WO2021020426A1 - Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method - Google Patents

Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method Download PDF

Info

Publication number
WO2021020426A1
WO2021020426A1 PCT/JP2020/028996 JP2020028996W WO2021020426A1 WO 2021020426 A1 WO2021020426 A1 WO 2021020426A1 JP 2020028996 W JP2020028996 W JP 2020028996W WO 2021020426 A1 WO2021020426 A1 WO 2021020426A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
methacrylic
mass
weight
polymer
Prior art date
Application number
PCT/JP2020/028996
Other languages
French (fr)
Japanese (ja)
Inventor
伸崇 平岡
広大 松橋
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021535378A priority Critical patent/JPWO2021020426A1/ja
Publication of WO2021020426A1 publication Critical patent/WO2021020426A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a methacrylic resin composition, a resin modifier, a molded product and a film, and a method for producing a film.
  • Methacrylic resin (a polymer mainly containing structural units derived from methacrylic acid ester) is excellent in transparency, light resistance, surface hardness and the like.
  • Various optical members such as a light guide plate, a lens, a sheet, and a film can be obtained by molding a resin composition containing a methacrylic resin.
  • Patent Document 1 describes a (meth) acrylic resin A having a weight average molecular weight of preferably 200,000 or less, and a glass transition temperature lower than that of the (meth) acrylic resin A, and a weight average molecular weight of preferably 100,000 or more and 1,000,000 or less.
  • a (meth) acrylic resin B contains a (meth) acrylic resin A in a weight ratio of preferably 80/20 to 40/60 of the (meth) acrylic resin B.
  • the composition and the film containing the composition are disclosed.
  • Patent Document 1 states that if the content of the (meth) acrylic resin B is excessively large, the heat shrinkage rate of the obtained (meth) acrylic resin film tends to increase.
  • the ⁇ relaxation temperature T ⁇ 1 when measured in dynamic viscoelasticity at 1 Hz in a tensile mode is 137 ° C. or higher
  • the molecular weight distribution is preferably 1.0 to 1.4
  • the weight average molecular weight is 40,000 to 40,000.
  • a methacrylic resin composition having a molecular weight ratio of methacryl resin (M1) / methacryl resin (M2) of 2/98 to 29/71 is disclosed.
  • Patent Document 3 discloses a dope composition containing a methacrylic resin having a weight average molecular weight of 250,000 or more and additives such as a phenolic compound having a weight average molecular weight of less than 50,000, a styrene copolymer, and a novolak resin. doing.
  • An object of the present invention is to provide a novel methacrylic resin composition, resin modifier, molded product and film, and a method for producing a film.
  • the present invention includes the following forms.
  • the peak top molecular weight M Pt having the mass ratio of the methacrylic polymer (A) to the methacrylic polymer (B) of 2/98 to 39/61 and having the highest weight fraction differential value in the weight-based differential molecular weight distribution curve is 100,000 to 2000,000, Methacrylic resin.
  • the sum of the weight fraction differential values of the components having a molecular weight of 1/20 or less of the peak top molecular weight M Ph having the highest molecular weight is the sum of the weight fraction differential values of all the components.
  • the total of the weight fraction derivative values of the components having a molecular weight of 15,000 or less is 2% or less with respect to the total weight fraction derivative values of all the components.
  • [6] has a weight average molecular weight Mw of from 40,000 to 140,000, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn of 1.0-1.4, the refractive index n d be from 1.485 to 1.495 , A methacrylic polymer (A) having a triad syndiotacticity (rr) of 63 to 80%, a glass transition temperature of 125 ° C. or higher, and containing 100% by mass of a structural unit derived from methyl methacrylate. Resin modifier.
  • the total weight fraction differential values of the components having a molecular weight of 15,000 or less in the weight-based differential molecular weight distribution curve is 2% of the total weight fraction differential values of all the components.
  • the doping according to [11] is cast on a casting support, and the doping is cast.
  • a method for producing a film which comprises then removing the organic solvent.
  • the production method according to [12], wherein the thickness of the film is 20 ⁇ m or more and 200 ⁇ m or less.
  • the methacrylic resin or resin composition of the present invention has high transparency and high heat resistance.
  • the molded product of the present invention for example, a film, has high transparency, high heat resistance, and high mechanical strength, and is also excellent in surface smoothness, surface hardness, or impact resistance.
  • the method for producing a film of the present invention has a short time required for evaporation of an organic solvent, and has high production efficiency for a film having excellent surface smoothness, surface hardness, or impact resistance.
  • the methacrylic resin of the present invention contains a methacrylic polymer (A) and a methacrylic polymer (B).
  • the methacrylic polymer (A) is a random polymer mainly containing a structural unit derived from a methacrylic acid ester. This methacrylic polymer (A) can be used as a resin modifier.
  • methacrylic acid ester examples include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; aryl methacrylate esters such as phenyl methacrylate; and cycloalkyl methacrylates such as cyclohexyl methacrylate and norbornenyl methacrylate. ; Can be mentioned. Of these, alkyl methacrylate esters are preferred, and methyl methacrylate is most preferred.
  • the amount of the structural unit derived from the methacrylic acid ester contained in the methacrylic polymer (A) is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total structural units of the methacrylic polymer (A). It is more preferably 98% by mass or more, even more preferably 99% by mass or more, and most preferably 100% by mass.
  • the content of the structural unit derived from methyl methacrylate of the methacrylic acid polymer (A) is preferably 90% by mass with respect to all the structural units of the methacrylic acid polymer (A). % Or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, still more preferably 99% by mass or more, and most preferably 100% by mass.
  • the methacrylic polymer (A) may contain a structural unit derived from a monomer other than the methacrylic acid ester.
  • the monomer other than the methacrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; acrylic acids such as phenyl acrylate.
  • Acrylic ester Acrylic acid cycloalkyl ester such as cyclohexyl acrylate and norbornenyl acrylate; Aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; acrylamide; Methalamide; Acrylonitrile; Methacronitrile; Examples thereof include vinyl-based monomers having only one polymerizable carbon-carbon double bond.
  • the weight average molecular weight Mw A of the methacrylic polymer (A) is usually 30,000 or more, preferably 40,000 to 200,000, more preferably 40,000 to 140,000, and further preferably 40,000 to 100,000.
  • Mw A is 30,000 or more, the impact resistance and toughness of the molded product tend to be improved.
  • the upper limit of Mw A is not particularly limited, the Mw A is 200,000 or less, the flowability of the methacrylic resin or resin composition, to provide good moldability tends to be a sufficient level.
  • the methacrylic polymer (A) has a ratio of weight average molecular weight Mw A to number average molecular weight Mn A (Mw A / Mn A ) of usually 1.0 to 1.4, preferably 1.01 to 1.4. It is more preferably 1.05 to 1.4, still more preferably 1.05 to 1.3.
  • Mw A and Mn A are values calculated by converting into the molecular weight of standard polystyrene based on the chromatogram measured by gel permeation chromatography.
  • the temperature of the column oven is set to 40 ° C., 20 ⁇ l of the sample solution is injected at an eluent flow rate of 0.35 ml / min, and the chromatogram is measured.
  • the chromatogram is a chart obtained by plotting an electric signal (detection intensity Y) derived from the difference in refractive index between the sample solution and the reference solution with respect to the elution time (retention time). Conversion of standard polystyrene to molecular weight is performed based on the calibration curve.
  • a calibration curve is created by measuring the chromatogram by gel permeation chromatography for each standard polystyrene in the range of 400 to 500000 molecular weight and plotting the elution time and the logarithmic value of the molecular weight.
  • the sum of the weight fraction differential values of the components (M ⁇ 15,000) having a molecular weight of 15,000 or less is the sum of the weight fraction differential values of all the components in the weight-based differential molecular weight distribution curve.
  • it is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less.
  • the horizontal axis is the logarithmic log (M) of the molecular weight
  • the vertical axis is the weight fraction differential value (the value dw obtained by differentiating the weight fraction W with the logarithmic log (M) of the molecular weight). It is a plot of / d (log (M))), and is obtained by converting the horizontal axis to the molecular weight of standard polystyrene based on the chromatogram used in calculating Mw A and Mn A. ..
  • the glass transition temperature of the methacrylic polymer (A) is preferably 125 ° C. or higher, more preferably 127 ° C. or higher, and even more preferably 129 ° C. or higher.
  • the upper limit of the glass transition temperature of the methacrylic polymer (A) is preferably 140 ° C. The higher the glass transition temperature of the methacrylic polymer (A), the higher the heat resistance of the methacrylic resin or resin composition of the present invention, and the less likely it is that deformation such as heat shrinkage will occur.
  • the lower limit of the triad syndiotacticity (rr) of the methacrylic polymer (A) is 63%, preferably 65%, more preferably 72%, and the upper limit is preferably 90%, more preferably 85%. More preferably, it is 80%.
  • the triad syndiotacticity (rr) of the methacrylic polymer (A) is 63% or more, the methacrylic resin or resin composition of the present invention has high heat resistance and tends to be less likely to be deformed such as heat shrinkage. is there.
  • the strength of the methacrylic resin or the resin composition of the present invention is particularly improved. It is considered that this is because the carbonyl-carbonyl interaction between the methacrylic polymer (A) and the methacrylic polymer (B) is improved.
  • triad syndiotacticity two chains (doubles, diad) of a chain of three consecutive structural units (triple, triad) are both racemo (denoted as rr). Is the ratio.
  • meso those having the same configuration
  • racemo which are referred to as m and r, respectively.
  • the triad syndiotacticity (rr) (%) is a region of 0.6 to 0.95 ppm when 1 1 H-NMR spectrum is measured at 30 ° C. in deuterated chloroform and TMS is 0 ppm.
  • the area (X) of the above and the area (Y) of the region of 0.6 to 1.35 ppm can be measured and calculated by the formula: (X / Y) ⁇ 100.
  • the method for producing the methacrylic polymer (A) is not particularly limited as long as the methacrylic polymer (A) satisfying the above physical characteristics can be obtained.
  • the anion polymerization method is preferable. More preferably, in the anion polymerization method, the polymerization temperature, the polymerization time, the type and amount of the chain transfer agent, the type and amount of the polymerization initiator, and the like are appropriately set so as to satisfy the above-mentioned physical property values. Produces methacrylic polymer (A).
  • anionic polymerization method examples include a method in which an organic alkali metal compound is used as a polymerization initiator and anionic polymerization is carried out in the presence of a mineral acid salt such as an alkali metal or an alkaline earth metal salt (see Special Fair 7-25859), and organic.
  • a method of anionic polymerization using an alkali metal compound as a polymerization initiator in the presence of an organoaluminum compound see JP-A-11-335432
  • a method of anionic polymerization using an organic rare earth metal complex as a polymerization initiator see JP-A-6-93060.
  • alkyllithium such as n-butyllithium, sec-butyllithium, isobutyllithium and tert-butyllithium
  • the organoaluminum compound coexists.
  • the organic aluminum the compound represented by Al R 1 R 2 R 3 (R 1 , R 2 and R 3 may have an alkyl group or a substituent which may independently have a substituent, respectively.
  • it represents an N, N-disubstituted amino group.
  • R 2 and R 3 may be an arylenoxy group which may have a substituent formed by binding them.) be able to.
  • organoaluminum compound examples include isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, and isobutyl [2,2].
  • '-Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum and the like can be mentioned.
  • an ether, a nitrogen-containing compound, or the like can coexist in order to control the polymerization reaction.
  • the methacrylic polymer (A) is useful as a resin modifier, and is particularly useful as a modifier for the methacrylic polymer (B).
  • the methacrylic polymer (B) is a random polymer mainly containing a structural unit derived from a methacrylic acid ester.
  • methacrylic acid ester examples include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; aryl methacrylate esters such as phenyl methacrylate; and cycloalkyl methacrylates such as cyclohexyl methacrylate and norbornenyl methacrylate. ; Can be mentioned. Of these, alkyl methacrylate esters are preferred, and methyl methacrylate is most preferred.
  • the amount of the structural unit derived from the methacrylic acid ester contained in the methacrylic polymer (B) is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total structural units of the methacrylic polymer (B). ..
  • the methacrylic polymer (B) may contain a structural unit derived from an acrylic acid ester.
  • acrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid aryl esters such as phenyl acrylate; to cyclo acrylate.
  • acrylic acid cycloalkyl esters such as xyl and norbornenyl acrylate.
  • the amount of the structural unit derived from the acrylic acid ester contained in the methacrylic polymer (B) is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, based on the total structural units of the methacrylic polymer (B). %.
  • the methacrylic polymer (B) may contain a structural unit derived from a monomer other than the methacrylic acid ester and the acrylic acid ester.
  • monomers other than methacrylic acid ester and acrylic acid ester include ⁇ , ⁇ -unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; unsaturated group-containing divalent carboxylic acids such as maleic anhydride, fumaric acid and itaconic acid.
  • Aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; ⁇ and ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like can be mentioned. ..
  • the amount of structural units derived from monomers other than methyl methacrylate and acrylic acid ester contained in the methacrylic polymer (B) is preferably 20% by mass or less based on the total structural units of the methacrylic polymer (B). , More preferably 10% by mass or less.
  • the weight average molecular weight Mw B of the methacrylic polymer (B) is preferably 80,000 or more, more preferably 80,000 to 3,000, more preferably 120,000 to 2,500,000, still more preferably 16,000 to 20,000,000.
  • Mw B is 80,000 or more
  • the upper limit of Mw B is not particularly limited from the viewpoint of impact resistance and toughness, but the methacrylic polymer (B) having Mw B exceeding 3,000,000 tends to be difficult to produce.
  • Mw B is 160,000 or more, the strength of the methacrylic resin or the resin composition is particularly improved. It is considered that this is because the carbonyl-carbonyl interaction between the methacrylic polymer (A) and the methacrylic polymer (B) is improved.
  • the ratio (Mw B / Mn B ) of the weight average molecular weight Mw B to the number average molecular weight Mn B of the methacrylic polymer (B) is preferably 1.7 to 2.6, more preferably 1.7 to 2. 5, more preferably 1.7 to 2.3.
  • Mw B and Mn B are values calculated by converting into the molecular weight of standard polystyrene based on the chromatogram measured by gel permeation chromatography.
  • the methacrylic polymer (B) has a glass transition temperature of preferably 100 ° C. or higher, more preferably 105 ° C. or higher.
  • the upper limit of the glass transition temperature of the methacrylic polymer (B) is preferably 140 ° C. When the glass transition temperature of the methacrylic polymer (B) is in this range, the heat resistance of the methacrylic resin or the resin composition becomes high, and deformation such as heat shrinkage tends to be difficult to occur.
  • the methacrylic polymer (B) has a triad syndiotacticity (rr) of preferably 45 to 63%, more preferably 49 to 60%.
  • triad syndiotacticity (rr) of the methacrylic polymer (B) is in the above range, the heat resistance of the methacrylic resin or the resin composition and the moldability tend to be well balanced.
  • the method for producing the methacrylic polymer (B) is not particularly limited as long as the methacrylic polymer (B) satisfying the above physical characteristics can be obtained.
  • Examples of the method for producing the methacrylic polymer (B) include radical polymerization and anionic polymerization from the viewpoint of the reaction active site.
  • the method for producing the methacrylic polymer (B) includes emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization and the like from the viewpoint of the form of the polymerization reaction solution. Of these, radical emulsion polymerization, radical bulk polymerization, or radical suspension polymerization is preferable, and radical bulk polymerization is more preferable, from the viewpoint of high productivity and ease of polymerization.
  • polymerization initiator used in bulk polymerization or suspension polymerization include t-hexylperoxyisopropyl monocarbonate, t-hexylperoxy2-ethylhexanoate, and 1,1,3,3-tetramethylbutyl.
  • Peroxides 2,2'-azobis (2-methylpropionitrile), 2,2'-azobis (2-methylbutyronitrile), dimethyl 2,2'-azobis (2-methylpropionate), etc. Azo compounds and the like can be mentioned. Of these, t-hexyl peroxy2-ethylhexanoate, 1,1-bis (t-hexyl peroxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
  • polymerization initiator used in emulsion polymerization are persulfate-based initiators such as potassium persulfate and ammonium persulfate; and redox-based initiators such as persulfoxylate / organic peroxide and persulfate / sulfite. Agents can be mentioned.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used may be set so that a methacrylic polymer (B) satisfying the above physical property values can be obtained.
  • methacrylic polymer (B) satisfying the above physical property values
  • the polymerization initiator used in bulk polymerization is one that generates reactive radicals.
  • the polymerization initiator has a 1-hour half-life temperature of preferably 60 to 140 ° C, more preferably 80 to 120 ° C. Further, the polymerization initiator has a hydrogen extraction ability of preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the hydrogen abstraction ability can be known from the technical data of the polymerization initiator manufacturer (for example, the technical data of Nippon Oil & Fats Co., Ltd. "Hydrogen extraction ability of organic peroxide and initiator efficiency" (created in April 2003)). .. Further, the hydrogen extraction ability can be measured by a radical trapping method using an ⁇ -methylstyrene dimer, that is, an ⁇ -methylstyrene dimer trapping method. The measurement is generally performed as follows. First, the polymerization initiator is cleaved in the coexistence of ⁇ -methylstyrene dimer as a radical trapping agent to generate a radical fragment.
  • the radical fragment having a low hydrogen abstraction force is added to the double bond of the ⁇ -methylstyrene dimer and captured.
  • a radical fragment having a high hydrogen abstraction force abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, and the cyclohexyl radical is added to and trapped in the double bond of ⁇ -methylstyrene dimer to generate a cyclohexane trapping product. Therefore, cyclohexane or cyclohexane capture product is quantified, the ratio (mole fraction) of radical fragments having high hydrogen abstraction power to the theoretical amount of radical fragment generation is calculated, and this is used as the hydrogen abstraction ability.
  • Chain transfer agents used in massive polymerization include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol.
  • Alkyl mercaptans and the like can be mentioned. Of these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable.
  • These chain transfer agents may be used alone or in combination of two or more.
  • the amount of the chain transfer agent used may be set so that the methacrylic polymer (B) satisfying the above physical property values can be obtained. For example, with respect to 100 parts by mass of the monomer subjected to the polymerization reaction. It can be appropriately set within the range of preferably 0 to 0.5 parts by mass, more preferably 0.05 to 0.4 parts by mass, and further preferably 0.06 to 0.25 parts by mass.
  • the amount of the chain transfer agent used can be appropriately set within the range of preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
  • a suspension stabilizer can be used in suspension polymerization.
  • the suspension stabilizer include an organic colloidal polymer substance, an inorganic colloidal polymer substance, inorganic fine particles, and a combination thereof with a surfactant.
  • An emulsifier can be used in emulsion polymerization.
  • the emulsifier include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, and alkyl sulfates such as sodium dodecyl sulphate; nonions.
  • Polyoxyethylene alkyl ether sulfate such as sodium, alkyl ether carboxylate such as polyoxyethylene tridecyl ether sodium acetate; can be mentioned.
  • These emulsifiers may be used alone or in combination of two or more.
  • the average number of repeating units of ethylene oxide units in the examples of the nonionic emulsifier and the nonionic / anion emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
  • the resin is taken out from the reaction product solution by a known method after the completion of the polymerization reaction.
  • the resin can be taken out from the reaction product liquid (emulsion) by a salting out coagulation method, a freeze coagulation method, a spray drying method or the like.
  • the salting out coagulation method and the freeze coagulation method are preferable from the viewpoint that impurities contained in the resin can be easily removed by washing with water. It is preferable to filter the emulsion with a wire mesh having a mesh size of 50 ⁇ m or less before the coagulation step because foreign substances mixed in the emulsion can be removed.
  • the methacrylic polymer (B) has a shear rate of 122 seconds- 1 and a melt viscosity ⁇ B at a temperature of 260 ° C.
  • the methacrylic polymer (A) has a shear rate of 122 seconds- 1 and a temperature of 260 ° C. Higher than viscosity ⁇ A.
  • the difference between the melt viscosity ⁇ B and the melt viscosity ⁇ A is preferably 1000 Pa ⁇ s or more, and more preferably 1500 Pa ⁇ s or more.
  • the weight average molecular weight Mw B of the methacrylic polymer (B) is 2.5 times or more, preferably 3 times or more the weight average molecular weight Mw A.
  • the methacrylic resin of the present invention has an absolute value of the difference between the refractive index n dA of the methacrylic polymer (A) and the refractive index n dB of the methacrylic polymer (B)
  • the amount of the methacrylic polymer (A) contained in the methacrylic resin of the present invention is preferably 2 to 39 with respect to the methacrylic resin from the viewpoint of achieving both heat resistance and molding processability or surface smoothness in a good state. It is by mass, more preferably 5 to 30% by mass, still more preferably 5 to 20% by mass, and most preferably 5 to 16% by mass.
  • the amount of the methacrylic polymer (B) contained in the methacrylic resin of the present invention is preferably 61 to 98 mass with respect to the methacrylic resin from the viewpoint of achieving both heat resistance or mechanical strength and molding processability in a good state. %, More preferably 70 to 95% by mass, still more preferably 80 to 95% by mass, and most preferably 84 to 95% by mass.
  • the methacrylic resin of the present invention has a mass ratio of the methacrylic polymer (A) to the methacrylic polymer (B) of 2/98 to 39/61, more preferably 5/95 to 30/70, still more preferably 5/95. ⁇ 20/80.
  • the highest peak top molecular weight M Pt weight fraction differential value in the differential molecular weight distribution curve of the weight is preferably from 100000 to 2000000, more preferably 120000 to 2000000, more preferably at from 160,000 to 2,000,000 is there.
  • the peak top molecular weight MPt is in this range, a molded product having excellent strength, hardness, and surface smoothness can be obtained.
  • the methacrylic resin of the present invention has a weight fraction differential value of a component (M ⁇ 1/20 M Ph ) having a molecular weight of 1/20 or less of the peak top molecular weight M Ph having the highest molecular weight in the weight-based differential molecular weight distribution curve.
  • the total is preferably 2% or less, more preferably 1.5% or less, based on the total weight fraction derivative values of all the components.
  • the total of the weight fraction differential values of the components having a molecular weight of 15,000 or less (M ⁇ 15,000) is relative to the total weight fraction differential values of all the components. It is preferably 2% or less, more preferably 1.75% or less.
  • the effect of the methacrylic resin or resin composition of the present invention is further improved by the small amount of the low molecular weight component as described above.
  • the methacrylic resin composition of the present invention contains the methacrylic resin of the present invention.
  • the methacrylic resin composition of the present invention may contain the methacrylic resin of the present invention and a resin other than the methacrylic resin (additional resin).
  • additional resin examples include olefin-based thermoplastic resins such as polyethylene, polypropylene, ethylene-propylene copolymer, and poly (4-methyl-1-pentene); halogen-containing heat such as vinyl chloride and vinyl chlorinated resins.
  • Plastic resin Acrylic thermoplastic resin
  • Polystyrene-based thermoplastic resin such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer; polyethylene terephthalate, polybutylene terephthalate, Polyesters such as polyethylene naphthalate; polyamides such as nylon 6, nylon 66, nylon 610; polyacetals; polycarbonates; polyphenylene oxides; polyphenylene sulfides; polyether ether ketones; polysulphons; polyether salphons; Examples thereof include rubbery polymers such as ABS resin and ASA resin containing acrylic rubber, and cellulose resins such as polyvinyl butyral and cellulose acylate.
  • these other resins may be in a compatible state or a phase-separated state with the methacrylic resin of
  • the methacrylic resin composition of the present invention may contain the methacrylic resin of the present invention, an elastomer, and if necessary, the other resin described above.
  • Elastomer is a mixture of methacrylic resin in a compatible state or a phase-separated state.
  • the elastomer is preferably mixed with a methacrylic resin in a phase-separated state to form a dispersed phase.
  • the shape of the dispersed phase is not particularly limited, and examples thereof include a spherical shape, an ellipsoidal shape, a rod shape, a flat body shape, and a string shape.
  • the size of the dispersed phase is not particularly limited, but for example, the average particle size is preferably 0.05 to 1 ⁇ m, more preferably 0.07 to 0.5 ⁇ m, and further preferably 0.10 to 0.4 ⁇ m.
  • the elastomer is preferably a polymer containing a structural unit derived from an acrylic acid ester.
  • acrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate and butyl acrylate; acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate; acrylic acids such as cyclohexyl acrylate and norbornenyl acrylate.
  • Acrylic acid cycloalkyl ester Of these, alkyl acrylate esters are preferred, and butyl acrylate is most preferred.
  • the amount of the structural unit derived from the acrylic acid ester contained in the elastomer is preferably 30% by mass or more, more preferably 35% by mass or more and 90% by mass or less, and further preferably 40% by mass or more and 80% by mass or less.
  • the elastomer may have a structural unit derived from a vinyl-based monomer having only one polymerizable carbon-carbon double bond in one molecule.
  • the vinyl-based monomer include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate; and aryl methacrylates such as phenyl methacrylate; Cycloalkyl methacrylic acid esters such as cyclohexyl methacrylate and norbornenyl methacrylate; aralkyl esters of methacrylic acid such as benzyl methacrylate, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; acrylamide; methacrylicamide; acrylonitrile; methacrylic nitrile ; And so on.
  • the amount of elastomer contained in the methacrylic resin composition of the present invention is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and further preferably 0 to 30% by mass with respect to the methacrylic resin composition. ..
  • the amount of elastomer can be appropriately set from the viewpoints of chemical resistance, heat resistance, flexural modulus, workability, and the like.
  • the elastomer is not particularly limited by the form of its molecular chain, and is, for example, a linear polymer elastomer (for example, a random copolymer elastomer, a block copolymer elastomer, etc.), a branched chain polymer elastomer (for example, a graft elastomer). Elastomer, star-type block copolymer elastomer), and the like.
  • the elastomer preferably contains a block copolymer elastomer composed of a polymer block mainly having a structural unit derived from a methacrylic acid ester and a polymer block having a structural unit derived from an acrylic acid ester. ..
  • the elastomer may be particles containing a crosslinked rubber polymer containing a structural unit derived from an acrylic acid ester (hereinafter, referred to as crosslinked rubber particles).
  • the crosslinked rubber particles have an average particle diameter of preferably 0.05 to 1 ⁇ m, more preferably 0.07 to 0.5 ⁇ m, and even more preferably 0.10 to 0.4 ⁇ m.
  • the average particle size is an average value in a volume-based particle size distribution measured by a light scattering method.
  • the crosslinked rubber particles are preferably composed of an inner layer and an outermost layer covering the inner layer.
  • the inner layer may be composed of only a core layer, or may be composed of a core layer and an intermediate layer covering the core layer.
  • the intermediate layer may be a single layer made of one polymer, or may be a multilayer made of different polymers.
  • the crosslinked rubber particles have a difference in refractive index nd between the two adjacent layers, preferably less than 0.01, more preferably less than 0.008, and further preferably less than 0.005. Is preferable.
  • the mass ratio of the inner layer to the outermost layer of the crosslinked rubber particles is preferably 60/40 to 95/5, more preferably 70/30 to 90/10.
  • the crosslinked rubber particles include, for example, two-layer particles of a core layer made of a crosslinked rubber polymer (II) and an outermost layer made of a thermoplastic polymer (III) covering the core layer; the crosslinked polymer (I).
  • the thermoplastic polymer (III) is a structural unit derived from a methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and, if necessary, a structural unit derived from a monofunctional monomer other than the methacrylic acid alkyl ester. It is a polymer composed of.
  • the thermoplastic polymer (III) preferably does not contain structural units derived from the polyfunctional monomer.
  • the amount of the structural unit derived from the methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms constituting the thermoplastic polymer (III) is 80 to 100 mass with respect to the mass of the thermoplastic polymer (III). %, Preferably 85-95% by mass.
  • methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2 methacrylic acid.
  • methacrylic acid C1-8 alkyl ester examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2 methacrylic acid.
  • -Ethylhexyl, propyl methacrylate, cyclohexyl methacrylate and the like can be mentioned. Of these, methyl methacrylate is preferable.
  • the amount of the structural unit derived from the monofunctional monomer other than the methacrylic acid C1-8 alkyl ester constituting the thermoplastic polymer (III) is 0 to 20 mass with respect to the mass of the thermoplastic polymer (III). %, Preferably 5 to 15% by mass.
  • the monofunctional monomer other than the methacrylic acid C1-8 alkyl ester include acrylate esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate; styrene and p-methylstyrene. , ⁇ -Methylstyrene and other aromatic vinyl compounds; examples thereof include maleimide compounds such as N-propyl maleimide, N-cyclohexyl maleimide and NO-chlorophenyl maleimide.
  • the amount of the thermoplastic polymer (III) is preferably 40 to 75% by mass, more preferably 50 to 70% by mass, and further preferably 55 to 65% by mass with respect to the mass of the crosslinked rubber particles.
  • the crosslinked polymer (I) is composed of a structural unit derived from methyl methacrylate, a structural unit derived from a monofunctional monomer other than methyl methacrylate, and a structural unit derived from a polyfunctional monomer.
  • the amount of the structural unit derived from methyl methacrylate constituting the crosslinked polymer (I) is 40 to 98.5% by mass, preferably 45 to 95% by mass, based on the mass of the crosslinked polymer (I). ..
  • the amount of the structural unit derived from the monofunctional monomer other than methyl methacrylate constituting the crosslinked polymer (I) is 1 to 59.5% by mass, preferably 1 to 59.5% by mass, based on the mass of the crosslinked polymer (I). It is 5 to 55% by mass.
  • the monofunctional monomer other than methyl methacrylate include methacrylic ester other than methyl methacrylate such as ethyl methacrylate, butyl methacrylate and cyclohexyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, and 2 acrylate.
  • Acrylic esters such as ethylhexyl and propyl acrylate; aromatic vinyl compounds such as styrene, p-methylstyrene and ⁇ -methylstyrene; maleimide compounds such as N-propylmaleimide, N-cyclohexylmaleimide and No-chlorophenylmaleimide Can be mentioned.
  • the amount of the structural unit derived from the polyfunctional monomer constituting the crosslinked polymer (I) is 0.05 to 0.4% by mass, preferably 0.1, based on the mass of the crosslinked polymer (I). It is about 0.3% by mass.
  • the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
  • the amount of the crosslinked polymer (I) is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass with respect to the mass of the crosslinked rubber particles.
  • the crosslinked rubber polymer (II) is a structural unit derived from an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and / or a structural unit derived from a conjugated diene, and a structural unit derived from a polyfunctional monomer. Consists of.
  • the amount of the structural unit derived from the acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and / or the structural unit derived from the conjugated diene constituting the crosslinked rubber polymer (II) is determined by the crosslinked rubber polymer (II). It is 98.3 to 99% by mass, preferably 95 to 98% by mass, based on the mass of.
  • acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate.
  • conjugated diene examples include 1,3-butadiene, isoprene and the like.
  • the amount of the structural unit derived from the polyfunctional monomer constituting the crosslinked rubber polymer (II) is 1 to 1.7% by mass, preferably 1.2, based on the mass of the crosslinked rubber polymer (II). It is ⁇ 1.6% by mass, more preferably 1.3 to 1.5% by mass.
  • the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
  • the structural unit derived from the polyfunctional monomer in the crosslinked polymer (I) is relative to the mass of the structural unit derived from the polyfunctional monomer in the crosslinked rubber polymer (II).
  • the mass ratio of is preferably 0.05 to 0.25, more preferably 0.1 to 0.2.
  • the glass transition temperature of the crosslinked rubber polymer (II) is preferably lower than the glass transition temperature of the crosslinked polymer (I).
  • the amount of the crosslinked rubber polymer (II) is preferably 20 to 55% by mass, more preferably 25 to 45% by mass, and further preferably 30 to 40% by mass with respect to the mass of the crosslinked rubber particles.
  • the molecular chains of the crosslinked polymer (I) and the crosslinked rubber polymer (II) are connected by a graft bond. Further, it is preferable that the molecular chains of the crosslinked rubber polymer (II) and the thermoplastic polymer (III) are connected by a graft bond.
  • the graft bond is generated by a polymerization method (graft polymerization method) in which a substituent bonded to the main chain of the already completed polymer is used as a reaction active point and a branch portion is newly extended from the reaction active point. It is a bond that connects the main chain and the branch part.
  • the resin composition of the present invention may contain a conventional additive as long as it does not impair physical properties such as transparency and strength.
  • Additives include, for example, UV absorbers, stabilizers, mold release agents, antistatic agents, flame retardants, plasticizers, dispersants, flow modifiers, leveling agents, defoamers, surface modifiers, heat resistance improvements. Agents, water repellency improvers, optical expression agents and the like can be used.
  • plasticizer examples include phthalate ester type, fatty acid ester type, trimellitic acid ester type, phosphoric acid ester type, polyester type, epoxy type and the like.
  • UV absorber examples include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based agents.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • the flame retardant examples include organic halogen-based flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide, and brominated polycarbonate; non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate, and tricresyl phosphate. And so on.
  • organic halogen-based flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide, and brominated polycarbonate
  • non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate, and tricresyl phosphate. And so on.
  • antistatic agent examples include stearoamide propyl dimethyl- ⁇ -hydroxyethylammonium nitrate.
  • Examples of the surface modifier include polybutadiene and CTBN (terminal carboxylic acid-modified nitrile butadiene rubber).
  • stabilizer examples include 2,6-di-t-butyl-4-methylphenol, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline and the like.
  • leveling agent examples include fluorine-based surfactants.
  • Examples of the defoaming agent include acrylic copolymers and silicones.
  • additives can be used alone or in combination of two or more.
  • the amount of the additive is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the methacrylic resin composition. May be good.
  • the resin composition of the present invention may be in the form of a solid or in the form of a liquid.
  • the solid resin composition can be produced by mixing the methacrylic polymer (A), the methacrylic polymer (B) and other components (additional components) such as other resins, elastomers and additives as required. Can be prepared. Mixing can be performed by, for example, melt-kneading using a mixer such as a ribbon blender, a tumble mixer, or a Henschel mixer, or a mixing means using a kneader such as an open roller, a kneader, a Banbury mixer, or an extruder. These mixing means may be used alone or in combination of two or more.
  • the resin composition of the present invention is not limited by the mixing order of the methacrylic polymer (A), the methacrylic polymer (B) and other components to be mixed as needed.
  • the methacrylic polymer (A) and the methacrylic polymer (B) may be mixed to obtain the methacrylic resin of the present invention, and then other components may be mixed thereto to obtain the resin composition of the present invention.
  • the methacrylic polymer (A), the methacrylic polymer (B) and other components may be mixed together to obtain the resin composition of the present invention, or the methacrylic polymer (A) and other components may be mixed.
  • the resin composition of the present invention may be obtained by mixing and then mixing the methacrylic polymer (B) with the methacrylic polymer (B), or the methacrylic polymer (B) and other components are mixed with the methacrylic polymer. (A) may be mixed to obtain the resin composition of the present invention.
  • the liquid resin composition is formed by dissolving or dispersing the methacrylic polymer (A), the methacrylic polymer (B) and, if necessary, other components in a liquid medium.
  • the liquid medium include hydrocarbons (benzene, toluene, etc.), halogen-based solvents (dichloromethane, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), esters (ethyl acetate, etc.), ketones (acetone, ethylmethyl, etc.).
  • examples include alcohols (methanol, ethanol, butanol, etc.) such as ketones, diisopropyl ketones, cyclohexanone, etc.
  • These liquid media may be used alone or in combination of two or more.
  • the procedure for adding the methacrylic polymer (A), the methacrylic polymer (B) and, if necessary, other components to the liquid medium is not particularly limited.
  • the molded product of the present invention contains the methacrylic resin or resin composition of the present invention.
  • the molded product of the present invention can be applied to the methacrylic resin or solid resin composition of the present invention, for example, injection molding method, injection compression molding method, extrusion molding method (for example, T-die method, inflation method, etc.), calendar method, heat. It can be obtained by performing molding using a molding method (particularly, a hot press method), a transfer molding method, a blow molding method, a melt casting method, or the like. Further, the molded product of the present invention can be obtained by subjecting the liquid resin composition of the present invention (for example, doping) to molding using, for example, a solvent casting method.
  • the film or sheet which is one aspect of the molded product of the present invention may be one that has not been stretched (unstretched film) or may be a stretched film that has been stretched.
  • the film of the present invention can be used as an optical film or an optical sheet.
  • the stretching may be either uniaxial stretching (for example, longitudinal stretching or transverse stretching) or biaxial stretching (for example, iso-stretching or partial stretching).
  • the draw ratio may be, for example, about 1.1 to 10 times in each direction (or one direction) in uniaxial stretching and biaxial stretching, preferably 1.2 to 5 times, and more preferably 1.3. It is about 3 times.
  • the strength of the film of the present invention may be improved by the stretching treatment.
  • the thickness of the film is, for example, 1 to 1000 ⁇ m, preferably 3 to 800 ⁇ m, more preferably 5 to 500 ⁇ m, and most preferably 20 to 200 ⁇ m.
  • the doping of the present invention contains the methacrylic resin of the present invention, an organic solvent, and, if necessary, other components.
  • Halogenized hydrocarbons such as dichloromethane are preferably used for doping; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, 1-pentanol, 2-methyl- Alcohols such as 2-butanol and cyclohexanol can be mentioned.
  • the amount of the methacrylic resin of the present invention contained in the dope is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, and further preferably 15 to 50% by mass.
  • the amount of the organic solvent contained in the doping is preferably 30 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 50 to 85% by mass.
  • the dope of the present invention may contain an additive for solvent casting.
  • Additives for solvent casting include moisture permeability reducing compounds; peeling accelerators; retardation (Rth) control agents; inorganic fine particles (matting agents); plasticizers such as phthalates and phosphate ester compounds; Re-expressing agents; Ultraviolet absorbers; antioxidants and the like can be mentioned.
  • Doping is preferably prepared at a temperature of 0 ° C. or higher (normal temperature or high temperature).
  • the doping can be prepared by mixing a methacrylic resin, an organic solvent, other components if necessary, and a solvent casting additive if necessary.
  • the mixing procedure is not particularly limited, and for example, a mixture of each component may be added to an organic solvent to dissolve it, or each component may be sequentially added to and dissolved in an organic solvent being stirred. Solutions of each component may be prepared in advance and the solutions may be mixed.
  • the methacrylic resin or resin composition of the present invention may be dissolved at normal pressure, below the boiling point of the main solvent, or pressurized above the boiling point of the main solvent.
  • the method for producing a film of the present invention includes casting the doping of the present invention on a support to obtain a liquid film, and removing the organic solvent from the liquid film. Doping casting is performed, for example, by pumping the dope from the storage tank to the die, draining the dope from the die slit, and applying it to a rotating metal endless belt.
  • the thickness of the liquid film is adjusted so that the thickness of the film is preferably 20 to 200 ⁇ m from the viewpoint of the strength and processability of the film.
  • the thickness of the liquid film can be adjusted by changing the amount of doping supplied, the speed of the endless belt (support), and the like. Since the solid film is obtained on the support by removing the organic solvent, the solid film is peeled off from the support.
  • the solid film can be dried.
  • the time from 20% by mass to 0.1% by mass of the organic solvent remaining on the solid film is preferably less than 40 minutes, more preferably 30 minutes or less, still more preferably 25 minutes or less. It can be done under the condition of.
  • the film after the drying treatment may be subjected to heat treatment, stretching treatment or the like.
  • the description of paragraphs [0617] to [0889] of JP-A-2005-104148 is cited here.
  • the physical properties of the methacrylic polymer and the like, as well as the methacrylic resin, the methacrylic resin composition and the doping were evaluated as follows.
  • the chromatogram was measured by gel permeation chromatography (GPC) under the following conditions, and the values (Mw, Mn, MPt ) converted into the molecular weight of standard polystyrene were calculated.
  • the baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to plus when viewed from the earliest retention time, and the slope of the peak on the low molecular weight side changes from minus to zero when viewed from the earliest retention time. It is a line connecting the points that change to.
  • GPC device manufactured by Tosoh Corporation, HLC-8320 Detector: Differential refractive index detector Column: Two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used. Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C Calibration curve: Created using data of 10 standard polystyrene points
  • melt viscosity ⁇ After the resin sample was dried at 80 ° C. for 12 hours, the melt viscosity ⁇ was measured using “Capirograph 1D” manufactured by Toyo Seiki Co., Ltd. under the conditions of a temperature of 260 ° C. and a shear rate of 122 sec -1 .
  • the rubber particle dispersion sample was measured by a light scattering method (volume conversion) using a laser diffraction / scattering particle size distribution measuring device LA-910 manufactured by Horiba Seisakusho. A median diameter was adopted as the particle diameter.
  • Glass transition temperature Tg Glass transition temperature Tg
  • DSC-50 product number
  • the resin sample was subjected to hot press molding at 260 ° C. to obtain a molded product sample of 80 mm ⁇ 10 mm ⁇ 4 mm.
  • the notched Charpy impact strength of the molded product sample was measured using a digital impact tester manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7111 1eU. The measurement was performed 10 times, and the average value was taken as the Charpy impact strength.
  • the Rockwell hardness of the molded product sample was measured using a Rockwell hardness tester (Rockwell hardness tester manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K7202.
  • the haze of the molded product sample was measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136, and the transparency I was judged according to the following criteria.
  • Haze is less than 5%.
  • X Haze is 5% or more.
  • Residual solvent amount (mass%) [(XY) / Y] ⁇ 100
  • X is the mass of the solid film during drying
  • Y is the mass of the solid film when drying is in equilibrium. The measurement was performed twice and the average value was calculated.
  • a drying characteristic curve was created by plotting the drying time on the horizontal axis and the residual amount of organic solvent on the vertical axis. From the drying characteristic curve, the drying time when the residual amount of the organic solvent was 0.1% by mass was determined.
  • Transparency II For a solid film sample in which the residual amount of the organic solvent is 0.1% by mass, the haze is measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136, and the haze is measured according to the following criteria. Transparency II was judged. ⁇ : Haze is less than 1%. X: Haze is 1% or more.
  • the methacrylic polymer (A-1) has a Mw of 70,000, a component having a molecular weight of 15,000 or less (M ⁇ 15,000) in an amount of 0.17% by mass, a melt viscosity ⁇ of 1200 Pa ⁇ s, and a Mw / Mn of 1.
  • the triadosyndio tacticity (rr) was 75%
  • the Tg was 131 ° C.
  • the amount of structural units derived from methyl methacrylate was 100% by mass.
  • Table 1 shows the physical characteristics of the methacrylic polymer (A-1).
  • the methacrylic polymer (A-2) has a Mw of 40,000, a component having a molecular weight of 15,000 or less (M ⁇ 15,000) in an amount of 1.52% by mass, a melt viscosity ⁇ of 450 Pa ⁇ s, and a Mw / Mn of 1.
  • the triadosyndio tacticity (rr) was 75%
  • the Tg was 130 ° C.
  • the amount of structural units derived from methyl methacrylate was 100% by mass.
  • Table 1 shows the physical characteristics of the methacrylic polymer (A-2).
  • the methacrylic polymer (A-3) has a Mw of 25,000, a component having a molecular weight of 15,000 or less (M ⁇ 15,000) in an amount of 7.06% by mass, a melt viscosity ⁇ of 150 Pa ⁇ s, and a Mw / Mn of 1.
  • the triadosyndio tacticity (rr) was 76%
  • the Tg was 130 ° C.
  • the amount of structural units derived from methyl methacrylate was 100% by mass.
  • Table 1 shows the physical characteristics of the methacrylic polymer (A-3).
  • Production Example 4 (Production of methacrylic polymer (A-4))
  • the inside of the autoclave equipped with a stirrer and a sampling tube was replaced with nitrogen.
  • 100 parts by mass of purified methyl methacrylate, 0.0065 parts by mass of 2,2'-azobis (2-methylpropionitrile (hydrogen extraction capacity: 1%, 1-hour half-life temperature: 83 ° C.)), and 0.290 parts by mass of n-octyl mercaptan was added and stirred to obtain a raw material solution. Nitrogen was sent into this raw material solution to remove dissolved oxygen.
  • the raw material solution was put into a tank reactor connected to the autoclave by piping up to 2/3 of the capacity.
  • the polymerization reaction was first started by a batch method.
  • the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 120 minutes while maintaining the temperature at 140 ° C., and at the same time, it corresponds to the supply flow rate of the raw material liquid.
  • the reaction solution was withdrawn from the tank reactor at the desired flow rate, and the polymerization reaction was switched to the continuous flow method. After switching, the polymerization conversion rate in the steady state was 45% by mass.
  • the reaction solution extracted from the tank-type reactor in a steady state was supplied to a multi-tube heat exchanger having an internal temperature of 230 ° C.
  • the heated reaction solution was introduced into a flash evaporator to remove volatile components containing unreacted monomers as a main component to obtain a molten resin.
  • the molten resin from which the volatile matter had been removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-4).
  • the methacrylic polymer (A-4) has an Mw of 80,000, a component having a molecular weight of 15,000 or less (M ⁇ 15,000) in an amount of 6.92% by mass, a melt viscosity ⁇ of 700 Pa ⁇ s, and a Mw / Mn of 1.
  • the triadosyndio tacticity (rr) was 52%
  • the Tg was 120 ° C.
  • the amount of structural units derived from methyl methacrylate was 100% by weight.
  • Table 1 shows the physical characteristics of the methacrylic polymer (A-4).
  • Production Example 5 (Production of methacrylic polymer (A-5)) Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 120 rpm and a temperature of 250 ° C.
  • a twin-screw extruder manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600
  • the methacrylic polymer (A-4) was supplied at 2 kg / hr, and monomethylamine was injected into the melt-kneaded portion of the twin-screw extruder at 0.08 kg / hr, and the methacrylic polymer (A-4) and monomethylamine were injected. And reacted.
  • a kneading block was installed in the melt-kneading section, and a reverse flight was installed in the screw at the end of the reaction zone. In the volatilization section set to 20 Torr (about 2.7 kPa), by-products and excess monomethylamine were volatilized and discharged through the vent.
  • the strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-5a). It was.
  • Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 100 rpm and a temperature of 230 ° C.
  • a methacrylic polymer (A-5a) was supplied at 1 kg / hr, and a liquid consisting of 1.6 parts by mass of carbon dimethyl and 0.2 parts by mass of triethylamine was added to the melt-kneaded portion of the twin-screw extruder at 0.01 kg / hr.
  • the carboxy group in the methacrylic polymer (A-5a) was reacted with carbon dimethyl.
  • a kneading block was installed in the melt-kneading section, and a reverse flight was installed in the screw at the end of the reaction zone.
  • the by-product and excess dimethyl carbonate were volatilized and discharged through the vent in the volatilization section set to 20 Torr (about 2.7 kPa).
  • the strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer [A-5b]. It was.
  • Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 100 rpm and a temperature of 230 ° C.
  • a methacrylic resin (A-5b) was supplied at 1 kg / hr.
  • volatile components such as unreactant were volatilized and discharged through the vent.
  • the strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-5). It was.
  • the methacrylic polymer (A-5) has an Mw of 80,000, a Mw / Mn of 1.8, a molecular weight of 15,000 or less (M ⁇ 15,000) in an proportion of 6.60% by mass, and an imidization ratio of 7. At 0.0 mol%, the glass transition temperature was 130 ° C. Table 1 shows the physical characteristics of the methacrylic polymer (A-5).
  • Production Example 7 (Production of methacrylic polymer (B-2)) 89 parts by mass of purified methyl methacrylate and 11 parts by mass of methyl acrylate were placed in an autoclave with a stirrer and a sampling tube to obtain a monomer mixture. Polymerization initiator (2,2'-azobis (2-methylpropionitrile (AIBN), hydrogen extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.0026 parts by mass and chain transfer to the monomer mixture 0.09 part by mass of the agent (n-octyl mercaptan) was added and dissolved to obtain a raw material solution. Oxygen in the production apparatus was expelled with nitrogen.
  • the raw material solution was discharged from the autoclave in a constant amount, and the temperature was 140. It was supplied to a continuous flow tank type reactor controlled at ° C. at a flow rate having an average residence time of 150 minutes for massive polymerization. The reaction solution was separated from the sampling tube of the reactor and measured by gas chromatography. As a result, the polymerization conversion rate was 43% by mass.
  • the liquid discharged from the reactor was heated to 240 ° C. and supplied to a twin-screw extruder controlled at 260 ° C. at a constant flow rate.
  • the twin-screw extruder the volatile matter containing the unreacted monomer as a main component was removed, and the resin component was extruded into a strand shape.
  • the strand was cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (B-2).
  • Table 1 shows the physical characteristics of the methacrylic polymer (B-2).
  • Production Example 8 (Production of methacrylic polymer (B-3)) The inside of the autoclave equipped with a stirrer and a sampling tube was replaced with nitrogen. To this, 98.9 parts by mass of purified methyl methacrylate, 1.1 parts by mass of methyl acrylate, 2,2'-azobis (2-methylpropionitrile (hydrogen extraction capacity: 1%, 1 hour half-life temperature). : 83 ° C.) 0.0050 parts by mass and 0.26 parts by mass of n-octyl mercaptan were added and stirred to obtain a raw material solution. Nitrogen was sent into the raw material solution to remove dissolved oxygen in the raw material solution. did.
  • the raw material liquid was put into the tank-type reactor connected to the autoclave by piping up to 2/3 of the reactor capacity.
  • the raw material liquid supply port to the tank reactor and the reaction liquid discharge port from the tank reactor were closed, and the temperature was maintained at 140 ° C. to start the batch-type polymerization reaction.
  • the polymerization conversion rate reaches 55% by mass, open the raw material liquid supply port to the tank reactor and the reaction liquid discharge port from the tank reactor, and open the raw material liquid at a flow rate with an average residence time of 150 minutes.
  • the reaction solution was withdrawn from the tank reactor at a flow rate corresponding to the supply flow rate of the raw material liquid and supplied from the autoclave to the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow type polymerization reaction. After switching, the polymerization conversion rate in the steady state was 55% by mass.
  • the liquid discharged from the reactor was heated to 230 ° C. and supplied to a twin-screw extruder controlled to 240 ° C. at a constant flow rate.
  • the twin-screw extruder the volatile matter containing the unreacted monomer as a main component was removed, and the resin component was extruded into a strand shape.
  • the strand was cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (B-3).
  • the physical characteristics of the methacrylic polymer (B-3) are shown in Table 1.
  • MMA methyl methacrylate
  • MA methyl acrylate
  • AMA allyl methacrylate
  • 0.05 parts by mass of a 3% aqueous potassium persulfate solution was added to the reactor, and the mixture was stirred for 5 minutes.
  • the frozen emulsion was placed in warm water at 80 ° C., which was twice the amount of the frozen emulsion, and thawed to obtain a slurry.
  • the slurry was kept at 80 ° C. for 20 minutes. Then, it was dehydrated and dried at 70 ° C. to obtain a powder composed of a coagulated product of crosslinked rubber particles (C-1).
  • Production Example 10 (Production of Block Copolymer (D-1)) After degassing the inside of a 20-liter reaction vessel and replacing it with nitrogen, dried toluene at room temperature 10.29 kg, hexamethyltriethylenetetramine 0.019 kg, isobutylbis (2,6-di-t-butyl-4-) 0.35 kg of a toluene solution containing 0.17 mol of (methylphenoxy) aluminum was added, and 0.077 mol of sec-butyllithium was further added. To this, 0.50 kg of methyl methacrylate was added, and the mixture was reacted at room temperature for 1 hour.
  • the polymerization solution was cooled to ⁇ 25 ° C., and a mixed solution of 1.21 kg of n-butyl acrylate and 0.48 kg of benzyl acrylate was added dropwise over 1 hour. Subsequently, 1.23 kg of methyl methacrylate was added, the reaction solution was returned to room temperature, and the mixture was stirred for 8 hours. Then, 0.30 kg of methanol was added to the reaction solution to terminate the polymerization. The reaction solution is poured into a large amount of methanol, and the precipitated precipitate is recovered.
  • a block copolymer (D-1) having a triblock structure composed of a coalesced block (a1-2) was obtained.
  • the mass ratio of (a1-1): (a2): (a1-2) was 14.6: 49.5: 35.9.
  • Block co polymer (D-1) is, Mw is 62600, Mw / Mn is 1.11, the refractive index n d 1.493, tensile modulus 612MPa, plotting the relationship between the storage modulus G 'and temperature In the graph shown above, the temperature at which G'decreased sharply (order-disorder transition temperature (ODTT); JISB0103-5113)) was 207 ° C.
  • ODTT order-disorder transition temperature
  • Examples 2 to 3, Comparative Examples 1 to 7 and Reference Example 1 The methacrylic resin by the same method as in Example 1 except that the methacrylic polymers (A-1) to (A-5) and the methacrylic polymers (B-1) to (B-3) were changed to the mass ratios shown in Table 2. [2] to [11] were obtained. Table 2 shows the evaluation results of the methacrylic resins [2] to [11].
  • Example 4 100 parts by mass of methacrylic resin [1], 483 parts by mass of dichloromethane, and 42 parts by mass of methanol were put into a mixing tank and stirred at 25 ° C. to dissolve the methacrylic resin [1], and the solid content concentration was 16% by mass. Dope [1] was obtained. The evaluation results of the doping [1] are shown in Table 3.
  • Examples 5-6, Comparative Examples 8-15 and Reference Example 2 Dopings [2] to [11] having a solid content concentration of 16% by mass were obtained in the same manner as in Example 4 except that the methacrylic resin [1] was changed to the methacrylic resins [2] to [11]. The evaluation results of the dopings [2] to [11] are shown in Table 3.
  • the evaluation results of the methacrylic resin composition [12] are shown in Table 4.
  • Example 8 Comparative Example 16 and Reference Example 3
  • the mass ratios of methacrylic polymers (A-1) and (A-3), methacrylic polymers (B-1), crosslinked rubber particles (C-1) and block copolymers (D-1) are shown in Table 4.
  • Polymer resin compositions [13] to [15] were obtained in the same manner as in Example 7 except that they were changed.
  • Table 4 shows the evaluation results of the methacrylic resin compositions [13] to [15].
  • Example 9 100 parts by mass of methacrylic resin composition [12], 483 parts by mass of dichloromethane, and 42 parts by mass of methanol were put into a mixing tank and stirred at 25 ° C. to dissolve the methacrylic resin composition [12] and solid content. A dope [12] having a concentration of 16% by mass was obtained. The evaluation results of the doping [12] are shown in Table 5.
  • Example 10 Comparative Example 17 and Reference Example 4 Dopings [13] to [15] having a solid content concentration of 16% by mass were obtained in the same manner as in Example 9 except that the methacrylic resin composition [12] was changed to the methacrylic resin compositions [13] to [15], respectively. It was. The evaluation results of the dopings [13] to [15] are shown in Table 5.
  • the methacrylic resin or the methacrylic resin composition of the present invention can provide a molded product having high transparency, high strength, excellent surface smoothness, and excellent heat resistance.
  • the dope of the present invention has a high drying rate and is excellent in manufacturing suitability by the casting method.

Abstract

Provided is a methacryl resin that contains: a methacryl polymer (A) having a weight-average molecular weight MwA of at least 30,000, a ratio of the weight-average molecular weight MwA to the number average molecular weight MnA of 1.0 to 1.4, and a glass transition temperature of 125 °C; and a methacryl polymer (B) having a weight-average molecular weight MwB of 80,000 to 3,000,000 and at least 2.5 times the weight-average molecular weight MwA. The melt viscosity ηB of the methacryl polymer (B) at a shear rate of 122 s-1 and a temperature of 260 °C is higher than the melt viscosity ηA of the methacryl polymer (A) at a shear rate of 122 s-1 and a temperature of 260 °C; the mass ratio of the methacryl polymer (A) with respect to the methacryl polymer (B) is 2/98 to 39/61; and a peak top molecular weight MP t at which a weight fraction derivative value of a weight-basis differential molecular weight distribution curve is highest is 100,000 to 2,000,000.

Description

メタクリル樹脂組成物、樹脂改質剤、成形体およびフィルムならびにフィルムの製造方法Methacrylic resin composition, resin modifier, molded product and film, and method for producing film
 本発明は、メタクリル樹脂組成物、樹脂改質剤、成形体およびフィルムならびにフィルムの製造方法に関する。 The present invention relates to a methacrylic resin composition, a resin modifier, a molded product and a film, and a method for producing a film.
 メタクリル樹脂(メタクリル酸エステルに由来する構造単位を主に含有する重合体)は、透明性、耐光性、表面硬度などに優れている。メタクリル樹脂を含む樹脂組成物に成形を施して、導光板、レンズ、シート、フィルムなどの種々の光学部材を得ることができる。 Methacrylic resin (a polymer mainly containing structural units derived from methacrylic acid ester) is excellent in transparency, light resistance, surface hardness and the like. Various optical members such as a light guide plate, a lens, a sheet, and a film can be obtained by molding a resin composition containing a methacrylic resin.
 特許文献1は、重量平均分子量が好ましくは200000以下である(メタ)アクリル系樹脂Aと、前記(メタ)アクリル系樹脂Aよりガラス転移温度が低く、重量平均分子量が好ましくは100000以上1000000以下である(メタ)アクリル系樹脂Bとを、(メタ)アクリル系樹脂Aと(メタ)アクリル系樹脂Bとの重量比が好ましくは80/20~40/60で、含む、(メタ)アクリル系樹脂組成物およびそれを含むフィルムを開示している。特許文献1は、(メタ)アクリル系樹脂Bの含有量が過度に大きいと、得られる(メタ)アクリル系樹脂フィルムの加熱収縮率が大きくなりやすいと述べている。 Patent Document 1 describes a (meth) acrylic resin A having a weight average molecular weight of preferably 200,000 or less, and a glass transition temperature lower than that of the (meth) acrylic resin A, and a weight average molecular weight of preferably 100,000 or more and 1,000,000 or less. A (meth) acrylic resin B contains a (meth) acrylic resin A in a weight ratio of preferably 80/20 to 40/60 of the (meth) acrylic resin B. The composition and the film containing the composition are disclosed. Patent Document 1 states that if the content of the (meth) acrylic resin B is excessively large, the heat shrinkage rate of the obtained (meth) acrylic resin film tends to increase.
 特許文献2は、引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα1が137℃以上であり、分子量分布が好ましくは1.0~1.4であり、重量平均分子量が40000~200000であるメタクリル樹脂(M1)と、引張りモード、1Hzで動的粘弾性測定した際のα緩和温度Tα2が132℃以下であり、重量平均分子量が好ましくは40000~200000であるメタクリル樹脂(M2)とからなり、メタクリル樹脂(M1)およびメタクリル樹脂(M2)の260℃、せん断速度122秒-1での溶融粘度をそれぞれη1およびη2とした場合に、η1>η2であり、メタクリル樹脂(M1)/メタクリル樹脂(M2)の質量比が2/98~29/71である、メタクリル樹脂組成物を開示している。 In Patent Document 2, the α relaxation temperature Tα1 when measured in dynamic viscoelasticity at 1 Hz in a tensile mode is 137 ° C. or higher, the molecular weight distribution is preferably 1.0 to 1.4, and the weight average molecular weight is 40,000 to 40,000. A methacrylic resin (M1) having a weight average of 200,000 and a methacrylic resin (M2) having an α relaxation temperature Tα 2 of 132 ° C. or lower and a weight average molecular weight of preferably 40,000 to 200,000 when measured in a tensile mode and dynamic viscoelasticity at 1 Hz. ), And η 1 > η 2 when the melt viscosities of the methacrylic resin (M1) and the methacrylic resin (M2) at 260 ° C. and a shear rate of 122 seconds- 1 are η 1 and η 2 , respectively. A methacrylic resin composition having a molecular weight ratio of methacryl resin (M1) / methacryl resin (M2) of 2/98 to 29/71 is disclosed.
 特許文献3は、重量平均分子量が25万以上のメタクリル樹脂と、重量平均分子量が5万未満のフェノール系化合物、スチレン系共重合体、ノボラック樹脂などの添加剤とを含有するドープ組成物を開示している。 Patent Document 3 discloses a dope composition containing a methacrylic resin having a weight average molecular weight of 250,000 or more and additives such as a phenolic compound having a weight average molecular weight of less than 50,000, a styrene copolymer, and a novolak resin. doing.
特開2015-110757号公報JP-A-2015-10757 WO2018/021449A1WO2018 / 021449A1 WO2015/098676A1WO2015 / 09876A1
 本発明の目的は、新規な、メタクリル樹脂組成物、樹脂改質剤、成形体およびフィルムならびにフィルムの製造方法を提供することである。 An object of the present invention is to provide a novel methacrylic resin composition, resin modifier, molded product and film, and a method for producing a film.
 本発明は、以下の形態を包含する。 The present invention includes the following forms.
〔1〕 重量平均分子量MwAが30000以上であり、数平均分子量MnAに対する重量平均分子量MwAの比が1.0~1.4であり、且つガラス転移温度が125℃以上である、メタクリル重合体(A)と、 重量平均分子量MwBが80000~3000000で且つ重量平均分子量MwAの2.5倍以上である、メタクリル重合体(B)とを含有し、且つ
 メタクリル重合体(B)のせん断速度122秒-1且つ温度260℃における溶融粘度ηBがメタクリル重合体(A)のせん断速度122秒-1且つ温度260℃における溶融粘度ηAよりも高く、
 メタクリル重合体(B)に対するメタクリル重合体(A)の質量比が2/98~39/61であり、且つ
 重量基準の微分分子量分布曲線において重量分率微分値が最も高いピークトップ分子量MPtが100000~2000000である、
メタクリル樹脂。
[1] Polymer having a weight average molecular weight Mw A of 30,000 or more, a ratio of weight average molecular weight Mw A to a number average molecular weight Mn A of 1.0 to 1.4, and a glass transition temperature of 125 ° C. or more. The polymer (A) and the methacrylic polymer (B) having a weight average molecular weight Mw B of 80,000 to 3,000, which is 2.5 times or more the weight average molecular weight Mw A , and the methacrylic polymer (B) shear rate 122 sec -1 and melt viscosity eta B at a temperature 260 ° C. is higher than the melt viscosity eta a at a shear rate of 122 sec -1 and a temperature 260 ° C. methacrylic polymer (a),
The peak top molecular weight M Pt having the mass ratio of the methacrylic polymer (A) to the methacrylic polymer (B) of 2/98 to 39/61 and having the highest weight fraction differential value in the weight-based differential molecular weight distribution curve is 100,000 to 2000,000,
Methacrylic resin.
〔2〕 重量基準の微分分子量分布曲線において、分子量が最も高いピークトップ分子量MPhの1/20以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下であり、且つ15000以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下である、〔1〕に記載のメタクリル樹脂。 [2] In the weight-based differential molecular weight distribution curve, the sum of the weight fraction differential values of the components having a molecular weight of 1/20 or less of the peak top molecular weight M Ph having the highest molecular weight is the sum of the weight fraction differential values of all the components. [1], wherein the total of the weight fraction derivative values of the components having a molecular weight of 15,000 or less is 2% or less with respect to the total weight fraction derivative values of all the components. Methyl resin.
〔3〕 重量平均分子量MwAが40000~140000であり、且つ重量平均分子量MwBが160000~2000000である、〔1〕または〔2〕に記載のメタクリル樹脂。
〔4〕 メタクリル重合体(A)の屈折率ndAとメタクリル重合体(B)の屈折率ndBとの差の絶対値|ndA-ndB|が0.005以下である、〔1〕~〔3〕のいずれかひとつに記載のメタクリル樹脂。
〔5〕 〔1〕~〔4〕のいずれかひとつに記載のメタクリル樹脂と、エラストマとを含む、樹脂組成物。
[3] The methacrylic resin according to [1] or [2], wherein the weight average molecular weight Mw A is 40,000 to 140000 and the weight average molecular weight Mw B is 160000 to 2000000.
[4] The absolute value of the difference between the refractive index n dA of the methacrylic polymer (A) and the refractive index n dB of the methacrylic polymer (B) | n dA −n dB | is 0.005 or less, [1]. The methacrylic resin according to any one of [3].
[5] A resin composition containing the methacrylic resin according to any one of [1] to [4] and an elastomer.
〔6〕 重量平均分子量Mwが40000~140000であり、数平均分子量Mnに対する重量平均分子量Mwの比が1.0~1.4であり、屈折率ndが1.485~1.495であり、トライアドシンジオタクティシティ(rr)が63~80%であり、ガラス転移温度が125℃以上であり、且つメタクリル酸メチルに由来する構造単位を100質量%含むメタクリル重合体(A)からなる、樹脂改質剤。
〔7〕 メタクリル重合体(A)は、重量基準の微分分子量分布曲線において15000以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下である、〔6〕に記載の樹脂改質剤。
[6] has a weight average molecular weight Mw of from 40,000 to 140,000, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn of 1.0-1.4, the refractive index n d be from 1.485 to 1.495 , A methacrylic polymer (A) having a triad syndiotacticity (rr) of 63 to 80%, a glass transition temperature of 125 ° C. or higher, and containing 100% by mass of a structural unit derived from methyl methacrylate. Resin modifier.
[7] In the methacrylic polymer (A), the total weight fraction differential values of the components having a molecular weight of 15,000 or less in the weight-based differential molecular weight distribution curve is 2% of the total weight fraction differential values of all the components. The resin modifier according to [6] below.
〔8〕 〔1〕~〔4〕のいずれかひとつに記載のメタクリル樹脂を含む、成形体。 [8] A molded product containing the methacrylic resin according to any one of [1] to [4].
〔9〕 〔1〕~〔4〕のいずれかひとつに記載のメタクリル樹脂を含み、厚さが20μm以上200μm以下である、フィルム。
〔10〕 光学用である、〔9〕に記載のフィルム。
[9] A film containing the methacrylic resin according to any one of [1] to [4] and having a thickness of 20 μm or more and 200 μm or less.
[10] The film according to [9], which is for optics.
〔11〕 〔1〕~〔4〕のいずれかひとつに記載のメタクリル樹脂と、有機溶剤とを含む、ドープ。 [11] A doping containing the methacrylic resin according to any one of [1] to [4] and an organic solvent.
〔12〕 〔11〕に記載のドープを流延用支持体に流延させ、
 その後、有機溶剤を除去することを含む、フィルムの製造方法。
〔13〕 フィルムの厚さが20μm以上200μm以下である、〔12〕に記載の製造方法。
[12] The doping according to [11] is cast on a casting support, and the doping is cast.
A method for producing a film, which comprises then removing the organic solvent.
[13] The production method according to [12], wherein the thickness of the film is 20 μm or more and 200 μm or less.
 本発明のメタクリル樹脂または樹脂組成物は、高い透明性および高い耐熱性を有する。本発明の成形体、例えば、フィルムは、高い透明性、高い耐熱性、および高い機械的強度を有する上に、表面平滑性、表面硬度、または耐衝撃性に優れている。本発明のフィルムの製造方法は、有機溶媒の蒸発に要する時間が短く、表面平滑性、表面硬度、または耐衝撃性に優れるフィルムの、生産効率が高い。 The methacrylic resin or resin composition of the present invention has high transparency and high heat resistance. The molded product of the present invention, for example, a film, has high transparency, high heat resistance, and high mechanical strength, and is also excellent in surface smoothness, surface hardness, or impact resistance. The method for producing a film of the present invention has a short time required for evaporation of an organic solvent, and has high production efficiency for a film having excellent surface smoothness, surface hardness, or impact resistance.
 本発明のメタクリル樹脂は、メタクリル重合体(A)とメタクリル重合体(B)とを含有するものである。 The methacrylic resin of the present invention contains a methacrylic polymer (A) and a methacrylic polymer (B).
 メタクリル重合体(A)は、メタクリル酸エステルに由来する構造単位を主に含有するランダム重合体である。このメタクリル重合体(A)は、樹脂改質剤として用いることができる。 The methacrylic polymer (A) is a random polymer mainly containing a structural unit derived from a methacrylic acid ester. This methacrylic polymer (A) can be used as a resin modifier.
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキルエステル;を挙げることができる。これらのうち、メタクリル酸アルキルエステルが好ましく、メタクリル酸メチルが最も好ましい。 Examples of the methacrylic acid ester include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; aryl methacrylate esters such as phenyl methacrylate; and cycloalkyl methacrylates such as cyclohexyl methacrylate and norbornenyl methacrylate. ; Can be mentioned. Of these, alkyl methacrylate esters are preferred, and methyl methacrylate is most preferred.
 メタクリル重合体(A)に含有するメタクリル酸エステルに由来する構造単位の量は、メタクリル重合体(A)の全構造単位に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、よりさらに好ましくは99質量%以上、最も好ましくは100質量%である。
 メタクリル重合体(A)は、メタクリル酸エステルに由来する構造単位のうち、メタクリル酸メチルに由来する構造単位の含有量が、メタクリル重合体(A)の全構造単位に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、よりさらに好ましくは99質量%以上、最も好ましくは100質量%である。
The amount of the structural unit derived from the methacrylic acid ester contained in the methacrylic polymer (A) is preferably 90% by mass or more, more preferably 95% by mass or more, based on the total structural units of the methacrylic polymer (A). It is more preferably 98% by mass or more, even more preferably 99% by mass or more, and most preferably 100% by mass.
Among the structural units derived from methacrylic acid ester, the content of the structural unit derived from methyl methacrylate of the methacrylic acid polymer (A) is preferably 90% by mass with respect to all the structural units of the methacrylic acid polymer (A). % Or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, still more preferably 99% by mass or more, and most preferably 100% by mass.
 メタクリル重合体(A)は、メタクリル酸エステル以外の単量体に由来する構造単位を含有してもよい。メタクリル酸エステル以外の単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルへキシルなどのアクリル酸アルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;スチレン、α-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル;などの一分子中に重合性の炭素-炭素二重結合を一つだけ有するビニル系単量体を挙げることができる。 The methacrylic polymer (A) may contain a structural unit derived from a monomer other than the methacrylic acid ester. Examples of the monomer other than the methacrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; acrylic acids such as phenyl acrylate. Acrylic ester; Acrylic acid cycloalkyl ester such as cyclohexyl acrylate and norbornenyl acrylate; Aromatic vinyl compounds such as styrene and α-methylstyrene; acrylamide; Methalamide; Acrylonitrile; Methacronitrile; Examples thereof include vinyl-based monomers having only one polymerizable carbon-carbon double bond.
 メタクリル重合体(A)の重量平均分子量MwAは、通常、30000以上、好ましくは40000~200000、より好ましくは40000~140000、さらに好ましくは40000~100000である。MwAが30000以上であると成形体の耐衝撃性や靭性が向上する傾向がある。MwAの上限は、特に制限されないが、MwAが200000以下であると、メタクリル樹脂または樹脂組成物の流動性が、良好な成形加工性をもたらすのに、十分なレベルになる傾向がある。 The weight average molecular weight Mw A of the methacrylic polymer (A) is usually 30,000 or more, preferably 40,000 to 200,000, more preferably 40,000 to 140,000, and further preferably 40,000 to 100,000. When Mw A is 30,000 or more, the impact resistance and toughness of the molded product tend to be improved. The upper limit of Mw A is not particularly limited, the Mw A is 200,000 or less, the flowability of the methacrylic resin or resin composition, to provide good moldability tends to be a sufficient level.
 メタクリル重合体(A)は、数平均分子量MnAに対する重量平均分子量MwAの比(MwA/MnA)が、通常、1.0~1.4、好ましくは1.01~1.4、より好ましくは1.05~1.4、さらに好ましくは1.05~1.3である。この範囲内にあるMwA/MnAを有するメタクリル重合体(A)を用いると、力学強度に優れた成形体を得易い。なお、MwAおよびMnAは、ゲルパーミエーションクロマトグラフィーにて測定されるクロマトグラムに基づいて標準ポリスチレンの分子量に換算して、算出される値である。 The methacrylic polymer (A) has a ratio of weight average molecular weight Mw A to number average molecular weight Mn A (Mw A / Mn A ) of usually 1.0 to 1.4, preferably 1.01 to 1.4. It is more preferably 1.05 to 1.4, still more preferably 1.05 to 1.3. When a methacrylic polymer (A) having Mw A / Mn A within this range is used, it is easy to obtain a molded product having excellent mechanical strength. In addition, Mw A and Mn A are values calculated by converting into the molecular weight of standard polystyrene based on the chromatogram measured by gel permeation chromatography.
 ゲルパーミエーションクロマトグラフィーは、以下のようにして行うことができる。溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いる。分析装置として、RI(示差屈折検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用する。試料樹脂4mgをテトラヒドロフラン5mlに溶解させて、さらに0.1μmのフィルターでろ過して試料溶液を得る。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを注入して、クロマトグラムを測定する。クロマトグラムは、試料溶液と参照溶液との屈折率差に由来する電気信号(検出強度Y)を溶出時間(リテンションタイム)に対してプロットしてなるチャートである。
 標準ポリスチレンの分子量への換算は検量線に基いて行う。検量線は、分子量400~5000000の範囲内にある各標準ポリスチレンについてゲルパーミエーションクロマトグラフィーにてクロマトグラムを測定し、溶出時間と分子量の対数値とをプロットすることによって、作成する。
Gel permeation chromatography can be performed as follows. Tetrahydrofuran is used as the eluent, and two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and Super HZ4000 are connected in series as the column. As an analyzer, HLC-8320 (product number) manufactured by Tosoh Corporation equipped with RI (differential refractometer) is used. 4 mg of the sample resin is dissolved in 5 ml of tetrahydrofuran and further filtered through a 0.1 μm filter to obtain a sample solution. The temperature of the column oven is set to 40 ° C., 20 μl of the sample solution is injected at an eluent flow rate of 0.35 ml / min, and the chromatogram is measured. The chromatogram is a chart obtained by plotting an electric signal (detection intensity Y) derived from the difference in refractive index between the sample solution and the reference solution with respect to the elution time (retention time).
Conversion of standard polystyrene to molecular weight is performed based on the calibration curve. A calibration curve is created by measuring the chromatogram by gel permeation chromatography for each standard polystyrene in the range of 400 to 500000 molecular weight and plotting the elution time and the logarithmic value of the molecular weight.
 メタクリル重合体(A)は、重量基準の微分分子量分布曲線において、15000以下の分子量を有する成分(M≦1.5万)の重量分率微分値の合計が、全成分の重量分率微分値の合計に対して、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下である。15000以下の分子量を有する成分の重量分率微分値の合計が小さいほど、メタクリル樹脂組成物の強度が高くなる傾向がある。
 なお、重量基準の微分分子量分布曲線は、横軸に分子量の対数値log(M)、縦軸に重量分率微分値(重量分率Wを分子量の対数値log(M)で微分した値dw/d(log(M)))をプロットしたものであり、MwAおよびMnAを算出する際に使用した前記クロマトグラムに基づいて横軸を標準ポリスチレンの分子量に換算して得られるものである。具体的には、
 1)クロマトグラムにベースラインを引いて、ピークを特定し、
 2)標準ポリスチレンの分子量の対数値-溶出時間検量線(校正曲線)を用いて、溶出時間を分子量に換算し、
 3)ピーク面積を算出し、溶出時間毎の重量分率を算出し、
 4)横軸に分子量の対数値、縦軸に重量分率をプロットし、
 5)重量分率を順次積算して、横軸に分子量の対数値、縦軸に重量分率の積算値をプロットして積分分子量分布曲線を得、
 6)各分子量における積分分子量分布曲線の微分値(重量分率微分値dw/d(log(M))を算出し、
 7)横軸に分子量の対数値log(M)、縦軸に重量分率微分値dw/d(log(M))をプロットして微分分子量分布曲線を得る。
 所定分子量範囲の重量分率微分値の合計は、所定分子量範囲において微分分子量分布曲線と重量分率微分値がゼロの線とによって囲まれる面積を代表値として用いることができる。
In the methacrylic polymer (A), the sum of the weight fraction differential values of the components (M ≤ 15,000) having a molecular weight of 15,000 or less is the sum of the weight fraction differential values of all the components in the weight-based differential molecular weight distribution curve. On the other hand, it is preferably 5% or less, more preferably 3% or less, still more preferably 2% or less. The smaller the total weight fraction derivative of the components having a molecular weight of 15,000 or less, the higher the strength of the methacrylic resin composition tends to be.
In the weight-based differential molecular weight distribution curve, the horizontal axis is the logarithmic log (M) of the molecular weight, and the vertical axis is the weight fraction differential value (the value dw obtained by differentiating the weight fraction W with the logarithmic log (M) of the molecular weight). It is a plot of / d (log (M))), and is obtained by converting the horizontal axis to the molecular weight of standard polystyrene based on the chromatogram used in calculating Mw A and Mn A. .. In particular,
1) Draw a baseline on the chromatogram to identify the peak and
2) Using the logarithmic value of the molecular weight of standard polystyrene-elution time calibration curve (calibration curve), convert the elution time to the molecular weight,
3) Calculate the peak area, calculate the weight fraction for each elution time,
4) Plot the logarithmic value of molecular weight on the horizontal axis and the weight fraction on the vertical axis.
5) Sequentially integrate the weight fractions and plot the logarithmic value of the molecular weight on the horizontal axis and the integrated value of the weight fractions on the vertical axis to obtain the integrated molecular weight distribution curve.
6) Calculate the differential value (weight fraction differential value dw / d (log (M))) of the integrated molecular weight distribution curve for each molecular weight.
7) Plot the logarithmic log (M) of molecular weight on the horizontal axis and the weight fraction differential value dw / d (log (M)) on the vertical axis to obtain a differential molecular weight distribution curve.
For the total of the weight fraction differential values in the predetermined molecular weight range, the area surrounded by the differential molecular weight distribution curve and the line where the weight fraction differential value is zero in the predetermined molecular weight range can be used as a representative value.
 メタクリル重合体(A)のガラス転移温度は、好ましくは125℃以上、より好ましくは127℃以上、さらに好ましくは129℃以上である。メタクリル重合体(A)のガラス転移温度の上限は、好ましくは140℃である。メタクリル重合体(A)のガラス転移温度が高くなるほど、本発明のメタクリル樹脂または樹脂組成物は耐熱性が高くなり、熱収縮などの変形が起こり難い傾向がある。 The glass transition temperature of the methacrylic polymer (A) is preferably 125 ° C. or higher, more preferably 127 ° C. or higher, and even more preferably 129 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic polymer (A) is preferably 140 ° C. The higher the glass transition temperature of the methacrylic polymer (A), the higher the heat resistance of the methacrylic resin or resin composition of the present invention, and the less likely it is that deformation such as heat shrinkage will occur.
 メタクリル重合体(A)のトライアドシンジオタクティシティ(rr)は、下限が、63%、好ましくは65%、より好ましくは72%であり、上限が、好ましくは90%、より好ましくは85%、さらに好ましくは80%である。メタクリル重合体(A)のトライアドシンジオタクティシティ(rr)が63%以上であることで、本発明のメタクリル樹脂または樹脂組成物は耐熱性が高くなり、熱収縮などの変形が起こり難い傾向がある。またメタクリル重合体(A)のトライアドシンジオタクティシティ(rr)が上記範囲にあると、本発明のメタクリル樹脂または樹脂組成物の強度を特に向上させる。これは、メタクリル重合体(A)とメタクリル重合体(B)とのカルボニル-カルボニル相互作用が向上するからであると考えられる。 The lower limit of the triad syndiotacticity (rr) of the methacrylic polymer (A) is 63%, preferably 65%, more preferably 72%, and the upper limit is preferably 90%, more preferably 85%. More preferably, it is 80%. When the triad syndiotacticity (rr) of the methacrylic polymer (A) is 63% or more, the methacrylic resin or resin composition of the present invention has high heat resistance and tends to be less likely to be deformed such as heat shrinkage. is there. Further, when the triad syndiotacticity (rr) of the methacrylic polymer (A) is in the above range, the strength of the methacrylic resin or the resin composition of the present invention is particularly improved. It is considered that this is because the carbonyl-carbonyl interaction between the methacrylic polymer (A) and the methacrylic polymer (B) is improved.
 ここで、トライアドシンジオタクティシティ(rr)は、連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
 トライアドシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で1H-NMRスペクトルを測定し、そのスペクトルからTMSを0ppmとした際の0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。
Here, in triad syndiotacticity (rr), two chains (doubles, diad) of a chain of three consecutive structural units (triple, triad) are both racemo (denoted as rr). Is the ratio. In the chain of structural units (doubles, diads) in the polymer molecule, those having the same configuration are referred to as meso, and the opposite ones are referred to as racemo, which are referred to as m and r, respectively.
The triad syndiotacticity (rr) (%) is a region of 0.6 to 0.95 ppm when 1 1 H-NMR spectrum is measured at 30 ° C. in deuterated chloroform and TMS is 0 ppm. The area (X) of the above and the area (Y) of the region of 0.6 to 1.35 ppm can be measured and calculated by the formula: (X / Y) × 100.
 メタクリル重合体(A)の製法は、上記のような物性値を満たすメタクリル重合体(A)を得ることができる限り、特に制限されない。生産性の観点からは、アニオン重合法が好ましい。より好ましくは、アニオン重合法において、上記のような物性値を満たすように、重合温度、重合時間、連鎖移動剤の種類や量、重合開始剤の種類や量などを、適宜設定することによって、メタクリル重合体(A)を製造する。 The method for producing the methacrylic polymer (A) is not particularly limited as long as the methacrylic polymer (A) satisfying the above physical characteristics can be obtained. From the viewpoint of productivity, the anion polymerization method is preferable. More preferably, in the anion polymerization method, the polymerization temperature, the polymerization time, the type and amount of the chain transfer agent, the type and amount of the polymerization initiator, and the like are appropriately set so as to satisfy the above-mentioned physical property values. Produces methacrylic polymer (A).
 アニオン重合法としては、例えば、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でアニオン重合する方法(特公平7-25859号参照)、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11-335432号参照)、有機希土類金属錯体を重合開始剤としてアニオン重合する方法(特開平6-93060号参照)などを挙げることができる。 Examples of the anionic polymerization method include a method in which an organic alkali metal compound is used as a polymerization initiator and anionic polymerization is carried out in the presence of a mineral acid salt such as an alkali metal or an alkaline earth metal salt (see Special Fair 7-25859), and organic. A method of anionic polymerization using an alkali metal compound as a polymerization initiator in the presence of an organoaluminum compound (see JP-A-11-335432) and a method of anionic polymerization using an organic rare earth metal complex as a polymerization initiator (see JP-A-6-93060). ) And so on.
 アニオン重合法においては、重合開始剤としてn-ブチルリチウム、sec-ブチルリチウム、イソブチルリチウム、tert-ブチルリチウム等のアルキルリチウムを用いることが好ましい。また、生産性の観点から有機アルミニウム化合物を共存させることが好ましい。有機アルミニウムとしては、AlR123で表される化合物(R1、R2およびR3は、それぞれ独立して置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基またはN,N-二置換アミノ基を表す。さらに、R2およびR3は、それらが結合してなる、置換基を有していてもよいアリーレンジオキシ基であってもよい。)を挙げることができる。有機アルミニウム化合物の具体例としては、イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム等を挙げることができる。また、アニオン重合法においては、重合反応を制御するために、エーテルや含窒素化合物などを共存させることもできる。 In the anion polymerization method, it is preferable to use alkyllithium such as n-butyllithium, sec-butyllithium, isobutyllithium and tert-butyllithium as the polymerization initiator. Further, from the viewpoint of productivity, it is preferable that the organoaluminum compound coexists. As the organic aluminum, the compound represented by Al R 1 R 2 R 3 (R 1 , R 2 and R 3 may have an alkyl group or a substituent which may independently have a substituent, respectively. A good cycloalkyl group, an aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxyl group which may have a substituent, and an aryloxy group which may have a substituent. Alternatively, it represents an N, N-disubstituted amino group. Further, R 2 and R 3 may be an arylenoxy group which may have a substituent formed by binding them.) be able to. Specific examples of the organoaluminum compound include isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, and isobutyl [2,2]. '-Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum and the like can be mentioned. Further, in the anion polymerization method, an ether, a nitrogen-containing compound, or the like can coexist in order to control the polymerization reaction.
 メタクリル重合体(A)は樹脂改質剤として有用であり、特にメタクリル重合体(B)の改質剤として有用である。 The methacrylic polymer (A) is useful as a resin modifier, and is particularly useful as a modifier for the methacrylic polymer (B).
 メタクリル重合体(B)は、メタクリル酸エステルに由来する構造単位を主に含有するランダム重合体である。 The methacrylic polymer (B) is a random polymer mainly containing a structural unit derived from a methacrylic acid ester.
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキルエステル;を挙げることができる。これらのうち、メタクリル酸アルキルエステルが好ましく、メタクリル酸メチルが最も好ましい。
 メタクリル重合体(B)に含有するメタクリル酸エステルに由来する構造単位の量は、メタクリル重合体(B)の全構造単位に対して、好ましくは80質量%以上、より好ましくは90質量以上である。
Examples of the methacrylic acid ester include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; aryl methacrylate esters such as phenyl methacrylate; and cycloalkyl methacrylates such as cyclohexyl methacrylate and norbornenyl methacrylate. ; Can be mentioned. Of these, alkyl methacrylate esters are preferred, and methyl methacrylate is most preferred.
The amount of the structural unit derived from the methacrylic acid ester contained in the methacrylic polymer (B) is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total structural units of the methacrylic polymer (B). ..
 メタクリル重合体(B)は、アクリル酸エステルに由来する構造単位を含有してもよい。アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルへキシルなどのアクリル酸アルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステルなどを挙げることができる。メタクリル重合体(B)に含有するアクリル酸エステルに由来する構造単位の量は、メタクリル重合体(B)の全構造単位に対して、好ましくは0~20質量%、より好ましくは0~10質量%である。 The methacrylic polymer (B) may contain a structural unit derived from an acrylic acid ester. Examples of the acrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; acrylic acid aryl esters such as phenyl acrylate; to cyclo acrylate. Examples thereof include acrylic acid cycloalkyl esters such as xyl and norbornenyl acrylate. The amount of the structural unit derived from the acrylic acid ester contained in the methacrylic polymer (B) is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, based on the total structural units of the methacrylic polymer (B). %.
 メタクリル重合体(B)は、メタクリル酸エステルおよびアクリル酸エステル以外の単量体に由来する構造単位を含有してもよい。メタクリル酸エステルおよびアクリル酸エステル以外の単量体としては、アクリル酸、メタクリル酸などのα,β-不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸などの不飽和基含有二価カルボン酸;スチレン、α-メチルスチレンなどの芳香族ビニル化合物;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物などを挙げることができる。メタクリル重合体(B)に含有するメタクリル酸メチルおよびアクリル酸エステル以外の単量体に由来する構造単位の量は、メタクリル重合体(B)の全構造単位に対して、好ましくは20質量%以下、より好ましくは10質量%以下である。 The methacrylic polymer (B) may contain a structural unit derived from a monomer other than the methacrylic acid ester and the acrylic acid ester. Examples of monomers other than methacrylic acid ester and acrylic acid ester include α, β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; unsaturated group-containing divalent carboxylic acids such as maleic anhydride, fumaric acid and itaconic acid. Aromatic vinyl compounds such as styrene and α-methylstyrene; α and β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like can be mentioned. .. The amount of structural units derived from monomers other than methyl methacrylate and acrylic acid ester contained in the methacrylic polymer (B) is preferably 20% by mass or less based on the total structural units of the methacrylic polymer (B). , More preferably 10% by mass or less.
 メタクリル重合体(B)の重量平均分子量MwBは、好ましくは80000以上、より好ましくは80000~3000000、より好ましくは120000~2500000、さらに好ましくは160000~2000000である。MwBが80000以上であることでメタクリル樹脂または樹脂組成物の耐衝撃性や靭性が向上する傾向がある。MwBの上限は耐衝撃性や靭性の観点から特に制限はないが、MwBが3000000を超えるメタクリル重合体(B)は製造が難しい傾向がある。MwBが160000以上であると、メタクリル樹脂または樹脂組成物の強度を特に向上させる。これは、メタクリル重合体(A)とメタクリル重合体(B)とのカルボニル-カルボニル相互作用が向上するからであると考えられる。 The weight average molecular weight Mw B of the methacrylic polymer (B) is preferably 80,000 or more, more preferably 80,000 to 3,000, more preferably 120,000 to 2,500,000, still more preferably 16,000 to 20,000,000. When Mw B is 80,000 or more, the impact resistance and toughness of the methacrylic resin or the resin composition tend to be improved. The upper limit of Mw B is not particularly limited from the viewpoint of impact resistance and toughness, but the methacrylic polymer (B) having Mw B exceeding 3,000,000 tends to be difficult to produce. When Mw B is 160,000 or more, the strength of the methacrylic resin or the resin composition is particularly improved. It is considered that this is because the carbonyl-carbonyl interaction between the methacrylic polymer (A) and the methacrylic polymer (B) is improved.
 メタクリル重合体(B)は、の数平均分子量MnBに対する重量平均分子量MwBの比(MwB/MnB)が、好ましくは1.7~2.6、より好ましくは1.7~2.5、さらに好ましくは1.7~2.3である。この範囲内にあるMwB/MnBを有するメタクリル重合体(B)を用いると、力学強度に優れた成形体を得易い。なお、MwBおよびMnBは、ゲルパーミエーションクロマトグラフィーにて測定されるクロマトグラムに基づいて標準ポリスチレンの分子量に換算して、算出される値である。 The ratio (Mw B / Mn B ) of the weight average molecular weight Mw B to the number average molecular weight Mn B of the methacrylic polymer (B) is preferably 1.7 to 2.6, more preferably 1.7 to 2. 5, more preferably 1.7 to 2.3. When a methacrylic polymer (B) having Mw B / Mn B within this range is used, it is easy to obtain a molded product having excellent mechanical strength. In addition, Mw B and Mn B are values calculated by converting into the molecular weight of standard polystyrene based on the chromatogram measured by gel permeation chromatography.
 メタクリル重合体(B)は、ガラス転移温度が、好ましくは100℃以上、より好ましくは105℃以上である。メタクリル重合体(B)のガラス転移温度の上限は好ましくは140℃である。メタクリル重合体(B)のガラス転移温度がこの範囲にあると、メタクリル樹脂または樹脂組成物の耐熱性が高くなり、熱収縮などの変形が起き難い傾向がある。 The methacrylic polymer (B) has a glass transition temperature of preferably 100 ° C. or higher, more preferably 105 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic polymer (B) is preferably 140 ° C. When the glass transition temperature of the methacrylic polymer (B) is in this range, the heat resistance of the methacrylic resin or the resin composition becomes high, and deformation such as heat shrinkage tends to be difficult to occur.
 メタクリル重合体(B)は、トライアドシンジオタクティシティ(rr)が、好ましくは45~63%、より好ましくは49~60%である。メタクリル重合体(B)のトライアドシンジオタクティシティ(rr)が上記範囲にあると、メタクリル樹脂または樹脂組成物の耐熱性と成形加工性とが良好な状態でバランスする傾向がある。 The methacrylic polymer (B) has a triad syndiotacticity (rr) of preferably 45 to 63%, more preferably 49 to 60%. When the triad syndiotacticity (rr) of the methacrylic polymer (B) is in the above range, the heat resistance of the methacrylic resin or the resin composition and the moldability tend to be well balanced.
 メタクリル重合体(B)の製法は、上記のような物性値を満たすメタクリル重合体(B)を得ることができる限り、特に制限されない。メタクリル重合体(B)の製法は、反応活性点の観点から、ラジカル重合、アニオン重合などを挙げることができる。また、メタクリル重合体(B)の製法は、重合反応液の形態の観点から、乳化重合、溶液重合、塊状重合、懸濁重合などを挙げることができる。これらの内、生産性の高さおよび高分子量化の容易さの点から、ラジカル乳化重合、ラジカル塊状重合、またはラジカル懸濁重合が好ましく、ラジカル塊状重合がより好ましい。 The method for producing the methacrylic polymer (B) is not particularly limited as long as the methacrylic polymer (B) satisfying the above physical characteristics can be obtained. Examples of the method for producing the methacrylic polymer (B) include radical polymerization and anionic polymerization from the viewpoint of the reaction active site. In addition, the method for producing the methacrylic polymer (B) includes emulsion polymerization, solution polymerization, bulk polymerization, suspension polymerization and the like from the viewpoint of the form of the polymerization reaction solution. Of these, radical emulsion polymerization, radical bulk polymerization, or radical suspension polymerization is preferable, and radical bulk polymerization is more preferable, from the viewpoint of high productivity and ease of polymerization.
 塊状重合または懸濁重合において用いられる重合開始剤の具体例としては、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイドなどの過酸化物;2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などのアゾ化合物などを挙げることができる。これらのうち、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。乳化重合において用いられる重合開始剤の具体例としては、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩系開始剤;パースルホキシレート/有機過酸化物、過硫酸塩/亜硫酸塩などのレドックス系開始剤を挙げることができる。重合開始剤は1種を単独でまたは2種以上を組み合わせて用いることができる。重合開始剤の使用量は、上記のような物性値を満たすメタクリル重合体(B)を得ることができるように設定すればよく、例えば、重合反応に供される単量体100質量部に対して、好ましくは0.0001~0.02質量部、より好ましくは0.001~0.01質量部、さらに好ましくは0.005~0.007質量部、の範囲内において、適宜設定することができる。 Specific examples of the polymerization initiator used in bulk polymerization or suspension polymerization include t-hexylperoxyisopropyl monocarbonate, t-hexylperoxy2-ethylhexanoate, and 1,1,3,3-tetramethylbutyl. Peroxy2-ethylhexanoate, t-butylperoxypivarate, t-hexylperoxypivalate, t-butylperoxyneodecanoeate, t-hexylperoxyneodecanoeate, 1,1 , 3,3-Tetramethylbutylperoxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, etc. Peroxides: 2,2'-azobis (2-methylpropionitrile), 2,2'-azobis (2-methylbutyronitrile), dimethyl 2,2'-azobis (2-methylpropionate), etc. Azo compounds and the like can be mentioned. Of these, t-hexyl peroxy2-ethylhexanoate, 1,1-bis (t-hexyl peroxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable. Specific examples of the polymerization initiator used in emulsion polymerization are persulfate-based initiators such as potassium persulfate and ammonium persulfate; and redox-based initiators such as persulfoxylate / organic peroxide and persulfate / sulfite. Agents can be mentioned. The polymerization initiator may be used alone or in combination of two or more. The amount of the polymerization initiator used may be set so that a methacrylic polymer (B) satisfying the above physical property values can be obtained. For example, with respect to 100 parts by mass of the monomer to be subjected to the polymerization reaction. It can be appropriately set within the range of preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 parts by mass, and further preferably 0.005 to 0.007 parts by mass. it can.
 塊状重合において用いられる重合開始剤は、反応性ラジカルを発生するものである。該重合開始剤は、1時間半減期温度が、好ましくは60~140℃、より好ましくは80~120℃である。また、該重合開始剤は、水素引抜き能が、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。 The polymerization initiator used in bulk polymerization is one that generates reactive radicals. The polymerization initiator has a 1-hour half-life temperature of preferably 60 to 140 ° C, more preferably 80 to 120 ° C. Further, the polymerization initiator has a hydrogen extraction ability of preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
 なお、水素引抜き能は重合開始剤製造業者の技術資料(例えば日本油脂株式会社技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成))などによって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法、即ちα-メチルスチレンダイマートラッピング法によって水素引抜き能を測定することができる。当該測定は、一般に、次のようにして行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち、水素引抜き力が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き力が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、該シクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサン、またはシクロヘキサン捕捉生成物を定量し、理論的なラジカル断片発生量に対する水素引抜き力が高いラジカル断片の割合(モル分率)を算出し、それを水素引抜き能とする。 The hydrogen abstraction ability can be known from the technical data of the polymerization initiator manufacturer (for example, the technical data of Nippon Oil & Fats Co., Ltd. "Hydrogen extraction ability of organic peroxide and initiator efficiency" (created in April 2003)). .. Further, the hydrogen extraction ability can be measured by a radical trapping method using an α-methylstyrene dimer, that is, an α-methylstyrene dimer trapping method. The measurement is generally performed as follows. First, the polymerization initiator is cleaved in the coexistence of α-methylstyrene dimer as a radical trapping agent to generate a radical fragment. Among the generated radical fragments, the radical fragment having a low hydrogen abstraction force is added to the double bond of the α-methylstyrene dimer and captured. On the other hand, a radical fragment having a high hydrogen abstraction force abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, and the cyclohexyl radical is added to and trapped in the double bond of α-methylstyrene dimer to generate a cyclohexane trapping product. Therefore, cyclohexane or cyclohexane capture product is quantified, the ratio (mole fraction) of radical fragments having high hydrogen abstraction power to the theoretical amount of radical fragment generation is calculated, and this is used as the hydrogen abstraction ability.
 塊状重合において用いられる連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類などを挙げることができる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンなどの単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種を単独で、または2種以上を組み合わせて用いることができる。
 連鎖移動剤の使用量は、上記のような物性値を満たすメタクリル重合体(B)を得ることができるように設定すればよく、例えば、重合反応に供される単量体100質量部に対して、好ましくは0~0.5質量部、より好ましくは0.05~0.4質量部、さらに好ましくは0.06~0.25質量部、の範囲内において、適宜設定することができる。また、連鎖移動剤の使用量は、重合開始剤100質量部に対して、好ましくは2500~10000質量部、より好ましくは3000~9000質量部、の範囲内において、適宜設定することができる。
Chain transfer agents used in massive polymerization include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol. Bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropanthris- (β-thiopropionate), pentaerythritol tetraxthiopropionate, etc. Alkyl mercaptans and the like can be mentioned. Of these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable. These chain transfer agents may be used alone or in combination of two or more.
The amount of the chain transfer agent used may be set so that the methacrylic polymer (B) satisfying the above physical property values can be obtained. For example, with respect to 100 parts by mass of the monomer subjected to the polymerization reaction. It can be appropriately set within the range of preferably 0 to 0.5 parts by mass, more preferably 0.05 to 0.4 parts by mass, and further preferably 0.06 to 0.25 parts by mass. The amount of the chain transfer agent used can be appropriately set within the range of preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
 懸濁重合においては懸濁安定剤を用いることができる。懸濁安定剤としては、例えば、有機コロイド性高分子物質、無機コロイド性高分子物質、無機微粒子及びこれらと界面活性剤との組み合わせを挙げることができる。 A suspension stabilizer can be used in suspension polymerization. Examples of the suspension stabilizer include an organic colloidal polymer substance, an inorganic colloidal polymer substance, inorganic fine particles, and a combination thereof with a surfactant.
 乳化重合においては乳化剤を用いることができる。乳化剤としては、例えば、アニオン系乳化剤であるジオクチルスルホコハク酸ナトリウム、ジラウリルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウムなどのアルキル硫酸塩;ノニオン系乳化剤であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなど;ノニオン・アニオン系乳化剤であるポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩;を挙げることができる。これら乳化剤は1種単独でまたは2種以上を組み合わせて用いてもよい。なお、ノニオン系乳化剤およびノニオン・アニオン系乳化剤の例示化合物におけるエチレンオキシド単位の平均繰返し単位数は、乳化剤の発泡性が極端に大きくならないようにするために、好ましくは30以下、より好ましくは20以下、さらに好ましくは10以下である。 An emulsifier can be used in emulsion polymerization. Examples of the emulsifier include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, and alkyl sulfates such as sodium dodecyl sulphate; nonions. Polyoxyethylene alkyl ether, polyoxyethylene nonylphenyl ether, etc., which are system emulsifiers; polyoxyethylene nonylphenyl ether sulfate, polyoxyethylene alkyl ether sulfate, etc., which are nonionic and anionic emulsifiers, such as polyoxyethylene nonylphenyl ether sulfate. Polyoxyethylene alkyl ether sulfate such as sodium, alkyl ether carboxylate such as polyoxyethylene tridecyl ether sodium acetate; can be mentioned. These emulsifiers may be used alone or in combination of two or more. The average number of repeating units of ethylene oxide units in the examples of the nonionic emulsifier and the nonionic / anion emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
 乳化重合または懸濁重合においては重合反応終了後に反応生成液から公知の方法によって樹脂を取り出す。乳化重合においては、塩析凝固法、凍結凝固法、噴霧乾燥法などによって反応生成液(エマルジョン)から樹脂を取り出すことができる。これらの中でも、樹脂に含まれる不純物を水洗により容易に除去できる点から、塩析凝固法および凍結凝固法が好ましい。なお、凝固工程前に、目開き50μm以下の金網などでエマルジョンを濾過すると、エマルジョンに混入した異物を除去することができるので、好ましい。 In emulsion polymerization or suspension polymerization, the resin is taken out from the reaction product solution by a known method after the completion of the polymerization reaction. In emulsion polymerization, the resin can be taken out from the reaction product liquid (emulsion) by a salting out coagulation method, a freeze coagulation method, a spray drying method or the like. Among these, the salting out coagulation method and the freeze coagulation method are preferable from the viewpoint that impurities contained in the resin can be easily removed by washing with water. It is preferable to filter the emulsion with a wire mesh having a mesh size of 50 μm or less before the coagulation step because foreign substances mixed in the emulsion can be removed.
 本発明のメタクリル樹脂は、メタクリル重合体(B)のせん断速度122秒-1且つ温度260℃における溶融粘度ηBが、メタクリル重合体(A)のせん断速度122秒-1且つ温度260℃における溶融粘度ηAよりも高い。溶融粘度ηBと溶融粘度ηAとの差は、好ましくは1000Pa・s以上、より好ましくは1500Pa・s以上である。
 また、本発明のメタクリル樹脂は、メタクリル重合体(B)の重量平均分子量MwBが、重量平均分子量MwAの2.5倍以上、好ましくは3倍以上である。
In the methacrylic resin of the present invention, the methacrylic polymer (B) has a shear rate of 122 seconds- 1 and a melt viscosity η B at a temperature of 260 ° C., and the methacrylic polymer (A) has a shear rate of 122 seconds- 1 and a temperature of 260 ° C. Higher than viscosity η A. The difference between the melt viscosity η B and the melt viscosity η A is preferably 1000 Pa · s or more, and more preferably 1500 Pa · s or more.
Further, in the methacrylic resin of the present invention, the weight average molecular weight Mw B of the methacrylic polymer (B) is 2.5 times or more, preferably 3 times or more the weight average molecular weight Mw A.
 本発明のメタクリル樹脂は、メタクリル重合体(A)の屈折率ndAとメタクリル重合体(B)の屈折率ndBとの差の絶対値|ndA-ndB|が、好ましくは0.005以下である。 The methacrylic resin of the present invention has an absolute value of the difference between the refractive index n dA of the methacrylic polymer (A) and the refractive index n dB of the methacrylic polymer (B) | n dA −n dB |, preferably 0.005. It is as follows.
 本発明のメタクリル樹脂に含有するメタクリル重合体(A)の量は、耐熱性と成形加工性または表面平滑性とを良好な状態で両立させる観点から、メタクリル樹脂に対して、好ましくは2~39質量%、より好ましくは5~30質量%、さらに好ましくは5~20質量%、最も好ましくは5~16質量%である。 The amount of the methacrylic polymer (A) contained in the methacrylic resin of the present invention is preferably 2 to 39 with respect to the methacrylic resin from the viewpoint of achieving both heat resistance and molding processability or surface smoothness in a good state. It is by mass, more preferably 5 to 30% by mass, still more preferably 5 to 20% by mass, and most preferably 5 to 16% by mass.
 本発明のメタクリル樹脂に含有するメタクリル重合体(B)の量は、耐熱性または機械強度と成形加工性とを良好な状態で両立させる観点から、メタクリル樹脂に対して、好ましくは61~98質量%、より好ましくは70~95質量%、さらに好ましくは80~95質量%、最も好ましくは84~95質量%である。 The amount of the methacrylic polymer (B) contained in the methacrylic resin of the present invention is preferably 61 to 98 mass with respect to the methacrylic resin from the viewpoint of achieving both heat resistance or mechanical strength and molding processability in a good state. %, More preferably 70 to 95% by mass, still more preferably 80 to 95% by mass, and most preferably 84 to 95% by mass.
 本発明のメタクリル樹脂は、メタクリル重合体(B)に対するメタクリル重合体(A)の質量比が、2/98~39/61、より好ましくは5/95~30/70、さらに好ましくは5/95~20/80である。 The methacrylic resin of the present invention has a mass ratio of the methacrylic polymer (A) to the methacrylic polymer (B) of 2/98 to 39/61, more preferably 5/95 to 30/70, still more preferably 5/95. ~ 20/80.
 本発明のメタクリル樹脂は、重量基準の微分分子量分布曲線において重量分率微分値が最も高いピークトップ分子量MPtが、好ましくは100000~2000000、より好ましくは120000~2000000、さらに好ましくは160000~2000000である。ピークトップ分子量MPtがこの範囲にあることで、強度や硬度、表面平滑性に優れた、成形品を得ることができる。 Methacrylic resin of the present invention, the highest peak top molecular weight M Pt weight fraction differential value in the differential molecular weight distribution curve of the weight is preferably from 100000 to 2000000, more preferably 120000 to 2000000, more preferably at from 160,000 to 2,000,000 is there. When the peak top molecular weight MPt is in this range, a molded product having excellent strength, hardness, and surface smoothness can be obtained.
 本発明のメタクリル樹脂は、重量基準の微分分子量分布曲線において、分子量が最も高いピークトップ分子量MPhの1/20以下の分子量を有する成分(M≦1/20MPh)の重量分率微分値の合計が全成分の重量分率微分値の合計に対して、好ましくは2%以下、より好ましくは1.5%以下である。
 本発明のメタクリル樹脂は、重量基準の微分分子量分布曲線において、15000以下の分子量を有する成分(M≦1.5万)の重量分率微分値の合計が全成分の重量分率微分値の合計に対して、好ましくは2%以下、より好ましくは1.75%以下である。
 上記のような低分子量の成分が少ないことによって、本発明のメタクリル樹脂または樹脂組成物は、その効果がより向上する。
The methacrylic resin of the present invention has a weight fraction differential value of a component (M ≤ 1/20 M Ph ) having a molecular weight of 1/20 or less of the peak top molecular weight M Ph having the highest molecular weight in the weight-based differential molecular weight distribution curve. The total is preferably 2% or less, more preferably 1.5% or less, based on the total weight fraction derivative values of all the components.
In the methacrylic resin of the present invention, in the weight-based differential molecular weight distribution curve, the total of the weight fraction differential values of the components having a molecular weight of 15,000 or less (M ≤ 15,000) is relative to the total weight fraction differential values of all the components. It is preferably 2% or less, more preferably 1.75% or less.
The effect of the methacrylic resin or resin composition of the present invention is further improved by the small amount of the low molecular weight component as described above.
 本発明のメタクリル樹脂組成物は、本発明のメタクリル樹脂を含有するものである。本発明のメタクリル樹脂組成物は、本発明のメタクリル樹脂と、該メタクリル樹脂以外の他の樹脂(additional resin)とを含有してもよい。
 他の樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系熱可塑性樹脂;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系熱可塑性樹脂;アクリル系熱可塑性樹脂; ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体等のスチレン系熱可塑性樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド; ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体、ポリビニルブチラール、セルロースアシレート等のセルロース樹脂等を挙げることができる。本発明のメタクリル樹脂組成物において、これら他の樹脂は、本発明のメタクリル樹脂と相溶状態であってもよいし、相分離状態であってもよい。
The methacrylic resin composition of the present invention contains the methacrylic resin of the present invention. The methacrylic resin composition of the present invention may contain the methacrylic resin of the present invention and a resin other than the methacrylic resin (additional resin).
Examples of other resins include olefin-based thermoplastic resins such as polyethylene, polypropylene, ethylene-propylene copolymer, and poly (4-methyl-1-pentene); halogen-containing heat such as vinyl chloride and vinyl chlorinated resins. Plastic resin; Acrylic thermoplastic resin; Polystyrene-based thermoplastic resin such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer; polyethylene terephthalate, polybutylene terephthalate, Polyesters such as polyethylene naphthalate; polyamides such as nylon 6, nylon 66, nylon 610; polyacetals; polycarbonates; polyphenylene oxides; polyphenylene sulfides; polyether ether ketones; polysulphons; polyether salphons; Examples thereof include rubbery polymers such as ABS resin and ASA resin containing acrylic rubber, and cellulose resins such as polyvinyl butyral and cellulose acylate. In the methacrylic resin composition of the present invention, these other resins may be in a compatible state or a phase-separated state with the methacrylic resin of the present invention.
 本発明のメタクリル樹脂組成物は、本発明のメタクリル樹脂と、エラストマと、必要に応じて前記の他の樹脂を含有してもよい。 The methacrylic resin composition of the present invention may contain the methacrylic resin of the present invention, an elastomer, and if necessary, the other resin described above.
 エラストマは、メタクリル樹脂と相溶状態または相分離状態にて混ざり合うものである。エラストマは、メタクリル樹脂と相分離状態にて混ざり合い、分散相を形成するものが、好ましい。分散相の形状は、特に制限されず、例えば、球状、楕円体状、棒状、扁平体状、ひも状などを挙げることができる。分散相の大きさは特に限定されないが、たとえば、平均粒子径として、好ましくは0.05~1μm、より好ましくは0.07~0.5μm、さらに好ましくは0.10~0.4μmである。 Elastomer is a mixture of methacrylic resin in a compatible state or a phase-separated state. The elastomer is preferably mixed with a methacrylic resin in a phase-separated state to form a dispersed phase. The shape of the dispersed phase is not particularly limited, and examples thereof include a spherical shape, an ellipsoidal shape, a rod shape, a flat body shape, and a string shape. The size of the dispersed phase is not particularly limited, but for example, the average particle size is preferably 0.05 to 1 μm, more preferably 0.07 to 0.5 μm, and further preferably 0.10 to 0.4 μm.
 エラストマとしては、アクリル酸エステルに由来する構造単位を含有する重合体からなるものが好ましい。アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどのアクリル酸アルキルエステル;アクリル酸フェニル、アクリル酸ベンジルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;を挙げることができる。これらのうち、アクリル酸アルキルエステルが好ましく、アクリル酸ブチルが最も好ましい。
 エラストマに含有するアクリル酸エステルに由来する構造単位の量は、好ましくは30質量%以上、より好ましくは35%質量以上90質量%以下、さらに好ましくは40質量%以上80質量%以下である。
The elastomer is preferably a polymer containing a structural unit derived from an acrylic acid ester. Examples of the acrylic acid ester include acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate and butyl acrylate; acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate; acrylic acids such as cyclohexyl acrylate and norbornenyl acrylate. Acrylic acid cycloalkyl ester; Of these, alkyl acrylate esters are preferred, and butyl acrylate is most preferred.
The amount of the structural unit derived from the acrylic acid ester contained in the elastomer is preferably 30% by mass or more, more preferably 35% by mass or more and 90% by mass or less, and further preferably 40% by mass or more and 80% by mass or less.
 エラストマは、アクリル酸エステルに由来する構造単位以外に、一分子中に重合性の炭素-炭素二重結合を一つだけ有するビニル系単量体に由来する構造単位を有してもよい。ビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルへキシルなどのメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキルエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステル、スチレン、α-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル;などを挙げることができる。 In addition to the structural unit derived from the acrylic acid ester, the elastomer may have a structural unit derived from a vinyl-based monomer having only one polymerizable carbon-carbon double bond in one molecule. Examples of the vinyl-based monomer include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate; and aryl methacrylates such as phenyl methacrylate; Cycloalkyl methacrylic acid esters such as cyclohexyl methacrylate and norbornenyl methacrylate; aralkyl esters of methacrylic acid such as benzyl methacrylate, aromatic vinyl compounds such as styrene and α-methylstyrene; acrylamide; methacrylicamide; acrylonitrile; methacrylic nitrile ; And so on.
 本発明のメタクリル樹脂組成物に含有するエラストマの量は、メタクリル樹脂組成物に対して、好ましくは0~50質量%、より好ましくは0~40質量%、更に好ましくは0~30質量%である。エラストマの量は、耐薬品性、耐熱性、曲げ弾性率、加工性などの観点から、適宜設定できる。 The amount of elastomer contained in the methacrylic resin composition of the present invention is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and further preferably 0 to 30% by mass with respect to the methacrylic resin composition. .. The amount of elastomer can be appropriately set from the viewpoints of chemical resistance, heat resistance, flexural modulus, workability, and the like.
 エラストマは、その分子鎖の形態によって特に制限されず、例えば、直鎖重合体エラストマ(例えば、ランダム共重合体エラストマ、ブロック共重合体エラストマなど)、分岐鎖重合体エラストマ(例えば、グラフト共重合体エラストマ、スター型ブロック共重合体エラストマ)、などを挙げることができる。これらのうち、エラストマは、メタクリル酸エステルに由来する構造単位を主に有する重合体ブロックとアクリル酸エステルに由来する構造単位を有する重合体ブロックとからなるブロック共重合体エラストマを含有するものが好ましい。 The elastomer is not particularly limited by the form of its molecular chain, and is, for example, a linear polymer elastomer (for example, a random copolymer elastomer, a block copolymer elastomer, etc.), a branched chain polymer elastomer (for example, a graft elastomer). Elastomer, star-type block copolymer elastomer), and the like. Of these, the elastomer preferably contains a block copolymer elastomer composed of a polymer block mainly having a structural unit derived from a methacrylic acid ester and a polymer block having a structural unit derived from an acrylic acid ester. ..
 エラストマは、アクリル酸エステルに由来する構造単位を含有する架橋ゴム重合体を含む粒子(以下、架橋ゴム粒子という。)であってもよい。 The elastomer may be particles containing a crosslinked rubber polymer containing a structural unit derived from an acrylic acid ester (hereinafter, referred to as crosslinked rubber particles).
 架橋ゴム粒子は、平均粒子径が、好ましくは0.05~1μm、より好ましくは0.07~0.5μm、さらに好ましくは0.10~0.4μmである。このような範囲内の平均粒子径、特に0.15~0.3μmの平均粒子径を有する架橋ゴム粒子を用いると、少量の配合で、剛性や表面硬度を損なうことなく、靭性を発現させることができる。なお、平均粒子径は、光散乱法によって測定される、体積基準の粒径分布における平均値である。 The crosslinked rubber particles have an average particle diameter of preferably 0.05 to 1 μm, more preferably 0.07 to 0.5 μm, and even more preferably 0.10 to 0.4 μm. When crosslinked rubber particles having an average particle size within such a range, particularly an average particle size of 0.15 to 0.3 μm, are used, toughness can be exhibited with a small amount of compounding without impairing rigidity and surface hardness. Can be done. The average particle size is an average value in a volume-based particle size distribution measured by a light scattering method.
 架橋ゴム粒子は内層と該内層を覆う最外層から成ることが好ましい。内層は中芯層だけからなるものであってもよいし、中芯層と該中芯層を覆う中間層とからなるものであってもよい。中間層は一の重合体からなる単層であってもよいし、それぞれが異なる重合体からなる多層であってよい。
 架橋ゴム粒子は、透明性の観点から、隣り合う二つの層は、各層の屈折率ndの差が、好ましくは0.01未満、より好ましくは0.008未満、さらに好ましくは0.005未満であることが好ましい。
The crosslinked rubber particles are preferably composed of an inner layer and an outermost layer covering the inner layer. The inner layer may be composed of only a core layer, or may be composed of a core layer and an intermediate layer covering the core layer. The intermediate layer may be a single layer made of one polymer, or may be a multilayer made of different polymers.
From the viewpoint of transparency, the crosslinked rubber particles have a difference in refractive index nd between the two adjacent layers, preferably less than 0.01, more preferably less than 0.008, and further preferably less than 0.005. Is preferable.
 架橋ゴム粒子における内層と最外層との質量比は、好ましくは60/40~95/5、より好ましくは70/30~90/10である。 The mass ratio of the inner layer to the outermost layer of the crosslinked rubber particles is preferably 60/40 to 95/5, more preferably 70/30 to 90/10.
 架橋ゴム粒子としては、例えば、架橋ゴム重合体(II)からなる中芯層と、中芯層を覆う熱可塑性重合体(III)からなる最外層との二層粒子; 架橋重合体(I)からなる中芯層と、中芯層を覆う架橋ゴム重合体(II)からなる中間層と、中間層を覆う熱可塑性重合体(III)からなる最外層との三層粒子; 架橋ゴム重合体(II)からなる中芯層と、中芯層を覆う架橋重合体(I)からなる第1中間層と、第1中間層を覆う架橋ゴム重合体(II)からなる第2中間層と、第2中間層を覆う熱可塑性重合体(III)からなる最外層との四層粒子を挙げることができる。 The crosslinked rubber particles include, for example, two-layer particles of a core layer made of a crosslinked rubber polymer (II) and an outermost layer made of a thermoplastic polymer (III) covering the core layer; the crosslinked polymer (I). Three-layer particles consisting of a core layer composed of, an intermediate layer composed of a crosslinked rubber polymer (II) covering the core layer, and an outermost layer composed of a thermoplastic polymer (III) covering the intermediate layer; a crosslinked rubber polymer. A core layer composed of (II), a first intermediate layer composed of a crosslinked polymer (I) covering the core layer, and a second intermediate layer composed of a crosslinked rubber polymer (II) covering the first intermediate layer. Examples thereof include four-layer particles with the outermost layer made of the thermoplastic polymer (III) covering the second intermediate layer.
 熱可塑性重合体(III)は、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステルに由来する構造単位および必要に応じて該メタクリル酸アルキルエステル以外の単官能単量体に由来する構造単位からなる重合体である。熱可塑性重合体(III)は、多官能単量体に由来する構造単位を含まない方が好ましい。 The thermoplastic polymer (III) is a structural unit derived from a methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and, if necessary, a structural unit derived from a monofunctional monomer other than the methacrylic acid alkyl ester. It is a polymer composed of. The thermoplastic polymer (III) preferably does not contain structural units derived from the polyfunctional monomer.
 熱可塑性重合体(III)を構成する炭素数1~8のアルキル基を有するメタクリル酸アルキルエステルに由来する構造単位の量は、熱可塑性重合体(III)の質量に対して、80~100質量%、好ましくは85~95質量%である。 The amount of the structural unit derived from the methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms constituting the thermoplastic polymer (III) is 80 to 100 mass with respect to the mass of the thermoplastic polymer (III). %, Preferably 85-95% by mass.
 炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル(以下、メタクリル酸C1-8アルキルエステルということがある。)としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸プロピル、メタクリル酸シクロヘキシルなどを挙げることができる。これらのうちメタクリル酸メチルが好ましい。 Examples of the methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms (hereinafter, may be referred to as methacrylic acid C1-8 alkyl ester) include methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2 methacrylic acid. -Ethylhexyl, propyl methacrylate, cyclohexyl methacrylate and the like can be mentioned. Of these, methyl methacrylate is preferable.
 熱可塑性重合体(III)を構成するメタクリル酸C1-8アルキルエステル以外の単官能単量体に由来する構造単位の量は、熱可塑性重合体(III)の質量に対して、0~20質量%、好ましくは5~15質量%である。
 メタクリル酸C1-8アルキルエステル以外の単官能単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル;スチレン、p-メチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物;N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド化合物を挙げることができる。
The amount of the structural unit derived from the monofunctional monomer other than the methacrylic acid C1-8 alkyl ester constituting the thermoplastic polymer (III) is 0 to 20 mass with respect to the mass of the thermoplastic polymer (III). %, Preferably 5 to 15% by mass.
Examples of the monofunctional monomer other than the methacrylic acid C1-8 alkyl ester include acrylate esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate; styrene and p-methylstyrene. , Α-Methylstyrene and other aromatic vinyl compounds; examples thereof include maleimide compounds such as N-propyl maleimide, N-cyclohexyl maleimide and NO-chlorophenyl maleimide.
 熱可塑性重合体(III)の量は、架橋ゴム粒子の質量に対して、好ましくは40~75質量%、より好ましくは50~70質量%、さらに好ましくは55~65質量%である。 The amount of the thermoplastic polymer (III) is preferably 40 to 75% by mass, more preferably 50 to 70% by mass, and further preferably 55 to 65% by mass with respect to the mass of the crosslinked rubber particles.
 架橋重合体(I)は、メタクリル酸メチルに由来する構造単位、メタクリル酸メチル以外の単官能単量体に由来する構造単位、および多官能単量体に由来する構造単位からなる。 The crosslinked polymer (I) is composed of a structural unit derived from methyl methacrylate, a structural unit derived from a monofunctional monomer other than methyl methacrylate, and a structural unit derived from a polyfunctional monomer.
 架橋重合体(I)を構成するメタクリル酸メチルに由来する構造単位の量は、架橋重合体(I)の質量に対して、40~98.5質量%、好ましくは45~95質量%である。 The amount of the structural unit derived from methyl methacrylate constituting the crosslinked polymer (I) is 40 to 98.5% by mass, preferably 45 to 95% by mass, based on the mass of the crosslinked polymer (I). ..
 架橋重合体(I)を構成するメタクリル酸メチル以外の単官能単量体に由来する構造単位の量は、架橋重合体(I)の質量に対して、1~59.5質量%、好ましくは5~55質量%である。
 メタクリル酸メチル以外の単官能単量体としては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシルなどのメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル;スチレン、p-メチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物;N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド化合物を挙げることができる。
The amount of the structural unit derived from the monofunctional monomer other than methyl methacrylate constituting the crosslinked polymer (I) is 1 to 59.5% by mass, preferably 1 to 59.5% by mass, based on the mass of the crosslinked polymer (I). It is 5 to 55% by mass.
Examples of the monofunctional monomer other than methyl methacrylate include methacrylic ester other than methyl methacrylate such as ethyl methacrylate, butyl methacrylate and cyclohexyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, and 2 acrylate. Acrylic esters such as ethylhexyl and propyl acrylate; aromatic vinyl compounds such as styrene, p-methylstyrene and α-methylstyrene; maleimide compounds such as N-propylmaleimide, N-cyclohexylmaleimide and No-chlorophenylmaleimide Can be mentioned.
 架橋重合体(I)を構成する多官能単量体に由来する構造単位の量は、架橋重合体(I)の質量に対して、0.05~0.4質量%、好ましくは0.1~0.3質量%である。
 多官能単量体としては、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート、トリアリルイソシアヌレートなどを挙げることができる。
The amount of the structural unit derived from the polyfunctional monomer constituting the crosslinked polymer (I) is 0.05 to 0.4% by mass, preferably 0.1, based on the mass of the crosslinked polymer (I). It is about 0.3% by mass.
Examples of the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
 架橋重合体(I)の量は、架橋ゴム粒子の質量に対して、好ましくは5~40質量%、より好ましくは7~35質量%、さらに好ましくは10~30質量%である。 The amount of the crosslinked polymer (I) is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass with respect to the mass of the crosslinked rubber particles.
 架橋ゴム重合体(II)は、炭素数1~8のアルキル基を有するアクリル酸アルキルエステルに由来する構造単位および/または共役ジエンに由来する構造単位、および多官能単量体に由来する構造単位からなる。 The crosslinked rubber polymer (II) is a structural unit derived from an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and / or a structural unit derived from a conjugated diene, and a structural unit derived from a polyfunctional monomer. Consists of.
 架橋ゴム重合体(II)を構成する炭素数1~8のアルキル基を有するアクリル酸アルキルエステルに由来する構造単位および/または共役ジエンに由来する構造単位の量は、架橋ゴム重合体(II)の質量に対して、98.3~99質量%、好ましくは95~98質量%である。 The amount of the structural unit derived from the acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms and / or the structural unit derived from the conjugated diene constituting the crosslinked rubber polymer (II) is determined by the crosslinked rubber polymer (II). It is 98.3 to 99% by mass, preferably 95 to 98% by mass, based on the mass of.
 炭素数1~8のアルキル基を有するアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどを挙げることができる。 Examples of the acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate.
 共役ジエンとしては、例えば、1,3-ブタジエン、イソプレンなどを挙げることができる。 Examples of the conjugated diene include 1,3-butadiene, isoprene and the like.
 架橋ゴム重合体(II)を構成する多官能単量体に由来する構造単位の量は、架橋ゴム重合体(II)の質量に対して、1~1.7質量%、好ましくは1.2~1.6質量%、より好ましくは1.3~1.5質量%である。
 多官能単量体としては、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート、トリアリルイソシアヌレートなどを挙げることができる。
The amount of the structural unit derived from the polyfunctional monomer constituting the crosslinked rubber polymer (II) is 1 to 1.7% by mass, preferably 1.2, based on the mass of the crosslinked rubber polymer (II). It is ~ 1.6% by mass, more preferably 1.3 to 1.5% by mass.
Examples of the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
 耐屈曲性の向上の観点から、架橋ゴム重合体(II)中の多官能単量体に由来する構造単位の質量に対する、架橋重合体(I)中の多官能単量体に由来する構造単位の質量の比が、好ましくは0.05~0.25、より好ましくは0.1~0.2である。架橋ゴム重合体(II)のガラス転移温度は、架橋重合体(I)のガラス転移温度より低いことが好ましい。 From the viewpoint of improving bending resistance, the structural unit derived from the polyfunctional monomer in the crosslinked polymer (I) is relative to the mass of the structural unit derived from the polyfunctional monomer in the crosslinked rubber polymer (II). The mass ratio of is preferably 0.05 to 0.25, more preferably 0.1 to 0.2. The glass transition temperature of the crosslinked rubber polymer (II) is preferably lower than the glass transition temperature of the crosslinked polymer (I).
 架橋ゴム重合体(II)の量は、架橋ゴム粒子の質量に対して、好ましくは20~55質量%、より好ましくは25~45質量%、さらに好ましくは30~40質量%である。 The amount of the crosslinked rubber polymer (II) is preferably 20 to 55% by mass, more preferably 25 to 45% by mass, and further preferably 30 to 40% by mass with respect to the mass of the crosslinked rubber particles.
 架橋重合体(I)と架橋ゴム重合体(II)は分子鎖がグラフト結合によってつながっていることが好ましい。また、架橋ゴム重合体(II)と熱可塑性重合体(III)は分子鎖がグラフト結合によってつながっていることが好ましい。なお、グラフト結合は、すでに完成している高分子の主鎖に結合した置換基を反応活性点とし、そこから新たに枝部分を伸張させることを含む重合法(グラフト重合法)によって、生成する主鎖と枝部分とを繋ぐ結合である。 It is preferable that the molecular chains of the crosslinked polymer (I) and the crosslinked rubber polymer (II) are connected by a graft bond. Further, it is preferable that the molecular chains of the crosslinked rubber polymer (II) and the thermoplastic polymer (III) are connected by a graft bond. The graft bond is generated by a polymerization method (graft polymerization method) in which a substituent bonded to the main chain of the already completed polymer is used as a reaction active point and a branch portion is newly extended from the reaction active point. It is a bond that connects the main chain and the branch part.
 本発明の樹脂組成物は、透明性や強度などの物性を損なわない範囲で、慣用の添加剤を含んでもよい。添加剤としては、例えば、紫外線吸収剤、安定剤、離型剤、帯電防止剤、難燃剤、可塑剤、分散剤、流動調整剤、レベリング剤、消泡剤、表面改質剤、耐熱性改良剤、撥水性改良剤又は光学発現剤などが利用できる。 The resin composition of the present invention may contain a conventional additive as long as it does not impair physical properties such as transparency and strength. Additives include, for example, UV absorbers, stabilizers, mold release agents, antistatic agents, flame retardants, plasticizers, dispersants, flow modifiers, leveling agents, defoamers, surface modifiers, heat resistance improvements. Agents, water repellency improvers, optical expression agents and the like can be used.
 可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等を挙げることができる。 Examples of the plasticizer include phthalate ester type, fatty acid ester type, trimellitic acid ester type, phosphoric acid ester type, polyester type, epoxy type and the like.
 紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等を挙げることができる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 Examples of the ultraviolet absorber include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based agents. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3, Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone Benzophenones such as, etc. can be exemplified.
 離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどを挙げることができる。 Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
 難燃剤としては、例えば、テトラブロモビスフェノールA、デカブロモジフェニルオキシド、臭素化ポリカーボネート等の有機ハロゲン系難燃剤;酸化アンチモン、水酸化アルミニウム、ホウ酸亜鉛、トリクレジルホスフェート等の非ハロゲン系難燃剤などを挙げることができる。 Examples of the flame retardant include organic halogen-based flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide, and brominated polycarbonate; non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate, and tricresyl phosphate. And so on.
 帯電防止剤としては、例えば、ステアロアミドプロピルジメチル-β-ヒドロキシエチルアンモニウムニトレートなどを挙げることができる。 Examples of the antistatic agent include stearoamide propyl dimethyl-β-hydroxyethylammonium nitrate.
 表面改質剤としてはポリブタジエン、CTBN(末端カルボン酸変性ニトリルブタジエンゴム)などを挙げることができる。 Examples of the surface modifier include polybutadiene and CTBN (terminal carboxylic acid-modified nitrile butadiene rubber).
 安定剤としては2,6-ジ-t-ブチル-4-メチルフェノール、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリンなどを挙げることができる。 Examples of the stabilizer include 2,6-di-t-butyl-4-methylphenol, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline and the like.
 レベリング剤としてはフッ素系界面活性剤などを挙げることができる。 Examples of the leveling agent include fluorine-based surfactants.
 消泡剤としてはアクリル系共重合物、シリコーンなどを挙げることができる。 Examples of the defoaming agent include acrylic copolymers and silicones.
 これら添加剤は、それぞれ、単独で又は二種以上組み合わせて使用できる。添加剤の量は、メタクリル樹脂組成物100質量部に対して、例えば、0.01~10質量部、好ましくは0.05~5質量部、さらに好ましくは0.1~3質量部であってもよい。 These additives can be used alone or in combination of two or more. The amount of the additive is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the methacrylic resin composition. May be good.
 本発明の樹脂組成物は、固体状のものであってもよいし、液体状のものであってもよい。
 固体状の樹脂組成物は、メタクリル重合体(A)、メタクリル重合体(B)及び必要に応じて他の樹脂、エラストマ、添加剤などの他の成分(additional component)を混合することにより製造又は調製できる。混合は、例えば、リボンブレンダ、タンブルミキサ、ヘンシェルミキサなどの混合機や、オープンローラ、ニーダ、バンバリーミキサ、押出機などの混練機による混合手段などを用いた溶融混練によって行うことができる。これらの混合手段は1種単独で又は2種以上組み合わせてもよい。本発明の樹脂組成物は、メタクリル重合体(A)、メタクリル重合体(B)及び必要に応じて混合される他の成分の、混合順序によって限定されない。例えば、メタクリル重合体(A)とメタクリル重合体(B)とを混合して本発明のメタクリル樹脂を得、次いでこれに他の成分を混合して本発明の樹脂組成物を得てもよいし、メタクリル重合体(A)とメタクリル重合体(B)と他の成分とを一緒に混合して本発明の樹脂組成物を得てもよいし、メタクリル重合体(A)と他の成分とを混合し、次いでこれにメタクリル重合体(B)を混合して本発明の樹脂組成物を得てもよいし、メタクリル重合体(B)と他の成分とを混合し、次いでこれにメタクリル重合体(A)を混合して本発明の樹脂組成物を得てもよい。
The resin composition of the present invention may be in the form of a solid or in the form of a liquid.
The solid resin composition can be produced by mixing the methacrylic polymer (A), the methacrylic polymer (B) and other components (additional components) such as other resins, elastomers and additives as required. Can be prepared. Mixing can be performed by, for example, melt-kneading using a mixer such as a ribbon blender, a tumble mixer, or a Henschel mixer, or a mixing means using a kneader such as an open roller, a kneader, a Banbury mixer, or an extruder. These mixing means may be used alone or in combination of two or more. The resin composition of the present invention is not limited by the mixing order of the methacrylic polymer (A), the methacrylic polymer (B) and other components to be mixed as needed. For example, the methacrylic polymer (A) and the methacrylic polymer (B) may be mixed to obtain the methacrylic resin of the present invention, and then other components may be mixed thereto to obtain the resin composition of the present invention. , The methacrylic polymer (A), the methacrylic polymer (B) and other components may be mixed together to obtain the resin composition of the present invention, or the methacrylic polymer (A) and other components may be mixed. The resin composition of the present invention may be obtained by mixing and then mixing the methacrylic polymer (B) with the methacrylic polymer (B), or the methacrylic polymer (B) and other components are mixed with the methacrylic polymer. (A) may be mixed to obtain the resin composition of the present invention.
 液体状の樹脂組成物は、メタクリル重合体(A)、メタクリル重合体(B)および必要に応じて他の成分を、液媒体に溶解または分散させてなるものである。液媒体としては、例えば、炭化水素類(ベンゼン、トルエンなど)、ハロゲン系溶媒(ジクロロメタンなど)、エーテル類(ジエチルエーテル、テトラヒドロフランなど)、エステル類(酢酸エチルなど)、ケトン類(アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノンなど)など、アルコール類(メタノール、エタノール、ブタノールなど)などを挙げることができる。これらの液媒体は1種単独で又は2種以上を組み合わせて用いてもよい。メタクリル重合体(A)、メタクリル重合体(B)および必要に応じて他の成分の液媒体への添加の手順は特に制限されない。 The liquid resin composition is formed by dissolving or dispersing the methacrylic polymer (A), the methacrylic polymer (B) and, if necessary, other components in a liquid medium. Examples of the liquid medium include hydrocarbons (benzene, toluene, etc.), halogen-based solvents (dichloromethane, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), esters (ethyl acetate, etc.), ketones (acetone, ethylmethyl, etc.). Examples include alcohols (methanol, ethanol, butanol, etc.) such as ketones, diisopropyl ketones, cyclohexanone, etc. These liquid media may be used alone or in combination of two or more. The procedure for adding the methacrylic polymer (A), the methacrylic polymer (B) and, if necessary, other components to the liquid medium is not particularly limited.
 本発明の成形体は、本発明のメタクリル樹脂または樹脂組成物を含有してなるものである。
 本発明の成形体は、本発明のメタクリル樹脂または固体状樹脂組成物に、例えば、射出成形法、射出圧縮成形法、押出成形法(例えば、Tダイ法、インフレーション法など)、カレンダー法、熱成形法(特に、熱プレス法)、トランスファー成形法、ブロー成形法、溶融キャスト法などを用いた成形を施すことによって、得ることができる。
 また、本発明の成形体は、本発明の液体状の樹脂組成物(例えば、ドープなど)に、例えば、ソルベントキャスト法などを用いた成形を施すことによって、得ることができる。
The molded product of the present invention contains the methacrylic resin or resin composition of the present invention.
The molded product of the present invention can be applied to the methacrylic resin or solid resin composition of the present invention, for example, injection molding method, injection compression molding method, extrusion molding method (for example, T-die method, inflation method, etc.), calendar method, heat. It can be obtained by performing molding using a molding method (particularly, a hot press method), a transfer molding method, a blow molding method, a melt casting method, or the like.
Further, the molded product of the present invention can be obtained by subjecting the liquid resin composition of the present invention (for example, doping) to molding using, for example, a solvent casting method.
 本発明の成形体の一態様であるフィルム又はシートは、延伸処理を施されていないもの(未延伸フィルム)であってもよいし、延伸処理を施された延伸フィルムであってもよい。本発明のフィルムは、光学フィルム、光学シートとして用いることができる。延伸は、一軸延伸(例えば、縦延伸又は横延伸)又は二軸延伸(例えば、等延伸又は偏延伸)のいずれであってもよい。延伸倍率は、例えば、一軸延伸及び二軸延伸において各方向(又は一方向)にそれぞれ1.1~10倍程度であってもよく、好ましくは1.2~5倍、さらに好ましくは1.3~3倍程度である。本発明のフィルムは、延伸処理によって、強度が向上することがある。フィルムの厚さは、例えば、1~1000μm、好ましくは3~800μm、さらに好ましくは5~500μm、最も好ましくは20~200μmである。 The film or sheet which is one aspect of the molded product of the present invention may be one that has not been stretched (unstretched film) or may be a stretched film that has been stretched. The film of the present invention can be used as an optical film or an optical sheet. The stretching may be either uniaxial stretching (for example, longitudinal stretching or transverse stretching) or biaxial stretching (for example, iso-stretching or partial stretching). The draw ratio may be, for example, about 1.1 to 10 times in each direction (or one direction) in uniaxial stretching and biaxial stretching, preferably 1.2 to 5 times, and more preferably 1.3. It is about 3 times. The strength of the film of the present invention may be improved by the stretching treatment. The thickness of the film is, for example, 1 to 1000 μm, preferably 3 to 800 μm, more preferably 5 to 500 μm, and most preferably 20 to 200 μm.
 本発明のドープは、本発明のメタクリル樹脂と、有機溶剤と、必要に応じて他の成分とを含むものである。ドープに好ましく用いられる有機溶剤として、ジクロロメタンなどのハロゲン化炭化水素;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、シクロヘキサノールなどのアルコールを挙げることができる。ドープに含まれる本発明のメタクリル樹脂の量は、好ましくは5~70質量%、より好ましくは10~60質量%、さらに好ましくは15~50質量%である。ドープに含まれる有機溶剤の量は、好ましくは30~95質量%、より好ましくは40~90質量%、さらに好ましくは50~85質量%である。 The doping of the present invention contains the methacrylic resin of the present invention, an organic solvent, and, if necessary, other components. Halogenized hydrocarbons such as dichloromethane are preferably used for doping; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, 1-pentanol, 2-methyl- Alcohols such as 2-butanol and cyclohexanol can be mentioned. The amount of the methacrylic resin of the present invention contained in the dope is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, and further preferably 15 to 50% by mass. The amount of the organic solvent contained in the doping is preferably 30 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 50 to 85% by mass.
 本発明のドープには、ソルベントキャスト用添加剤が含まれていてもよい。ソルベントキャスト用添加剤としては、透湿度低減化合物;剥離促進剤;レタデーション(Rth)制御剤;無機微粒子(マット剤);フタル酸エステル、リン酸エステル系の化合物などの可塑剤;Re発現剤;紫外線吸収剤;酸化防止剤などを挙げることができる。 The dope of the present invention may contain an additive for solvent casting. Additives for solvent casting include moisture permeability reducing compounds; peeling accelerators; retardation (Rth) control agents; inorganic fine particles (matting agents); plasticizers such as phthalates and phosphate ester compounds; Re-expressing agents; Ultraviolet absorbers; antioxidants and the like can be mentioned.
 ドープは、0℃以上の温度(常温又は高温)において調製することが好ましい。ドープは、メタクリル樹脂と有機溶剤と必要に応じて他の成分と必要に応じてソルベントキャスト用添加剤とを混ぜ合わせることにより調製することができる。混ぜ合わせる手順は、特に制限されず、例えば、有機溶剤に各成分の混合物を添加して溶解させてもよいし、攪拌中の有機溶剤に各成分を順次添加して溶解させてもよいし、各成分の溶液を予め調製しておいてそれらの溶液を混合してもよい。本発明のメタクリル樹脂または樹脂組成物の溶解は、常圧で行ってもよいし、主溶剤の沸点以下で行ってもよいし、主溶剤の沸点以上で加圧して行ってもよい。また、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行ってもよい。これらのうち、主溶剤の沸点以上の温度で加圧して本発明のメタクリル樹脂または樹脂組成物の溶解を行うことが好ましい。 Doping is preferably prepared at a temperature of 0 ° C. or higher (normal temperature or high temperature). The doping can be prepared by mixing a methacrylic resin, an organic solvent, other components if necessary, and a solvent casting additive if necessary. The mixing procedure is not particularly limited, and for example, a mixture of each component may be added to an organic solvent to dissolve it, or each component may be sequentially added to and dissolved in an organic solvent being stirred. Solutions of each component may be prepared in advance and the solutions may be mixed. The methacrylic resin or resin composition of the present invention may be dissolved at normal pressure, below the boiling point of the main solvent, or pressurized above the boiling point of the main solvent. Further, a method of performing by a cooling dissolution method as described in JP-A-9-95544, JP-A-9-95557, or JP-A-9-95538, or at a high pressure as described in JP-A-11-21379. You may go. Of these, it is preferable to pressurize at a temperature equal to or higher than the boiling point of the main solvent to dissolve the methacrylic resin or resin composition of the present invention.
 本発明のフィルムの製造方法は、本発明のドープを支持体に流延させて液体膜を得、液体膜から有機溶剤を除去することを含む。ドープの流延は、例えば、貯蔵タンクからポンプを用いてドープをダイに供給し、ダイスリットからドープを排出し、回転する金属製無端ベルトに塗布することによって行われる。液体膜の厚さは、フィルムの強度や加工性などの観点から、フィルムの厚さが好ましくは20~200μmとなるように、調整する。液体膜の厚さの調整は、ドープの供給量、無端ベルト(支持体)の速度などを変えることによって行うことができる。有機溶剤の除去によって固体膜が支持体上に得られるので、固体膜を支持体から剥がす。支持体から剥がされた固体膜には有機溶剤が残存していることがあるので、固体膜に乾燥処理を施すことができる。乾燥処理は、例えば、固体膜に残存する有機溶剤量が20質量%から0.1質量%になるまでの時間が、好ましくは40分未満、より好ましくは30分以下、さらに好ましくは25分以下である条件にて行うことができる。さらに、乾燥処理後のフィルムに、熱処理、延伸処理などを施してもよい。なお、流延ダイ、減圧チャンバ、支持体などの構造、共流延、剥離法、延伸、各工程の乾燥条件、ハンドリング方法、カール、平面性矯正後の巻取方法、溶剤回収方法、フィルム回収方法などは、特開2005-104148号公報の段落[0617]~段落[0889]の記述をここに引用する。 The method for producing a film of the present invention includes casting the doping of the present invention on a support to obtain a liquid film, and removing the organic solvent from the liquid film. Doping casting is performed, for example, by pumping the dope from the storage tank to the die, draining the dope from the die slit, and applying it to a rotating metal endless belt. The thickness of the liquid film is adjusted so that the thickness of the film is preferably 20 to 200 μm from the viewpoint of the strength and processability of the film. The thickness of the liquid film can be adjusted by changing the amount of doping supplied, the speed of the endless belt (support), and the like. Since the solid film is obtained on the support by removing the organic solvent, the solid film is peeled off from the support. Since the organic solvent may remain in the solid film peeled off from the support, the solid film can be dried. In the drying treatment, for example, the time from 20% by mass to 0.1% by mass of the organic solvent remaining on the solid film is preferably less than 40 minutes, more preferably 30 minutes or less, still more preferably 25 minutes or less. It can be done under the condition of. Further, the film after the drying treatment may be subjected to heat treatment, stretching treatment or the like. The structure of the casting die, decompression chamber, support, etc., co-casting, peeling method, stretching, drying conditions of each process, handling method, curl, winding method after flatness correction, solvent recovery method, film recovery. For the method and the like, the description of paragraphs [0617] to [0889] of JP-A-2005-104148 is cited here.
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、以上までに述べた、特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせて成るすべての態様を包含している。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. In addition, the present invention includes all aspects in which the above-mentioned matters representing technical features such as characteristic values, forms, manufacturing methods, and uses are arbitrarily combined.
 メタクリル重合体等の物性、ならびにメタクリル樹脂、メタクリル樹脂組成物およびドープの評価は以下のとおりに行った。 The physical properties of the methacrylic polymer and the like, as well as the methacrylic resin, the methacrylic resin composition and the doping were evaluated as follows.
(重合転化率)
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラム(GL Sciences Inc.製 InertCap 1; df=0.4μm、0.25mmI.D.×60m)を繋ぎ、インジェクション温度を180℃に、検出器温度を180℃に、カラム温度を60℃(5分間保持)から昇温速度10℃/分で200℃まで昇温しその後10分間保持する条件に設定して、測定を行い、この結果に基づいて重合転化率を算出した。
(Polymerization conversion rate)
A column (InertCap 1 manufactured by GL Sciences Inc.; df = 0.4 μm, 0.25 mm ID × 60 m) was connected to a gas chromatograph GC-14A manufactured by Shimadzu Corporation, and the injection temperature was set to 180 ° C. The column temperature was raised to 180 ° C. from 60 ° C. (holding for 5 minutes) to 200 ° C. at a heating rate of 10 ° C./min, and then held for 10 minutes, and measurement was performed. Based on this result, polymerization was performed. The conversion rate was calculated.
(トライアドシンジオタクティシティ(rr)、イミド化率)
 樹脂試料について以下の条件にて1H-NMRスペクトルを測定した。
 装置:核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)
 溶媒  :重クロロホルム
 測定核種:1
 測定温度:室温
 積算回数:64回
 1H-NMRスペクトルにおいて、TMSを0ppmとした際の0.6~0.95ppmの領域の面積(X)、および0.6~1.35ppmの領域の面積(Y)を計測し、(X/Y)×100にて算出した値をトライアドシンジオタクティシティ(rr)(%)とした。
 1H-NMRスペクトルにおいて、3.5~3.8ppm付近のメタクリル酸メチル単位中のO-CH3基に由来するピークの面積(A)と、3.0~3.3ppm付近のN-メチルグルタルイミド単位中のN-CH3基に由来するピークの面積(B)を計測し、〔B/(A+B)〕×100にて算出した値をイミド化率とした。
(Triad syndiotacticity (rr), imidization rate)
The 1 H-NMR spectrum of the resin sample was measured under the following conditions.
Device: Nuclear magnetic resonance device (ULTRA SHIELD 400 PLUS manufactured by Bruker)
Solvent: Deuterated chloroform Measurement nuclide: 1 H
Measurement temperature: Room temperature Number of integrations: 64 times 1 In the 1 H-NMR spectrum, the area of the region (X) of 0.6 to 0.95 ppm and the area of the region of 0.6 to 1.35 ppm when TMS is 0 ppm. (Y) was measured, and the value calculated by (X / Y) × 100 was defined as triad syndiotacticity (rr) (%).
1 In the H-NMR spectrum, the area (A) of the peak derived from 3 O-CH groups in the methyl methacrylate unit around 3.5 to 3.8 ppm and the N-methyl around 3.0 to 3.3 ppm. The area (B) of the peak derived from 3 N-CH groups in the glutarimide unit was measured, and the value calculated by [B / (A + B)] × 100 was used as the imidization rate.
[重量平均分子量Mw、数平均分子量Mn、ピークトップ分子量MPt
 ゲルパーミエーションクロマトグラフィー(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値(Mw、Mn、MPt)を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
 GPC装置:東ソー株式会社製、HLC-8320
 検出器:示差屈折率検出器
 カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
 溶離剤: テトラヒドロフラン
 溶離剤流量: 0.35ml/分
 カラム温度: 40℃
 検量線:標準ポリスチレン10点のデータを用いて作成
[Weight average molecular weight Mw, number average molecular weight Mn, peak top molecular weight MPt ]
The chromatogram was measured by gel permeation chromatography (GPC) under the following conditions, and the values (Mw, Mn, MPt ) converted into the molecular weight of standard polystyrene were calculated. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to plus when viewed from the earliest retention time, and the slope of the peak on the low molecular weight side changes from minus to zero when viewed from the earliest retention time. It is a line connecting the points that change to.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: Two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using data of 10 standard polystyrene points
(溶融粘度η)
 樹脂試料を80℃で12時間乾燥させた後、東洋精機(株)社製「キャピログラフ1D」を用いて、温度260℃且つせん断速度122sec-1の条件で、溶融粘度ηを測定した。
(Melting viscosity η)
After the resin sample was dried at 80 ° C. for 12 hours, the melt viscosity η was measured using “Capirograph 1D” manufactured by Toyo Seiki Co., Ltd. under the conditions of a temperature of 260 ° C. and a shear rate of 122 sec -1 .
(屈折率nd
 樹脂試料について、カルニュー光学工業株式会社製「KPR-200」を用いて、波長587.6nm(ヘリウムd線)における屈折率を測定した。
(Refractive index nd )
The refractive index of the resin sample at a wavelength of 587.6 nm (helium d-line) was measured using "KPR-200" manufactured by Carnew Optical Industry Co., Ltd.
(平均粒子径)
 ゴム粒子分散液試料について、堀場製作所社製レーザー回折/散乱式粒子径分布測定装置LA-910を用い、光散乱法(体積換算)にて測定した。粒子径としてはメジアン径を採用した。
(Average particle size)
The rubber particle dispersion sample was measured by a light scattering method (volume conversion) using a laser diffraction / scattering particle size distribution measuring device LA-910 manufactured by Horiba Seisakusho. A median diameter was adopted as the particle diameter.
(ガラス転移温度Tg)
 JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、樹脂試料を、230℃まで昇温し、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で昇温させて、DSC曲線を測定した。2回目の昇温時に測定されたDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(Glass transition temperature Tg)
In accordance with JIS K7121, using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)), the resin sample is heated to 230 ° C., then cooled to room temperature, and then from room temperature to 230. The temperature was raised to 10 ° C./min and the DSC curve was measured. The intermediate point glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
(シャルピー衝撃強度、ロックウェル硬度、透明性 I)
 樹脂試料に260℃での熱プレス成形を施してえ、80mm×10mm×4mmの成形品試料を得た。該成形品試料について、JIS K7111 1eUに準拠して、東洋精機製デジタルインパクトテスターを用いて、ノッチ無しシャルピー衝撃強度を測定した。測定を10回行い、平均値をシャルピー衝撃強度とした。
 前記の成形品試料について、JIS K7202に準拠して、ロックウェル硬度計(東洋精機製、ロックウェル硬度試験機)を用いて、ロックウェル硬度を測定した。
 前記の成形品試料について、JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM-150)を用いて、ヘイズを測定し、下記の基準で透明性 Iを判断した。
 〇:ヘイズが5%未満である。
 ×:ヘイズが5%以上である。
(Charpy impact strength, Rockwell hardness, transparency I)
The resin sample was subjected to hot press molding at 260 ° C. to obtain a molded product sample of 80 mm × 10 mm × 4 mm. The notched Charpy impact strength of the molded product sample was measured using a digital impact tester manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7111 1eU. The measurement was performed 10 times, and the average value was taken as the Charpy impact strength.
The Rockwell hardness of the molded product sample was measured using a Rockwell hardness tester (Rockwell hardness tester manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K7202.
The haze of the molded product sample was measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136, and the transparency I was judged according to the following criteria.
〇: Haze is less than 5%.
X: Haze is 5% or more.
(乾燥時間)
 固形分濃度16質量%のドープを金属支持体上に、乾燥後の厚さが56μmになるように流延を行った。風乾にて有機溶剤の残存量が20質量%になった時点で、支持体上に得られた固体膜を支持体から剥がした。剥がされた固体膜をトリミングして6cm×6cmの固体膜試料を得た。固体膜試料を金属枠に固定し、エスペック製循環式恒温槽PHH-202を用いて、ダンパー開度50%、140℃にて、常圧乾燥させた。5分間経過するごとに、有機溶剤の残存量を測定した。溶媒残存量は下記の式で表すことができる。
 溶媒残存量(質量%)=[(X-Y)/Y]×100
 ここで、Xは乾燥途上における固体膜の質量であり、 Yは乾燥が平衡状態に成ったときの固体膜の質量である。
測定は2回行いその平均値を算出した。横軸に乾燥時間、縦軸に有機溶剤の残存量をプロットしてなる乾燥特性曲線を作成した。乾燥特性曲線から、有機溶剤の残存量が0.1質量%となるときの乾燥時間を求めた。
(Drying time)
A dope having a solid content concentration of 16% by mass was cast on a metal support so that the thickness after drying was 56 μm. When the residual amount of the organic solvent reached 20% by mass by air drying, the solid film obtained on the support was peeled off from the support. The peeled solid film was trimmed to obtain a 6 cm × 6 cm solid film sample. The solid membrane sample was fixed to a metal frame and dried under normal pressure at a damper opening of 50% and 140 ° C. using a circulation type constant temperature bath PHH-202 manufactured by ESPEC. The residual amount of the organic solvent was measured every 5 minutes. The residual amount of solvent can be expressed by the following formula.
Residual solvent amount (mass%) = [(XY) / Y] × 100
Here, X is the mass of the solid film during drying, and Y is the mass of the solid film when drying is in equilibrium.
The measurement was performed twice and the average value was calculated. A drying characteristic curve was created by plotting the drying time on the horizontal axis and the residual amount of organic solvent on the vertical axis. From the drying characteristic curve, the drying time when the residual amount of the organic solvent was 0.1% by mass was determined.
(表面平滑性)
 有機溶剤の残存量が0.1質量%である固体膜試料の表面に、蛍光灯を反射させた時の反射像を肉眼観察し、以下の基準で表面平滑性を判断した。
 ×:蛍光灯の像が揺らぐ
 〇:蛍光灯の像が揺らがない
(Surface smoothness)
The reflection image when the fluorescent lamp was reflected on the surface of the solid film sample in which the residual amount of the organic solvent was 0.1% by mass was visually observed, and the surface smoothness was judged by the following criteria.
×: Fluorescent lamp image fluctuates 〇: Fluorescent lamp image does not fluctuate
(透明性II)
 有機溶剤の残存量が0.1質量%である固体膜試料について、JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM-150)を用いて、ヘイズを測定し、下記の基準で透明性IIを判断した。
 〇:ヘイズが1%未満である。
 ×:ヘイズが1%以上である。
(Transparency II)
For a solid film sample in which the residual amount of the organic solvent is 0.1% by mass, the haze is measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136, and the haze is measured according to the following criteria. Transparency II was judged.
〇: Haze is less than 1%.
X: Haze is 1% or more.
(フィルム耐衝撃性)
 有機溶剤の残存量が0.1質量%である固体膜試料をトリミングして長さ60mm×幅10mmの試験片を得た。端から30mmの幅方向全域に亘って折り目が外側に出るように1回折った。このときに2つ以上のピースに分離するか否かを観察した。これを3回行い、下記の基準でフィルム耐衝撃性を判断した。
 ○:3回とも折れない
 ×:3回のうち少なくとも1回は折れる
(Film impact resistance)
A solid film sample having a residual amount of the organic solvent of 0.1% by mass was trimmed to obtain a test piece having a length of 60 mm and a width of 10 mm. It was diffracted once so that the creases came out over the entire width direction of 30 mm from the end. At this time, it was observed whether or not the pieces were separated into two or more pieces. This was performed three times, and the film impact resistance was judged according to the following criteria.
◯: Can not break 3 times ×: Can break at least 1 time out of 3 times
製造例1(メタクリル重合体(A-1)の製造)
 撹拌翼および三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン60kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液42.1kg(24.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%/n-ヘキサン5質量%)4.82kg(8.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製されたメタクリル酸メチル550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点のメタクリル酸メチルの重合転化率は100%であった。得られた溶液にトルエン1500kgを加えて希釈した。希釈液を大量のメタノール中に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、メタクリル重合体(A-1)を得た。
 メタクリル重合体(A-1)は、Mwが70000で、分子量15000以下の成分(M≦1.5万)の割合が0.17質量%で、溶融粘度ηが1200Pa・sで、Mw/Mnが1.1で、トリアドシンジオタクティシティ(rr)が75%で、Tgが131℃で、メタクリル酸メチルに由来する構造単位の量が100質量%であった。メタクリル重合体(A-1)の物性を表1に示す。
Production Example 1 (Production of methacrylic polymer (A-1))
The inside of the autoclave equipped with the stirring blade and the three-way cock was replaced with nitrogen. To this, at room temperature, 1600 kg of toluene, 60 kg of 1,2-dimethoxyethane, and 42.1 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M (2,6-di-t-butyl-4-methylphenoxy) ( 24.3 mol) and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95% by mass / n-hexane 5% by mass) were charged in an amount of 4.82 kg (8.1 mmol). With stirring, 550 kg of distillation-purified methyl methacrylate was added dropwise to this at 15 ° C. over 30 minutes. After completion of the dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. The polymerization conversion rate of methyl methacrylate at this time was 100%. 1500 kg of toluene was added to the obtained solution for dilution. The diluent was poured into a large amount of methanol to give a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a methacrylic polymer (A-1).
The methacrylic polymer (A-1) has a Mw of 70,000, a component having a molecular weight of 15,000 or less (M≤15,000) in an amount of 0.17% by mass, a melt viscosity η of 1200 Pa · s, and a Mw / Mn of 1. At .1, the triadosyndio tacticity (rr) was 75%, the Tg was 131 ° C., and the amount of structural units derived from methyl methacrylate was 100% by mass. Table 1 shows the physical characteristics of the methacrylic polymer (A-1).
製造例2(メタクリル重合体(A-2)の製造)
 撹拌翼および三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン80kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液73.3kg(42.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%/n-ヘキサン5質量%)8.44kg(14.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製されたメタクリル酸メチル550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点のメタクリル酸メチルの重合転化率は100%であった。得られた溶液にトルエン1500kgを加えて希釈した。希釈液を大量のメタノール中に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、メタクリル重合体(A-2)を得た。
 メタクリル重合体(A-2)は、Mwが40000で、分子量15000以下の成分(M≦1.5万)の割合が1.52質量%で、溶融粘度ηが450Pa・sで、Mw/Mnが1.1で、トリアドシンジオタクティシティ(rr)が75%で、Tgが130℃で、メタクリル酸メチルに由来する構造単位の量が100質量%であった。メタクリル重合体(A-2)の物性を表1に示す。
Production Example 2 (Production of methacrylic polymer (A-2))
The inside of the autoclave equipped with the stirring blade and the three-way cock was replaced with nitrogen. To this, at room temperature, 1600 kg of toluene, 80 kg of 1,2-dimethoxyethane, and a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M (73.3 kg) ( 42.3 mol) and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95% by mass / n-hexane 5% by mass) were charged at 8.44 kg (14.1 mmol). With stirring, 550 kg of distillation-purified methyl methacrylate was added dropwise to this at 15 ° C. over 30 minutes. After completion of the dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. The polymerization conversion rate of methyl methacrylate at this time was 100%. 1500 kg of toluene was added to the obtained solution for dilution. The diluent was poured into a large amount of methanol to give a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a methacrylic polymer (A-2).
The methacrylic polymer (A-2) has a Mw of 40,000, a component having a molecular weight of 15,000 or less (M≤15,000) in an amount of 1.52% by mass, a melt viscosity η of 450 Pa · s, and a Mw / Mn of 1. At .1, the triadosyndio tacticity (rr) was 75%, the Tg was 130 ° C., and the amount of structural units derived from methyl methacrylate was 100% by mass. Table 1 shows the physical characteristics of the methacrylic polymer (A-2).
製造例3(メタクリル重合体(A-3)の製造)
 撹拌翼および三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン110kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液119.0kg(68.7mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%/n-ヘキサン5質量%)13.71kg(22.9mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製されたメタクリル酸メチル550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点のメタクリル酸メチルの重合転化率は100%であった。得られた溶液にトルエン1500kgを加えて希釈した。次いで、希釈液を大量のメタノール中に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、メタクリル重合体(A-3)を得た。
 メタクリル重合体(A-3)は、Mwが25000で、分子量15000以下の成分(M≦1.5万)の割合が7.06質量%で、溶融粘度ηが150Pa・sで、Mw/Mnが1.1で、トリアドシンジオタクティシティ(rr)が76%で、Tgが130℃で、メタクリル酸メチルに由来する構造単位の量が100質量%であった。メタクリル重合体(A-3)の物性を表1に示す。
Production Example 3 (Production of methacrylic polymer (A-3))
The inside of the autoclave equipped with the stirring blade and the three-way cock was replaced with nitrogen. To this, at room temperature, 1600 kg of toluene, 110 kg of 1,2-dimethoxyethane, and 119.0 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M ( 68.7 mol) and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95% by mass / n-hexane 5% by mass) 13.71 kg (22.9 mmol) were charged. With stirring, 550 kg of distillation-purified methyl methacrylate was added dropwise to this at 15 ° C. over 30 minutes. After completion of the dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. The polymerization conversion rate of methyl methacrylate at this time was 100%. 1500 kg of toluene was added to the obtained solution for dilution. The diluent was then poured into a large amount of methanol to give a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours to obtain a methacrylic polymer (A-3).
The methacrylic polymer (A-3) has a Mw of 25,000, a component having a molecular weight of 15,000 or less (M≤15,000) in an amount of 7.06% by mass, a melt viscosity η of 150 Pa · s, and a Mw / Mn of 1. At .1, the triadosyndio tacticity (rr) was 76%, the Tg was 130 ° C., and the amount of structural units derived from methyl methacrylate was 100% by mass. Table 1 shows the physical characteristics of the methacrylic polymer (A-3).
製造例4(メタクリル重合体(A-4)の製造)
 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル100質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0065質量部、およびn-オクチルメルカプタン0.290質量部を入れ、撹拌して、原料液を得た。この原料液中に窒素を送り込み、溶存酸素を除去した。
 オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持したまま、先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度140℃に維持したまま、平均滞留時間120分となる流量で原料液をオートクレーブから槽型反応器に供給し、同時に原料液の供給流量に相当する流量で反応液を槽型反応器から抜き出して、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は45質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温230℃の二軸押出機に供給してストランド状に吐出し、ペレタイザでカットして、ペレット状のメタクリル重合体(A-4)を得た。
 メタクリル重合体(A-4)は、Mwが80000で、分子量15000以下の成分(M≦1.5万)の割合が6.92質量%で、溶融粘度ηが700Pa・sで、Mw/Mnが1.87で、トリアドシンジオタクティシティ(rr)が52%で、Tgが120℃で、メタクリル酸メチルに由来する構造単位の量が100質量%であった。メタクリル重合体(A-4)の物性を表1に示す。
Production Example 4 (Production of methacrylic polymer (A-4))
The inside of the autoclave equipped with a stirrer and a sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate, 0.0065 parts by mass of 2,2'-azobis (2-methylpropionitrile (hydrogen extraction capacity: 1%, 1-hour half-life temperature: 83 ° C.)), and 0.290 parts by mass of n-octyl mercaptan was added and stirred to obtain a raw material solution. Nitrogen was sent into this raw material solution to remove dissolved oxygen.
The raw material solution was put into a tank reactor connected to the autoclave by piping up to 2/3 of the capacity. While maintaining the temperature at 140 ° C., the polymerization reaction was first started by a batch method. When the polymerization conversion rate reaches 55% by mass, the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate with an average residence time of 120 minutes while maintaining the temperature at 140 ° C., and at the same time, it corresponds to the supply flow rate of the raw material liquid. The reaction solution was withdrawn from the tank reactor at the desired flow rate, and the polymerization reaction was switched to the continuous flow method. After switching, the polymerization conversion rate in the steady state was 45% by mass.
The reaction solution extracted from the tank-type reactor in a steady state was supplied to a multi-tube heat exchanger having an internal temperature of 230 ° C. at a flow rate having an average residence time of 2 minutes for heating. Next, the heated reaction solution was introduced into a flash evaporator to remove volatile components containing unreacted monomers as a main component to obtain a molten resin. The molten resin from which the volatile matter had been removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged in a strand shape, and cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-4).
The methacrylic polymer (A-4) has an Mw of 80,000, a component having a molecular weight of 15,000 or less (M≤15,000) in an amount of 6.92% by mass, a melt viscosity η of 700 Pa · s, and a Mw / Mn of 1. At .87, the triadosyndio tacticity (rr) was 52%, the Tg was 120 ° C., and the amount of structural units derived from methyl methacrylate was 100% by weight. Table 1 shows the physical characteristics of the methacrylic polymer (A-4).
製造例5(メタクリル重合体(A-5)の製造)
 輸送部、溶融混練部、脱揮部および排出部からなり且つスクリュー回転数120rpmおよび温度250℃に設定された二軸押出機(テクノベル社製;商品名KZW20TW-45MG-NH-600)の輸送部にメタクリル重合体(A-4)を2kg/hrで供給し、該二軸押出機の溶融混練部にモノメチルアミンを0.08kg/hrで注入し、メタクリル重合体(A-4)とモノメチルアミンとを反応させた。なお、溶融混練部にはニーディングブロックが設置されており、反応ゾーンの末端のスクリューにはリバースフライトを設置した。
 20Torr(約2.7kPa)に設定された脱揮部において、副生成物および過剰のモノメチルアミンを揮発させ、ベントを通して排出した。
 二軸押出機の排出部の末端に設けられたダイスから押し出されたストランド状溶融樹脂を、水槽で冷却し、その後、ペレタイザでカットして、ペレット状のメタクリル重合体(A-5a)を得た。
Production Example 5 (Production of methacrylic polymer (A-5))
Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 120 rpm and a temperature of 250 ° C. The methacrylic polymer (A-4) was supplied at 2 kg / hr, and monomethylamine was injected into the melt-kneaded portion of the twin-screw extruder at 0.08 kg / hr, and the methacrylic polymer (A-4) and monomethylamine were injected. And reacted. A kneading block was installed in the melt-kneading section, and a reverse flight was installed in the screw at the end of the reaction zone.
In the volatilization section set to 20 Torr (about 2.7 kPa), by-products and excess monomethylamine were volatilized and discharged through the vent.
The strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-5a). It was.
 輸送部、溶融混練部、脱揮部および排出部からなり且つスクリュー回転数100rpmおよび温度230℃に設定された二軸押出機(テクノベル社製;商品名KZW20TW-45MG-NH-600)の輸送部にメタクリル重合体(A-5a)を1kg/hrで供給し、該二軸押出機の溶融混練部に炭素ジメチル1.6質量部およびトリエチルアミン0.2質量部からなる液を0.01kg/hrで注入し、メタクリル重合体(A-5a)中のカルボキシ基に炭素ジメチルを反応させた。なお、溶融混練部にはニーディングブロックが設置されており、反応ゾーンの末端のスクリューにリバースフライトを設置した。
 20Torr(約2.7kPa)に設定された脱揮部において、副生成物および過剰の炭酸ジメチルを揮発させ、ベントを通して排出した。
 二軸押出機の排出部の末端に設けられたダイスから押し出されたストランド状溶融樹脂を、水槽で冷却し、その後、ペレタイザでカットして、ペレット状のメタクリル重合体〔A-5b〕を得た。
Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 100 rpm and a temperature of 230 ° C. A methacrylic polymer (A-5a) was supplied at 1 kg / hr, and a liquid consisting of 1.6 parts by mass of carbon dimethyl and 0.2 parts by mass of triethylamine was added to the melt-kneaded portion of the twin-screw extruder at 0.01 kg / hr. The carboxy group in the methacrylic polymer (A-5a) was reacted with carbon dimethyl. A kneading block was installed in the melt-kneading section, and a reverse flight was installed in the screw at the end of the reaction zone.
The by-product and excess dimethyl carbonate were volatilized and discharged through the vent in the volatilization section set to 20 Torr (about 2.7 kPa).
The strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer [A-5b]. It was.
 輸送部、溶融混練部、脱揮部および排出部からなり且つスクリュー回転数100rpmおよび温度230℃に設定された二軸押出機(テクノベル社製;商品名KZW20TW-45MG-NH-600)の輸送部にメタクリル樹脂(A-5b)を1kg/hrで供給した。20Torr(約2.7kPa)に設定された脱揮部において、未反応物などの揮発分を揮発させ、ベントを通して排出した。
 二軸押出機の排出部の末端に設けられたダイスから押し出されたストランド状溶融樹脂を、水槽で冷却し、その後、ペレタイザでカットして、ペレット状のメタクリル重合体(A-5)を得た。
 メタクリル重合体(A-5)は、Mwが80000で、Mw/Mnが1.8で、分子量15000以下の成分(M≦1.5万)の割合が6.60質量%で、イミド化率が7.0モル%で、ガラス転移温度が130℃であった。メタクリル重合体(A-5)の物性を表1に示す。
Transport section of a twin-screw extruder (manufactured by Technobel Co., Ltd .; trade name KZW20TW-45MG-NH-600) consisting of a transport section, a melt-kneading section, a volatilization section, and a discharge section and set to a screw rotation speed of 100 rpm and a temperature of 230 ° C. A methacrylic resin (A-5b) was supplied at 1 kg / hr. In the volatilization section set to 20 Torr (about 2.7 kPa), volatile components such as unreactant were volatilized and discharged through the vent.
The strand-shaped molten resin extruded from the die provided at the end of the discharge section of the twin-screw extruder is cooled in a water tank and then cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (A-5). It was.
The methacrylic polymer (A-5) has an Mw of 80,000, a Mw / Mn of 1.8, a molecular weight of 15,000 or less (M ≤ 15,000) in an proportion of 6.60% by mass, and an imidization ratio of 7. At 0.0 mol%, the glass transition temperature was 130 ° C. Table 1 shows the physical characteristics of the methacrylic polymer (A-5).
製造例6
 懸濁重合法によって、メタクリル酸メチルに由来する構造単位が100.0質量%で、且つMwが420,000であるメタクリル重合体(B-1)を得た。メタクリル重合体(B-1)の物性を表1に示す。
Production example 6
By the suspension polymerization method, a methacrylic polymer (B-1) having a structural unit derived from methyl methacrylate in an amount of 100.0% by mass and an Mw of 420,000 was obtained. The physical characteristics of the methacrylic polymer (B-1) are shown in Table 1.
製造例7(メタクリル重合体(B-2)の製造)
 攪拌機および採取管付オートクレーブに、精製されたメタクリル酸メチル89質量部、およびアクリル酸メチル11質量部を入れて単量体混合物を得た。単量体混合物に重合開始剤(2,2’-アゾビス(2-メチルプロピオニトリル(AIBN)、水素引抜能:1%、1時間半減期温度:83℃)0.0026質量部および連鎖移動剤(n-オクチルメルカプタン)0.09質量部を加え溶解させて原料液を得た。窒素により製造装置内の酸素を追出した。前記原料液を、オートクレーブから一定量で排出し、温度140℃に制御された連続流通式槽型反応器に、平均滞留時間150分間となる流量で供給して、塊状重合させた。反応器の採取管より反応液を分取し、ガスクロマトグラフィーによって測定したところ、重合転化率は43質量%であった。
Production Example 7 (Production of methacrylic polymer (B-2))
89 parts by mass of purified methyl methacrylate and 11 parts by mass of methyl acrylate were placed in an autoclave with a stirrer and a sampling tube to obtain a monomer mixture. Polymerization initiator (2,2'-azobis (2-methylpropionitrile (AIBN), hydrogen extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.0026 parts by mass and chain transfer to the monomer mixture 0.09 part by mass of the agent (n-octyl mercaptan) was added and dissolved to obtain a raw material solution. Oxygen in the production apparatus was expelled with nitrogen. The raw material solution was discharged from the autoclave in a constant amount, and the temperature was 140. It was supplied to a continuous flow tank type reactor controlled at ° C. at a flow rate having an average residence time of 150 minutes for massive polymerization. The reaction solution was separated from the sampling tube of the reactor and measured by gas chromatography. As a result, the polymerization conversion rate was 43% by mass.
 反応器から排出される液を240℃に加温し、260℃に制御された二軸押出機に一定流量で供給した。該二軸押出機において未反応単量体を主成分とする揮発分が除去されて、樹脂成分がストランド状に押し出された。該ストランドをペレタイザでカットし、ペレット状のメタクリル重合体(B-2)を得た。メタクリル重合体(B-2)の物性を表1に示す。 The liquid discharged from the reactor was heated to 240 ° C. and supplied to a twin-screw extruder controlled at 260 ° C. at a constant flow rate. In the twin-screw extruder, the volatile matter containing the unreacted monomer as a main component was removed, and the resin component was extruded into a strand shape. The strand was cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (B-2). Table 1 shows the physical characteristics of the methacrylic polymer (B-2).
製造例8(メタクリル重合体(B-3)の製造)
 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル98.9質量部、アクリル酸メチル1.1質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0050質量部、およびn-オクチルメルカプタン0.26質量部を入れ、撹拌して、原料液を得た。かかる原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
 前記オートクレーブと配管で接続された槽型反応器に反応器容量の2/3まで原料液を入れた。槽型反応器への原料液供給口および槽型反応器からの反応液排出口を閉めて温度を140℃に維持してバッチ方式の重合反応を開始させた。重合転化率が55質量%になったところで、槽型反応器への原料液供給口および槽型反応器からの反応液排出口を開いて、平均滞留時間150分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、温度140℃に維持し、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は55質量%であった。
Production Example 8 (Production of methacrylic polymer (B-3))
The inside of the autoclave equipped with a stirrer and a sampling tube was replaced with nitrogen. To this, 98.9 parts by mass of purified methyl methacrylate, 1.1 parts by mass of methyl acrylate, 2,2'-azobis (2-methylpropionitrile (hydrogen extraction capacity: 1%, 1 hour half-life temperature). : 83 ° C.) 0.0050 parts by mass and 0.26 parts by mass of n-octyl mercaptan were added and stirred to obtain a raw material solution. Nitrogen was sent into the raw material solution to remove dissolved oxygen in the raw material solution. did.
The raw material liquid was put into the tank-type reactor connected to the autoclave by piping up to 2/3 of the reactor capacity. The raw material liquid supply port to the tank reactor and the reaction liquid discharge port from the tank reactor were closed, and the temperature was maintained at 140 ° C. to start the batch-type polymerization reaction. When the polymerization conversion rate reaches 55% by mass, open the raw material liquid supply port to the tank reactor and the reaction liquid discharge port from the tank reactor, and open the raw material liquid at a flow rate with an average residence time of 150 minutes. The reaction solution was withdrawn from the tank reactor at a flow rate corresponding to the supply flow rate of the raw material liquid and supplied from the autoclave to the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow type polymerization reaction. After switching, the polymerization conversion rate in the steady state was 55% by mass.
 反応器から排出される液を230℃に加温し、240℃に制御された二軸押出機に一定流量で供給した。該二軸押出機において未反応単量体を主成分とする揮発分が除去されて、樹脂成分がストランド状に押し出された。該ストランドをペレタイザでカットし、ペレット状のメタクリル重合体(B-3)を得た。メタクリル重合体(B-3)の物性を表1に示す。 The liquid discharged from the reactor was heated to 230 ° C. and supplied to a twin-screw extruder controlled to 240 ° C. at a constant flow rate. In the twin-screw extruder, the volatile matter containing the unreacted monomer as a main component was removed, and the resin component was extruded into a strand shape. The strand was cut with a pelletizer to obtain a pellet-shaped methacrylic polymer (B-3). The physical characteristics of the methacrylic polymer (B-3) are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例9(架橋ゴム粒子(C-1)の製造)
 撹拌機、温度計、窒素ガス導入部、単量体導入管および還流冷却器を備えた反応器に、脱イオン水1050質量部、アルキルジフェニルエーテルジスルホン酸ナトリウム1質量部および炭酸ナトリウム0.05質量部を仕込み、反応器内を窒素ガスで十分に置換して実質的に酸素がない状態にした。その後、内温を80℃に設定した。そこに、過硫酸カリウム0.01質量部を投入し、5分間撹拌した。次いで、メタクリル酸メチル(MMA)93.7質量%、アクリル酸メチル(MA)6.1質量%およびメタクリル酸アリル(ALMA)0.2質量%からなる単量体混合物26.3質量部を20分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
 次いで、同反応器に、過硫酸カリウム3%水溶液0.05質量部を投入して5分間撹拌した。その後、アクリル酸n-ブチル79.1質量%、スチレン17.1質量%およびメタクリル酸アリル3.8質量%からなる単量体混合物157.4質量部を40分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
 次に、同反応器に、過硫酸カリウム3%水溶液0.5質量部を投入して5分間撹拌した。その後、メタクリル酸メチル93.7質量%、アクリル酸メチル6.0質量%およびn-オクチルメルカプタン(nOM、連鎖移動剤)0.3質量%を含む単量体混合物341質量部を100分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行って、平均粒子径が0.1μmである架橋ゴム粒子(C-1)を含むエマルジョンを得た。
 続いて、該エマルジョンを-30℃で4時間かけて凍結させた。凍結したエマルジョンの2倍量の80℃温水に凍結エマルジョンを投入、氷解させてスラリーを得た。スラリーを20分間80℃に保持した。その後、脱水し、70℃で乾燥させて、架橋ゴム粒子(C-1)の凝固物からなるパウダーを得た。
Production Example 9 (Production of crosslinked rubber particles (C-1))
A reactor equipped with a stirrer, a thermometer, a nitrogen gas introduction part, a monomer introduction tube and a reflux condenser, 1050 parts by mass of deionized water, 1 part by mass of sodium alkyldiphenyl ether disulfonate and 0.05 parts by mass of sodium carbonate. Was charged, and the inside of the reactor was sufficiently replaced with nitrogen gas to make it substantially oxygen-free. After that, the internal temperature was set to 80 ° C. 0.01 part by mass of potassium persulfate was added thereto, and the mixture was stirred for 5 minutes. Next, 20 parts by mass of a monomer mixture consisting of 93.7% by mass of methyl methacrylate (MMA), 6.1% by mass of methyl acrylate (MA) and 0.2% by mass of allyl methacrylate (ALMA) was added. It was continuously added dropwise over a minute. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.05 parts by mass of a 3% aqueous potassium persulfate solution was added to the reactor, and the mixture was stirred for 5 minutes. Then, 157.4 parts by mass of a monomer mixture composed of 79.1% by mass of n-butyl acrylate, 17.1% by mass of styrene and 3.8% by mass of allyl methacrylate was continuously added dropwise over 40 minutes. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.5 parts by mass of a 3% aqueous potassium persulfate solution was added to the reactor and stirred for 5 minutes. Then, 341 parts by mass of a monomer mixture containing 93.7% by mass of methyl methacrylate, 6.0% by mass of methyl acrylate and 0.3% by mass of n-octyl mercaptan (nOM, chain transfer agent) was applied over 100 minutes. It was dropped continuously. After completion of the dropping, a polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or more to obtain an emulsion containing crosslinked rubber particles (C-1) having an average particle diameter of 0.1 μm.
The emulsion was then frozen at −30 ° C. for 4 hours. The frozen emulsion was placed in warm water at 80 ° C., which was twice the amount of the frozen emulsion, and thawed to obtain a slurry. The slurry was kept at 80 ° C. for 20 minutes. Then, it was dehydrated and dried at 70 ° C. to obtain a powder composed of a coagulated product of crosslinked rubber particles (C-1).
製造例10(ブロック共重合体(D-1)の製造)
 20リットルの反応槽内部を脱気し、窒素で置換した後、室温にて乾燥トルエン10.29kg、ヘキサメチルトリエチレンテトラミン0.019kg、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム0.17molを含有するトルエン溶液0.35kgを加え、さらに、sec-ブチルリチウム0.077molを加えた。これにメタクリル酸メチル0.50kgを加え、室温で1時間反応させた。引き続き、重合液を-25℃に冷却し、アクリル酸n-ブチル1.21kgとアクリル酸ベンジル0.48kgとの混合液を1時間かけて滴下した。続いて、メタクリル酸メチル1.23kgを加え、反応液を室温に戻し、8時間攪拌した。次いで、反応液にメタノールを0.30kg添加して重合を停止させた。反応液を大量のメタノール中に注ぎ、析出した沈殿物を回収し、メタクリル酸メチル重合体ブロック(a1-1)-アクリル酸n-ブチル/アクリル酸ベンジル重合体ブロック(a2)-メタクリル酸メチル重合体ブロック(a1-2)からなるトリブロック構造のブロック共重合体(D-1)を得た。(a1-1):(a2):(a1-2)の質量比は14.6:49.5:35.9であった。ブロック共重合体(D-1)は、Mwが62600、Mw/Mnが1.11、屈折率ndが1.493、引張弾性率が612MPa、貯蔵弾性率G’と温度との関係をプロットしたグラフにおいてG’が急激に低下する温度(秩序-無秩序転移温度(ODTT);JISB0103-5113))が207℃であった。
Production Example 10 (Production of Block Copolymer (D-1))
After degassing the inside of a 20-liter reaction vessel and replacing it with nitrogen, dried toluene at room temperature 10.29 kg, hexamethyltriethylenetetramine 0.019 kg, isobutylbis (2,6-di-t-butyl-4-) 0.35 kg of a toluene solution containing 0.17 mol of (methylphenoxy) aluminum was added, and 0.077 mol of sec-butyllithium was further added. To this, 0.50 kg of methyl methacrylate was added, and the mixture was reacted at room temperature for 1 hour. Subsequently, the polymerization solution was cooled to −25 ° C., and a mixed solution of 1.21 kg of n-butyl acrylate and 0.48 kg of benzyl acrylate was added dropwise over 1 hour. Subsequently, 1.23 kg of methyl methacrylate was added, the reaction solution was returned to room temperature, and the mixture was stirred for 8 hours. Then, 0.30 kg of methanol was added to the reaction solution to terminate the polymerization. The reaction solution is poured into a large amount of methanol, and the precipitated precipitate is recovered. Methyl methacrylate polymer block (a1-1) -n-butyl acrylate / benzyl acrylate polymer block (a2) -methyl methacrylate. A block copolymer (D-1) having a triblock structure composed of a coalesced block (a1-2) was obtained. The mass ratio of (a1-1): (a2): (a1-2) was 14.6: 49.5: 35.9. Block co polymer (D-1) is, Mw is 62600, Mw / Mn is 1.11, the refractive index n d 1.493, tensile modulus 612MPa, plotting the relationship between the storage modulus G 'and temperature In the graph shown above, the temperature at which G'decreased sharply (order-disorder transition temperature (ODTT); JISB0103-5113)) was 207 ° C.
実施例1
 メタクリル重合体(A-1)10質量部、およびメタクリル重合体(B-1)90質量部を、二軸混練押出機(TEX-44α、L/D=40、日本製鋼所社製)を用いてシリンダー温度260℃、スクリュー回転数100rpmで混練し押出して、ペレット状のメタクリル樹脂〔1〕を得た。メタクリル樹脂〔1〕の評価結果を表2に示す。
Example 1
10 parts by mass of methacrylic polymer (A-1) and 90 parts by mass of methacrylic polymer (B-1) were used in a twin-screw kneading extruder (TEX-44α, L / D = 40, manufactured by Japan Steel Works, Ltd.). The mixture was kneaded and extruded at a cylinder temperature of 260 ° C. and a screw rotation speed of 100 rpm to obtain a pellet-shaped methacrylic resin [1]. The evaluation results of the methacrylic resin [1] are shown in Table 2.
実施例2~3、比較例1~7および参考例1
 メタクリル重合体(A-1)~(A-5)およびメタクリル重合体(B-1)~(B-3)を表2に示す質量比に変更した以外は実施例1と同じ方法でメタクリル樹脂〔2〕~〔11〕を得た。メタクリル樹脂〔2〕~〔11〕の評価結果を表2に示す。
Examples 2 to 3, Comparative Examples 1 to 7 and Reference Example 1
The methacrylic resin by the same method as in Example 1 except that the methacrylic polymers (A-1) to (A-5) and the methacrylic polymers (B-1) to (B-3) were changed to the mass ratios shown in Table 2. [2] to [11] were obtained. Table 2 shows the evaluation results of the methacrylic resins [2] to [11].
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
実施例4
 メタクリル樹脂〔1〕100質量部、ジクロロメタン483質量部、およびメタノール42質量部をミキシングタンクに投入し、25℃にて撹拌して、メタクリル樹脂〔1〕を溶解させて、固形分濃度16質量%のドープ〔1〕を得た。ドープ〔1〕の評価結果を表3に示す。
Example 4
100 parts by mass of methacrylic resin [1], 483 parts by mass of dichloromethane, and 42 parts by mass of methanol were put into a mixing tank and stirred at 25 ° C. to dissolve the methacrylic resin [1], and the solid content concentration was 16% by mass. Dope [1] was obtained. The evaluation results of the doping [1] are shown in Table 3.
実施例5~6、比較例8~15および参考例2
 メタクリル樹脂〔1〕をメタクリル樹脂〔2〕~〔11〕にそれぞれ変えた以外は実施例4と同じ方法で、固形分濃度16質量%のドープ〔2〕~〔11〕を得た。ドープ〔2〕~〔11〕の評価結果を表3に示す。
Examples 5-6, Comparative Examples 8-15 and Reference Example 2
Dopings [2] to [11] having a solid content concentration of 16% by mass were obtained in the same manner as in Example 4 except that the methacrylic resin [1] was changed to the methacrylic resins [2] to [11]. The evaluation results of the dopings [2] to [11] are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
実施例7
 メタクリル重合体(A-1)10質量部、メタクリル重合体(B-1)70質量部および、架橋ゴム粒子(C-1)20質量部を、二軸混練押出機(TEX-44α、L/D=40、日本製鋼所社製)を用いてシリンダー温度260℃、スクリュー回転数100rpmで混練し押出して、ペレット状のメタクリル樹脂組成物〔12〕を得た。メタクリル樹脂組成物〔12〕の評価結果を表4に示す。
Example 7
10 parts by mass of methacrylic polymer (A-1), 70 parts by mass of methacrylic polymer (B-1), and 20 parts by mass of crosslinked rubber particles (C-1) were used in a twin-screw kneading extruder (TEX-44α, L / D = 40, manufactured by Japan Steel Works, Ltd.) was kneaded and extruded at a cylinder temperature of 260 ° C. and a screw rotation speed of 100 rpm to obtain a pellet-shaped methacrylic resin composition [12]. The evaluation results of the methacrylic resin composition [12] are shown in Table 4.
実施例8、比較例16および参考例3
 メタクリル重合体(A-1)および(A-3)、メタクリル重合体(B-1)、架橋ゴム粒子(C-1)ならびにブロック共重合体(D-1)を表4に示す質量比に変更した以外は実施例7と同じ方法でメタクリル樹脂組成物〔13〕~〔15〕を得た。メタクリル樹脂組成物〔13〕~〔15〕の評価結果を表4に示す。
Example 8, Comparative Example 16 and Reference Example 3
The mass ratios of methacrylic polymers (A-1) and (A-3), methacrylic polymers (B-1), crosslinked rubber particles (C-1) and block copolymers (D-1) are shown in Table 4. Polymer resin compositions [13] to [15] were obtained in the same manner as in Example 7 except that they were changed. Table 4 shows the evaluation results of the methacrylic resin compositions [13] to [15].
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例9
 メタクリル樹脂組成物〔12〕100質量部、ジクロロメタン483質量部、およびメタノール42質量部をミキシングタンクに投入し、25℃にて撹拌して、メタクリル樹脂組成物〔12〕を溶解させて、固形分濃度16質量%のドープ〔12〕を得た。ドープ〔12〕の評価結果を表5に示す。
Example 9
100 parts by mass of methacrylic resin composition [12], 483 parts by mass of dichloromethane, and 42 parts by mass of methanol were put into a mixing tank and stirred at 25 ° C. to dissolve the methacrylic resin composition [12] and solid content. A dope [12] having a concentration of 16% by mass was obtained. The evaluation results of the doping [12] are shown in Table 5.
実施例10、比較例17および参考例4
 メタクリル樹脂組成物〔12〕をメタクリル樹脂組成物〔13〕~〔15〕にそれぞれ変えた以外は実施例9と同じ方法で、固形分濃度16質量%のドープ〔13〕~〔15〕を得た。ドープ〔13〕~〔15〕の評価結果を表5に示す。
Example 10, Comparative Example 17 and Reference Example 4
Dopings [13] to [15] having a solid content concentration of 16% by mass were obtained in the same manner as in Example 9 except that the methacrylic resin composition [12] was changed to the methacrylic resin compositions [13] to [15], respectively. It was. The evaluation results of the dopings [13] to [15] are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上のとおり、本発明のメタクリル樹脂またはメタクリル樹脂組成物は、透明性が高く、強度が高く、表面平滑性に優れ、耐熱性に優れた成形品を提供することができる。また、本発明のドープは、乾燥速度が速く、流延法による製造適性に優れる。 As described above, the methacrylic resin or the methacrylic resin composition of the present invention can provide a molded product having high transparency, high strength, excellent surface smoothness, and excellent heat resistance. In addition, the dope of the present invention has a high drying rate and is excellent in manufacturing suitability by the casting method.

Claims (13)

  1.  重量平均分子量MwAが30000以上であり、数平均分子量MnAに対する重量平均分子量MwAの比が1.0~1.4であり、且つガラス転移温度が125℃以上である、メタクリル重合体(A)と、 重量平均分子量MwBが80000~3000000で且つ重量平均分子量MwAの2.5倍以上である、メタクリル重合体(B)とを含有し、且つ
     メタクリル重合体(B)のせん断速度122秒-1且つ温度260℃における溶融粘度ηBがメタクリル重合体(A)のせん断速度122秒-1且つ温度260℃における溶融粘度ηAよりも高く、
     メタクリル重合体(B)に対するメタクリル重合体(A)の質量比が2/98~39/61であり、且つ
     重量基準の微分分子量分布曲線において重量分率微分値が最も高いピークトップ分子量MPtが100000~2000000である、
    メタクリル樹脂。
    A methacrylic polymer having a weight average molecular weight Mw A of 30,000 or more, a ratio of weight average molecular weight Mw A to a number average molecular weight Mn A of 1.0 to 1.4, and a glass transition temperature of 125 ° C. or more. A) and a methacrylic polymer (B) having a weight average molecular weight Mw B of 80,000 to 3,000,000 and 2.5 times or more the weight average molecular weight Mw A are contained, and the shear rate of the methacrylic polymer (B). 122 sec -1 and melt viscosity eta B at a temperature 260 ° C. is higher than the melt viscosity eta a at a shear rate of 122 sec -1 and a temperature 260 ° C. methacrylic polymer (a),
    The peak top molecular weight M Pt having the mass ratio of the methacrylic polymer (A) to the methacrylic polymer (B) of 2/98 to 39/61 and having the highest weight fraction differential value in the weight-based differential molecular weight distribution curve is 100,000 to 2000,000,
    Methacrylic resin.
  2.  重量基準の微分分子量分布曲線において、分子量が最も高いピークトップ分子量MPhの1/20以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下であり、且つ15000以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下である、請求項1に記載のメタクリル樹脂。 In the weight-based differential molecular weight distribution curve, the sum of the weight fraction differential values of the components having a molecular weight of 1/20 or less of the peak top molecular weight M Ph having the highest molecular weight is the sum of the weight fraction differential values of all the components. The methacrylic resin according to claim 1, wherein the total weight fraction derivative values of the components having a molecular weight of 2% or less and 15,000 or less are 2% or less with respect to the total weight fraction derivative values of all the components. ..
  3.  重量平均分子量MwAが40000~140000であり、且つ重量平均分子量MwBが160000~2000000である、請求項1または2に記載のメタクリル樹脂。 The methacrylic resin according to claim 1 or 2, wherein the weight average molecular weight Mw A is 40,000 to 140000 and the weight average molecular weight Mw B is 160000 to 20000000.
  4.  メタクリル重合体(A)の屈折率ndAとメタクリル重合体(B)の屈折率ndBとの差の絶対値|ndA-ndB|が0.005以下である、請求項1~3のいずれかひとつに記載のメタクリル樹脂。 The absolute value | n dA −n dB | of the difference between the refractive index n dA of the methacrylic polymer (A) and the refractive index n dB of the methacrylic polymer (B) is 0.005 or less, according to claims 1 to 3. The methacrylic resin described in any one.
  5.  請求項1~4のいずれかひとつに記載のメタクリル樹脂と、エラストマとを含む、樹脂組成物。 A resin composition containing the methacrylic resin according to any one of claims 1 to 4 and an elastomer.
  6.  重量平均分子量Mwが40000~140000であり、数平均分子量Mnに対する重量平均分子量Mwの比が1.0~1.4であり、屈折率ndが1.485~1.495であり、トライアドシンジオタクティシティ(rr)が63~80%であり、ガラス転移温度が125℃以上であり、且つメタクリル酸メチルに由来する構造単位を100質量%含むメタクリル重合体(A)からなる、樹脂改質剤。 The weight average molecular weight Mw of from 40,000 to 140,000, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn of 1.0-1.4, the refractive index n d is 1.485 to 1.495, triad Shinji Resin modification consisting of a methacrylic polymer (A) having an octancy (rr) of 63 to 80%, a glass transition temperature of 125 ° C. or higher, and containing 100% by mass of a structural unit derived from methyl methacrylate. Agent.
  7.  メタクリル重合体(A)は、重量基準の微分分子量分布曲線において15000以下の分子量を有する成分の重量分率微分値の合計が全成分の重量分率微分値の合計に対して2%以下である、請求項6に記載の樹脂改質剤。 In the methacrylic polymer (A), the total weight fraction differential values of the components having a molecular weight of 15,000 or less in the weight-based differential molecular weight distribution curve is 2% or less of the total weight fraction differential values of all the components. , The resin modifier according to claim 6.
  8.  請求項1~4のいずれかひとつに記載のメタクリル樹脂を含む、成形体。 A molded product containing the methacrylic resin according to any one of claims 1 to 4.
  9.  請求項1~4のいずれかひとつに記載のメタクリル樹脂を含み、厚さが20μm以上200μm以下である、フィルム。 A film containing the methacrylic resin according to any one of claims 1 to 4 and having a thickness of 20 μm or more and 200 μm or less.
  10.  光学用である、請求項9に記載のフィルム。 The film according to claim 9, which is for optics.
  11.  請求項1~4のいずれかひとつに記載のメタクリル樹脂と、有機溶剤とを含む、ドープ。 Doping containing the methacrylic resin according to any one of claims 1 to 4 and an organic solvent.
  12.  請求項11に記載のドープを支持体に流延させて液体膜を得、
     液体膜から有機溶剤を除去することを含む、フィルムの製造方法。
    The dope according to claim 11 is cast on a support to obtain a liquid film.
    A method for producing a film, which comprises removing an organic solvent from a liquid film.
  13.  フィルムの厚さが20μm以上200μm以下である、請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein the thickness of the film is 20 μm or more and 200 μm or less.
PCT/JP2020/028996 2019-07-30 2020-07-29 Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method WO2021020426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535378A JPWO2021020426A1 (en) 2019-07-30 2020-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139758 2019-07-30
JP2019139758 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020426A1 true WO2021020426A1 (en) 2021-02-04

Family

ID=74229936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028996 WO2021020426A1 (en) 2019-07-30 2020-07-29 Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2021020426A1 (en)
WO (1) WO2021020426A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200032A1 (en) * 2016-05-19 2017-11-23 株式会社クラレ Methacrylic resin composition and molded body
WO2018021449A1 (en) * 2016-07-29 2018-02-01 株式会社クラレ Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body
WO2018147234A1 (en) * 2017-02-07 2018-08-16 株式会社クラレ Acrylic resin biaxially oriented film and method for producing same
WO2018155467A1 (en) * 2017-02-22 2018-08-30 株式会社クラレ Methacrylic resin composition and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200032A1 (en) * 2016-05-19 2017-11-23 株式会社クラレ Methacrylic resin composition and molded body
WO2018021449A1 (en) * 2016-07-29 2018-02-01 株式会社クラレ Methacrylate resin composition, method for producing same, molded body, film, laminated film, and laminated molded body
WO2018147234A1 (en) * 2017-02-07 2018-08-16 株式会社クラレ Acrylic resin biaxially oriented film and method for producing same
WO2018155467A1 (en) * 2017-02-22 2018-08-30 株式会社クラレ Methacrylic resin composition and use thereof

Also Published As

Publication number Publication date
JPWO2021020426A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
TWI439474B (en) Methacrylic resin, which is molded into the manufacture of acrylic resins and methacrylic method
JP6725113B2 (en) Acrylic film
EP2090617B1 (en) (meth)acrylic resin composition, imidized (meth)acrylic resin composition, and film obtained by molding them
US11066544B2 (en) Optical resin composition and molded article
JP2007297619A (en) Thermoplastic resin composition, and extruded film or sheet
JP3642919B2 (en) Impact modifier and thermoplastic polymer composition containing the same
EP4023717A1 (en) Transparent thermoplastic resin composition, production method therefor, molded article obtained by molding transparent thermoplastic resin composition, and production method for molded article
JPWO2018212227A1 (en) Dope for film production and method for producing film
US10745505B2 (en) Graft copolymer and acrylic resin composition containing same
JP5711575B2 (en) Acrylic resin film
JP2011006647A (en) Acrylic polymer resin particles, and thermoplastic resin composition containing the acrylic resin particles
WO2021020426A1 (en) Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method
JP2020180184A (en) (meth) acrylic resin composition and molding thereof
JP2007191632A (en) Styrene-based resin composition, and molded form made from the same
JP7112403B2 (en) Methacrylic resin cast plate and its manufacturing method
WO2004035683A1 (en) Acrylic film and laminates comprising the same
JPH08225706A (en) Methacrylic resin composition
WO2021039628A1 (en) Core-shell crosslinked-rubber particles and methacrylic resin composition
JP5547828B2 (en) Thermoplastic resin composition and extruded product
JP2001064469A (en) Acrylic resin composition film and its laminate
JP2005060658A (en) Acrylic resin composition having antistatic property
JPH11147991A (en) Impact-resistant methacrylic molding material
JP4866592B2 (en) Microlens resin composition and molded body
JP2010243581A (en) Optical film made of acrylic resin containing phosphate
EP4130068A1 (en) Copolymer, resin composition, shaped object, filmy shaped object, and method for producing copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846388

Country of ref document: EP

Kind code of ref document: A1