WO2018021329A1 - 振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法 - Google Patents

振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法 Download PDF

Info

Publication number
WO2018021329A1
WO2018021329A1 PCT/JP2017/026901 JP2017026901W WO2018021329A1 WO 2018021329 A1 WO2018021329 A1 WO 2018021329A1 JP 2017026901 W JP2017026901 W JP 2017026901W WO 2018021329 A1 WO2018021329 A1 WO 2018021329A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic member
axis
resonance frequency
member groups
coordinate system
Prior art date
Application number
PCT/JP2017/026901
Other languages
English (en)
French (fr)
Inventor
泰俊 百束
隆史 梶川
施 勤忠
大地 戸高
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to CN201780058830.1A priority Critical patent/CN109790903B/zh
Priority to US16/321,002 priority patent/US10962082B2/en
Publication of WO2018021329A1 publication Critical patent/WO2018021329A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/048High viscosity, semi-solid pastiness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/04Rotary-to-translation conversion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase

Definitions

  • the present invention relates to a method and system for adjusting a resonance frequency of a vibration isolator, a vibration isolator, a design method, a design system, and a manufacturing method of the vibration isolator.
  • the vibration isolator is installed between the vibration source side and the vibration sensing side, and suppresses vibration transmission.
  • the vibration isolator described in Patent Document 1 is a vibration isolator that dampens the influence of resonance with a viscoelastic material while performing vibration isolation in a high frequency range.
  • the number of vibration isolators per se depends on the size and weight of the object. -Even if the weight increases and the resonance is attenuated, a certain level of resonance is inevitable.
  • the present invention prevents resonance of the vibration isolator, and for that purpose, without increasing the quantity and weight of the vibration isolator, and repeatedly changing the selection, number, arrangement, etc. of the elastic members constituting the vibration isolator. It is an object of the present invention to provide a method and system for adjusting the resonance frequency of a vibration isolator that does not need to be performed, and a vibration isolator.
  • Another object of the present invention is to provide a design method, a design system, and a manufacturing method of a vibration isolator that can easily design and manufacture a vibration isolator that does not generate resonance.
  • the vibration isolator includes first to nth (n is an integer of 3 or more) elastic member groups and / or (n + 1) th elastic member group, each including one or more elastic members, The first to nth elastic member groups and / or the (n + 1) th elastic member group are located on the xy plane of the xyz coordinate system, One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the xy coordinate system of the xyz coordinate system has an inertia tensor I with respect to an XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure as an origin.
  • the XY coordinate system around the Z axis The z-axis of the xyz coordinate system is coaxial with the Z-axis,
  • the rigidity K n + 1 of the n + 1th elastic member group When the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_y , And While satisfying (1)
  • a third step of adjusting the position of the first to n-th elastic member groups so as to change the value of and shifting the resonance frequency of the rotational motion about the
  • the other side of the vibration isolator is the side on which the vibration source side structure is in contact
  • one side of the vibration isolator is on the vibration source side
  • the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first step is a step of adjusting a distance between the second and fourth elastic member groups to shift a resonance frequency of the rotational motion around the x-axis
  • the second step is a step of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the third step adjusts a distance between the second and fourth elastic member groups and / or a distance between the first and third elastic member groups to resonate rotational motion about the z-axis. It can be a step of shifting the frequency.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups are arranged symmetrically with respect to the origin on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are origin on the y-axis of the xyz coordinate system. It is possible to perform at least one of the first to third steps while arranging them symmetrically.
  • One aspect of the present invention is a vibration isolator in contact with a vibration sensing side structure or a vibration source side structure on one side, 1st to n-th (n is an integer of 3 or more) elastic member group and / or n + 1-th elastic member group, each of which includes one or more elastic members,
  • the first to nth elastic member groups and / or the (n + 1) th elastic member group are located on the xy plane of the xyz coordinate system,
  • One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the xy coordinate system of the xyz coordinate system has an inertia tensor I with respect to an XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure as an origin.
  • the XY coordinate system around the Z axis The z-axis of the xyz coordinate system is coaxial with the Z-axis,
  • the rigidity K n + 1 of the n + 1th elastic member group When the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_y , (1) And While satisfying Adjusting the position of the first to n-th elastic member groups so that the value of ⁇ is changed to shift the resonance frequency of the rotation motion about the x-axis, (2) And While satisfying Adjusting the position of the first to n-th elastic member groups so that the value of ⁇ is changed to shift the resonance frequency of the rotation motion about the y-axis, (3) And While satisfying Adjusting the position of the first to n-th elastic member groups so that the value of is changed, and shifting the resonance frequency of the rotation motion about the
  • the other side of the vibration isolator is the side on which the vibration source side structure is in contact
  • one side of the vibration isolator is on the vibration source side
  • the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the rotational motion resonance frequency shifter around the x axis adjusts the distance between the second and fourth elastic member groups to shift the resonance frequency of the rotational motion around the x axis
  • the rotational motion resonance frequency shifter around the y axis adjusts the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion around the y axis
  • the rotational frequency resonance frequency shifter about the z-axis adjusts a distance between the second and fourth elastic member groups and / or a distance between the first and third elastic member groups, The resonant frequency of the rotational motion can be shifted.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the rotational motion resonance frequency shifter around the x-axis, the rotational motion resonance frequency shifter around the y-axis, and the rotational motion resonance frequency shifter around the z-axis are arranged so that the first and third elastic members are moved along the x-axis of the xyz coordinate system.
  • the resonance frequency is shifted while the second and fourth elastic member groups are arranged symmetrically with respect to the origin on the y-axis of the xyz coordinate system. .
  • One aspect of the present invention is a vibration isolator in contact with a vibration sensing side structure or a vibration source side structure on one side, A rotating member rotatable around a rotation axis; A plurality of elastic members movably mounted on the rotating member; A vibration isolator comprising: When one side of the vibration isolator is the side on which the vibration sensing side structure is in contact, the other side of the vibration isolator is the side on which the vibration source side structure is in contact, and one side of the vibration isolator is on the vibration source side When the structure is in contact with the structure, the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • the plurality of elastic members include first to fourth elastic member groups each including one or more elastic members, One side of the first to fourth elastic member groups is a side on which the vibration sensing side structure or the vibration source side structure is in contact, A position adjusting mechanism capable of independently adjusting the distance between the first and third elastic member groups and the distance between the second and fourth elastic member groups; A line segment connecting the first and third elastic member groups and a line segment connecting the second and fourth elastic member groups are orthogonal to each other, The rotation axis may pass through an intersection of a line segment connecting the first and third elastic member groups and a line segment connecting the second and fourth elastic member groups.
  • the position adjusting mechanism is configured to change at least one of the distance between the first and third elastic member groups and the distance between the second and fourth elastic member groups from the center of the intersection. It can be adjustable so that the distances are equal.
  • a fifth elastic member group including one or more elastic members can be attached in the vicinity of the intersection.
  • the plurality of elastic members include first to nth (n is an integer of 3 or more) elastic member groups and / or (n + 1) th elastic member groups each including one or more elastic members,
  • the first to nth elastic member groups and / or the (n + 1) th elastic member group are located on the xy plane of the xyz coordinate system in which the rotation axis of the rotating member is coaxial with the z-axis,
  • One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the rigidity K n + 1 of the n + 1th elastic member group When the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_x , the XY coordinate system is set around the Z axis.
  • the plurality of elastic members include first to fourth elastic member groups and / or fifth elastic member groups each including one or more elastic members,
  • the first to fourth elastic member groups and / or the fifth elastic member group are located on an xy plane of an xyz coordinate system in which the rotation axis of the rotating member is coaxial with the z-axis,
  • One side of the first to fourth elastic member groups and / or the fifth elastic member group is a side on which the vibration sensing side structure or the vibration source side structure is in contact,
  • the rigidity K 5 of the n + 1th elastic member group When the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_x , the XY coordinate system is set around the Z axis.
  • the line segment connecting the first and third elastic member groups and the line segment connecting the second and fourth elastic member groups coincide with the x-axis and y-axis of the xy coordinate system rotated by the same amount.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups are arranged symmetrically with respect to the origin on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are origin on the y-axis of the xyz coordinate system. It is possible to perform at least one of the first to third steps while arranging them symmetrically.
  • One aspect of the present invention is a design method of a vibration isolator that contacts a vibration sensing side structure or a vibration source side structure on one side
  • the vibration isolator includes first to nth (n is an integer of 3 or more) elastic member groups and / or (n + 1) th elastic member group, each including one or more elastic members, The first to nth elastic member groups and / or the (n + 1) th elastic member group are located on the xy plane of the xyz coordinate system; One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the xy coordinate system of the xyz coordinate system has an inertia tensor I with respect to an XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure as an origin.
  • the XY coordinate system around the Z axis The z-axis of the xyz coordinate system is coaxial with the Z-axis,
  • the rigidity K n + 1 of the n + 1th elastic member group When the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_y , And Setting the positions of the first to nth elastic member groups and / or the (n + 1) th elastic member group so as to satisfy A design method of a vibration isolator is provided.
  • the other side of the vibration isolator is the side on which the vibration source side structure is in contact
  • one side of the vibration isolator is on the vibration source side
  • the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • the mass of the vibration sensing side structure or the vibration source side structure is m
  • the z coordinate of the xyz coordinate system of the center of gravity of the vibration sensing side structure or the vibration source side structure is r pi_z
  • the inertia with respect to the xyz coordinate system Tensor I '
  • Diagonal linearized translational motion equation Diagonal linearized rotational motion equation From the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonant frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the rotational motion around the z-axis.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first step is a step of adjusting a distance between the second and fourth elastic member groups to shift a resonance frequency of the rotational motion around the x-axis
  • the second step is a step of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the third step adjusts a distance between the second and fourth elastic member groups and / or a distance between the first and third elastic member groups to resonate rotational motion about the z-axis. It can be a step of shifting the frequency.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups are arranged symmetrically with respect to the origin on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are origin on the y-axis of the xyz coordinate system. It is possible to perform at least one of the first to third steps while arranging them symmetrically.
  • the vibration isolator includes first to n-th (n is an integer of 3 or more) elastic member groups each including one or more elastic members, The first to nth elastic member groups are located on the xy plane of the xyz coordinate system; One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the xy coordinate system of the xyz coordinate system has an inertia tensor I with respect to an XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure as an origin.
  • the other side of the vibration isolator is the side on which the vibration source side structure is in contact
  • one side of the vibration isolator is on the vibration source side
  • the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • Diagonal linearized translational motion equation Diagonal linearized rotational motion equation From the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonant frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the rotational motion around the z-axis.
  • Diagonal linearized translational motion equation Diagonal linearized rotational motion equation From the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonant frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the rotational motion around the z-axis.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first step is a step of adjusting a distance between the second and fourth elastic member groups to shift a resonance frequency of the rotational motion around the x-axis
  • the second step is a step of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the third step adjusts a distance between the second and fourth elastic member groups and / or a distance between the first and third elastic member groups to resonate rotational motion about the z-axis. It can be a step of shifting the frequency.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups are arranged symmetrically with respect to the origin on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are origin on the y-axis of the xyz coordinate system. It is possible to perform at least one of the first to third steps while arranging them symmetrically.
  • the step of setting the inertia tensor I ′ with respect to the xyz coordinate system can be a step of calculating based on the inertia tensor I with respect to the XYZ coordinate system.
  • the design method further includes a step of setting an elastic member group arrangement possible range, The positions of the first to nth elastic member groups can be set within the elastic member group disposition range.
  • the set positions of the first to nth elastic member groups may be displayed together with the elastic member group disposition range.
  • the set positions of the first to n-th elastic member groups can be displayed together with the x-axis and the y-axis.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first step is a step of adjusting a distance between the second and fourth elastic member groups to shift a resonance frequency of the rotational motion around the x-axis
  • the second step is a step of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the third step adjusts a distance between the second and fourth elastic member groups and / or a distance between the first and third elastic member groups to resonate rotational motion about the z-axis.
  • a step of shifting the frequency Displaying the elastic member group that needs position adjustment to shift the selected resonance frequency to be shifted so as to be distinguishable from the elastic member group that does not need to be displayed, and displaying a line indicating the position adjustment direction; May be further included.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the other elastic member group is arranged symmetrically with respect to the origin, displayed, and the second and fourth elastic member groups are displayed.
  • at least one of the first to third steps is performed while arranging and displaying the other elastic member group symmetrically with respect to the origin. Can be used.
  • One aspect of the present invention provides a program for causing a computer to execute the design method of the vibration isolator.
  • One aspect of the present invention provides a storage medium storing the program.
  • One aspect of the present invention includes designing a vibration isolator according to the design method; Manufacturing the designed vibration isolator; The manufacturing method of the vibration isolator containing this is provided.
  • One aspect of the present invention includes designing a vibration isolator according to the design method; Producing a structure to which the designed vibration isolator is attached; The manufacturing method of the vibration isolator containing this is provided.
  • the vibration isolator includes first to n-th (n is an integer of 3 or more) elastic member groups each including one or more elastic members, The first to nth elastic member groups are located on the xy plane of the xyz coordinate system; One side of the first to nth elastic member groups and / or the (n + 1) th elastic member group is a side on which the vibration sensing side structure body or the vibration source side structure body is in contact,
  • the xy coordinate system of the xyz coordinate system has an inertia tensor I with respect to an XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure as an origin.
  • the other side of the vibration isolator is the side on which the vibration source side structure is in contact
  • one side of the vibration isolator is on the vibration source side
  • the other side of the vibration isolator is in contact with the vibration sensing side structure.
  • a rigid mass setting unit for setting the mass m of the vibration sensing side structure or the vibration source side structure;
  • a rigid body center of gravity coordinate setting unit for setting a z coordinate r pi_z of the xyz coordinate system of the center of gravity of the vibration sensing side structure or the vibration source side structure;
  • Inertia tensor I ′ for the xyz coordinate system
  • a conversion inertia tensor setting unit for setting Diagonal linearized translational motion equation
  • Diagonal linearized rotational motion equation From the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonant frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the rotational motion around the z-axis.
  • a resonance frequency calculation unit for calculating the resonance frequency;
  • a resonance-related frequency setting unit for setting a frequency related to the occurrence of resonance;
  • a first process for adjusting and setting the positions of the first to n-th elastic member groups so as to change the value of and shifting the resonance frequency of the rotational motion about the x-axis;
  • a second process for adjusting and setting the positions of the first to n-th elastic member groups so as to change the value of, and shifting the resonance frequency of the rotational motion about the y-axis;
  • a rigid mass setting unit for setting the mass m of the vibration sensing side structure or the vibration source side structure;
  • a rigid body center of gravity coordinate setting unit for setting a z coordinate r pi_z of the xyz coordinate system of the center of gravity of the vibration sensing side structure or the vibration source side structure;
  • Inertia tensor I for the xyz coordinate system
  • a conversion inertia tensor setting unit for setting Diagonal linearized translational motion equation
  • Diagonal linearized rotational motion equation From the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonant frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the rotational motion around the z-axis.
  • a resonance frequency calculation unit for calculating the resonance frequency;
  • An elastic member group arrangement display unit for displaying a resonance frequency of the rotational motion around the rotation axis, a resonance frequency of the rotational motion around the y-axis, and a resonance frequency of the rotational motion around the z-axis;
  • a resonance frequency selection input unit that prompts a resonance frequency selection input to be shifted from the resonance frequency of the rotational motion about the z-axis, When there
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first process is a process of adjusting the distance between the second and fourth elastic member groups to shift the resonance frequency of the rotational motion around the x axis
  • the second process is a process of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the distance between the second and fourth elastic member groups and / or the distance between the first and third elastic member groups is adjusted to resonate rotational motion about the z-axis. It may be a process of shifting the frequency.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups are arranged symmetrically with respect to the origin on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are origin on the y-axis of the xyz coordinate system. It is possible to perform at least one of the first to third processes while arranging them symmetrically.
  • the conversion inertia tensor setting unit may calculate the inertia tensor I ′ based on the inertia tensor I with respect to the XYZ coordinate system.
  • the design system further includes an elastic member group arrangement possible range setting unit for setting an elastic member group arrangement possible range, The positions of the first to nth elastic member groups can be set within the elastic member group disposition range.
  • the elastic member group arrangement display unit may display the set positions of the first to nth elastic member groups together with the elastic member group arrangement possible range.
  • the elastic member group arrangement display unit may display the set positions of the first to nth elastic member groups together with the x-axis and the y-axis.
  • n 4
  • the first and third elastic member groups are located on the x-axis of the xyz coordinate system
  • the second and fourth elastic member groups are located on the y-axis of the xyz coordinate system
  • the first process is a process of adjusting the distance between the second and fourth elastic member groups to shift the resonance frequency of the rotational motion around the x axis
  • the second process is a process of adjusting the distance between the first and third elastic member groups to shift the resonance frequency of the rotational motion about the y-axis
  • the distance between the second and fourth elastic member groups and / or the distance between the first and third elastic member groups is adjusted to resonate rotational motion about the z-axis.
  • the elastic member group arrangement display unit displays the elastic member group that needs position adjustment to shift the selected resonance frequency to be shifted so as to be distinguishable from the elastic member group that does not need to be arranged, and the position adjustment direction.
  • the line shown may be displayed.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the other elastic member group is arranged symmetrically with respect to the origin, displayed, and the second and fourth elastic member groups are displayed.
  • an instruction to move one of the elastic member groups on the y-axis is input, at least one of the first to third processes is performed while the other elastic member group is arranged symmetrically with respect to the origin and displayed. Can be used.
  • the “frequency related to the occurrence of resonance” means the vibration sensing side when the vibration source is operated in the vibration source side structure-vibration isolator-vibration sensing side structure system. It means a frequency at which a resonance phenomenon occurs or is assumed to occur in the vibration response of the structure.
  • the resonance of the vibration isolator can be prevented, and for that reason, the number and weight of the vibration isolators are not increased. There is no need to repeatedly change the selection, number, arrangement, etc. of the elastic members constituting the vibration isolator.
  • the design method, design system, and manufacturing method of the vibration isolator according to the present invention it is possible to easily design and manufacture the vibration isolator that does not generate resonance.
  • FIG. 6 is a diagram illustrating an example of an arrangement that satisfies condition 2.
  • FIG. 6 is a diagram illustrating an example of an arrangement that satisfies condition 2.
  • FIG. 6 is a diagram illustrating an example of an arrangement that satisfies condition 2.
  • FIG. 6 is a diagram illustrating an example of an arrangement that satisfies condition 2.
  • FIG. It is a figure which shows the structure which additionally arrange
  • FIG. 1 is a schematic top view of a vibration isolator 1 according to a first embodiment of the present invention. It is a flowchart of the adjustment method of the resonant frequency of the vibration isolator which concerns on the 1st Embodiment of this invention. It is a flowchart of the adjustment method of the resonant frequency of the vibration isolator which concerns on the 1st Embodiment of this invention. It is a perspective view of the vibration isolator 5 which concerns on the 2nd Embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along line AA of a vibration isolator 5 according to a second embodiment of the present invention. It is a side view of the state which attached the vibration sensing side structure and the vibration source side structure to the vibration isolator which concerns on the 2nd Embodiment of this invention. It is a figure which shows an example of the rotation method of the rotation member of the vibration isolator which concerns on the 2nd Embodiment of this invention. It is a flowchart of the adjustment method of the resonant frequency of the vibration isolator which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a diagram showing an analysis model of a vibration isolator.
  • one end of the elastic member constituting the vibration isolator is in contact with the base mount to which the vibration isolator is fixed.
  • the other end of the elastic member is in contact with a vibration sensing side structure that is a rigid body.
  • the rigid body may be a vibration source side structure.
  • Table 1 shows definitions of symbols used below.
  • E ( ⁇ ) represents a coordinate transformation matrix from the vibration sensing side structure coordinate system to the inertial coordinate system
  • Eu ( ⁇ ) is a transformation matrix representing the relationship between the angular velocity ⁇ and the temporal differentiation of the Euler angle.
  • the above parameters are derived from the case where the position of the center of gravity of the rigid body is sufficiently low. Similarly, when the height of the center of gravity cannot be ignored, it is a dominant parameter in determining the resonance frequency value.
  • At least one inertial product is sufficiently smaller than the value of the main axis (Ixx, Iyy, Izz >> Ixy, Ixz, Iyz are set according to the design of the sensitive device and the isolator) (Condition 1) (2) and (Condition 2) M , I xx , I yy , and I zz are values determined by the mass characteristics of the vibration sensing side structure, the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, The resonance frequency of the z-direction translational motion, the resonance frequency of the rotational motion around the x-axis, the resonant frequency of the rotational motion around the y-axis, and the resonance frequency of the rotational motion around the z-axis are set to the values shown in Table 2 above. ⁇ It can be seen that it can be shifted by adjusting.
  • a plane on which each elastic member is arranged is defined as an XY plane.
  • an XYZ coordinate system is defined in which the axis perpendicular to the XY plane is the Z-axis direction, and the center of gravity position of the vibration sensing side structure is projected in parallel to the Z axis with respect to the XY plane (see FIG. 2).
  • a coordinate transformation that rotates ⁇ with respect to the Z axis is considered. At this time, If ⁇ is taken, a coordinate axis that makes I XY zero can be defined for the disturbance-sensitive device.
  • condition 1 can be satisfied by arranging each elastic member on the xy plane (see FIG. 3).
  • an arrangement such as a rhombus arrangement shown in FIG. 5A, a rectangular arrangement shown in FIG. 5B, and a trapezoid arrangement shown in FIG.
  • the number of elastic members that need to be changed is the minimum.
  • Such an arrangement is a rhombus arrangement as shown in FIG. 5A and can be adjusted by changing the distance between two diagonal elastic members.
  • Adjustment of x-direction translational resonance frequency As shown in Table 2 above, in order to shift the resonance frequency of the x-direction translational motion, The value of can be adjusted. Since the elastic member arranged at the origin of the xy plane satisfies the above condition 1, as one method of adjusting this value, one or more elastic members whose rigidity in the x direction is dominant, the origin of the xy plane It can be considered to be placed in the vicinity. In this case, an elastic member having rigidity in the x direction corresponding to a desired adjustment width of the resonance frequency may be arranged, or a number of elastic members corresponding to the adjustment width of the desired resonance frequency may be arranged. In this method, adjustment can be made only in the direction of increasing the resonance frequency.
  • FIG. 6A is a diagram showing a configuration in which an elastic member having a dominant rigidity in the x direction is additionally disposed in the vicinity of the origin of the xy plane where the elastic member is arranged in a diamond shape.
  • FIG. 6B is an example of a graph showing the relationship between the number of elastic members arranged near the origin of the xy plane and the resonance frequency of the x-direction translational motion.
  • Adjustment of z-direction translational resonance frequency As shown in Table 2 above, in order to shift the resonance frequency of the x-direction translational motion, The value of can be adjusted. Since the elastic member arranged at the origin of the xy plane satisfies the above condition 1, as one method of adjusting this value, one or more elastic members having a dominant rigidity in the z direction are used. It can be considered to be placed in the vicinity. In this case, an elastic member having rigidity in the z direction corresponding to a desired adjustment width of the resonance frequency may be arranged, or a number of elastic members corresponding to the adjustment width of the desired resonance frequency may be arranged. In this method, adjustment can be made only in the direction of increasing the resonance frequency.
  • FIG. 8 is an example of a graph showing the relationship between the number of elastic members arranged near the origin of the xy plane and the resonance frequency of the z-direction translational motion.
  • the elastic member on the x-axis is fixed in the initial state, and the distance between the elastic members on the y-axis is fixed.
  • the relationship between the distance between the elastic members on the y axis and the resonance frequency of the rotational motion around the x axis is as shown in FIG. 9B. That is, if the distance between the elastic members is reduced, the resonance frequency is reduced, and if the distance between the elastic members is increased, the resonance frequency is increased.
  • the elastic member on the y-axis is fixed in the initial state, and the distance between the elastic members on the x-axis is fixed.
  • the relationship between the distance between the elastic members on the x-axis and the resonance frequency of the rotational motion around the y-axis is as shown in FIG. 10B. That is, if the distance between the elastic members is reduced, the resonance frequency is reduced, and if the distance between the elastic members is increased, the resonance frequency is increased.
  • Adjustment of rotational motion resonance frequency around z-axis As shown in Table 2 above, in order to shift the resonance frequency of rotational motion around the z-axis, May be adjusted to a value, which adjusts the x-direction stiffness k I_xx of each elastic member disposed in the xy plane, y-direction stiffness k I_yy, the x-coordinate r Pi_x and / or y-coordinate r Pi_y Is achieved.
  • the rhombus arrangement in the initial state is changed to a similar shape as shown in FIG. 11A. 11B, the relationship between the length of one side of the rhombus and the resonance frequency of the rotational motion around the z axis is similar to that of the rhombus arrangement in the initial state. That is, if the rhombus arrangement in the initial state has a similar shape and the length of one side of the rhombus is reduced, the resonance frequency is decreased, and if the length of one side of the rhombus is increased, the resonance frequency is increased.
  • Each resonance frequency can be individually adjusted by the adjustment method described above.
  • An example of a resonance frequency adjustment method for preventing resonance of the vibration isolator using these adjustment methods will be described.
  • FIG. 12 is an example of a graph showing the relationship between vibration transmissibility and vibration input when a vibration isolator is applied with respect to frequency.
  • the solid line indicates the vibration transmissibility when the vibration isolator is applied, and the broken line indicates the vibration input.
  • the vibration isolator in principle, in the low frequency range, the resonance frequency of the x direction translational motion, the resonance frequency of the y direction translational motion, the resonance frequency of the z direction translational motion, Six resonance frequencies appear: a resonance frequency of the rotational motion around the x axis, a resonance frequency of the rotational motion around the y axis, and a resonance frequency of the rotational motion around the z axis.
  • the resonance frequency of the rotational motion around the y-axis is shifted using the adjustment method (2) above, and the resonance frequency of the y-direction translational motion is shifted using the adjustment method (5) above.
  • the vibration response due to the amplification region can be minimized.
  • FIG. 13 is a schematic top view of the vibration isolator 1 according to the first embodiment of the present invention.
  • the vibration isolator 1 includes a frame 10, a first slide member 11, a second slide member 12, a third slide member 13, a fourth slide member 14, a first elastic member 15, a second elastic member 16, A third elastic member 17 and a fourth elastic member 18 are provided.
  • the frame 10 includes a first frame unit 101, a second frame unit 102, a third frame unit 103, a fourth frame unit 104, and a fifth frame unit 105.
  • the first frame unit 101, the second frame unit 102, and the third frame unit 103 are linear frame units that are parallel to each other, and the fourth frame unit 104 and the fifth frame unit 105 are the first frame unit.
  • the first, third, fourth and fifth frame portions 101, 103, 104 and 105 constitute a rectangular outer peripheral portion of the frame 10.
  • the second frame unit 102 is disposed on a line connecting the midpoint of the fourth frame unit 104 and the midpoint of the fifth frame unit 105.
  • An elastic member 19 can be attached to the central portion of the second frame portion 102.
  • the first to fourth slide members 11 to 14 are respectively a linear first slide member main body 11a and a first slide plate 11b, and a linear second slide member main body 12a and a first slide plate 12b. And a linear third slide member main body 13a and a third slide plate 13b, and a linear fourth slide member main body 14a and a fourth slide plate 14b.
  • the first and fourth slide member bodies 11a and 14a are disposed between the second frame portion 102 and the third frame portion 103, and the second and third frame portions 102 and 103 are respectively connected to the second frame portion 102 and the third frame portion 103.
  • the third frame portions 102 and 103 are slidably connected in a direction parallel to the extending direction.
  • the first slide member 11 is disposed on the fifth frame portion 105 side of the fourth slide member 14.
  • the second and third slide member main bodies 12a and 13a are disposed between the first frame portion 101 and the second frame portion 102, and the first and second frame portions 101 and 102 are respectively connected to the first frame portion 101 and the second frame portion 102.
  • the second frame portions 101 and 102 are slidably connected in a direction parallel to the extending direction.
  • the second slide member 12 is disposed on the fifth frame portion 105 side of the third slide member 13.
  • first to fourth slide plates 11b to 14b are in directions parallel to the direction in which the first to fourth slide member bodies 11b to 14a extend from the first to fourth slide member bodies 11a to 14a, respectively. It is slidably connected to.
  • the first to fourth elastic members 15 to 18 are attached to the first to fourth slide plates 11a to 14a, respectively.
  • the first elastic member 15, the fourth frame portion 102, the third frame portion 103, the fourth frame portion 104, and the fifth frame portion 105 are surrounded by the first frame 15, the fourth frame portion 104, and the fifth frame portion 105.
  • the position of the elastic member 18 can be adjusted to an arbitrary position.
  • the second elastic member 16 and the third elastic member 16 The position can be adjusted to an arbitrary position.
  • a vibration sensing side structure (not shown) is attached or not attached directly or via an attachment member, and the first to fourth elastic members are attached.
  • 15 to 18 are in contact with the vibration sensing side structure, and the side opposite to the side on which the first to fourth elastic members 15 to 18 are attached to the frame 10 is illustrated directly or via an attachment member.
  • the frame 10 and the vibration sensing side structure are in contact with each other with or without the vibration source side structure attached.
  • the vibration isolator 1 is attached to the vibration source side structure (S11).
  • the inertia tensor for the XYZ coordinate system with the origin of the center of gravity of the vibration sensing side structure is ,
  • the projection point of the center of gravity of the vibration sensing side structure onto the plane on which the frame 10 is stretched becomes the center point of the second frame portion 102, and the direction in which the fourth and fifth frame portions 104 and 105 extend is the same.
  • the vibration sensing side structure is attached to the frame 10 so as to be parallel to the X axis and so that the extending direction of the first to third frame portions 101 to 103 is parallel to the Y axis. (S12).
  • the vibration sensing side structure is removed from the vibration isolator 1 and the following resonance frequency adjustment is performed (S14).
  • the fifth elastic member 19 having rigidity dominant in the y-direction is attached to the center portion of the second frame portion 102.
  • the fifth elastic member 19 having rigidity dominant in the z-direction is attached to the center portion of the second frame portion 102.
  • the vibration sensing side structure is attached to the vibration isolator 1 again in the same manner as in step S12 (S15).
  • the distance L2 between the second elastic member 16 and the fourth elastic member 18 can be adjusted to shift the resonance frequency of the rotational motion around the x-axis.
  • the resonance frequency of the rotational motion about the y-axis can be shifted by adjusting the distance L1 between the first elastic member 15 and the third elastic member 17.
  • the distance L2 between the elastic member 16 and the fourth elastic member 18 and / or the distance between the first elastic member 15 and the third elastic member 17 is adjusted to shift the resonance frequency of the rotational motion around the z-axis. Can be made.
  • the rigidity of the elastic member can be increased by adjusting the rigidity of the elastic member itself, replacing the elastic member with a different rigidity, adding an elastic member, or the like. You may adjust.
  • the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonance frequency of the rotational motion about the x-axis, and the rotational motion about the y-axis are generated in principle.
  • the six resonance frequencies of the resonance frequency and the resonance frequency of the rotational motion about the z-axis can be individually adjusted.
  • the resonance of the vibration isolator can be prevented by shifting the resonance frequency. There is no need to increase the number and weight of the isolators, and it is not necessary to change the selection, number, arrangement, etc. of the elastic members constituting the vibration isolator many times.
  • the vibration source device and vibration sensitive device According to the progress of the development of the vibration source device and vibration sensitive device, it is possible to prevent resonance corresponding to the developed vibration source device and vibration sensitive device. Therefore, the rework of the design of the vibration source device and the vibration sensitive device is reduced.
  • the number of elastic members other than the central portion of the second frame portion 102 is four.
  • the number of elastic members may be three, or the number of slide members may be increased to be arbitrary.
  • An appropriate number of elastic members may be arranged, and the resonance frequencies may be adjusted while satisfying the above condition 2.
  • the number of elastic members arranged at each position is one, but a plurality of elastic members may be arranged at each position.
  • FIG. 15 and 16 are a perspective view and a cross-sectional view taken along line AA of the vibration isolator 5 according to the second embodiment of the present invention, respectively.
  • FIG. 17 is a side view of the vibration isolator according to the second embodiment of the present invention with the vibration sensing side structure and the vibration source side structure attached thereto.
  • FIG. 18 is a diagram illustrating an example of a rotating method of the rotating member of the vibration isolator according to the second embodiment of the present invention.
  • the vibration isolator 5 includes a first elastic member 51, a second elastic member 52, a third elastic member 53, a fourth elastic member 54, a fifth elastic member 55, a rotating member 56, an outer ring frame 57, 1 slide portion 58, second slide portion 59, third slide portion 60, and fourth slide portion 61.
  • any appropriate elastic member such as an elastic member including rubber and an elastic member including a spring can be used, but those having the same horizontal and vertical rigidity are preferable.
  • the fifth elastic member 55 can be any appropriate elastic member such as an elastic member including rubber and an elastic member including a spring.
  • the rotating member 56 has a disk shape having a first cylindrical portion 560 that falls from the periphery thereof, and a convex portion 568 is formed at the center of the main surface on the vibration source side structure 4 side. ing.
  • a positioning pin hole 561 that penetrates the rotating member 56 in the thickness direction including the convex portion 568 is formed at the center of the other main surface of the rotating member 56.
  • the rotating member 56 is rotatable around a rotation axis that passes through the center of the rotating member 56 and is orthogonal to the principal surface thereof.
  • the rotation member 56 includes a first position adjustment slit 562, a second position adjustment slit 563, and a third position adjustment slit 562, each of which includes a pair of slits extending radially from a position away from the center of the rotation member 56 by a predetermined distance.
  • a position adjustment slit 564 and a fourth position adjustment slit 565 are formed.
  • the first and third position adjusting slits 562 and 564 are arranged on the same straight line passing through the center of the rotating member 56, and the second and fourth position adjusting slits 563 and 565 are orthogonal to the straight line, and the rotating member It is arranged on the same straight line passing through the center of 56.
  • the first to fourth slide portions 58 to 61 include rectangular first to fourth elastic member mounting plates 58a to 61a and rectangular first to fourth position fixing plates 58b to 61b, respectively.
  • the first elastic member mounting plate 58a and the first position fixing plate 58b are respectively formed with screw holes at the four corners, and the first elastic member mounting plate 58a and the first position fixing plate 58b
  • the bolts 58c are coupled to each other so as to face each other.
  • the second to fourth elastic member mounting plates 59a to 61a and the second to fourth position fixing plates 59b to 61b are coupled by bolts 59c to 61c, respectively.
  • the first to fourth slide portions 58 to 61 are respectively connected to the first to fourth position adjusting slits 562 to Through the 565, it is slidable with respect to the rotating member 56, and can move from one end to the other end of the first to fourth position adjusting slits 562 to 565. Further, the first to fourth slide portions 58 to 61 can be fixed to the rotating member 56 by tightening the bolts connecting the elastic member mounting plates and the position fixing plates.
  • the first to fourth elastic members 51 to 54 are attached to the first to fourth slide portions 58 to 61 by screws, respectively. Therefore, the positions of the first to fourth elastic members 51 to 54 can be adjusted from one end to the other end of the first to fourth position adjusting slits 562 to 565, respectively. That is, the distance L1 between the first and third elastic members 51, 53 and the second and fourth points in two orthogonal line segments having the center of the rotation member 56 through which the rotation axis of the rotation member 56 passes as an intersection. The distance L2 between the elastic members 52 and 54 can be independently adjusted.
  • the outer ring frame 57 has a cylindrical shape, and has a flange portion 571 formed at its end so as to protrude both radially inward and outward, and a second rising from the flange portion 571.
  • the cylindrical portion 572 is provided. Fixing holes 571a for fixing the outer ring frame 57 to the vibration source side structure 4 with bolts are formed in the radially outer portion of the flange portion 571 at a predetermined interval.
  • the second cylindrical portion 572 is formed with second angle adjustment slits 573 extending in the circumferential direction at a predetermined interval.
  • the first tubular portion 560 of the rotating member 56 is placed on the radially inner portion of the flange portion 571 of the outer ring frame 57, and the rotating member 56 passes through its center and is orthogonal to its main surface. It can rotate around the rotation axis, and the rotation angle can be adjusted.
  • the first positioning pin hole 561 of the rotating member 56 and the second positioning pin hole 41 formed in the vibration source side structure 4 attached to the outer ring frame 57 By passing the positioning pin 65 through the rotation member 56, the rotation member 56 can be rotated with high accuracy and the rotation angle can be adjusted. Needless to say, the rotating member 56 can be rotated without using such a positioning pin.
  • a first angle adjusting slit 566 extending in the circumferential direction is formed in the first cylindrical portion 560 of the rotating member 56 at a predetermined interval.
  • a bolt 572a passing through the first angle adjusting slit 566 and the second angle adjusting slit 572 of the outer ring frame 57 is tightened with a nut 572b, so that the rotating member 56 whose rotation angle has been adjusted is attached to the outer ring frame 57. Can be fixed.
  • a screw hole for fixing the elastic member mounting plate 62 is formed at the central portion of the main surface of the rotating member 56 on the elastic member mounting side, and the fifth elastic member 55 is inserted through the elastic member mounting plate 62.
  • the rotating member 56 can be attached.
  • the vibration isolator 5 is attached to the vibration source side structure 4 (S21).
  • the vibration sensing side structure 3 is removed from the vibration isolator 5, and the following resonance frequency adjustment is performed (S24).
  • the rigidity K 5 of the fifth elastic member 55 When the x and y coordinates in the xy coordinate system of the first to fifth elastic members 51 to 55 are r pi_x and r pi_x , the XY coordinate system is set around the Z axis.
  • the line segment connecting the first and third elastic members 51 and 53 and the line segment connecting the second and fourth elastic members 52 and 54 coincide with the x-axis and y-axis of the xy coordinate system rotated by the same amount.
  • the rotating member 56 is rotated around its rotation axis (S25).
  • each resonance frequency S26.
  • the distance L2 between the second and fourth elastic members 52 and 54 is adjusted.
  • the distance L1 between the first and third elastic members 51 and 53 is adjusted.
  • the distance L2 between the second and fourth elastic members 52 and 54 and / or the first and third elastic members 51 , 53 is adjusted.
  • the first and third elastic members 51 and 53 have the same rigidity
  • the second and fourth elastic members 52 and 54 have the same rigidity
  • the first and third elastic members 51 and 53, and The above condition 1 is satisfied by performing the adjustments (1) to (3) while arranging the second and fourth elastic members 52 and 54 so as to be symmetrical with respect to the center of the rotating member 56.
  • the position adjustment mechanism of the elastic member rotates at least one of the distance L1 between the first and third elastic members 51 and 53 and the distance L2 between the second and fourth elastic members 52 and 54. If any suitable mechanism that can be adjusted so that the distances of the elastic member groups from the center of the member 56 are equal, the adjustment becomes easier.
  • the vibration sensing side structure 3 is attached to the vibration isolator 5 again so that the Z axis coincides with the rotation axis of the rotating member 56 (S27).
  • the present embodiment has the following advantages in addition to the advantages of the first embodiment. That is, in the first embodiment, complicated adjustment for simultaneously adjusting ⁇ and the position of the elastic member is required. However, according to the present embodiment, ⁇ is adjusted for all the elastic members at once. Since the position of the elastic member can be adjusted thereafter, each resonance frequency can be easily adjusted.
  • the number of elastic members arranged other than the center of the rotating member 56 is four. However, by changing the number and arrangement of the position adjustment slits or using any other appropriate mechanism. Any appropriate number of elastic members may be arranged, and each resonance frequency may be adjusted while satisfying the above condition 2.
  • the distance between elastic members was adjusted, it replaces with and / or in addition to adjusting the distance between elastic members, adjustment of the rigidity of the elastic member itself, and an elastic member from which rigidity differs
  • the rigidity of the elastic member may be adjusted by, for example, replacement with or addition of an elastic member.
  • the number of elastic members arranged at each position is one, but a plurality of elastic members may be arranged at each position.
  • the vibration isolator may be composed of only three or more elastic members.
  • the vibration isolator to be designed includes first to n-th (n is an integer of 3 or more) elastic member groups and / or n + 1-th elastic member groups each including one or more elastic members.
  • the nth elastic member group and / or the n + 1th elastic member group are located on the xy plane of the xyz coordinate system, and one of the first to nth elastic member groups and / or the n + 1th elastic member group
  • the side is the side on which the vibration sensing side structure or the vibration source side structure is in contact.
  • Inertia tensor I The XY coordinate system around the Z axis It is assumed that the z axis of the xyz coordinate system is coaxial with the Z axis.
  • the rigidity K n + 1 of the ( n + 1) th elastic member group The first to nth elastic member groups satisfying the above condition 2 when the x and y coordinates of the xy coordinate system of the first to nth elastic member groups are r pi_x and r pi_y , respectively.
  • / or the position of the (n + 1) th elastic member group is set (S31).
  • the mass of the vibration sensing side structure or the vibration source side structure is m
  • the z coordinate of the xyz coordinate system of the center of gravity of the vibration sensing side structure or the vibration source side structure is r pi_z
  • the inertia tensor I with respect to the xyz coordinate system From the diagonally linearized translational motion equation of the above equation (3) and the diagonally linearized rotational motion equation of the above equation (4), the resonance frequency of the x direction translational motion, the resonance frequency of the y direction translational motion, z
  • the resonance frequency of the direction translational motion, the resonance frequency of the rotational motion around the x axis, the resonant frequency of the rotational motion around the y axis, and the resonant frequency of the rotational motion around the z axis are calculated (S32).
  • each calculated resonance frequency does not match the frequency associated with the occurrence of resonance.
  • the distance L2 between the second elastic member 16 and the fourth elastic member 18 can be adjusted to shift the resonance frequency of the rotational motion around the x axis.
  • the resonance frequency of the rotational motion about the y-axis can be shifted by adjusting the distance L1 between the first elastic member 15 and the third elastic member 17, and the above (3) ) Is adjusted by adjusting the distance L2 between the second elastic member 16 and the fourth elastic member 18 and / or the distance between the first elastic member 15 and the third elastic member 17 to adjust the z axis.
  • the resonance frequency of the rotational movement around can be shifted .
  • the rigidity of the elastic member can be increased by adjusting the rigidity of the elastic member itself, replacing the elastic member with a different rigidity, adding an elastic member, or the like. You may adjust.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups have the x-axis in the xyz coordinate system.
  • the second and fourth elastic member groups are arranged symmetrically with respect to the origin on the y-axis of the xyz coordinate system while at least one of the first to third steps is performed. Good.
  • the resonance frequency of the x-direction translational motion, the resonance frequency of the y-direction translational motion, the resonance frequency of the z-direction translational motion, the resonance frequency of the rotational motion about the x-axis, and the rotational motion about the y-axis are generated in principle.
  • the six resonance frequencies of the resonance frequency and the resonance frequency of the rotational motion about the z-axis can be individually adjusted.
  • the resonance of the vibration isolator can be prevented by shifting the resonance frequency.
  • the vibration source device and vibration sensitive device According to the progress of the development of the vibration source device and vibration sensitive device, it is possible to prevent resonance corresponding to the developed vibration source device and vibration sensitive device. Therefore, the rework of the design of the vibration source device and the vibration sensitive device is reduced.
  • FIG. 21 is a diagram showing an overall configuration of a vibration isolator design system according to a fourth embodiment of the present invention.
  • the vibration isolator design system 7 includes an inertia tensor setting unit 701, a rigid body mass setting unit 703, a rigid body barycentric coordinate setting unit 705, an elastic member group number setting unit 707, an elastic member group stiffness setting unit 711, a conversion inertia tensor setting unit 715, a resonance.
  • a related frequency setting unit 717, a resonance frequency calculating unit 719, an elastic member group position adjusting unit 721, and an elastic member group adding unit 723 are provided.
  • the vibration isolator design system 7 can be a mobile device such as a server, a PC, a smartphone, or a tablet computer.
  • the vibration isolator design system 7 is not limited to these and can be any suitable device. Further, the vibration isolator design system 7 does not need to be configured as one physical device, and may be configured from a plurality of physical devices. In the present embodiment, the vibration isolator may be composed of only three or more elastic members.
  • the inertia tensor setting unit 701 sets an inertia tensor I with respect to the XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator as an origin, based on input from the user or the like.
  • the rigid body mass setting unit 703 sets the mass m of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator by an input from the user or the like (S403).
  • the rigid body barycentric coordinate setting unit 705 sets the z coordinate r pi_z in the xyz coordinate system of the barycenter of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator by an input from the user or the like.
  • the elastic member group number setting unit 707 sets the number n of elastic member groups by an input from the user or the like.
  • the elastic member groups rigidity setting unit 711, the input or the like from the user, the rigidity K i of the elastic member groups of the first to n (i 1,2, ⁇ , n) Set.
  • the conversion inertia tensor setting unit 715 receives the input from the user and converts from the inertia tensor I to the XYZ coordinate system, thereby converting the inertia tensor for the xyz coordinate system. Set.
  • the resonance related frequency setting unit 717 sets a frequency related to the occurrence of resonance by an input from the user or the like.
  • the resonance frequency calculation unit 719 calculates the x-direction from the diagonalized linearized translational motion equation (3) and the diagonalized rotational motion equation (4). Resonance frequency of translational motion, resonance frequency of translational motion in y direction, resonance frequency of translational motion in z direction, resonant frequency of rotational motion around x axis, resonant frequency of rotational motion around y axis, and resonant frequency of rotational motion around z axis To do.
  • the elastic member group position adjusting unit 721 was calculated while satisfying the above condition 2 when the x and y coordinates of the xy coordinate system of the first to nth elastic member groups were set to r pi_x and r pi_y .
  • the resonance frequency is shifted as described later so that each resonance frequency does not coincide with the frequency related to the occurrence of the set resonance.
  • the elastic member group adding unit 723 moves the n + 1-th elastic member group to the origin of the xyz coordinates when it is necessary to shift the resonance frequency of the x-axis translation, y-axis translation, and z-axis translation in the above adjustment. And adjusting the values of k n + 1_xx , k n + 1_yy , k n + 1_zz , and additionally arranging elastic members that shift the resonance frequencies.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of the vibration isolator design system 7 according to the present embodiment.
  • the vibration isolator design system 7 includes a CPU 70a, a RAM 70b, a ROM 70c, an external memory 70d, an input unit 70e, an output unit 70f, and a communication unit 70g.
  • the RAM 70b, ROM 70c, external memory 70d, input unit 70e, output unit 70f, and communication unit 70g are connected to the CPU 70a via a system bus 70h.
  • the CPU 70a comprehensively controls each device connected to the system bus 70h.
  • the ROM 70c and the external memory 70d store various programs and data necessary for realizing the functions executed by the computer and the BIOS and OS which are control programs of the CPU 70a.
  • the RAM 70b functions as a main memory and work area of the CPU.
  • the CPU 70a implements various operations by loading a program or the like necessary for executing the processing from the ROM 70c or the external memory 70d to the RAM 70b and executing the loaded program.
  • the external memory 70d is composed of, for example, a flash memory, a hard disk, a DVD-RAM, a USB memory, and the like.
  • the input unit 70e receives an operation instruction from a user or the like.
  • the input unit 70e includes input devices such as an input button, a keyboard, a pointing device, a wireless remote controller, a microphone, and a camera, for example.
  • the output unit 70f outputs data processed by the CPU 70a and data stored in the RAM 70b, ROM 70c, and external memory 70d.
  • the output unit 70f includes an output device such as a CRT display, an LCD, an organic EL panel, a printer, and a speaker.
  • the communication unit 70g is an interface for connecting / communication with an external device via a network or directly.
  • the communication unit 70g includes an interface such as a serial interface or a LAN interface.
  • Each part of the vibration isolator design system 7 shown in FIG. 21 includes a CPU 70a, a RAM 70b, a ROM 70c, an external memory 70d, an input unit 70e, an output unit 70f, a communication unit 70g, and the like. Realized by using as a resource.
  • FIG. 23 is a flowchart of the design process of the vibration isolator design system according to this embodiment.
  • the vibration isolator to be designed includes first to n-th (n is an integer of 3 or more) elastic member groups and / or n + 1-th elastic member groups each including one or more elastic members.
  • the nth elastic member group and / or the n + 1th elastic member group are located on the xy plane of the xyz coordinate system, and one of the first to nth elastic member groups and / or the n + 1th elastic member group
  • the side is the side on which the vibration sensing side structure or the vibration source side structure is in contact.
  • Inertia tensor I The XY coordinate system around the Z axis It is assumed that the z-axis of the xyz coordinate system is coaxial with the Z-axis.
  • the inertia tensor setting unit 701 receives an inertia tensor I with respect to the XYZ coordinate system with the center of gravity of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator as an origin by an input from the user or the like. Is set (S401).
  • the rigid body mass setting unit 703 sets the mass m of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator by an input from the user or the like (S403).
  • the rigid body gravity center coordinate setting unit 705 sets the z coordinate r pi_z of the xyz coordinate system of the gravity center of the vibration sensing side structure or the vibration source side structure in contact with the vibration isolator by an input from the user or the like (S405).
  • the elastic member group number setting unit 707 sets the number n of elastic member groups in accordance with an input from the user or the like (S407).
  • the conversion inertia tensor setting unit 715 receives the input from the user, the conversion from the inertia tensor I for the XYZ coordinate system, and the inertia tensor for the xyz coordinate system. Is set (S413).
  • the resonance-related frequency setting unit 717 sets a frequency related to the occurrence of resonance by an input from the user or the like (S415).
  • the resonance frequency calculation unit 719 determines, based on the set values of the parameters, from the diagonalized linearized translational equation of equation (3) and the diagonalized linearized equation of rotation of equation (4), resonance frequency of x-direction translation, resonance frequency of y-direction translation, resonance frequency of z-direction translation, resonance frequency of rotation around x axis, resonance frequency of rotation around y axis, resonance frequency of rotation around z axis Is calculated (S417).
  • the elastic member group position adjusting unit 721 sets the x and y coordinates in the xy coordinate system of the first to nth elastic member groups to r pi_x , R pi_y , the following adjustments are made so that the calculated resonance frequencies do not coincide with the frequencies related to the occurrence of the resonance while satisfying the above condition 2, and the first to second The position of the n elastic member group is set (S419).
  • the positions of the first to n-th elastic member groups are adjusted and set so that the value of is changed, and the resonance frequency of the rotational motion about the x-axis is shifted.
  • the positions of the first to nth elastic member groups are adjusted and set so as to change the value of, and the resonance frequency of the rotational motion about the y-axis is shifted.
  • the positions of the first to n-th elastic member groups are adjusted and set so that the value of is changed, and the resonance frequency of the rotational motion about the z-axis is shifted.
  • the elastic member group rigidity setting unit 711 determines the rigidity K n + 1 of the (n + 1 ) th elastic member group by an input from the user or the like.
  • the elastic member group adding unit 723 places the (n + 1) th elastic member group at the origin of the xyz coordinate, adjusts the value of k n + 1 — xx , and shifts the resonance frequency of the x-axis translational motion.
  • the rigidity setting unit 711 receives the rigidity K n + 1 of the (n + 1) th elastic member group by an input from the user or the like.
  • the elastic member group adding unit 723 arranges the (n + 1) th elastic member group at the origin of the xyz coordinate, adjusts the value of k n + 1_yy , and shifts the resonance frequency of the y-axis translational motion.
  • the stiffness setting unit 711 receives the stiffness K n + 1 of the (n + 1) th elastic member group by an input from the user or the like. And the elastic member group adding unit 723 arranges the (n + 1) th elastic member group at the origin of the xyz coordinates, adjusts the value of k n + 1 —zz , and shifts the resonance frequency of the z-axis translational motion.
  • the distance L2 between the second elastic member 16 and the fourth elastic member 18 can be adjusted to shift the resonance frequency of the rotational motion around the x-axis.
  • the distance L1 between the first elastic member 15 and the third elastic member 17 can be adjusted to shift the resonance frequency of the rotational motion about the y-axis.
  • the distance L2 between the second elastic member 16 and the fourth elastic member 18 and / or the distance between the first elastic member 15 and the third elastic member 17 is adjusted to rotate around the z-axis.
  • the resonant frequency of motion can be shifted.
  • the rigidity of the elastic member in place of and / or in addition to adjusting the distance between the elastic members, can be increased by adjusting the rigidity of the elastic member itself, replacing the elastic member with a different rigidity, adding an elastic member, or the like. You may adjust.
  • the first and third elastic member groups have the same rigidity
  • the second and fourth elastic member groups have the same rigidity
  • the first and third elastic member groups have the x-axis in the xyz coordinate system.
  • the first and third adjustments may be performed with the second and fourth elastic member groups arranged symmetrically with respect to the origin on the y-axis of the xyz coordinate system. Good.
  • the present embodiment has the following advantages in addition to the advantages of the third embodiment. That is, it is possible to automatically design the arrangement of the elastic member group that avoids the frequency related to the occurrence of resonance.
  • FIG. 24 is a diagram showing an overall configuration of a vibration isolator design system according to a fifth embodiment of the present invention.
  • the structure of the vibration isolator design system based on the 5th Embodiment of this invention is demonstrated. 24, parts corresponding to those in FIG. 21 are denoted by the same reference numerals, and description overlapping with that of the fourth embodiment is omitted.
  • the vibration isolator may be composed of only three or more elastic members.
  • the vibration isolator design system 7 includes an inertia tensor setting unit 701, a rigid body mass setting unit 703, a rigid body barycentric coordinate setting unit 705, an elastic member group number setting unit 707, an elastic member group stiffness setting unit 711, a conversion inertia tensor setting unit 715, a resonance.
  • a resonance frequency selection input unit 733 is provided.
  • the elastic member group arrangement possible range setting unit 725 sets the elastic member group arrangement possible range by an input from the user or the like.
  • the elastic member group initial arrangement setting unit 727 calculates initial arrangements of the first to nth elastic member groups that satisfy the above condition 2.
  • the elastic member group arrangement display unit 729 displays the set positions of the first to nth elastic member groups and the resonance frequencies calculated by the resonance frequency calculation unit 719. In addition, when the resonance frequency to be shifted is selected, the elastic member group that requires position adjustment to shift the selected resonance frequency is displayed so as to be distinguishable from the elastic member group that does not need to be displayed, and the position adjustment direction is displayed. Display a line to indicate.
  • the display unit 731 is a display or the like, and displays various data.
  • the resonance frequency selection input unit 733 prompts a resonance frequency selection input to be shifted among the resonance frequencies calculated by the resonance frequency calculation unit 719.
  • FIG. 25 is a flowchart of the design process of the vibration isolator design system according to this embodiment.
  • FIG. 26 is an example of a display screen of the vibration isolator design system according to this embodiment.
  • step 509 are the same as steps S401 to S409 in the fourth embodiment, and thus description thereof is omitted.
  • the number of elastic members is set to 4 by the elastic member group number setting unit 707.
  • a case in which the same rigidity is set for the first to fourth elastic members 71 to 74 by the elastic member group rigidity setting unit 711 will be described.
  • the elastic member group arrangement range on the XY plane is specified by the user input, for example, the rectangular ranges of (1000 mm, 600 mm), ( ⁇ 1000 mm, 600 mm), ( ⁇ 1000 mm, ⁇ 600 mm), (1000 mm, ⁇ 600 mm) at the apex are specified.
  • the elastic member group arrangement possible range setting unit 725 sets the elastic member group arrangement possible range 76 (S512).
  • the conversion inertia tensor setting unit 715 receives the input from the user, the conversion from the inertia tensor I for the XYZ coordinate system, and the inertia tensor for the xyz coordinate system. Is set (S513).
  • the resonance frequency calculation unit 719 calculates the x-direction from the diagonalized linearized translational motion equation (3) and the diagonalized rotational motion equation (4). Resonance frequency of translational motion, resonance frequency of translational motion in y direction, resonance frequency of translational motion in z direction, resonant frequency of rotational motion around x axis, resonant frequency of rotational motion around y axis, and resonant frequency of rotational motion around z axis (S517).
  • the elastic member group initial arrangement setting unit 727 is a rhombus arrangement in which the first and third elastic members 71 and 73 are arranged on the x axis and the second and fourth elastic members 72 and 74 are arranged on the y axis.
  • the arrangement in which the rhombus is the largest within the elastic member group arrangement possible range, for example, the arrangement in which the y coordinate of the first elastic member 71 is the largest is calculated as the initial arrangement (S519).
  • the elastic member group arrangement display unit 729 displays the positions of the first to fourth elastic members 71 to 74 set as the initial arrangement together with the x and y axes of the xy coordinate system and the elastic member group arrangement possible range 76 and the like. Are displayed on the display screen 70 of the display unit 731 and each resonance frequency calculated by the resonance frequency calculation unit 719 is displayed on the display screen 70 (S521).
  • the resonance frequency selection input unit 733 displays a check box 78 on the left side of each resonance frequency calculated by the resonance frequency calculation unit 719, and prompts a resonance frequency selection input to shift from each resonance frequency (S523). .
  • the user looks at each calculated resonance frequency displayed, and if there is a frequency that is the same as or close to the frequency related to the resonance, the user checks the resonance frequency check box with a mouse or the like.
  • a check is made with respect to the resonance frequency of the rotational motion around the y-axis.
  • the elastic member group arrangement display unit 729 displays the elastic member group that needs to be adjusted in order to shift the selected resonance frequency, and does not need to be elastic.
  • the line is displayed so as to be distinguishable from the member group, and a line indicating the position adjustment direction is displayed (S527).
  • the first and third elastic members 71 and 73 that need to be adjusted in order to shift the resonance frequency of the rotational motion about the y-axis are displayed blinking, and the grid line 77 indicating the position adjustment direction is x. Displayed along the axis.
  • the following adjustment is performed to set the positions of the first to n-th elastic member groups (S529).
  • the position of the first to n-th elastic member groups is adjusted and set so that the value of changes, and the resonance frequency of the rotational motion about the x-axis is shifted.
  • the positions of the first to n-th elastic member groups are adjusted and set so that the value of changes, and the resonance frequency of the rotational motion about the y-axis is shifted.
  • the position of the first to n-th elastic member groups is adjusted and set so that the value of changes, and the resonance frequency of the rotational motion about the z-axis is shifted.
  • the elastic member group rigidity setting unit 711 determines the rigidity K n + 1 of the (n + 1 ) th elastic member group by an input from the user or the like.
  • the elastic member group adding unit 723 places the (n + 1) th elastic member group at the origin of the xyz coordinate, adjusts the value of k n + 1 — xx , and shifts the resonance frequency of the x-axis translational motion.
  • the elastic member group rigidity setting unit 711 determines the rigidity K n + 1 of the (n + 1 ) th elastic member group by an input from the user or the like.
  • the elastic member group adding unit 723 arranges the (n + 1) th elastic member group at the origin of the xyz coordinate, adjusts the value of k n + 1_yy , and shifts the resonance frequency of the y-axis translational motion.
  • the elastic member groups rigidity setting unit 711, the input or the like from the user, the stiffness K n + 1 of the (n + 1) of the elastic member groups
  • the elastic member group adding unit 723 arranges the (n + 1) th elastic member group at the origin of the xyz coordinates, adjusts the value of k n + 1 —zz , and shifts the resonance frequency of the z-axis translational motion.
  • the elastic member group position adjusting unit 721 causes the third elastic member 73 to be the origin relative to the first elastic member 71.
  • the elastic member group arrangement display unit 729 displays the moved third elastic member 73.
  • the resonance frequency calculation unit 719 calculates the x-direction from the diagonally linearized translational motion equation (3) and the diagonalized rotational motion equation (4). Retranslation of resonance frequency of translation, resonance frequency of translation in y direction, resonance frequency of translation in z direction, resonance frequency of rotation around x axis, resonance frequency of rotation around y axis, resonance frequency of rotation around z axis Calculate (S531).
  • the elastic member group arrangement display unit 729 displays each resonance frequency recalculated by the resonance frequency calculation unit 719 on the display unit 731 (S533), returns to step S523, and the resonance frequency selection input unit 733 is recalculated.
  • a check box 78 is displayed on the left side of each resonance frequency, prompting a resonance frequency selection input to be shifted from each resonance frequency, and the above processing is repeated.
  • the present embodiment has the following advantages in addition to the advantages of the third embodiment. That is, it is possible to design the above six resonance frequencies, the number of elastic member groups, the arrangement, the rigidity, and the like while confirming on the screen while considering the frequencies related to the occurrence of resonance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

振動アイソレータは、第1~第nの弾性部材群及び/又は第n+1の弾性部材群を含み、第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、xyz座標系のxy平面上に位置し、xyz座標系のxy座標系は、振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルをIとしたとき、XY座標系をZ軸周りにθ=tan-1(2IXY/(IXX-IYY))だけ回転させたものであり、 第1~第nの弾性部材群の剛性Kiを (式Ⅰ)、第n+1の弾性部材群の剛性Kn+1を (式ⅠⅠ)、第1~第nの弾性部材群のx、y座標をrpi_x、rpi_yとしたとき、 Σki_xxpi_x=Σki_yypi_y=0かつΣki_yypi_xpi_y=Σki_xxpi_xpi_y=0を満たしつつ、 Σ(ki_zzpi_y 2)、Σ(ki_yypi_x 2)、Σ(ki_zzpi_y 2+ki_yypi_x 2)の値が変化するように第1~第nの弾性部材群の位置を調整して、x、y、z軸周り回転運動の共振周波数をそれぞれシフトさせるステップ、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_xx、kn+1_yy、kn+1_zzの値を調節して、x、y、z軸並進運動の共振周波数をそれぞれシフトさせるステップのうちの少なくとも1つのステップを含む振動アイソレータの共振周波数の調整方法。

Description

振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法
 本発明は、振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法に関するものである。
 振動アイソレータとは、振動源側と振動感受側の間に設置され、振動の伝達を抑制するものである。
 振動アイソレータとして、例えば、共振における減衰を大きくすることでアイソレータの共振の影響を低減するものが提案されている(下記特許文献1参照)。
特表2014-535026公報
 上記特許文献1に記載の振動アイソレータは、高周波域での振動絶縁を行いつつ、共振による影響を粘弾性材料で減衰させるものであるが、対象物の寸法・重量に応じて振動アイソレータ自体の数量・重量が増え、共振を減衰させたとしても一定レベルの共振は避けられない。
 また、従来の複数の弾性部材を備える振動アイソレータにおいては、所望の振動抑制を達成するためには、弾性部材の選択、個数、配置等の変更を試行錯誤で何度も行う必要があった。
 そこで、本発明は、振動アイソレータの共振を防止し、しかもそのために、振動アイソレータの数量・重量が増えることなく、また振動アイソレータを構成する弾性部材の選択、個数、配置等の変更を何度も行う必要のない振動アイソレータの共振周波数の調整方法及び調整システム、並びに振動アイソレータを提供することを目的の1つとする。
 また、本発明は、共振が発生しない振動アイソレータの設計及び製造を容易に行うことができる振動アイソレータの設計方法、設計システム、及び製造方法を提供することを目的の1つとする。
 本発明の1つの態様は、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの共振周波数の調整方法であって、
 前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、xyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
 前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000102
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000103
だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
 前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000104
、前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000105
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
Figure JPOXMLDOC01-appb-I000106
かつ
Figure JPOXMLDOC01-appb-I000107
を満たしつつ、
(1)
Figure JPOXMLDOC01-appb-I000108
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000109
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000110
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
のうちの少なくとも1つのステップを含む、
振動アイソレータの共振周波数の調整方法を提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記調整方法において、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップであるものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われるものとすることができる。
 本発明の1つの態様は、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータであって、
 その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、xyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
 前記xyz座標系のxy座標系は、前記振動感受側構造体又は前記振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000111
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000112
だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
 前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000113
、前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000114
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
(1)
Figure JPOXMLDOC01-appb-I000115
かつ
Figure JPOXMLDOC01-appb-I000116
を満たしつつ、
Figure JPOXMLDOC01-appb-I000117
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせるx軸周り回転運動共振周波数シフター、
(2)
Figure JPOXMLDOC01-appb-I000118
かつ
Figure JPOXMLDOC01-appb-I000119
を満たしつつ、
Figure JPOXMLDOC01-appb-I000120
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせるy軸周り回転運動共振周波数シフター、
(3)
Figure JPOXMLDOC01-appb-I000121
かつ
Figure JPOXMLDOC01-appb-I000122
を満たしつつ、
Figure JPOXMLDOC01-appb-I000123
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせるz軸周り回転運動共振周波数シフター、
(4)
Figure JPOXMLDOC01-appb-I000124
かつ
Figure JPOXMLDOC01-appb-I000125
を満たしつつ、
前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせるx軸並進運動共振周波数シフター、
(5)
Figure JPOXMLDOC01-appb-I000126
かつ
Figure JPOXMLDOC01-appb-I000127
を満たしつつ、
前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせるy軸並進運動共振周波数シフター、
(6)
Figure JPOXMLDOC01-appb-I000128
かつ
Figure JPOXMLDOC01-appb-I000129
を満たしつつ、
前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせるz軸並進運動共振周波数シフター、
のうちの少なくとも1つのシフターを更に含む、
振動アイソレータを提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記振動アイソレータにおいて、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記x軸周り回転運動共振周波数シフターは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるものであり、
 前記y軸周り回転運動共振周波数シフターは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるものであり、
 前記z軸周り回転運動共振周波数シフターは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記x軸周り回転運動共振周波数シフター、前記y軸周り回転運動共振周波数シフター、前記z軸周り回転運動共振周波数シフターは、前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、共振周波数のシフトを行うものとすることができる。
 本発明の1つの態様は、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータであって、
 回転軸線の周りに回転可能な回転部材と、
 前記回転部材上に移動可能に取り付けられた複数の弾性部材と、
を備える振動アイソレータを提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記回転部材上且つ前記回転軸線上付近の位置に1つ又はそれ以上の弾性部材を取付可能とすることができる。
 前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第4の弾性部材群を含み、
 第1~第4の弾性部材群の一方の側は、前記振動感受側構造体又は前記振動源側構造体が接する側であり、
 前記第1及び第3の弾性部材群の間の距離と前記第2及び第4の弾性部材群の間の距離をそれぞれ独立に調節可能な位置調整機構を更に備え、
 前記第1及び第3の弾性部材群を結ぶ線分と前記第2及び第4の弾性部材群を結ぶ線分は直交し、
 前記回転軸線は、前記第1及び第3の弾性部材群を結ぶ線分と前記第2及び第4の弾性部材群を結ぶ線分の交点を通るものとすることができる。
 前記位置調整機構は、前記第1及び第3の弾性部材群の間の距離と前記第2及び第4の弾性部材群の間の距離の少なくとも一方を、前記交点の中心から各弾性部材群の距離が等しくなるように調整可能とすることができる。
 1つ又はそれ以上の弾性部材を含む第5の弾性部材群を前記交点付近において取付可能とすることができる。
 本発明の1つの態様は、前記振動アイソレータの共振周波数の調整方法であって、
 前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、前記回転部材の前記回転軸線がz軸と同軸となるxyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
 前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルを
Figure JPOXMLDOC01-appb-I000130
としたとき、Z軸が前記回転部材の前記回転軸線と一致するように前記振動感受側構造体又は前記振動源側構造体が配置された場合に、
 前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000131
、前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000132
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000133
だけ回転させた前記xy座標系において、
Figure JPOXMLDOC01-appb-I000134
かつ
Figure JPOXMLDOC01-appb-I000135
を満たしつつ、
(1)
Figure JPOXMLDOC01-appb-I000136
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000137
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000138
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
のうちの少なくとも1つのステップを含む、
振動アイソレータの共振周波数の調整方法を提供するものである。
 本発明の1つの態様は、前記振動アイソレータの共振周波数の調整方法であって、
 前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第4の弾性部材群及び/又は第5の弾性部材群を含み、
 前記第1~第4の弾性部材群及び/又は第5の弾性部材群は、前記回転部材の前記回転軸線がz軸と同軸となるxyz座標系のxy平面上に位置し、
 前記第1~第4の弾性部材群及び/又は第5の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
 前記振動感受側構造体又は前記振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルを
Figure JPOXMLDOC01-appb-I000139
としたとき、Z軸が前記回転部材の前記回転軸線と一致するように前記振動感受側構造体又は前記振動源側構造体が配置された場合に、
 前記第1~第nの弾性部材群の剛性Kiを(i=1,2,3,4)
Figure JPOXMLDOC01-appb-I000140
、前記第n+1の弾性部材群の剛性K5
Figure JPOXMLDOC01-appb-I000141
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000142
だけ回転させた前記xy座標系のx軸、y軸に、前記第1及び第3の弾性部材群を結ぶ線分、前記第2及び第4の弾性部材群を結ぶ線分が一致するように、Z軸周りに前記回転部材を回転させるステップと、
 前記第1~第4の弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、
Figure JPOXMLDOC01-appb-I000143
かつ
Figure JPOXMLDOC01-appb-I000144
を満たしつつ、
(1)前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる第1のステップと、
(2)前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる第2のステップと、
(3)前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる第3のステップと、
(4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
の第1~第6のステップのうちの少なくとも1つのステップを含む、
振動アイソレータの共振周波数の調整方法を提供するものである。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われるものとすることができる。
 本発明の1つの態様は、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計方法であって、
 前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群が、xyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、
 前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000145
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000146
だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
 前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000147
、前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000148
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
Figure JPOXMLDOC01-appb-I000149
かつ
Figure JPOXMLDOC01-appb-I000150
を満たすように、前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の位置を設定する、
振動アイソレータの設計方法を提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記振動感受側構造体又は振動源側構造体の質量をm、前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標をrpi_z、、前記xyz座標系に対する慣性テンソルI'を
Figure JPOXMLDOC01-appb-I000151
としたとき、
対角線形化並進運動方程式
Figure JPOXMLDOC01-appb-I000152
対角線形化回転運動方程式
Figure JPOXMLDOC01-appb-I000153
から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
 算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、共振の発生に関連する周波数と一致しないように、
(1)
Figure JPOXMLDOC01-appb-I000154
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000155
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000156
の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
の第1~第6のステップのうちの少なくとも1つのステップを含むものとすることができる。
 前記設計方法において、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップであるものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われるものとすることができる。
 本発明の1つの態様は、コンピュータにより実行される、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計方法であって、
 前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群を含み、
 前記第1~第nの弾性部材群が、xyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、
 前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000157
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000158
だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
 前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定するステップと、
 前記弾性部材群の数nを設定するステップと、
 前記第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000159
を設定するステップと、
 前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
Figure JPOXMLDOC01-appb-I000160
かつ
Figure JPOXMLDOC01-appb-I000161
を満たすように、前記第1~第nの弾性部材群の位置を設定するステップと、
を含む振動アイソレータの設計方法を提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記振動感受側構造体又は振動源側構造体の質量mを設定するステップと、
 前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定するステップと、
 前記xyz座標系に対する慣性テンソルI'
Figure JPOXMLDOC01-appb-I000162
を設定ステップと、
 共振の発生に関連する周波数を設定するステップと、
 対角線形化並進運動方程式
Figure JPOXMLDOC01-appb-I000163
対角線形化回転運動方程式
Figure JPOXMLDOC01-appb-I000164
から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
 算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、設定された前記共振の発生に関連する周波数と一致しないように、
(1)
Figure JPOXMLDOC01-appb-I000165
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000166
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000167
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000168
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000169
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000170
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6のステップ、
の第1~第6のステップのうちの少なくとも1つのステップと、
を更に含むものとすることができる。
 前記振動感受側構造体又は振動源側構造体の質量mを設定するステップと、
 前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定するステップと、
 前記xyz座標系に対する慣性テンソルI
Figure JPOXMLDOC01-appb-I000171
を設定ステップと、
 対角線形化並進運動方程式
Figure JPOXMLDOC01-appb-I000172
対角線形化回転運動方程式
Figure JPOXMLDOC01-appb-I000173
から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
 設定された前記第1~第nの弾性部材群の位置と、算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数を表示するステップと、
 算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数のうちから、シフトさせる共振周波数選択入力を促すステップと、
 前記シフトさせる共振周波数の選択入力があった場合、選択された前記シフトさせる共振周波数に対応して、
(1)
Figure JPOXMLDOC01-appb-I000174
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000175
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000176
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000177
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000178
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000179
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6のステップ、
の第1~第6のステップのうちの少なくとも1つのステップと、
を更に含むものとすることができる。
 前記設計方法において、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップであるものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われるものとすることができる。 
 前記xyz座標系に対する慣性テンソルI'を設定するステップは、前記XYZ座標系に対する慣性テンソルIに基づいて算出するステップとすることができる。
 前記設計方法は、弾性部材群配置可能範囲を設定するステップを更に含み、
 前記第1~第nの弾性部材群の位置の設定は、前記弾性部材群配置可能範囲内で行われるものとすることができる。
 設定された前記第1~第nの弾性部材群の位置は、前記弾性部材群配置可能範囲と共に表示されるものとすることができる。
 設定された前記第1~第nの弾性部材群の位置は、前記x軸及びy軸と共に表示されるものとすることができる。
 前記設計方法において、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
 前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップであり、
 選択された前記シフトさせる共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示するステップと、
を更に含むものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群の一方を前記x軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示し、前記第2及び第4の弾性部材群の一方を前記y軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示しつつ、前記第1~第3のステップの少なくとも1つが行われるものとすることができる。
 本発明の1つの態様は、前記振動アイソレータの設計方法をコンピュータに実行させるためのプログラムを提供するものである。
 本発明の1つの態様は、前記プログラムを記憶した記憶媒体を提供するものである。
 本発明の1つの態様は、前記設計方法に従って振動アイソレータを設計するステップと、
 設計された前記振動アイソレータを製造するステップと、
を含む振動アイソレータの製造方法を提供するものである。
 本発明の1つの態様は、前記設計方法に従って振動アイソレータを設計するステップと、
 設計された前記振動アイソレータが取り付けられた構造物を製造するステップと、
を含む振動アイソレータの製造方法を提供するものである。
 本発明の1つの態様は、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計システムであって、
 前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群を含み、
 前記第1~第nの弾性部材群が、xyz座標系のxy平面上に位置し、
 前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は前記振動源側構造体が接する側であり、
 前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000180
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000181
だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
 前記振動感受側構造体又は前記振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定する慣性テンソル設定部と、
 前記弾性部材群の数nを設定する弾性部材群数設定部と、
 前記第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000182
を設定する剛性設定部と、
 前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
Figure JPOXMLDOC01-appb-I000183
かつ
Figure JPOXMLDOC01-appb-I000184
を満たすように、前記第1~第nの弾性部材群の位置を設定する弾性部材群位置設定部と、
を含む振動アイソレータの設計システムを提供するものである。なお、振動アイソレータの一方の側が、振動感受側構造体が接する側であるときは、振動アイソレータの他方の側は、振動源側構造体が接する側となり、振動アイソレータの一方の側が、振動源側構造体が接する側であるときは、振動アイソレータの他方の側は、振動感受側構造体が接する側となる。
 前記振動感受側構造体又は振動源側構造体の質量mを設定する剛体質量設定部と、
 前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定する剛体重心座標設定部と、
 前記xyz座標系に対する慣性テンソルI'
Figure JPOXMLDOC01-appb-I000185
を設定する変換慣性テンソル設定部と、
 対角線形化並進運動方程式
Figure JPOXMLDOC01-appb-I000186
対角線形化回転運動方程式
Figure JPOXMLDOC01-appb-I000187
から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する共振周波数算出部と、
 共振の発生に関連する周波数を設定する共振関連周波数設定部と、
 算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、設定された前記共振の発生に関連する周波数と一致しないように、
(1)
Figure JPOXMLDOC01-appb-I000188
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1の処理、
(2)
Figure JPOXMLDOC01-appb-I000189
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2の処理、
(3)
Figure JPOXMLDOC01-appb-I000190
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3の処理、
(4)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000191
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4の処理、
(5)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000192
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5の処理、
(6)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000193
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6の処理、
のうちの少なくとも1つの処理を行う弾性部材群位置調節部と、
を更に含むものとすることができる。
 前記振動感受側構造体又は振動源側構造体の質量mを設定する剛体質量設定部と、
 前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定する剛体重心座標設定部と、
 前記xyz座標系に対する慣性テンソルI
Figure JPOXMLDOC01-appb-I000194
を設定する変換慣性テンソル設定部と、
 対角線形化並進運動方程式
Figure JPOXMLDOC01-appb-I000195
対角線形化回転運動方程式
Figure JPOXMLDOC01-appb-I000196
から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する共振周波数算出部と、
 設定された前記第1~第nの弾性部材群の位置と、算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数を表示する弾性部材群配置表示部と、
 算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数のうちから、シフトさせる共振周波数選択入力を促す共振周波数選択入力部と、
 前記シフトさせる共振周波数の選択入力があった場合、選択された前記シフトさせる共振周波数に対応して、
(1)
Figure JPOXMLDOC01-appb-I000197
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1の処理、
(2)
Figure JPOXMLDOC01-appb-I000198
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2の処理、
(3)
Figure JPOXMLDOC01-appb-I000199
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3の処理、
(4)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000200
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4の処理、
(5)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000201
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5の処理、
(6)前記第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000202
を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6の処理、
のうちの少なくとも1つの処理を実行する弾性部材群位置調節部と、
を更に含むものとすることができる。
 前記設計システムにおいて、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1の処理は、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる処理であり、
 前記第2の処理は、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる処理であり、
 前記第3の処理は、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる処理であるものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3の処理の少なくとも1つが行われるものとすることができる。
 前記変換慣性テンソル設定部は、前記XYZ座標系に対する慣性テンソルIに基づいて慣性テンソルI'を算出するものとすることができる。
 前記設計システムは、弾性部材群配置可能範囲を設定する弾性部材群配置可能範囲設定部を更に含み、
 前記第1~第nの弾性部材群の位置の設定は、前記弾性部材群配置可能範囲内で行われるものとすることができる。
 前記弾性部材群配置表示部は、設定された前記第1~第nの弾性部材群の位置を、前記弾性部材群配置可能範囲と共に表示するものとすることができる。
 前記弾性部材群配置表示部は、設定された前記第1~第nの弾性部材群の位置を、前記x軸及びy軸と共に表示するものとすることができる。
 前記設計システムにおいて、n=4であり、
 前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
 前記第1の処理は、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる処理であり、
 前記第2の処理は、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる処理であり、
 前記第3の処理は、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる処理であり、
 前記弾性部材群配置表示部は、選択された前記シフトさせる共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示するものとすることができる。
 前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
 前記第1及び第3の弾性部材群の一方を前記x軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示し、前記第2及び第4の弾性部材群の一方を前記y軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示しつつ、前記第1~第3の処理の少なくとも1つが行われるものとすることができる。
 本明細書及び特許請求の範囲において、「共振の発生に関連する周波数」とは、振動源側構造体-振動アイソレータ-振動感受側構造体の系において振動源を作動させたときの振動感受側構造体の振動応答において共振現象が発生する又は発生すると想定される周波数を意味する。
 本発明に係る振動アイソレータの共振周波数の調整方法及び調整システム、並びに振動アイソレータによれば、振動アイソレータの共振を防止することができ、しかもそのために、振動アイソレータの数量・重量が増えることなく、また振動アイソレータを構成する弾性部材の選択、個数、配置等の変更を何度も行う必要がなくなる。
 また、本発明に係る振動アイソレータの設計方法、設計システム、及び製造方法によれば、共振が発生しない振動アイソレータの設計及び製造を容易に行うことができる。
振動アイソレータの解析モデルを示す図である。 XYZ座標系の定義を示す図である。 xy座標系の定義を示す図である。 条件2を満たす配置の一例を示す図である。 条件2を満たす配置の一例を示す図である。 条件2を満たす配置の一例を示す図である。 条件2を満たす配置の一例を示す図である。 xy平面の原点付近にx方向の剛性が支配的な弾性部材を追加配置した構成を示す図である。 xy平面の原点付近に配置する弾性部材の数と、x方向並進運動の共振周波数の関係を示すグラフの一例である。 xy平面の原点付近に配置する弾性部材の数と、y方向並進運動の共振周波数の関係を示すグラフの一例である。 xy平面の原点付近に配置する弾性部材の数と、z方向並進運動の共振周波数の関係を示すグラフの一例である。 y軸上の弾性部材間の距離の調整を示す図である。 y軸上の弾性部材間距離とx軸周り回転運動の共振周波数との関係を示すグラフの一例である。 x軸上の弾性部材間の距離の調整を示す図である。 x軸上の弾性部材間距離とx軸周り回転運動の共振周波数との関係を示すグラフの一例である。 菱形の大きさの調整を示す図である。 菱形の一辺の長さとz軸周り回転運動の共振周波数との関係を示すグラフの一例である。 振動伝達率と振動入力の関係を周波数に関して示すグラフの一例である。 本発明の第1の実施形態に係る振動アイソレータ1の上面模式図である。 本発明の第1の実施形態に係る振動アイソレータの共振周波数の調整方法のフローチャートである。 本発明の第1の実施形態に係る振動アイソレータの共振周波数の調整方法のフローチャートである。 本発明の第2の実施形態に係る振動アイソレータ5の斜視図である。 本発明の第2の実施形態に係る振動アイソレータ5のA-A断面図である。 本発明の第2の実施形態に係る振動アイソレータに振動感受側構造体と振動源側構造体を取り付けた状態の側面図である。 本発明の第2の実施形態に係る振動アイソレータの回転部材の回転方法の一例を示す図である。 本発明の第2の実施形態に係る振動アイソレータの共振周波数の調整方法のフローチャートである。 本発明の第2の実施形態に係る振動アイソレータの共振周波数の調整方法のフローチャートである。 本発明の第3の実施形態に係る振動アイソレータの設計方法のフローチャートである。 本発明の第3の実施形態に係る振動アイソレータの設計方法のフローチャートである。 本発明の第4の実施形態に係る振動アイソレータの設計システムの全体構成を示す図である。 本発明の第4の実施形態に係る振動アイソレータ設計システムのハードウエア構成の例を示す図である。 本発明の第4の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである。 本発明の第4の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである。 本発明の第4の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである。 本発明の第5の実施形態に係る振動アイソレータの設計システムの全体構成を示す図である。 本発明の第5の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである 本発明の第5の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである 本発明の第5の実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである 本発明の第5の実施形態に係る振動アイソレータ設計システムの表示画面の一例である。
 以下に、図面を参照しながら、本発明の例示的な実施形態のいくつかについて説明する。
(振動アイソレータの共振周波数の調整方法の原理)
 まず、本発明の振動アイソレータの共振周波数の調整方法の原理について図1を参照して説明する。
<解析モデルと運動方程式>
 図1は、振動アイソレータの解析モデルを示す図である。この解析モデルにおいて、振動アイソレータを構成する弾性部材の一端は、振動アイソレータの固定されたベースマウントに接している。そして弾性部材の他端には、剛体である振動感受側構造体が接している。剛体は、振動源側構造体であってもよい。
 ここで、以下で用いる各記号の定義を表1に示す。
Figure JPOXMLDOC01-appb-T000203
<ラグランジュの運動方程式の導出>
 図1で示す解析モデルにおいて、系の運動エネルギーT、系のポテンシャルエネルギーUはそれぞれ、以下の通りである。
Figure JPOXMLDOC01-appb-I000204
これより、ラグランジアンLは
Figure JPOXMLDOC01-appb-I000205
となる。よって、ラグランジュの運動方程式は以下のように導出できる。
Figure JPOXMLDOC01-appb-I000206
 各項を計算すると、
Figure JPOXMLDOC01-appb-I000207

Figure JPOXMLDOC01-appb-I000208
となる。ただし、式展開の際には以下の定義を用いた。
Figure JPOXMLDOC01-appb-I000209

Figure JPOXMLDOC01-appb-I000210
特に、E(Θ)は振動感受側構造体座標系から慣性座標系への座標変換行列を表し、Eu(Θ)は、角速度ωとオイラー角の時間微分の関係を表す変換行列である。
 ここで、Iに時間変化はないものとし、さらに数式の簡略化のため、便宜上Er(Θ)を以下の通り定義する。
Figure JPOXMLDOC01-appb-I000211
また、式を展開して計算すれば、
Figure JPOXMLDOC01-appb-I000212
であることから、系の並進運動方程式、回転運動方程式はそれぞれ次のように導出できる。
<並進運動方程式>
Figure JPOXMLDOC01-appb-I000213
<回転運動方程式>
Figure JPOXMLDOC01-appb-I000214
<運動方程式の線形化>
 前項で導出したラグランジュの運動方程式に対し、[rg]<<1、[Θ]<<1の微小変位を仮定し、運動方程式を線形化する。二次以上の微小量を無視すると運動方程式は以下の形で記述できる。
Figure JPOXMLDOC01-appb-I000215
ただし、
Figure JPOXMLDOC01-appb-I000216

Figure JPOXMLDOC01-appb-I000217
より、
Figure JPOXMLDOC01-appb-I000218
である。また、微小変位の条件より、 
Figure JPOXMLDOC01-appb-I000219
とみなすこともできる。
<固有値の導出>
 前項の線形化された運動方程式を行列の形で整理すると、以下の形で運動方程式を導出でる。この、MeffとKeffに対し、固有値を算出することで、系の固有振動数が求まる。
Figure JPOXMLDOC01-appb-I000220
ただし、
Figure JPOXMLDOC01-appb-I000221

Figure JPOXMLDOC01-appb-I000222

Figure JPOXMLDOC01-appb-I000223

Figure JPOXMLDOC01-appb-I000224
また、[0]は3行3列の零行列、[1]は3行3列の単位行列を表す。
<線形運動方程式の対角化>
 前項の運動方程式より、弾性部材を単に配置しただけでは個々弾性部材の運動が連成するため、共振周波数を自由に設計することができないことが分かる。そこで、弾性部材の剛性と振動感受側構造体の質量特性を以下のように定義し、さらに式を展開していく。
Figure JPOXMLDOC01-appb-I000225
 各軸の運動を可能な限り独立にするために、導出した以下の運動方程式を可能な限り対角化する。
Figure JPOXMLDOC01-appb-I000226
 まず、並進運動方程式に関する項について
Figure JPOXMLDOC01-appb-I000227
を対角化、
Figure JPOXMLDOC01-appb-I000228
を零行列化することを考えると、
Figure JPOXMLDOC01-appb-I000229

Figure JPOXMLDOC01-appb-I000230
である。弾性部材の配置制約から、
Figure JPOXMLDOC01-appb-I000231
であるが、
Figure JPOXMLDOC01-appb-I000232
となるように配置することができれば、
Figure JPOXMLDOC01-appb-I000233
とすることができる。これにより、並進運動に関する項を可能な限り対角化できる。
 次に、回転運動方程式の項である
Figure JPOXMLDOC01-appb-I000234
を零行列化し、
Figure JPOXMLDOC01-appb-I000235
を対角化することを考えると、上述の通り
Figure JPOXMLDOC01-appb-I000236
とすることを前提とすれば、
Figure JPOXMLDOC01-appb-I000237
となる。上記において、慣性乗積=0とすることができれば、
Figure JPOXMLDOC01-appb-I000238
とすることが可能である。しかし、振動感受側構造体の設計のみですべての慣性乗積をゼロとすること(機械軸と慣性主軸を完全に一致させること)は現実的ではない。そこで、振動アイソレータの設計により少なくとも1つの慣性乗積を主軸の値よりも十分小さくする。アイソレータの設計により小さくできなかった慣性乗積は、振動感受側構造体の設計により主軸の値よりも十分小さく設計する。
 振動感受側構造体の設計とアイソレータの設計により、
x'x'、Iy'y'、Iz'z'>>Ix'y'、Iy'z'、Iz'z'
とした場合を考えると、この時、二次の微小量として、
Figure JPOXMLDOC01-appb-I000239
(k,l,m,n=x,y,zかつm≠n)

とすることができる。上式より、慣性テンソルとその逆行列は
Figure JPOXMLDOC01-appb-I000240
と近似することができる。よって、
Figure JPOXMLDOC01-appb-I000241
となる。
 さらに、同様の前提においては、
Figure JPOXMLDOC01-appb-I000242

Figure JPOXMLDOC01-appb-I000243
とすることができる。ここで
Figure JPOXMLDOC01-appb-I000244
であれば、
Figure JPOXMLDOC01-appb-I000245

Figure JPOXMLDOC01-appb-I000246
となる。
 各軸方向の並進運動と各軸周りの回転運動の連成を可能な限り排除した結果、
Figure JPOXMLDOC01-appb-I000247
と変形させることができ、並進運動方程式と回転運動方程式をそれぞれ整理すると以下のように導出できる。

<対角線形化並進運動方程式>
Figure JPOXMLDOC01-appb-I000248
<対角線形化回転運動方程式>
Figure JPOXMLDOC01-appb-I000249
 なお、運動方程式中で、m、Ixx、Iyy、Izzは振動感受側構造体の質量特性によって決定されるパラメータである。
 更に、剛体の重心位置が十分低い(
Figure JPOXMLDOC01-appb-I000250
)場合を考え、(3)、(4)式を解いてみる。この時、運動方程式は完全に対角化でき、
Figure JPOXMLDOC01-appb-I000251
となる。これは6自由度の運動方程式が独立な1自由度系の運動方程式
Figure JPOXMLDOC01-appb-I000252
で書き直すことができたことを意味し、この共振周波数fは、
Figure JPOXMLDOC01-appb-I000253
である。
 よって、6自由度運動の共振周波数はそれぞれ、下記の表2に示されるよう求められる。
Figure JPOXMLDOC01-appb-T000254
 上記パラメータは、剛体の重心位置が十分低い場合から導出したものであるが、重心高さが無視できない場合においても同様に、共振周波数の値を決定するにあたり支配的なパラメータである。
 したがって、
(1)アイソレータの機能により少なくとも1つの慣性乗積を主軸の値よりも十分小さく(感受性機器の設計とアイソレータ設計によりIxx、Iyy、Izz>> Ixy、Ixz、Iyzとする)(条件1)、
(2)
Figure JPOXMLDOC01-appb-I000255
且つ
Figure JPOXMLDOC01-appb-I000256
(条件2)
の条件を満たす場合、m、Ixx、Iyy、Izzは振動感受側構造体の質量特性によって決定される値であるから、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数はそれぞれ、上記の表2に示すような項の値を設定・調整することによりシフトさせることができることが分かる。
 そこで、上記条件1、条件2についてそれぞれ検討する。
<条件1について>
 今、各弾性部材が配置される平面をXY平面と規定する。また、XY平面に垂直な軸をZ軸方向とし、振動感受側構造体の重心位置をXY平面に対しZ軸に平行に投影した点を原点とするXYZ座標系を規定する(図2参照)。
 XYZ座標系に対して規定した振動感受側構造体の慣性テンソルを
Figure JPOXMLDOC01-appb-I000257
と定義し、Z軸に対しθ回転する座標変換を考慮する。この時、
Figure JPOXMLDOC01-appb-I000258
となるθをとれば、擾乱感受性機器に対しIXYをゼロにする座標軸を定義することができる。
 よって、XY軸をθ回転した軸をxy軸と定義すると、xy平面上で各弾性部材を配置することで、条件1を満たすことができる(図3参照)
<条件2について>
 弾性部材の配置は上記条件2を満たすように配置すればよい。なお、弾性部材は取り付け面を規定するために3個以上が必要である。具体的な配置について、すべて同一の弾性部材を用いると仮定した場合の例を以下に示す。
(1)弾性部材を3個用いる場合
 例えば、図4に示されるような配置が条件2を満たすことになる。弾性部材の個数は最小となるが、例えばx軸周りの回転運動の共振周波数を調整する際には、3個全ての配置を変える必要が生じる。
(2)4個の場合
 例えば、図5Aに示される菱形配置、図5Bに示される長方形配置、図5Cに示される台形配置のような配置が条件2を満たすことになる。この時、x軸及びy軸周りの回転運動の共振周波数を個別にシフトさせるために、配置を変更する必要がある弾性部材の数は最小であることが望ましい。そのような配置は、図5Aに示されるようなの菱形配置であり、対角を成す2個の弾性部材の間の距離を変えることで調整を行うことができる。
 続いて、各共振周波数の調整手法について検討していく。
(1) x方向並進運動共振周波数の調整
 上記の表2に示されるように、x方向並進運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000259
の値を調整すればよい。xy平面の原点に配置される弾性部材は上記条件1を満たすから、この値を調整する方法の1つとして、x方向の剛性が支配的な弾性部材を1つ又はそれ以上、xy平面の原点付近に配置することが考えられる。この場合、所望する共振周波数の調整幅に応じたx方向の剛性を有する弾性部材を配置したり、所望する共振周波数の調整幅に応じた数の弾性部材を配置すればよい。なお、この方法においては、共振周波数を大きくする方向にのみ調整できる。
 図6Aは、弾性部材が菱形配置されているところに、xy平面の原点付近にx方向の剛性が支配的な弾性部材を追加配置した構成を示す図である。また、図6Bは、xy平面の原点付近に配置する弾性部材の数と、x方向並進運動の共振周波数の関係を示すグラフの一例である。
(2) y方向並進運動共振周波数の調整
 上記の表2に示されるように、x方向並進運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000260
の値を調整すればよい。xy平面の原点に配置される弾性部材は上記条件1を満たすから、この値を調整する方法の1つとして、y方向の剛性が支配的な弾性部材を1つ又はそれ以上、xy平面の原点付近に配置することが考えられる。この場合、所望する共振周波数の調整幅に応じたy方向の剛性を有する弾性部材を配置したり、所望する共振周波数の調整幅に応じた数の弾性部材を配置すればよい。なお、この方法においては、共振周波数を大きくする方向にのみ調整できる。図7は、xy平面の原点付近に配置する弾性部材の数と、y方向並進運動の共振周波数の関係を示すグラフの一例である。
(3) z方向並進運動共振周波数の調整
 上記の表2に示されるように、x方向並進運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000261
の値を調整すればよい。xy平面の原点に配置される弾性部材は上記条件1を満たすから、この値を調整する方法の1つとして、z方向の剛性が支配的な弾性部材を1つ又はそれ以上、xy平面の原点付近に配置することが考えられる。この場合、所望する共振周波数の調整幅に応じたz方向の剛性を有する弾性部材を配置したり、所望する共振周波数の調整幅に応じた数の弾性部材を配置すればよい。なお、この方法においては、共振周波数を大きくする方向にのみ調整できる。図8は、xy平面の原点付近に配置する弾性部材の数と、z方向並進運動の共振周波数の関係を示すグラフの一例である。
(4)x軸周り回転運動共振周波数の調整
 上記の表2に示されるように、x軸周り回転運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000262
の値を調整すればよいが、これは、xy平面に配置された各弾性部材のz方向の剛性ki_zz及び/又はy座標rpi_yを調整することによって達成される。
 例えば、上述の図5Aに示されるような同じ弾性部材の菱形配置において、図9Aに示されるように、x軸上の弾性部材は初期状態のまま固定し、y軸上の弾性部材間の距離を調整することによって
Figure JPOXMLDOC01-appb-I000263
を調整することを考えると、y軸上の弾性部材間距離とx軸周り回転運動の共振周波数との関係は、図9Bに示されるようになる。すなわち、弾性部材間距離を小さくすれば共振周波数は小さくなり、弾性部材間距離を大きくすれば共振周波数は大きくなる。
 ここで、剛体の重心高さによってはモード形状(回転モードと並進モード)の入れ替わりに伴って、共振周波数の設定が困難な領域(設定不可領域)が存在する。
(5)y軸周り回転運動共振周波数の調整
 上記の表2に示されるように、y軸周り回転運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000264
の値を調整すればよいが、これは、xy平面に配置された各弾性部材のz方向の剛性ki_zz及び/又はx座標rpi_xを調整することによって達成される。
 例えば、上述の図5Aに示されるような同じ弾性部材の菱形配置において、図10Aに示されるように、y軸上の弾性部材は初期状態のまま固定し、x軸上の弾性部材間の距離を調整することによって
Figure JPOXMLDOC01-appb-I000265
を調整することを考えると、x軸上の弾性部材間距離とy軸周り回転運動の共振周波数との関係は、図10Bに示されるようになる。すなわち、弾性部材間距離を小さくすれば共振周波数は小さくなり、弾性部材間距離を大きくすれば共振周波数は大きくなる。
 ここで、剛体の重心高さによってはモード形状(回転モードと並進モード)の入れ替わりに伴って、共振周波数の設定が困難な領域(設定不可領域)が存在する。
(6)z軸周り回転運動共振周波数の調整
 上記の表2に示されるように、z軸周り回転運動の共振周波数をシフトさせるためには、
Figure JPOXMLDOC01-appb-I000266
の値を調整すればよいが、これは、xy平面に配置された各弾性部材のx方向の剛性ki_xx、y方向の剛性ki_yy、x座標rpi_x及び/又はy座標rpi_yを調整することによって達成される。
 簡単のために、例えば、上述の図5Aに示されるような同じ弾性部材の菱形配置において、図11Aに示されるように、初期状態の菱形配置を相似な形状で変化させることによって
Figure JPOXMLDOC01-appb-I000267
を調整することを考えると、初期状態の菱形配置を相似な形状で菱形の一辺の長さとz軸周り回転運動の共振周波数との関係は、図11Bに示されるようになる。すなわち、初期状態の菱形配置を相似な形状で、菱形の一辺の長さを小さくすれば共振周波数は小さくなり、菱形の一辺の長さを大きくすれば共振周波数は大きくなる。
 上述の調整手法によって、各共振周波数をそれぞれ個別に調整することができるが、これらの調整手法を用いて、振動アイソレータの共振を防止するための共振周波数の調整方法の例について述べる。
 図12は、振動アイソレータを適用したときの振動伝達率と振動入力の関係を周波数に関して示すグラフの一例である。実線は振動アイソレータを適用したときの振動伝達率、破線は振動入力を示す。
 振動アイソレータの適用によって高周波域においては大きな絶縁特性が得られるものの、原理上、低周波域には、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数の6つの共振周波数が現れる。一方、低周波域の振動入力においてA、B、Cの3つのピークが存在する。
 振動入力のピークAは全ての共振周波数から外れているため問題とならないが、振動入力のピークBはy軸周り回転共振周波数と、振動入力のピークCはy方向並進共振周波数と一致している。そのため、振動応答=振動入力×振動伝達率であることから、結果として大きな応答が出現する。
 そこで、個別に各共振周波数を調整するという手法が有効となる。本例においては、上記(2)の調整手法を用いてy軸周り回転運動の共振周波数をシフトさせるとともに、上記(5)の調整手法を用いてy方向並進運動の共振周波数をシフトさせることによって、増幅域による振動応答を最小限に抑えることができる。
(第1の実施形態)
 図13は本発明の第1の実施形態に係る振動アイソレータ1の上面模式図である。振動アイソレータ1は、フレーム10、第1のスライド部材11、第2のスライド部材12、第3のスライド部材13、第4のスライド部材14、第1の弾性部材15、第2の弾性部材16、第3の弾性部材17、第4の弾性部材18を備える。
 フレーム10は、第1のフレーム部101、第2のフレーム部102、第3のフレーム部103、第4のフレーム部104、第5のフレーム部105を備える。第1のフレーム部101、第2のフレーム部102、第3のフレーム部103は、互いに平行な直線状のフレーム部であり、第4のフレーム部104、第5のフレーム部105は、第1~第3のフレーム部101~103と直交する方向に互いに平行な直線状のフレーム部である。第1、第3、第4及び第5のフレーム部101、103、104、105により、フレーム10の矩形の外周部が構成される。また、第2のフレーム部102は、第4のフレーム部104の中点と第5のフレーム部105の中点を結ぶ線上に配置されている。第2のフレーム部102の中心部は、弾性部材19を取り付けることができるようになっている。
 第1~第4のスライド部材11~14は、それぞれ、直線状の第1のスライド部材本体11aと第1のスライドプレート11b、直線状の第2のスライド部材本体12aと第1のスライドプレート12b、直線状の第3のスライド部材本体13aと第3のスライドプレート13b、直線状の第4のスライド部材本体14aと第4のスライドプレート14bを備える。
 第1及び第4のスライド部材本体11a、14aは、第2のフレーム部102と第3のフレーム部103の間に配置され、それぞれ、第2及び第3のフレーム部102、103に、第2及び第3のフレーム部102、103が延びる方向と平行な方向に摺動可能に連結されている。第1のスライド部材11は、第4のスライド部材14の第5のフレーム部105側に配置されている。第2及び第3のスライド部材本体12a、13aは、第1のフレーム部101と第2のフレーム部102の間に配置され、それぞれ、第1及び第2のフレーム部101、102に、第1及び第2のフレーム部101、102が延びる方向と平行な方向に摺動可能に連結されている。第2のスライド部材12は、第3のスライド部材13の第5のフレーム部105側に配置されている。
 また、第1~第4のスライドプレート11b~14bは、それぞれ、第1~第4のスライド部材本体11a~14aに、第1~第4のスライド部材本体11b~14aが延びる方向と平行な方向に摺動可能に連結されている。そして、第1~第4のスライドプレート11a~14aには、それぞれ、第1~第4の弾性部材15~18が取り付けられている。
 このような構成により、第2のフレーム部102、第3のフレーム部103、第4のフレーム部104、第5のフレーム部105で囲まれる領域内で、第1の弾性部材15、第4の弾性部材18の位置を任意の位置に調節することができる。また、第1のフレーム部101、第2のフレーム部102、第4のフレーム部104、第5のフレーム部105で囲まれる領域内で、第2の弾性部材16、第3の弾性部材16の位置を任意の位置に調節することができる。
 第1~第4の弾性部材15~18の上には、直接に又は取付部材を介して、図示しない振動感受側構造体が取り付けられるか又は取り付けられずに、第1~第4の弾性部材15~18と振動感受側構造体が接し、フレーム10の第1~第4の弾性部材15~18が取り付けられている側とは反対の側には、直接に又は取付部材を介して、図示しない振動源側構造体が取り付けられるか又は取り付けられずに、フレーム10と振動感受側構造体が接する。
 以上の装置構成を前提に、本発明の第1の実施形態に係る振動アイソレータの共振周波数の調整方法を図14のフローチャートを参照して、以下に説明する。
 まず、振動アイソレータ1を振動源側構造体に取り付ける(S11)。
 次に、振動感受側構造体の重心を原点するXYZ座標系に対する慣性テンソルを
Figure JPOXMLDOC01-appb-I000268
としたとき、振動感受側構造体の重心の、フレーム10が張る平面への投影点が、第2のフレーム部102の中心点となり、第4及び第5のフレーム部104、105が延びる方向がX軸と平行になるように、且つ第1~第3のフレーム部101~103が延びる方向がY軸と平行になるように、フレーム10に振動感受側構造体を取り付ける。(S12)。
 そして、振動源を作動させたときの振動感受側構造体の振動応答の周波数特性を測定する(S13)。
 x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数のいずれかと一致する周波数に、測定した振動応答において共振現象が存在する場合、振動アイソレータ1から振動感受側構造体を取り外し、以下のような共振周波数調整を行う(S14)。
 XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000269
だけ回転させたxy座標系において、第1~第4の弾性部材15~18の剛性Ki(i=1,2,3,4)を
Figure JPOXMLDOC01-appb-I000270
、第5の弾性部材の剛性K5
Figure JPOXMLDOC01-appb-I000271
、第1~第5の弾性部材15~19のxy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、上記の条件2を満足させつつ、以下の調整を行い各共振周波数をシフトさせる。
(1)x方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、
Figure JPOXMLDOC01-appb-I000272
の値が変化するように第1~第4の弾性部材15~18の位置を調整する。
(2)y方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、
Figure JPOXMLDOC01-appb-I000273
の値が変化するように第1~第4の弾性部材15~18の位置を調整する。
(3)z方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、
Figure JPOXMLDOC01-appb-I000274
の値が変化するように第1~第4の弾性部材15~18の位置を調整する。
(4)x方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、x方向に支配的な剛性を有する第5の弾性部材19を第2のフレーム部102の中心部に取り付ける。
(5)y方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、y方向に支配的な剛性を有する第5の弾性部材19を第2のフレーム部102の中心部に取り付ける。
(6)z方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、z方向に支配的な剛性を有する第5の弾性部材19を第2のフレーム部102の中心部に取り付ける。
 各共振周波数の調整後、再び、ステップS12と同様にして振動感受側構造体を振動アイソレータ1に取り付ける(S15)。
 特に、第1の弾性部材15及び第3の弾性部材17がx軸上に位置し、第2の弾性部材16及び第4の弾性部材18がy軸上に位置するようにすると、上記(1)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2を調節して、x軸周り回転運動の共振周波数をシフトさせることができ、上記(2)の調整について、第1の弾性部材15及び第3の弾性部材17の間の距離L1を調節して、y軸周り回転運動の共振周波数をシフトさせることができ、上記(3)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2及び/又は第1の弾性部材15及び第3の弾性部材17の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせることができる。この場合、弾性部材間の距離を調節することに換えて及び/又は加えて、その弾性部材自体の剛性の調整、剛性が異なる弾性部材への置換や弾性部材の追加等によって弾性部材の剛性を調節してもよい。
 本実施形態によれば、原理上発生する、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数の6つの共振周波数を、それぞれ個別に調整することができる。
 そのため、上記の共振周波数のうちで共振の発生に関連する周波数と一致するものがあった場合、その共振周波数をシフトさせることによって、振動アイソレータの共振を防止することができ、しかもそのために、振動アイソレータの数量・重量を増やす必要もなく、また振動アイソレータを構成する弾性部材の選択、個数、配置等の変更を何度も行う必要もない。
 また、振動源機器や振動感受性機器の開発の進捗に応じて、開発された振動源機器や振動感受性機器に対応した共振防止を行うことができる。そして、そのため、振動源機器や振動感受性機器の設計の手戻りが小さくなる。
 上記実施形態においては、第2のフレーム部102の中心部以外に配置される弾性部材の数は4つであったが、これを3つとしてもよいし、スライド部材の数を増やして、任意の適切な数の弾性部材を配置し、上記の条件2を満足させつつ各共振周波数の調整を行ってもよい。
 また、上記実施形態においては、各位置に配置される弾性部材の数は1つであったが、各位置に複数の弾性部材を配置してもよい。
(第2の実施形態)
 図15、図16は、それぞれ、本発明の第2の実施形態に係る振動アイソレータ5の斜視図、A-A断面図である。図17は、本発明の第2の実施形態に係る振動アイソレータに振動感受側構造体と振動源側構造体を取り付けた状態の側面図である。図18は、本発明の第2の実施形態に係る振動アイソレータの回転部材の回転方法の一例を示す図である。振動アイソレータ5は、第1の弾性部材51、第2の弾性部材52、第3の弾性部材53、第4の弾性部材54、第5の弾性部材55、回転部材56、外環フレーム57、第1のスライド部58、第2のスライド部59、第3のスライド部60、第4のスライド部61を備える。
 第1~第4の弾性部材51~54は、ゴムを含む弾性部材、ばねを含む弾性部材等任意の適切な弾性部材を用いることができるが、水平方向及び垂直方向の剛性が等しいものが好ましい。また、第5の弾性部材55は、ゴムを含む弾性部材、ばねを含む弾性部材等任意の適切な弾性部材を用いることができる。
 回転部材56は、その周縁から立ち下がる第1の筒状部560を有する円板状の形状を有し、その振動源側構造体4側の主面の中心部に凸状部568が形成されている。そして、回転部材56の他方の主面の中心に、回転部材56を凸状部568を含めて厚さ方向に貫通する位置決めピン穴561が形成されている。回転部材56は、後述のように、その中心を通り、その主面に直交する回転軸線の周りに回転可能である。また、回転部材56には、回転部材56の中心から所定の距離離れた位置から径方向に延びる一対のスリットからなる、第1の位置調整スリット562、第2の位置調整スリット563、第3の位置調整スリット564、第4の位置調整スリット565が形成されている。第1及び第3の位置調整スリット562、564は、回転部材56の中心を通る同一直線上に配置され、第2及び第4の位置調整スリット563、565は、その直線と直交し、回転部材56の中心を通る同一直線上に配置されている。
 第1~第4のスライド部58~61は、それぞれ、矩形の第1~第4の弾性部材取付プレート58a~61aと矩形の第1~第4の位置固定プレート58b~61bを備える。第1の弾性部材取付プレート58aと第1の位置固定プレート58bには、それぞれ四隅にねじ穴が形成され、第1の弾性部材取付プレート58aと第1の位置固定プレート58bが、回転部材56を挟んで対向するように互いにボルト58cによって結合されている。第2~第4の弾性部材取付プレート59a~61aと第2~第4の位置固定プレート59b~61bについても同様にして、それぞれボルト59c~61cによって結合されている。
 このような構成において、各弾性部材取付プレートと各位置固定プレートのボルトによる結合を緩めると、第1~第4のスライド部58~61は、それぞれ、第1~第4の位置調整スリット562~565を介して、回転部材56に対して摺動可能となり、第1~第4の位置調整スリット562~565の一端から他端まで移動可能となる。また、各弾性部材取付プレートと各位置固定プレートを結合するボルトを締めると、第1~第4のスライド部58~61を回転部材56に対して固定することができる。
 第1~第4のスライド部58~61の上には、それぞれ、第1~第4の弾性部材51~54がねじにより取り付けられている。よって、第1~第4の弾性部材51~54の位置は、それぞれ、第1~第4の位置調整スリット562~565の一端から他端まで調節可能となっている。すなわち、回転部材56の回転軸線が通る回転部材56の中心を交点とする、直交する2つの線分において、第1及び第3の弾性部材51、53の間の距離L1と第2及び第4の弾性部材52、54の間の距離L2をそれぞれ独立に調節可能である。
 外環フレーム57は、その形状が円筒状の形状であり、その端部に、径方向内方と外方の両方に突出するように形成されたフランジ部571と、フランジ部571から立ち上がる第2の筒状部572を有する。フランジ部571の径方向外方の部分には、外環フレーム57を振動源側構造体4にボルトで固定するための固定穴571aが所定の間隔を置いて形成されている。また、第2の筒状部572には、円周方向に延びる第2の角度調整スリット573が所定の間隔を置いて形成されている。
 回転部材56の第1の筒状部560が、外環フレーム57のフランジ部571の径方向内方の部分の上に置かれ、回転部材56は、その中心を通り、その主面に直交する回転軸線の周りに回転可能となっており、回転角度の調節を行うことができる。本実施形態においては、図18に示されるように、回転部材56の第1の位置決めピン穴561と外環フレーム57に取り付けられる振動源側構造体4に形成された第2の位置決めピン穴41に位置決めピン65を通すことによって、精度良く回転部材56を回転させ、回転角度の調節を行うことができる。なお、このような位置決めピンを用いなくても回転部材56を回転させることができることは言うまでもない。
 回転部材56の第1の筒状部560には、円周方向に延びる第1の角度調整スリット566が所定の間隔を置いて形成されている。この第1の角度調整スリット566と外環フレーム57の第2の角度調整スリット572を通るボルト572aをナット572bで締めることによって、回転角度の調整を行った回転部材56を外環フレーム57に対して固定することができる。
 回転部材56の弾性部材取付側の主面の中心部には、弾性部材取付プレート62を固定するためのねじ穴が形成されており、弾性部材取付プレート62を介して第5の弾性部材55を回転部材56に取り付けることができる。
 以上の装置構成を前提に、本発明の第2の実施形態に係る振動アイソレータの共振周波数の調整方法を図19のフローチャートを参照して、以下に説明する。
 まず、振動アイソレータ5を振動源側構造体4に取り付ける(S21)。
 次に、振動感受側構造体3の重心を原点するXYZ座標系に対する慣性テンソルを
Figure JPOXMLDOC01-appb-I000275
としたとき、Z軸が回転部材56の回転軸線と一致するように振動感受側構造体3を振動アイソレータ5に取り付ける(S22)。
 そして、振動源を作動させたときの振動感受側構造体の振動応答の周波数特性を測定する(S23)。
 x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数のいずれかと一致する周波数に、測定した振動応答において共振現象が存在する場合、振動アイソレータ5から振動感受側構造体3を取り外し、以下のような共振周波数調整を行う(S24)。
 まず、第1~第4の弾性部材51~54の剛性Kiを(i=1,2,3,4)
Figure JPOXMLDOC01-appb-I000276
、第5の弾性部材55の剛性K5
Figure JPOXMLDOC01-appb-I000277
、第1~第5の弾性部材51~55のxy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000278
だけ回転させたxy座標系のx軸、y軸に、第1及び第3の弾性部材51、53を結ぶ線分、第2及び第4の弾性部材52、54を結ぶ線分が一致するように、回転部材56をその回転軸線の周りに回転させる(S25)。
 続いて、上記の条件2を満足させつつ、以下の調整を行い各共振周波数をシフトさせる(S26)。
(1)x方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、第2及び第4の弾性部材52、54の間の距離L2を調節する。
(2)y方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、第1及び第3の弾性部材51、53の間の距離L1を調節する。
(3)z方向回転運動の共振周波数に一致する周波数に振動入力が存在する場合、第2及び第4の弾性部材52、54の間の距離L2及び/又は第1及び第3の弾性部材51、53の間の距離L1を調節する。
(4)x方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、x方向に支配的な剛性を有する第5の弾性部材55を、回転部材56の中心に、弾性部材取付プレート62を介して取り付ける。
(5)y方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、y方向に支配的な剛性を有する第5の弾性部材55を、回転部材56の中心に、弾性部材取付プレート62を介して取り付ける。
(6)z方向並進運動の共振周波数に一致する周波数に振動入力が存在する場合、z方向に支配的な剛性を有する第5の弾性部材55を、回転部材56の中心に、弾性部材取付プレート62を介して取り付ける。
 ここで、第1及び第3の弾性部材51、53の剛性が等しく、第2及び第4の弾性部材52、54の剛性が等しい場合は、第1及び第3の弾性部材51、53、並びに第2及び第4の弾性部材52、54を回転部材56の中心に対して対称となるように配置しつつ、(1)~(3)の調整を行うことにより、上記の条件1を満たすことができる。ここで、弾性部材の位置調整機構を、第1及び第3の弾性部材51、53の間の距離L1と第2及び第4の弾性部材52、54の間の距離L2の少なくとも一方を、回転部材56の中心から各弾性部材群の距離が等しくなるように調整可能である任意の適切な機構とすれば、より調整が容易となる。
 各共振周波数の調整後、再び、Z軸が回転部材56の回転軸線と一致するように振動感受側構造体3を振動アイソレータ5に取り付ける(S27)。
 このような構成により、本実施形態は、第1の実施形態の利点に加えて、以下のような利点を有する。すなわち、第1の実施形態においては、θと弾性部材の位置の調節を同時に行う複雑な調節を要したが、本実施形態によれば、すべての弾性部材に対して一度にθの調節を行うことができ、その後に弾性部材の位置調節を行うことができるので、各共振周波数の調整を容易に行うことができる。
 上記実施形態においては、回転部材56の中心以外に配置される弾性部材の数は4つであったが、位置調整スリットの数や配置を変えたり、他の任意の適切な機構を用いることによって、任意の適切な数の弾性部材を配置し、上記の条件2を満足させつつ各共振周波数の調整を行ってもよい。
 また、上記実施形態においては、弾性部材間の距離を調節したが、弾性部材間の距離を調節することに換えて及び/又は加えて、その弾性部材自体の剛性の調整、剛性が異なる弾性部材への置換や弾性部材の追加等によって弾性部材の剛性を調節してもよい。
 また、上記実施形態においては、各位置に配置される弾性部材の数は1つであったが、各位置に複数の弾性部材を配置してもよい。
(第3の実施形態)
 本発明の第3の実施形態に係る振動アイソレータの設計方法を図20のフローチャートを参照して、以下に説明する。なお、本実施形態において、振動アイソレータは、3つ以上の弾性部材のみで構成されてもよい。
 設計する振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、第1~第nの弾性部材群及び/又は第n+1の弾性部材群が、xyz座標系のxy平面上に位置し、第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、振動感受側構造体又は振動源側構造体が接する側であり、xyz座標系のxy座標系は、振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000279
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000280
だけ回転させたものであり、xyz座標系のz軸はZ軸と同軸であるとする。
 このような前提において、まず、第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000281
、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000282
、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、上記の条件2を満たすように、第1~第nの弾性部材群及び/又は第n+1の弾性部材群の位置を設定する(S31)。
 次に、振動感受側構造体又は振動源側構造体の質量をm、振動感受側構造体又は振動源側構造体の重心のxyz座標系のz座標をrpi_z、xyz座標系に対する慣性テンソルI'を
Figure JPOXMLDOC01-appb-I000283
としたとき、上記の(3)式の対角線形化並進運動方程式と上記の(4)式の対角線形化回転運動方程式から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する(S32)。
 算出された各共振周波数が、振動源側構造体-振動アイソレータ-振動感受側構造体の系において振動源を作動させたときの振動感受側構造体の振動応答において共振現象が発生する又は発生すると想定される周波数である、共振の発生に関連する周波数と一致しない場合は終了し、一致する場合は次のステップに進む(S33)。
 算出された各周波数が、共振の発生に関連する周波数と一致する場合、算出された各共振周波数が、共振の発生に関連する周波数と一致しないように、
(1)
Figure JPOXMLDOC01-appb-I000284
の値が変化するように第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
(2)
Figure JPOXMLDOC01-appb-I000285
の値が変化するように第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
(3)
Figure JPOXMLDOC01-appb-I000286
の値が変化するように第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
(4)第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
(5)第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
(6)第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
のうちの少なくとも1つのステップを行う(S34)。
 ステップS34において、n=4の場合、第1の弾性部材15及び第3の弾性部材17がx軸上に位置し、第2の弾性部材16及び第4の弾性部材18がy軸上に位置するようにすると、上記(1)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2を調節して、x軸周り回転運動の共振周波数をシフトさせることができ、上記(2)の調整について、第1の弾性部材15及び第3の弾性部材17の間の距離L1を調節して、y軸周り回転運動の共振周波数をシフトさせることができ、上記(3)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2及び/又は第1の弾性部材15及び第3の弾性部材17の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせることができる。この場合、弾性部材間の距離を調節することに換えて及び/又は加えて、その弾性部材自体の剛性の調整、剛性が異なる弾性部材への置換や弾性部材の追加等によって弾性部材の剛性を調節してもよい。
 この場合、更に、第1及び第3の弾性部材群の剛性が等しく、第2及び第4の弾性部材群の剛性が等しいとき、第1及び第3の弾性部材群をxyz座標系のx軸上に原点に対称に配置し、第2及び第4の弾性部材群をxyz座標系のy軸上に原点に対称に配置しつつ、第1~第3のステップの少なくとも1つを行ってもよい。
 そして、以上の設計方法に従って設計された振動アイソレータが取り付けられた構造体を製造することができる。
 本実施形態によれば、原理上発生する、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数の6つの共振周波数を、それぞれ個別に調整することができる。
 そのため、上記の共振周波数のうちで共振の発生に関連する周波数と一致するものがあった場合、その共振周波数をシフトさせることによって、振動アイソレータの共振を防止することができる。
 また、振動源機器や振動感受性機器の開発の進捗に応じて、開発された振動源機器や振動感受性機器に対応した共振防止を行うことができる。そして、そのため、振動源機器や振動感受性機器の設計の手戻りが小さくなる。
 特に、共振の発生に関連する周波数を考慮しつつ、弾性部材群の数、配置、剛性等を確認しながら振動アイソレータの設計を行うことができる。その際に、CADデータ等の詳細な設計情報を用いることなく、振動アイソレータが取り付けられる振動感受側構造体又は振動源側構造体の慣性テンソル、質量、重心高さから、上記6つの共振周波数、弾性部材群の数、配置、剛性等を確認することができる。
 また、上記のステップS31の条件2を満たす弾性部材群の配置設定のみでも、特に菱形配置の場合は、その後調整が必要な場合も、対向する弾性部材群間の距離を、対向する弾性部材群間の方向に調整するだけでよくなるという利点がある。
(第4の実施形態)
 図21は、本発明の第4の実施形態に係る振動アイソレータの設計システムの全体構成を示す図である。振動アイソレータ設計システム7は、慣性テンソル設定部701、剛体質量設定部703、剛体重心座標設定部705、弾性部材群数設定部707、弾性部材群剛性設定部711、変換慣性テンソル設定部715、共振関連周波数設定部717、共振周波数算出部719、弾性部材群位置調節部721、弾性部材群追加部723を備える。振動アイソレータ設計システム7は、例えばサーバ、PC、スマートフォンやタブレット型コンピュータ等のモバイルデバイスとすることができる。振動アイソレータ設計システム7は、これらに限定されるものではなく、適切な任意のデバイスとすることができる。また、振動アイソレータ設計システム7は、1つの物理的な装置として構成される必要はなく、複数の物理的な装置から構成されてもよい。なお、本実施形態において、振動アイソレータは、3つ以上の弾性部材のみで構成されてもよい。
 慣性テンソル設定部701は、ユーザからの入力等によって、振動アイソレータと接する振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定する。
 剛体質量設定部703は、ユーザからの入力等によって、振動アイソレータと接する振動感受側構造体又は振動源側構造体の質量mを設定する(S403)。
 剛体重心座標設定部705は、ユーザからの入力等によって、振動アイソレータと接する振動感受側構造体又は振動源側構造体の重心のxyz座標系のz座標rpi_zを設定する。
 弾性部材群数設定部707は、ユーザからの入力等によって、弾性部材群の数nを設定する。
 弾性部材群剛性設定部711は、ユーザからの入力等によって、第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000287
を設定する。
 変換慣性テンソル設定部715は、ユーザからの入力、XYZ座標系に対する慣性テンソルIからの変換によって、xyz座標系に対する慣性テンソル
Figure JPOXMLDOC01-appb-I000288
を設定する。
 共振関連周波数設定部717は、ユーザからの入力等によって、共振の発生に関連する周波数を設定する。
 共振周波数算出部719は、設定された上記各パラメータの値に基づいて、上記の(3)式の対角線形化並進運動方程式と上記の(4)式の対角線形化回転運動方程式から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する。
 弾性部材群位置調整部721は、第1~第nの弾性部材群のxy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、上記の条件2を満足させつつ、算出された各共振周波数が、設定された共振の発生に関連する周波数と一致しないように、後述のように共振周波数をシフトさせる。
 弾性部材群追加部723は、上記の調整において、x軸並進運動、y軸並進運動、z軸並進運動の共振周波数をシフトさせる必要がある場合に、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_xx、kn+1_yy、kn+1_zzの値を調節し、各共振周波数をシフトさせる弾性部材群の追加配置を行う。
 図22は、本実施形態に係る振動アイソレータ設計システム7のハードウエア構成の例を示す図である。振動アイソレータ設計システム7は、CPU70a、RAM70b、ROM70c、外部メモリ70d、入力部70e、出力部70f、通信部70gを含む。RAM70b、ROM70c、外部メモリ70d、入力部70e、出力部70f、通信部70gは、システムバス70hを介して、CPU70aに接続されている。
 CPU70aは、システムバス70hに接続される各デバイスを統括的に制御する。
 ROM70cや外部メモリ70dには、CPU70aの制御プログラムであるBIOSやOS、コンピュータが実行する機能を実現するために必要な各種プログラムやデータ等が記憶されている。
 RAM70bは、CPUの主メモリや作業領域等として機能する。CPU70aは、処理の実行に際して必要なプログラム等をROM70cや外部メモリ70dからRAM70bにロードして、ロードしたプログラムを実行することで各種動作を実現する。
 外部メモリ70dは、例えば、フラッシュメモリ、ハードディスク、DVD-RAM、USBメモリ等から構成される。
 入力部70eは、ユーザ等からの操作指示等を受け付ける。入力部70eは、例えば、入力ボタン、キーボード、ポインティングデバイス、ワイヤレスリモコン、マイクロフォン、カメラ等の入力デバイスから構成される。
 出力部70fは、CPU70aで処理されるデータや、RAM70b、ROM70cや外部メモリ70dに記憶されるデータを出力する。出力部70fは、例えば、CRTディスプレイ、LCD、有機ELパネル、プリンタ、スピーカ等の出力デバイスから構成される。
 通信部70gは、ネットワークを介して又は直接、外部機器と接続・通信するためのインタフェースである。通信部70gは、例えばシリアルインタフェース、LANインタフェース等のインタフェースから構成される。
 図21に示される振動アイソレータ設計システム7の各部は、ROM70cや外部メモリ70dに記憶された各種プログラムが、CPU70a、RAM70b、ROM70c、外部メモリ70d、入力部70e、出力部70f、通信部70g等を資源として使用することで実現される。
 以上のシステム構成を前提に、本発明の第4の実施形態に係る振動アイソレータ設計システムの設計処理の例を、図21、23等を参照して、以下に説明する。図23は、本実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである。
 設計する振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、第1~第nの弾性部材群及び/又は第n+1の弾性部材群が、xyz座標系のxy平面上に位置し、第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、振動感受側構造体又は振動源側構造体が接する側であり、xyz座標系のxy座標系は、振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
Figure JPOXMLDOC01-appb-I000289
としたとき、XY座標系をZ軸周りに
Figure JPOXMLDOC01-appb-I000290
だけ回転させたものであり、xyz座標系のz軸は前記Z軸と同軸であるとする。
 このような前提において、まず、ユーザからの入力等によって、慣性テンソル設定部701は、振動アイソレータと接する振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定する(S401)。
 また、ユーザからの入力等によって、剛体質量設定部703は、振動アイソレータと接する振動感受側構造体又は振動源側構造体の質量mを設定する(S403)。
 また、ユーザからの入力等によって、剛体重心座標設定部705は、振動アイソレータと接する振動感受側構造体又は振動源側構造体の重心のxyz座標系のz座標rpi_zを設定する(S405)。
 また、ユーザからの入力等によって、弾性部材群数設定部707は、弾性部材群の数nを設定する(S407)。
 また、ユーザからの入力等によって、弾性部材群剛性設定部711は、第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
Figure JPOXMLDOC01-appb-I000291
を設定する(S409)。
 また、変換慣性テンソル設定部715は、ユーザからの入力、XYZ座標系に対する慣性テンソルIからの変換によって、xyz座標系に対する慣性テンソル
Figure JPOXMLDOC01-appb-I000292
を設定する(S413)。
 また、ユーザからの入力等によって、共振関連周波数設定部717は、共振の発生に関連する周波数を設定する(S415)。
 そして、共振周波数算出部719は、設定された上記各パラメータの値に基づいて、上記の式(3)の対角線形化並進運動方程式と上記の式(4)の対角線形化回転運動方程式から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する(S417)
 算出された各共振周波数が、設定された共振の発生に関連する周波数と一致しない場合は終了し、一致する場合は次のステップに進む(S418)。
 算出された各周波数が、共振の発生に関連する周波数と一致する場合、弾性部材群位置調整部721は、第1~第nの弾性部材群のxy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、上記の条件2を満足させつつ、算出された各共振周波数が、設定された共振の発生に関連する周波数と一致しないように、以下の調節を行い、第1~第nの弾性部材群の位置を設定する(S419)。
(1)
Figure JPOXMLDOC01-appb-I000293
の値が変化するように第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる。
(2)
Figure JPOXMLDOC01-appb-I000294
の値が変化するように第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる。
(3)
Figure JPOXMLDOC01-appb-I000295
の値が変化するように第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる。
(4)弾性部材群剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000296
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる。
(5)剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000297
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる。
(6)剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000298
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる。
 特に、n=4の場合、第1の弾性部材15及び第3の弾性部材17がx軸上に位置し、第2の弾性部材16及び第4の弾性部材18がy軸上に位置するようにすると、上記(1)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2を調節して、x軸周り回転運動の共振周波数をシフトさせることができ、上記(2)の調整について、第1の弾性部材15及び第3の弾性部材17の間の距離L1を調節して、y軸周り回転運動の共振周波数をシフトさせることができ、上記(3)の調整について、第2の弾性部材16及び第4の弾性部材18の間の距離L2及び/又は第1の弾性部材15及び第3の弾性部材17の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせることができる。この場合、弾性部材間の距離を調節することに換えて及び/又は加えて、その弾性部材自体の剛性の調整、剛性が異なる弾性部材への置換や弾性部材の追加等によって弾性部材の剛性を調節してもよい。
 この場合、更に、第1及び第3の弾性部材群の剛性が等しく、第2及び第4の弾性部材群の剛性が等しいとき、第1及び第3の弾性部材群をxyz座標系のx軸上に原点に対称に配置し、第2及び第4の弾性部材群をxyz座標系のy軸上に原点に対称に配置しつつ、第1~第3の調節の少なくとも1つを行ってもよい。
 そして、以上の設計方法に従って設計された振動アイソレータが取り付けられた構造体を製造することができる。
 このような構成により、本実施形態は、第3の実施形態の利点に加えて、以下のような利点を有する。すなわち、共振の発生に関連する周波数を避けた、弾性部材群の配置が自動的に設計可能である。
(第5の実施形態)
 図24は、本発明の第5の実施形態に係る振動アイソレータの設計システムの全体構成を示す図である。この図24を参照して、本発明の第5の実施形態に係る振動アイソレータ設計システムの構成を説明する。図24において、図21と対応する部分には同一の符号を付し、第4の実施形態と重複する説明は省略する。なお、本実施形態において、振動アイソレータは、3つ以上の弾性部材のみで構成されてもよい。
 振動アイソレータ設計システム7は、慣性テンソル設定部701、剛体質量設定部703、剛体重心座標設定部705、弾性部材群数設定部707、弾性部材群剛性設定部711、変換慣性テンソル設定部715、共振周波数算出部719、弾性部材群位置調節部721、弾性部材群追加部723、弾性部材群配置可能範囲設定部725、弾性部材群初期配置設定部727、弾性部材群配置表示部729、表示部731、共振周波数選択入力部733を備える。
 弾性部材群配置可能範囲設定部725は、ユーザからの入力等によって、弾性部材群配置可能範囲を設定する。
 弾性部材群初期配置設定部727は、上記の条件2を満たす第1~第nの弾性部材群の初期配置を算出する。
 弾性部材群配置表示部729は、設定された第1~第nの弾性部材群の位置と、共振周波数算出部719によって算出された各共振周波数を表示する。また、シフトさせる共振周波数が選択された場合、選択された共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示する。
 表示部731は、ディスプレイ等であり、各種のデータが表示される。
 共振周波数選択入力部733は、共振周波数算出部719によって算出された各共振周波数のうちから、シフトさせる共振周波数選択入力を促す。
 以上のシステム構成を前提に、本発明の第5の実施形態に係る振動アイソレータ設計システムの設計処理の例を、図24~26等を参照して、以下に説明する。図25は、本実施形態に係る振動アイソレータ設計システムの設計処理のフローチャートである。また、図26は、本実施形態に係る振動アイソレータ設計システムの表示画面の一例である。
 ステップ509までは、第4の実施形態におけるステップS401~S409と同様であるので説明は省略するが、本実施形態においては、例として、弾性部材群数設定部707により弾性部材の数が4に設定され、また弾性部材群剛性設定部711により第1~第4の弾性部材71~74について等しい剛性が設定された場合について説明する。
 ユーザ入力によって、XY平面における弾性部材群配置可能範囲、例えば頂点が(1000mm,600mm)、(-1000mm,600mm)、(-1000mm,-600mm)、(1000mm,-600mm)の矩形範囲が指定されることにより、弾性部材群配置可能範囲設定部725は、弾性部材群配置可能範囲76を設定する(S512)
 また、変換慣性テンソル設定部715は、ユーザからの入力、XYZ座標系に対する慣性テンソルIからの変換によって、xyz座標系に対する慣性テンソル
Figure JPOXMLDOC01-appb-I000299
を設定する(S513)。
 共振周波数算出部719は、設定された上記各パラメータの値に基づいて、上記の(3)式の対角線形化並進運動方程式と上記の(4)式の対角線形化回転運動方程式から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する(S517)。
 また、弾性部材群初期配置設定部727は、第1及び第3の弾性部材71、73がx軸上に、第2及び第4の弾性部材72、74がy軸上に配置される菱形配置において、弾性部材群配置可能範囲内で菱形が最も大きくなる配置、例えば第1の弾性部材71のy座標が最も大きくなる配置を初期配置として算出する(S519)。
 弾性部材群配置表示部729は、初期配置として設定された第1~第4の弾性部材71~74の位置を、xy座標系のx軸及びy軸並びに弾性部材群配置可能範囲76と共にディスプレイ等の表示部731の表示画面70に表示し、共振周波数算出部719によって算出された各共振周波数を表示画面70に表示する(S521)。
 共振周波数選択入力部733は、共振周波数算出部719によって算出された各共振周波数のそれぞれ左隣にチェックボックス78を表示し、各共振周波数のうちから、シフトさせる共振周波数選択入力を促す(S523)。
 シフトさせる共振周波数選択入力がない場合は終了し、ある場合は次のステップに進む(S525)。
 ユーザは、表示された算出された各共振周波数を見て、共振に関連する周波数と同じ又は近い周波数があった場合、その共振周波数のチェックボックスにマウス等によってチェックを入れる。以下では、例として、y軸周り回転運動の共振周波数に対してチェックが入れられた場合について、説明する。
 このように、シフトさせる共振周波数の選択入力があった場合、弾性部材群配置表示部729は、選択された共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示する(S527)。本実施形態においては、y軸周り回転運動の共振周波数をシフトさせるために位置調節が必要な第1及び第3の弾性部材71、73が点滅表示され、位置調節方向を示すグリッド線77がx軸に沿って表示される。
 選択された前記シフトさせる共振周波数に対応して、以下の調節を行い、第1~第nの弾性部材群の位置を設定する(S529)。
(1)
Figure JPOXMLDOC01-appb-I000300
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる。
(2)
Figure JPOXMLDOC01-appb-I000301
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる。
(3)
Figure JPOXMLDOC01-appb-I000302
の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる。
(4)弾性部材群剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000303
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる。
(5)弾性部材群剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000304
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる。
(6)弾性部材群剛性設定部711が、ユーザからの入力等によって、第n+1の弾性部材群の剛性Kn+1
Figure JPOXMLDOC01-appb-I000305
を設定し、弾性部材群追加部723が、第n+1の弾性部材群をxyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる。
 本実施形態においては、第1の弾性部材71をx軸上で、マウスによりドラッグすると、弾性部材群位置調節部721が、第3の弾性部材73を、第1の弾性部材71に対して原点に対称に移動させ、弾性部材群配置表示部729が、移動された第3の弾性部材73を表示する。
 共振周波数算出部719は、変更された上記各パラメータの値に基づいて、上記の(3)式の対角線形化並進運動方程式と上記の(4)式の対角線形化回転運動方程式から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を再算出する(S531)。
 弾性部材群配置表示部729は、共振周波数算出部719によって再算出された各共振周波数を表示部731に表示し(S533)、ステップS523に戻って、共振周波数選択入力部733は、再算出された各共振周波数のそれぞれ左隣にチェックボックス78を表示し、各共振周波数のうちから、シフトさせる共振周波数選択入力を促し、上記の処理を繰り返す。
 このような構成により、本実施形態は、第3の実施形態の利点に加えて、以下のような利点を有する。すなわち、共振の発生に関連する周波数を考慮しつつ、上記6つの共振周波数、弾性部材群の数、配置、剛性等を画面上で確認しながら設計することができる。
 以上、本発明について、例示のためにいくつかの実施例に関して説明してきたが、本発明はこれに限定されるものでなく、本発明の範囲及び精神から逸脱することなく、形態及び詳細について、様々な変形及び修正を行うことができることは、当業者に明らかであろう。
1、5 振動アイソレータ
10 フレーム
11~14 第1~第4のスライド部材
11a~14a 第1~第4のスライド部材本体
11b~14b 第1~第4のスライドプレート
15~19、51~55 第1~第5の弾性部材
101~105 第1~第5のフレーム部
3 振動感受側構造体
4 振動源側構造体
41 第2の位置決めピン穴
56 回転部材
560 第1の筒状部
561 位置決めピン穴
562~565 第1~第4の位置調整スリット
566 第1の角度調整スリット
568 凸状部
57 外環フレーム
571 フランジ部
571a 固定穴
572 第2の筒状部
572a ボルト
572b ナット
573 第2の角度調整スリット
58~61 第1~第4のスライド部
58a~61a 第1~第4の弾性部材取付プレート
58b~61b 第1~第4の位置固定プレート
59c~61c ボルト
62 弾性部材取付プレート
65 ピン
7 振動アイソレータ設計システム
70 表示画面
71~74 第1~第4の弾性部材
76 弾性部材群配置可能範囲
77 グリッド線
78 チェックボックス
701 慣性テンソル設定部
703 剛体質量設定部
705 剛体重心座標設定部
707 弾性部材群数設定部
711 弾性部材群剛性設定部
715 変換慣性テンソル設定部
717 共振関連周波数設定部
719 共振周波数算出部
721 弾性部材群位置調節部
723 弾性部材群追加部
725 弾性部材群配置可能範囲設定部
727 弾性部材群初期配置設定部
729 弾性部材群配置表示部
731 表示部
733 共振周波数選択入力部

Claims (44)

  1.  一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの共振周波数の調整方法であって、
     前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、xyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
     前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
    Figure JPOXMLDOC01-appb-I000001
    としたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000002
    だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
     前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000003
    、前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000004
    、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
    Figure JPOXMLDOC01-appb-I000005
    かつ
    Figure JPOXMLDOC01-appb-I000006
    を満たしつつ、
    (1)
    Figure JPOXMLDOC01-appb-I000007
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
    (2)
    Figure JPOXMLDOC01-appb-I000008
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
    (3)
    Figure JPOXMLDOC01-appb-I000009
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
    (4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    のうちの少なくとも1つのステップを含む、
    振動アイソレータの共振周波数の調整方法。
  2.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップである請求項1に記載の振動アイソレータの共振周波数の調整方法。
  3.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われる請求項2に記載の振動アイソレータの共振周波数の調整方法。
  4.  一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータであって、
     その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、xyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
     前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
    Figure JPOXMLDOC01-appb-I000010
    としたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000011
    だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
     前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000012
    、前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000013
    、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
    (1)
    Figure JPOXMLDOC01-appb-I000014
    かつ
    Figure JPOXMLDOC01-appb-I000015
    を満たしつつ、
    Figure JPOXMLDOC01-appb-I000016
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせるx軸周り回転運動共振周波数シフター、
    (2)
    Figure JPOXMLDOC01-appb-I000017
    かつ
    Figure JPOXMLDOC01-appb-I000018
    を満たしつつ、
    Figure JPOXMLDOC01-appb-I000019
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせるy軸周り回転運動共振周波数シフター、
    (3)
    Figure JPOXMLDOC01-appb-I000020
    かつ
    Figure JPOXMLDOC01-appb-I000021
    を満たしつつ、
    Figure JPOXMLDOC01-appb-I000022
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせるz軸周り回転運動共振周波数シフター、
    (4)
    Figure JPOXMLDOC01-appb-I000023
    かつ
    Figure JPOXMLDOC01-appb-I000024
    を満たしつつ、
    前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせるx軸並進運動共振周波数シフター、
    (5)
    Figure JPOXMLDOC01-appb-I000025
    かつ
    Figure JPOXMLDOC01-appb-I000026
    を満たしつつ、
    前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせるy軸並進運動共振周波数シフター、
    (6)
    Figure JPOXMLDOC01-appb-I000027
    かつ
    Figure JPOXMLDOC01-appb-I000028
    を満たしつつ、
    前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせるz軸並進運動共振周波数シフター、
    のうちの少なくとも1つのシフターを更に含む、
    振動アイソレータ。
  5.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記x軸周り回転運動共振周波数シフターは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるものであり、
     前記y軸周り回転運動共振周波数シフターは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるものであり、
     前記z軸周り回転運動共振周波数シフターは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるものである請求項4に記載の振動アイソレータ。
  6.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記x軸周り回転運動共振周波数シフター、前記y軸周り回転運動共振周波数シフター、前記z軸周り回転運動共振周波数シフターは、前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、共振周波数のシフトを行うものである請求項5に記載の振動アイソレータ。
  7.  一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータであって、
     回転軸線の周りに回転可能な回転部材と、
     前記回転部材上に移動可能に取り付けられた複数の弾性部材と、
    を備える振動アイソレータ。
  8.  前記回転部材上且つ前記回転軸線上付近の位置に1つ又はそれ以上の弾性部材を取付可能な請求項7に記載の振動アイソレータ。
  9.  前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第4の弾性部材群を含み、
     第1~第4の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、
     前記第1及び第3の弾性部材群の間の距離と前記第2及び第4の弾性部材群の間の距離をそれぞれ独立に調節可能な位置調整機構を更に備え、
     前記第1及び第3の弾性部材群を結ぶ線分と前記第2及び第4の弾性部材群を結ぶ線分は直交し、
     前記回転軸線は、前記第1及び第3の弾性部材群を結ぶ線分と前記第2及び第4の弾性部材群を結ぶ線分の交点を通る請求項7に記載の振動アイソレータ。
  10.  前記位置調整機構は、前記第1及び第3の弾性部材群の間の距離と前記第2及び第4の弾性部材群の間の距離の少なくとも一方を、前記交点の中心から各弾性部材群の距離が等しくなるように調整可能である請求項9に記載の振動アイソレータ。
  11.  1つ又はそれ以上の弾性部材を含む第5の弾性部材群を前記交点付近において取付可能な請求項9又は10に記載の振動アイソレータ。
  12.  請求項7に記載の振動アイソレータの共振周波数の調整方法であって、
     前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群は、前記回転部材の前記回転軸線がz軸と同軸となるxyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
     前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルを
    Figure JPOXMLDOC01-appb-I000029
    としたとき、Z軸が前記回転部材の前記回転軸線と一致するように前記振動感受側構造体又は前記振動源側構造体が配置された場合に、
     前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000030
    、前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000031
    、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000032
    だけ回転させた前記xy座標系において、
    Figure JPOXMLDOC01-appb-I000033
    かつ
    Figure JPOXMLDOC01-appb-I000034
    を満たしつつ、
    (1)
    Figure JPOXMLDOC01-appb-I000035
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
    (2)
    Figure JPOXMLDOC01-appb-I000036
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
    (3)
    Figure JPOXMLDOC01-appb-I000037
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第3のステップ、
    (4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    のうちの少なくとも1つのステップを含む、
    振動アイソレータの共振周波数の調整方法。
  13.  請求項9~11のいずれか1項に記載の振動アイソレータの共振周波数の調整方法であって、
     前記複数の弾性部材は、その各々が1つ又はそれ以上の弾性部材を含む第1~第4の弾性部材群及び/又は第5の弾性部材群を含み、
     前記第1~第4の弾性部材群及び/又は第5の弾性部材群は、前記回転部材の前記回転軸線がz軸と同軸となるxyz座標系のxy平面上に位置し、
     前記第1~第4の弾性部材群及び/又は第5の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、 
     前記振動感受側構造体又は前記振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルを
    Figure JPOXMLDOC01-appb-I000038
    としたとき、Z軸が前記回転部材の前記回転軸線と一致するように前記振動感受側構造体又は前記振動源側構造体が配置された場合に、
     前記第1~第nの弾性部材群の剛性Kiを(i=1,2,3,4)
    Figure JPOXMLDOC01-appb-I000039
    、前記第n+1の弾性部材群の剛性K5
    Figure JPOXMLDOC01-appb-I000040
    、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000041
    だけ回転させた前記xy座標系のx軸、y軸に、前記第1及び第3の弾性部材群を結ぶ線分、前記第2及び第4の弾性部材群を結ぶ線分が一致するように、Z軸周りに前記回転部材を回転させるステップと、
     前記第1~第4の弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_xとしたとき、
    Figure JPOXMLDOC01-appb-I000042
    かつ
    Figure JPOXMLDOC01-appb-I000043
    を満たしつつ、
    (1)前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる第1のステップと、
    (2)前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる第2のステップと、
    (3)前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる第3のステップと、
    (4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    の第1~第6のステップのうちの少なくとも1つのステップを含む、
    振動アイソレータの共振周波数の調整方法。
  14.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われる請求項13に記載の振動アイソレータの共振周波数の調整方法。
  15.  一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計方法であって、
     前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群及び/又は第n+1の弾性部材群を含み、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群が、xyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、
     前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
    Figure JPOXMLDOC01-appb-I000044
    としたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000045
    だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
     前記第1~第nの弾性部材群の剛性Kiを(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000046
    、前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000047
    、前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
    Figure JPOXMLDOC01-appb-I000048
    かつ
    Figure JPOXMLDOC01-appb-I000049
    を満たすように、前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の位置を設定する、
    振動アイソレータの設計方法。
  16.  前記振動感受側構造体又は振動源側構造体の質量をm、前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標をrpi_z、、前記xyz座標系に対する慣性テンソルI'を
    Figure JPOXMLDOC01-appb-I000050
    としたとき、
    対角線形化並進運動方程式
    Figure JPOXMLDOC01-appb-I000051
    対角線形化回転運動方程式
    Figure JPOXMLDOC01-appb-I000052
    から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
     算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、共振の発生に関連する周波数と一致しないように、
    (1)
    Figure JPOXMLDOC01-appb-I000053
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
    (2)
    Figure JPOXMLDOC01-appb-I000054
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
    (3)
    Figure JPOXMLDOC01-appb-I000055
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
    (4)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節して、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節して、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節して、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    の第1~第6のステップのうちの少なくとも1つのステップを含む、
    請求項15に記載の振動アイソレータの設計方法。
  17.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップである請求項16に記載の振動アイソレータの共振周波数の調整方法。
  18.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われる請求項17に記載の振動アイソレータの共振周波数の設計方法。
  19.  コンピュータにより実行される、一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計方法であって、
     前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群を含み、
     前記第1~第nの弾性部材群が、xyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は振動源側構造体が接する側であり、
     前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
    Figure JPOXMLDOC01-appb-I000056
    としたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000057
    だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
     前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定するステップと、
     前記弾性部材群の数nを設定するステップと、
     前記第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000058
    を設定するステップと、
     前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
    Figure JPOXMLDOC01-appb-I000059
    かつ
    Figure JPOXMLDOC01-appb-I000060
    を満たすように、前記第1~第nの弾性部材群の位置を設定するステップと、
    を含む振動アイソレータの設計方法。
  20.  前記振動感受側構造体又は振動源側構造体の質量mを設定するステップと、
     前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定するステップと、
     前記xyz座標系に対する慣性テンソルI'
    Figure JPOXMLDOC01-appb-I000061
    を設定ステップと、
     共振の発生に関連する周波数を設定するステップと、
     対角線形化並進運動方程式
    Figure JPOXMLDOC01-appb-I000062
    対角線形化回転運動方程式
    Figure JPOXMLDOC01-appb-I000063
    から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
     算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、設定された前記共振の発生に関連する周波数と一致しないように、
    (1)
    Figure JPOXMLDOC01-appb-I000064
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
    (2)
    Figure JPOXMLDOC01-appb-I000065
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
    (3)
    Figure JPOXMLDOC01-appb-I000066
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
    (4)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000067
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000068
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000069
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    の第1~第6のステップのうちの少なくとも1つのステップと、
    を更に含む請求項19に記載の振動アイソレータの設計方法。
  21.  前記振動感受側構造体又は振動源側構造体の質量mを設定するステップと、
     前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定するステップと、
     前記xyz座標系に対する慣性テンソルI
    Figure JPOXMLDOC01-appb-I000070
    を設定ステップと、
     対角線形化並進運動方程式
    Figure JPOXMLDOC01-appb-I000071
    対角線形化回転運動方程式
    Figure JPOXMLDOC01-appb-I000072
    から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出するステップと、
     設定された前記第1~第nの弾性部材群の位置と、算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数を表示するステップと、
     算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数のうちから、シフトさせる共振周波数選択入力を促すステップと、
     前記シフトさせる共振周波数の選択入力があった場合、選択された前記シフトさせる共振周波数に対応して、
    (1)
    Figure JPOXMLDOC01-appb-I000073
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1のステップ、
    (2)
    Figure JPOXMLDOC01-appb-I000074
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2のステップ、
    (3)
    Figure JPOXMLDOC01-appb-I000075
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3のステップ、
    (4)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000076
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4のステップ、
    (5)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000077
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5のステップ、
    (6)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000078
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6のステップ、
    の第1~第6のステップのうちの少なくとも1つのステップと、
    を更に含む請求項19に記載の振動アイソレータの設計方法。
  22.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップである請求項19~21のいずれか1項に記載の振動アイソレータの共振周波数の設計方法。
  23.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3のステップの少なくとも1つが行われる請求項22に記載の振動アイソレータの共振周波数の設計方法。
  24.  前記xyz座標系に対する慣性テンソルI'を設定するステップは、前記XYZ座標系に対する慣性テンソルIに基づいて算出するステップである請求項19~23のいずれか1項に記載の振動アイソレータの設計方法。
  25.  弾性部材群配置可能範囲を設定するステップを更に含み、
     前記第1~第nの弾性部材群の位置の設定は、前記弾性部材群配置可能範囲内で行われる請求項19~24のいずれか1項に記載の振動アイソレータの設計方法。
  26.  設定された前記第1~第nの弾性部材群の位置は、前記弾性部材群配置可能範囲と共に表示される請求項25に記載の振動アイソレータの設計方法。
  27.  設定された前記第1~第nの弾性部材群の位置は、前記x軸及びy軸と共に表示される請求項19~26のいずれか1項に記載の振動アイソレータの設計方法。
  28.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1のステップは、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第2のステップは、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせるステップであり、
     前記第3のステップは、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせるステップであり、
     選択された前記シフトさせる共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示するステップと、
    を更に含む請求項19~27のいずれか1項に記載の振動アイソレータの設計方法。
  29.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群の一方を前記x軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示し、前記第2及び第4の弾性部材群の一方を前記y軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示しつつ、前記第1~第3のステップの少なくとも1つが行われる請求項28に記載の振動アイソレータの設計方法。
  30.  請求項19~29のいずれか1項に記載の振動アイソレータの設計方法をコンピュータに実行させるためのプログラム。
  31.  請求項30に記載のプログラムを記憶した記憶媒体。
  32.  請求項15~31のいずれか1項に記載の設計方法に従って振動アイソレータを設計するステップと、
     設計された前記振動アイソレータを製造するステップと、
    を含む振動アイソレータの製造方法。
  33.  請求項15~31のいずれか1項に記載の設計方法に従って振動アイソレータを設計するステップと、
     設計された前記振動アイソレータが取り付けられた構造物を製造するステップと、
    を含む振動アイソレータの製造方法。
  34.  一方の側において振動感受側構造体又は振動源側構造体と接する振動アイソレータの設計システムであって、
     前記振動アイソレータは、その各々が1つ又はそれ以上の弾性部材を含む第1~第n(nは3以上の整数)の弾性部材群を含み、
     前記第1~第nの弾性部材群が、xyz座標系のxy平面上に位置し、
     前記第1~第nの弾性部材群及び/又は第n+1の弾性部材群の一方の側は、前記振動感受側構造体又は前記振動源側構造体が接する側であり、
     前記xyz座標系のxy座標系は、前記振動感受側構造体又は振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを
    Figure JPOXMLDOC01-appb-I000079
    としたとき、XY座標系をZ軸周りに
    Figure JPOXMLDOC01-appb-I000080
    だけ回転させたものであり、前記xyz座標系のz軸は前記Z軸と同軸であり、
     前記振動感受側構造体又は前記振動源側構造体の重心を原点とするXYZ座標系に対する慣性テンソルIを設定する慣性テンソル設定部と、
     前記弾性部材群の数nを設定する弾性部材群数設定部と、
     前記第1~第nの弾性部材群の剛性Ki(i=1,2,・・・,n)
    Figure JPOXMLDOC01-appb-I000081
    を設定する剛性設定部と、
     前記第1~第nの弾性部材群の前記xy座標系のx座標、y座標をrpi_x、rpi_yとしたとき、
    Figure JPOXMLDOC01-appb-I000082
    かつ
    Figure JPOXMLDOC01-appb-I000083
    を満たすように、前記第1~第nの弾性部材群の位置を設定する弾性部材群位置設定部と、
    を含む振動アイソレータの設計システム。
  35.  前記振動感受側構造体又は振動源側構造体の質量mを設定する剛体質量設定部と、
     前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定する剛体重心座標設定部と、
     前記xyz座標系に対する慣性テンソルI'
    Figure JPOXMLDOC01-appb-I000084
    を設定する変換慣性テンソル設定部と、
     対角線形化並進運動方程式
    Figure JPOXMLDOC01-appb-I000085
    対角線形化回転運動方程式
    Figure JPOXMLDOC01-appb-I000086
    から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する共振周波数算出部と、
     共振の発生に関連する周波数を設定する共振関連周波数設定部と、
     算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数が、設定された前記共振の発生に関連する周波数と一致しないように、
    (1)
    Figure JPOXMLDOC01-appb-I000087
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1の処理、
    (2)
    Figure JPOXMLDOC01-appb-I000088
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2の処理、
    (3)
    Figure JPOXMLDOC01-appb-I000089
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3の処理、
    (4)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000090
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4の処理、
    (5)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000091
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5の処理、
    (6)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000092
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6の処理、
    のうちの少なくとも1つの処理を行う弾性部材群位置調節部と、
    を更に含む請求項34に記載の振動アイソレータの設計システム。
  36.  前記振動感受側構造体又は振動源側構造体の質量mを設定する剛体質量設定部と、
     前記振動感受側構造体又は振動源側構造体の重心の前記xyz座標系のz座標rpi_zを設定する剛体重心座標設定部と、
     前記xyz座標系に対する慣性テンソルI
    Figure JPOXMLDOC01-appb-I000093
    を設定する変換慣性テンソル設定部と、
     対角線形化並進運動方程式
    Figure JPOXMLDOC01-appb-I000094
    対角線形化回転運動方程式
    Figure JPOXMLDOC01-appb-I000095
    から、x方向並進運動の共振周波数、y方向並進運動の共振周波数、z方向並進運動の共振周波数、x軸周り回転運動の共振周波数、y軸周り回転運動の共振周波数、z軸周り回転運動の共振周波数を算出する共振周波数算出部と、
     設定された前記第1~第nの弾性部材群の位置と、算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数を表示する弾性部材群配置表示部と、
     算出された前記x方向並進運動の共振周波数、前記y方向並進運動の共振周波数、前記z方向並進運動の共振周波数、前記x軸周り回転運動の共振周波数、前記y軸周り回転運動の共振周波数、前記z軸周り回転運動の共振周波数のうちから、シフトさせる共振周波数選択入力を促す共振周波数選択入力部と、
     前記シフトさせる共振周波数の選択入力があった場合、選択された前記シフトさせる共振周波数に対応して、
    (1)
    Figure JPOXMLDOC01-appb-I000096
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、x軸周り回転運動の共振周波数をシフトさせる第1の処理、
    (2)
    Figure JPOXMLDOC01-appb-I000097
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、y軸周り回転運動の共振周波数をシフトさせる第2の処理、
    (3)
    Figure JPOXMLDOC01-appb-I000098
    の値が変化するように前記第1~第nの弾性部材群の位置を調整して設定し、z軸周り回転運動の共振周波数をシフトさせる第3の処理、
    (4)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000099
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_xxの値を調節し、x軸並進運動の共振周波数をシフトさせる第4の処理、
    (5)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000100
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_yyの値を調節し、y軸並進運動の共振周波数をシフトさせる第5の処理、
    (6)前記第n+1の弾性部材群の剛性Kn+1
    Figure JPOXMLDOC01-appb-I000101
    を設定し、前記第n+1の弾性部材群を前記xyz座標の原点に配置し、kn+1_zzの値を調節し、z軸並進運動の共振周波数をシフトさせる第6の処理、
    のうちの少なくとも1つの処理を実行する弾性部材群位置調節部と、
    を更に含む請求項34に記載の振動アイソレータの設計システム。
  37.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1の処理は、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる処理であり、
     前記第2の処理は、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる処理であり、
     前記第3の処理は、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる処理である請求項33~36のいずれか1項に記載の振動アイソレータの設計システム。
  38.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群を前記xyz座標系の前記x軸上に原点に対称に配置し、前記第2及び第4の弾性部材群を前記xyz座標系の前記y軸上に原点に対称に配置しつつ、前記第1~第3の処理の少なくとも1つが行われる請求項35に記載の振動アイソレータの設計システム。
  39.  前記変換慣性テンソル設定部は、前記XYZ座標系に対する慣性テンソルIに基づいて慣性テンソルI'を算出する請求項34~38のいずれか1項に記載の振動アイソレータの設計システム。
  40.  弾性部材群配置可能範囲を設定する弾性部材群配置可能範囲設定部を更に含み、
     前記第1~第nの弾性部材群の位置の設定は、前記弾性部材群配置可能範囲内で行われる請求項34~39のいずれか1項に記載の振動アイソレータの設計システム。
  41.  前記弾性部材群配置表示部は、設定された前記第1~第nの弾性部材群の位置を、前記弾性部材群配置可能範囲と共に表示する請求項40に記載の振動アイソレータの設計システム。
  42.  前記弾性部材群配置表示部は、設定された前記第1~第nの弾性部材群の位置を、前記x軸及びy軸と共に表示する請求項34~41のいずれか1項に記載の振動アイソレータの設計システム。
  43.  n=4であり、
     前記第1及び第3の弾性部材群は前記xyz座標系のx軸上に位置し、前記第2及び第4の弾性部材群は前記xyz座標系のy軸上に位置し、
     前記第1の処理は、前記第2及び第4の弾性部材群の間の距離を調節して、x軸周り回転運動の共振周波数をシフトさせる処理であり、
     前記第2の処理は、前記第1及び第3の弾性部材群の間の距離を調節して、y軸周り回転運動の共振周波数をシフトさせる処理であり、
     前記第3の処理は、前記第2及び第4の弾性部材群の間の距離及び/又は前記第1及び第3の弾性部材群の間の距離を調節して、z軸周り回転運動の共振周波数をシフトさせる処理であり、
     前記弾性部材群配置表示部は、選択された前記シフトさせる共振周波数をシフトさせるために位置調節が必要な弾性部材群を、その必要がない弾性部材群と区別可能に表示し、位置調整方向を示す線を表示する請求項34~42のいずれか1項に記載の振動アイソレータの設計システム。
  44.  前記第1及び第3の弾性部材群の剛性が等しく、前記第2及び第4の弾性部材群の剛性が等しく、
     前記第1及び第3の弾性部材群の一方を前記x軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示し、前記第2及び第4の弾性部材群の一方を前記y軸上で移動させる指示が入力された場合、他方の弾性部材群を原点に対称に配置し、表示しつつ、前記第1~第3の処理の少なくとも1つが行われる請求項43に記載の振動アイソレータの設計システム。
PCT/JP2017/026901 2016-07-25 2017-07-25 振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法 WO2018021329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780058830.1A CN109790903B (zh) 2016-07-25 2017-07-25 隔振器
US16/321,002 US10962082B2 (en) 2016-07-25 2017-07-25 Adjusting method and adjusting system for resonance frequency of vibration isolator, vibration isolator, and designing method, designing system, and manufacturing method for vibration isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-145581 2016-07-25
JP2016145581A JP6288656B2 (ja) 2016-07-25 2016-07-25 振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法

Publications (1)

Publication Number Publication Date
WO2018021329A1 true WO2018021329A1 (ja) 2018-02-01

Family

ID=61017446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026901 WO2018021329A1 (ja) 2016-07-25 2017-07-25 振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法

Country Status (4)

Country Link
US (1) US10962082B2 (ja)
JP (1) JP6288656B2 (ja)
CN (1) CN109790903B (ja)
WO (1) WO2018021329A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529698B (zh) * 2019-08-12 2020-12-29 清华大学 可显示三向隔振频率和调整平衡位置的全向设备减振支座
CN112833273B (zh) * 2021-01-19 2022-03-29 中石化中原石油工程设计有限公司 一种压缩机缓冲罐共振控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155193U (ja) * 1974-10-23 1976-04-27
JPS6188036A (ja) * 1984-09-20 1986-05-06 Kobe Steel Ltd 防振台
JPH0217240A (ja) * 1988-07-04 1990-01-22 Mitsui Constr Co Ltd 設備用防振架台の構造
JP2001082536A (ja) * 1999-09-17 2001-03-27 Tokai Rubber Ind Ltd 建築構造物の制振装置
US7743882B2 (en) * 2003-08-18 2010-06-29 Vinh Thanh Vu Vibration-control platform

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935651A (en) * 1987-12-04 1990-06-19 Hyundai Heavy Industries Co., Ltd. Automatically controlled dynamic absorber
US5558191A (en) * 1994-04-18 1996-09-24 Minnesota Mining And Manufacturing Company Tuned mass damper
JP3374655B2 (ja) * 1996-04-23 2003-02-10 トヨタ自動車株式会社 エンジンとトランスミッションとの組立体を車体に支持する方法および組立体の支持構造
WO2008112295A1 (en) * 2007-03-13 2008-09-18 Seicon, Limited Platform isolator
CN101299156A (zh) * 2008-05-30 2008-11-05 中国科学院上海光学精密机械研究所 基于数字控制器的主动反共振隔振装置
JP5981559B2 (ja) 2011-11-01 2016-08-31 ムーグ インコーポレーテッド 振動絶縁システム及び方法
KR101384135B1 (ko) * 2013-12-06 2014-04-17 한국항공우주연구원 비접착식 진동저감장치
KR102013655B1 (ko) * 2014-12-18 2019-08-23 인나랩스 리미티드 자이로스코프
CN105183025A (zh) * 2015-07-16 2015-12-23 南京航空航天大学 准零刚度隔振系统及其非线性反馈控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155193U (ja) * 1974-10-23 1976-04-27
JPS6188036A (ja) * 1984-09-20 1986-05-06 Kobe Steel Ltd 防振台
JPH0217240A (ja) * 1988-07-04 1990-01-22 Mitsui Constr Co Ltd 設備用防振架台の構造
JP2001082536A (ja) * 1999-09-17 2001-03-27 Tokai Rubber Ind Ltd 建築構造物の制振装置
US7743882B2 (en) * 2003-08-18 2010-06-29 Vinh Thanh Vu Vibration-control platform

Also Published As

Publication number Publication date
CN109790903B (zh) 2021-06-04
JP2018017253A (ja) 2018-02-01
CN109790903A (zh) 2019-05-21
US20190170209A1 (en) 2019-06-06
US10962082B2 (en) 2021-03-30
JP6288656B2 (ja) 2018-03-07

Similar Documents

Publication Publication Date Title
US20180276889A1 (en) System and method for design of additively manufactured products
WO2018021329A1 (ja) 振動アイソレータの共振周波数の調整方法及び調整システム、振動アイソレータ、並びに振動アイソレータの設計方法、設計システム、及び製造方法
Nyssen et al. Identification of mistuning and model updating of an academic blisk based on geometry and vibration measurements
Zhang et al. Vibration of arbitrarily-shaped triangular plates with elastically restrained edges
CN110955941B (zh) 基于向量场的复合材料结构优化设计方法及设备
JP6794823B2 (ja) 解析装置、解析方法、及びコンピュータプログラム
WO2013171779A1 (ja) 配管又は配線支援装置
US10262086B2 (en) Analyzing apparatus, analyzing method, and computer program
US10394969B2 (en) Dynamics calculation method, program and recording medium
JP2018017253A5 (ja)
EP2980439B1 (en) Method for making a panel for use in an aircraft
US10817021B2 (en) Deformation controllable display based display method and display apparatus, and user equipment
WO2015052996A1 (ja) フィラー配合ゴムの有限要素モデルの作成方法
US10780642B2 (en) System and method for computing surfaces in a multi-layer part
JP2013080339A (ja) ゴム材料のシミュレーション方法
Shi et al. A multi-step relay implementation of the successive iteration of analysis and design method for large-scale natural frequency-related topology optimization
US20190066376A1 (en) Method for interpreting layout of tube by using three-dimensional coordinates and recording medium thereof
JP2008015812A (ja) 設計支援システム
JP6447454B2 (ja) 有限要素法を用いた構造体の数値解析方法
Makhavikou et al. Method of model reduction for elastic multibody systems
JP2015118475A (ja) フィラー配合ゴムの有限要素モデルの作成方法
Hossain et al. Effect on natural frequency of a simply supported plate due to circular cutouts
JP2015162236A (ja) フィラー配合ゴムモデルの作成方法
Zeng et al. Design of a mechanical system for vibration isolation
Wang et al. Application of numerical integration technology in finite element numerical calculation of impact mechanics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834331

Country of ref document: EP

Kind code of ref document: A1