WO2018020801A1 - Irreversible circuit element, irreversible circuit module, front-end circuit and communication device - Google Patents

Irreversible circuit element, irreversible circuit module, front-end circuit and communication device Download PDF

Info

Publication number
WO2018020801A1
WO2018020801A1 PCT/JP2017/019264 JP2017019264W WO2018020801A1 WO 2018020801 A1 WO2018020801 A1 WO 2018020801A1 JP 2017019264 W JP2017019264 W JP 2017019264W WO 2018020801 A1 WO2018020801 A1 WO 2018020801A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
conductor portion
output
transmission line
output conductor
Prior art date
Application number
PCT/JP2017/019264
Other languages
French (fr)
Japanese (ja)
Inventor
岡嶋 伸吾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018020801A1 publication Critical patent/WO2018020801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Definitions

  • the present invention relates to a nonreciprocal circuit element, a nonreciprocal circuit module including the nonreciprocal circuit element, a front-end circuit, and a communication device.
  • Non-reciprocal circuit elements such as isolators and circulators have a characteristic of allowing signals to pass only in a predetermined specific direction and not substantially passing in the reverse direction.
  • an irreversible circuit element a configuration using the irreversibility of ferrite is known (see, for example, Patent Document 1).
  • the non-reciprocal circuit element described in Patent Document 1 has a structure in which a multilayer substrate, ferrite, a center electrode, and a magnet are stacked in order from the inner bottom of the case, and a cap is put on the upper side of the case.
  • Input / output terminals are provided on the lower side of the case, and the input / output terminals are connected to the lower surface electrode of the multilayer substrate.
  • the lower surface electrode of the multilayer substrate is connected to the center electrode via the circuit element inside the multilayer substrate, the upper surface electrode of the multilayer substrate, and the lower surface electrode of ferrite.
  • a signal input from an input / output terminal is transmitted to the central electrode via these electrodes and circuit elements, and transmission of a signal using the nonreciprocal nature of the ferrite is performed at the central electrode. Done. Thereby, the signal is allowed to pass only in a predetermined specific direction.
  • the non-reciprocal circuit element described in Patent Document 1 is surface-mounted on a mounting board, and a signal is input from a transmission line pattern on the mounting board via an input / output terminal.
  • a central electrode constituting the L component and a multilayer substrate constituting the C component are separately formed. Since the L component and the C component are separately formed, a part of the step is increased in the line from the transmission line pattern to the center electrode. That is, in the nonreciprocal circuit device and the mounting substrate, the bent part of the transmission line increases in the line from the transmission line pattern to the center electrode.
  • the nonreciprocal circuit element is assumed to be used in a microwave band such as 1 GHz to 2 GHz band, there is little problem even if there is a step or a bent part of the transmission line, but in a millimeter wave band of 20 GHz or more, There is a problem in that power radiation occurs in a bent structure such as a step or a bent portion of the transmission line, resulting in a large radiation loss. When the radiation loss is large, unnecessary electromagnetic waves are radiated and the power consumption of the nonreciprocal circuit element is increased.
  • the present invention is surface-mounted on a mounting substrate, which can reduce a transmission signal radiation loss caused by a bent structure of a transmission line in a line extending from the transmission line pattern to the center electrode in a millimeter wave band of 20 GHz or more.
  • An object is to provide a nonreciprocal circuit element or the like.
  • a non-reciprocal circuit device is a non-reciprocal circuit device mounted on a surface of a mounting substrate, and a DC magnetic field is applied by the permanent magnet. And a first yoke provided between the ferrite and the mounting substrate, and the ferrite is formed on one main surface facing away from a surface located on the first yoke side.
  • the input / output conductor portion is connected to a transmission line pattern formed along the surface of the mounting substrate, and the input / output conductor portion is connected to the ground via the transmission line pattern.
  • a high frequency signal in a wave band is input / output.
  • the transmission line pattern reaches the central conductor part via the input / output conductor part.
  • the radiation loss of the transmission signal caused by the bent structure of the transmission line in the line can be reduced.
  • central conductor portion may be circular.
  • the transmission line is bent.
  • the radiation loss of the generated transmission signal can be reduced.
  • a cylindrical second yoke that covers the permanent magnet and the ferrite may be provided, and the second yoke may be connected to the ground conductor portion of the first yoke.
  • the electromagnetic waves radiated from the ferrite can be suppressed and the electrical characteristics of the nonreciprocal circuit element can be improved.
  • the ferrite and the first yoke may be in contact with each other.
  • the ferrite and the first yoke are in contact with each other, and the multi-layer substrate having the C component is not sandwiched between them as in the prior art, so the line length from the input / output conductor portion to the central conductor portion is shortened. And radiation loss of the transmission signal can be reduced. Moreover, the nonreciprocal circuit element 1 can be reduced in height.
  • non-reciprocal circuit element may have three lead conductor portions and three input / output conductor portions.
  • a nonreciprocal circuit module includes the nonreciprocal circuit element and a mounting board on which the nonreciprocal circuit element is mounted.
  • the mounting board extends along a surface of the mounting board.
  • a transmission line pattern formed in a close proximity to the transmission line pattern and spaced from the ground pattern, and the input / output conductor portion of the non-reciprocal circuit element is connected to the transmission line pattern.
  • the ground conductor portions of the nonreciprocal circuit elements are connected to the ground pattern.
  • the predetermined interval may be greater than 0 and not greater than 0.1 ⁇ .
  • the total radiation loss generated in the input / output conductor part and the lead conductor part may be within 30% of the electric power input to the input / output conductor part via the transmission line pattern.
  • a front end circuit includes the non-reciprocal circuit element, a transmission-side circuit connected to one of the three input / output conductors, A receiving circuit connected to an input / output conductor different from the input / output conductor connected to the transmitting circuit, and one of the three input / output conductors; and the three input / output conductors And an antenna terminal connected to an input / output conductor portion different from the input / output conductor portions connected to the transmission side circuit and the reception side circuit.
  • a communication device includes a signal processing circuit that processes a high-frequency signal and the front end circuit.
  • the nonreciprocal circuit device or the like of the present invention is surface-mounted on a mounting substrate, and can reduce a transmission signal radiation loss in a millimeter wave band of 20 GHz or more.
  • FIG. 1 is a perspective view of a nonreciprocal circuit device and a nonreciprocal circuit module according to Embodiment 1.
  • FIG. FIG. 2 is an exploded perspective view of the nonreciprocal circuit device and the nonreciprocal circuit module according to Embodiment 1.
  • FIG. 3 is an enlarged view of a portion III of the nonreciprocal circuit module shown in FIG. 4A is a cross-sectional view of the non-reciprocal circuit device shown in FIG. 1 taken along the line IVA-IVA.
  • 4B is a cross-sectional view of the non-reciprocal circuit device shown in FIG. 1 taken along the line IVB-IVB.
  • FIG. 5 is a cross-sectional plan view of the non-reciprocal circuit device shown in FIG. 4A taken along line VV.
  • FIG. 6A is a cross-sectional view of the non-reciprocal circuit module shown in FIG. 1 taken along the line IVA-IVA.
  • 6B is a diagram illustrating an example of a power transmission path of the non-reciprocal circuit module illustrated in FIG. 6A.
  • FIG. 7A is a perspective view showing a transmission line model related to the first embodiment.
  • FIG. 7B is a cross-sectional view of FIG. 7A taken along the XZ plane.
  • FIG. 8A is a graph showing the relationship between the distance between the input / output conductor part and the ground conductor and the S parameter in the transmission line model shown in FIG. 7A.
  • FIG. 8B is a graph showing the relationship between the distance between the input / output conductor part and the ground conductor part and the radiation loss in the transmission line model shown in FIG. 7A.
  • FIG. 9 is a cross-sectional view showing the nonreciprocal circuit device according to the second embodiment.
  • FIG. 10 is a functional block diagram illustrating a communication apparatus according to the third embodiment.
  • each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code
  • the nonreciprocal circuit device is mounted on, for example, a mobile phone base station, passes a transmission signal from a transmission side circuit to an antenna, and passes a reception signal received by the antenna to a reception circuit.
  • the non-reciprocal circuit element has a characteristic that allows a signal to pass only in a predetermined specific direction and does not substantially pass the reverse direction.
  • the nonreciprocal circuit device according to the present embodiment is used, for example, in a millimeter wave band (20 GHz or more).
  • FIG. 1 is a perspective view of the nonreciprocal circuit device 1 and the nonreciprocal circuit module 2 according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of the nonreciprocal circuit device 1 and the nonreciprocal circuit module 2.
  • FIG. 3 is an enlarged view of a portion III of the non-reciprocal circuit module 2 shown in FIG. 4A is a cross-sectional view of the nonreciprocal circuit device 1 shown in FIG. 1 taken along the line IVA-IVA.
  • 4B is a cross-sectional view of the non-reciprocal circuit device 1 shown in FIG. 2 taken along the line IVB-IVB.
  • FIG. 5 is a plan cross-sectional view of the nonreciprocal circuit device 1 shown in FIG. 4A taken along line VV.
  • the nonreciprocal circuit module 2 includes a nonreciprocal circuit element 1 and a mounting substrate 50 on which the nonreciprocal circuit element 1 is mounted.
  • the nonreciprocal circuit device 1 includes a first yoke 10 serving as a base material, a ferrite 40 having a central conductor portion 41, a permanent magnet 30, and a second yoke 20.
  • a ferrite 40 is disposed on the first yoke 10
  • a permanent magnet 30 is disposed on the ferrite 40.
  • the ferrite 40 and the permanent magnet 30 are covered with the cylindrical second yoke 20.
  • the second yoke 20 has a top surface portion 21 and a side surface portion 22, and the lower side of the side surface portion 22 is fixed to the first yoke 10 by welding or soldering.
  • the second yoke 20, together with the first yoke 10, applies a magnetic shunting action to the magnetic field formed by the permanent magnet 30, and electromagnetically shields the permanent magnet 30 and the ferrite 40.
  • a material of the second yoke 20 for example, iron (Fe) is used.
  • Silver plating may be applied to the surface of the second yoke 20.
  • the permanent magnet 30 has a flat plate shape and is arranged to apply a DC magnetic field to the ferrite 40. Specifically, the permanent magnet 30 is disposed on the ferrite 40 and is in contact with the central conductor portion 41 formed on the ferrite 40.
  • the ferrite 40 is a magnetic member, and for example, a material containing iron oxide as a main component and containing at least one of zinc, nickel, and copper is used.
  • the ferrite 40 has a flat plate shape and has one main surface 40a, the other main surface 40b facing away from the one main surface 40a, and a side surface 40c.
  • the one main surface 40a faces away from the surface (the other main surface 40b) located on the first yoke 10 side.
  • the thickness of the ferrite 40 is, for example, 0.15 mm.
  • the ferrite 40 is formed with a central conductor portion 41 and three lead conductor portions 42 connected to the central conductor portion 41.
  • a metal or alloy mainly containing silver is used as the material of the center conductor portion 41 and the lead conductor portion 42.
  • the central conductor portion 41 has a circular shape and is formed on one main surface 40 a of the ferrite 40.
  • the center conductor portion 41 is a distributed constant type resonator and has an LC component.
  • Each of the three lead conductor portions 42 has a line shape, and is drawn from the central conductor portion 41 to the other main surface 40b side. Specifically, as shown in FIG. 3, each of the lead conductor portions 42 has a main surface lead portion 42 a formed on one main surface 40 a and a penetration connecting the main surface lead portion 42 a and the other main surface 40 b side. And a drawer portion 42b.
  • the main surface leading portion 42a is connected to the outer edge of the circular central conductor portion 41, respectively.
  • the angular interval between adjacent main surface leading portions 42a is an equal angle (120 ° in the present embodiment).
  • the other end of the main surface lead portion 42a extends toward the outer edge of the one main surface 40a of the ferrite 40 and is connected to one end of the through lead portion 42b.
  • the through-drawing portion 42b is drawn linearly from the one main surface 40a side toward the other main surface 40b side.
  • the propagation direction of the signal transmitted through the penetration lead portion 42b is perpendicular to the one main surface 40a and the other main surface 40b (parallel to the thickness direction of the ferrite 40).
  • the through lead-out portion 42b may be a via conductor that penetrates the one main surface 40a and the other main surface 40b, or may be a side conductor formed along the side surface 40c of the ferrite 40. Further, a wide impedance adjustment portion 42c may be provided in a part of the main surface lead portion 42a.
  • the first yoke 10 has a flat plate shape as shown in FIGS. 2 to 5, and has a first main surface 10a and a second main surface 10b facing away from the first main surface 10a.
  • the first yoke 10 is disposed such that the first main surface 10 a is in contact with the other main surface 40 b of the ferrite 40.
  • the first yoke 10 is provided between the ferrite 40 and the mounting substrate 50.
  • the thickness of the first yoke 10 is, for example, 0.1 mm.
  • the first yoke 10 includes three input / output conductor portions 11 and a ground conductor portion 12 that is disposed close to each of the input / output conductor portions 11 with a predetermined interval i1. Yes.
  • the input / output conductor portion 11 is a portion where high-frequency signals in the millimeter wave band are input / output via a transmission line pattern described later, and the ground conductor portion 12 is a portion grounded to a reference potential.
  • An insulating part 13 is provided between the input / output conductor part 11 and the ground conductor part 12.
  • the material of the input / output conductor 11 and the ground conductor 12 for example, iron (Fe) is used.
  • Fe iron
  • the exposed surfaces of the input / output conductor portion 11 and the ground conductor portion 12 may be subjected to silver plating.
  • the ground conductor portion 12 occupies most of the first yoke 10 (for example, 80% or more and 97% or less) and applies a magnetic shunting action to the magnetic field together with the second yoke 20.
  • the ground conductor portion 12 is formed so as to penetrate between the first main surface 10a and the second main surface 10b. Further, the ground conductor portion 12 is disposed close to the input / output conductor portion 11 in the direction along the first main surface 10a in order to reduce radiation loss of signals input to the input / output conductor portion 11.
  • At least a part of the ground conductor portion 12 is close to the input / output conductor portion 11 with a predetermined interval i1 (0 ⁇ i1 ⁇ ⁇ / 4, where ⁇ is a wavelength in the millimeter wave band). Has been placed. A more desirable value of the predetermined interval i1 will be described later.
  • the ground conductor portion 12 is joined to the other main surface 40b of the ferrite 40 using, for example, an adhesive (not shown).
  • the three input / output conductor portions 11 correspond to the three lead conductor portions 42 and are connected to the other end of the through lead portion 42b of the lead conductor portion 42 using solder or the like (not shown).
  • the input / output conductor portion 11 is formed so as to penetrate linearly between the first main surface 10a and the second main surface 10b.
  • the propagation direction of the signal transmitted through the input / output conductor portion 11 is perpendicular to the first main surface 10a and the second main surface 10b (parallel to the thickness direction of the first yoke 10). That is, the input / output conductor portion 11 and the through lead-out portion 42b connect the second main surface 10b of the first yoke 10 and the one main surface 40a of the ferrite 40 with the shortest distance.
  • the line cross-sectional area of the input / output conductor 11 is the same as the line cross-sectional area of the through lead-out part 42b.
  • the input / output conductor portion 11 may be formed along the side surface of the first yoke 10 as long as it is directly below the through-drawing portion 42b.
  • three insulating portions 13 are provided so as to cover the side surface 11 a of the input / output conductor portion 11 with each of the three input / output conductor portions 11 as a core material.
  • the ground conductor portion 12 is further provided so as to cover the side surface 13a of the insulating portion 13. That is, the insulating portion 13 is provided between the input / output conductor portion 11 and the ground conductor portion 12.
  • the thickness of the insulating portion 13 existing between the input / output conductor portion 11 and the ground conductor portion 12 is a predetermined interval i1 between the input / output conductor portion 11 and the ground conductor portion 12.
  • the insulating portion 13 does not have to be provided on all the side surfaces 11a of the input / output conductor portion 11, and at least the ground conductor portion 12 can support the input / output conductor portion 11 via the insulating portion 13. What is necessary is just to be formed between the one part side surface 11a of the input / output conductor part 11, and the ground conductor part 12.
  • the first yoke 10 is formed, for example, by integrally molding the insulating portion 13, the input / output conductor portion 11, and the ground conductor portion 12 and then slicing.
  • the first yoke 10 is provided with an input / output terminal 16 and a ground terminal 17 in order to improve electrical and mechanical connectivity with the mounting substrate 50.
  • Three input / output terminals 16 are provided corresponding to each of the three input / output conductor portions 11.
  • Each of the input / output terminals 16 is formed on the second main surface 10 b so as not to be connected to the ground conductor portion 12 but to be connected to the corresponding input / output conductor portion 11.
  • the ground terminal 17 is provided in contact with the ground conductor portion 12.
  • a material of the input / output terminal 16 and the ground terminal 17 for example, silver or nickel is used.
  • the non-reciprocal circuit element 1 is mounted on the surface of the mounting substrate 50 from the input / output terminal 16 and the ground terminal 17 using solder or the like.
  • the input / output terminal 16 and the ground terminal 17 are not necessarily required.
  • the input / output conductor portion 11 and the ground conductor portion 12 may be connected to the mounting substrate 50 using solder or the like without providing the input / output terminal 16 and the ground terminal 17.
  • the nonreciprocal circuit module 2 has a structure in which the nonreciprocal circuit element 1 is mounted on the surface of the mounting substrate 50.
  • the mounting substrate 50 has a transmission line pattern 51 and a ground pattern 52 formed along the surface 50a, as shown in FIG.
  • Three transmission line patterns 51 are provided on the surface 50 a of the mounting substrate 50 corresponding to the three input / output conductor portions 11 of the nonreciprocal circuit element 1.
  • the ground pattern 52 is disposed close to the transmission line pattern 51 at an interval in a region other than the transmission line pattern 51.
  • the mounting board 50 also has a ground pattern on the back surface facing away from the front surface 50a (not shown).
  • the ground pattern 52 on the front surface 50a and the ground pattern on the back surface are connected to each other by a plurality of via conductors (not shown).
  • the substrate body of the mounting substrate 50 is formed of a ceramic material or an organic material.
  • the transmission line pattern 51 and the ground pattern 52 are formed of a conductor material whose main component is copper.
  • FIG. 6A is a cross-sectional view of the non-reciprocal circuit module 2 shown in FIG. 1 taken along the line IVA-IVA.
  • the input / output conductor 11 of the non-reciprocal circuit element 1 is connected to the transmission line pattern 51 of the mounting substrate 50 via the input / output terminals 16 and solder (not shown).
  • the ground conductor portion 12 of the nonreciprocal circuit element 1 is connected to the ground pattern 52 of the mounting substrate 50 via the ground terminal 17 and solder (not shown).
  • a region on the second main surface 10 b side of the input / output conductor portion 11 is connected to the transmission line pattern 51, and a region on the second main surface 10 b side of the ground conductor portion 12 is connected to the ground pattern 52.
  • the permanent magnet 30 is disposed below the cylindrical second yoke 20, but the permanent magnet 30 may be disposed above the cylindrical second yoke 20.
  • the permanent magnet 30 is located outside the second yoke 20, so it is not necessary to have a size that fits into the second yoke 20, and can be a magnet having a larger volume than the second yoke 20.
  • the magnetic force applied to the ferrite 40 can be increased by increasing the size of the permanent magnet 30.
  • the second yoke 20 may be an RF shield having no magnetic permeability such as copper.
  • 6B is a diagram illustrating an example of a power transmission path of the irreversible circuit module 2 illustrated in FIG. 6A.
  • signal transmission using the irreversibility of the ferrite 40 is performed in the central conductor portion 41.
  • the power transmission path T1 is in the direction in which the transmission line pattern 51 extends (on the surface 50a) as shown by the arrows in FIG. 6B.
  • a bent region HA that is bent in a direction perpendicular to the transmission line pattern 51 (a direction perpendicular to the surface 50a).
  • the transmission line has a structure in which the radiation loss of electric power becomes large in the bent region HA.
  • the ground conductor portion 12 is provided in the vicinity of the input / output conductor portion 11 located in the bent area HA.
  • the ground conductor portion 12 is arranged with a small interval i1 of ⁇ / 4 or less with respect to the input / output conductor portion 11. Thereby, the radiation loss of the electric power in the bending area
  • the nonreciprocal circuit element 1 since the input / output conductor portion 11 and the through lead-out portion 42b are connected in a straight line, the second main surface 10b of the first yoke 10 and the one main portion of the ferrite 40 are compared with the prior art. It is possible to reduce radiation loss of signals transmitted between the surfaces 40a.
  • the other main surface 40b of the ferrite 40 and the first main surface 10a of the first yoke 10 are in contact with each other, and a multilayer substrate having a C component as shown in the prior art is interposed therebetween. It is not caught.
  • the line length from the input / output conductor portion 11 to the central conductor portion 41 is shortened, and the radiation loss of the transmission signal can be reduced.
  • the nonreciprocal circuit element 1 can be reduced in height.
  • FIG. 7A is a perspective view showing a transmission line model 90.
  • FIG. FIG. 7B is a cross-sectional view of FIG. 7A taken along the XZ plane.
  • the transmission line model 90 shown in FIGS. 7A and 7B has substantially the same configuration as the transmission line of the nonreciprocal circuit element 1 except for the central conductor portion and the input / output terminals.
  • this transmission line model 90 two transmission line patterns 92 a and 92 b are provided on the main surface of the mounting substrate 91. Between the two transmission line patterns 92a and 92b, a ground pattern 93 is provided at a distance from each of the transmission line patterns 92a and 92b. On the ground pattern 93, a ground conductor portion 95 and a ferrite 99 are sequentially provided. A central line 97 is provided on the upper surface of the ferrite 99, and through lines 98 a and 98 b are provided on both side surfaces of the ferrite 99.
  • Input / output conductor portions 94a and 94b connected to the through-lines 98a and 98b are provided on both side surfaces of the ground conductor portion 95 located below the ferrite 99, respectively.
  • the input / output conductor portions 94a and 94b are connected to the transmission line patterns 92a and 92b, respectively. That is, one transmission line pattern 92a is connected to the other transmission line pattern 92b via the input / output conductor portion 94a, the through line 98a, the center line 97, the through line 98b, and the input / output conductor portion 94b.
  • An insulating portion 96 is provided between the ground conductor portion 95 and the input / output conductor portions 94a and 94b.
  • the input / output conductor portions 94a and 94b and the ground conductor portion 95 are arranged close to each other with a predetermined interval i1.
  • the predetermined interval i1 is an interval between the input / output conductor portions 94a and 94b and the ground conductor portion 95 in the signal propagation direction of the transmission line patterns 92a and 92b.
  • each line such as the input / output conductors 94a and 94b, the through lines 98a and 98b, and the center line 97 is the same as that of the first embodiment, and the line cross-sectional area is 0.01 mm 2 .
  • the thicknesses of the ground conductor portion 95 and the ferrite 99 are the same as those in the first embodiment.
  • the power applied to the transmission line model 90 is 10 dBm.
  • FIG. 8A is a graph showing the relationship between the interval i1 between the input / output conductor portions 94a and 94b and the ground conductor portion 95 and the S parameter.
  • FIG. 8A shows reflection characteristics S11 and transmission characteristics S21 when the horizontal axis is i1 / ( ⁇ / 4) and the vertical axis is an S parameter.
  • FIG. 8B is a graph showing the relationship between the distance i1 between the input / output conductor portions 94a and 94b and the ground conductor portion 95 and the radiation loss.
  • FIG. 8B shows the radiation loss when i1 / ( ⁇ / 4) is changed.
  • the radiation loss is, for example, the total radiation loss generated in the input / output conductor portion 94a and the lead conductor portion (through-line 98a) out of the electric power input to the input / output conductor portion 94a via the transmission line pattern 92a.
  • the radiation loss is a characteristic that does not appear as the reflection characteristic S11 and the transmission characteristic S21 shown in FIG. 8A.
  • the reflection characteristic S11 and the transmission characteristic S21 are magnitude-converted, and the magnitude component is subtracted from 1. Can be sought.
  • the interval i1 is preferably 0 ⁇ i1 ⁇ 0.1 ⁇ .
  • the interval i1 is desirably larger than 0 and not larger than 0.28 mm.
  • the predetermined interval i1 between the input / output conductor portion 11 and the ground conductor portion 12 of the nonreciprocal circuit element 1 is larger than 0 and not more than 0.1 ⁇ .
  • the nonreciprocal circuit device 1 shown in the present embodiment is the nonreciprocal circuit device 1 mounted on the surface 50a of the mounting substrate 50, and includes a permanent magnet 30 and a ferrite to which a DC magnetic field is applied by the permanent magnet 30.
  • 40 and a first yoke 10 provided between the ferrite 40 and the mounting substrate 50, and the ferrite 40 is formed on one main surface 40a facing away from the surface located on the first yoke 10 side.
  • a central conductor portion 41, and a lead conductor portion 42 connected to the central conductor portion 41 and drawn out from the central conductor portion 41.
  • the central conductor portion 41 has an LC component
  • the first yoke 10 Has an input / output conductor portion 11 connected to the lead conductor portion 42, and a ground conductor portion 12 disposed close to the input / output conductor portion 11 at a predetermined interval i1, Mounting board 5
  • the input / output conductor portion 11 is connected to the transmission line pattern 51 formed along the surface 50a of the mounting substrate 50, and the input / output conductor portion 11 is connected to the ground pattern 52 formed along the surface 50a.
  • a high frequency signal in the millimeter wave band is input / output via the transmission line pattern 51.
  • the transmission line pattern 51 passes through the input / output conductor portion 11. The radiation loss of the transmission signal caused by the bent structure of the transmission line in the line reaching the central conductor portion 41 can be reduced.
  • the bent region HA that bends in a direction perpendicular to the direction in which the transmission line pattern 51 extends. It becomes easy to generate power radiation.
  • the ground conductor portion 12 is disposed in the vicinity of the input / output conductor portion 11, radiation loss in the bent region HA can be reduced.
  • the input is a transmission line. Power radiation in the output conductor portion 11 and the like can be suppressed.
  • FIG. 9 is a cross-sectional view showing the nonreciprocal circuit device 1A according to the second exemplary embodiment.
  • the permanent magnet 30 is located on the side of the ferrite 40.
  • the ferrite 40 and the permanent magnet 30 are disposed on the first yoke 10, and the flat plate-like second yoke 20 is disposed on the ferrite 40 and the permanent magnet 30.
  • the permanent magnet 30 has an annular shape, and the ferrite 40 including the central conductor portion 41 is accommodated inside the inner wall.
  • the permanent magnet 30 is bonded and fixed to the first main surface 10 a of the first yoke 10. By arranging the permanent magnet 30 in this way, a DC magnetic field is applied to the ferrite 40.
  • the second yoke 20 has a flat plate shape and is bonded and fixed to the upper surface of the permanent magnet 30.
  • an RF shield that suppresses radiation is not drawn.
  • an RF shield may be disposed inside the permanent magnet 30 or the second yoke 20 so as to cover the central conductor portion 41. good.
  • the RF shield may be an RF shield having no magnetic permeability such as copper.
  • the ground conductor portion 12 of the non-reciprocal circuit element 1A that is surface-mounted on the mounting substrate 50 is disposed close to the input / output conductor portion 11, the input / output conductor portion 11 is connected from the transmission line pattern 51. It is possible to reduce the radiation loss of the transmission signal caused by the bent structure of the transmission line in the line that passes through to the central conductor portion 41.
  • the present invention can be realized not only as the above-described non-reciprocal circuit element, but also as a front-end circuit and a communication device including such a non-reciprocal circuit element. Therefore, hereinafter, a communication apparatus including the above-described non-reciprocal circuit element (that is, a communication apparatus incorporating a front-end circuit including the non-reciprocal circuit element) will be described.
  • FIG. 10 is a functional block diagram of the communication device 3 including the nonreciprocal circuit element 1 described in the first embodiment.
  • the communication device 3 is a base station of a mobile phone, for example, including a front-end circuit 100 having the irreversible circuit element 1, an RFIC (Radio Frequency Integrated Circuit) 200, and an antenna element 300. . Note that the communication device 3 may not include the antenna element 300.
  • the front end circuit 100 is provided at the front end of the communication device 3 and propagates a transmission signal or a reception signal between the RFIC 200 and the antenna element 300.
  • the front end circuit 100 further includes a transmission side circuit such as a PA (Power Amplifier) 202, a BPF (Band Pass Filter) 203, and an LNA (Low). And a receiving circuit such as Noise Amplifier 204.
  • the front end circuit 100 is provided with a transmission terminal Ptx to which a transmission signal is input, an antenna terminal Pant to which the transmission signal is output and a reception signal is input, and a reception terminal Prx that outputs the reception signal.
  • the front-end circuit 100 may not include the BPF 203, and may include a matching circuit other than the above, a transmission or reception filter, or the like.
  • the non-reciprocal circuit device 1 has a first port Port1, a second port Port2, and a third port Port3 corresponding to the input / output terminal 16.
  • the first port Port1 is connected to a transmission side circuit (here, PA202), the second port Port2 is connected to a reception circuit (here, LNA204), and the third port Port3 is connected to an antenna terminal Pant.
  • the first port Port 1 is connected to the transmission terminal Ptx via the PA 202
  • the second port Port 2 is connected to the reception terminal Prx via the LNA 204
  • the third port Port 3 is connected to the antenna terminal Pant via the BPF 203. It is connected.
  • PA 202 is, for example, a power amplification module that amplifies a transmission signal (high-frequency transmission signal) input from the transmission terminal (TX in the figure) of the RFIC 200 to the transmission terminal Ptx of the front end circuit 100.
  • the BPF 203 allows the transmission signal output from the nonreciprocal circuit element 1 to pass through after filtering in a predetermined use frequency band. Further, the BPF 203 passes the received signal input from the antenna terminal Pant after filtering in the use frequency band.
  • the LNA 204 is, for example, a low noise amplification module that amplifies the reception signal (high frequency reception signal) output from the nonreciprocal circuit element 1.
  • Such a front-end circuit 100 amplifies and filters the transmission signal input to the transmission terminal Ptx and outputs it from the antenna terminal Pant, and filters and amplifies the reception signal input to the antenna terminal Pant from the reception terminal Prx. Output.
  • the transmission signal passes through the Tx path of the nonreciprocal circuit element 1, and the reception signal passes through the Rx path of the nonreciprocal circuit element 1.
  • the RFIC 200 is a circuit that is connected to the transmission terminal Ptx and the reception terminal Prx of the front end circuit 100 and processes the transmission signal or the reception signal. For example, the RFIC 200 up-converts a transmission signal input from a baseband signal processing circuit (not shown) and outputs it from a transmission terminal (TX in the figure), and inputs from the front end circuit 100 to a reception terminal (RX in the figure). The received signal is down-converted and output to the baseband signal processing circuit.
  • the antenna element 300 is connected to the antenna terminal Pant of the front end circuit 100, transmits a transmission signal, and receives a reception signal.
  • the shape or the like of the antenna element 300 is not particularly limited, and may be appropriately designed according to the use frequency band of the communication device 3.
  • the communication quality can be improved by providing the nonreciprocal circuit element 1 in which the radiation loss of the transmission signal is reduced.
  • the nonreciprocal circuit element, the nonreciprocal circuit module, the front end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and the modification examples.
  • the reversible circuit module, the front end circuit, and the communication device are not limited to the above embodiment.
  • the input / output conductor portion 11 of the non-reciprocal circuit element may be directly joined to the transmission line pattern 51 using a conductive adhesive without using the input / output terminal 16.
  • the ground conductor portion 12 may be directly joined to the ground pattern 52 using a conductive adhesive without using the ground terminal 17.
  • the input / output conductor part 11 and the lead conductor part 42 may be connected via a conductive adhesive.
  • the permanent magnet 30 and the ferrite 40 may be joined by a non-conductive adhesive or the like.
  • the mounting substrate 50 of the nonreciprocal circuit module 2 according to Embodiment 1 is used as an interposer substrate, an external terminal for input / output is provided on the back surface of the mounting substrate 50, and the nonreciprocal circuit module 2 is different from the mounting substrate 50.
  • the irreversible circuit element 1 for the millimeter wave band it is necessary to design the circuit of the mounting substrate 50 so that a high-frequency signal is not easily radiated, and the circuit design has a great effort.
  • the above problem can be solved by preparing the nonreciprocal circuit module 2 on which the nonreciprocal circuit element 1 is appropriately surface-mounted in advance.
  • the nonreciprocal circuit device may be a two-port isolator having an input port and an output port.
  • the ground potential may be a circuit ground potential (reference potential) of the nonreciprocal circuit element, and may be 0 V, a ground ground potential (that is, a ground reference potential), or a potential different from the frame ground.
  • the nonreciprocal circuit device 1 is configured such that the transmission line is bent from the central conductor portion 41 to the transmission line pattern 51 via the lead conductor portion 42, the input / output conductor portion 11, and the input / output terminal 16. Also in the region, the ground conductor portion 12 is provided in the vicinity of the input / output conductor portion 11. Thus, the radiation loss of the transmission signal can also be reduced in the line from the central conductor portion 41 to the transmission line pattern 51.
  • the present invention can be widely used in communication devices such as mobile phone base stations as non-reciprocal circuit elements arranged in the front end of the communication device.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

An irreversible circuit element (1) is mounted on a surface (50a) of a mounting board (50). The irreversible circuit element (1) is provided with a permanent magnet (30), a ferrite (40), and a first yoke (10) provided between the ferrite (40) and the mounting board (50). The ferrite (40) comprises a central conductor part (41) formed on one principal surface (40a), and an extraction conductor part (42) extracted from the central conductor part (41), the central conductor part (41) has an LC component, the first yoke (10) comprises an input/output conductor part (11) connected to the extraction conductor part (42), and a ground conductor part (12) disposed close to the input/output conductor part (11) with a predetermined space (i1) therebetween, the ground conductor part (12) is connected to a ground pattern (52), the input/output conductor part (11) is connected to a transmission line pattern (51), and a millimeter-waveband high-frequency signal is inputted to and outputted from the input/output conductor part (11) via the transmission line pattern (51).

Description

非可逆回路素子、非可逆回路モジュール、フロントエンド回路および通信装置Non-reciprocal circuit element, non-reciprocal circuit module, front-end circuit and communication device
 本発明は、非可逆回路素子、この非可逆回路素子を備える非可逆回路モジュール、フロントエンド回路および通信装置に関する。 The present invention relates to a nonreciprocal circuit element, a nonreciprocal circuit module including the nonreciprocal circuit element, a front-end circuit, and a communication device.
 アイソレータやサーキュレータ等の非可逆回路素子は、予め定められた特定方向にのみ信号を通過させ、逆方向には実質的に通過させない特性を有している。このような非可逆回路素子として、フェライトの非可逆性を利用した構成が知られている(例えば、特許文献1参照)。 Non-reciprocal circuit elements such as isolators and circulators have a characteristic of allowing signals to pass only in a predetermined specific direction and not substantially passing in the reverse direction. As such an irreversible circuit element, a configuration using the irreversibility of ferrite is known (see, for example, Patent Document 1).
 特許文献1に記載された非可逆回路素子は、ケースの内底から順に、多層基板、フェライト、中心電極および磁石が積み重ねられ、ケースの上側にキャップが被せられた構造をしている。ケース下側には入出力端子が設けられ、入出力端子は多層基板の下面電極に接続されている。多層基板の下面電極は、多層基板の内部の回路素子、多層基板の上面電極、および、フェライトの下面電極を経由して中心電極に接続されている。 The non-reciprocal circuit element described in Patent Document 1 has a structure in which a multilayer substrate, ferrite, a center electrode, and a magnet are stacked in order from the inner bottom of the case, and a cap is put on the upper side of the case. Input / output terminals are provided on the lower side of the case, and the input / output terminals are connected to the lower surface electrode of the multilayer substrate. The lower surface electrode of the multilayer substrate is connected to the center electrode via the circuit element inside the multilayer substrate, the upper surface electrode of the multilayer substrate, and the lower surface electrode of ferrite.
 この非可逆回路素子では、入出力端子から入力された信号が、これらの電極および回路素子を経由して中心電極に伝えられ、この中心電極にてフェライトの非可逆性を利用した信号の伝送が行われる。これにより、予め定められた特定方向にのみ信号を通過させている。 In this nonreciprocal circuit element, a signal input from an input / output terminal is transmitted to the central electrode via these electrodes and circuit elements, and transmission of a signal using the nonreciprocal nature of the ferrite is performed at the central electrode. Done. Thereby, the signal is allowed to pass only in a predetermined specific direction.
特開2005-20195号公報JP 2005-20195 A
 特許文献1に記載された非可逆回路素子は、実装基板に表面実装され、実装基板上の伝送線路パターンから入出力端子を介して信号が入力される。そして、L成分を構成する中心電極、C成分を構成する多層基板が別々に形成されている。L成分、C成分が別々に形成されていることにより、伝送線路パターンから中心電極に至る線路において、一部段差が大きくなっている。つまり、この非可逆回路素子および実装基板では、伝送線路パターンから中心電極に至る線路において、伝送線路の屈曲した部分が多くなっている。 The non-reciprocal circuit element described in Patent Document 1 is surface-mounted on a mounting board, and a signal is input from a transmission line pattern on the mounting board via an input / output terminal. A central electrode constituting the L component and a multilayer substrate constituting the C component are separately formed. Since the L component and the C component are separately formed, a part of the step is increased in the line from the transmission line pattern to the center electrode. That is, in the nonreciprocal circuit device and the mounting substrate, the bent part of the transmission line increases in the line from the transmission line pattern to the center electrode.
 該非可逆回路素子は、1GHz~2GHz帯等のマイクロ波帯で用いられることを想定してるので、段差や伝送線路の屈曲した部分があっても問題は少ないが、20GHz以上のミリ波帯では、段差や伝送線路の屈曲した部分等の屈曲構造における電力放射が発生し、放射損失が大きくなってしまう問題がある。そして、放射損失が大きいと、不要な電磁波が放射されるとともに、非可逆回路素子の消費電力が高くなってしまう。 Since the nonreciprocal circuit element is assumed to be used in a microwave band such as 1 GHz to 2 GHz band, there is little problem even if there is a step or a bent part of the transmission line, but in a millimeter wave band of 20 GHz or more, There is a problem in that power radiation occurs in a bent structure such as a step or a bent portion of the transmission line, resulting in a large radiation loss. When the radiation loss is large, unnecessary electromagnetic waves are radiated and the power consumption of the nonreciprocal circuit element is increased.
 そこで、本発明は、20GHz以上のミリ波帯において、伝送線路パターンから中心電極に至る線路における伝送線路の屈曲構造により生じる伝送信号の放射損失を低減することができる、実装基板に表面実装される非可逆回路素子等を提供することを目的とする。 Therefore, the present invention is surface-mounted on a mounting substrate, which can reduce a transmission signal radiation loss caused by a bent structure of a transmission line in a line extending from the transmission line pattern to the center electrode in a millimeter wave band of 20 GHz or more. An object is to provide a nonreciprocal circuit element or the like.
 上記目的を達成するために、本発明の一態様に係る非可逆回路素子は、実装基板の表面に実装される非可逆回路素子であって、永久磁石と、前記永久磁石により直流磁界が印加されるフェライトと、前記フェライトと前記実装基板との間に設けられている、第1ヨークと、を備え、前記フェライトは、前記第1ヨーク側に位置する面と背向する一方主面に形成される中心導体部と、前記中心導体部に接続され、前記中心導体部から引き出されている引き出し導体部とを有し、前記中心導体部は、LC成分を有し、前記第1ヨークは、前記引き出し導体部に接続されている入出力導体部と、前記入出力導体部に所定間隔をあけて近接配置されているグランド導体部とを有し、前記グランド導体部は、前記実装基板における前記表面に沿って形成されたグランドパターンに接続され、前記入出力導体部は、前記実装基板における前記表面に沿って形成された伝送線路パターンに接続され、前記入出力導体部には、前記伝送線路パターンを介してミリ波帯域の高周波信号が入出力される。 In order to achieve the above object, a non-reciprocal circuit device according to an aspect of the present invention is a non-reciprocal circuit device mounted on a surface of a mounting substrate, and a DC magnetic field is applied by the permanent magnet. And a first yoke provided between the ferrite and the mounting substrate, and the ferrite is formed on one main surface facing away from a surface located on the first yoke side. A central conductor part, and a lead conductor part connected to the central conductor part and led out from the central conductor part, the central conductor part has an LC component, and the first yoke has the An input / output conductor connected to the lead conductor and a ground conductor disposed adjacent to the input / output conductor at a predetermined interval, and the ground conductor is formed on the surface of the mounting substrate. Along the shape The input / output conductor portion is connected to a transmission line pattern formed along the surface of the mounting substrate, and the input / output conductor portion is connected to the ground via the transmission line pattern. A high frequency signal in a wave band is input / output.
 これによれば、実装基板に表面実装される非可逆回路素子のグランド導体部が入出力導体部に近接配置されているので、伝送線路パターンから入出力導体部を経由して中心導体部に至る線路における伝送線路の屈曲構造により生じる伝送信号の放射損失を低減することができる。 According to this, since the ground conductor part of the non-reciprocal circuit element that is surface-mounted on the mounting substrate is disposed close to the input / output conductor part, the transmission line pattern reaches the central conductor part via the input / output conductor part. The radiation loss of the transmission signal caused by the bent structure of the transmission line in the line can be reduced.
 また、前記中心導体部は、円形状であってもよい。 Further, the central conductor portion may be circular.
 これによれば、中心導体部を円形状からなる分布定数型の回路で構成し、非可逆回路素子をミリ波帯(20GHz以上)に対応させた場合であっても、伝送線路の屈曲構造により生じる伝送信号の放射損失を低減することができる。 According to this, even when the central conductor portion is composed of a circular distributed constant type circuit and the nonreciprocal circuit element is adapted to the millimeter wave band (20 GHz or more), the transmission line is bent. The radiation loss of the generated transmission signal can be reduced.
 また、さらに、前記永久磁石および前記フェライトを覆う筒状の第2ヨークを備え、前記第2ヨークは、前記第1ヨークの前記グランド導体部に接続されていてもよい。 Further, a cylindrical second yoke that covers the permanent magnet and the ferrite may be provided, and the second yoke may be connected to the ground conductor portion of the first yoke.
 このように、永久磁石およびフェライトを、グランド接続された第2ヨークで覆って電磁シールドすることで、フェライトから放射される電磁波を抑え、非可逆回路素子の電気特性を向上させることができる。 Thus, by covering the permanent magnet and the ferrite with the second yoke connected to the ground and electromagnetically shielding them, the electromagnetic waves radiated from the ferrite can be suppressed and the electrical characteristics of the nonreciprocal circuit element can be improved.
 また、前記フェライトおよび前記第1ヨークは、互いに接していてもよい。 Further, the ferrite and the first yoke may be in contact with each other.
 このように、フェライトおよび第1ヨークが互いに接しており、従来技術のようにC成分を有する多層基板が間に挟み込まれていないので、入出力導体部から中心導体部までの線路長を短くすることができ、伝送信号の放射損失を低減することができる。また、非可逆回路素子1を低背化することができる。 In this way, the ferrite and the first yoke are in contact with each other, and the multi-layer substrate having the C component is not sandwiched between them as in the prior art, so the line length from the input / output conductor portion to the central conductor portion is shortened. And radiation loss of the transmission signal can be reduced. Moreover, the nonreciprocal circuit element 1 can be reduced in height.
 また、非可逆回路素子は、前記引き出し導体部および前記入出力導体部をそれぞれ3つ有していてもよい。 Further, the non-reciprocal circuit element may have three lead conductor portions and three input / output conductor portions.
 これによれば、伝送信号の放射損失が低減された3ポート型の非可逆回路素子を提供することができる。 According to this, it is possible to provide a three-port non-reciprocal circuit device in which the transmission signal radiation loss is reduced.
 また、本発明の一態様に係る非可逆回路モジュールは、上記非可逆回路素子と、前記非可逆回路素子が実装される実装基板と、を備え、前記実装基板は、前記実装基板の表面に沿って形成された伝送線路パターンと、前記伝送線路パターンに対して間隔をあけて近接配置されているグランドパターンとを有し、前記非可逆回路素子の前記入出力導体部は、前記伝送線路パターンにそれぞれ接続され、前記非可逆回路素子の前記グランド導体部は、前記グランドパターンに接続されている。 A nonreciprocal circuit module according to an aspect of the present invention includes the nonreciprocal circuit element and a mounting board on which the nonreciprocal circuit element is mounted. The mounting board extends along a surface of the mounting board. A transmission line pattern formed in a close proximity to the transmission line pattern and spaced from the ground pattern, and the input / output conductor portion of the non-reciprocal circuit element is connected to the transmission line pattern. The ground conductor portions of the nonreciprocal circuit elements are connected to the ground pattern.
 このように、非可逆回路素子が実装基板に実装され、実装基板上の伝送線路パターンから伝送信号が入力される場合では、伝送線路パターンが延びる方向から垂直な方向に折れ曲がる屈曲領域にて電力放射が起きやすくなるが、入出力導体部に近接してグランド導体部が配置されているので、屈曲領域における放射損失を低減することができる。 As described above, when the nonreciprocal circuit element is mounted on the mounting substrate and a transmission signal is input from the transmission line pattern on the mounting substrate, power is radiated in a bent region that bends in a direction perpendicular to the direction in which the transmission line pattern extends. However, since the ground conductor portion is arranged close to the input / output conductor portion, radiation loss in the bent region can be reduced.
 また、前記伝送線路パターンを介して前記入出力導体部に入出力される高周波信号の波長をλとした場合、前記伝送線路パターンの信号伝搬方向における前記入出力導体部と前記グランド導体部との所定間隔は、0よりも大きく、かつ、0.1λ以下であってもよい。 In addition, when the wavelength of the high-frequency signal input / output to / from the input / output conductor via the transmission line pattern is λ, the input / output conductor and the ground conductor in the signal propagation direction of the transmission line pattern The predetermined interval may be greater than 0 and not greater than 0.1λ.
 このように、入出力導体部とグランド導体部との所定間隔を0.1λ以下とすることで、入出力導体部における放射損失を低減することができる。 Thus, by setting the predetermined distance between the input / output conductor portion and the ground conductor portion to be 0.1λ or less, radiation loss in the input / output conductor portion can be reduced.
 また、前記伝送線路パターンを介して前記入出力導体部に入力される電力のうち、前記入出力導体部および前記引き出し導体部にて生じる放射損の合計が30%以内であってもよい。 Further, the total radiation loss generated in the input / output conductor part and the lead conductor part may be within 30% of the electric power input to the input / output conductor part via the transmission line pattern.
 これによれば、入出力導体部における放射損失を低減することができる。 According to this, radiation loss in the input / output conductor can be reduced.
 また、本発明は上述した非可逆回路素子として実現できるだけでなく、非可逆回路素子を備えるフロントエンド回路としても実現できる。つまり、上記目的を達成するために、本発明の一態様に係るフロントエンド回路は、上記非可逆回路素子と、3つの前記入出力導体部のうちの1つに接続される送信側回路と、3つの前記入出力導体部のうちの1つであって、前記送信側回路に接続された入出力導体部と異なる入出力導体部に接続される受信側回路と、3つの前記入出力導体部のうちの1つであって、前記送信側回路および前記受信側回路に接続されたそれぞれの入出力導体部と異なる入出力導体部に接続されるアンテナ端子と、を備える。 Further, the present invention can be realized not only as the above-described non-reciprocal circuit element but also as a front-end circuit including the non-reciprocal circuit element. That is, in order to achieve the above object, a front end circuit according to an aspect of the present invention includes the non-reciprocal circuit element, a transmission-side circuit connected to one of the three input / output conductors, A receiving circuit connected to an input / output conductor different from the input / output conductor connected to the transmitting circuit, and one of the three input / output conductors; and the three input / output conductors And an antenna terminal connected to an input / output conductor portion different from the input / output conductor portions connected to the transmission side circuit and the reception side circuit.
 このようなフロントエンド回路によれば、放射損失が低減された非可逆回路素子を備えることにより、所望の通過特性を実現することが可能となる。 According to such a front-end circuit, it is possible to realize a desired pass characteristic by providing the non-reciprocal circuit element with reduced radiation loss.
 また、さらには、本発明は上述したフロントエンド回路としてだけでなく、フロントエンド回路を備える通信装置としても実現できる。つまり、上記目的を達成するために、本発明の一態様に係る通信装置は、高周波信号を処理する信号処理回路と、上記フロントエンド回路と、を備える。 Furthermore, the present invention can be realized not only as the above-described front end circuit but also as a communication device including the front end circuit. In other words, in order to achieve the above object, a communication device according to one aspect of the present invention includes a signal processing circuit that processes a high-frequency signal and the front end circuit.
 このような通信装置によれば、放射損失が低減された非可逆回路素子を備えることにより、通信品質の向上を図ることができる。 According to such a communication apparatus, it is possible to improve communication quality by including the nonreciprocal circuit element with reduced radiation loss.
 本発明の非可逆回路素子等は、実装基板に表面実装され、20GHz以上のミリ波帯において伝送信号の放射損失を低減することができる。 The nonreciprocal circuit device or the like of the present invention is surface-mounted on a mounting substrate, and can reduce a transmission signal radiation loss in a millimeter wave band of 20 GHz or more.
図1は、実施の形態1に係る非可逆回路素子および非可逆回路モジュールの斜視図である。1 is a perspective view of a nonreciprocal circuit device and a nonreciprocal circuit module according to Embodiment 1. FIG. 図2は、実施の形態1に係る非可逆回路素子および非可逆回路モジュールの分解斜視図である。FIG. 2 is an exploded perspective view of the nonreciprocal circuit device and the nonreciprocal circuit module according to Embodiment 1. 図3は、図1に示す非可逆回路モジュールのIII部分の拡大図である。FIG. 3 is an enlarged view of a portion III of the nonreciprocal circuit module shown in FIG. 図4Aは、図1に示す非可逆回路素子をIVA-IVA線で切断した場合の断面図である。4A is a cross-sectional view of the non-reciprocal circuit device shown in FIG. 1 taken along the line IVA-IVA. 図4Bは、図1に示す非可逆回路素子をIVB-IVB線で切断した場合の断面図である。4B is a cross-sectional view of the non-reciprocal circuit device shown in FIG. 1 taken along the line IVB-IVB. 図5は、図4Aに示す非可逆回路素子をV-V線で切断した場合の平面断面図である。FIG. 5 is a cross-sectional plan view of the non-reciprocal circuit device shown in FIG. 4A taken along line VV. 図6Aは、図1に示す非可逆回路モジュールをIVA-IVA線で切断した場合の断面図である。6A is a cross-sectional view of the non-reciprocal circuit module shown in FIG. 1 taken along the line IVA-IVA. 図6Bは、図6Aに示す非可逆回路モジュールの電力伝送経路の一例を示す図である。6B is a diagram illustrating an example of a power transmission path of the non-reciprocal circuit module illustrated in FIG. 6A. 図7Aは、実施の形態1に関連する伝送線路モデルを示す斜視図である。FIG. 7A is a perspective view showing a transmission line model related to the first embodiment. 図7Bは、図7AをXZ平面で切断した場合の断面図である。FIG. 7B is a cross-sectional view of FIG. 7A taken along the XZ plane. 図8Aは、図7Aに示す伝送線路モデルにおいて、入出力導体部およびグランド導体の間隔とSパラメータとの関係を示すグラフである。FIG. 8A is a graph showing the relationship between the distance between the input / output conductor part and the ground conductor and the S parameter in the transmission line model shown in FIG. 7A. 図8Bは、図7Aに示す伝送線路モデルにおいて、入出力導体部およびグランド導体部の間隔と放射損失との関係を示すグラフである。FIG. 8B is a graph showing the relationship between the distance between the input / output conductor part and the ground conductor part and the radiation loss in the transmission line model shown in FIG. 7A. 図9は、実施の形態2に係る非可逆回路素子を示す断面図である。FIG. 9 is a cross-sectional view showing the nonreciprocal circuit device according to the second embodiment. 図10は、実施の形態3に係る通信装置を示す機能ブロック図である。FIG. 10 is a functional block diagram illustrating a communication apparatus according to the third embodiment.
 以下、図面を参照しながら、本発明の実施の形態に係る非可逆回路素子、非可逆回路モジュール、フロントエンド回路および通信装置について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a nonreciprocal circuit element, a nonreciprocal circuit module, a front end circuit, and a communication device according to an embodiment of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。また、以下では、簡明のため、上面図にハッチングを施している場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description may be abbreviate | omitted or simplified. In the following description, the top view may be hatched for simplicity.
 (実施の形態1)
 実施の形態1に係る非可逆回路素子は、例えば、携帯電話の基地局に搭載され、送信側回路からの送信信号をアンテナへと通過させ、アンテナで受信された受信信号を受信回路へと通過させる。つまり、非可逆回路素子は、予め定められた特定方向にのみ信号を通過させ、逆方向には実質的に通過させない特性を有している。本実施の形態に係る非可逆回路素子は、例えば、ミリ波帯(20GHz以上)の周波数帯域にて使用される。
(Embodiment 1)
The nonreciprocal circuit device according to Embodiment 1 is mounted on, for example, a mobile phone base station, passes a transmission signal from a transmission side circuit to an antenna, and passes a reception signal received by the antenna to a reception circuit. Let That is, the non-reciprocal circuit element has a characteristic that allows a signal to pass only in a predetermined specific direction and does not substantially pass the reverse direction. The nonreciprocal circuit device according to the present embodiment is used, for example, in a millimeter wave band (20 GHz or more).
 [1.1 非可逆回路素子および非可逆回路モジュールの構成]
 図1は、実施の形態1に係る非可逆回路素子1および非可逆回路モジュール2の斜視図である。図2は、非可逆回路素子1および非可逆回路モジュール2の分解斜視図である。図3は、図1に示す非可逆回路モジュール2のIII部分の拡大図である。図4Aは、図1に示す非可逆回路素子1をIVA-IVA線で切断した場合の断面図である。図4Bは、図2に示す非可逆回路素子1をIVB-IVB線で切断した場合の断面図である。図5は、図4Aに示す非可逆回路素子1をV-V線で切断した場合の平面断面図である。
[1.1 Non-reciprocal circuit elements and non-reciprocal circuit module configurations]
FIG. 1 is a perspective view of the nonreciprocal circuit device 1 and the nonreciprocal circuit module 2 according to Embodiment 1. FIG. FIG. 2 is an exploded perspective view of the nonreciprocal circuit device 1 and the nonreciprocal circuit module 2. FIG. 3 is an enlarged view of a portion III of the non-reciprocal circuit module 2 shown in FIG. 4A is a cross-sectional view of the nonreciprocal circuit device 1 shown in FIG. 1 taken along the line IVA-IVA. 4B is a cross-sectional view of the non-reciprocal circuit device 1 shown in FIG. 2 taken along the line IVB-IVB. FIG. 5 is a plan cross-sectional view of the nonreciprocal circuit device 1 shown in FIG. 4A taken along line VV.
 図1~図3に示すように、非可逆回路モジュール2は、非可逆回路素子1と、非可逆回路素子1が実装される実装基板50とを備えている。 1 to 3, the nonreciprocal circuit module 2 includes a nonreciprocal circuit element 1 and a mounting substrate 50 on which the nonreciprocal circuit element 1 is mounted.
 まず、非可逆回路素子1の構成について説明する。 First, the configuration of the nonreciprocal circuit element 1 will be described.
 非可逆回路素子1は、基材となる第1ヨーク10と、中心導体部41を有するフェライト40と、永久磁石30と、第2ヨーク20とを備える。第1ヨーク10上にはフェライト40が配置され、フェライト40上には永久磁石30が配置される。フェライト40および永久磁石30は、筒状の第2ヨーク20に覆われている。 The nonreciprocal circuit device 1 includes a first yoke 10 serving as a base material, a ferrite 40 having a central conductor portion 41, a permanent magnet 30, and a second yoke 20. A ferrite 40 is disposed on the first yoke 10, and a permanent magnet 30 is disposed on the ferrite 40. The ferrite 40 and the permanent magnet 30 are covered with the cylindrical second yoke 20.
 第2ヨーク20は、天面部21および側面部22を有し、側面部22の下側が第1ヨーク10に、溶接、または、はんだ付けにより固定される。第2ヨーク20は、第1ヨーク10とともに、永久磁石30によって形成される磁界に整磁作用を施し、また、永久磁石30およびフェライト40を電磁シールドする。第2ヨーク20の材料としては、例えば、鉄(Fe)が用いられる。第2ヨーク20の表面に銀めっきが施されていてもよい。 The second yoke 20 has a top surface portion 21 and a side surface portion 22, and the lower side of the side surface portion 22 is fixed to the first yoke 10 by welding or soldering. The second yoke 20, together with the first yoke 10, applies a magnetic shunting action to the magnetic field formed by the permanent magnet 30, and electromagnetically shields the permanent magnet 30 and the ferrite 40. As a material of the second yoke 20, for example, iron (Fe) is used. Silver plating may be applied to the surface of the second yoke 20.
 永久磁石30は、平板状であり、フェライト40に直流磁界を印加するように配置される。具体的には、永久磁石30は、フェライト40上に配置され、フェライト40上に形成された中心導体部41に接している。 The permanent magnet 30 has a flat plate shape and is arranged to apply a DC magnetic field to the ferrite 40. Specifically, the permanent magnet 30 is disposed on the ferrite 40 and is in contact with the central conductor portion 41 formed on the ferrite 40.
 フェライト40は、磁性を有する部材であり、例えば、酸化鉄を主成分とし、亜鉛、ニッケルおよび銅のうち少なくとも1つ以上を含む材料が用いられる。 The ferrite 40 is a magnetic member, and for example, a material containing iron oxide as a main component and containing at least one of zinc, nickel, and copper is used.
 フェライト40は、平板状であり、一方主面40aと、一方主面40aに背向する他方主面40bと、側面40cとを有している。言い換えれば、一方主面40aは、第1ヨーク10側に位置する面(他方主面40b)に対して背向している。フェライト40の厚みは、例えば、0.15mmである。 The ferrite 40 has a flat plate shape and has one main surface 40a, the other main surface 40b facing away from the one main surface 40a, and a side surface 40c. In other words, the one main surface 40a faces away from the surface (the other main surface 40b) located on the first yoke 10 side. The thickness of the ferrite 40 is, for example, 0.15 mm.
 フェライト40には、図2に示すように、中心導体部41、および、中心導体部41に接続される3つの引き出し導体部42が形成されている。中心導体部41および引き出し導体部42の材料としては、例えば、銀を主成分とする金属または合金が用いられる。 As shown in FIG. 2, the ferrite 40 is formed with a central conductor portion 41 and three lead conductor portions 42 connected to the central conductor portion 41. As the material of the center conductor portion 41 and the lead conductor portion 42, for example, a metal or alloy mainly containing silver is used.
 中心導体部41は、円形状であり、フェライト40の一方主面40aに形成されている。中心導体部41は、分布定数型の共振器であり、LC成分を有する。 The central conductor portion 41 has a circular shape and is formed on one main surface 40 a of the ferrite 40. The center conductor portion 41 is a distributed constant type resonator and has an LC component.
 3つの引き出し導体部42のそれぞれは、線路状であり、中心導体部41から他方主面40b側に引き出されている。具体的には、引き出し導体部42のそれぞれは、図3に示すように、一方主面40aに形成された主面引き出し部42aと、主面引き出し部42aと他方主面40b側とを繋ぐ貫通引き出し部42bとを有している。 Each of the three lead conductor portions 42 has a line shape, and is drawn from the central conductor portion 41 to the other main surface 40b side. Specifically, as shown in FIG. 3, each of the lead conductor portions 42 has a main surface lead portion 42 a formed on one main surface 40 a and a penetration connecting the main surface lead portion 42 a and the other main surface 40 b side. And a drawer portion 42b.
 主面引き出し部42aの一端は、円形状の中心導体部41の外縁にそれぞれ接続されている。隣り合う主面引き出し部42aの角度間隔は、等角度(本実施の形態では120°)である。また、主面引き出し部42aの他端は、フェライト40の一方主面40aの外縁に向かって延び、貫通引き出し部42bの一端に接続されている。貫通引き出し部42bは、一方主面40a側から他方主面40b側に向かって直線状に引き出されている。本実施の形態において、貫通引き出し部42bを伝送する信号の伝搬方向は、一方主面40aおよび他方主面40bに対して垂直(フェライト40の厚み方向と平行)である。 One end of the main surface leading portion 42a is connected to the outer edge of the circular central conductor portion 41, respectively. The angular interval between adjacent main surface leading portions 42a is an equal angle (120 ° in the present embodiment). The other end of the main surface lead portion 42a extends toward the outer edge of the one main surface 40a of the ferrite 40 and is connected to one end of the through lead portion 42b. The through-drawing portion 42b is drawn linearly from the one main surface 40a side toward the other main surface 40b side. In the present embodiment, the propagation direction of the signal transmitted through the penetration lead portion 42b is perpendicular to the one main surface 40a and the other main surface 40b (parallel to the thickness direction of the ferrite 40).
 なお、貫通引き出し部42bは、一方主面40aと他方主面40bとを貫通するビア導体であってもよいし、フェライト40の側面40cに沿って形成される側面導体であってもよい。また、主面引き出し部42aの一部において、幅広のインピーダンス調整部分42cが設けられていてもよい。 Note that the through lead-out portion 42b may be a via conductor that penetrates the one main surface 40a and the other main surface 40b, or may be a side conductor formed along the side surface 40c of the ferrite 40. Further, a wide impedance adjustment portion 42c may be provided in a part of the main surface lead portion 42a.
 第1ヨーク10は、図2~図5に示すように、平板状であり、第1主面10aと、第1主面10aに背向する第2主面10bとを有している。第1ヨーク10は、第1主面10aがフェライト40の他方主面40bに接するように配置される。また、第1ヨーク10は、フェライト40と実装基板50との間に設けられる。第1ヨーク10の厚みは、例えば、0.1mmである。 The first yoke 10 has a flat plate shape as shown in FIGS. 2 to 5, and has a first main surface 10a and a second main surface 10b facing away from the first main surface 10a. The first yoke 10 is disposed such that the first main surface 10 a is in contact with the other main surface 40 b of the ferrite 40. The first yoke 10 is provided between the ferrite 40 and the mounting substrate 50. The thickness of the first yoke 10 is, for example, 0.1 mm.
 第1ヨーク10は、図5に示すように、3つの入出力導体部11と、入出力導体部11のそれぞれに所定間隔i1をあけて近接配置されているグランド導体部12とを有している。入出力導体部11は、後述する伝送線路パターンを介してミリ波帯域の高周波信号が入出力される部分であり、グランド導体部12は、基準電位に接地される部分である。入出力導体部11とグランド導体部12との間には、絶縁部13が設けられている。 As shown in FIG. 5, the first yoke 10 includes three input / output conductor portions 11 and a ground conductor portion 12 that is disposed close to each of the input / output conductor portions 11 with a predetermined interval i1. Yes. The input / output conductor portion 11 is a portion where high-frequency signals in the millimeter wave band are input / output via a transmission line pattern described later, and the ground conductor portion 12 is a portion grounded to a reference potential. An insulating part 13 is provided between the input / output conductor part 11 and the ground conductor part 12.
 入出力導体部11およびグランド導体部12の材料としては、例えば、鉄(Fe)が用いられる。電気特性を向上させるため、入出力導体部11およびグランド導体部12の露出面に銀めっきが施されていてもよい。 As the material of the input / output conductor 11 and the ground conductor 12, for example, iron (Fe) is used. In order to improve electrical characteristics, the exposed surfaces of the input / output conductor portion 11 and the ground conductor portion 12 may be subjected to silver plating.
 グランド導体部12は、第1ヨーク10の大部分(例えば80%以上97%以下)の領域を占め、第2ヨーク20とともに磁界に整磁作用を施す。グランド導体部12は、第1主面10aと第2主面10bとの間を貫いて形成されている。また、グランド導体部12は、入出力導体部11に入力される信号の放射損失を低減するため、第1主面10aに沿う方向に、入出力導体部11に近接して配置される。具体的に、グランド導体部12は、少なくともその一部が、入出力導体部11に対して所定間隔i1(0<i1≦λ/4。ただしλは、ミリ波帯における波長)をあけて近接配置されている。なお、所定間隔i1の、さらに望ましい値については後述する。 The ground conductor portion 12 occupies most of the first yoke 10 (for example, 80% or more and 97% or less) and applies a magnetic shunting action to the magnetic field together with the second yoke 20. The ground conductor portion 12 is formed so as to penetrate between the first main surface 10a and the second main surface 10b. Further, the ground conductor portion 12 is disposed close to the input / output conductor portion 11 in the direction along the first main surface 10a in order to reduce radiation loss of signals input to the input / output conductor portion 11. Specifically, at least a part of the ground conductor portion 12 is close to the input / output conductor portion 11 with a predetermined interval i1 (0 <i1 ≦ λ / 4, where λ is a wavelength in the millimeter wave band). Has been placed. A more desirable value of the predetermined interval i1 will be described later.
 グランド導体部12は、例えば、接着剤等(図示省略)を用いてフェライト40の他方主面40bに接合される。 The ground conductor portion 12 is joined to the other main surface 40b of the ferrite 40 using, for example, an adhesive (not shown).
 3つの入出力導体部11は、3つの引き出し導体部42のそれぞれに対応し、はんだ等(図示省略)を用いて、引き出し導体部42の貫通引き出し部42bの他端に接続される。 The three input / output conductor portions 11 correspond to the three lead conductor portions 42 and are connected to the other end of the through lead portion 42b of the lead conductor portion 42 using solder or the like (not shown).
 入出力導体部11は、図3および図4Aに示すように、第1主面10aと第2主面10bとの間を直線状に貫いて形成されている。本実施の形態において、入出力導体部11を伝送する信号の伝搬方向は、第1主面10aおよび第2主面10bに対して垂直(第1ヨーク10の厚み方向と平行)である。すなわち、入出力導体部11および貫通引き出し部42bは、第1ヨーク10の第2主面10bとフェライト40の一方主面40aとの間を最短距離で繋いている。 As shown in FIG. 3 and FIG. 4A, the input / output conductor portion 11 is formed so as to penetrate linearly between the first main surface 10a and the second main surface 10b. In the present embodiment, the propagation direction of the signal transmitted through the input / output conductor portion 11 is perpendicular to the first main surface 10a and the second main surface 10b (parallel to the thickness direction of the first yoke 10). That is, the input / output conductor portion 11 and the through lead-out portion 42b connect the second main surface 10b of the first yoke 10 and the one main surface 40a of the ferrite 40 with the shortest distance.
 なお、入出力導体部11の線路断面積は、貫通引き出し部42bの線路断面積と同じである。入出力導体部11は、貫通引き出し部42bの真下であれば、第1ヨーク10の側面に沿って形成されていてもよい。 In addition, the line cross-sectional area of the input / output conductor 11 is the same as the line cross-sectional area of the through lead-out part 42b. The input / output conductor portion 11 may be formed along the side surface of the first yoke 10 as long as it is directly below the through-drawing portion 42b.
 絶縁部13は、図4Aおよび図5に示すように、3つの入出力導体部11のそれぞれを芯材として、入出力導体部11の側面11aを覆うように、それぞれ3つ設けられている。グランド導体部12は、さらに、この絶縁部13の側面13aを覆うように設けられている。すなわち、絶縁部13は、入出力導体部11とグランド導体部12との間に設けられている。そして、入出力導体部11とグランド導体部12との間に存在する絶縁部13の肉厚が、入出力導体部11とグランド導体部12との所定間隔i1となっている。なお、絶縁部13は、入出力導体部11のすべての側面11aに設けられている必要はなく、グランド導体部12が絶縁部13を介して入出力導体部11を支持できるように、少なくとも、入出力導体部11の一部の側面11aとグランド導体部12との間に形成されていればよい。 As shown in FIGS. 4A and 5, three insulating portions 13 are provided so as to cover the side surface 11 a of the input / output conductor portion 11 with each of the three input / output conductor portions 11 as a core material. The ground conductor portion 12 is further provided so as to cover the side surface 13a of the insulating portion 13. That is, the insulating portion 13 is provided between the input / output conductor portion 11 and the ground conductor portion 12. The thickness of the insulating portion 13 existing between the input / output conductor portion 11 and the ground conductor portion 12 is a predetermined interval i1 between the input / output conductor portion 11 and the ground conductor portion 12. The insulating portion 13 does not have to be provided on all the side surfaces 11a of the input / output conductor portion 11, and at least the ground conductor portion 12 can support the input / output conductor portion 11 via the insulating portion 13. What is necessary is just to be formed between the one part side surface 11a of the input / output conductor part 11, and the ground conductor part 12. FIG.
 絶縁部13の材料としては、例えば、エポキシ系の樹脂が用いられる。第1ヨーク10は、例えば、絶縁部13、入出力導体部11およびグランド導体部12を一体モールド成形した後、スライスすることで形成される。 As a material of the insulating part 13, for example, an epoxy resin is used. The first yoke 10 is formed, for example, by integrally molding the insulating portion 13, the input / output conductor portion 11, and the ground conductor portion 12 and then slicing.
 また、第1ヨーク10には、実装基板50との電気的かつ機械的な接続性を向上させるため、入出力端子16およびグランド端子17が設けられている。入出力端子16は、3つの入出力導体部11のそれぞれに対応して3つ設けられている。入出力端子16のそれぞれは、グランド導体部12に接続せず、対応する入出力導体部11に接続するように第2主面10bに形成されている。また、グランド端子17は、グランド導体部12に接して設けられている。入出力端子16およびグランド端子17の材料としては、例えば、銀やニッケルなどが用いられる。 Further, the first yoke 10 is provided with an input / output terminal 16 and a ground terminal 17 in order to improve electrical and mechanical connectivity with the mounting substrate 50. Three input / output terminals 16 are provided corresponding to each of the three input / output conductor portions 11. Each of the input / output terminals 16 is formed on the second main surface 10 b so as not to be connected to the ground conductor portion 12 but to be connected to the corresponding input / output conductor portion 11. The ground terminal 17 is provided in contact with the ground conductor portion 12. As a material of the input / output terminal 16 and the ground terminal 17, for example, silver or nickel is used.
 非可逆回路素子1は、これら入出力端子16およびグランド端子17から、はんだ等を用いて実装基板50の表面に実装される。なお、これら入出力端子16およびグランド端子17は必ずしも必要ではない。例えば、入出力端子16およびグランド端子17を設けずに、入出力導体部11およびグランド導体部12のそれぞれを、はんだ等を用いて実装基板50に接続してもよい。 The non-reciprocal circuit element 1 is mounted on the surface of the mounting substrate 50 from the input / output terminal 16 and the ground terminal 17 using solder or the like. The input / output terminal 16 and the ground terminal 17 are not necessarily required. For example, the input / output conductor portion 11 and the ground conductor portion 12 may be connected to the mounting substrate 50 using solder or the like without providing the input / output terminal 16 and the ground terminal 17.
 次に、非可逆回路モジュール2について説明する。非可逆回路モジュール2は、非可逆回路素子1が実装基板50の表面に実装された構造をしている。 Next, the nonreciprocal circuit module 2 will be described. The nonreciprocal circuit module 2 has a structure in which the nonreciprocal circuit element 1 is mounted on the surface of the mounting substrate 50.
 実装基板50は、図2に示すように、表面50aに沿って形成された、伝送線路パターン51とグランドパターン52とを有している。伝送線路パターン51は、非可逆回路素子1の3つの入出力導体部11に対応して、実装基板50の表面50aに3本設けられている。グランドパターン52は、伝送線路パターン51以外の領域において、伝送線路パターン51に対して間隔をあけて近接配置されている。また、実装基板50は、表面50aと背向する裏面にもグランドパターンを有している(図示省略)。表面50aのグランドパターン52および裏面のグランドパターンは、複数のビア導体により互いに接続されている(図示省略)。実装基板50の基板本体は、セラミック材料または有機材料により形成される。伝送線路パターン51およびグランドパターン52は、銅を主成分とする導体材料により形成される。 The mounting substrate 50 has a transmission line pattern 51 and a ground pattern 52 formed along the surface 50a, as shown in FIG. Three transmission line patterns 51 are provided on the surface 50 a of the mounting substrate 50 corresponding to the three input / output conductor portions 11 of the nonreciprocal circuit element 1. The ground pattern 52 is disposed close to the transmission line pattern 51 at an interval in a region other than the transmission line pattern 51. The mounting board 50 also has a ground pattern on the back surface facing away from the front surface 50a (not shown). The ground pattern 52 on the front surface 50a and the ground pattern on the back surface are connected to each other by a plurality of via conductors (not shown). The substrate body of the mounting substrate 50 is formed of a ceramic material or an organic material. The transmission line pattern 51 and the ground pattern 52 are formed of a conductor material whose main component is copper.
 図6Aは、図1に示す非可逆回路モジュール2をIVA-IVA線で切断した場合の断面図である。 FIG. 6A is a cross-sectional view of the non-reciprocal circuit module 2 shown in FIG. 1 taken along the line IVA-IVA.
 図6Aに示すように、非可逆回路素子1の入出力導体部11は、入出力端子16およびはんだ(図示省略)を介して、実装基板50の伝送線路パターン51に接続される。また、非可逆回路素子1のグランド導体部12は、グランド端子17およびはんだ(図示省略)を介して、実装基板50のグランドパターン52に接続される。具体的には、入出力導体部11の第2主面10b側の領域が伝送線路パターン51に接続され、グランド導体部12の第2主面10b側の領域がグランドパターン52に接続される。この実装構造により、非可逆回路素子1に高周波信号が入力され、また、非可逆回路素子1が電磁シールドされる。 As shown in FIG. 6A, the input / output conductor 11 of the non-reciprocal circuit element 1 is connected to the transmission line pattern 51 of the mounting substrate 50 via the input / output terminals 16 and solder (not shown). The ground conductor portion 12 of the nonreciprocal circuit element 1 is connected to the ground pattern 52 of the mounting substrate 50 via the ground terminal 17 and solder (not shown). Specifically, a region on the second main surface 10 b side of the input / output conductor portion 11 is connected to the transmission line pattern 51, and a region on the second main surface 10 b side of the ground conductor portion 12 is connected to the ground pattern 52. With this mounting structure, a high-frequency signal is input to the nonreciprocal circuit element 1 and the nonreciprocal circuit element 1 is electromagnetically shielded.
 図6Aでは、永久磁石30が筒状の第2ヨーク20の下に配置されているが、永久磁石30は筒状の第2ヨーク20の上に配置しても良い。これにより永久磁石30は、第2ヨーク20の外側になるため、第2ヨーク20に入るサイズで有る必要がなく、第2ヨーク20より大きい体積の磁石にすることができる。永久磁石30のサイズを大きくすることによりフェライト40に印加される磁力を大きくすることができる。このとき、放射を抑制する目的で、第2ヨーク20は銅などの透磁率を持たないRFシールドでもかまわない。 In FIG. 6A, the permanent magnet 30 is disposed below the cylindrical second yoke 20, but the permanent magnet 30 may be disposed above the cylindrical second yoke 20. As a result, the permanent magnet 30 is located outside the second yoke 20, so it is not necessary to have a size that fits into the second yoke 20, and can be a magnet having a larger volume than the second yoke 20. The magnetic force applied to the ferrite 40 can be increased by increasing the size of the permanent magnet 30. At this time, for the purpose of suppressing radiation, the second yoke 20 may be an RF shield having no magnetic permeability such as copper.
 ここで、非可逆回路素子1における電力の伝送経路について説明する。図6Bは、図6Aに示す非可逆回路モジュール2の電力の伝送経路の一例を示す図である。 Here, the power transmission path in the nonreciprocal circuit device 1 will be described. 6B is a diagram illustrating an example of a power transmission path of the irreversible circuit module 2 illustrated in FIG. 6A.
 非可逆回路素子1では、中心導体部41にてフェライト40の非可逆性を利用した信号伝送が行われる。この中心導体部41に信号を送るためには、伝送線路パターン51から入出力端子16、入出力導体部11および引き出し導体部42を経由して、中心導体部41に電力を伝送する必要がある。 In the nonreciprocal circuit element 1, signal transmission using the irreversibility of the ferrite 40 is performed in the central conductor portion 41. In order to send a signal to the central conductor 41, it is necessary to transmit power from the transmission line pattern 51 to the central conductor 41 via the input / output terminal 16, the input / output conductor 11, and the lead conductor 42. .
 ここで、中心導体部41は伝送線路パターン51よりも高い位置に配置されているため、電力の伝送経路T1は、図6Bに示す矢印のように、伝送線路パターン51が延びる方向(表面50aに沿う方向)から、伝送線路パターン51に垂直な方向(表面50aに垂直な方向)に折れ曲がった屈曲領域HAを有する。そのため、伝送線路としては、この屈曲領域HAにて電力の放射損失が大きくなる構造となっている。しかし、本実施の形態では、この屈曲領域HAに位置する入出力導体部11に近接してグランド導体部12が設けられている。具体的には、伝送線路パターン51の信号伝搬方向において、グランド導体部12は、入出力導体部11に対してλ/4以下の小さな間隔i1をあけて配置されている。これにより、屈曲領域HAにおける電力の放射損失を低減することができる。 Here, since the central conductor portion 41 is disposed at a position higher than the transmission line pattern 51, the power transmission path T1 is in the direction in which the transmission line pattern 51 extends (on the surface 50a) as shown by the arrows in FIG. 6B. A bent region HA that is bent in a direction perpendicular to the transmission line pattern 51 (a direction perpendicular to the surface 50a). For this reason, the transmission line has a structure in which the radiation loss of electric power becomes large in the bent region HA. However, in the present embodiment, the ground conductor portion 12 is provided in the vicinity of the input / output conductor portion 11 located in the bent area HA. Specifically, in the signal propagation direction of the transmission line pattern 51, the ground conductor portion 12 is arranged with a small interval i1 of λ / 4 or less with respect to the input / output conductor portion 11. Thereby, the radiation loss of the electric power in the bending area | region HA can be reduced.
 また、非可逆回路素子1は、入出力導体部11および貫通引き出し部42bが直線状に繋がっているので、従来技術に比べて、第1ヨーク10の第2主面10bとフェライト40の一方主面40aとの間を伝送する信号の放射損失を低減することができる。 Further, in the nonreciprocal circuit element 1, since the input / output conductor portion 11 and the through lead-out portion 42b are connected in a straight line, the second main surface 10b of the first yoke 10 and the one main portion of the ferrite 40 are compared with the prior art. It is possible to reduce radiation loss of signals transmitted between the surfaces 40a.
 また、非可逆回路素子1は、フェライト40の他方主面40bと第1ヨーク10の第1主面10aとが、互いに接しており、従来技術で示すようなC成分を有する多層基板が間に挟み込まれていない。この構造により、入出力導体部11から中心導体部41までの線路長が短くなり、伝送信号の放射損失を低減することができる。また、非可逆回路素子1を低背化することができる。 Further, in the nonreciprocal circuit element 1, the other main surface 40b of the ferrite 40 and the first main surface 10a of the first yoke 10 are in contact with each other, and a multilayer substrate having a C component as shown in the prior art is interposed therebetween. It is not caught. With this structure, the line length from the input / output conductor portion 11 to the central conductor portion 41 is shortened, and the radiation loss of the transmission signal can be reduced. Moreover, the nonreciprocal circuit element 1 can be reduced in height.
 [1.2 伝送線路のシミュレーション]
 次に、非可逆回路素子1に関連する伝送線路のシミュレーションについて説明する。このシミュレーションでは、入出力導体部とグランド導体部との間隔i1を変化させた場合の電力の放射損失について示す。
[1.2 Simulation of transmission line]
Next, a transmission line simulation related to the nonreciprocal circuit device 1 will be described. This simulation shows the radiation loss of power when the distance i1 between the input / output conductor part and the ground conductor part is changed.
 図7Aは、伝送線路モデル90を示す斜視図である。図7Bは、図7AをXZ平面で切断した場合の断面図である。図7Aおよび図7Bに示す伝送線路モデル90は、中心導体部および入出力端子を除き、非可逆回路素子1の伝送線路とほぼ同じ構成である。 FIG. 7A is a perspective view showing a transmission line model 90. FIG. FIG. 7B is a cross-sectional view of FIG. 7A taken along the XZ plane. The transmission line model 90 shown in FIGS. 7A and 7B has substantially the same configuration as the transmission line of the nonreciprocal circuit element 1 except for the central conductor portion and the input / output terminals.
 この伝送線路モデル90では、実装基板91の主面に2本の伝送線路パターン92a、92bが設けられている。2本の伝送線路パターン92a、92bの間には、伝送線路パターン92a、92bのそれぞれと間隔をあけてグランドパターン93が設けられている。グランドパターン93上には、グランド導体部95およびフェライト99が順に設けられている。フェライト99の上面には中心線路97が設けられ、フェライト99の両側面には貫通線路98a、98bが設けられている。フェライト99の下に位置するグランド導体部95の両側面には、貫通線路98a、98bと接続する入出力導体部94a、94bがそれぞれ設けられている。入出力導体部94a、94bは、伝送線路パターン92a、92bにそれぞれ接続されている。すなわち、一方の伝送線路パターン92aは、入出力導体部94a、貫通線路98a、中心線路97、貫通線路98b、入出力導体部94bを経由し、他方の伝送線路パターン92bに繋がっている。 In this transmission line model 90, two transmission line patterns 92 a and 92 b are provided on the main surface of the mounting substrate 91. Between the two transmission line patterns 92a and 92b, a ground pattern 93 is provided at a distance from each of the transmission line patterns 92a and 92b. On the ground pattern 93, a ground conductor portion 95 and a ferrite 99 are sequentially provided. A central line 97 is provided on the upper surface of the ferrite 99, and through lines 98 a and 98 b are provided on both side surfaces of the ferrite 99. Input / output conductor portions 94a and 94b connected to the through- lines 98a and 98b are provided on both side surfaces of the ground conductor portion 95 located below the ferrite 99, respectively. The input / output conductor portions 94a and 94b are connected to the transmission line patterns 92a and 92b, respectively. That is, one transmission line pattern 92a is connected to the other transmission line pattern 92b via the input / output conductor portion 94a, the through line 98a, the center line 97, the through line 98b, and the input / output conductor portion 94b.
 グランド導体部95と入出力導体部94a、94bとの間には、絶縁部96が設けられている。入出力導体部94a、94bおよびグランド導体部95は、所定間隔i1をあけて近接配置されている。所定間隔i1は、具体的には、伝送線路パターン92a、92bの信号伝搬方向における入出力導体部94a、94bとグランド導体部95との間隔である。 An insulating portion 96 is provided between the ground conductor portion 95 and the input / output conductor portions 94a and 94b. The input / output conductor portions 94a and 94b and the ground conductor portion 95 are arranged close to each other with a predetermined interval i1. Specifically, the predetermined interval i1 is an interval between the input / output conductor portions 94a and 94b and the ground conductor portion 95 in the signal propagation direction of the transmission line patterns 92a and 92b.
 なお、入出力導体部94a、94b、貫通線路98a、98bおよび中心線路97などの各線路の材質は、実施の形態1と同じであり、線路断面積は0.01mmである。グランド導体部95、フェライト99の厚みは、実施の形態1と同じである。フェライト99の比誘電率はε=13である。各線路を伝搬する高周波信号の周波数は28GHzであり、波長はλ=2.8mmである。伝送線路モデル90に印加される電力は10dBmである。 The material of each line such as the input / output conductors 94a and 94b, the through lines 98a and 98b, and the center line 97 is the same as that of the first embodiment, and the line cross-sectional area is 0.01 mm 2 . The thicknesses of the ground conductor portion 95 and the ferrite 99 are the same as those in the first embodiment. The relative dielectric constant of the ferrite 99 is ε = 13. The frequency of the high-frequency signal propagating through each line is 28 GHz, and the wavelength is λ = 2.8 mm. The power applied to the transmission line model 90 is 10 dBm.
 上記伝送線路モデル90を用いた、電力の放射損失のシミュレーション結果を説明する。 The simulation result of the power radiation loss using the transmission line model 90 will be described.
 図8Aは、入出力導体部94a、94bおよびグランド導体部95の間隔i1とSパラメータとの関係を示すグラフである。図8Aでは、横軸をi1/(λ/4)、縦軸をSパラメータとした場合の反射特性S11および通過特性S21が示されている。 FIG. 8A is a graph showing the relationship between the interval i1 between the input / output conductor portions 94a and 94b and the ground conductor portion 95 and the S parameter. FIG. 8A shows reflection characteristics S11 and transmission characteristics S21 when the horizontal axis is i1 / (λ / 4) and the vertical axis is an S parameter.
 図8Bは、入出力導体部94a、94bおよびグランド導体部95の間隔i1と放射損失との関係を示すグラフである。 FIG. 8B is a graph showing the relationship between the distance i1 between the input / output conductor portions 94a and 94b and the ground conductor portion 95 and the radiation loss.
 図8Bでは、i1/(λ/4)を変化させた場合の放射損失が示されている。放射損失は、例えば、伝送線路パターン92aを介して入出力導体部94aに入力される電力のうち、入出力導体部94aおよび引き出し導体部(貫通線路98a)にて生じる放射損の合計である。具体的には、放射損失は、図8Aに示す反射特性S11および通過特性S21として現れていない特性であり、反射特性S11および通過特性S21をマグニチュード変換し、当該マグニチュード成分を1から引き算することで求めることができる。 FIG. 8B shows the radiation loss when i1 / (λ / 4) is changed. The radiation loss is, for example, the total radiation loss generated in the input / output conductor portion 94a and the lead conductor portion (through-line 98a) out of the electric power input to the input / output conductor portion 94a via the transmission line pattern 92a. Specifically, the radiation loss is a characteristic that does not appear as the reflection characteristic S11 and the transmission characteristic S21 shown in FIG. 8A. The reflection characteristic S11 and the transmission characteristic S21 are magnitude-converted, and the magnitude component is subtracted from 1. Can be sought.
 図8Bに示すように、入出力導体部94aとグランド導体部95との間隔i1が小さくなると、放射損失が小さくなる。ここで、市場から要求される放射損失の許容レベルを30%(0.3)と設定した場合、図8Bから、i1/(λ/4)=0.4となる。したがって、放射損失を30%以下とするためには、間隔i1は、0<i1≦0.1λであることが望ましい。例えば、波長λが2.8mmである場合、間隔i1は、0よりも大きく0.28mm以下であることが望ましい。 As shown in FIG. 8B, when the distance i1 between the input / output conductor portion 94a and the ground conductor portion 95 is reduced, the radiation loss is reduced. Here, when the allowable level of radiation loss required from the market is set to 30% (0.3), i1 / (λ / 4) = 0.4 from FIG. 8B. Therefore, in order to reduce the radiation loss to 30% or less, the interval i1 is preferably 0 <i1 ≦ 0.1λ. For example, when the wavelength λ is 2.8 mm, the interval i1 is desirably larger than 0 and not larger than 0.28 mm.
 上記伝送線路のシミュレーション結果から、非可逆回路素子1の入出力導体部11とグランド導体部12との所定間隔i1は、0よりも大きく、かつ、0.1λ以下であることが望ましい。所定間隔i1を上記範囲内とすることで、非可逆回路素子1における伝送信号の放射損失を低減することができる。 From the simulation result of the transmission line, it is desirable that the predetermined interval i1 between the input / output conductor portion 11 and the ground conductor portion 12 of the nonreciprocal circuit element 1 is larger than 0 and not more than 0.1λ. By setting the predetermined interval i1 within the above range, the radiation loss of the transmission signal in the irreversible circuit element 1 can be reduced.
 [1.3 まとめ]
 以上、本実施の形態に示す非可逆回路素子1は、実装基板50の表面50aに実装される非可逆回路素子1であって、永久磁石30と、永久磁石30により直流磁界が印加されるフェライト40と、フェライト40と実装基板50との間に設けられている、第1ヨーク10と、を備え、フェライト40は、第1ヨーク10側に位置する面と背向する一方主面40aに形成される中心導体部41と、中心導体部41に接続され、中心導体部41から引き出されている引き出し導体部42とを有し、中心導体部41は、LC成分を有し、第1ヨーク10は、引き出し導体部42に接続されている入出力導体部11と、入出力導体部11に所定間隔i1をあけて近接配置されているグランド導体部12とを有し、グランド導体部12は、実装基板50における表面50aに沿って形成されたグランドパターン52に接続され、入出力導体部11は、実装基板50における表面50aに沿って形成された伝送線路パターン51に接続され、入出力導体部11には、伝送線路パターン51を介してミリ波帯域の高周波信号が入出力される。
[1.3 Summary]
As described above, the nonreciprocal circuit device 1 shown in the present embodiment is the nonreciprocal circuit device 1 mounted on the surface 50a of the mounting substrate 50, and includes a permanent magnet 30 and a ferrite to which a DC magnetic field is applied by the permanent magnet 30. 40 and a first yoke 10 provided between the ferrite 40 and the mounting substrate 50, and the ferrite 40 is formed on one main surface 40a facing away from the surface located on the first yoke 10 side. A central conductor portion 41, and a lead conductor portion 42 connected to the central conductor portion 41 and drawn out from the central conductor portion 41. The central conductor portion 41 has an LC component, and the first yoke 10 Has an input / output conductor portion 11 connected to the lead conductor portion 42, and a ground conductor portion 12 disposed close to the input / output conductor portion 11 at a predetermined interval i1, Mounting board 5 The input / output conductor portion 11 is connected to the transmission line pattern 51 formed along the surface 50a of the mounting substrate 50, and the input / output conductor portion 11 is connected to the ground pattern 52 formed along the surface 50a. A high frequency signal in the millimeter wave band is input / output via the transmission line pattern 51.
 このように、実装基板50に表面実装される非可逆回路素子1のグランド導体部12が入出力導体部11に近接配置されているので、伝送線路パターン51から入出力導体部11を経由して中心導体部41に至る線路における伝送線路の屈曲構造により生じる伝送信号の放射損失を低減することができる。 As described above, since the ground conductor portion 12 of the nonreciprocal circuit element 1 that is surface-mounted on the mounting substrate 50 is disposed close to the input / output conductor portion 11, the transmission line pattern 51 passes through the input / output conductor portion 11. The radiation loss of the transmission signal caused by the bent structure of the transmission line in the line reaching the central conductor portion 41 can be reduced.
 例えば、非可逆回路素子1が実装基板50に実装され、実装基板50上の伝送線路パターン51から伝送信号が入力される場合では、伝送線路パターン51が延びる方向から垂直な方向に折れ曲がる屈曲領域HAにて電力放射が起きやすくなる。しかし、本実施の形態では、入出力導体部11に近接してグランド導体部12が配置されているので、屈曲領域HAにおける放射損失を低減することができる。 For example, when the nonreciprocal circuit element 1 is mounted on the mounting substrate 50 and a transmission signal is input from the transmission line pattern 51 on the mounting substrate 50, the bent region HA that bends in a direction perpendicular to the direction in which the transmission line pattern 51 extends. It becomes easy to generate power radiation. However, in the present embodiment, since the ground conductor portion 12 is disposed in the vicinity of the input / output conductor portion 11, radiation loss in the bent region HA can be reduced.
 特に、ミリ波帯(20GHz以上)などの高周波信号を伝送する場合は、伝送線路にて電力放射が発生しやすくなるが、本実施の形態に係る非可逆回路素子1では、伝送線路である入出力導体部11等における電力放射を抑制することができる。 In particular, when transmitting a high-frequency signal such as a millimeter wave band (20 GHz or more), power radiation is likely to be generated in the transmission line. However, in the nonreciprocal circuit device 1 according to the present embodiment, the input is a transmission line. Power radiation in the output conductor portion 11 and the like can be suppressed.
 (実施の形態2)
 図9は、実施の形態2に係る非可逆回路素子1Aを示す断面図である。この非可逆回路素子1Aでは、永久磁石30がフェライト40の側方に位置している。
(Embodiment 2)
FIG. 9 is a cross-sectional view showing the nonreciprocal circuit device 1A according to the second exemplary embodiment. In the non-reciprocal circuit device 1 </ b> A, the permanent magnet 30 is located on the side of the ferrite 40.
 非可逆回路素子1Aでは、第1ヨーク10上に、フェライト40および永久磁石30が配置され、フェライト40および永久磁石30の上に、平板状の第2ヨーク20が配置される。 In the nonreciprocal circuit device 1 </ b> A, the ferrite 40 and the permanent magnet 30 are disposed on the first yoke 10, and the flat plate-like second yoke 20 is disposed on the ferrite 40 and the permanent magnet 30.
 永久磁石30は、環状であり、内壁の内側に中心導体部41を含むフェライト40が収容されている。永久磁石30は、第1ヨーク10の第1主面10aに接着固定されている。このように永久磁石30を配置することで、フェライト40に直流磁界が印加される。 The permanent magnet 30 has an annular shape, and the ferrite 40 including the central conductor portion 41 is accommodated inside the inner wall. The permanent magnet 30 is bonded and fixed to the first main surface 10 a of the first yoke 10. By arranging the permanent magnet 30 in this way, a DC magnetic field is applied to the ferrite 40.
 第2ヨーク20は、平板状であり、永久磁石30の上面に接着固定されている。第2ヨーク20は、第1ヨーク10とともに、永久磁石30によって形成される磁界に整磁作用を施す。 The second yoke 20 has a flat plate shape and is bonded and fixed to the upper surface of the permanent magnet 30. The second yoke 20, together with the first yoke 10, applies a magnetic shunt action to the magnetic field formed by the permanent magnet 30.
 図9では、放射を抑制するRFシールドが描かれていないが、放射を防ぐ目的で、永久磁石30や第2ヨーク20の内部で、中心導体部41を覆うようにRFシールドを配置しても良い。RFシールドは銅などの透磁率を持たないRFシールドでもかまわない。 In FIG. 9, an RF shield that suppresses radiation is not drawn. However, for the purpose of preventing radiation, an RF shield may be disposed inside the permanent magnet 30 or the second yoke 20 so as to cover the central conductor portion 41. good. The RF shield may be an RF shield having no magnetic permeability such as copper.
 本実施の形態においても、実装基板50に表面実装される非可逆回路素子1Aのグランド導体部12が入出力導体部11に近接配置されているので、伝送線路パターン51から入出力導体部11を経由して中心導体部41に至る線路における伝送線路の屈曲構造により生じる伝送信号の放射損失を低減することができる。 Also in the present embodiment, since the ground conductor portion 12 of the non-reciprocal circuit element 1A that is surface-mounted on the mounting substrate 50 is disposed close to the input / output conductor portion 11, the input / output conductor portion 11 is connected from the transmission line pattern 51. It is possible to reduce the radiation loss of the transmission signal caused by the bent structure of the transmission line in the line that passes through to the central conductor portion 41.
 (実施の形態3)
 本発明は上述した非可逆回路素子として実現できるだけでなく、このような非可逆回路素子を備えるフロントエンド回路および通信装置としても実現できる。そこで、以下、上述した非可逆回路素子を備える通信装置(すなわち、非可逆回路素子を含むフロントエンド回路を内蔵する通信装置)について、説明する。
(Embodiment 3)
The present invention can be realized not only as the above-described non-reciprocal circuit element, but also as a front-end circuit and a communication device including such a non-reciprocal circuit element. Therefore, hereinafter, a communication apparatus including the above-described non-reciprocal circuit element (that is, a communication apparatus incorporating a front-end circuit including the non-reciprocal circuit element) will be described.
 図10は、実施の形態1で説明した非可逆回路素子1を備える通信装置3の機能ブロック図である。 FIG. 10 is a functional block diagram of the communication device 3 including the nonreciprocal circuit element 1 described in the first embodiment.
 図10に示すように、通信装置3は、非可逆回路素子1を有するフロントエンド回路100と、RFIC(Radio Frequency Integrated Circuit)200と、アンテナ素子300とを備える、例えば携帯電話の基地局である。なお、通信装置3は、アンテナ素子300を備えなくてもかまわない。 As shown in FIG. 10, the communication device 3 is a base station of a mobile phone, for example, including a front-end circuit 100 having the irreversible circuit element 1, an RFIC (Radio Frequency Integrated Circuit) 200, and an antenna element 300. . Note that the communication device 3 may not include the antenna element 300.
 フロントエンド回路100は、通信装置3のフロントエンドに設けられ、RFIC200とアンテナ素子300との間で送信信号または受信信号を伝搬する。具体的には、フロントエンド回路100は、非可逆回路素子1に加えて、さらに、PA(パワーアンプ:Power Amplifier)202等の送信側回路と、BPF(Band Pass Filter)203と、LNA(Low Noise Amplifier)204等の受信回路とを有する。また、フロントエンド回路100には、送信信号が入力される送信端子Ptx、送信信号を出力して受信信号が入力されるアンテナ端子Pant、および、受信信号を出力する受信端子Prxが設けられている。なお、フロントエンド回路100は、BPF203を備えなくてかまわないし、上記以外の整合回路あるいは送信用または受信用フィルタ等を備えてもかまわない。 The front end circuit 100 is provided at the front end of the communication device 3 and propagates a transmission signal or a reception signal between the RFIC 200 and the antenna element 300. Specifically, in addition to the nonreciprocal circuit element 1, the front end circuit 100 further includes a transmission side circuit such as a PA (Power Amplifier) 202, a BPF (Band Pass Filter) 203, and an LNA (Low). And a receiving circuit such as Noise Amplifier 204. Further, the front end circuit 100 is provided with a transmission terminal Ptx to which a transmission signal is input, an antenna terminal Pant to which the transmission signal is output and a reception signal is input, and a reception terminal Prx that outputs the reception signal. . The front-end circuit 100 may not include the BPF 203, and may include a matching circuit other than the above, a transmission or reception filter, or the like.
 非可逆回路素子1は、入出力端子16に対応する第1ポートPort1、第2ポートPort2および第3ポートPort3を有している。第1ポートPort1は送信側回路(ここではPA202)に接続され、第2ポートPort2は受信回路(ここではLNA204)に接続され、第3ポートPort3はアンテナ端子Pantに接続されている。具体的には、第1ポートPort1はPA202を介して送信端子Ptxに接続され、第2ポートPort2はLNA204を介して受信端子Prxに接続され、第3ポートPort3はBPF203を介してアンテナ端子Pantに接続されている。 The non-reciprocal circuit device 1 has a first port Port1, a second port Port2, and a third port Port3 corresponding to the input / output terminal 16. The first port Port1 is connected to a transmission side circuit (here, PA202), the second port Port2 is connected to a reception circuit (here, LNA204), and the third port Port3 is connected to an antenna terminal Pant. Specifically, the first port Port 1 is connected to the transmission terminal Ptx via the PA 202, the second port Port 2 is connected to the reception terminal Prx via the LNA 204, and the third port Port 3 is connected to the antenna terminal Pant via the BPF 203. It is connected.
 PA202は、RFIC200の送信端子(図中のTX)からフロントエンド回路100の送信端子Ptxに入力された送信信号(高周波送信信号)を増幅する、例えば電力増幅モジュールである。 PA 202 is, for example, a power amplification module that amplifies a transmission signal (high-frequency transmission signal) input from the transmission terminal (TX in the figure) of the RFIC 200 to the transmission terminal Ptx of the front end circuit 100.
 BPF203は、非可逆回路素子1から出力された送信信号を所定の使用周波数帯域でフィルタリングして通過させる。また、BPF203は、アンテナ端子Pantから入力された受信信号を当該使用周波数帯域でフィルタリングして通過させる。 The BPF 203 allows the transmission signal output from the nonreciprocal circuit element 1 to pass through after filtering in a predetermined use frequency band. Further, the BPF 203 passes the received signal input from the antenna terminal Pant after filtering in the use frequency band.
 LNA204は、非可逆回路素子1から出力された受信信号(高周波受信信号)を増幅する、例えば低雑音増幅モジュールである。 The LNA 204 is, for example, a low noise amplification module that amplifies the reception signal (high frequency reception signal) output from the nonreciprocal circuit element 1.
 このようなフロントエンド回路100は、送信端子Ptxに入力された送信信号を増幅かつフィルタリングしてアンテナ端子Pantから出力し、アンテナ端子Pantに入力された受信信号をフィルタリングかつ増幅して受信端子Prxから出力する。このとき、送信信号は非可逆回路素子1のTxパスを経由し、受信信号は非可逆回路素子1のRxパスを経由する。 Such a front-end circuit 100 amplifies and filters the transmission signal input to the transmission terminal Ptx and outputs it from the antenna terminal Pant, and filters and amplifies the reception signal input to the antenna terminal Pant from the reception terminal Prx. Output. At this time, the transmission signal passes through the Tx path of the nonreciprocal circuit element 1, and the reception signal passes through the Rx path of the nonreciprocal circuit element 1.
 RFIC200は、フロントエンド回路100の送信端子Ptxおよび受信端子Prxに接続され、送信信号または受信信号を信号処理する回路である。例えば、RFIC200は、ベースバンド信号処理回路(不図示)から入力された送信信号をアップコンバートして送信端子(図中TX)から出力し、フロントエンド回路100から受信端子(図中RX)に入力された受信信号をダウンコンバートしてベースバンド信号処理回路に出力する。 The RFIC 200 is a circuit that is connected to the transmission terminal Ptx and the reception terminal Prx of the front end circuit 100 and processes the transmission signal or the reception signal. For example, the RFIC 200 up-converts a transmission signal input from a baseband signal processing circuit (not shown) and outputs it from a transmission terminal (TX in the figure), and inputs from the front end circuit 100 to a reception terminal (RX in the figure). The received signal is down-converted and output to the baseband signal processing circuit.
 アンテナ素子300は、フロントエンド回路100のアンテナ端子Pantに接続され、送信信号を送信し、受信信号を受信する。アンテナ素子300の形状等については特に限定されず、通信装置3の使用周波数帯域に応じて適宜設計されていればよい。 The antenna element 300 is connected to the antenna terminal Pant of the front end circuit 100, transmits a transmission signal, and receives a reception signal. The shape or the like of the antenna element 300 is not particularly limited, and may be appropriately designed according to the use frequency band of the communication device 3.
 以上説明した通信装置3によれば、伝送信号の放射損失が低減された非可逆回路素子1を備えることにより、通信品質の向上を図ることができる。 According to the communication apparatus 3 described above, the communication quality can be improved by providing the nonreciprocal circuit element 1 in which the radiation loss of the transmission signal is reduced.
 (その他の変形例)
 以上、本発明の実施の形態に係る非可逆回路素子、非可逆回路モジュール、フロントエンド回路および通信装置について、実施の形態および変形例を挙げて説明したが、本発明の非可逆回路素子、非可逆回路モジュール、フロントエンド回路および通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の非可逆回路素子を内蔵した各種機器も本発明に含まれる。
(Other variations)
As described above, the nonreciprocal circuit element, the nonreciprocal circuit module, the front end circuit, and the communication device according to the embodiment of the present invention have been described with reference to the embodiment and the modification examples. The reversible circuit module, the front end circuit, and the communication device are not limited to the above embodiment. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, and modifications obtained by applying various modifications conceivable by those skilled in the art to the above-described embodiment without departing from the gist of the present invention. Examples and various devices incorporating the nonreciprocal circuit device of the present disclosure are also included in the present invention.
 例えば、上記実施の形態に係る非可逆回路素子の入出力導体部11は、入出力端子16を介さず、導電性接着剤を用いて伝送線路パターン51に直接接合されていてもよい。また、グランド導体部12は、グランド端子17を介さず、導電性接着剤を用いてグランドパターン52に直接接合されていてもよい。入出力導体部11と引き出し導体部42とは、導電性接着剤を介して接続されていてもよい。永久磁石30とフェライト40とは、非導電性接着剤等により接合されていてもよい。 For example, the input / output conductor portion 11 of the non-reciprocal circuit element according to the above embodiment may be directly joined to the transmission line pattern 51 using a conductive adhesive without using the input / output terminal 16. Further, the ground conductor portion 12 may be directly joined to the ground pattern 52 using a conductive adhesive without using the ground terminal 17. The input / output conductor part 11 and the lead conductor part 42 may be connected via a conductive adhesive. The permanent magnet 30 and the ferrite 40 may be joined by a non-conductive adhesive or the like.
 例えば、実施の形態1に係る非可逆回路モジュール2の実装基板50をインターポーザ基板とし、実装基板50の裏面に入出力用の外部端子を設け、非可逆回路モジュール2を、実装基板50とは異なるプリント配線板に搭載してもよい。ミリ波帯対応の非可逆回路素子1を使用する場合は、高周波信号が放射されにくいように実装基板50の回路設計を行う必要があり、その回路設計に多大な労力を有する。しかし、非可逆回路素子1が適切に表面実装された上記の非可逆回路モジュール2が予め準備されることで、上記問題を解消することが可能となる。 For example, the mounting substrate 50 of the nonreciprocal circuit module 2 according to Embodiment 1 is used as an interposer substrate, an external terminal for input / output is provided on the back surface of the mounting substrate 50, and the nonreciprocal circuit module 2 is different from the mounting substrate 50. You may mount in a printed wiring board. When using the irreversible circuit element 1 for the millimeter wave band, it is necessary to design the circuit of the mounting substrate 50 so that a high-frequency signal is not easily radiated, and the circuit design has a great effort. However, the above problem can be solved by preparing the nonreciprocal circuit module 2 on which the nonreciprocal circuit element 1 is appropriately surface-mounted in advance.
 例えば、上記説明では、非可逆回路素子として3ポート型の非可逆回路素子を例に説明したが、非可逆回路素子は4ポート以上の複数のポートを有してもかまわない。また、非可逆回路素子は、入力ポートおよび出力ポートを有する2ポートのアイソレータであってもよい。 For example, in the above description, a three-port non-reciprocal circuit element is described as an example of the non-reciprocal circuit element. The nonreciprocal circuit device may be a two-port isolator having an input port and an output port.
 例えば、グランド電位は、非可逆回路素子の回路グランドの電位(基準電位)であればよく、0V、大地グランドの電位(すなわちアースの基準電位)またはフレームグランドと異なる電位であってもかまわない。 For example, the ground potential may be a circuit ground potential (reference potential) of the nonreciprocal circuit element, and may be 0 V, a ground ground potential (that is, a ground reference potential), or a potential different from the frame ground.
 例えば、実施の形態1に係る非可逆回路素子1は、中心導体部41から、引き出し導体部42、入出力導体部11および入出力端子16を経由して伝送線路パターン51に至る伝送線路の屈曲領域においても、入出力導体部11に近接してグランド導体部12が設けられている。このように、中心導体部41から伝送線路パターン51に至る線路においても、伝送信号の放射損失を低減することができる。 For example, the nonreciprocal circuit device 1 according to the first exemplary embodiment is configured such that the transmission line is bent from the central conductor portion 41 to the transmission line pattern 51 via the lead conductor portion 42, the input / output conductor portion 11, and the input / output terminal 16. Also in the region, the ground conductor portion 12 is provided in the vicinity of the input / output conductor portion 11. Thus, the radiation loss of the transmission signal can also be reduced in the line from the central conductor portion 41 to the transmission line pattern 51.
 本発明は、通信装置のフロンドエンド部に配置される非可逆回路素子として、携帯電話の基地局等の通信装置に広く利用できる。 The present invention can be widely used in communication devices such as mobile phone base stations as non-reciprocal circuit elements arranged in the front end of the communication device.
 1、1A 非可逆回路素子
 2   非可逆回路モジュール
 3   通信装置
 10  第1ヨーク
 10a 第1主面
 10b 第2主面
 11  入出力導体部
 11a 入出力導体部の側面
 12  グランド導体部
 13  絶縁部
 13a 絶縁部の側面
 16  入出力端子
 17  グランド端子
 20  第2ヨーク
 21  天面部
 22  側面部
 30  永久磁石
 40  フェライト
 40a 一方主面
 40b 他方主面(第1ヨーク側に位置する面)
 40c 側面
 41  中心導体部
 42  引き出し導体部
 42a 主面引き出し部
 42b 貫通引き出し部
 42c インピーダンス調整部分
 50  実装基板
 50a 実装基板の表面
 51  伝送線路パターン
 52  グランドパターン
 90  伝送線路モデル
 91  実装基板
 92a、92b 伝送線路パターン
 93  グランドパターン
 94a、94b 入出力導体部
 95  グランド導体部
 96  絶縁部
 97  中心線路
 98a、98b 貫通線路
 99  フェライト
 100  フロントエンド回路
 200  RFIC
 202  PA
 203  BPF
 204  LNA
 300  アンテナ素子
 HA   屈曲領域
 i1   所定間隔
 Pant  アンテナ端子
 Port1  第1ポート
 Port2  第2ポート
 Port3  第3ポート
 Prx  受信端子
 Ptx  送信端子
 T1   電力の伝送経路
 λ    波長
DESCRIPTION OF SYMBOLS 1, 1A Nonreciprocal circuit element 2 Nonreciprocal circuit module 3 Communication apparatus 10 1st yoke 10a 1st main surface 10b 2nd main surface 11 I / O conductor part 11a Side surface of I / O conductor part 12 Ground conductor part 13 Insulating part 13a Insulation Side surface 16 Input / output terminal 17 Ground terminal 20 Second yoke 21 Top surface portion 22 Side surface portion 30 Permanent magnet 40 Ferrite 40a One main surface 40b The other main surface (surface located on the first yoke side)
40c side surface 41 central conductor portion 42 lead conductor portion 42a main surface lead portion 42b penetrating lead portion 42c impedance adjustment portion 50 mounting substrate 50a surface of mounting substrate 51 transmission line pattern 52 ground pattern 90 transmission line model 91 mounting substrate 92a, 92b transmission line Pattern 93 Ground pattern 94a, 94b Input / output conductor part 95 Ground conductor part 96 Insulating part 97 Center line 98a, 98b Through-line 99 Ferrite 100 Front end circuit 200 RFIC
202 PA
203 BPF
204 LNA
300 Antenna element HA Bending region i1 Predetermined interval Pant Antenna terminal Port1 First port Port2 Second port Port3 Third port Prx Reception terminal Ptx Transmission terminal T1 Power transmission path λ Wavelength

Claims (10)

  1.  実装基板の表面に実装される非可逆回路素子であって、
     永久磁石と、
     前記永久磁石により直流磁界が印加されるフェライトと、
     前記フェライトと前記実装基板との間に設けられている、第1ヨークと、
     を備え、
     前記フェライトは、前記第1ヨーク側に位置する面と背向する一方主面に形成される中心導体部と、前記中心導体部に接続され、前記中心導体部から引き出されている引き出し導体部とを有し、
     前記中心導体部は、LC成分を有し、
     前記第1ヨークは、前記引き出し導体部に接続されている入出力導体部と、前記入出力導体部に所定間隔をあけて近接配置されているグランド導体部とを有し、
     前記グランド導体部は、前記実装基板における前記表面に沿って形成されたグランドパターンに接続され、
     前記入出力導体部は、前記実装基板における前記表面に沿って形成された伝送線路パターンに接続され、
     前記入出力導体部には、前記伝送線路パターンを介してミリ波帯域の高周波信号が入出力される、
     非可逆回路素子。
    A non-reciprocal circuit device mounted on the surface of the mounting substrate,
    With permanent magnets,
    A ferrite to which a DC magnetic field is applied by the permanent magnet;
    A first yoke provided between the ferrite and the mounting substrate;
    With
    The ferrite includes a central conductor portion formed on one main surface facing away from a surface located on the first yoke side, and a lead conductor portion connected to the central conductor portion and drawn from the central conductor portion. Have
    The central conductor portion has an LC component;
    The first yoke has an input / output conductor portion connected to the lead conductor portion, and a ground conductor portion disposed close to the input / output conductor portion at a predetermined interval,
    The ground conductor portion is connected to a ground pattern formed along the surface of the mounting substrate,
    The input / output conductor portion is connected to a transmission line pattern formed along the surface of the mounting substrate,
    The input / output conductor portion receives and inputs a high-frequency signal in the millimeter wave band through the transmission line pattern.
    Non-reciprocal circuit element.
  2.  前記中心導体部は、円形状である、
     請求項1に記載の非可逆回路素子。
    The central conductor portion is circular.
    The nonreciprocal circuit device according to claim 1.
  3.  さらに、
     前記永久磁石および前記フェライトを覆う筒状の第2ヨークを備え、
     前記第2ヨークは、前記第1ヨークの前記グランド導体部に接続されている、
     請求項1または2に記載の非可逆回路素子。
    further,
    A cylindrical second yoke that covers the permanent magnet and the ferrite;
    The second yoke is connected to the ground conductor of the first yoke;
    The nonreciprocal circuit device according to claim 1 or 2.
  4.  前記フェライトおよび前記第1ヨークは、互いに接している、
     請求項1~3のいずれか1項に記載の非可逆回路素子。
    The ferrite and the first yoke are in contact with each other,
    The nonreciprocal circuit device according to any one of claims 1 to 3.
  5.  前記引き出し導体部および前記入出力導体部をそれぞれ3つ有する、
     請求項1~4のいずれか1項に記載の非可逆回路素子。
    Each having three lead conductor portions and three input / output conductor portions;
    The nonreciprocal circuit device according to any one of claims 1 to 4.
  6.  請求項5に記載の非可逆回路素子と、
     前記非可逆回路素子が実装される実装基板と、
     を備える非可逆回路モジュールであって、
     前記実装基板は、前記実装基板の表面に沿って形成された伝送線路パターンと、前記伝送線路パターンに対して間隔をあけて近接配置されている前記グランドパターンとを有し、
     前記非可逆回路素子の前記入出力導体部は、前記伝送線路パターンにそれぞれ接続され、
    前記非可逆回路素子の前記グランド導体部は、前記グランドパターンに接続されている、
     非可逆回路モジュール。
    A nonreciprocal circuit device according to claim 5,
    A mounting substrate on which the nonreciprocal circuit element is mounted;
    A non-reciprocal circuit module comprising:
    The mounting board has a transmission line pattern formed along the surface of the mounting board, and the ground pattern that is disposed close to the transmission line pattern with a space therebetween,
    The input / output conductor portions of the non-reciprocal circuit element are respectively connected to the transmission line pattern,
    The ground conductor portion of the non-reciprocal circuit element is connected to the ground pattern;
    Non-reciprocal circuit module.
  7.  前記伝送線路パターンを介して前記入出力導体部に入出力される高周波信号の波長をλとした場合、前記伝送線路パターンの信号伝搬方向における前記入出力導体部と前記グランド導体部との前記所定間隔は、0よりも大きく、かつ、0.1λ以下である、
     請求項6に記載の非可逆回路モジュール。
    When the wavelength of the high-frequency signal input / output to / from the input / output conductor via the transmission line pattern is λ, the predetermined input / output conductor and the ground conductor in the signal propagation direction of the transmission line pattern The interval is greater than 0 and less than or equal to 0.1λ.
    The nonreciprocal circuit module according to claim 6.
  8.  前記伝送線路パターンを介して前記入出力導体部に入力される電力のうち、前記入出力導体部および前記引き出し導体部にて生じる放射損の合計が30%以内である、
     請求項6または7に記載の非可逆回路モジュール。
    Of the electric power input to the input / output conductor part via the transmission line pattern, the total radiation loss generated in the input / output conductor part and the lead conductor part is within 30%.
    The nonreciprocal circuit module according to claim 6 or 7.
  9.  請求項5に記載の非可逆回路素子と、
     3つの前記入出力導体部のうちの1つに接続される送信側回路と、
     3つの前記入出力導体部のうちの1つであって、前記送信側回路に接続された入出力導体部と異なる入出力導体部に接続される受信側回路と、
     3つの前記入出力導体部のうちの1つであって、前記送信側回路および前記受信側回路に接続されたそれぞれの入出力導体部と異なる入出力導体部に接続されるアンテナ端子と、
     を備えるフロントエンド回路。
    A nonreciprocal circuit device according to claim 5,
    A transmitting circuit connected to one of the three input / output conductors;
    A receiving side circuit connected to an input / output conductor part different from the input / output conductor part connected to the transmitting side circuit, one of the three input / output conductor parts;
    An antenna terminal connected to an input / output conductor portion that is one of the three input / output conductor portions and is different from the input / output conductor portions connected to the transmission side circuit and the reception side circuit;
    Front end circuit with.
  10.  高周波信号を処理する信号処理回路と、
     請求項9に記載のフロントエンド回路と、
     を備える通信装置。
    A signal processing circuit for processing high-frequency signals;
    A front end circuit according to claim 9;
    A communication device comprising:
PCT/JP2017/019264 2016-07-29 2017-05-23 Irreversible circuit element, irreversible circuit module, front-end circuit and communication device WO2018020801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150677 2016-07-29
JP2016-150677 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018020801A1 true WO2018020801A1 (en) 2018-02-01

Family

ID=61016922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019264 WO2018020801A1 (en) 2016-07-29 2017-05-23 Irreversible circuit element, irreversible circuit module, front-end circuit and communication device

Country Status (1)

Country Link
WO (1) WO2018020801A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116309A (en) * 1995-10-23 1997-05-02 Tokin Corp Irrevensible circuit element
JP2000124710A (en) * 1998-10-13 2000-04-28 Murata Mfg Co Ltd Irreversible circuit element and communication device
JP2004015430A (en) * 2002-06-06 2004-01-15 Murata Mfg Co Ltd Two-port type nonreciprocal circuit element and communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116309A (en) * 1995-10-23 1997-05-02 Tokin Corp Irrevensible circuit element
JP2000124710A (en) * 1998-10-13 2000-04-28 Murata Mfg Co Ltd Irreversible circuit element and communication device
JP2004015430A (en) * 2002-06-06 2004-01-15 Murata Mfg Co Ltd Two-port type nonreciprocal circuit element and communication apparatus

Similar Documents

Publication Publication Date Title
TWI493893B (en) High-frequency circuit module
JP3863464B2 (en) Filter built-in antenna
US8536957B1 (en) High-frequency circuit module having a duplexer disposed between specified module integrated circuits
KR102441261B1 (en) High-frequency modules and communication devices
CN112005501B (en) High-frequency module and communication device provided with same
CN214069909U (en) High-frequency module and communication device
WO2012053412A1 (en) Communication terminal device
WO2011145323A1 (en) Antenna device and mobile wireless terminal with same mounted
US8248179B2 (en) Circuit module
JP5422078B1 (en) High frequency circuit module
KR101914014B1 (en) Substrate Integrated Waveguide Millimeter Wave Circulator
US11374598B2 (en) Radio frequency module and communication device
JP2015050689A (en) Non-reciprocal circuit element and communication device using the same
KR100397738B1 (en) Nonreciprocal circuit device and mounting structure of the same
JP6222360B2 (en) Dielectric non-contact transmission device and non-contact transmission method
WO2018020801A1 (en) Irreversible circuit element, irreversible circuit module, front-end circuit and communication device
CN114976545B (en) Circulator, isolator, antenna and wireless communication device
JP2009212263A (en) Electronic circuit module
JP4413176B2 (en) Wireless communication device
CN205282634U (en) Back of body chamber slot antenna structure and electronic equipment
JP2018186454A (en) Nonreversible circuit element, nonreversible circuit module, high frequency front end circuit and communication apparatus
US8502616B2 (en) Composite electronic module
US20170373364A1 (en) Circulator, front-end circuit, antenna circuit, and communication apparatus
WO2018092453A1 (en) DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM
JP2014099839A (en) High-frequency circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP