WO2018021220A1 - Fuel pump module - Google Patents

Fuel pump module Download PDF

Info

Publication number
WO2018021220A1
WO2018021220A1 PCT/JP2017/026638 JP2017026638W WO2018021220A1 WO 2018021220 A1 WO2018021220 A1 WO 2018021220A1 JP 2017026638 W JP2017026638 W JP 2017026638W WO 2018021220 A1 WO2018021220 A1 WO 2018021220A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
pump module
fuel pump
fuel
space
Prior art date
Application number
PCT/JP2017/026638
Other languages
French (fr)
Japanese (ja)
Inventor
田中 聡
鈴木 隆之
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to CN201780046013.4A priority Critical patent/CN109563797B/en
Publication of WO2018021220A1 publication Critical patent/WO2018021220A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow

Definitions

  • the present invention relates to a fuel pump module.
  • the fuel feed pump has a motor portion disposed inside the pump and is exposed to high-pressure fuel. It is necessary to take measures to prevent the high-pressure fuel inside the pump from being transmitted from the terminal for supplying power to the motor.
  • a technology for out-molding a fuel feed pump into a unit, a technology for accommodating a control board in a unit, and the like have been found, and a reliable fuel seal structure corresponding to them is required.
  • the fuel pump module has a low-pressure space that stores fuel at a lower pressure than the high-pressure chamber.
  • a bottomed hole opens in the low pressure space.
  • the connection terminal is superimposed on the bottom surface of the bottomed hole between the high pressure chamber and the coupler. Although the surface of the connection terminal is partially exposed at the bottom of the opening, the interface between the connection terminal and the coupler-based resin molding may continue from the connection terminal to the coupler. Therefore, in order to prevent the fuel from leaking from the coupler through the interface, it is necessary to take advanced measures such as special surface treatment so that no gap is generated at the interface.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel pump module that can easily and surely confine fuel.
  • a housing of a resin molded body that partitions a high-pressure chamber that receives high-pressure fuel, a pump that is incorporated in the housing and discharges the high-pressure fuel toward the high-pressure chamber,
  • An electromagnetic force generation unit that is disposed in the high pressure chamber and generates an electromagnetic force that drives the pump in response to supply of electric power, and is embedded in the housing and connected to the electromagnetic force generation unit at one end.
  • the housing surrounds the conductor without interruption.
  • a fuel pump module is provided in which an enclosed space connected to the low-pressure space is defined.
  • the low-pressure space is opened, the plurality of conductors are exposed in common, and the window hole is defined in the housing.
  • the fuel pump module is disposed between the enclosed space and the power source, and is encased in the housing surrounding the conductor without interruption.
  • a sealing layer is provided.
  • the housing divides the low-pressure space parallel to the reference straight line so as to open at the end face, and parallel to the reference straight line.
  • a communication hole that is connected to a deaeration hole that discharges bubbles in the pump and opens at the end face is defined.
  • the fuel pump module covers the end surface of the housing and has a communication space connected to the communication hole and the low pressure space between the end surface.
  • a lid member for partitioning is provided.
  • the lid member opens into the communication space and defines a return opening connected to the return flow path.
  • the housing sandwiches the conductor between the mold pins during resin molding and cooperates with the mold pins to A cap member for partitioning the enclosed space is included.
  • the housing in addition to the configuration of the seventh side, includes in part a primary resin molded body that couples the conductor to the cap member.
  • the conductor is formed with a groove extending along the wall surface of the housing and at least partially partitioning the enclosed space. Is done.
  • the conductor is provided with a through hole that opens at the exposed surface.
  • the high pressure chamber is filled with high pressure fuel flowing from the pump.
  • Fuel permeates along the interface between the housing of the resin molded body and the conductor embedded in the housing during resin molding. The fuel travels through the conductor under the pressure of the high pressure chamber, but is released to the low pressure space in the enclosed space. Fuel is stored in a low pressure space in the housing. Fuel leakage is prevented.
  • the structure of the resin molded body can be simplified.
  • the manufacturing process can be simplified and the manufacturing cost can be reduced.
  • the pressure difference between the enclosed space and the power source is remarkably reduced as compared with the pressure difference between the high pressure chamber and the enclosed space.
  • the momentum of the fuel that travels along the conductor along the path from the enclosed space to the power source is weakened.
  • the sealing performance of the surroundings of the conductor is enhanced between the enclosed space and the power source by the sealing layer, fuel leakage is reliably prevented. Even if the control circuit is incorporated in the housing, the semiconductor element mounted on the control board can be reliably isolated from the fuel.
  • the die cutting is realized in the direction of the reference straight line when resin molding of the housing.
  • the fuel flow path configuration is established at the same time as the resin molding of the housing in this way, it is not necessary to assemble a large number of parts, and the labor for securing the sealability between the parts can be saved.
  • the lid member since both the communication hole and the low pressure space are opened at the end surfaces, the distance between the communication hole opening and the low pressure space opening is shortened, and as a result, the lid member can be miniaturized. Since the lid member is disposed on the single end surface, the sealing mechanism between the housing and the lid member can be simplified.
  • the fuel that has oozed out into the low pressure space flows into the return flow path.
  • the exuded fuel is reliably recovered and fuel leakage is reliably prevented.
  • the return flow path is connected to the deaeration hole in the pump, the addition of the return flow path can be avoided in forming the low pressure space.
  • the molten resin is prevented from flowing into the enclosed space in the resin molding of the housing. An enclosed space can be ensured in the housing.
  • the primary resin molded body in the resin molding of the housing, can arrange the cap member and the conductor at a specific position in the cavity of the mold.
  • the cap member and the conductor can be easily held in the mold.
  • the shape of the wall surface of the housing is simplified.
  • the conductor can be reliably held in the mold by inserting the pin of the mold into the through hole.
  • FIG. 1 is a perspective view of a fuel pump module schematically showing an overall configuration of a fuel injection system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the overall configuration of the fuel pump module along line 2-2 in FIG.
  • FIG. 3A is an enlarged perspective view schematically showing the structure of the primary resin molded body
  • FIG. 3B is an enlarged sectional view showing a state of the cap member inside the mold.
  • FIG. 4 is a front view of the fuel pump module.
  • FIG. 5A is an enlarged perspective view schematically showing the structure of a cap member according to another embodiment
  • FIG. 5B is an enlarged cross-sectional view showing a state of the cap member inside the mold.
  • FIG. 1 schematically shows a configuration of a fuel injection system 11 according to an embodiment of the present invention.
  • the fuel injection system 11 includes a fuel tank T that stores fuel, and a fuel pump module 14 that is connected to the fuel tank T by a fuel pipe 12 and a return pipe 13.
  • the fuel pump module 14 has a housing 15 of a resin molded body.
  • a lid member 16 of a resin molded body is liquid-tightly coupled to the housing 15.
  • the lid member 16 covers one end surface of the housing 15.
  • the lid member 16 has a fuel opening 17 connected to the fuel pipe 12 and a return opening 18 connected to the return pipe (return flow path) 13.
  • the fuel opening 17 and the return opening 18 are formed in the shape of a nipple.
  • a discharge pipe 19 is formed in the housing 15 on the side opposite to the direction of the axis of the nipple.
  • the discharge pipe 19 is connected to an injector I that is inserted into the intake passage of the engine.
  • the fuel pump module 14 sucks fuel from the fuel opening 17 and discharges the fuel from the discharge pipe 19 toward the injector I. Excess fuel returns to tank T from the return channel.
  • the fuel injection system 11 is used by being mounted on a saddle type vehicle such as a motorcycle.
  • a control board 21 as a power source is embedded in the housing 15.
  • the control board 21 is wrapped in a resin molded body of the housing 15.
  • terminals of the connector 22, semiconductor elements and other electronic components are mounted on the control board 21, terminals of the connector 22, semiconductor elements and other electronic components are mounted.
  • the control board 21 constitutes an electronic control unit (ECU).
  • the control board 21 controls the operation of the fuel pump module 14.
  • the housing 15 incorporates a pump 24 and an electric motor 25 connected to the pump 24.
  • the pump 24 and the electric motor 25 are integrated by a metal cylinder 26, for example.
  • the pump 24 includes a first bearing body 27 and an end surface member 28 that are incorporated in the cylinder body 26.
  • a drive shaft 31 of an impeller 29 is supported on the first bearing body 27 so as to be rotatable about the rotation axis Xis.
  • the impeller 29 is accommodated in an impeller chamber 32 defined between the first bearing body 27 and the end face member 28.
  • a suction hole 33 and a deaeration hole 34 that communicate with the impeller chamber 32 are defined in the end surface member 28.
  • the liquid fuel is sucked into the impeller chamber 32 from the suction hole 33, and high-pressure liquid fuel is discharged from the impeller chamber 32.
  • Bubbles in the pump 24 are discharged from the deaeration hole 34 to the outside of the impeller chamber 32.
  • the electric motor 25 includes a second bearing body 35 incorporated in the cylinder body 26.
  • the second bearing body 35 supports the drive shaft 31 of the impeller 29 so as to be rotatable around the rotation axis Xis at a position away from the first bearing body 27.
  • a high pressure chamber 36 is defined in the cylindrical body 26 between the first bearing body 27 and the second bearing body 35. The high pressure chamber 36 receives high pressure liquid fuel from the impeller chamber 32.
  • the electric motor 25 includes a rotor 37 and a stator 38.
  • the rotor 37 and the stator 38 are disposed in the high pressure chamber 36.
  • the rotor 37 is coupled to the drive shaft 31.
  • the rotor 37 is composed of a permanent magnet, for example.
  • the stator 38 is opposed to the rotor 37 outside the rotation path of the rotor 37.
  • the stator 38 is composed of, for example, an electromagnetic coil group.
  • the stator 38 generates electromagnetic force in response to the supply of electric power.
  • the drive shaft 31 is rotated based on the electromagnetic force.
  • the impeller 29 rotates.
  • the stator 38 functions as an electromagnetic force generator.
  • the electric motor 25 includes a lead wire 41 embedded in a second bearing body 35 constituting a part of the housing 15.
  • the lead wire 41 is connected to the stator 38 at one end.
  • three lead wires 41 are provided corresponding to each electromagnetic coil.
  • a connection terminal 42 embedded in the housing 15 is individually connected to the other end of the lead wire 41 for each lead wire 41.
  • the lead wire 41 and the connection terminal 42 constitute a part of a conductor connected to the electromagnetic coil of the stator 38 at one end and connected to the control board 21 at the other end. Electric power is supplied from the control board 21 to the stator 38 via a conductor.
  • the connection terminal 42 is formed from a metal material such as brass and tin-plated.
  • a check valve 43 is integrally incorporated in the second bearing body 35.
  • the check valve 43 prevents the reverse flow while allowing the fuel to be discharged from the discharge port 44.
  • the discharge port 44 is defined in the nipple of the housing 15. When the impeller 29 rotates, the fuel is discharged from the discharge port 44 at a specified pressure.
  • the housing 15 defines the low-pressure space 45 in parallel with the rotation axis Xis that is a reference straight line.
  • the low pressure space 45 stores fuel at a lower pressure than the high pressure chamber 36.
  • the low-pressure space 45 opens to the end surface 15a of the housing 15 at one end and is connected to the enclosed space 46 at the other end.
  • the enclosure space 46 is partitioned by the housing 15 and individually surrounds the individual connection terminals 42 between the high-pressure chamber 36 and the control board 21 without interruption. Therefore, the interface between the connection terminal 42 and the resin molded body extends from the connection portion with the lead wire 41 to the enclosed space 46 and is interrupted in the enclosed space 46.
  • a sealing layer 47 is provided that surrounds the individual connection terminals 42 without interruption and is encased in the housing 15.
  • the seal layer 47 is embedded in the housing 15 at a position away from the enclosure space 46.
  • the seal layer 47 is made of a synthetic rubber such as nitrile rubber (NBR).
  • the housing 15 defines a communication hole 49 parallel to the rotation axis Xis that is a reference straight line.
  • the communication hole 49 opens to the end surface 15a of the housing 15 at one end and is connected to the deaeration hole 34 at the other end.
  • the lid member 16 defines a communication space 51 between the end surface 15 a of the housing 15.
  • the communication space 51 is connected to the communication hole 49 and the low pressure space 45.
  • the return opening 18 opens into the communication space 51. The fuel collected in the communication space 51 is returned to the tank T from the return opening 18.
  • each connection terminal 42 is connected to a first connection portion 52 connected to the tip of a plate-shaped lead wire 41 and a plate-shaped conductive material 53 extending from the control board 21.
  • the first connecting portion 52 has a plate piece 52a that overlaps the tip of the lead wire 41 and a pair of curves that continuously expand from the plate piece 52a and exerts an elastic force that presses the tip of the lead wire 41 against the plate piece 52a. It is comprised from the body 52b.
  • the leading end of the lead wire 41 can enter between the plate piece 52 a and the curved body 52 b from the open end of the first connecting portion 52.
  • the curved body 52b temporarily fixes the tip of the lead wire 41 to the plate piece 52a.
  • the second connecting portion 54 includes a plate piece 54a that overlaps the conductive material 53 and a pair of curved bodies that continuously spread from the plate piece 54a and exerts an elastic force that presses the conductive material 53 against the plate piece 54a. 54b.
  • the conductive material 53 can enter between the plate piece 54 a and the curved body 54 b from the open end of the second connecting portion 54.
  • the curved body 54b temporarily fixes the conductive material 53 to the plate piece 54a.
  • the housing 15 includes in part a primary resin molded body 55 that couples the three connection terminals 42 between the first connecting portion 52 and the second connecting portion 54.
  • the primary resin molded body 55 is molded from, for example, a POM resin (polyacetal resin) material.
  • Each sealing layer 47 is encased in a primary resin molded body 55.
  • the nitrile rubber of the sealing layer 47 has adhesiveness to the tin plating surface of the connection terminal 42 and the POM resin of the primary resin molded body 55.
  • a window hole 56 penetrating the primary resin molded body 55 is defined at a position corresponding to the low pressure space 45.
  • Each connection terminal 42 passes through the space in the window hole 56.
  • the connection terminal 42 is formed with a continuous groove 57 defined on a surface in contact with the wall surface of the housing 15 and a through hole 58 that opens on an exposed surface facing the low-pressure space 45.
  • a plurality of center lines of the through holes 58 provided in each connection terminal 42 are arranged in one virtual plane.
  • the virtual plane provides a symmetrical plane that bisects the continuous groove 57 in the extending direction.
  • the housing 15 includes a cap member 59.
  • the cap member 59 is fitted into the window hole 56 of the primary resin molded body 55. As shown in FIG. 3B, the cap member 59 sandwiches the connection terminal 42 between the pin 61 of the mold when the housing 15 is resin-molded. At this time, the cap member 59 partitions the enclosed space 46 in cooperation with the mold pin 61.
  • the cap member 59 is in close contact with the outer surface of the connection terminal 42 except for the continuous groove 57.
  • the continuous groove 57 extends along the wall surface of the cap member 59 and at least partially defines the surrounding section 46.
  • the shape of the wall surface of the cap member 59 is simplified by the function of the continuous groove 57.
  • the mold pin 61 is in close contact with the exposed surface of the connection terminal 42.
  • a cylindrical projection 62 that enters the through hole 58 is formed at the tip of the mold pin 61.
  • the deaeration hole 34 and the lead wire 41 of the electric motor 25 are arranged in one space of one imaginary plane PL including the rotation axis Xis of the impeller 29.
  • the distance between the deaeration hole 34 and the low pressure space 45 can be shortened, and the communication space 51 can be miniaturized. Thereby, downsizing of the lid member 16 can also be realized.
  • the high pressure chamber 36 is filled with high pressure fuel flowing from the pump 24.
  • the fuel penetrates along the interface between the housing 15 of the resin molded body and the lead wire 41 and the connection terminal 42 embedded in the housing 15 at the time of resin molding. Although the fuel travels through the lead wire 41 and the connection terminal 42 under the pressure of the high pressure chamber 36, the fuel is released to the low pressure space 45 in the enclosed space 46. The fuel is stored in the low pressure space 45 in the housing 15. Fuel leakage is prevented. In particular, even when the control board 21 is embedded in the housing 15 as described above, the fuel transmitted through the conductor is reliably cut off. The semiconductor element mounted on the control board 21 is reliably separated from the fuel and protected.
  • the fuel pump module 14 has a window hole 56 that opens into the low-pressure space 45 and is partitioned into the housing 15 in common with the plurality of connection terminals 42.
  • one window hole 56 may be formed in common for the plurality of connection terminals 42, and the structure of the housing 15 can be simplified. The manufacturing process can be simplified and the manufacturing cost can be reduced.
  • the seal layer 47 surrounding the connection terminal 42 is encased in the housing 15 without interruption. Since the enclosed space 46 is connected to the low pressure space 45, the pressure difference between the enclosed space 46 and the control substrate 21 is significantly reduced as compared with the pressure difference between the high pressure chamber 36 and the enclosed space 46. As a result, the momentum of the fuel transmitted through the connection terminal 42 in the middle of the path from the enclosed space 46 toward the control board 21 is weakened. Since the sealing layer 47 enhances the sealing performance around the connection terminal 42 between the enclosed space 46 and the control board 21, fuel leakage is reliably prevented. The semiconductor element mounted on the control board 21 can be reliably isolated from the fuel.
  • the nitrile rubber of the seal layer 47 has adhesiveness to the tin plating surface of the connection terminal 42 and the POM resin of the primary resin molded body 55, the gap is surely closed at the interface between the tin plating surface and the POM resin. . Fuel seepage is reliably prevented.
  • the POM resin does not have much adhesion due to intermolecular force, and a gap is likely to occur between the POM resin and the tin plating surface.
  • the housing 15 defines a low pressure space 45 parallel to the rotation axis Xis so as to open at the end surface 15a, and defines a communication hole 49 opened at the end surface 15a parallel to the rotation axis Xis. Since both the low-pressure space 45 and the communication hole 49 extend parallel to the rotation axis Xis, die cutting is realized in the direction of the rotation axis Xis when the housing 15 is molded with resin. In addition, since the fuel flow path configuration is established at the same time as the resin molding of the housing 15 in this way, it is not necessary to assemble a large number of parts, and the labor for securing the sealability between the parts can be saved. If the fuel flow path is constituted by a large number of parts as in the prior art, it takes time to assemble the parts, and in addition, a lot of labor is required to secure the sealability between the parts.
  • both the communication hole 49 and the low pressure space 45 are opened at the end face 15a of the housing 15, the distance between the opening of the communication hole 49 and the opening of the low pressure space 45 is shortened, and as a result, the lid member 16 is reduced in size. Since the lid member 16 is disposed on the single end surface 15a, the sealing mechanism between the housing 15 and the lid member 16 can be simplified.
  • the lid member 16 opens into the communication space 51 and defines a return opening 18 connected to the return pipe 13.
  • the fuel that has oozed out into the low pressure space 45 flows into the return pipe 13.
  • the exuded fuel is reliably recovered and fuel leakage is reliably prevented. Since the return pipe 13 is originally connected to the deaeration hole 34 of the pump 24, the addition of the return flow path can be avoided when forming the low pressure space 45.
  • the cap member 59 sandwiches the connection terminal 42 with the mold pin 61 during resin molding, and partitions the enclosed space 46 in cooperation with the mold pin 61. In resin molding of the housing 15, the molten resin is prevented from flowing into the enclosed space 46. The enclosed space 46 can be reliably ensured in the primary resin molded body 55.
  • the primary resin molded body 55 firmly defines the positional relationship between the cap member 59 and the connection terminal 42.
  • the cap member 59 and the connection terminal 42 can be arranged at a specific position of the primary resin molded body 55 in the cavity of the mold.
  • the cap member 59 and the connection terminal 42 can be easily held in the mold.
  • the enclosed space 46 may be partitioned by a cap member 63 alone.
  • the connection terminal 42 can be formed as a simple flat plate at the position of the surrounding space 46.
  • the flat connection terminal 42 is fitted into the recess 64.
  • the deep groove 65 crosses the depression 64 in a direction perpendicular to the ridge line of the depression 64.
  • the deep groove 65 forms a surrounding space 46 around the connection terminal 42 fitted in the recess 64.
  • the cap member 63 is sandwiched between the mold cavity inner surface 67 and the mold pin 66 when the housing 15 is molded with resin. At this time, the cap member 63 partitions the enclosed space 46 in cooperation with the mold pin 66.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A fuel pump module (14) is provided with: an electromagnetic force generation unit (38) that generates an electromagnetic force for driving a pump (24) when being supplied with power and that is arranged in a high-pressure chamber (36); a conductor (41, 42) that supplies power from a power source (21) to the electromagnetic force generation unit (38) and that is buried in a housing (15) and has one end connected to the electromagnetic force generation unit (38); and a low-pressure space (45) that stores fuel at pressure lower than that in the high-pressure chamber (36) and that is compartmentalized in the housing (15). An enclosing space (46) that is connected to a low-pressure space (45) and that continuously encloses the conductor (42) is compartmentalized in the housing (15). Thus, the fuel pump module that ensures confinement of the fuel is provided.

Description

フューエルポンプモジュールFuel pump module
 本発明はフューエルポンプモジュールに関する。 The present invention relates to a fuel pump module.
 特許文献1に開示されるように、フューエルフィードポンプはモーター部がポンプ内部に配置され、高圧の燃料にさらされる。モーターに給電するための端子からポンプ内部の高圧燃料が伝わり漏れてこないよう対策が必要である。フューエルフィードポンプをアウトモールドしてユニット化する技術や、ユニット内に制御基板を収める技術などが見出され、それらに対応する確実な燃料シール構造が必要とされている。 As disclosed in Patent Document 1, the fuel feed pump has a motor portion disposed inside the pump and is exposed to high-pressure fuel. It is necessary to take measures to prevent the high-pressure fuel inside the pump from being transmitted from the terminal for supplying power to the motor. A technology for out-molding a fuel feed pump into a unit, a technology for accommodating a control board in a unit, and the like have been found, and a reliable fuel seal structure corresponding to them is required.
日本特開2004-137936号公報Japanese Unexamined Patent Publication No. 2004-137936
 フューエルポンプモジュールは、高圧室よりも低圧で燃料を貯留する低圧空間を有する。低圧空間には有底穴が開口する。接続端子は高圧室とカプラーとの間で有底穴の底面に重ねられる。接続端子の表面は部分的に開口の底面で露出するものの、接続端子とカプラーベースの樹脂成形体との界面は接続端子からカプラーまで連続する恐れがある。したがって、燃料が界面を伝ってカプラーから漏れるのを防ぐためには、界面に隙間が発生しないように特殊な表面処理をするなどの高度な対策が必要であった。 The fuel pump module has a low-pressure space that stores fuel at a lower pressure than the high-pressure chamber. A bottomed hole opens in the low pressure space. The connection terminal is superimposed on the bottom surface of the bottomed hole between the high pressure chamber and the coupler. Although the surface of the connection terminal is partially exposed at the bottom of the opening, the interface between the connection terminal and the coupler-based resin molding may continue from the connection terminal to the coupler. Therefore, in order to prevent the fuel from leaking from the coupler through the interface, it is necessary to take advanced measures such as special surface treatment so that no gap is generated at the interface.
 本発明は、上記実状に鑑みてなされたもので、容易で確実に燃料を閉じ込めることができるフューエルポンプモジュールを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel pump module that can easily and surely confine fuel.
 本発明の第1側面によれば、高圧の燃料を受け入れる高圧室を区画する樹脂成形体のハウジングと、前記ハウジングに組み込まれて、前記高圧室に向かって高圧の前記燃料を吐出するポンプと、前記高圧室内に配置されて、電力の供給に応じて前記ポンプを駆動する電磁力を生成する電磁力生成部と、前記ハウジングに埋め込まれて一端で前記電磁力生成部に接続され、電力源から前記電磁力生成部に前記電力を供給する導体と、前記ハウジング内に区画されて、前記高圧室よりも低圧で燃料を貯留する低圧空間とを備え、前記ハウジングには、途切れなく前記導体を囲んで前記低圧空間に繋がる囲み空間が区画されるフューエルポンプモジュールが提供される。 According to the first aspect of the present invention, a housing of a resin molded body that partitions a high-pressure chamber that receives high-pressure fuel, a pump that is incorporated in the housing and discharges the high-pressure fuel toward the high-pressure chamber, An electromagnetic force generation unit that is disposed in the high pressure chamber and generates an electromagnetic force that drives the pump in response to supply of electric power, and is embedded in the housing and connected to the electromagnetic force generation unit at one end. A conductor for supplying the electric power to the electromagnetic force generation unit; and a low pressure space that is partitioned in the housing and stores fuel at a lower pressure than the high pressure chamber. The housing surrounds the conductor without interruption. A fuel pump module is provided in which an enclosed space connected to the low-pressure space is defined.
 第2側面によれば、第1側面の構成に加えて、前記低圧空間に開口し、複数の前記導体が共通に露出し、前記ハウジングに区画される窓孔を有する。 According to the second side surface, in addition to the configuration of the first side surface, the low-pressure space is opened, the plurality of conductors are exposed in common, and the window hole is defined in the housing.
 第3側面によれば、第1または第2側面の構成に加えて、フューエルポンプモジュールは、前記囲み空間および前記電力源の間に配置されて、途切れなく前記導体を囲んで前記ハウジングに包み込まれるシール層を備える。 According to the third aspect, in addition to the configuration of the first or second side, the fuel pump module is disposed between the enclosed space and the power source, and is encased in the housing surrounding the conductor without interruption. A sealing layer is provided.
 第4側面によれば、第1~第3側面のいずれかの構成に加えて、前記ハウジングは、端面で開口するように基準直線に平行に前記低圧空間を区画し、前記基準直線に平行に、前記ポンプ内の気泡を排出する脱気孔に接続されて前記端面で開口する連通孔を区画する。 According to the fourth aspect, in addition to the structure of any one of the first to third aspects, the housing divides the low-pressure space parallel to the reference straight line so as to open at the end face, and parallel to the reference straight line. A communication hole that is connected to a deaeration hole that discharges bubbles in the pump and opens at the end face is defined.
 第5側面によれば、第4側面の構成に加えて、フューエルポンプモジュールは、前記ハウジングの前記端面に被さって、前記端面との間に前記連通孔および前記低圧空間に接続される連通空間を区画する蓋部材を備える。 According to the fifth aspect, in addition to the configuration of the fourth side surface, the fuel pump module covers the end surface of the housing and has a communication space connected to the communication hole and the low pressure space between the end surface. A lid member for partitioning is provided.
 第6側面によれば、第5側面の構成に加えて、前記蓋部材は、前記連通空間に開口し、戻し流路に接続される戻し開口を区画する。 According to the sixth aspect, in addition to the configuration of the fifth side surface, the lid member opens into the communication space and defines a return opening connected to the return flow path.
 第7側面によれば、第1~第6側面のいずれかの構成に加えて、前記ハウジングは、樹脂成型時に金型のピンとの間に前記導体を挟み込み、前記金型のピンと協働で前記囲み空間を仕切るキャップ部材を含む。 According to the seventh aspect, in addition to the configuration of any one of the first to sixth aspects, the housing sandwiches the conductor between the mold pins during resin molding and cooperates with the mold pins to A cap member for partitioning the enclosed space is included.
 第8側面によれば、第7側面の構成に加えて、前記ハウジングは、前記キャップ部材に前記導体を結合する1次樹脂成形体を一部に含む。 According to the eighth aspect, in addition to the configuration of the seventh side, the housing includes in part a primary resin molded body that couples the conductor to the cap member.
 第9側面によれば、第1~第8側面のいずれかの構成に加えて、前記導体には、前記ハウジングの壁面に沿って延びて、少なくとも部分的に前記囲み空間を区画する溝が形成される。 According to the ninth aspect, in addition to the structure of any one of the first to eighth aspects, the conductor is formed with a groove extending along the wall surface of the housing and at least partially partitioning the enclosed space. Is done.
 第10側面によれば、第1~第9側面のいずれかの構成に加えて、前記導体には、露出面で開口する貫通孔が区画される。 According to the tenth aspect, in addition to the configuration of any one of the first to ninth aspects, the conductor is provided with a through hole that opens at the exposed surface.
 第1側面によれば、高圧室はポンプから流れ込む高圧の燃料で満たされる。樹脂成形体のハウジングと、樹脂成型時にハウジングに埋め込まれる導体との界面に沿って燃料は染み入る。燃料は高圧室の圧力を受けて導体を伝って進んでいくものの囲み空間で低圧空間に開放される。燃料はハウジング内の低圧空間に貯留する。燃料の漏出は防止される。 According to the first aspect, the high pressure chamber is filled with high pressure fuel flowing from the pump. Fuel permeates along the interface between the housing of the resin molded body and the conductor embedded in the housing during resin molding. The fuel travels through the conductor under the pressure of the high pressure chamber, but is released to the low pressure space in the enclosed space. Fuel is stored in a low pressure space in the housing. Fuel leakage is prevented.
 第2側面によれば、複数の導体に対して共通に1つの窓孔が形成されればよく、樹脂成形体の構造は簡素化されることができる。製造工程は簡素化され、製造コストは低減されることができる。 According to the second aspect, it is only necessary to form one window hole in common for a plurality of conductors, and the structure of the resin molded body can be simplified. The manufacturing process can be simplified and the manufacturing cost can be reduced.
 第3側面によれば、囲み空間は低圧空間に繋がるので、高圧室と囲み空間との圧力差に比べて、囲み空間と電力源との圧力差は著しく縮小する。その結果、囲み空間から電力源に向かう経路の途中で導体を伝う燃料の勢いは弱まる。シール層によって囲み空間と電力源との間で導体周りのシール性能は高められるので、燃料の漏出は確実に防止される。仮にハウジング内に制御回路が組み込まれる場合でも、制御基板に実装される半導体素子は確実に燃料から隔離されることができる。 According to the third aspect, since the enclosed space is connected to the low pressure space, the pressure difference between the enclosed space and the power source is remarkably reduced as compared with the pressure difference between the high pressure chamber and the enclosed space. As a result, the momentum of the fuel that travels along the conductor along the path from the enclosed space to the power source is weakened. Since the sealing performance of the surroundings of the conductor is enhanced between the enclosed space and the power source by the sealing layer, fuel leakage is reliably prevented. Even if the control circuit is incorporated in the housing, the semiconductor element mounted on the control board can be reliably isolated from the fuel.
 第4側面によれば、低圧空間および連通孔はともに基準直線に平行に延びるので、ハウジングの樹脂成型にあたって基準直線の方向に型抜きは実現される。しかも、こうしてハウジングの樹脂成型と同時に燃料の流路構成も確立されるので、多数の部品を組み立てる手間がかからず、部品同士のシール性を確保する労力も省かれることができる。 According to the fourth aspect, since the low-pressure space and the communication hole both extend parallel to the reference straight line, the die cutting is realized in the direction of the reference straight line when resin molding of the housing. In addition, since the fuel flow path configuration is established at the same time as the resin molding of the housing in this way, it is not necessary to assemble a large number of parts, and the labor for securing the sealability between the parts can be saved.
 第5側面によれば、連通孔および低圧空間はともに端面で開口するので、連通孔の開口と低圧空間の開口との距離は短縮され、その結果、蓋部材は小型化されることができる。単一の端面上に蓋部材は配置されるので、ハウジングと蓋部材との間でシール機構は簡素化されることができる。 According to the fifth aspect, since both the communication hole and the low pressure space are opened at the end surfaces, the distance between the communication hole opening and the low pressure space opening is shortened, and as a result, the lid member can be miniaturized. Since the lid member is disposed on the single end surface, the sealing mechanism between the housing and the lid member can be simplified.
 第6側面によれば、低圧空間に染み出た燃料は戻し流路に流入する。染み出た燃料は確実に回収され、燃料の漏出は確実に防止される。もともとポンプには脱気孔に戻し流路が接続されるので、低圧空間の形成にあたって戻し流路の追加は回避されることができる。 According to the sixth aspect, the fuel that has oozed out into the low pressure space flows into the return flow path. The exuded fuel is reliably recovered and fuel leakage is reliably prevented. Originally, since the return flow path is connected to the deaeration hole in the pump, the addition of the return flow path can be avoided in forming the low pressure space.
 第7側面によれば、ハウジングの樹脂成型にあたって囲み空間に対して溶融樹脂の流入は防止される。ハウジング内に確実に囲み空間は確保されることができる。 According to the seventh aspect, the molten resin is prevented from flowing into the enclosed space in the resin molding of the housing. An enclosed space can be ensured in the housing.
 第8側面によれば、ハウジングの樹脂成型にあたって、金型のキャビティ内で1次樹脂成形体は特定の位置にキャップ部材および導体を配置することができる。キャップ部材および導体は金型内で簡単に保持されることができる。 According to the eighth aspect, in the resin molding of the housing, the primary resin molded body can arrange the cap member and the conductor at a specific position in the cavity of the mold. The cap member and the conductor can be easily held in the mold.
 第9側面によれば、ハウジングの壁面の形状は簡素化される。 According to the ninth aspect, the shape of the wall surface of the housing is simplified.
 第10側面によれば、貫通孔に金型のピンが差し込まれることで、金型内で導体は確実に保持されることができる。 According to the tenth aspect, the conductor can be reliably held in the mold by inserting the pin of the mold into the through hole.
図1は本発明の一実施形態に係る燃料噴射システムの全体構成を概略的に示すフューエルポンプモジュールの斜視図である。FIG. 1 is a perspective view of a fuel pump module schematically showing an overall configuration of a fuel injection system according to an embodiment of the present invention. 図2は図1の2-2線に沿ってフューエルポンプモジュールの全体構成を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing the overall configuration of the fuel pump module along line 2-2 in FIG. 図3(a)は1次樹脂成形体の構造を概略的に示す拡大斜視図、および図3(b)はキャップ部材の金型内部での状態を表した拡大断面図である。FIG. 3A is an enlarged perspective view schematically showing the structure of the primary resin molded body, and FIG. 3B is an enlarged sectional view showing a state of the cap member inside the mold. 図4はフューエルポンプモジュールの正面図である。FIG. 4 is a front view of the fuel pump module. 図5(a)は他の実施形態に係るキャップ部材の構造を概略的に示す拡大斜視図、および図5(b)はキャップ部材の金型内部での状態を表した拡大断面図である。FIG. 5A is an enlarged perspective view schematically showing the structure of a cap member according to another embodiment, and FIG. 5B is an enlarged cross-sectional view showing a state of the cap member inside the mold.
13…戻し流路(戻し管)
14…フューエルポンプモジュール
15…ハウジング
15a…端面
16…蓋部材
18…戻し開口
21…電力源(制御基板)
24…ポンプ
36…高圧室
38…電磁力生成部(ステーター)
41…導体(リード線)
42…導体(接続端子)
45…低圧空間
46…囲み空間
47…シール層
49…連通孔
51…連通空間
55…1次樹脂成形体
56…窓孔
57…溝(連続溝)
58…貫通孔
59…キャップ部材
61…(金型の)ピン
63…キャップ部材
Xis…基準直線(回転軸線)
13 ... Return channel (return pipe)
14 ... Fuel pump module 15 ... Housing 15a ... End face 16 ... Lid member 18 ... Return opening 21 ... Power source (control board)
24 ... Pump 36 ... High pressure chamber 38 ... Electromagnetic force generator (stator)
41 ... Conductor (lead wire)
42 ... Conductor (connection terminal)
45 ... Low pressure space 46 ... Enclosure space 47 ... Seal layer 49 ... Communication hole 51 ... Communication space 55 ... Primary resin molding 56 ... Window hole 57 ... Groove (continuous groove)
58 ... Through hole 59 ... Cap member 61 ... Pin 63 (of mold) ... Cap member Xis ... Reference straight line (rotation axis)
 以下、添付図面を参照しつつ本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1の実施の形態First embodiment
 図1は本発明の一実施形態に係る燃料噴射システム11の構成を概略的に示す。燃料噴射システム11は、燃料を貯蔵する燃料タンクTと、燃料管12および戻し管13で燃料タンクTに接続されるフューエルポンプモジュール14とを備える。フューエルポンプモジュール14は樹脂成形体のハウジング15を有する。ハウジング15には樹脂成形体の蓋部材16が液密に結合される。蓋部材16はハウジング15の一端面に被さる。蓋部材16には、燃料管12に接続される燃料開口17と、戻し管(戻し流路)13に接続される戻し開口18とが区画される。燃料開口17および戻し開口18はニップルの形状に形成される。 FIG. 1 schematically shows a configuration of a fuel injection system 11 according to an embodiment of the present invention. The fuel injection system 11 includes a fuel tank T that stores fuel, and a fuel pump module 14 that is connected to the fuel tank T by a fuel pipe 12 and a return pipe 13. The fuel pump module 14 has a housing 15 of a resin molded body. A lid member 16 of a resin molded body is liquid-tightly coupled to the housing 15. The lid member 16 covers one end surface of the housing 15. The lid member 16 has a fuel opening 17 connected to the fuel pipe 12 and a return opening 18 connected to the return pipe (return flow path) 13. The fuel opening 17 and the return opening 18 are formed in the shape of a nipple.
 ニップルの軸線の向きに反対側でハウジング15には吐出管19が形成される。吐出管19にはエンジンの吸気道に差し込まれるインジェクターIが接続される。フューエルポンプモジュール14は、燃料開口17から燃料を吸引し、吐出管19からインジェクターIに向けて燃料を吐出する。過剰な燃料は戻し流路からタンクTに戻る。こうした燃料噴射システム11は例えば自動二輪車といった鞍乗り型車両に搭載されて利用される。 A discharge pipe 19 is formed in the housing 15 on the side opposite to the direction of the axis of the nipple. The discharge pipe 19 is connected to an injector I that is inserted into the intake passage of the engine. The fuel pump module 14 sucks fuel from the fuel opening 17 and discharges the fuel from the discharge pipe 19 toward the injector I. Excess fuel returns to tank T from the return channel. The fuel injection system 11 is used by being mounted on a saddle type vehicle such as a motorcycle.
 ハウジング15には電力源としての制御基板21が埋め込まれる。制御基板21はハウジング15の樹脂成形体に包み込まれる。制御基板21にはコネクター22の端子や半導体素子その他の電子部品が実装される。制御基板21は電子制御ユニット(ECU)を構成する。制御基板21はフューエルポンプモジュール14の動作を制御する。 A control board 21 as a power source is embedded in the housing 15. The control board 21 is wrapped in a resin molded body of the housing 15. On the control board 21, terminals of the connector 22, semiconductor elements and other electronic components are mounted. The control board 21 constitutes an electronic control unit (ECU). The control board 21 controls the operation of the fuel pump module 14.
 図2に示されるように、ハウジング15にはポンプ24およびポンプ24に連結される電動モーター25が組み込まれる。ポンプ24と電動モーター25とは例えば金属製の筒体26で一体化される。ポンプ24は、筒体26に組み入れられる第1軸受け体27および端面部材28を備える。第1軸受け体27には回転軸線Xis回りで回転自在にインペラー29の駆動軸31が支持される。インペラー29は、第1軸受け体27および端面部材28の間に区画されるインペラー室32に収容される。端面部材28には、インペラー室32に通じる吸入孔33および脱気孔34が区画される。インペラー29の回転に応じて液体燃料は吸入孔33からインペラー室32に吸い込まれ、高圧の液体燃料がインペラー室32から吐出される。ポンプ24内の気泡は脱気孔34からインペラー室32の外側に排出される。 As shown in FIG. 2, the housing 15 incorporates a pump 24 and an electric motor 25 connected to the pump 24. The pump 24 and the electric motor 25 are integrated by a metal cylinder 26, for example. The pump 24 includes a first bearing body 27 and an end surface member 28 that are incorporated in the cylinder body 26. A drive shaft 31 of an impeller 29 is supported on the first bearing body 27 so as to be rotatable about the rotation axis Xis. The impeller 29 is accommodated in an impeller chamber 32 defined between the first bearing body 27 and the end face member 28. A suction hole 33 and a deaeration hole 34 that communicate with the impeller chamber 32 are defined in the end surface member 28. In accordance with the rotation of the impeller 29, the liquid fuel is sucked into the impeller chamber 32 from the suction hole 33, and high-pressure liquid fuel is discharged from the impeller chamber 32. Bubbles in the pump 24 are discharged from the deaeration hole 34 to the outside of the impeller chamber 32.
 電動モーター25は、筒体26に組み入れられる第2軸受け体35を備える。第2軸受け体35は、第1軸受け体27から離れた位置で回転軸線Xis回りに回転自在にインペラー29の駆動軸31を支持する。第1軸受け体27および第2軸受け体35の間で筒体26内に高圧室36が区画される。高圧室36はインペラー室32から高圧の液体燃料を受け入れる。 The electric motor 25 includes a second bearing body 35 incorporated in the cylinder body 26. The second bearing body 35 supports the drive shaft 31 of the impeller 29 so as to be rotatable around the rotation axis Xis at a position away from the first bearing body 27. A high pressure chamber 36 is defined in the cylindrical body 26 between the first bearing body 27 and the second bearing body 35. The high pressure chamber 36 receives high pressure liquid fuel from the impeller chamber 32.
 電動モーター25はローター37およびステーター38を備える。ローター37およびステーター38は高圧室36内に配置される。ローター37は駆動軸31に結合される。ローター37は例えば永久磁石で構成される。ステーター38は、ローター37の回転軌道の外側でローター37に向き合わせられる。ステーター38は例えば電磁コイル群で構成される。ステーター38は電力の供給に応じて電磁力を生成する。電磁力に基づき駆動軸31の回転は引き起こされる。こうしてインペラー29は回転する。ここでは、ステーター38は電磁力生成部として機能する。 The electric motor 25 includes a rotor 37 and a stator 38. The rotor 37 and the stator 38 are disposed in the high pressure chamber 36. The rotor 37 is coupled to the drive shaft 31. The rotor 37 is composed of a permanent magnet, for example. The stator 38 is opposed to the rotor 37 outside the rotation path of the rotor 37. The stator 38 is composed of, for example, an electromagnetic coil group. The stator 38 generates electromagnetic force in response to the supply of electric power. The drive shaft 31 is rotated based on the electromagnetic force. Thus, the impeller 29 rotates. Here, the stator 38 functions as an electromagnetic force generator.
 電動モーター25は、ハウジング15の一部を構成する第2軸受け体35に埋め込まれるリード線41を備える。リード線41は一端でステーター38に接続される。ここでは、個々の電磁コイルに対応して3本のリード線41が設けられる。リード線41の他端には、同様にハウジング15に埋め込まれる接続端子42が個々のリード線41ごとに個別に接続される。後述されるように、リード線41および接続端子42は、一端でステーター38の電磁コイルに接続され、他端で制御基板21に接続される導体の一部を構成する。ステーター38には導体を経て制御基板21から電力が供給される。接続端子42は例えば黄銅といった金属材料から成形されてスズメッキが施される。 The electric motor 25 includes a lead wire 41 embedded in a second bearing body 35 constituting a part of the housing 15. The lead wire 41 is connected to the stator 38 at one end. Here, three lead wires 41 are provided corresponding to each electromagnetic coil. Similarly, a connection terminal 42 embedded in the housing 15 is individually connected to the other end of the lead wire 41 for each lead wire 41. As will be described later, the lead wire 41 and the connection terminal 42 constitute a part of a conductor connected to the electromagnetic coil of the stator 38 at one end and connected to the control board 21 at the other end. Electric power is supplied from the control board 21 to the stator 38 via a conductor. The connection terminal 42 is formed from a metal material such as brass and tin-plated.
 第2軸受け体35には逆止弁43が一体に組み込まれる。逆止弁43は吐出口44から燃料の吐出を許容しつつその逆流を阻止する。吐出口44はハウジング15のニップル内に区画される。インペラー29が回転すると、燃料は規定の圧力で吐出口44から吐出される。 A check valve 43 is integrally incorporated in the second bearing body 35. The check valve 43 prevents the reverse flow while allowing the fuel to be discharged from the discharge port 44. The discharge port 44 is defined in the nipple of the housing 15. When the impeller 29 rotates, the fuel is discharged from the discharge port 44 at a specified pressure.
 ハウジング15は、基準直線である回転軸線Xisに平行に低圧空間45を区画する。低圧空間45は高圧室36よりも低圧で燃料を貯留する。低圧空間45は、一端でハウジング15の端面15aに開口し、他端で囲み空間46に繋がる。囲み空間46は、ハウジング15に区画されて、高圧室36および制御基板21の間で途切れなく個々の接続端子42を個別に囲む。したがって、接続端子42と樹脂成形体との界面は、リード線41との連結部位から囲み空間46まで広がって、囲み空間46で途切れる。囲み空間46および制御基板21の間には、途切れなく個々の接続端子42を個別に囲んでハウジング15に包み込まれるシール層47が配置される。シール層47は、囲み空間46から離れた位置でハウジング15内に埋め込まれる。シール層47は例えばニトリルゴム(NBR)といった合成ゴムで形成される。 The housing 15 defines the low-pressure space 45 in parallel with the rotation axis Xis that is a reference straight line. The low pressure space 45 stores fuel at a lower pressure than the high pressure chamber 36. The low-pressure space 45 opens to the end surface 15a of the housing 15 at one end and is connected to the enclosed space 46 at the other end. The enclosure space 46 is partitioned by the housing 15 and individually surrounds the individual connection terminals 42 between the high-pressure chamber 36 and the control board 21 without interruption. Therefore, the interface between the connection terminal 42 and the resin molded body extends from the connection portion with the lead wire 41 to the enclosed space 46 and is interrupted in the enclosed space 46. Between the enclosing space 46 and the control board 21, a sealing layer 47 is provided that surrounds the individual connection terminals 42 without interruption and is encased in the housing 15. The seal layer 47 is embedded in the housing 15 at a position away from the enclosure space 46. The seal layer 47 is made of a synthetic rubber such as nitrile rubber (NBR).
 ハウジング15は、基準直線である回転軸線Xisに平行に連通孔49を区画する。連通孔49は、一端でハウジング15の端面15aに開口し、他端で脱気孔34に接続される。蓋部材16は、ハウジング15の端面15aとの間に連通空間51を区画する。連通空間51は連通孔49および低圧空間45に接続される。戻し開口18は連通空間51に開口する。連通空間51に収集された燃料は戻し開口18からタンクTに戻される。 The housing 15 defines a communication hole 49 parallel to the rotation axis Xis that is a reference straight line. The communication hole 49 opens to the end surface 15a of the housing 15 at one end and is connected to the deaeration hole 34 at the other end. The lid member 16 defines a communication space 51 between the end surface 15 a of the housing 15. The communication space 51 is connected to the communication hole 49 and the low pressure space 45. The return opening 18 opens into the communication space 51. The fuel collected in the communication space 51 is returned to the tank T from the return opening 18.
 図3(a)に示されるように、個々の接続端子42は、板形状のリード線41の先端に連結される第1連結部52と、制御基板21から延びる板形状の導電材53に連結される第2連結部54とを備える。第1連結部52は、リード線41の先端に重なる板片52aと、板片52aから連続して広がって板片52aに対してリード線41の先端を押しつける弾性力を発揮する1対の湾曲体52bとから構成される。リード線41の先端は第1連結部52の開放端から板片52aおよび湾曲体52bの間に進入することができる。湾曲体52bは板片52aにリード線41の先端を仮固定する。同様に、第2連結部54は、導電材53に重なる板片54aと、板片54aから連続して広がって板片54aに対して導電材53を押しつける弾性力を発揮する1対の湾曲体54bとから構成される。導電材53は第2連結部54の開放端から板片54aおよび湾曲体54bの間に進入することができる。湾曲体54bは板片54aに導電材53を仮固定する。 As shown in FIG. 3A, each connection terminal 42 is connected to a first connection portion 52 connected to the tip of a plate-shaped lead wire 41 and a plate-shaped conductive material 53 extending from the control board 21. A second connecting portion 54. The first connecting portion 52 has a plate piece 52a that overlaps the tip of the lead wire 41 and a pair of curves that continuously expand from the plate piece 52a and exerts an elastic force that presses the tip of the lead wire 41 against the plate piece 52a. It is comprised from the body 52b. The leading end of the lead wire 41 can enter between the plate piece 52 a and the curved body 52 b from the open end of the first connecting portion 52. The curved body 52b temporarily fixes the tip of the lead wire 41 to the plate piece 52a. Similarly, the second connecting portion 54 includes a plate piece 54a that overlaps the conductive material 53 and a pair of curved bodies that continuously spread from the plate piece 54a and exerts an elastic force that presses the conductive material 53 against the plate piece 54a. 54b. The conductive material 53 can enter between the plate piece 54 a and the curved body 54 b from the open end of the second connecting portion 54. The curved body 54b temporarily fixes the conductive material 53 to the plate piece 54a.
 ハウジング15は、第1連結部52および第2連結部54の間で3つの接続端子42を結合する1次樹脂成形体55を一部に含む。1次樹脂成形体55は例えばPOM樹脂(ポリアセタール樹脂)材から成形される。個々のシール層47は1次樹脂成形体55に包み込まれる。シール層47のニトリルゴムは接続端子42のスズメッキ面および1次樹脂成形体55のPOM樹脂にそれぞれ接着性を有する。 The housing 15 includes in part a primary resin molded body 55 that couples the three connection terminals 42 between the first connecting portion 52 and the second connecting portion 54. The primary resin molded body 55 is molded from, for example, a POM resin (polyacetal resin) material. Each sealing layer 47 is encased in a primary resin molded body 55. The nitrile rubber of the sealing layer 47 has adhesiveness to the tin plating surface of the connection terminal 42 and the POM resin of the primary resin molded body 55.
 1次樹脂成形体55には低圧空間45に対応する位置で1次樹脂成形体55を貫通する窓孔56が区画される。個々の接続端子42は窓孔56内の空間を貫通する。窓孔56内で接続端子42には、ハウジング15の壁面に接する面に区画される連続溝57と、低圧空間45に面する露出面で開口する貫通孔58とが形成される。個々の接続端子42に設けられた貫通孔58の複数の中心線は1つの仮想平面内に配置される。当該仮想平面は延伸方向に連続溝57を二等分する対称面を提供する。 In the primary resin molded body 55, a window hole 56 penetrating the primary resin molded body 55 is defined at a position corresponding to the low pressure space 45. Each connection terminal 42 passes through the space in the window hole 56. In the window hole 56, the connection terminal 42 is formed with a continuous groove 57 defined on a surface in contact with the wall surface of the housing 15 and a through hole 58 that opens on an exposed surface facing the low-pressure space 45. A plurality of center lines of the through holes 58 provided in each connection terminal 42 are arranged in one virtual plane. The virtual plane provides a symmetrical plane that bisects the continuous groove 57 in the extending direction.
 ハウジング15はキャップ部材59を含む。キャップ部材59は1次樹脂成形体55の窓孔56に嵌め込まれる。図3(b)に示されるように、ハウジング15の樹脂成型時にキャップ部材59は金型のピン61との間に接続端子42を挟み込む。このとき、キャップ部材59は金型のピン61と協働で囲み空間46を仕切る。連続溝57以外でキャップ部材59は接続端子42の外面に密着する。連続溝57は、キャップ部材59の壁面に沿って延びて、少なくとも部分的に囲み区間46を区画する。連続溝57の働きでキャップ部材59の壁面の形状は簡素化される。金型のピン61は接続端子42の露出面に密着する。金型のピン61の先端には貫通孔58に進入する円筒形状の突起62が形成される。貫通孔58にピン61の突起62が差し込まれることで、金型内で接続端子42は確実に保持される。こうして1次樹脂成形体55はキャップ部材59に接続端子42を結合する。 The housing 15 includes a cap member 59. The cap member 59 is fitted into the window hole 56 of the primary resin molded body 55. As shown in FIG. 3B, the cap member 59 sandwiches the connection terminal 42 between the pin 61 of the mold when the housing 15 is resin-molded. At this time, the cap member 59 partitions the enclosed space 46 in cooperation with the mold pin 61. The cap member 59 is in close contact with the outer surface of the connection terminal 42 except for the continuous groove 57. The continuous groove 57 extends along the wall surface of the cap member 59 and at least partially defines the surrounding section 46. The shape of the wall surface of the cap member 59 is simplified by the function of the continuous groove 57. The mold pin 61 is in close contact with the exposed surface of the connection terminal 42. A cylindrical projection 62 that enters the through hole 58 is formed at the tip of the mold pin 61. By connecting the protrusion 62 of the pin 61 into the through hole 58, the connection terminal 42 is securely held in the mold. Thus, the primary resin molded body 55 couples the connection terminal 42 to the cap member 59.
 図4に示されるように、脱気孔34および電動モーター25のリード線41はインペラー29の回転軸線Xisを含む1仮想平面PLの一方の空間に配置される。脱気孔34と低圧空間45との距離は短縮されることができ、連通空間51は小型化されることができる。それによって蓋部材16の小型化も実現されることができる。 4, the deaeration hole 34 and the lead wire 41 of the electric motor 25 are arranged in one space of one imaginary plane PL including the rotation axis Xis of the impeller 29. The distance between the deaeration hole 34 and the low pressure space 45 can be shortened, and the communication space 51 can be miniaturized. Thereby, downsizing of the lid member 16 can also be realized.
 高圧室36はポンプ24から流れ込む高圧の燃料で満たされる。樹脂成形体のハウジング15と、樹脂成型時にハウジング15に埋め込まれるリード線41および接続端子42との界面に沿って燃料は染み入る。燃料は高圧室36の圧力を受けてリード線41および接続端子42を伝って進んでいくものの囲み空間46で低圧空間45に開放される。燃料はハウジング15内の低圧空間45に貯留する。燃料の漏出は防止される。特に、前述のように制御基板21がハウジング15に埋め込まれる場合であっても、導体を伝う燃料は確実に遮断される。制御基板21に実装される半導体素子は確実に燃料から離隔され保護される。 The high pressure chamber 36 is filled with high pressure fuel flowing from the pump 24. The fuel penetrates along the interface between the housing 15 of the resin molded body and the lead wire 41 and the connection terminal 42 embedded in the housing 15 at the time of resin molding. Although the fuel travels through the lead wire 41 and the connection terminal 42 under the pressure of the high pressure chamber 36, the fuel is released to the low pressure space 45 in the enclosed space 46. The fuel is stored in the low pressure space 45 in the housing 15. Fuel leakage is prevented. In particular, even when the control board 21 is embedded in the housing 15 as described above, the fuel transmitted through the conductor is reliably cut off. The semiconductor element mounted on the control board 21 is reliably separated from the fuel and protected.
 フューエルポンプモジュール14は、低圧空間45に開口し、複数の接続端子42に共通にハウジング15に区画される窓孔56を有する。こうして複数の接続端子42に対して共通に1つの窓孔56が形成されればよく、ハウジング15の構造は簡素化されることができる。製造工程は簡素化され、製造コストは低減されることができる。 The fuel pump module 14 has a window hole 56 that opens into the low-pressure space 45 and is partitioned into the housing 15 in common with the plurality of connection terminals 42. In this way, one window hole 56 may be formed in common for the plurality of connection terminals 42, and the structure of the housing 15 can be simplified. The manufacturing process can be simplified and the manufacturing cost can be reduced.
 囲み空間46および制御基板21の間では、途切れなく接続端子42を囲むシール層47がハウジング15に包み込まれる。囲み空間46は低圧空間45に繋がるので、高圧室36と囲み空間46との圧力差に比べて、囲み空間46と制御基板21との圧力差は著しく縮小する。その結果、囲み空間46から制御基板21に向かう経路の途中で接続端子42を伝う燃料の勢いは弱まる。シール層47によって囲み空間46と制御基板21との間で接続端子42周りのシール性能は高められるので、燃料の漏出は確実に防止される。制御基板21に実装される半導体素子は確実に燃料から隔離されることができる。特に、シール層47のニトリルゴムは接続端子42のスズメッキ面および1次樹脂成形体55のPOM樹脂にそれぞれ接着性を有することから、スズメッキ面とPOM樹脂との界面で確実に隙間は塞がれる。燃料の染み出しは確実に阻止される。その一方で、POM樹脂は分子間力による接着性をあまり有しておらず、POM樹脂とスズメッキ面との間には隙間が生じやすい。 Between the enclosed space 46 and the control board 21, the seal layer 47 surrounding the connection terminal 42 is encased in the housing 15 without interruption. Since the enclosed space 46 is connected to the low pressure space 45, the pressure difference between the enclosed space 46 and the control substrate 21 is significantly reduced as compared with the pressure difference between the high pressure chamber 36 and the enclosed space 46. As a result, the momentum of the fuel transmitted through the connection terminal 42 in the middle of the path from the enclosed space 46 toward the control board 21 is weakened. Since the sealing layer 47 enhances the sealing performance around the connection terminal 42 between the enclosed space 46 and the control board 21, fuel leakage is reliably prevented. The semiconductor element mounted on the control board 21 can be reliably isolated from the fuel. In particular, since the nitrile rubber of the seal layer 47 has adhesiveness to the tin plating surface of the connection terminal 42 and the POM resin of the primary resin molded body 55, the gap is surely closed at the interface between the tin plating surface and the POM resin. . Fuel seepage is reliably prevented. On the other hand, the POM resin does not have much adhesion due to intermolecular force, and a gap is likely to occur between the POM resin and the tin plating surface.
 ハウジング15は、端面15aで開口するように回転軸線Xisに平行に低圧空間45を区画し、回転軸線Xisに平行に、端面15aで開口する連通孔49を区画する。低圧空間45および連通孔49はともに回転軸線Xisに平行に延びるので、ハウジング15の樹脂成型にあたって回転軸線Xisの方向に型抜きは実現される。しかも、こうしてハウジング15の樹脂成型と同時に燃料の流路構成も確立されるので、多数の部品を組み立てる手間がかからず、部品同士のシール性を確保する労力も省かれることができる。従来のように多数の部品で燃料の流路が構成されると、部品の組み立てに手間がかかり、加えて、部品同士のシール性を確保することにも多くの労力が要求されてしまう。 The housing 15 defines a low pressure space 45 parallel to the rotation axis Xis so as to open at the end surface 15a, and defines a communication hole 49 opened at the end surface 15a parallel to the rotation axis Xis. Since both the low-pressure space 45 and the communication hole 49 extend parallel to the rotation axis Xis, die cutting is realized in the direction of the rotation axis Xis when the housing 15 is molded with resin. In addition, since the fuel flow path configuration is established at the same time as the resin molding of the housing 15 in this way, it is not necessary to assemble a large number of parts, and the labor for securing the sealability between the parts can be saved. If the fuel flow path is constituted by a large number of parts as in the prior art, it takes time to assemble the parts, and in addition, a lot of labor is required to secure the sealability between the parts.
 連通孔49および低圧空間45はともにハウジング15の端面15aで開口するので、連通孔49の開口と低圧空間45の開口との距離は短縮され、その結果、蓋部材16は小型化される。単一の端面15a上に蓋部材16は配置されるので、ハウジング15と蓋部材16との間でシール機構は簡素化されることができる。 Since both the communication hole 49 and the low pressure space 45 are opened at the end face 15a of the housing 15, the distance between the opening of the communication hole 49 and the opening of the low pressure space 45 is shortened, and as a result, the lid member 16 is reduced in size. Since the lid member 16 is disposed on the single end surface 15a, the sealing mechanism between the housing 15 and the lid member 16 can be simplified.
 蓋部材16は、連通空間51に開口し、戻し管13に接続される戻し開口18を区画する。低圧空間45に染み出た燃料は戻し管13に流入する。染み出た燃料は確実に回収され、燃料の漏出は確実に防止される。もともとポンプ24の脱気孔34には戻し管13が接続されるので、低圧空間45の形成にあたって戻し流路の追加は回避されることができる。 The lid member 16 opens into the communication space 51 and defines a return opening 18 connected to the return pipe 13. The fuel that has oozed out into the low pressure space 45 flows into the return pipe 13. The exuded fuel is reliably recovered and fuel leakage is reliably prevented. Since the return pipe 13 is originally connected to the deaeration hole 34 of the pump 24, the addition of the return flow path can be avoided when forming the low pressure space 45.
 キャップ部材59は、樹脂成型時に金型のピン61との間に接続端子42を挟み込み、金型のピン61と協働で囲み空間46を仕切る。ハウジング15の樹脂成型にあたって囲み空間46に対して溶融樹脂の流入は防止される。1次樹脂成形体55内に確実に囲み空間46は確保されることができる。 The cap member 59 sandwiches the connection terminal 42 with the mold pin 61 during resin molding, and partitions the enclosed space 46 in cooperation with the mold pin 61. In resin molding of the housing 15, the molten resin is prevented from flowing into the enclosed space 46. The enclosed space 46 can be reliably ensured in the primary resin molded body 55.
 1次樹脂成形体55はキャップ部材59と接続端子42との位置関係を強固に規定する。ハウジング15の樹脂成型にあたって、金型のキャビティ内で1次樹脂成形体55は特定の位置にキャップ部材59および接続端子42を配置することができる。キャップ部材59および接続端子42は金型内で容易に保持されることができる。 The primary resin molded body 55 firmly defines the positional relationship between the cap member 59 and the connection terminal 42. In the resin molding of the housing 15, the cap member 59 and the connection terminal 42 can be arranged at a specific position of the primary resin molded body 55 in the cavity of the mold. The cap member 59 and the connection terminal 42 can be easily held in the mold.
 図5(a)に示されるように、囲み空間46はキャップ部材63単体で区画されてもよい。この場合には、接続端子42は囲み空間46の位置で単純な平板で形成されることができる。平板形状の接続端子42は窪み64に嵌め込まれる。窪み64の稜線に直交する方向に深溝65は窪み64を横切る。深溝65は、窪み64に嵌め込まれる接続端子42の周囲に囲み空間46を形成する。図5(b)に示されるように、ハウジング15の樹脂成型時に、キャップ部材63は金型のキャビティ内面67と金型のピン66との間に狭持される。このときキャップ部材63は金型のピン66と協働で囲み空間46を仕切る。 As shown in FIG. 5A, the enclosed space 46 may be partitioned by a cap member 63 alone. In this case, the connection terminal 42 can be formed as a simple flat plate at the position of the surrounding space 46. The flat connection terminal 42 is fitted into the recess 64. The deep groove 65 crosses the depression 64 in a direction perpendicular to the ridge line of the depression 64. The deep groove 65 forms a surrounding space 46 around the connection terminal 42 fitted in the recess 64. As shown in FIG. 5B, the cap member 63 is sandwiched between the mold cavity inner surface 67 and the mold pin 66 when the housing 15 is molded with resin. At this time, the cap member 63 partitions the enclosed space 46 in cooperation with the mold pin 66.

Claims (10)

  1.  高圧の燃料を受け入れる高圧室(36)を区画する樹脂成形体のハウジング(15)と、
     前記ハウジング(15)に組み込まれて、前記高圧室(36)に向かって高圧の前記燃料を吐出するポンプ(24)と、
     前記高圧室(36)内に配置されて、電力の供給に応じて前記ポンプ(24)を駆動する電磁力を生成する電磁力生成部(38)と、
     前記ハウジング(15)に埋め込まれて一端で前記電磁力生成部(38)に接続され、電力源(21)から前記電磁力生成部(38)に前記電力を供給する導体(41、42)と、
     前記ハウジング(15)内に区画されて、前記高圧室(36)よりも低圧で燃料を貯留する低圧空間(45)とを備え、
     前記ハウジング(15)には、途切れなく前記導体(42)を囲んで前記低圧空間(45)に繋がる囲み空間(46)が区画される
    ことを特徴とするフューエルポンプモジュール。
    A resin molded body housing (15) defining a high pressure chamber (36) for receiving high pressure fuel;
    A pump (24) incorporated in the housing (15) for discharging the high-pressure fuel toward the high-pressure chamber (36);
    An electromagnetic force generator (38) disposed in the high pressure chamber (36) and generating an electromagnetic force for driving the pump (24) in response to supply of electric power;
    Conductors (41, 42) embedded in the housing (15) and connected at one end to the electromagnetic force generator (38) and supplying the electric power from the power source (21) to the electromagnetic force generator (38). ,
    A low pressure space (45) that is partitioned in the housing (15) and stores fuel at a lower pressure than the high pressure chamber (36);
    The fuel pump module, wherein the housing (15) is partitioned with a surrounding space (46) that surrounds the conductor (42) and is connected to the low pressure space (45).
  2.  請求項1に記載のフューエルポンプモジュールにおいて、前記低圧空間(45)に開口し、複数の前記導体(42)が共通に露出し、前記ハウジング(15)に区画される窓孔(56)を有することを特徴とするフューエルポンプモジュール。 The fuel pump module according to claim 1, further comprising a window hole (56) that opens into the low-pressure space (45), exposes the plurality of conductors (42) in common, and is partitioned into the housing (15). A fuel pump module characterized by that.
  3.  請求項1または2に記載のフューエルポンプモジュールにおいて、前記囲み空間(46)および前記電力源(21)の間に配置されて、途切れなく前記導体(42)を囲んで前記ハウジング(15)に包み込まれるシール層(47)を備えることを特徴とするフューエルポンプモジュール。 The fuel pump module according to claim 1 or 2, wherein the fuel pump module is disposed between the enclosed space (46) and the power source (21), and surrounds the conductor (42) without interruption, and is encased in the housing (15). A fuel pump module comprising a sealing layer (47).
  4.  請求項1~3のいずれか1項に記載のフューエルポンプモジュールにおいて、前記ハウジング(15)は、端面(15a)で開口するように基準直線(Xis)に平行に前記低圧空間(45)を区画し、前記基準直線(Xis)に平行に、前記ポンプ(24)内の気泡を排出する脱気孔(34)に接続されて前記端面(15a)で開口する連通孔(49)を区画することを特徴とするフューエルポンプモジュール。 The fuel pump module according to any one of claims 1 to 3, wherein the housing (15) defines the low-pressure space (45) parallel to a reference straight line (Xis) so as to open at an end face (15a). In parallel with the reference straight line (Xis), a communication hole (49) connected to a deaeration hole (34) for discharging bubbles in the pump (24) and opened at the end face (15a) is defined. Features fuel pump module.
  5.  請求項4に記載のフューエルポンプモジュールにおいて、前記ハウジング(15)の前記端面(15a)に被さって、前記端面(15a)との間に前記連通孔(49)および前記低圧空間(45)に接続される連通空間(51)を区画する蓋部材(16)を備えることを特徴とするフューエルポンプモジュール。 The fuel pump module according to claim 4, wherein the end surface (15a) of the housing (15) covers the end surface (15a) and is connected to the communication hole (49) and the low pressure space (45). A fuel pump module comprising a lid member (16) for partitioning the communication space (51).
  6.  請求項5に記載のフューエルポンプモジュールにおいて、前記蓋部材(16)は、前記連通空間(51)に開口し、戻し流路(13)に接続される戻し開口(18)を区画することを特徴とするフューエルポンプモジュール。 6. The fuel pump module according to claim 5, wherein the lid member (16) defines a return opening (18) that opens to the communication space (51) and is connected to a return channel (13). Fuel pump module.
  7.  請求項1~6のいずれか1項に記載のフューエルポンプモジュールにおいて、前記ハウジング(15)は、樹脂成型時に金型のピン(61)との間に前記導体(42)を挟み込み、前記金型のピン(61)と協働で前記囲み空間(46)を仕切るキャップ部材(59、63)を含むことを特徴とするフューエルポンプモジュール。 The fuel pump module according to any one of claims 1 to 6, wherein the housing (15) sandwiches the conductor (42) with a pin (61) of a mold during resin molding, so that the mold A fuel pump module comprising cap members (59, 63) for partitioning the enclosed space (46) in cooperation with a pin (61) of
  8.  請求項7に記載のフューエルポンプモジュールにおいて、前記ハウジング(15)は、前記キャップ部材(59、63)に前記導体(42)を結合する1次樹脂成形体(55)を一部に含むことを特徴とするフューエルポンプモジュール。 8. The fuel pump module according to claim 7, wherein the housing (15) includes in part a primary resin molded body (55) that couples the conductor (42) to the cap member (59, 63). Features fuel pump module.
  9.  請求項1~8のいずれか1項に記載のフューエルポンプモジュールにおいて、前記導体(42)には、前記ハウジング(15)の壁面に沿って延びて、少なくとも部分的に前記囲み空間(46)を区画する溝(57)が形成されることを特徴とするフューエルポンプモジュール。 The fuel pump module according to any one of claims 1 to 8, wherein the conductor (42) extends along a wall surface of the housing (15) and at least partially includes the enclosed space (46). A fuel pump module characterized in that a partitioning groove (57) is formed.
  10.  請求項1~9のいずれか1項に記載のフューエルポンプモジュールにおいて、前記導体(42)には、露出面で開口する貫通孔(58)が区画されることを特徴とするフューエルポンプモジュール。 The fuel pump module according to any one of claims 1 to 9, wherein the conductor (42) has a through hole (58) opened at an exposed surface.
PCT/JP2017/026638 2016-07-26 2017-07-24 Fuel pump module WO2018021220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780046013.4A CN109563797B (en) 2016-07-26 2017-07-24 Fuel pump assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146538A JP6437964B2 (en) 2016-07-26 2016-07-26 Fuel pump module
JP2016-146538 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021220A1 true WO2018021220A1 (en) 2018-02-01

Family

ID=61016169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026638 WO2018021220A1 (en) 2016-07-26 2017-07-24 Fuel pump module

Country Status (3)

Country Link
JP (1) JP6437964B2 (en)
CN (1) CN109563797B (en)
WO (1) WO2018021220A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280211A (en) * 2000-03-31 2001-10-10 Denso Corp Fuel system
JP2004137936A (en) * 2002-10-16 2004-05-13 Keihin Corp Fuel feed module for engine
JP2010507749A (en) * 2006-10-27 2010-03-11 デルファイ・テクノロジーズ・インコーポレーテッド Fuel delivery module
JP2010285929A (en) * 2009-06-11 2010-12-24 Aisan Ind Co Ltd Control device for fuel pump
JP2015197069A (en) * 2014-04-01 2015-11-09 株式会社デンソー Fuel tank lid, fuel pump module with the same, and method of manufacturing the fuel tank lid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943959A1 (en) * 1999-09-14 2001-03-15 Bosch Gmbh Robert Electric fuel pump has connecting element which engages in receptacle of magnet holder to form earth connection with wall of housing shell
CN100467850C (en) * 2005-09-06 2009-03-11 株式会社电装 Fluid pump and motor and method for manufacturing same
JP5372902B2 (en) * 2010-12-24 2013-12-18 本田技研工業株式会社 Vehicle fuel supply system
JP6221908B2 (en) * 2014-04-01 2017-11-01 株式会社デンソー Fuel tank lid and fuel pump module having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280211A (en) * 2000-03-31 2001-10-10 Denso Corp Fuel system
JP2004137936A (en) * 2002-10-16 2004-05-13 Keihin Corp Fuel feed module for engine
JP2010507749A (en) * 2006-10-27 2010-03-11 デルファイ・テクノロジーズ・インコーポレーテッド Fuel delivery module
JP2010285929A (en) * 2009-06-11 2010-12-24 Aisan Ind Co Ltd Control device for fuel pump
JP2015197069A (en) * 2014-04-01 2015-11-09 株式会社デンソー Fuel tank lid, fuel pump module with the same, and method of manufacturing the fuel tank lid

Also Published As

Publication number Publication date
CN109563797B (en) 2021-02-12
JP6437964B2 (en) 2018-12-12
CN109563797A (en) 2019-04-02
JP2018017143A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP4737300B2 (en) Fuel supply device
US9689340B2 (en) Controller integrated fuel pump module
US10106136B2 (en) Electronic control unit assembling method, electronic control unit and vehicle brake hydraulic pressure control apparatus
US11247654B2 (en) Electrical component assembly and vehicular brake fluid pressure control device
JP5818433B2 (en) Fuel supply device
WO2018021220A1 (en) Fuel pump module
KR20140136860A (en) Driving apparatus for direct acting
CN107852067B (en) Electronic device shell
JP2643464B2 (en) Power supply terminal structure for fuel tank
US8797758B2 (en) Electrical connection structure of electronic board
US11052887B2 (en) Electric component assembly, and brake fluid pressure control device for vehicle
JP5136575B2 (en) Fuel supply device
CN108603471B (en) Fuel pressure regulating body and fuel supply module
CN113389722A (en) Liquid pump
JP2020187927A (en) Electric motor, electric pump, and connector manufacturing method
JP2009275681A (en) Sensor unit
JP2008105535A (en) Housing and method of manufacturing housing
WO2021054176A1 (en) Fuel pump module
JP2009262924A (en) Brake pressure control device
WO2021054172A1 (en) Fuel pump module
JP6182231B1 (en) Fuel pump module
JP7221121B2 (en) fuel supply
JP2012225291A (en) Fuel feed device for engine
CN115943098A (en) hydraulic control device
JP2021085349A (en) Fuel passage sealing structure for fuel supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834226

Country of ref document: EP

Kind code of ref document: A1