1.500 ( A-1) was obtained.
<製造例2>

 コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルサルコシン酸ナトリウム128gおよび炭酸ナトリウム16gを投入して溶解させた。次いで、メタクリル酸メチル11.2kgおよびメタクリル酸アリル110gを投入し撹拌しながら70℃に昇温した。その後、2%過硫酸カリウム水溶液560gを添加して乳化重合を開始させた。重合による発熱により内部温度が上昇し、その後下降し始めた後、30分間にわたって70℃に保持して第一段目のシード乳化重合を行い、エマルジョンを得た。
 得られたエマルジョンに、2%過硫酸ナトリウム水溶液720gを添加した。その後、アクリル酸ブチル12.4kg、スチレン1.76kgおよびメタクリル酸アリル280gからなる混合物を60分間かけて滴下した。滴下終了後60分間撹拌を続けて第二段目のシード乳化重合を行った。
 第二段目のシード乳化重合後のエマルジョンに、2%過硫酸カリウム水溶液320gを添加し、さらにメタクリル酸メチル4.2kg、TCDMA2.0kg、アクリル酸メチル0.2kgおよびn-オクチルメルカプタン200gからなる混合物を30分間かけて添加した。添加終了後60分間撹拌を続けて第三段目のシード乳化重合を行った。得られたエマルジョンを室温まで冷やした。このようにして、体積基準平均粒径0.23μmのコアシェル3層構造架橋ゴム(B-1)を40%含有するエマルジョンを得た。得られたエマルジョンを-20℃で2時間かけて凍結させた。凍結したエマルジョンをその2倍量の80℃の温水に投入して氷解させてスラリーを得た。該スラリー(S1)を80℃にて20分間保持し、次いで脱水し、70℃で乾燥して、屈折率1.49の架橋ゴム(B-1)を粒子として得た。   
<Production Example 2>

48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, a thermometer and a stirrer, and then dissolved with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate and 16 g of sodium carbonate. I let you. Next, 11.2 kg of methyl methacrylate and 110 g of allyl methacrylate were added and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization. The internal temperature rose due to the heat generated by the polymerization, and then began to fall, and then maintained at 70 ° C. for 30 minutes to perform the first stage seed emulsion polymerization to obtain an emulsion.
To the obtained emulsion, 720 g of a 2% aqueous sodium persulfate solution was added. Thereafter, a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene and 280 g of allyl methacrylate was dropped over 60 minutes. After completion of the dropwise addition, stirring was continued for 60 minutes to perform the second stage seed emulsion polymerization.
320 g of 2% potassium persulfate aqueous solution is added to the emulsion after the seed emulsion polymerization in the second stage, and further comprises 4.2 kg of methyl methacrylate, 2.0 kg of TCDMA, 0.2 kg of methyl acrylate and 200 g of n-octyl mercaptan. The mixture was added over 30 minutes. After completion of the addition, stirring was continued for 60 minutes to perform the third stage seed emulsion polymerization. The resulting emulsion was cooled to room temperature. Thus, an emulsion containing 40% of the core-shell three-layer structure crosslinked rubber (B-1) having a volume-based average particle size of 0.23 μm was obtained. The resulting emulsion was frozen at −20 ° C. for 2 hours. The frozen emulsion was poured into 80 times hot water of twice that amount and allowed to thaw to obtain a slurry. The slurry (S1) was kept at 80 ° C. for 20 minutes, then dehydrated and dried at 70 ° C. to obtain a crosslinked rubber (B-1) having a refractive index of 1.49 as particles.

<製造例3>
 製造例2で得られた脱水前のスラリー(S1)を脱水し、そこに固形分が10%になるように水を加え、室温で2時間撹拌した。次いで脱水し、70℃で乾燥して、架橋ゴム(B-2)を粒子として得た。   

<Production Example 3>
The slurry (S1) before dehydration obtained in Production Example 2 was dehydrated, water was added thereto so that the solid content was 10%, and the mixture was stirred at room temperature for 2 hours. Subsequently, it was dehydrated and dried at 70 ° C. to obtain a crosslinked rubber (B-2) as particles.
<製造例4>

 コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルサルコシン酸ナトリウム128gおよび炭酸ナトリウム16gを投入して溶解させた。次いで、メタクリル酸メチル11.2kgおよびメタクリル酸アリル110gを投入し撹拌しながら70℃に昇温した。その後、2%過硫酸カリウム水溶液560gを添加して乳化重合を開始させた。重合による発熱により内部温度が上昇し、その後下降し始めた後、30分間にわたって70℃に保持してエマルジョンを得た。
 得られたエマルジョンに、2%過硫酸ナトリウム水溶液720gを添加した。その後、アクリル酸ブチル6.2kg、パラクミルフェノールエチレンオキサイド変性アクリレート(アロニックスM110、東亞合成社製)6.2kg、スチレン1.76kgおよびメタクリル酸アリル280gからなる混合物を60分間かけて滴下した。滴下終了後60分間撹拌を続けて第一段目のシード乳化重合を行った。
 第一段目のシード乳化重合後のエマルジョンに、2%過硫酸カリウム水溶液320gを添加し、さらにメタクリル酸メチル4.2kg、TCDMA2.0kg、アクリル酸メチル0.2kgおよびn-オクチルメルカプタン200gからなる混合物を30分間かけて添加した。添加終了後60分間撹拌を続けて第二段目のシード乳化重合を行った。得られたエマルジョンを室温まで冷やした。このようにして、体積基準平均粒径0.23μmのコアシェル3層構造架橋ゴム(B-3)を40%含有するエマルジョンを得た。得られたエマルジョンを-20℃で2時間かけて凍結させた。凍結したエマルジョンをその2倍量の80℃の温水に投入して氷解させてスラリーを得た。該スラリーを80℃にて20分間保持し、次いで脱水し、さらに水を固形分濃度が10%になるように加えた。次いで脱水し、70℃で乾燥して、屈折率1.52の架橋ゴム(B-3)を粒子として得た。   
<Production Example 4>

48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, a thermometer and a stirrer, and then dissolved with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate and 16 g of sodium carbonate. I let you. Next, 11.2 kg of methyl methacrylate and 110 g of allyl methacrylate were added and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization. The internal temperature rose due to the heat generated by the polymerization and then began to fall, and then maintained at 70 ° C. for 30 minutes to obtain an emulsion.
To the obtained emulsion, 720 g of a 2% aqueous sodium persulfate solution was added. Thereafter, a mixture of 6.2 kg of butyl acrylate, 6.2 kg of paracumylphenol ethylene oxide-modified acrylate (Aronix M110, manufactured by Toagosei Co., Ltd.), 1.76 kg of styrene and 280 g of allyl methacrylate was added dropwise over 60 minutes. After completion of the dropping, stirring was continued for 60 minutes to perform seed emulsion polymerization in the first stage.
320 g of 2% aqueous potassium persulfate solution is added to the emulsion after seed emulsion polymerization in the first stage, and further comprises 4.2 kg of methyl methacrylate, 2.0 kg of TCDMA, 0.2 kg of methyl acrylate, and 200 g of n-octyl mercaptan. The mixture was added over 30 minutes. After completion of the addition, stirring was continued for 60 minutes to perform seed emulsion polymerization in the second stage. The resulting emulsion was cooled to room temperature. Thus, an emulsion containing 40% of a core-shell three-layer structure crosslinked rubber (B-3) having a volume-based average particle size of 0.23 μm was obtained. The resulting emulsion was frozen at −20 ° C. for 2 hours. The frozen emulsion was poured into 80 times hot water of twice that amount and allowed to thaw to obtain a slurry. The slurry was held at 80 ° C. for 20 minutes, then dehydrated, and water was added to a solids concentration of 10%. Subsequently, it was dehydrated and dried at 70 ° C. to obtain a crosslinked rubber (B-3) having a refractive index of 1.52 as particles.
<実施例1>
 メタクリル樹脂(A-1)100質量部と架橋ゴム(B-2)43質量部をタンブラーで乾式混合し、軸径20mmの二軸押出機((株)テクノベル製、商品名:KZW20TW-45MG-NH-600)で、シリンダ温度200~250℃、ダイ温度240℃、スクリュ回転数100rpmの条件で溶融混練を行い、ペレット状の樹脂組成物(以下「樹脂組成物(R-1)と称する」)を得た。樹脂組成物(R-1)の組成および物性を表1に示す。
<Example 1>
100 parts by weight of methacrylic resin (A-1) and 43 parts by weight of cross-linked rubber (B-2) were dry-mixed with a tumbler and a twin screw extruder with a shaft diameter of 20 mm (trade name: KZW20TW-45MG-, manufactured by Technobel Co., Ltd.). NH-600) is melt kneaded under the conditions of a cylinder temperature of 200 to 250 ° C., a die temperature of 240 ° C., and a screw rotation speed of 100 rpm, and a pellet-shaped resin composition (hereinafter referred to as “resin composition (R-1)”). ) Table 1 shows the composition and physical properties of the resin composition (R-1).
<実施例2>
 メタクリル樹脂(A-1)80質量部と架橋ゴム(B-3)30質量部、ポリカーボネート(住化スタイロンポリカーボネート(株)製、商品名:カリバー300-22、Mw=42,000、屈折率1.585)(C-1)20質量部をタンブラーで乾式混合し、軸径20mmの二軸押出機((株)テクノベル製、商品名:KZW20TW-45MG-NH-600)で、シリンダ温度200~250℃、ダイ温度240℃、スクリュ回転数100rpmの条件で溶融混練を行い、ペレット状の樹脂組成物(R-2)を得た。樹脂組成物(R-2)の組成および物性を表1に示す。
<Example 2>
80 parts by weight of methacrylic resin (A-1) and 30 parts by weight of crosslinked rubber (B-3), polycarbonate (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: Caliber 300-22, Mw = 42,000, refractive index 1 585) (C-1) 20 parts by mass of the mixture was dry-mixed with a tumbler, and a cylinder temperature of 200 to 200 mm was measured with a twin-screw extruder having a shaft diameter of 20 mm (trade name: KZW20TW-45MG-NH-600, manufactured by Technobel). Melt kneading was performed at 250 ° C., a die temperature of 240 ° C., and a screw rotation speed of 100 rpm to obtain a pellet-shaped resin composition (R-2). The composition and physical properties of the resin composition (R-2) are shown in Table 1.
<比較例1~3>
 表1に記載の組成に変更した以外は実施例1と同様にして、樹脂組成物(R-3)~(R-5)を得た。樹脂組成物(R-3)~(R-5)の組成および物性を表1に示す。なお、比較例2で用いたメタクリル樹脂(PMMA)は、(株)クラレ製の「パラペット(登録商標)HR-1000S」(屈折率1.485)である。
<Comparative Examples 1 to 3>
Resin compositions (R-3) to (R-5) were obtained in the same manner as in Example 1 except that the compositions shown in Table 1 were changed. Table 1 shows the compositions and physical properties of the resin compositions (R-3) to (R-5). The methacrylic resin (PMMA) used in Comparative Example 2 is “Parapet (registered trademark) HR-1000S” (refractive index: 1.485) manufactured by Kuraray Co., Ltd.
<比較例4>
 メタクリル樹脂(A-1)100質量部と架橋ゴム(B-1)43質量部をタンブラーで乾式混合し、軸径20mmの二軸押出機((株)テクノベル製、商品名:KZW20TW-45MG-NH-600)で、シリンダ温度200~280℃、ダイ温度270℃、スクリュ回転数200rpmの条件で溶融混練を行い、ペレット状の樹脂組成物(以下「樹脂組成物(R-6)と称する」)を得た。樹脂組成物(R-6)の組成および物性を表1に示す。
<Comparative Example 4>
100 parts by weight of methacrylic resin (A-1) and 43 parts by weight of cross-linked rubber (B-1) were dry-mixed with a tumbler, and a twin screw extruder with a shaft diameter of 20 mm (trade name: KZW20TW-45MG-, manufactured by Technobel Co., Ltd.) NH-600) is melt kneaded under the conditions of a cylinder temperature of 200 to 280 ° C., a die temperature of 270 ° C., and a screw rotation speed of 200 rpm, and a pellet-shaped resin composition (hereinafter referred to as “resin composition (R-6)”). ) Table 1 shows the composition and physical properties of the resin composition (R-6).
Figure JPOXMLDOC01-appb-T000004
 
 
 
Figure JPOXMLDOC01-appb-T000004
 
 
 

Claims (14)

  1.  メタクリル酸環式炭化水素エステルに由来する構造単位(a1)10~50質量%、メタクリル酸環式炭化水素エステル以外のメタクリル酸エステルに由来する構造単位(a2)50~90質量%、およびアクリル酸エステルに由来する構造単位(a3)0~20質量%を含有してなるメタクリル樹脂(A)と、
     架橋ゴム(B)を含有し、
     メタクリル樹脂(A)と架橋ゴム(B)の質量比(A)/(B)が95/5~10/90であり、JIS K 0070:1992で測定される酸価が7mg/g以下である樹脂組成物。
    Structural unit (a1) derived from methacrylic acid cyclic hydrocarbon ester (a1) 10 to 50% by mass, structural unit derived from methacrylic acid ester other than methacrylic acid cyclic hydrocarbon ester (a2) 50 to 90% by mass, and acrylic acid A methacrylic resin (A) containing 0 to 20% by mass of a structural unit (a3) derived from an ester;
    Contains a crosslinked rubber (B),
    The mass ratio (A) / (B) of the methacrylic resin (A) to the crosslinked rubber (B) is 95/5 to 10/90, and the acid value measured by JIS K 0070: 1992 is 7 mg / g or less. Resin composition.
  2.  メタクリル酸環式炭化水素エステルが、式(1)で表される化合物である、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは炭素数6以上の環式炭化水素基である。)
    The resin composition according to claim 1, wherein the methacrylic acid cyclic hydrocarbon ester is a compound represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), X is a cyclic hydrocarbon group having 6 or more carbon atoms.)
  3.  Xが表す炭素数6以上の環式炭化水素基が、イソボルナン-2-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、または、置換基を有していてもよいシクロヘキシル基である、請求項2に記載の樹脂組成物。 The cyclic hydrocarbon group having 6 or more carbon atoms represented by X has an isobornan-2-yl group, a tricyclo [5.2.1.0 2,6 ] decan-8-yl group, or a substituent. The resin composition according to claim 2, which may be a cyclohexyl group.
  4.  架橋ゴム(B)がアクリル系多層重合体粒子である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the crosslinked rubber (B) is an acrylic multilayer polymer particle.
  5.  架橋ゴム(B)が共役ジエン系単量体由来の構造を含有しない、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the crosslinked rubber (B) does not contain a structure derived from a conjugated diene monomer.
  6.  ポリカーボネート樹脂(C)をさらに含有する、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising a polycarbonate resin (C).
  7.  メタクリル樹脂(A)とポリカーボネート樹脂(C)の質量比(A)/(C)が98/2~50/50である、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein a mass ratio (A) / (C) of the methacrylic resin (A) to the polycarbonate resin (C) is 98/2 to 50/50.
  8.  前記樹脂組成物中の架橋ゴム(B)以外の樹脂成分であるマトリクス樹脂と、架橋ゴム(B)との屈折率の差が、0.05以下である、請求項1~7のいずれか1項に記載の樹脂組成物。 The refractive index difference between the matrix resin, which is a resin component other than the crosslinked rubber (B) in the resin composition, and the crosslinked rubber (B) is 0.05 or less. The resin composition according to item.
  9.  請求項1~8のいずれか1項に記載の樹脂組成物からなるフィルム。 A film comprising the resin composition according to any one of claims 1 to 8.
  10.  厚さが10~50μmである、請求項9に記載のフィルム。 The film according to claim 9, wherein the thickness is 10 to 50 µm.
  11.  請求項9または10に記載のフィルムからなる偏光子保護フィルム。 A polarizer protective film comprising the film according to claim 9 or 10.
  12.  請求項9または10に記載のフィルムからなる位相差フィルム。 A retardation film comprising the film according to claim 9 or 10.
  13.  請求項9または10に記載のフィルムを構成要素として有する有機エレクトロルミネッセンス照明装置または有機エレクトロルミネッセンス表示装置。 An organic electroluminescence lighting device or an organic electroluminescence display device having the film according to claim 9 or 10 as a constituent element.
  14.  請求項9~12のいずれか1項に記載のフィルムを構成要素として有する液晶表示装置。
     
    A liquid crystal display device comprising the film according to any one of claims 9 to 12 as a constituent element.
PCT/JP2016/088858 2015-12-29 2016-12-27 Resin composition and film WO2017115787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017559199A JP6802188B2 (en) 2015-12-29 2016-12-27 Resin composition and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257608 2015-12-29
JP2015-257608 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017115787A1 true WO2017115787A1 (en) 2017-07-06

Family

ID=59225171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088858 WO2017115787A1 (en) 2015-12-29 2016-12-27 Resin composition and film

Country Status (2)

Country Link
JP (1) JP6802188B2 (en)
WO (1) WO2017115787A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204243A1 (en) * 2016-05-27 2017-11-30 株式会社クラレ Thermoplastic resin composition, molded body, film, and laminate
WO2018124007A1 (en) * 2016-12-26 2018-07-05 株式会社クラレ Stretched film and retardation film
JP2021009178A (en) * 2019-06-28 2021-01-28 コニカミノルタ株式会社 Optical film and polarization plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173705A (en) * 1984-09-20 1986-04-15 Hitachi Chem Co Ltd Optical resin material
JPH04356502A (en) * 1990-07-18 1992-12-10 Kuraray Co Ltd Acrylic polymer coagulate, composition containing the same, production of both, and molding of the coagulate
WO2012053190A1 (en) * 2010-10-20 2012-04-26 株式会社カネカ (meth)acrylic resin film
JP2015199779A (en) * 2014-04-04 2015-11-12 三菱化学株式会社 Reinforcement agent for polycarbonate resin, polycarbonate resin composition and molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173705A (en) * 1984-09-20 1986-04-15 Hitachi Chem Co Ltd Optical resin material
JPH04356502A (en) * 1990-07-18 1992-12-10 Kuraray Co Ltd Acrylic polymer coagulate, composition containing the same, production of both, and molding of the coagulate
WO2012053190A1 (en) * 2010-10-20 2012-04-26 株式会社カネカ (meth)acrylic resin film
JP2015199779A (en) * 2014-04-04 2015-11-12 三菱化学株式会社 Reinforcement agent for polycarbonate resin, polycarbonate resin composition and molded article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204243A1 (en) * 2016-05-27 2017-11-30 株式会社クラレ Thermoplastic resin composition, molded body, film, and laminate
JPWO2017204243A1 (en) * 2016-05-27 2019-03-28 株式会社クラレ Thermoplastic resin composition, molded article, film and laminate
US10858488B2 (en) 2016-05-27 2020-12-08 Kuraray Co., Ltd. Thermoplastic resin, molded product, film, and layered product
JP7202181B2 (en) 2016-05-27 2023-01-11 株式会社クラレ Thermoplastic resin composition, molded article, film and laminate
WO2018124007A1 (en) * 2016-12-26 2018-07-05 株式会社クラレ Stretched film and retardation film
JP2021009178A (en) * 2019-06-28 2021-01-28 コニカミノルタ株式会社 Optical film and polarization plate
JP7423918B2 (en) 2019-06-28 2024-01-30 コニカミノルタ株式会社 Optical film, optical film manufacturing method, and polarizing plate

Also Published As

Publication number Publication date
JP6802188B2 (en) 2020-12-16
JPWO2017115787A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
KR102381502B1 (en) Acrylic film
CN104334635B (en) Non-birefringent resin material and film
TWI767924B (en) Methacrylate resin composite, method of producing the same, molding, film, laminated film, and laminated molding
EP3438196B1 (en) Resin composition, and molded article and film thereof
JP6637313B2 (en) Optical resin composition and film
WO2014167868A1 (en) Acrylic resin film
WO2016139927A1 (en) Acrylic resin composition, and molded product and film made from same
JP7228521B2 (en) Acid-functionalized copolymers of methyl methacrylate and acrylic resin compositions based thereon
WO2021193922A1 (en) Acrylic composition and molded article
TW201605956A (en) Methacrylic resin composition
JP6802188B2 (en) Resin composition and film
TW201811909A (en) Methacrylic resin composition and shaped product
JP6650359B2 (en) Impact modifier, thermoplastic resin composition and film
TWI573832B (en) Methacrylic resin composition
CN110651003B (en) Coating material for producing thin film, and method for producing thin film
JP6571542B2 (en) Resin composition containing aromatic vinyl copolymer
JP5324023B2 (en) Display window protection sheet
JP6784698B2 (en) Resin film
JP6852997B2 (en) Impact resistance improver, thermoplastic resin composition and film
JP2006124608A (en) Methacrylic resin composition for extruded sheet and method for producing its extruded sheet
WO2022255253A1 (en) Vinylidene fluoride-based resin composition, molded article, and multilayer body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881761

Country of ref document: EP

Kind code of ref document: A1