WO2018021423A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2018021423A1
WO2018021423A1 PCT/JP2017/027081 JP2017027081W WO2018021423A1 WO 2018021423 A1 WO2018021423 A1 WO 2018021423A1 JP 2017027081 W JP2017027081 W JP 2017027081W WO 2018021423 A1 WO2018021423 A1 WO 2018021423A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
air electrode
interface region
solid electrolyte
fuel cell
Prior art date
Application number
PCT/JP2017/027081
Other languages
English (en)
French (fr)
Inventor
誠 大森
真司 藤崎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201780002006.4A priority Critical patent/CN109478648B/zh
Priority to DE112017000060.2T priority patent/DE112017000060T5/de
Priority to US15/869,949 priority patent/US10535882B2/en
Publication of WO2018021423A1 publication Critical patent/WO2018021423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • a fuel cell including a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode is known.
  • a material for the air electrode a perovskite oxide represented by the general formula ABO 3 and containing at least one of La and Sr at the A site is suitable (see, for example, Patent Document 1).
  • the output of the fuel cell may decrease as power generation is repeated.
  • the present inventors have newly found that one of the causes of the decrease in output is due to deterioration of the air electrode, and is related to the proportion of strontium oxide present in the region on the solid electrolyte layer side of the air electrode. .
  • the present invention is based on such new knowledge and aims to provide a fuel cell capable of suppressing a decrease in output.
  • the fuel cell according to the present invention includes a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode.
  • the air electrode has an interface region within 5 ⁇ m from the surface on the solid electrolyte layer side.
  • the interface region is represented by the general formula ABO 3 and includes a main phase composed of a perovskite oxide containing at least one of La and Sr at the A site, and a second phase composed of strontium oxide.
  • the area occupation ratio of the second phase in the cross section of the interface region is 0.05% or more and 3% or less.
  • Sectional view showing the configuration of the fuel cell Reflected electron image of cross section of interface region The figure which shows the image analysis result of FIG.
  • the fuel cell 10 is a so-called solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the fuel cell 10 may take the form of a vertical stripe type, a horizontal stripe type, a fuel electrode support type, an electrolyte flat plate type, or a cylindrical type.
  • FIG. 1 is a cross-sectional view showing the configuration of the fuel cell 10.
  • the fuel cell 10 includes a fuel electrode 20, a solid electrolyte layer 30, a barrier layer 40, and an air electrode 50.
  • the fuel electrode 20 functions as an anode of the fuel cell 10. As illustrated in FIG. 1, the fuel electrode 20 includes a fuel electrode current collecting layer 21 and a fuel electrode active layer 22.
  • the anode current collecting layer 21 is a porous body excellent in gas permeability.
  • materials conventionally used for SOFC anode current collecting layers can be used.
  • NiO nickel oxide
  • -8YSZ 8 mol% yttria is stabilized).
  • Zirconia and NiO—Y 2 O 3 (yttria).
  • NiO nickel oxide
  • Y 2 O 3 yttria
  • the thickness of the anode current collecting layer 21 can be set to 0.1 mm to 5.0 mm, for example.
  • the anode active layer 22 is disposed on the anode current collecting layer 21.
  • the anode active layer 22 is a denser porous body than the anode current collecting layer 21.
  • materials conventionally used for the anode active layer of SOFC can be used, for example, NiO-8YSZ.
  • NiO-8YSZ materials conventionally used for the anode active layer of SOFC
  • the thickness of the anode active layer 22 can be set to, for example, 5.0 ⁇ m to 30 ⁇ m.
  • the solid electrolyte layer 30 is disposed between the fuel electrode 20 and the air electrode 50. In the present embodiment, the solid electrolyte layer 30 is sandwiched between the fuel electrode 20 and the barrier layer 40. The solid electrolyte layer 30 has a function of transmitting oxygen ions generated at the air electrode 50. The solid electrolyte layer 30 is denser than the fuel electrode 20 and the air electrode 50.
  • the solid electrolyte layer 30 may contain ZrO 2 (zirconia) as a main component.
  • the solid electrolyte layer 30 may contain additives such as Y 2 O 3 (yttria) and / or Sc 2 O 3 (scandium oxide) in addition to zirconia. These additives function as stabilizers.
  • the molar composition ratio of the stabilizer to zirconia can be about 3:97 to 20:80. Therefore, examples of the material of the solid electrolyte layer 30 include 3YSZ, 8YSZ, 10YSZ, or ScSZ (scandia-stabilized zirconia).
  • the thickness of the solid electrolyte layer 30 can be set to 3 ⁇ m to 30 ⁇ m, for example.
  • the composition X containing the substance Y as the main component means that the substance Y accounts for 70% by weight or more, more preferably 90% by weight or more in the entire composition X. To do.
  • the barrier layer 40 is disposed between the solid electrolyte layer 30 and the air electrode 50.
  • the barrier layer 40 suppresses the formation of a high resistance layer between the solid electrolyte layer 30 and the air electrode 50.
  • the barrier layer 40 is denser than the fuel electrode 20 and the air electrode 50.
  • the barrier layer 40 can contain a ceria-based material such as GDC (gadolinium doped ceria) or SDC (samarium doped ceria) as a main component.
  • the thickness of the barrier layer 40 can be set to 3 ⁇ m to 20 ⁇ m, for example.
  • the air electrode 50 is disposed on the barrier layer 40.
  • the air electrode 50 functions as a cathode of the fuel cell 10.
  • the air electrode 50 is a porous body.
  • the air electrode 50 is represented by the general formula ABO 3 and contains a perovskite oxide containing at least one of La and Sr at the A site as a main component.
  • Examples of such a perovskite oxide include (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite), (La, Sr) FeO 3 (lanthanum strontium ferrite), and (La, Sr) CoO 3 ( Examples thereof include, but are not limited to, lanthanum strontium cobaltite, La (Ni, Fe) O 3 (lanthanum nickel ferrite), (La, Sr) MnO 3 (lanthanum strontium manganate), and the like.
  • the content of the perovskite oxide in the air electrode 50 is 70% by weight or more.
  • the content of the perovskite oxide in the air electrode 50 is preferably 90% by weight or more.
  • the air electrode 50 has a first surface 50S and a second surface 50T.
  • the first surface 50 ⁇ / b> S is a surface opposite to the solid electrolyte layer 30.
  • the second surface 50T is a surface on the solid electrolyte layer 30 side.
  • the air electrode 50 since the fuel cell 10 includes the barrier layer 40, the air electrode 50 is in contact with the barrier layer 40 on the second surface 50T. That is, in the present embodiment, the second surface 50T is an interface between the air electrode 50 and the barrier layer 40.
  • the air electrode 50 has a surface region 51 and an interface region 52.
  • the surface region 51 is a region of the air electrode 50 on the side opposite to the solid electrolyte layer 30.
  • the surface region 51 is a region of the air electrode 50 that is more than 5 ⁇ m away from the solid electrolyte layer 30.
  • the surface region 51 is a region of the air electrode 50 excluding the interface region 52.
  • the thickness of the surface region 51 is not particularly limited, but can be 5 ⁇ m to 300 ⁇ m.
  • the interface region 52 is a region of the air electrode 50 on the solid electrolyte layer 30 side.
  • the interface region 52 is a region within 5 ⁇ m from the second surface 50T.
  • the interface region 52 is a region within 5 ⁇ m from the barrier layer 40 in the air electrode 50.
  • the interface region 52 has a thickness of 5 ⁇ m.
  • the interface region 52 is a region of the air electrode 50 excluding the surface region 51.
  • the second surface 50T can be defined as a line in which the concentration of the element contained only in the air electrode 50 changes abruptly when the component concentration is mapped in a cross section parallel to the thickness direction. Specifically, a line where the concentration of the element substantially contained only in the air electrode 50 is 10% of the maximum concentration is defined as the second surface 50T.
  • the interface region 52 is represented by the general formula ABO 3 and contains a perovskite oxide containing at least Sr at the A site as a main component.
  • the area occupancy of the main phase composed of the perovskite oxide can be 97% or more and 99.5% or less.
  • the interface region 52 contains strontium oxide (SrO) as a subcomponent.
  • the area occupation ratio of the second phase constituted by SrO is 0.05% or more and 3% or less.
  • the “area occupation ratio of the substance Z in the cross section” refers to the ratio of the total area of the substance Z phase to the total area of the solid phase in the cross section. A method for calculating the area occupancy will be described later.
  • the average equivalent circle diameter of the second phase in the cross section of the interface region 52 is preferably 10 nm or more and 500 nm or less. Thereby, the deterioration rate of the interface region 52 can be further reduced.
  • the equivalent circle diameter is a diameter of a circle having the same area as the second phase on an analysis image obtained by analyzing an FE-SEM (Field Emission-Scanning Electron Microscope) image described later.
  • the average equivalent circle diameter is a value obtained by arithmetically averaging the equivalent circle diameters of 50 randomly selected second phases.
  • the 50 second phases that are to be measured for the equivalent circle diameter are preferably randomly selected from five or more FE-SEM images (10,000 magnifications) on the cross section of the interface region 52.
  • the second phase constituent elements of the main phase (for example, La and Co) may be dissolved.
  • the second phase may contain a trace amount of impurities other than SrO.
  • the interface region 52 is represented by the general formula ABO 3 , and is composed of a perovskite oxide different from the main phase and an oxide of the constituent elements of the main phase. May be included.
  • the oxide of the constituent element of the main phase include (Co, Fe) 3 O 4 and Co 3 O 4 .
  • (Co, Fe) 3 O 4 includes Co 2 FeO 4 , Co 1.5 Fe 1.5 O 4 , CoFe 2 O 4 , and the like.
  • the area occupancy of the third phase in the cross section of the interface region 52 can be 10% or less. Thereby, not only after firing but also microcracks after the thermal cycle test can be suppressed.
  • the thermal cycle test means that the temperature is raised from room temperature to 800 ° C. in 2 hours while maintaining a reducing atmosphere by supplying Ar gas and hydrogen gas (4% with respect to Ar) to the fuel electrode, and then at room temperature in 4 hours. This is a test in which the cycle to lower the temperature is repeated 10 times.
  • the surface region 51 is represented by the general formula ABO 3 and includes a main phase composed of a perovskite oxide containing at least Sr at the A site.
  • the area occupation ratio of the main phase in the cross section of the surface region 51 can be 95% or more.
  • the surface region 51 may not include the second phase composed of SrO, or may include the second phase. Note that, regardless of the presence or absence of the second phase in the cross section of the surface region 51 and the area occupancy of the second phase in the cross section of the surface region 51, the area occupancy of the second phase in the cross section of the interface region 52 described above. It has been experimentally confirmed that the effect of limiting the value to a predetermined range can be obtained.
  • the surface region 51 may include a third phase composed of the above-described perovskite oxide, an oxide of a constituent element of the main phase, or the like.
  • FIG. 2 is an example of a backscattered electron image showing a cross section of the interface region 52 magnified by a magnification of 10,000 by FE-SEM using a backscattered electron detector.
  • FIG. 2 shows a cross section of the air electrode 50 containing (La, Sr) (Co, Fe) O 3 as a main component.
  • the backscattered electron image in FIG. 2 was obtained by an FE-SEM (model: ULTRA55) manufactured by Zeiss (Germany) set at an acceleration voltage of 1.5 kV and a working distance of 2 mm.
  • the cross section of the interface region 52 is subjected to ion milling processing in advance by IM4000 of Hitachi High-Technologies Corporation after precision mechanical polishing.
  • the main phase (La, Sr) (Co, Fe) O 3 ) and the second phase (SrO) are different from each other in the brightness difference between the pores. Is displayed in “gray” and pores are displayed in “black”. Such ternarization by light and dark difference can be realized by classifying the luminance of an image into 256 gradations. From the contrast of the reflected electron image, the main phase, the second phase, and the pores can be identified.
  • FIG. 3 is a diagram showing a result of image analysis of the backscattered electron image and the EDX analysis result shown in FIG. 2 using image analysis software HALCON manufactured by MVTec (Germany).
  • the second phase is outlined and surrounded by a black solid line.
  • a mixed material containing a perovskite oxide as a main component and SrO as a subcomponent can be used.
  • SrO may be mixed in the form of strontium carbonate, strontium hydroxide or strontium nitrate.
  • the area occupancy of the second phase in the interface region 52 can be adjusted by adjusting the amount of the material powder containing SrO.
  • the average equivalent circle diameter of the second phase in the interface region 52 can be adjusted.
  • precise classification including adjustment of the upper limit value and the lower limit value of the particle size is possible by using an airflow classifier. If the particle size of the material powder containing SrO is made coarse, the average equivalent circle diameter of the second phase can be increased, and if the particle size is made fine, the average equivalent circle diameter of the second phase can be reduced. Further, if the particle size distribution of the material powder containing SrO is increased, the average equivalent circle diameter of the second phase can be increased, and if the particle size distribution is decreased, the average equivalent circle diameter of the second phase can be reduced.
  • a molded body of the anode current collecting layer 21 is formed by molding the anode current collecting layer material powder by a die press molding method.
  • a fuel electrode active layer slurry is prepared by adding PVA (polyvinyl alcohol) as a binder to a mixture of the fuel electrode active layer material powder and a pore-forming agent (for example, PMMA).
  • PVA polyvinyl alcohol
  • a pore-forming agent for example, PMMA
  • the solid electrolyte layer 30 molded body is formed by applying the solid electrolyte layer slurry on the molded body of the fuel electrode active layer 22 by a printing method or the like.
  • terpineol and a binder are mixed with the barrier layer material powder to prepare a barrier layer slurry.
  • the molded object of the barrier layer 40 is formed by apply
  • the fuel electrode 20, the solid electrolyte layer 30, and the barrier layer 40 are fired (1350 ° C. to 1450 ° C., 1 hour to 20 hours) to form the fuel electrode 20, the solid electrolyte layer 30, and the barrier layer 40. Form.
  • a mixed material of a perovskite type oxide material represented by the general formula ABO 3 and containing at least one of La and Sr at the A site and a material containing SrO, and water and a binder are mixed for 24 hours by a ball mill.
  • An area slurry is prepared.
  • the area occupancy of the second phase in the interface region 52 after firing can be controlled by adjusting the amount of SrO mixed.
  • an interface region slurry is applied on the barrier layer 40 by a printing method or the like to form a molded body of the interface region 52.
  • the thickness of the interface region 52 after firing can be controlled within 5 ⁇ m by adjusting the amount of slurry applied.
  • a perovskite oxide material represented by the general formula ABO 3 and containing at least one of La and Sr at the A site, water and a binder are mixed with a ball mill for 24 hours to prepare a slurry for the surface region.
  • the surface area 51 is formed by applying the surface area slurry on the interface area 52 by a printing method or the like.
  • the air electrode 50 is formed by firing the molded body of the air electrode 50 (1000 to 1100 ° C., 1 to 10 hours).
  • the fuel cell 10 may include a current collecting layer disposed on the air electrode 50 (surface region 51).
  • Collector layer for example can be constituted by La m (Ni 1-xy Fe x Cu y) n O 3- ⁇ . Substances other than La may be contained in the A site of the composition formula, and substances other than Ni, Fe and Cu may be contained in the B site.
  • m and n are 0.95 or more and 1.05 or less, x is 0.03 or more and 0.3 or less, y is 0.05 or more and 0.5 or less, and ⁇ is 0 or more and 0.8 or less. can do.
  • the thickness of the current collecting layer is not particularly limited, but can be 30 ⁇ m to 500 ⁇ m.
  • the fuel cell 10 is provided with the barrier layer 40, but may not be provided with the barrier layer 40.
  • the interface region 52 of the air electrode 50 is sandwiched between the surface region 51 and the solid electrolyte layer 30.
  • the barrier layer 40 has a single layer structure, but may have a multilayer structure in which a dense barrier layer and a porous barrier layer are laminated (in no particular order).
  • NiO powder and Y 2 O 3 powder and the pore former (PMMA) slurry prepared by mixing blended powder and of IPA to prepare a mixed powder by drying under a nitrogen atmosphere.
  • the mixed powder is uniaxially pressed (molding pressure 50 MPa) to form a plate 30 mm long ⁇ 30 mm wide and 3 mm thick, and the plate is further consolidated with CIP (molding pressure: 100 MPa) to collect the fuel electrode.
  • CIP molding pressure: 100 MPa
  • terpineol and a binder were mixed with 8YSZ to prepare a YSZ slurry, and the YSZ slurry was applied on the fuel electrode molded body to form a solid electrolyte layer molded body.
  • terpineol and a binder were mixed with GDC to prepare a GDC slurry, and the GDC slurry was applied onto the solid electrolyte layer molded body to produce a molded body of the barrier layer.
  • the molded body of the fuel electrode, the solid electrolyte layer, and the barrier layer was fired (1450 ° C., 5 hours) to form the fuel electrode, the solid electrolyte layer, and the barrier layer.
  • a mixed material of a perovskite oxide material shown in Table 1 and a material containing SrO was prepared.
  • the amount of SrO added in each sample was adjusted so that the area occupancy of the second phase (SrO) in the cross section of the interface region after firing became the value shown in Table 1.
  • the particle size of SrO was adjusted so that the average equivalent circle diameter of the second phase would be the value shown in Table 1.
  • a slurry for an interface region was prepared by mixing terpineol and a binder with the prepared mixed material. And the molded object of the interface area
  • a slurry for the surface region was prepared by mixing terpineol and a binder with the perovskite oxide material shown in Table 1.
  • the material containing SrO was not added to the slurry for the surface region.
  • the surface region molded body was prepared by applying the surface region slurry onto the interface region molded body.
  • the molded body in the interface region and the surface region was fired (1100 ° C., 1 hour) to form an air electrode.
  • FIG. 5 is a reflected electron image in a cross section of the interface region of FIG.
  • Average equivalent circle diameter of the second phase The average equivalent circle diameter of 50 second phases randomly selected from the five analysis images used for calculating the area occupancy was calculated.
  • the calculation result of the average equivalent circle diameter of the second phase is as shown in Table 1.
  • the voltage drop rate per 1000 hours was measured as the deterioration rate.
  • As the output density a value at a temperature of 750 ° C. and a rated current density of 0.2 A / cm 2 was used. The measurement results are summarized in Table 1. In this example, a sample having a deterioration rate of 1.5% or less is evaluated as a low deterioration state.
  • the deterioration rate of the air electrode is reduced to 1.5% or less. It was possible to suppress the occurrence of microcracks. This is because the inactive part in the interface region can be reduced by setting the area occupancy of the second phase to 3% or less, and the area occupancy of the second phase is set to 0.05% or more. This is because the sinterability was improved and the porous structure was strengthened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池(10)は、燃料極(20)と、空気極(50)と、燃料極(20)および空気極(50)の間に配置される固体電解質層(30)とを備える。空気極(50)は、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物を主成分として含有する。空気極(50)は、固体電解質層(30)側の表面(50S)から5μm以内の界面領域(52)を有する。界面領域(52)は、ペロブスカイト型酸化物によって構成される主相と、酸化ストロンチウムによって構成される第二相とを含む。界面領域(52)の断面における第二相の面積占有率は、0.05%以上3%以下である。

Description

燃料電池
 本発明は、燃料電池に関する。
 従来、燃料極と、空気極と、燃料極と空気極の間に配置される固体電解質層とを備える燃料電池が知られている。空気極の材料としては、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物が好適である(例えば、特許文献1参照)。
特開2006-32132号公報
 しかしながら、発電を繰り返すうちに燃料電池の出力が低下する場合がある。本発明者らは、出力の低下の原因の1つが空気極の劣化によるものであり、この空気極のうち固体電解質層側の領域に存在する酸化ストロンチウムの割合に関係することを新たに見出した。
 本発明は、このような新たな知見に基づくものであって、出力低下を抑制可能な燃料電池を提供することを目的とする。
 本発明に係る燃料電池は、燃料極と、空気極と、燃料極および空気極の間に配置される固体電解質層とを備える。空気極は、固体電解質層側の表面から5μm以内の界面領域を有する。界面領域は、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物によって構成される主相と、酸化ストロンチウムによって構成される第二相とを含む。界面領域の断面における第二相の面積占有率は、0.05%以上3%以下である。
 本発明によれば、出力低下を抑制可能な燃料電池を提供することができる。
燃料電池の構成を示す断面図 界面領域断面の反射電子像 図2の画像解析結果を示す図
 次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。
 (燃料電池10の構成)
 燃料電池10の構成について、図面を参照しながら説明する。燃料電池10は、いわゆる固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。燃料電池10は、縦縞型、横縞型、燃料極支持型、電解質平板型、或いは円筒型などの形態を取りうる。
 図1は、燃料電池10の構成を示す断面図である。燃料電池10は、燃料極20、固体電解質層30、バリア層40及び空気極50を備える。
 燃料極20は、燃料電池10のアノードとして機能する。燃料極20は、図1に示すように、燃料極集電層21と燃料極活性層22を有する。
 燃料極集電層21は、ガス透過性に優れる多孔質体である。燃料極集電層21を構成する材料としては、従来SOFCの燃料極集電層に用いられてきた材料を用いることができ、例えばNiO(酸化ニッケル)-8YSZ(8mol%のイットリアで安定化されたジルコニア)やNiO‐Y23(イットリア)が挙げられる。燃料極集電層21がNiOを含んでいる場合、燃料電池10の作動中においてNiOの少なくとも一部はNiに還元されていてもよい。燃料極集電層21の厚みは、例えば0.1mm~5.0mmとすることができる。
 燃料極活性層22は、燃料極集電層21上に配置される。燃料極活性層22は、燃料極集電層21より緻密な多孔質体である。燃料極活性層22を構成する材料としては、従来SOFCの燃料極活性層に用いられてきた材料を用いることができ、例えばNiO‐8YSZが挙げられる。燃料極活性層22がNiOを含んでいる場合、燃料電池10の作動中においてNiOの少なくとも一部はNiに還元されていてもよい。燃料極活性層22の厚みは、例えば5.0μm~30μmとすることができる。
 固体電解質層30は、燃料極20と空気極50の間に配置される。本実施形態において、固体電解質層30は、燃料極20とバリア層40に挟まれている。固体電解質層30は、空気極50で生成される酸素イオンを透過させる機能を有する。固体電解質層30は、燃料極20や空気極50よりも緻密質である。
 固体電解質層30は、ZrO2(ジルコニア)を主成分として含んでいてもよい。固体電解質層30は、ジルコニアの他に、Y23(イットリア)及び/又はSc23(酸化スカンジウム)等の添加剤を含んでいてもよい。これらの添加剤は、安定化剤として機能する。固体電解質層30において、安定化剤のジルコニアに対するmol組成比(安定化剤:ジルコニア)は、3:97~20:80程度とすることができる。従って、固体電解質層30の材料としては、例えば、3YSZ、8YSZ、10YSZ、或いはScSZ(スカンジアで安定化されたジルコニア)などが挙げられる。固体電解質層30の厚みは、例えば3μm~30μmとすることができる。
 本実施形態において、組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが70重量%以上を占め、より好ましくは90重量%以上を占めることを意味する。
 バリア層40は、固体電解質層30と空気極50の間に配置される。バリア層40は、固体電解質層30と空気極50の間に高抵抗層が形成されることを抑制する。バリア層40は、燃料極20や空気極50よりも緻密質である。バリア層40は、GDC(ガドリニウムドープセリア)やSDC(サマリウムドープセリア)などのセリア系材料を主成分とすることができる。バリア層40の厚みは、例えば3μm~20μmとすることができる。
 空気極50は、バリア層40上に配置される。空気極50は、燃料電池10のカソードとして機能する。空気極50は、多孔質体である。空気極50は、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物を主成分として含む。このようなペロブスカイト型酸化物としては、(La,Sr)(Co,Fe)O3(ランタンストロンチウムコバルトフェライト)、(La,Sr)FeO3(ランタンストロンチウムフェライト)、(La,Sr)CoO3(ランタンストロンチウムコバルタイト)、La(Ni,Fe)O3(ランタンニッケルフェライト)、(La,Sr)MnO3(ランタンストロンチウムマンガネート)などが挙げられるが、これに限られるものではない。
 空気極50における上記ペロブスカイト型酸化物の含有率は、70重量%以上である。空気極50における上記ペロブスカイト型酸化物の含有率は、90重量%以上であることが好ましい。
 空気極50は、第1表面50Sと第2表面50Tとを有する。第1表面50Sは、固体電解質層30と反対側の表面である。第2表面50Tは、固体電解質層30側の表面である。本実施形態では、燃料電池10がバリア層40を備えているため、空気極50は第2表面50Tにおいてバリア層40と接触する。すなわち、本実施形態において、第2表面50Tは空気極50とバリア層40との界面である。
 (空気極50の構成)
 空気極50は、表面領域51と界面領域52とを有する。
 表面領域51は、空気極50のうち固体電解質層30と反対側の領域である。表面領域51は、空気極50のうち固体電解質層30から5μm超離れた領域である。表面領域51は、空気極50のうち界面領域52を除いた領域である。表面領域51の厚みは特に制限されないが、5μm~300μmとすることができる。
 界面領域52は、空気極50のうち固体電解質層30側の領域である。界面領域52は、第2表面50Tから5μm以内の領域である。界面領域52は、空気極50のうちバリア層40から5μm以内の領域である。界面領域52の厚みは、5μmである。界面領域52は、空気極50のうち表面領域51を除いた領域である。
 ここで、第2表面50Tは、厚み方向に平行な断面において成分濃度をマッピングした場合に、空気極50にのみ含まれる元素の濃度が急激に変化するラインに規定することができる。具体的には、実質的に空気極50にのみ含まれる元素の濃度が、その最大濃度の10%となるラインを第2表面50Tとする。
 界面領域52は、一般式ABO3で表され、Aサイトに少なくともSrを含むペロブスカイト型酸化物を主成分として含有する。界面領域52の断面において、当該ペロブスカイト型酸化物によって構成される主相の面積占有率は、97%以上99.5%以下とすることができる。
 界面領域52は、酸化ストロンチウム(SrO)を副成分として含有する。界面領域52の断面において、SrOによって構成される第二相の面積占有率は、0.05%以上3%以下である。第二相の面積占有率を3%以下とすることによって、界面領域52内部の不活性部が低減されるため、第二相と主相の反応によって通電中に界面領域52の劣化が進行することを抑制できる。また、第二相の面積占有率を0.05%以上とすることによって、界面領域52の焼結性を改善して多孔質構造の骨格を強化することができるため、通電中に界面領域52の微構造が変化することを抑制できる。以上の結果、空気極50の耐久性を向上させることができる。
 本実施形態において「断面における物質Zの面積占有率」とは、断面における固相の総面積に対する物質Z相の合計面積の割合をいう。面積占有率の算出方法については後述する。
 界面領域52の断面における第二相の平均円相当径は、10nm以上500nm以下であることが好ましい。これによって、界面領域52の劣化率をより低減させることができる。円相当径とは、後述するFE-SEM(Field Emission - Scanning Electron Microscope:電界放射型走査型電子顕微鏡)画像を解析した解析画像上において第二相と同じ面積を有する円の直径である。平均円相当径とは、無作為に選出した50個の第二相の円相当径を算術平均した値である。円相当径の測定対象である50個の第二相は、界面領域52の断面上における5箇所以上のFE-SEM画像(倍率10000倍)から無作為に選出することが好ましい。
 第二相には、主相の構成元素(例えば、LaやCoなど)が固溶していてもよい。また、第二相には、SrO以外の微量の不純物が含まれていてもよい。
 界面領域52は、主相と第二相のほか、一般式ABO3で表され、主相とは異なるペロブスカイト型酸化物、及び主相の構成元素の酸化物などによって構成される第三相を含んでいてもよい。主相の構成元素の酸化物としては、例えば、(Co,Fe)34、及びCo34などが挙げられる。(Co,Fe)34には、Co2FeO4、Co1.5Fe1.54、及びCoFe24などが含まれる。
 界面領域52の断面における第三相の面積占有率は、10%以下とすることができる。これによって、焼成後だけでなく熱サイクル試験後における微小クラックも抑制することができる。熱サイクル試験とは、Arガス及び水素ガス(Arに対して4%)を燃料極に供給することで還元雰囲気を維持しつつ、常温から800℃まで2時間で昇温した後に4時間で常温まで降温させるサイクルを10回繰り返す試験である。
 表面領域51は、一般式ABO3で表され、Aサイトに少なくともSrを含むペロブスカイト型酸化物によって構成される主相を含む。表面領域51の断面における主相の面積占有率は、95%以上とすることができる。表面領域51は、SrOによって構成される第二相を含んでいなくてもよいし、第二相を含んでいてもよい。なお、表面領域51の断面における第二相の有無、及び、表面領域51の断面における第二相の面積占有率の大小に関わらず、上述した界面領域52の断面における第二相の面積占有率を所定範囲に制限することによる効果が得られることは実験的に確認済みである。表面領域51は、主相のほか、上述のペロブスカイト型酸化物や主相の構成元素の酸化物などによって構成される第三相を含んでいてもよい。
 (面積占有率の算出方法)
 次に、図面を参照しながら、界面領域52の断面における第二相の面積占有率の算出方法について説明する。以下においては、第二相の面積占有率の算出方法について説明するが、主相及び第三相の面積占有率についても同様に算出することができる。
 (1)反射電子像
 図2は、反射電子検出器を用いたFE-SEMによって倍率1万倍に拡大された界面領域52の断面を示す反射電子像の一例である。図2では、(La,Sr)(Co,Fe)O3を主成分として含有する空気極50の断面が示されている。図2の反射電子像は、加速電圧:1.5kV、ワーキングディスタンス:2mmに設定されたZeiss社(ドイツ)製のFE-SEM(型式:ULTRA55)によって得られたものである。界面領域52の断面には、精密機械研磨後に株式会社日立ハイテクノロジーズのIM4000によってイオンミリング加工処理が予め施されている。
 図2の反射電子像では、主相(La,Sr)(Co,Fe)O3)と第二相(SrO)と気孔の明暗差が異なっており、主相が“灰白色”、第二相が“灰色”、気孔が“黒色”で表示されている。このような明暗差による3値化は、画像の輝度を256階調に分類することによって実現可能である。この反射電子像のコントラストから、主相、第二相及び気孔を同定することができる。
 (2)反射電子像の解析
 図3は、図2に示す反射電子像とEDX分析結果とをMVTec社(ドイツ)製の画像解析ソフトHALCONによって画像解析した結果を示す図である。図3では、第二相が黒色実線で囲まれて白抜きされている。
 (3)面積占有率の算出
 図3の解析画像において、白抜きされた第二相の合計面積を算出する。そして、反射電子像における固相全体の合計面積に対する第二相の合計面積の割合を算出する。このような解析を界面領域52の同一断面上の5箇所で行い、5箇所それぞれで算出された第二相の合計面積の割合を算術平均した値が、界面領域52における第二相の面積占有率である。
 (界面領域52の材料)
 界面領域52を構成する空気極材料としては、主成分としてのペロブスカイト型酸化物と副成分としてのSrOとを含む混合材料を用いることができる。SrOは、炭酸ストロンチウム、水酸化ストロンチウム又は硝酸ストロンチウムの形態で混合されていてもよい。
 SrOを含む材料粉末の添加量を調整することによって、界面領域52における第二相の面積占有率を調整することができる。
 SrOを含む材料粉末の粒度を調整することによって、界面領域52における第二相の平均円相当径を調整することができる。SrOを含む材料粉末の粒度調整においては、気流式分級機を用いることによって、粒径の上限値及び下限値の調整を含む精密な分級が可能である。SrOを含む材料粉末の粒度を粗くすれば第二相の平均円相当径を大きくすることができ、粒度を細かくすれば第二相の平均円相当径を小さくすることができる。また、SrOを含む材料粉末の粒度分布を大きくすれば第二相の平均円相当径を大きくすることができ、粒度分布を小さくすれば第二相の平均円相当径を小さくすることができる。
 (燃料電池10の製造方法)
 次に、燃料電池10の製造方法の一例について説明する。
 まず、金型プレス成形法で燃料極集電層用材料粉末を成形することによって、燃料極集電層21の成形体を形成する。
 次に、燃料極活性層用材料粉末と造孔剤(例えばPMMA)との混合物にバインダーとしてPVA(ポリビニルアルコール)を添加して燃料極活性層用スラリーを作製する。そして、印刷法などによって燃料極活性層用スラリーを燃料極集電層21の成形体上に印刷することによって、燃料極活性層22の成形体を形成する。以上により燃料極20の成形体が形成される。
 次に、固体電解質層用材料粉末にテルピネオールとバインダーを混合して固体電解質層用スラリーを作製する。そして、印刷法などによって固体電解質層用スラリーを燃料極活性層22の成形体上に塗布することによって、固体電解質層30の成形体を形成する。
 次に、バリア層用材料粉末にテルピネオールとバインダーを混合してバリア層用スラリーを作製する。そして、印刷法などでバリア層用スラリーを中間層40の成形体上に塗布することによってバリア層40の成形体を形成する。
 次に、燃料極20、固体電解質層30及びバリア層40それぞれの成形体を焼成(1350℃~1450℃、1時間~20時間)することによって、燃料極20、固体電解質層30及びバリア層40を形成する。
 次に、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物材料とSrOを含む材料との混合材料と水とバインダーをボールミルで24時間混合することによって界面領域用スラリーを作製する。この際、SrOの混合量を調整することによって、焼成後の界面領域52における第二相の面積占有率を制御することができる。
 次に、印刷法などによって界面領域用スラリーをバリア層40上に塗布することによって、界面領域52の成形体を形成する。この際、スラリーの塗布量を調整することによって、焼成後の界面領域52の厚みを5μm以内に制御することができる。
 次に、一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物材料と水とバインダーをボールミルで24時間混合することによって表面領域用スラリーを作製する。
 次に、印刷法などによって表面領域用スラリーを界面領域52の成形体上に塗布することによって、表面領域51の成形体を形成する。
 次に、空気極50の成形体を焼成(1000~1100℃、1~10時間)することによって空気極50を形成する。
 (他の実施形態)
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
 燃料電池10は、空気極50(表面領域51)上に配置される集電層を備えていてもよい。集電層は、例えばLam(Ni1-x-yFexCuyn3-δによって構成することができる。当該組成式のAサイトにはLa以外の物質が含まれていてもよく、BサイトにはNi、Fe及びCu以外の物質が含まれていてもよい。m及びnは0.95以上1.05以下であり、xは0.03以上0.3以下であり、yは0.05以上0.5以下であり、δは0以上0.8以下とすることができる。集電層の厚みは特に制限されないが、30μm~500μmとすることができる。
 燃料電池10は、バリア層40を備えることとしたが、バリア層40を備えていなくてもよい。この場合、空気極50の界面領域52は、表面領域51と固体電解質層30の間に挟まることになる。
 バリア層40は、単層構造であることとしたが、緻密質のバリア層と多孔質のバリア層が積層(順不同)された複層構造であってもよい。
 以下において本発明に係る燃料電池の実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。
 (サンプルNo.1~No.12の作製)
 以下のようにして、サンプルNo.1~No.12に係る燃料電池を作製した。
 まず、NiO粉末とY23粉末と造孔材(PMMA)の調合粉末とIPAを混合したスラリーを窒素雰囲気下で乾燥させることによって混合粉末を作製した。
 次に、混合粉末を一軸プレス(成形圧50MPa)することで縦30mm×横30mm、厚み3mmの板を成形し、その板をCIP(成形圧:100MPa)でさらに圧密することによって燃料極集電層の成形体を作製した。
 次に、NiO‐8YSZとPMMAの調合粉末とIPAを混合したスラリーを燃料極集電層の成形体上に塗布した。
 次に、8YSZにテルピネオールとバインダーを混合してYSZスラリーを調製し、YSZスラリーを燃料極の成形体上に塗布することによって固体電解質層の成形体を形成した。
 次に、GDCにテルピネオールとバインダーを混合してGDCスラリーを調製し、GDCスラリーを固体電解質層の成形体上に塗布することによってバリア層の成形体を作製した。
 次に、燃料極、固体電解質層及びバリア層の成形体を焼成(1450℃、5時間)して、燃料極、固体電解質層及びバリア層を形成した。
 次に、表1に示すペロブスカイト型酸化物材料とSrOを含む材料との混合材料を調製した。この際、焼成後の界面領域の断面における第二相(SrO)の面積占有率が表1に示す値になるように、各サンプルにおけるSrOの添加量を調整した。また、第二相の平均円相当径が表1に示す値になるように、SrOの粒度を調整した。
 次に、調製した混合材料にテルピネオールとバインダーを混合することによって界面領域用スラリーを調製した。そして、バリア層上に界面領域用スラリーを塗布することによって、界面領域の成形体を作製した。この際、焼成後の界面領域の厚みが5μmとなるようにスラリーの塗布量を調整した。
 次に、表1に示すペロブスカイト型酸化物材料にテルピネオールとバインダーを混合することによって表面領域用スラリーを作製した。表面領域用スラリーには、SrOを含む材料を添加しなかった。そして、界面領域の成形体上に表面領域用スラリーを塗布することによって表面領域の成形体を作製した。
 次に、界面領域及び表面領域の成形体を焼成(1100℃、1時間)して空気極を形成した。
 (面積占有率の測定)
 各サンプルの空気極を精密機械研磨した後に、株式会社日立ハイテクノロジーズのIM4000によってイオンミリング加工処理を施した。
 次に、反射電子検出器を用いたFE-SEMによって倍率1万倍に拡大された界面領域の断面における5箇所で反射電子像を取得した。図2は、サンプルNo.5の界面領域の断面における反射電子像である。
 次に、各サンプルの反射電子像をMVTec社製画像解析ソフトHALCONで解析することによって解析画像を取得した(図3参照)。図3では、SrOによって構成される第二相が白抜きで表示されている。
 そして、反射電子像における固相の合計面積に対する第二相の合計面積の割合を5箇所それぞれで算出し、それらの算術平均値を第二相の面積占有率として算出した。第二相の面積占有率の算出結果は、表1に示す通りである。
 (第二相の平均円相当径)
 面積占有率の算出に用いた5枚の解析画像から無作為に選出した50個の第二相の平均円相当径を算出した。第二相の平均円相当径の算出結果は、表1に示す通りである。
 (耐久性試験)
 サンプルNo.1~No.12において、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。
 その後、1000時間当たりの電圧降下率を劣化率として測定した。出力密度として、温度が750℃で定格電流密度0.2A/cm2での値を使用した。測定結果を表1にまとめて記載する。本実施例では、劣化率が1.5%以下であるサンプルが低劣化状態と評価されている。
 また耐久性試験後に空気極の断面を電子顕微鏡で観察することによって、界面領域におけるクラックの有無を観察した。表1では、5μm以上のクラックが確認されたサンプルが「有」と評価され、5μm未満のクラックが確認されたサンプルが「有(軽微)」と評価されている。観察結果を表1にまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、界面領域における第二相(SrO)の面積占有率を0.05%以上3%以下としたサンプルでは、空気極の劣化率を1.5%以下に低減するとともに、微小クラックの発生を抑制することができた。これは、第二相の面積占有率を3%以下とすることによって界面領域における不活性部を低減でき、かつ、第二相の面積占有率を0.05%以上とすることによって空気極の焼結性を改善して多孔質構造の骨格を強化できたためである。
 また、表1に示されるように第二相の平均円相当径が10nm以上500nm以下のサンプルでは、界面領域における微小クラックの発生をさらに抑えることができた。
 なお、本実施例では、表面領域が第二相を含まないサンプルについて評価したが、表面領域が第二相を含む場合であっても、表面領域の断面における第二相の面積占有率の大小に関わらず、上述した効果が得られることは実験的に確認済みである。
 10   燃料電池
 20   燃料極
 30   固体電解質層
 40   バリア層
 50   空気極
 51   表面領域
 52   界面領域

Claims (2)

  1.  燃料極と、
     一般式ABO3で表され、AサイトにLa及びSrの少なくとも一方を含むペロブスカイト型酸化物を主成分として含む空気極と、
     前記燃料極および前記空気極の間に配置される固体電解質層と、
    を備え、
     前記空気極は、前記固体電解質層側の表面から5μm以内の界面領域を有し、
     前記界面領域は、前記ペロブスカイト型酸化物によって構成される主相と、酸化ストロンチウムによって構成される第二相とを含み、
     前記界面領域の断面における前記第二相の面積占有率は、0.05%以上3%以下である、
    燃料電池。
  2.  前記界面領域の断面における前記第二相の平均円相当径は、10nm以上500nm以下である、
    請求項1に記載の燃料電池。
PCT/JP2017/027081 2016-07-27 2017-07-26 燃料電池 WO2018021423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780002006.4A CN109478648B (zh) 2016-07-27 2017-07-26 燃料电池
DE112017000060.2T DE112017000060T5 (de) 2016-07-27 2017-07-26 Brennstoffzelle
US15/869,949 US10535882B2 (en) 2016-07-27 2018-01-12 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-147858 2016-07-27
JP2016147858 2016-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/869,949 Continuation US10535882B2 (en) 2016-07-27 2018-01-12 Fuel cell

Publications (1)

Publication Number Publication Date
WO2018021423A1 true WO2018021423A1 (ja) 2018-02-01

Family

ID=60417459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027081 WO2018021423A1 (ja) 2016-07-27 2017-07-26 燃料電池

Country Status (5)

Country Link
US (1) US10535882B2 (ja)
JP (1) JP6234628B1 (ja)
CN (1) CN109478648B (ja)
DE (1) DE112017000060T5 (ja)
WO (1) WO2018021423A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021430A1 (ja) * 2016-07-27 2018-02-01 日本碍子株式会社 電気化学セル
CN113540489B (zh) * 2021-05-15 2022-09-09 山东工业陶瓷研究设计院有限公司 阻隔层浆料、制备方法以及阻隔层制备方法和电池单体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129185A (ja) * 2012-12-27 2014-07-10 Kyushu Univ セラミックスラリーおよびその製造方法ならびに固体酸化物形燃料電池
JP2014199807A (ja) * 2013-03-13 2014-10-23 日本碍子株式会社 固体酸化物型燃料電池
JP2015038858A (ja) * 2013-07-19 2015-02-26 日本碍子株式会社 燃料電池セル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032132A (ja) 2004-07-16 2006-02-02 Hosokawa Funtai Gijutsu Kenkyusho:Kk 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池
US7645535B2 (en) * 2005-11-14 2010-01-12 General Electric Company Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks
EP1850412A1 (en) * 2006-04-26 2007-10-31 Technical University of Denmark A multi-layer coating
EP2750227B1 (en) * 2011-12-19 2016-11-30 NGK Insulators, Ltd. Air electrode material and solid oxide fuel cell
JP6024373B2 (ja) * 2012-10-12 2016-11-16 住友電気工業株式会社 燃料電池およびその操業方法
WO2014143957A1 (en) * 2013-03-15 2014-09-18 Lg Fuel Cell Systems, Inc. Fuel cell system configured to capture chromium
JP5638687B1 (ja) * 2013-12-27 2014-12-10 日本碍子株式会社 空気極材料
JP5841210B1 (ja) * 2014-08-28 2016-01-13 日本碍子株式会社 燃料電池セル
KR102280682B1 (ko) * 2014-09-15 2021-07-22 삼성전자주식회사 양극, 이를 포함하는 리튬공기전지, 및 상기 양극의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129185A (ja) * 2012-12-27 2014-07-10 Kyushu Univ セラミックスラリーおよびその製造方法ならびに固体酸化物形燃料電池
JP2014199807A (ja) * 2013-03-13 2014-10-23 日本碍子株式会社 固体酸化物型燃料電池
JP2015038858A (ja) * 2013-07-19 2015-02-26 日本碍子株式会社 燃料電池セル

Also Published As

Publication number Publication date
CN109478648A (zh) 2019-03-15
DE112017000060T5 (de) 2018-04-19
US10535882B2 (en) 2020-01-14
US20180138521A1 (en) 2018-05-17
CN109478648B (zh) 2021-10-22
JP6234628B1 (ja) 2017-11-22
JP2018026335A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5981065B1 (ja) 燃料電池
JP5981066B1 (ja) 燃料電池
JP6340492B1 (ja) 電気化学セル
US10516168B2 (en) Fuel cell
JP6060303B1 (ja) 燃料電池
WO2018083856A1 (ja) 燃料電池
JP5841210B1 (ja) 燃料電池セル
JP6234628B1 (ja) 燃料電池
JP6060300B1 (ja) 燃料電池
WO2018021469A1 (ja) 電気化学セル
JP5636520B1 (ja) 燃料電池セル
US10411282B2 (en) Fuel cell
JP6182286B1 (ja) 燃料電池
WO2018021430A1 (ja) 電気化学セル
WO2018021431A1 (ja) 電気化学セル
JP6671331B2 (ja) 電気化学セル
JP2020123567A (ja) 電気化学セル
JP2015201421A (ja) 空気極材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000060

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834425

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17834425

Country of ref document: EP

Kind code of ref document: A1