WO2018092453A1 - DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM - Google Patents

DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM Download PDF

Info

Publication number
WO2018092453A1
WO2018092453A1 PCT/JP2017/036181 JP2017036181W WO2018092453A1 WO 2018092453 A1 WO2018092453 A1 WO 2018092453A1 JP 2017036181 W JP2017036181 W JP 2017036181W WO 2018092453 A1 WO2018092453 A1 WO 2018092453A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
dielectric
dielectric composite
composite filter
circuit
Prior art date
Application number
PCT/JP2017/036181
Other languages
French (fr)
Japanese (ja)
Inventor
克人 黒田
尾仲 健吾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018092453A1 publication Critical patent/WO2018092453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides

Definitions

  • the present invention relates to a dielectric composite filter, a high frequency module, a high frequency front end circuit, a communication device, and a Massive MIMO system.
  • a dielectric waveguide filter provides a pass characteristic with extremely steep attenuation at the end of the pass band.
  • TE102 and TE201 since there are a plurality of higher order modes such as TE102 and TE201, suppression of spurious away from the passband is possible. It may not always be enough.
  • Spurious can be easily suppressed, for example, by adding a separate filter element.
  • the wiring conductor which is a wiring connecting the dielectric resonator and the separate filter element, is exposed to the space, the dielectric loss occurs due to radiation loss from the wiring conductor. There is a concern that the insertion loss of the body waveguide filter increases.
  • the present invention provides a dielectric composite filter with low insertion loss while suppressing spurious, a high-frequency module, a high-frequency front-end circuit, a communication device, and a Massive MIMO system using the dielectric composite filter.
  • a dielectric composite filter is formed by connecting a plurality of dielectric resonators, and converts a signal propagation mode into at least one dielectric resonator.
  • a waveguide filter provided with an input / output unit, a dielectric block connected to the dielectric resonator at one end, and a wiring formed on the surface of the dielectric block and extending from the input / output unit
  • a transmission line filter having a conductor.
  • the frequency characteristic of the waveguide filter can be supplemented by the transmission line filter.
  • the transmission line filter is connected to a dielectric resonator at one end where an input / output unit of the waveguide filter is provided, and is connected to the input / output unit by a wiring conductor formed on the surface of the dielectric block. Therefore, for example, compared to a case where a transmission line filter and a waveguide filter provided separately are connected by wiring, the wiring conductor can be significantly shortened, and radiation loss from the wiring conductor can be kept small. As a result, a dielectric composite filter having excellent frequency characteristics and low insertion loss can be obtained.
  • the transmission line filter may be a low pass filter.
  • the wiring conductor may have at least two or more portions having different widths that are dimensions in a direction orthogonal to the signal propagation direction in the wiring conductor.
  • the insufficient suppression of spurious due to the waveguide filter can be compensated by the transmission line filter which is a low-pass filter.
  • the transmission line filter may be a band elimination filter or a notch filter.
  • the wiring conductor may include a main conductor provided in a signal propagation direction and a plurality of open stubs branched from the main conductor.
  • a transmission line filter that is a band elimination filter or a notch filter.
  • the plurality of open stubs may include a first open stub extending to one side of the main conductor and a second open stub extending to the other side of the main conductor.
  • a conductor film may be formed on the surface of the transmission line filter opposite to the surface on which the wiring conductor is formed.
  • the wiring conductor of the transmission line filter is shielded by the conductor film, the radiation loss from the wiring conductor can be further reduced. As a result, the insertion loss of the dielectric composite filter is further reduced.
  • a conductor film is formed on the surface of the waveguide filter, and the conductor film formed on the opposite surface of the transmission line filter is a conductor film formed on the surface of the waveguide filter. There may be.
  • the wiring conductor and the input / output unit may be formed on the same surface of the dielectric composite filter.
  • the dielectric composite filter can be surface-mounted with the surface on which the wiring conductor and the input / output section are formed as the mounting surface, so the structure of the dielectric composite filter is simplified and the size is reduced. Is possible.
  • the input / output unit may be provided at a corner of the dielectric resonator at the one end.
  • the radiation loss from the wiring conductor is further suppressed, and the insertion loss of the dielectric composite filter is further reduced.
  • the dielectric composite filter may further include a dielectric resonator connected to a dielectric resonator at the other end of the waveguide filter.
  • the transmission line filter may be a low pass filter, and the dielectric resonator connected to the dielectric resonator at the other end may be a band elimination filter.
  • the dielectric resonator connected to the dielectric resonator at the other end functions as a band elimination filter, so that a steeper attenuation can be obtained at the passband end of the dielectric composite filter.
  • a high-frequency module includes the above-described dielectric composite filter, and a substrate on which a connection electrode having the same shape as a wiring conductor of the dielectric composite filter is formed. The wiring conductor and the connection electrode of the substrate are combined.
  • a high-frequency front-end circuit includes the above-described dielectric composite filter connected to an antenna element, a transmission amplifier circuit that amplifies a high-frequency transmission signal to be transmitted to the antenna element, and reception by the antenna element.
  • a reception amplifier circuit that amplifies the received high-frequency received signal, a transmission amplifier circuit, the reception amplifier circuit, and a switch circuit that switches connection between the dielectric composite filter.
  • a high-frequency front-end circuit includes a transmission amplifier circuit that amplifies a high-frequency transmission signal output from an RF signal processing circuit, and a reception amplifier circuit that amplifies a high-frequency reception signal and outputs the amplified signal to the RF signal processing circuit And the above-mentioned dielectric composite filter disposed between the RF signal processing circuit and the transmission amplifier circuit or between the RF signal processing circuit and the reception amplifier circuit.
  • a communication apparatus is connected to an antenna element, and amplifies a high-frequency signal transmitted and received by the antenna element.
  • the communication apparatus is connected to the high-frequency front-end circuit and the high-frequency front-end circuit.
  • An RF signal processing circuit that performs signal processing including frequency conversion between a high-frequency signal and a baseband signal, and a baseband signal processing circuit that is connected to the RF signal processing circuit and performs signal processing on the baseband signal.
  • a Massive MIMO system includes an antenna including a plurality of patch antennas arranged in a matrix and the above-described dielectric composite filter for each patch antenna.
  • a dielectric composite filter with low insertion loss while suppressing spurious, and a high-frequency front-end circuit, a communication device, and a Massive MIMO system using the dielectric composite filter are obtained. It is done.
  • FIG. 1 is a perspective view showing a structure of a dielectric composite filter according to Embodiment 1.
  • FIG. FIG. 2 is a plan view of a substrate on which the dielectric composite filter according to Embodiment 1 is mounted.
  • FIG. 3 is a graph showing the characteristics of the dielectric composite filter according to the first embodiment.
  • FIG. 4 is a perspective view showing the structure of the dielectric composite filter according to the second embodiment.
  • FIG. 5 is a graph showing the characteristics of the dielectric composite filter according to the second embodiment.
  • FIG. 6 is a perspective view showing a structure of a dielectric composite filter according to a comparative example of the second embodiment.
  • FIG. 7 is a graph showing characteristics of the transmission line filter according to the comparative example of the second embodiment.
  • FIG. 8 is a perspective view showing the structure of the dielectric composite filter according to the third embodiment.
  • FIG. 9 is a perspective view showing the structure of another dielectric composite filter according to the third embodiment.
  • FIG. 10 is an exploded perspective view showing the structure of the dielectric composite filter according to the fourth embodiment.
  • FIG. 11 is a perspective view showing the structure of the dielectric composite filter according to the fourth embodiment.
  • FIG. 12 is an exploded perspective view showing the structure of another dielectric composite filter according to the fifth embodiment.
  • FIG. 13A is a circuit diagram showing a high-frequency front-end circuit and a communication device according to Embodiment 6.
  • FIG. 13B is a circuit diagram showing a high-frequency front-end circuit according to Modification 1 of Embodiment 6.
  • FIG. 13A is a circuit diagram showing a high-frequency front-end circuit and a communication device according to Embodiment 6.
  • FIG. 13B is a circuit diagram showing a high-frequency front-end circuit according to Modification 1 of Embodiment
  • FIG. 13C is a circuit diagram showing a high-frequency front-end circuit according to Modification 2 of Embodiment 6.
  • FIG. 14A is a circuit diagram showing a Massive MIMO system according to Embodiment 7.
  • FIG. 14B is a plan view of the antenna device of the Massive MIMO system according to Embodiment 7.
  • FIG. 1 is a perspective view showing an example of the structure of the dielectric composite filter according to the first embodiment.
  • the dielectric composite filter 1 includes a waveguide filter 10 and a transmission line filter 21.
  • the waveguide filter 10 is formed by connecting a plurality of dielectric resonators 12 to 15.
  • the waveguide filter 10 is formed by covering a substantially rectangular parallelepiped dielectric block 40 provided with a plurality of grooves 40a and 40b with a conductive film 50, and a region divided by the grooves 40a and 40b is a dielectric resonator 12. Functions as ⁇ 15.
  • the dielectric block 40 is made of, for example, a dielectric material such as crystal or ceramic, and the grooves 40a and 40b are provided by machining using, for example, a wire saw.
  • the conductive film 50 is formed, for example, by applying and baking a conductive paste containing silver. In FIG. 1, a conductive film 50 is formed in a hatched area on the surface of the dielectric block 40, and the dielectric block 40 is exposed in a white area. Although not shown in FIG. 1, the conductive coating 50 is also formed on the back side and left side surfaces of the dielectric block 40.
  • the dielectric resonators 12 and 15 at both ends are provided with input / output units 18 and 19 for converting a signal propagation mode between a TE (Transverse Electric) mode and a TEM (Transverse ElectroMagnetic) mode, respectively.
  • TE Transverse Electric
  • TEM Transverse ElectroMagnetic
  • the TE mode and the TEM mode are signal propagation modes inside and outside the waveguide filter 10, respectively.
  • the transmission line filter 21 includes a dielectric block connected to the dielectric resonator 12 and a wiring conductor 53 formed on the surface of the dielectric block and extending from the input / output unit 18.
  • the dielectric block constituting the transmission line filter 21 is one end portion divided by the groove 40 b of the dielectric block 40. That is, the transmission line filter 21 and the waveguide filter 10 are integrally formed using a single dielectric block 40.
  • the term “wiring conductor 53” extending from the input / output unit 18 means that the wiring conductor 53 is a part of the conductive coating 50 and is connected to a portion of the conductive coating 50 that constitutes the input / output unit 18. It may mean that.
  • the wiring conductor 53 has a plurality of portions having different widths, and a region where the conductive coating 50 is not disposed is provided around the wiring conductor 53.
  • the width of the wiring conductor 53 refers to a dimension in a direction orthogonal to the signal propagation direction in the wiring conductor 53.
  • the transmission line filter 21 functions as a low-pass filter.
  • the wiring conductor 53 may be formed by applying and baking a conductive paste containing silver.
  • the wiring conductor 53 and the input / output unit 18 are formed on the same surface of the dielectric block 40 constituting the dielectric composite filter 1 (the surface shown on the front side in FIG. 1).
  • the dielectric composite filter 1 is mounted on the substrate on the surface.
  • this surface is referred to as a mounting surface.
  • a conductive coating 51 is formed on the surface of the transmission line filter 21 opposite to the surface on which the wiring conductor 53 is formed (the back side surface in FIG. 1).
  • the conductive film 51 (including the wiring conductor 53) formed on the surface of the transmission line filter 21 may be the same conductor film as the conductive film 51 formed on the surface of the waveguide filter 10.
  • FIG. 2 is a plan view showing an example of a substrate 80 on which the dielectric composite filter 1 is mounted. The broken line represents the mounting position of the dielectric composite filter 1.
  • a conductive foil 81 is laid on the substrate 80.
  • the substrate 80 is made of, for example, a resin such as epoxy or phenol, and the conductor foil 81 is made of, for example, a copper foil.
  • the conductor foil 81 is disposed in a region indicated by oblique lines on the surface of the substrate 80 and is not disposed in a white region.
  • the conductor foil 81 extends from a corresponding position of the input / output unit 18 of the dielectric composite filter 1 and constitutes a connection electrode 82 having the same shape as the wiring conductor 53. Further, a coplanar line 83 connected to the connection electrode 82 and a coplanar line 84 extending from a corresponding position of the input / output unit 19 of the dielectric composite filter 1 are configured. Other portions of the conductor foil 81 constitute a ground plane.
  • connection electrode 82 of the substrate 80 and the wiring conductor 53 of the dielectric composite filter 1 are joined by a conductive joining material such as solder to constitute the high frequency module 8.
  • An application circuit using the high-frequency module 8 inputs and outputs signals to the dielectric composite filter 1 via the coplanar lines 83 and 84 of the substrate 80.
  • the fact that the wiring conductor 53 and the connection electrode 82 have the same shape is not limited to the fact that the shape of the wiring conductor 53 and the shape of the connection electrode 82 are exactly the same.
  • a shape having the same design and including a manufacturing error may be included in the same shape.
  • shapes having overlapping regions that can be joined to each other through a conductive bonding material such as solder may be included in the same shape.
  • FIG. 3 is a graph showing an example of pass characteristics (frequency dependence of insertion loss) of the dielectric composite filter 1.
  • FIG. 3 shows the simulation results of the pass characteristics of the waveguide filter 10 and the transmission line filter 21 separated from the dielectric composite filter 1 and the pass characteristics of the dielectric composite filter 1 as a whole. The loss is shown normalized to 0 dB.
  • the transmission line filter 21 can supplement the frequency characteristics of the waveguide filter 10. Specifically, insufficient transmission of spurious due to the waveguide filter 10 is compensated by the transmission line filter 21 that is a low-pass filter.
  • the transmission line filter 21 is connected to the dielectric resonator 12 having the input / output unit 18 of the waveguide filter 10 and is connected to the input / output unit 18 by a wiring conductor 53 formed on the surface of the dielectric block.
  • the wiring conductor 53 can be significantly shortened, and radiation loss from the wiring conductor 53 can be kept small.
  • the radiation loss from the wiring conductor 53 can be reduced by shielding the wiring conductor 53 with the conductive coating 50.
  • the dielectric composite filter 1 having excellent frequency characteristics and low insertion loss can be obtained.
  • the dielectric resonator 12 of the waveguide filter 10 and the transmission line filter 21 are connected to each other and can be integrally formed from a single dielectric block 40.
  • integrally forming the waveguide filter 10 and the transmission line filter 21 from a single dielectric block 40 the manufacturing process of the dielectric composite filter 1 is simplified, and variations in frequency characteristics are also suppressed.
  • the dielectric composite filter 1 can be surface-mounted with the same surface as a mounting surface. This simplifies the structure of the dielectric composite filter 1 and enables downsizing.
  • the radiation loss from the wiring conductor 53 is further reduced, and the insertion loss of the dielectric composite filter 1 is further reduced.
  • Embodiment 2 In Embodiment 1, although the transmission line filter 21 which functions as a low-pass filter was illustrated, a transmission line filter is not restricted to a low-pass filter. In the second embodiment, a dielectric composite filter in which the transmission line filter is a band elimination filter or a notch filter will be described.
  • FIG. 4 is a perspective view showing an example of the structure of the dielectric composite filter according to the second embodiment.
  • the dielectric composite filter 2 shown in FIG. 4 is configured by replacing the transmission line filter 21 of the dielectric composite filter 1 of FIG. Since the other components of the dielectric composite filter 2 are the same as those of the dielectric composite filter 1, the same reference numerals are given and description thereof is omitted.
  • the transmission line filter 22 includes a dielectric block connected to the dielectric resonator 12 and a wiring conductor 54 formed on the surface of the dielectric block and extending from the input / output unit 18.
  • the dielectric block constituting the transmission line filter 22 is one end portion divided by the groove 40 b of the dielectric block 40. That is, the transmission line filter 22 and the waveguide filter 10 are integrally formed using a single dielectric block 40.
  • the wiring conductor 54 has a main conductor 56 provided in the signal propagation direction in the wiring conductor 54 and a plurality of open stubs 57 and 58 branched from the main conductor 56. A region where the coating 50 is not disposed is provided. Thereby, the transmission line filter 22 functions as a band elimination filter or a notch filter.
  • the wiring conductor 54 and the input / output unit 18 are formed on the mounting surface of the dielectric composite filter 2 (the surface shown on the front side in FIG. 4).
  • FIG. 5 is a graph showing an example of the pass characteristic of the dielectric composite filter 2.
  • FIG. 5 shows the simulation results of the pass characteristics of the waveguide filter 10 and the transmission line filter 22 separated from the dielectric composite filter 2 and the pass characteristics of the dielectric composite filter 2 as a whole. The loss is shown normalized to 0 dB.
  • the radiation loss from the wiring conductor 54 can be kept small.
  • the dielectric composite filter 2 having excellent frequency characteristics and low insertion loss can be obtained.
  • FIG. 6 is a perspective view showing an example of the structure of the dielectric composite filter according to the comparative example of the second embodiment.
  • the dielectric composite filter 3 shown in FIG. 6 is configured by replacing the transmission line filter 22 of the dielectric composite filter 2 of FIG. Since the other components of the dielectric composite filter 3 are the same as those of the dielectric composite filter 2, the same reference numerals are given and description thereof is omitted.
  • the transmission line filter 23 is configured by changing the open stub 58 of the transmission line filter 22 to an open stub 59 extending to the same side as the open stub 57 of the main conductor 56.
  • FIG. 7 is a graph showing an example of pass characteristics of the transmission line filters 22 and 23.
  • FIG. 7 shows the simulation results of the transmission characteristics of the transmission line filters 22 and 23 separated from the dielectric composite filters 2 and 3, respectively, with the minimum loss within the display range normalized to 0 dB.
  • the transmission line filter 23 has a smaller attenuation than the transmission line filter 22 at a frequency of 38 GHz or more corresponding to spurious. This is thought to be because the open stubs are connected to the same side of the main conductor and coupling occurs between the open stubs, thereby reducing the attenuation.
  • the transmission line filter 22 that opens the open stubs 57 and 58 to both sides of the main conductor 56 is more than the transmission line filter 23 that opens the open stubs 57 and 59 only to one side of the main conductor 56. It can be said that it is excellent.
  • the dielectric composite filter formed by connecting the transmission line filter to one end of the waveguide filter is illustrated, but the dielectric composite filter is not limited to this example.
  • a dielectric composite filter in which a dielectric resonator is further connected to the other end of the waveguide filter will be described.
  • FIG. 8 is a perspective view showing an example of the structure of the dielectric composite filter according to the third embodiment.
  • the dielectric composite filter 4 shown in FIG. 8 is different from the dielectric composite filter 1 of FIG. 1 in that the waveguide filter 11 is changed, and a transmission line filter 21 and a dielectric are formed at one end and the other end of the waveguide filter 11.
  • the body resonators 31 are connected to each other.
  • the waveguide filter 11 is configured by adding a dielectric resonator 16 to the waveguide filter 10. Since the other components of the dielectric composite filter 4 are the same as those of the dielectric composite filter 1, the same reference numerals are given and description thereof is omitted.
  • the dielectric resonator 31 is connected to the dielectric resonator 15.
  • the dielectric resonator 31 is an end portion divided by the groove 40 c of the dielectric block 40. That is, the dielectric resonator 31 and the waveguide filter 11 are integrally formed using a single dielectric block 40.
  • the dielectric resonator 31 functions as a band elimination filter and further improves the frequency characteristics of the dielectric composite filter 4 by giving large attenuation to the frequency in the vicinity of the pass band.
  • FIG. 9 is a perspective view showing an example of the structure of another dielectric composite filter according to the third embodiment.
  • the dielectric composite filter 5 shown in FIG. 9 is configured by replacing the transmission line filter 21 of the dielectric composite filter 4 of FIG. Since the other components of the dielectric composite filter 5 are the same as those of the dielectric composite filter 4, the same reference numerals are given and description thereof is omitted. Also in the dielectric composite filter 5, the frequency characteristics are improved by the dielectric resonator 31 as in the case of the dielectric composite filter 4.
  • the dielectric composite filter according to Embodiment 4 is a dielectric composite filter formed by bonding a first part and a second part of a dielectric composite filter provided separately.
  • FIG. 10 is an exploded perspective view showing an example of the structure of the dielectric composite filter according to the fourth embodiment.
  • the dielectric composite filter 6 includes a first portion 61 and a second portion 62.
  • the first portion 61 and the second portion 62 are shown as seen from different viewpoints.
  • the dielectric composite filter 6 corresponds to a portion composed of the transmission line filter 22 and the waveguide filter 11 in the dielectric composite filter 5 of FIG.
  • the constituent elements of the dielectric composite filter 6 are denoted by the same reference numerals as the corresponding constituent elements of the dielectric composite filter 5.
  • the first portion 61 is formed by connecting the transmission line filter 22 and the dielectric resonators 12 and 13a.
  • the first portion 61 is formed by covering a substantially rectangular parallelepiped dielectric block 41 provided with a plurality of grooves 41a and 41b with a conductive film 51, and a region divided by the grooves 41a and 41b is the transmission line filter 22, dielectric It functions as the body resonators 12 and 13a.
  • the transmission line filter 22 is provided with a wiring conductor 54 similar to that shown in FIG.
  • the second portion 62 is formed by connecting the dielectric resonators 14a, 16, and 15.
  • the second portion 62 is formed by covering a substantially rectangular parallelepiped dielectric block 42 provided with a plurality of grooves 42 a with a conductive film 52, and regions divided by the grooves 42 a are used as dielectric resonators 14 a, 16, and 15. Function.
  • the dielectric resonators 13 a and 14 a are provided with coupling windows 51 a and 52 a through which electromagnetic waves can pass through the dielectric resonators 13 and 14 of the dielectric composite filter 5.
  • the coupling windows 51a and 52a are formed by not disposing the conductive films 51 and 52.
  • the dielectric composite filter 6 is configured by bonding the first portion 61 and the second portion 62 with, for example, an adhesive.
  • FIG. 11 is a perspective view showing an example of the dielectric composite filter 6 after the first portion 61 and the second portion 62 are bonded together.
  • Dielectric resonators 13a and 14a are coupled via coupling windows 51a and 52a.
  • the dielectric composite filter 6 functions substantially the same as the portion constituted by the transmission line filter 22 and the waveguide filter 11 of the dielectric composite filter 5 of FIG. To do.
  • the transmission line filter in the dielectric composite filter 6 is not limited to the transmission line filter 22, and for example, the transmission line filter 21 of FIG. 8 may be used.
  • the dielectric composite filter 6 functions substantially the same as the portion constituted by the transmission line filter 21 and the waveguide filter 11 of the dielectric composite filter 4 of FIG.
  • FIG. 12 is an exploded perspective view showing an example of the structure of another dielectric composite filter according to the fourth embodiment. As shown in FIG. 12, the dielectric composite filter 7 is configured by bonding the first portion 71 and the second portion 72 together.
  • a desired attenuation pole is added by providing coupling windows 51 b and 52 b in the dielectric resonators 12 a and 16 a.
  • the dielectric composite filter formed by bonding a plurality of parts provided separately is not limited to the above example.
  • the third portion and the fourth portion may be further bonded to the invisible surface on the side.
  • a dielectric having a two-story structure in which the first portion 61 and the second portion 62 are located in the first layer including the mounting surface, and the third portion and the fourth portion are located in the second layer above the mounting surface.
  • a body composite filter is constructed. In such a dielectric composite filter, for example, the arrangement of the coupling window is changed and added so that a signal is transmitted in the order of the first portion 61, the third portion, the fourth portion, and the second portion 62.
  • FIG. 13A is a circuit diagram showing the high-frequency front-end circuit 110 and its peripheral circuits according to the sixth embodiment.
  • a high-frequency front-end circuit 110 an antenna element 150, an RF signal processing circuit 191 and a baseband signal processing circuit 192 are shown.
  • the high-frequency front end circuit 110 includes filters 161, 162, and 163, a switch circuit 170, a power amplifier circuit 181, and a low noise amplifier circuit 182.
  • the power amplifier circuit 181 is a transmission amplification circuit that amplifies the high-frequency transmission signal output from the RF signal processing circuit 191 and outputs the amplified signal to the antenna element 150 via the switch circuit 170 and the filter 161.
  • the low noise amplifier circuit 182 is a reception amplification circuit that amplifies a high-frequency signal that has passed through the antenna element 150, the filter 161, and the switch circuit 170 and outputs the amplified signal to the RF signal processing circuit 191.
  • the filter 161 is an antenna filter that is connected to the antenna element 150 and selectively allows high-frequency signals in the transmission band and the reception band to pass therethrough, for example.
  • the filter 162 is an interstage filter that is disposed between the power amplifier circuit 181 and the RF signal processing circuit 191 and selectively passes a high-frequency signal in the transmission band.
  • the filter 163 is an interstage filter that is disposed between the low noise amplifier circuit 182 and the RF signal processing circuit 191 and selectively passes a high frequency signal in the reception band.
  • the switch circuit 170 is a switch that switches connection between the antenna element 150 and the transmission signal path and the reception signal path.
  • the RF signal processing circuit 191 processes the high-frequency reception signal input from the antenna element 150 via the reception signal path by down-conversion or the like, and the baseband signal processing circuit 192 generates the reception signal generated by the signal processing. Output to.
  • the RF signal processing circuit 191 is, for example, an RFIC (Radio Frequency Integrated Circuit). Further, the RF signal processing circuit 191 performs signal processing on the transmission signal input from the baseband signal processing circuit 192 by up-conversion or the like, and outputs the high-frequency transmission signal generated by the signal processing to the power amplifier circuit 181.
  • the signal processed by the baseband signal processing circuit 192 is used, for example, for displaying an image as an image signal or for calling as an audio signal.
  • the high-frequency front end circuit 110 may include other circuit elements between the filters 161, 162, and 163, the switch circuit 170, the power amplifier circuit 181, and the low noise amplifier circuit 182.
  • the dielectric composite filters according to the first to fourth embodiments can be used as the filters 161, 162, and 163.
  • the filters 161, 162, and 163 achieve a small insertion loss while suppressing spurious, so that a high-frequency front-end circuit having excellent high-frequency characteristics can be realized.
  • FIG. 13B is a circuit diagram showing the high-frequency front end circuit 110B according to the first modification of the sixth embodiment.
  • the high frequency front end circuit 110 ⁇ / b> B includes filters 161, 162 and 163, a power amplifier circuit 181, a low noise amplifier circuit 182, a circulator 171, and a switch circuit 172.
  • the high-frequency front end circuit 110B according to this modification is different from the high-frequency front end circuit 110 in the configuration for switching between the transmission signal path and the reception signal path.
  • the description of the same configuration as that of the high-frequency front end circuit 110 will be omitted, and a description will be given focusing on different configurations.
  • the circulator 171 has an antenna-side terminal, a transmission-side terminal, and a reception-side terminal. During reception, the circulator 171 selectively propagates a reception signal from the antenna element 150 to the reception signal path, and at the time of transmission, the antenna element 150 is transmitted from the transmission signal path. This is a circuit element that selectively propagates a transmission signal to.
  • the switch circuit 172 is a switch for switching the connection between the circulator 171 and the reception signal path.
  • the receiving side terminal of the circulator 171 is terminated with a terminating resistor (50 ⁇ ).
  • the reception side terminal of the circulator 171 is connected to the low noise amplifier circuit 182.
  • the high-frequency front end circuit 110B is applied as a time division duplex front-end circuit.
  • the dielectric composite filters according to the first to fourth embodiments can be used as the filters 161, 162, and 163.
  • FIG. 13C is a circuit diagram showing a high-frequency front-end circuit 110C according to the second modification of the sixth embodiment.
  • the high frequency front end circuit 110 ⁇ / b> C includes a duplexer 164, filters 162 and 163, a power amplifier circuit 181, a low noise amplifier circuit 182, and an isolator 173.
  • the high-frequency front end circuit 110C according to this modification is different from the high-frequency front end circuit 110 in the configuration for switching between the transmission signal path and the reception signal path.
  • the description of the same configuration as that of the high-frequency front end circuit 110 will be omitted, and a description will be given focusing on different configurations.
  • the duplexer 164 has an antenna terminal, a transmission side terminal, and a reception side terminal, has a transmission filter between the antenna terminal and the transmission side terminal, and has a reception filter between the antenna terminal and the reception side terminal. Have.
  • the isolator 173 is a circuit element that is disposed between the transmission-side terminal of the duplexer 164 and the power amplifier circuit 181 and propagates a transmission signal in one direction from the power amplifier circuit 181 to the duplexer 164.
  • the isolator 173 can be realized, for example, by terminating one terminal among the three terminals of the circulator by 50 ⁇ .
  • the high frequency front end circuit 110C is applied as a front end circuit of a frequency division duplex system.
  • the dielectric composite filter according to the first to fourth embodiments can be used as the transmission-side filter and the reception-side filter of the duplexer 164 and the filters 162 and 163.
  • the phantom cell is a network configuration that separates a control signal for ensuring communication stability between a macro cell in a low frequency band and a small cell in a high frequency band and a data signal that is a target of high-speed data communication.
  • Each phantom cell is provided with a Massive MIMO antenna device.
  • the Massive MIMO system is a technique for improving transmission quality in a millimeter wave band or the like, and controls the directivity of the antenna element by controlling a signal transmitted from each antenna element.
  • the Massive MIMO system uses a large number of antenna elements, and therefore can generate a sharp directional beam.
  • By increasing the directivity of the beam it is possible to fly radio waves to some extent even in a high frequency band, and it is possible to reduce the interference between cells and increase the frequency utilization efficiency.
  • FIG. 14A is a circuit diagram showing a Massive MIMO system according to Embodiment 7.
  • FIG. 14B is a plan view of the antenna device of the Massive MIMO system according to Embodiment 7.
  • the antenna device 111 shown in FIG. 14B is used in the Massive MIMO system shown in FIG. 14A.
  • the antenna device 111 includes a plurality of patch antennas 112 arranged in a matrix.
  • FIG. 14A is a diagram illustrating a configuration of a high-frequency front-end circuit 110A including the antenna device 111.
  • This high-frequency front end circuit 110A is a Massive MIMO system according to the present embodiment.
  • the patch antenna 112 is connected with band-pass filters 161a, 161b and 161c.
  • a switch circuit 170a is connected between the filter 161a, the power amplifier circuit 181a, and the low noise amplifier circuit 182a.
  • a switch circuit 170b is connected between the filter 161b, the power amplifier circuit 181b, and the low noise amplifier circuit 182b.
  • a switch circuit 170c is connected between the filter 161c, the power amplifier circuit 181c, and the low noise amplifier circuit 182c.
  • the low noise amplifier circuits 182a, 182b, and 182c are connected to the baseband signal processing circuit 192.
  • a band pass filter 162a and a mixer 194a are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181a.
  • a band-pass filter 162b and a mixer 194b are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181b.
  • a band-pass filter 162c and a mixer 194c are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181c.
  • a local oscillator 193 is connected to the mixers 194a, 194b and 194c. The local oscillator 193 outputs, to the mixers 194a to 194c, a reference frequency for up-conversion to a high frequency and down-conversion to a low frequency in the mixers 194a to 194c.
  • Filters 161a to 161c pass the transmission / reception frequency band and remove other frequency components.
  • the switch circuits 170a to 170c switch between a transmission signal and a reception signal.
  • the filters 162a to 162c pass the frequency band of the transmission signal and remove other frequency components.
  • the dielectric composite filters 161a to 161c and 162a to 162c can be used as the filters 161a to 161c and 162a to 162c.
  • the filters 161a to 161c connected to the patch antenna 112 may be arranged on the back surface of the substrate on which the patch antenna 112 is formed. Thereby, the antenna device 111 including the patch antenna 112 with the filters 161a to 161c is configured.
  • the filters 161a to 161c and 162a to 162c achieve a small insertion loss while suppressing spurious, so that a Massive MIMO system having excellent high-frequency characteristics can be realized. Is possible.
  • the present invention is not limited to individual embodiments. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
  • the present invention can be widely used in communication devices such as millimeter wave mobile communication systems and massive MIMO systems as dielectric composite filters with low insertion loss while suppressing spurious.
  • Dielectric Composite Filter 8 High Frequency Module 10, 11 Waveguide Filter 12-16, 12a-14a, 16a, 31 Dielectric Resonator 18, 19 Input / Output Unit 21-23 Transmission Line Filter 40-42 Dielectric Block 40a, 40b, 40c, 41a, 41b, 42a Groove 50-52 Conductive coating 51a, 51b, 52a, 52b Coupling window 53, 54 Wiring conductor 56 Main conductor 57-59 Open stub 80 Substrate 81 Conductive foil 82 Connection electrode 83, 84 Coplanar lines 110, 110A to 110C High-frequency front end circuit 111 Antenna device 112 Patch antenna 150 Antenna element 161, 161a to 161c, 162, 162a to 162c, 163 Filter 164 Duplexer 1 0,170a ⁇ 170c, 172 switching circuit 171 circulator 173 isolators 181,181a ⁇ 181c power amplifier circuit 182,182a ⁇ 182c low-noise amplifier circuit

Abstract

A dielectric composite filter (1) is provided with: a waveguide filter (10) which is formed by coupling a plurality of dielectric resonators (12-15), and in which an input/output part (18) for converting a signal propagation mode is provided at least in the dielectric resonator (12) at one end; and a transmission line filter (21) which comprises a dielectric block coupled to the dielectric resonator (12), and a wiring conductor (53) formed on the surface of the dielectric block and extending from the input/output part (18). As an example, the transmission line filter (21) may be a low-pass filter, and the wiring conductor (53) may have at least two portions with different widths, each width being a size in a direction orthogonal to the signal propagation direction of the wiring conductor (53).

Description

誘電体複合フィルタ、高周波モジュール、高周波フロントエンド回路、通信装置、及びMassive MIMOシステムDielectric composite filter, high-frequency module, high-frequency front-end circuit, communication device, and Massive MIMO system
 本発明は誘電体複合フィルタ、高周波モジュール、高周波フロントエンド回路、通信装置装置、及びMassive MIMOシステムに関する。 The present invention relates to a dielectric composite filter, a high frequency module, a high frequency front end circuit, a communication device, and a Massive MIMO system.
 従来、複数の誘電体共振器を連結してなる誘電体導波管フィルタがある(例えば、特許文献1)。 Conventionally, there is a dielectric waveguide filter formed by connecting a plurality of dielectric resonators (for example, Patent Document 1).
特開2002-135003号公報JP 2002-135003 A
 誘電体導波管フィルタでは、一般に、通過帯域端での減衰が極めて急峻な通過特性が得られる反面、TE102、TE201等、複数の高次モードがあるので、通過帯域から離れたスプリアスの抑制が必ずしも十分でないことがある。 In general, a dielectric waveguide filter provides a pass characteristic with extremely steep attenuation at the end of the pass band. However, since there are a plurality of higher order modes such as TE102 and TE201, suppression of spurious away from the passband is possible. It may not always be enough.
 スプリアスは、例えば、別途のフィルタ素子を追加することで容易に抑制できる。しかしながら、誘電体共振器と別途のフィルタ素子とを接続する場合、誘電体共振器と別途のフィルタ素子とを接続する配線である配線導体が空間に露出すると、配線導体からの放射損失により、誘電体導波管フィルタの挿入損失が増大する懸念がある。 Spurious can be easily suppressed, for example, by adding a separate filter element. However, when connecting a dielectric resonator and a separate filter element, if the wiring conductor, which is a wiring connecting the dielectric resonator and the separate filter element, is exposed to the space, the dielectric loss occurs due to radiation loss from the wiring conductor. There is a concern that the insertion loss of the body waveguide filter increases.
 そこで、本発明は、スプリアスを抑制しながら挿入損失が小さい誘電体複合フィルタ、及び、当該誘電体複合フィルタを用いた高周波モジュール、高周波フロントエンド回路、通信装置、及びMassive MIMOシステムを提供する。 Therefore, the present invention provides a dielectric composite filter with low insertion loss while suppressing spurious, a high-frequency module, a high-frequency front-end circuit, a communication device, and a Massive MIMO system using the dielectric composite filter.
 上記目的を達成するために、本発明の一態様に係る誘電体複合フィルタは、複数の誘電体共振器を連結してなり、少なくとも一方端の誘電体共振器に、信号の伝搬モードを変換する入出力部が設けられている導波管フィルタと、前記一方端の誘電体共振器に連結された誘電体ブロックと、前記誘電体ブロックの表面に形成され、かつ、前記入出力部から延びる配線導体と、を有する伝送線路フィルタと、を備える。 In order to achieve the above object, a dielectric composite filter according to one aspect of the present invention is formed by connecting a plurality of dielectric resonators, and converts a signal propagation mode into at least one dielectric resonator. A waveguide filter provided with an input / output unit, a dielectric block connected to the dielectric resonator at one end, and a wiring formed on the surface of the dielectric block and extending from the input / output unit A transmission line filter having a conductor.
 この構成によれば、導波管フィルタの周波数特性を、伝送線路フィルタで補うことができる。伝送線路フィルタは、導波管フィルタの入出力部がある一方端の誘電体共振器に連結して設けられ、誘電体ブロックの表面に形成された配線導体で入出力部と接続される。そのため、例えば、別体に設けた伝送線路フィルタと導波管フィルタとを配線で接続する場合と比べて、配線導体を大幅に短くでき、配線導体からの放射損失は小さく抑えられる。その結果、周波数特性に優れかつ挿入損失が小さい誘電体複合フィルタが得られる。 According to this configuration, the frequency characteristic of the waveguide filter can be supplemented by the transmission line filter. The transmission line filter is connected to a dielectric resonator at one end where an input / output unit of the waveguide filter is provided, and is connected to the input / output unit by a wiring conductor formed on the surface of the dielectric block. Therefore, for example, compared to a case where a transmission line filter and a waveguide filter provided separately are connected by wiring, the wiring conductor can be significantly shortened, and radiation loss from the wiring conductor can be kept small. As a result, a dielectric composite filter having excellent frequency characteristics and low insertion loss can be obtained.
 また、前記伝送線路フィルタはローパスフィルタであってもよい。また、前記配線導体は、前記配線導体における信号の伝搬方向に直交する方向の寸法である幅が異なる部分を少なくとも2以上有していてもよい。 The transmission line filter may be a low pass filter. The wiring conductor may have at least two or more portions having different widths that are dimensions in a direction orthogonal to the signal propagation direction in the wiring conductor.
 この構成によれば、導波管フィルタによるスプリアスの抑制不足を、ローパスフィルタである伝送線路フィルタで補うことができる。 According to this configuration, the insufficient suppression of spurious due to the waveguide filter can be compensated by the transmission line filter which is a low-pass filter.
 また、前記伝送線路フィルタはバンドエリミネーションフィルタ又はノッチフィルタであってもよい。また、前記配線導体は、信号の伝搬方向に設けられた主導体と、当該主導体から分岐する複数のオープンスタブとを有していてもよい。 The transmission line filter may be a band elimination filter or a notch filter. The wiring conductor may include a main conductor provided in a signal propagation direction and a plurality of open stubs branched from the main conductor.
 この構成によれば、導波管フィルタによるスプリアスの抑制不足を、バンドエリミネーションフィルタ又はノッチフィルタである伝送線路フィルタで補うことができる。 According to this configuration, insufficient suppression of spurious due to the waveguide filter can be compensated for by a transmission line filter that is a band elimination filter or a notch filter.
 また、前記複数のオープンスタブは、前記主導体の一方側へ延びる第1のオープンスタブと、前記主導体の他方側へ延びる第2のオープンスタブとを含んでもよい。 Further, the plurality of open stubs may include a first open stub extending to one side of the main conductor and a second open stub extending to the other side of the main conductor.
 この構成によれば、第1のオープンスタブと第2のオープンスタブとの結合が弱まるので、スプリアスをより大幅に抑制することができる。 According to this configuration, since the coupling between the first open stub and the second open stub is weakened, spurious can be more significantly suppressed.
 また、前記伝送線路フィルタの表面のうち前記配線導体が形成されている面の反対面に、導体膜が形成されていてもよい。 Further, a conductor film may be formed on the surface of the transmission line filter opposite to the surface on which the wiring conductor is formed.
 この構成によれば、伝送線路フィルタの配線導体が導体膜でシールドされるので、配線導体からの放射損失はさらに小さく抑えられる。その結果、誘電体複合フィルタの挿入損失がさらに低減する。 According to this configuration, since the wiring conductor of the transmission line filter is shielded by the conductor film, the radiation loss from the wiring conductor can be further reduced. As a result, the insertion loss of the dielectric composite filter is further reduced.
 また、前記導波管フィルタの表面に導体膜が形成されており、前記伝送線路フィルタの前記反対面に形成されている導体膜は、前記導波管フィルタの表面に形成されている導体膜であってもよい。 Further, a conductor film is formed on the surface of the waveguide filter, and the conductor film formed on the opposite surface of the transmission line filter is a conductor film formed on the surface of the waveguide filter. There may be.
 この構成によれば、導波管フィルタと伝送線路フィルタとに同じ導体膜を用いるので、誘電体複合フィルタの製造を簡素化できる。 According to this configuration, since the same conductor film is used for the waveguide filter and the transmission line filter, the production of the dielectric composite filter can be simplified.
 また、前記配線導体と前記入出力部とは、前記誘電体複合フィルタの同一面に形成されていてもよい。 Further, the wiring conductor and the input / output unit may be formed on the same surface of the dielectric composite filter.
 この構成によれば、誘電体複合フィルタは、配線導体と入出力部とが形成された面を実装面とする表面実装が可能となるので、誘電体複合フィルタの構造が簡素になり、小型化が可能になる。 According to this configuration, the dielectric composite filter can be surface-mounted with the surface on which the wiring conductor and the input / output section are formed as the mounting surface, so the structure of the dielectric composite filter is simplified and the size is reduced. Is possible.
 また、前記入出力部が、前記一方端の誘電体共振器の角部に設けられていてもよい。 Further, the input / output unit may be provided at a corner of the dielectric resonator at the one end.
 この構成によれば、配線導体からの放射損失はさらに小さく抑えられ、誘電体複合フィルタの挿入損失がさらに低減する。 According to this configuration, the radiation loss from the wiring conductor is further suppressed, and the insertion loss of the dielectric composite filter is further reduced.
 また、前記誘電体複合フィルタは、前記導波管フィルタの他方端の誘電体共振器に連結された誘電体共振器を、さらに備えてもよい。 The dielectric composite filter may further include a dielectric resonator connected to a dielectric resonator at the other end of the waveguide filter.
 また、前記伝送線路フィルタは、ローパスフィルタであり、前記他方端の誘電体共振器に連結された誘電体共振器は、バンドエリミネーションフィルタであってもよい。 The transmission line filter may be a low pass filter, and the dielectric resonator connected to the dielectric resonator at the other end may be a band elimination filter.
 この構成によれば、他方端の誘電体共振器に連結された誘電体共振器がバンドエリミネーションフィルタとして機能することにより、誘電体複合フィルタの通過帯域端においてさらに急峻な減衰を得ることができる。 According to this configuration, the dielectric resonator connected to the dielectric resonator at the other end functions as a band elimination filter, so that a steeper attenuation can be obtained at the passband end of the dielectric composite filter. .
 本発明の一態様に係る高周波モジュールは、前述の誘電体複合フィルタと、前記誘電体複合フィルタの配線導体と同一形状の接続電極が形成された基板と、を備え、前記誘電体複合フィルタの前記配線導体と前記基板の前記接続電極とが結合されてなる。 A high-frequency module according to an aspect of the present invention includes the above-described dielectric composite filter, and a substrate on which a connection electrode having the same shape as a wiring conductor of the dielectric composite filter is formed. The wiring conductor and the connection electrode of the substrate are combined.
 この構成によれば、前述の誘電体複合フィルタによる優れた周波数特性と小さい挿入損失とを持つ高周波モジュールが得られる。 According to this configuration, a high-frequency module having excellent frequency characteristics and small insertion loss due to the above-described dielectric composite filter can be obtained.
 本発明の一態様に係る高周波フロントエンド回路は、アンテナ素子に接続された、前述の誘電体複合フィルタと、前記アンテナ素子へ送信する高周波送信信号を増幅する送信増幅回路と、前記アンテナ素子で受信した高周波受信信号を増幅する受信増幅回路と、前記送信増幅回路及び前記受信増幅回路と、前記誘電体複合フィルタとの接続を切り替えるスイッチ回路と、を備える。 A high-frequency front-end circuit according to an aspect of the present invention includes the above-described dielectric composite filter connected to an antenna element, a transmission amplifier circuit that amplifies a high-frequency transmission signal to be transmitted to the antenna element, and reception by the antenna element. A reception amplifier circuit that amplifies the received high-frequency received signal, a transmission amplifier circuit, the reception amplifier circuit, and a switch circuit that switches connection between the dielectric composite filter.
 本発明の一態様に係る高周波フロントエンド回路は、RF信号処理回路から出力される高周波送信信号を増幅する送信増幅回路と、高周波受信信号を増幅して前記RF信号処理回路へ出力する受信増幅回路と、前記RF信号処理回路と前記送信増幅回路との間、又は、前記RF信号処理回路と前記受信増幅回路との間に配置された、前述の誘電体複合フィルタと、を備える。 A high-frequency front-end circuit according to an aspect of the present invention includes a transmission amplifier circuit that amplifies a high-frequency transmission signal output from an RF signal processing circuit, and a reception amplifier circuit that amplifies a high-frequency reception signal and outputs the amplified signal to the RF signal processing circuit And the above-mentioned dielectric composite filter disposed between the RF signal processing circuit and the transmission amplifier circuit or between the RF signal processing circuit and the reception amplifier circuit.
 これらの構成によれば、前述の誘電体複合フィルタによる優れた周波数特性と小さい挿入損失とを利用した高周波フロントエンド回路が得られる。 According to these configurations, it is possible to obtain a high-frequency front-end circuit using the excellent frequency characteristics and small insertion loss due to the above-described dielectric composite filter.
 本発明の一態様に係る通信装置は、アンテナ素子に接続され、前記アンテナ素子で送信及び受信される高周波信号を増幅する、前述の高周波フロントエンド回路と、前記高周波フロントエンド回路に接続され、前記高周波信号とベースバンド信号との間の周波数変換を含む信号処理を行うRF信号処理回路と、前記RF信号処理回路に接続され、前記ベースバンド信号を信号処理するベースバンド信号処理回路と、を備える。 A communication apparatus according to an aspect of the present invention is connected to an antenna element, and amplifies a high-frequency signal transmitted and received by the antenna element. The communication apparatus is connected to the high-frequency front-end circuit and the high-frequency front-end circuit. An RF signal processing circuit that performs signal processing including frequency conversion between a high-frequency signal and a baseband signal, and a baseband signal processing circuit that is connected to the RF signal processing circuit and performs signal processing on the baseband signal. .
 この構成によれば、前述の高周波フロントエンド回路が備える誘電体複合フィルタによる優れた周波数特性と小さい挿入損失とを利用した通信装置が得られる。 According to this configuration, it is possible to obtain a communication device using the excellent frequency characteristics and the small insertion loss by the dielectric composite filter provided in the above-described high frequency front end circuit.
 本発明の一態様に係るMassive MIMOシステムは、行列状に配列された複数のパッチアンテナを含むアンテナと、パッチアンテナごとに前述の誘電体複合フィルタと、を備える。 A Massive MIMO system according to an aspect of the present invention includes an antenna including a plurality of patch antennas arranged in a matrix and the above-described dielectric composite filter for each patch antenna.
 この構成によれば、前述の誘電体複合フィルタによる優れた周波数特性と小さい挿入損失とを利用したMassive MIMOシステムが得られる。 According to this configuration, it is possible to obtain a Massive MIMO system using the excellent frequency characteristics and small insertion loss due to the above-described dielectric composite filter.
 本発明に係る誘電体複合フィルタによれば、スプリアスを抑制しながら挿入損失が小さい誘電体複合フィルタ、及び、当該誘電体複合フィルタを用いた高周波フロントエンド回路、通信装置、及びMassive MIMOシステムが得られる。 According to the dielectric composite filter of the present invention, a dielectric composite filter with low insertion loss while suppressing spurious, and a high-frequency front-end circuit, a communication device, and a Massive MIMO system using the dielectric composite filter are obtained. It is done.
図1は、実施の形態1に係る誘電体複合フィルタの構造を示す斜視図である。1 is a perspective view showing a structure of a dielectric composite filter according to Embodiment 1. FIG. 図2は、実施の形態1に係る誘電体複合フィルタが実装される基板の平面図である。FIG. 2 is a plan view of a substrate on which the dielectric composite filter according to Embodiment 1 is mounted. 図3は、実施の形態1に係る誘電体複合フィルタの特性を示すグラフである。FIG. 3 is a graph showing the characteristics of the dielectric composite filter according to the first embodiment. 図4は、実施の形態2に係る誘電体複合フィルタの構造を示す斜視図である。FIG. 4 is a perspective view showing the structure of the dielectric composite filter according to the second embodiment. 図5は、実施の形態2に係る誘電体複合フィルタの特性を示すグラフである。FIG. 5 is a graph showing the characteristics of the dielectric composite filter according to the second embodiment. 図6は、実施の形態2の比較例に係る誘電体複合フィルタの構造を示す斜視図である。FIG. 6 is a perspective view showing a structure of a dielectric composite filter according to a comparative example of the second embodiment. 図7は、実施の形態2の比較例に係る伝送線路フィルタの特性を示すグラフである。FIG. 7 is a graph showing characteristics of the transmission line filter according to the comparative example of the second embodiment. 図8は、実施の形態3に係る誘電体複合フィルタの構造を示す斜視図である。FIG. 8 is a perspective view showing the structure of the dielectric composite filter according to the third embodiment. 図9は、実施の形態3に係る他の誘電体複合フィルタの構造を示す斜視図である。FIG. 9 is a perspective view showing the structure of another dielectric composite filter according to the third embodiment. 図10は、実施の形態4に係る誘電体複合フィルタの構造を示す分解斜視図である。FIG. 10 is an exploded perspective view showing the structure of the dielectric composite filter according to the fourth embodiment. 図11は、実施の形態4に係る誘電体複合フィルタの構造を示す斜視図である。FIG. 11 is a perspective view showing the structure of the dielectric composite filter according to the fourth embodiment. 図12は、実施の形態5に係る他の誘電体複合フィルタの構造を示す分解斜視図である。FIG. 12 is an exploded perspective view showing the structure of another dielectric composite filter according to the fifth embodiment. 図13Aは、実施の形態6に係る高周波フロントエンド回路および通信装置を示す回路図である。FIG. 13A is a circuit diagram showing a high-frequency front-end circuit and a communication device according to Embodiment 6. 図13Bは、実施の形態6の変形例1に係る高周波フロントエンド回路示す回路図である。FIG. 13B is a circuit diagram showing a high-frequency front-end circuit according to Modification 1 of Embodiment 6. 図13Cは、実施の形態6の変形例2に係る高周波フロントエンド回路示す回路図である。FIG. 13C is a circuit diagram showing a high-frequency front-end circuit according to Modification 2 of Embodiment 6. 図14Aは、実施の形態7に係るMassive MIMOシステムを示す回路図である。FIG. 14A is a circuit diagram showing a Massive MIMO system according to Embodiment 7. 図14Bは、実施の形態7に係るMassive MIMOシステムのアンテナ装置の平面図である。FIG. 14B is a plan view of the antenna device of the Massive MIMO system according to Embodiment 7.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as optional constituent elements. In addition, the size or ratio of components shown in the drawings is not necessarily strict.
 (実施の形態1)
 図1は、実施の形態1に係る誘電体複合フィルタの構造の一例を示す斜視図である。図1に示されるように、誘電体複合フィルタ1は、導波管フィルタ10と、伝送線路フィルタ21とを備える。
(Embodiment 1)
FIG. 1 is a perspective view showing an example of the structure of the dielectric composite filter according to the first embodiment. As shown in FIG. 1, the dielectric composite filter 1 includes a waveguide filter 10 and a transmission line filter 21.
 導波管フィルタ10は、複数の誘電体共振器12~15を連結してなる。導波管フィルタ10は、複数の溝40a、40bを設けた略直方体の誘電体ブロック40を導電性被膜50で被覆してなり、溝40a、40bで区分された領域が、誘電体共振器12~15として機能する。 The waveguide filter 10 is formed by connecting a plurality of dielectric resonators 12 to 15. The waveguide filter 10 is formed by covering a substantially rectangular parallelepiped dielectric block 40 provided with a plurality of grooves 40a and 40b with a conductive film 50, and a region divided by the grooves 40a and 40b is a dielectric resonator 12. Functions as ~ 15.
 誘電体ブロック40は、例えば、水晶又はセラミックなどの誘電体材料で構成され、溝40a、40bは、例えば、ワイヤソーなどによる機械加工により設けられる。導電性被膜50は、例えば、銀を含有する導電性ペーストの塗布、焼成により形成される。図1において、誘電体ブロック40の表面の斜線で示した領域に導電性被膜50が形成され、白抜きの領域は誘電体ブロック40が露出している。また、図1では示されていないが、導電性被膜50は、誘電体ブロック40の奥側及び左側方の面にも形成されている。 The dielectric block 40 is made of, for example, a dielectric material such as crystal or ceramic, and the grooves 40a and 40b are provided by machining using, for example, a wire saw. The conductive film 50 is formed, for example, by applying and baking a conductive paste containing silver. In FIG. 1, a conductive film 50 is formed in a hatched area on the surface of the dielectric block 40, and the dielectric block 40 is exposed in a white area. Although not shown in FIG. 1, the conductive coating 50 is also formed on the back side and left side surfaces of the dielectric block 40.
 両端の誘電体共振器12、15には、信号の伝搬モードをTE(Transverse Electric)モードとTEM(Transverse ElectroMagnetic)モードとの間で変換する入出力部18、19が、それぞれ設けられている。ここで、TEモード及びTEMモードは、それぞれ、導波管フィルタ10の内部及び外部での信号の伝搬モードである。 The dielectric resonators 12 and 15 at both ends are provided with input / output units 18 and 19 for converting a signal propagation mode between a TE (Transverse Electric) mode and a TEM (Transverse ElectroMagnetic) mode, respectively. Here, the TE mode and the TEM mode are signal propagation modes inside and outside the waveguide filter 10, respectively.
 伝送線路フィルタ21は、誘電体共振器12に連結された誘電体ブロックと、当該誘電体ブロックの表面に形成され、かつ、入出力部18から延びる配線導体53と、を有する。伝送線路フィルタ21を構成する誘電体ブロックは、誘電体ブロック40の溝40bで区分された一端部分である。つまり、伝送線路フィルタ21と導波管フィルタ10とは、単一の誘電体ブロック40を用いて一体に形成されている。ここで、入出力部18から延びる配線導体53という文言は、配線導体53が、導電性被膜50の一部であって、導電性被膜50の入出力部18を構成する部分と接続されていることを意味してもよい。 The transmission line filter 21 includes a dielectric block connected to the dielectric resonator 12 and a wiring conductor 53 formed on the surface of the dielectric block and extending from the input / output unit 18. The dielectric block constituting the transmission line filter 21 is one end portion divided by the groove 40 b of the dielectric block 40. That is, the transmission line filter 21 and the waveguide filter 10 are integrally formed using a single dielectric block 40. Here, the term “wiring conductor 53” extending from the input / output unit 18 means that the wiring conductor 53 is a part of the conductive coating 50 and is connected to a portion of the conductive coating 50 that constitutes the input / output unit 18. It may mean that.
 配線導体53は、幅が異なる複数の部分を有し、配線導体53の周囲には、導電性被膜50が配置されていない領域が設けられている。配線導体53の幅とは、配線導体53における信号の伝搬方向に直交する方向の寸法を言う。これにより、伝送線路フィルタ21は、ローパスフィルタとして機能する。配線導体53は、導電性被膜50と同様、銀を含有する導電性ペーストの塗布、焼成により形成されてもよい。 The wiring conductor 53 has a plurality of portions having different widths, and a region where the conductive coating 50 is not disposed is provided around the wiring conductor 53. The width of the wiring conductor 53 refers to a dimension in a direction orthogonal to the signal propagation direction in the wiring conductor 53. Thereby, the transmission line filter 21 functions as a low-pass filter. Similar to the conductive coating 50, the wiring conductor 53 may be formed by applying and baking a conductive paste containing silver.
 配線導体53と入出力部18とは、誘電体複合フィルタ1を構成する誘電体ブロック40の同じ面(図1において手前に表されている面)に形成されている。誘電体複合フィルタ1は、当該面で基板に実装される。以下、当該面を実装面と言う。 The wiring conductor 53 and the input / output unit 18 are formed on the same surface of the dielectric block 40 constituting the dielectric composite filter 1 (the surface shown on the front side in FIG. 1). The dielectric composite filter 1 is mounted on the substrate on the surface. Hereinafter, this surface is referred to as a mounting surface.
 伝送線路フィルタ21の表面のうち配線導体53が形成されている面の反対面(図1における奥側面)に、導電性被膜51が形成されている。伝送線路フィルタ21の表面に形成されている導電性被膜51(配線導体53を含む)は、導波管フィルタ10の表面に形成されている導電性被膜51と同じ導体膜であってもよい。 A conductive coating 51 is formed on the surface of the transmission line filter 21 opposite to the surface on which the wiring conductor 53 is formed (the back side surface in FIG. 1). The conductive film 51 (including the wiring conductor 53) formed on the surface of the transmission line filter 21 may be the same conductor film as the conductive film 51 formed on the surface of the waveguide filter 10.
 図2は、誘電体複合フィルタ1が実装される基板80の一例を示す平面図である。破線は、誘電体複合フィルタ1の実装位置を表している。 FIG. 2 is a plan view showing an example of a substrate 80 on which the dielectric composite filter 1 is mounted. The broken line represents the mounting position of the dielectric composite filter 1.
 基板80には、導体箔81が敷設される。基板80は、例えば、エポキシ、フェノールなどの樹脂で構成され、導体箔81は、例えば、銅箔などで構成される。導体箔81は、図2において、基板80の表面の斜線で示した領域に配置され、白抜きの領域には配置されていない。 A conductive foil 81 is laid on the substrate 80. The substrate 80 is made of, for example, a resin such as epoxy or phenol, and the conductor foil 81 is made of, for example, a copper foil. In FIG. 2, the conductor foil 81 is disposed in a region indicated by oblique lines on the surface of the substrate 80 and is not disposed in a white region.
 導体箔81は、誘電体複合フィルタ1の入出力部18の対応位置から延び、配線導体53と同一形状の接続電極82を構成している。また、接続電極82に接続するコプレーナライン83、及び誘電体複合フィルタ1の入出力部19の対応位置から延びるコプレーナライン84を構成している。導体箔81のその他の部分は、グランドプレーンを構成している。 The conductor foil 81 extends from a corresponding position of the input / output unit 18 of the dielectric composite filter 1 and constitutes a connection electrode 82 having the same shape as the wiring conductor 53. Further, a coplanar line 83 connected to the connection electrode 82 and a coplanar line 84 extending from a corresponding position of the input / output unit 19 of the dielectric composite filter 1 are configured. Other portions of the conductor foil 81 constitute a ground plane.
 基板80の接続電極82と誘電体複合フィルタ1の配線導体53とは、はんだなどの導電性接合材で接合されて、高周波モジュール8を構成する。高周波モジュール8を利用する応用回路は、基板80のコプレーナライン83、84を介して、誘電体複合フィルタ1に信号を入出力する。 The connection electrode 82 of the substrate 80 and the wiring conductor 53 of the dielectric composite filter 1 are joined by a conductive joining material such as solder to constitute the high frequency module 8. An application circuit using the high-frequency module 8 inputs and outputs signals to the dielectric composite filter 1 via the coplanar lines 83 and 84 of the substrate 80.
 なお、配線導体53と接続電極82とが同一形状であるとは、配線導体53の形状と接続電極82の形状とが厳密に同一であることには限定されない。例えば、設計上の同一形状であって製造上の誤差を含む形状を同一形状に含めてもよい。また、例えば、はんだなどの導電性接合材を介在して互いに接合できる程度の重複領域を有する形状を、同一形状に含めてもよい。 Note that the fact that the wiring conductor 53 and the connection electrode 82 have the same shape is not limited to the fact that the shape of the wiring conductor 53 and the shape of the connection electrode 82 are exactly the same. For example, a shape having the same design and including a manufacturing error may be included in the same shape. In addition, for example, shapes having overlapping regions that can be joined to each other through a conductive bonding material such as solder may be included in the same shape.
 図3は、誘電体複合フィルタ1の通過特性(挿入損失の周波数依存性)の一例を示すグラフである。図3には、誘電体複合フィルタ1から分離した導波管フィルタ10及び伝送線路フィルタ21のそれぞれの通過特性、及び誘電体複合フィルタ1全体での通過特性のシミュレーション結果が、表示範囲内の最小損失を0dBに正規化して示されている。 FIG. 3 is a graph showing an example of pass characteristics (frequency dependence of insertion loss) of the dielectric composite filter 1. FIG. 3 shows the simulation results of the pass characteristics of the waveguide filter 10 and the transmission line filter 21 separated from the dielectric composite filter 1 and the pass characteristics of the dielectric composite filter 1 as a whole. The loss is shown normalized to 0 dB.
 図3に見られるように、誘電体複合フィルタ1全体の通過特性において、28GHz近傍に設けられる通過帯域の両端では、導波管フィルタ10による急峻な減衰が得られ、かつ、通過帯域から離れた38GHz以上のスプリアスは、伝送線路フィルタ21によって抑制される。 As can be seen from FIG. 3, in the pass characteristic of the entire dielectric composite filter 1, sharp attenuation by the waveguide filter 10 is obtained at both ends of the pass band provided in the vicinity of 28 GHz, and it is separated from the pass band. Spurious at 38 GHz or higher is suppressed by the transmission line filter 21.
 以上のように構成された誘電体複合フィルタ1によれば、次の効果が得られる。 According to the dielectric composite filter 1 configured as described above, the following effects can be obtained.
 導波管フィルタ10の周波数特性を、伝送線路フィルタ21で補うことができる。具体的に、導波管フィルタ10によるスプリアスの抑制不足を、ローパスフィルタである伝送線路フィルタ21で補っている。 The transmission line filter 21 can supplement the frequency characteristics of the waveguide filter 10. Specifically, insufficient transmission of spurious due to the waveguide filter 10 is compensated by the transmission line filter 21 that is a low-pass filter.
 伝送線路フィルタ21は、導波管フィルタ10の入出力部18がある誘電体共振器12に連結して設けられ、誘電体ブロックの表面に形成された配線導体53で入出力部18と接続される。そのため、例えば、別体に設けた伝送線路フィルタと導波管フィルタとを配線で接続する場合と比べて、配線導体53を大幅に短くでき、配線導体53からの放射損失は小さく抑えられる。また、配線導体53が導電性被膜50でシールドされることによっても、配線導体53からの放射損失は小さく抑えられる。その結果、周波数特性に優れかつ挿入損失が小さい誘電体複合フィルタ1が得られる。 The transmission line filter 21 is connected to the dielectric resonator 12 having the input / output unit 18 of the waveguide filter 10 and is connected to the input / output unit 18 by a wiring conductor 53 formed on the surface of the dielectric block. The Therefore, for example, compared to a case where a transmission line filter and a waveguide filter provided separately are connected by wiring, the wiring conductor 53 can be significantly shortened, and radiation loss from the wiring conductor 53 can be kept small. In addition, the radiation loss from the wiring conductor 53 can be reduced by shielding the wiring conductor 53 with the conductive coating 50. As a result, the dielectric composite filter 1 having excellent frequency characteristics and low insertion loss can be obtained.
 また、導波管フィルタ10の誘電体共振器12と伝送線路フィルタ21とは連結されていて、単一の誘電体ブロック40から一体に形成できる。導波管フィルタ10と伝送線路フィルタ21とを、単一の誘電体ブロック40から一体に形成することにより、誘電体複合フィルタ1の製造工程が簡素化され、周波数特性のばらつきも抑制される。 Further, the dielectric resonator 12 of the waveguide filter 10 and the transmission line filter 21 are connected to each other and can be integrally formed from a single dielectric block 40. By integrally forming the waveguide filter 10 and the transmission line filter 21 from a single dielectric block 40, the manufacturing process of the dielectric composite filter 1 is simplified, and variations in frequency characteristics are also suppressed.
 また、配線導体53と入出力部18とが、誘電体複合フィルタ1の同一面に形成されることで、誘電体複合フィルタ1は、前記同一面を実装面とする表面実装が可能となる。これにより、誘電体複合フィルタ1の構造が簡素になり、小型化が可能になる。 Further, since the wiring conductor 53 and the input / output unit 18 are formed on the same surface of the dielectric composite filter 1, the dielectric composite filter 1 can be surface-mounted with the same surface as a mounting surface. This simplifies the structure of the dielectric composite filter 1 and enables downsizing.
 また、入出力部18を誘電体共振器12の角部に設けることにより、配線導体53からの放射損失はさらに小さく抑えられ、誘電体複合フィルタ1の挿入損失がさらに低減する。 Also, by providing the input / output unit 18 at the corner of the dielectric resonator 12, the radiation loss from the wiring conductor 53 is further reduced, and the insertion loss of the dielectric composite filter 1 is further reduced.
 (実施の形態2)
 実施の形態1では、ローパスフィルタとして機能する伝送線路フィルタ21を例示したが、伝送線路フィルタはローパスフィルタには限られない。実施の形態2では、伝送線路フィルタがバンドエリミネーションフィルタ又はノッチフィルタである誘電体複合フィルタについて説明する。
(Embodiment 2)
In Embodiment 1, although the transmission line filter 21 which functions as a low-pass filter was illustrated, a transmission line filter is not restricted to a low-pass filter. In the second embodiment, a dielectric composite filter in which the transmission line filter is a band elimination filter or a notch filter will be described.
 図4は、実施の形態2に係る誘電体複合フィルタの構造の一例を示す斜視図である。図4に示される誘電体複合フィルタ2は、図1の誘電体複合フィルタ1の伝送線路フィルタ21を伝送線路フィルタ22に置き換えて構成される。誘電体複合フィルタ2のその他の構成要素は、誘電体複合フィルタ1と同一のため、同一の符号を付して説明を省略する。 FIG. 4 is a perspective view showing an example of the structure of the dielectric composite filter according to the second embodiment. The dielectric composite filter 2 shown in FIG. 4 is configured by replacing the transmission line filter 21 of the dielectric composite filter 1 of FIG. Since the other components of the dielectric composite filter 2 are the same as those of the dielectric composite filter 1, the same reference numerals are given and description thereof is omitted.
 伝送線路フィルタ22は、誘電体共振器12に連結された誘電体ブロックと、当該誘電体ブロックの表面に形成され、かつ、入出力部18から延びる配線導体54と、を有する。伝送線路フィルタ22を構成する誘電体ブロックは、誘電体ブロック40の溝40bで区分された一端部分である。つまり、伝送線路フィルタ22と導波管フィルタ10とは、単一の誘電体ブロック40を用いて一体に形成されている。 The transmission line filter 22 includes a dielectric block connected to the dielectric resonator 12 and a wiring conductor 54 formed on the surface of the dielectric block and extending from the input / output unit 18. The dielectric block constituting the transmission line filter 22 is one end portion divided by the groove 40 b of the dielectric block 40. That is, the transmission line filter 22 and the waveguide filter 10 are integrally formed using a single dielectric block 40.
 配線導体54は、配線導体54における信号の伝搬方向に設けられた主導体56と、主導体56から分岐する複数のオープンスタブ57、58とを有し、配線導体54の周囲には、導電性被膜50が配置されていない領域が設けられている。これにより、伝送線路フィルタ22は、バンドエリミネーションフィルタ又はノッチフィルタとして機能する。 The wiring conductor 54 has a main conductor 56 provided in the signal propagation direction in the wiring conductor 54 and a plurality of open stubs 57 and 58 branched from the main conductor 56. A region where the coating 50 is not disposed is provided. Thereby, the transmission line filter 22 functions as a band elimination filter or a notch filter.
 配線導体54と入出力部18とは、誘電体複合フィルタ2の実装面(図4において手前に表されている面)に形成されている。 The wiring conductor 54 and the input / output unit 18 are formed on the mounting surface of the dielectric composite filter 2 (the surface shown on the front side in FIG. 4).
 図5は、誘電体複合フィルタ2の通過特性の一例を示すグラフである。図5には、誘電体複合フィルタ2から分離した導波管フィルタ10及び伝送線路フィルタ22のそれぞれの通過特性、及び誘電体複合フィルタ2全体での通過特性のシミュレーション結果が、表示範囲内の最小損失を0dBに正規化して示されている。 FIG. 5 is a graph showing an example of the pass characteristic of the dielectric composite filter 2. FIG. 5 shows the simulation results of the pass characteristics of the waveguide filter 10 and the transmission line filter 22 separated from the dielectric composite filter 2 and the pass characteristics of the dielectric composite filter 2 as a whole. The loss is shown normalized to 0 dB.
 図5に見られるように、誘電体複合フィルタ2全体の通過特性において、28GHz近傍に設けられる通過帯域の両端では、導波管フィルタ10による急峻な減衰が得られ、かつ、通過帯域から離れた38GHz以上のスプリアスは、伝送線路フィルタ22によって抑制される。 As can be seen from FIG. 5, in the pass characteristic of the entire dielectric composite filter 2, sharp attenuation by the waveguide filter 10 is obtained at both ends of the pass band provided in the vicinity of 28 GHz, and it is separated from the pass band. Spurious at 38 GHz or higher is suppressed by the transmission line filter 22.
 以上のように構成された誘電体複合フィルタ2によれば、誘電体複合フィルタ1と同様、配線導体54からの放射損失は小さく抑えられる。その結果、周波数特性に優れかつ挿入損失が小さい誘電体複合フィルタ2が得られる。 According to the dielectric composite filter 2 configured as described above, similarly to the dielectric composite filter 1, the radiation loss from the wiring conductor 54 can be kept small. As a result, the dielectric composite filter 2 having excellent frequency characteristics and low insertion loss can be obtained.
 なお、伝送線路フィルタ22の例で示されるように、主導体56の一方側へ延びるオープンスタブ57と、主導体56の他方側へ延びるオープンスタブ58とを設けることで、より優れたスプリアスの抑制が可能になる。このことを、比較例に係る誘電体複合フィルタを参照して説明する。 In addition, as shown in the example of the transmission line filter 22, by providing an open stub 57 extending to one side of the main conductor 56 and an open stub 58 extending to the other side of the main conductor 56, more excellent spurious suppression. Is possible. This will be described with reference to a dielectric composite filter according to a comparative example.
 図6は、実施の形態2の比較例に係る誘電体複合フィルタの構造の一例を示す斜視図である。図6に示される誘電体複合フィルタ3は、図4の誘電体複合フィルタ2の伝送線路フィルタ22を伝送線路フィルタ23に置き換えて構成される。誘電体複合フィルタ3のその他の構成要素は、誘電体複合フィルタ2と同一のため、同一の符号を付して説明を省略する。 FIG. 6 is a perspective view showing an example of the structure of the dielectric composite filter according to the comparative example of the second embodiment. The dielectric composite filter 3 shown in FIG. 6 is configured by replacing the transmission line filter 22 of the dielectric composite filter 2 of FIG. Since the other components of the dielectric composite filter 3 are the same as those of the dielectric composite filter 2, the same reference numerals are given and description thereof is omitted.
 伝送線路フィルタ23は、伝送線路フィルタ22のオープンスタブ58を、主導体56のオープンスタブ57と同じ側へ延びるオープンスタブ59に変更して構成される。 The transmission line filter 23 is configured by changing the open stub 58 of the transmission line filter 22 to an open stub 59 extending to the same side as the open stub 57 of the main conductor 56.
 図7は、伝送線路フィルタ22、23の通過特性の一例を示すグラフである。図7には、誘電体複合フィルタ2、3からそれぞれ分離した伝送線路フィルタ22、23の単体での通過特性のシミュレーション結果が、表示範囲内の最小損失を0dBに正規化して示されている。 FIG. 7 is a graph showing an example of pass characteristics of the transmission line filters 22 and 23. FIG. 7 shows the simulation results of the transmission characteristics of the transmission line filters 22 and 23 separated from the dielectric composite filters 2 and 3, respectively, with the minimum loss within the display range normalized to 0 dB.
 図7に見られるように、スプリアスに対応する38GHz以上の周波数における減衰は、伝送線路フィルタ23のほうが伝送線路フィルタ22より小さい。これは、オープンスタブを主導体の同じ側へ出すことによってオープンスタブ間で結合が生じ、減衰量が減少したものと考えられる。 As seen in FIG. 7, the transmission line filter 23 has a smaller attenuation than the transmission line filter 22 at a frequency of 38 GHz or more corresponding to spurious. This is thought to be because the open stubs are connected to the same side of the main conductor and coupling occurs between the open stubs, thereby reducing the attenuation.
 従って、スプリアスを抑制する点で、オープンスタブ57、58を主導体56の両側へ出す伝送線路フィルタ22のほうが、オープンスタブ57、59を主導体56の一方側のみへ出す伝送線路フィルタ23よりも優れていると言える。 Therefore, in terms of suppressing spurious, the transmission line filter 22 that opens the open stubs 57 and 58 to both sides of the main conductor 56 is more than the transmission line filter 23 that opens the open stubs 57 and 59 only to one side of the main conductor 56. It can be said that it is excellent.
 (実施の形態3)
 実施の形態1、2では、導波管フィルタの一端に伝送線路フィルタを連結してなる誘電体複合フィルタを例示したが、誘電体複合フィルタはこの例には限られない。実施の形態3では、導波管フィルタの他端にさらに誘電体共振器を連結してなる誘電体複合フィルタについて説明する。
(Embodiment 3)
In the first and second embodiments, the dielectric composite filter formed by connecting the transmission line filter to one end of the waveguide filter is illustrated, but the dielectric composite filter is not limited to this example. In the third embodiment, a dielectric composite filter in which a dielectric resonator is further connected to the other end of the waveguide filter will be described.
 図8は、実施の形態3に係る誘電体複合フィルタの構造の一例を示す斜視図である。図8に示される誘電体複合フィルタ4は、図1の誘電体複合フィルタ1と比べて、導波管フィルタ11を変更し、導波管フィルタ11の一端及び他端に伝送線路フィルタ21及び誘電体共振器31をそれぞれ連結して構成される。導波管フィルタ11は、導波管フィルタ10に誘電体共振器16を追加して構成される。誘電体複合フィルタ4のその他の構成要素は、誘電体複合フィルタ1と同一のため、同一の符号を付して説明を省略する。 FIG. 8 is a perspective view showing an example of the structure of the dielectric composite filter according to the third embodiment. The dielectric composite filter 4 shown in FIG. 8 is different from the dielectric composite filter 1 of FIG. 1 in that the waveguide filter 11 is changed, and a transmission line filter 21 and a dielectric are formed at one end and the other end of the waveguide filter 11. The body resonators 31 are connected to each other. The waveguide filter 11 is configured by adding a dielectric resonator 16 to the waveguide filter 10. Since the other components of the dielectric composite filter 4 are the same as those of the dielectric composite filter 1, the same reference numerals are given and description thereof is omitted.
 誘電体共振器31は、誘電体共振器15に連結されている。誘電体共振器31は、誘電体ブロック40の溝40cで区分された一端部分である。つまり、誘電体共振器31と導波管フィルタ11とは、単一の誘電体ブロック40を用いて一体に形成されている。 The dielectric resonator 31 is connected to the dielectric resonator 15. The dielectric resonator 31 is an end portion divided by the groove 40 c of the dielectric block 40. That is, the dielectric resonator 31 and the waveguide filter 11 are integrally formed using a single dielectric block 40.
 誘電体共振器31は、バンドエリミネーションフィルタとして機能し、通過帯域の近傍の周波数に大きな減衰を与えることで、誘電体複合フィルタ4の周波数特性をさらに向上させる。 The dielectric resonator 31 functions as a band elimination filter and further improves the frequency characteristics of the dielectric composite filter 4 by giving large attenuation to the frequency in the vicinity of the pass band.
 図9は、実施の形態3に係る他の誘電体複合フィルタの構造の一例を示す斜視図である。図9に示される誘電体複合フィルタ5は、図8の誘電体複合フィルタ4の伝送線路フィルタ21を伝送線路フィルタ22に置き換えて構成される。誘電体複合フィルタ5のその他の構成要素は、誘電体複合フィルタ4と同一のため、同一の符号を付して説明を省略する。誘電体複合フィルタ5においても、誘電体複合フィルタ4と同様、誘電体共振器31によって周波数特性が向上する。 FIG. 9 is a perspective view showing an example of the structure of another dielectric composite filter according to the third embodiment. The dielectric composite filter 5 shown in FIG. 9 is configured by replacing the transmission line filter 21 of the dielectric composite filter 4 of FIG. Since the other components of the dielectric composite filter 5 are the same as those of the dielectric composite filter 4, the same reference numerals are given and description thereof is omitted. Also in the dielectric composite filter 5, the frequency characteristics are improved by the dielectric resonator 31 as in the case of the dielectric composite filter 4.
 (実施の形態4)
 実施の形態4に係る誘電体複合フィルタは、別体に設けた誘電体複合フィルタの第1部分と第2部分とを貼り合わせてなる誘電体複合フィルタである。
(Embodiment 4)
The dielectric composite filter according to Embodiment 4 is a dielectric composite filter formed by bonding a first part and a second part of a dielectric composite filter provided separately.
 図10は、実施の形態4に係る誘電体複合フィルタの構造の一例を示す分解斜視図である。図10に示されるように、誘電体複合フィルタ6は、第1部分61と、第2部分62とからなる。図10では、便宜上、第1部分61及び第2部分62を互いに異なる視点から見て示している。 FIG. 10 is an exploded perspective view showing an example of the structure of the dielectric composite filter according to the fourth embodiment. As shown in FIG. 10, the dielectric composite filter 6 includes a first portion 61 and a second portion 62. In FIG. 10, for convenience, the first portion 61 and the second portion 62 are shown as seen from different viewpoints.
 誘電体複合フィルタ6は、図9の誘電体複合フィルタ5のうち、伝送線路フィルタ22と導波管フィルタ11とで構成される部分に対応する。図10では、誘電体複合フィルタ6の構成要素を、誘電体複合フィルタ5の対応する構成要素と同一の符号で示す。 The dielectric composite filter 6 corresponds to a portion composed of the transmission line filter 22 and the waveguide filter 11 in the dielectric composite filter 5 of FIG. In FIG. 10, the constituent elements of the dielectric composite filter 6 are denoted by the same reference numerals as the corresponding constituent elements of the dielectric composite filter 5.
 第1部分61は、伝送線路フィルタ22、誘電体共振器12、13aを連結してなる。第1部分61は、複数の溝41a、41bを設けた略直方体の誘電体ブロック41を導電性被膜51で被覆してなり、溝41a、41bで区分された領域が、伝送線路フィルタ22、誘電体共振器12、13aとして機能する。伝送線路フィルタ22には、図9と同様の配線導体54が設けられる。 The first portion 61 is formed by connecting the transmission line filter 22 and the dielectric resonators 12 and 13a. The first portion 61 is formed by covering a substantially rectangular parallelepiped dielectric block 41 provided with a plurality of grooves 41a and 41b with a conductive film 51, and a region divided by the grooves 41a and 41b is the transmission line filter 22, dielectric It functions as the body resonators 12 and 13a. The transmission line filter 22 is provided with a wiring conductor 54 similar to that shown in FIG.
 第2部分62は、誘電体共振器14a、16、15を連結してなる。第2部分62は、複数の溝42aを設けた略直方体の誘電体ブロック42を導電性被膜52で被覆してなり、溝42aで区分された領域が、誘電体共振器14a、16、15として機能する。 The second portion 62 is formed by connecting the dielectric resonators 14a, 16, and 15. The second portion 62 is formed by covering a substantially rectangular parallelepiped dielectric block 42 provided with a plurality of grooves 42 a with a conductive film 52, and regions divided by the grooves 42 a are used as dielectric resonators 14 a, 16, and 15. Function.
 誘電体共振器13a、14aは、誘電体複合フィルタ5の誘電体共振器13、14に、電磁波が透過できる結合窓51a、52aを設けてなる。結合窓51a、52aは、導電性被膜51、52を配置しないことで形成される。 The dielectric resonators 13 a and 14 a are provided with coupling windows 51 a and 52 a through which electromagnetic waves can pass through the dielectric resonators 13 and 14 of the dielectric composite filter 5. The coupling windows 51a and 52a are formed by not disposing the conductive films 51 and 52.
 第1部分61と第2部分62とを、例えば、接着剤で貼り合わせることにより、誘電体複合フィルタ6は構成される。 The dielectric composite filter 6 is configured by bonding the first portion 61 and the second portion 62 with, for example, an adhesive.
 図11は、第1部分61と第2部分62とを貼り合わせた後の誘電体複合フィルタ6の一例を示す斜視図である。 FIG. 11 is a perspective view showing an example of the dielectric composite filter 6 after the first portion 61 and the second portion 62 are bonded together.
 誘電体共振器13a、14aは、結合窓51a、52aを介して結合している。誘電体共振器13a、14aが結合することにより、誘電体複合フィルタ6は、図9の誘電体複合フィルタ5の伝送線路フィルタ22と導波管フィルタ11とで構成される部分と略同等に機能する。 Dielectric resonators 13a and 14a are coupled via coupling windows 51a and 52a. When the dielectric resonators 13a and 14a are coupled, the dielectric composite filter 6 functions substantially the same as the portion constituted by the transmission line filter 22 and the waveguide filter 11 of the dielectric composite filter 5 of FIG. To do.
 なお、誘電体複合フィルタ6における伝送線路フィルタは、伝送線路フィルタ22には限られず、例えば、図8の伝送線路フィルタ21を用いてもよい。その場合、誘電体複合フィルタ6は、図8の誘電体複合フィルタ4の伝送線路フィルタ21と導波管フィルタ11とで構成される部分と略同等に機能する。 Note that the transmission line filter in the dielectric composite filter 6 is not limited to the transmission line filter 22, and for example, the transmission line filter 21 of FIG. 8 may be used. In that case, the dielectric composite filter 6 functions substantially the same as the portion constituted by the transmission line filter 21 and the waveguide filter 11 of the dielectric composite filter 4 of FIG.
 図12は、実施の形態4に係る他の誘電体複合フィルタの構造の一例を示す分解斜視図である。図12に示されるように、第1部分71、第2部分72を貼り合わせることにより、誘電体複合フィルタ7は構成される。 FIG. 12 is an exploded perspective view showing an example of the structure of another dielectric composite filter according to the fourth embodiment. As shown in FIG. 12, the dielectric composite filter 7 is configured by bonding the first portion 71 and the second portion 72 together.
 誘電体複合フィルタ7では、誘電体複合フィルタ6と比べて、誘電体共振器12a、16aに結合窓51b、52bを設けることにより、所望の減衰極が追加される。 In the dielectric composite filter 7, compared to the dielectric composite filter 6, a desired attenuation pole is added by providing coupling windows 51 b and 52 b in the dielectric resonators 12 a and 16 a.
 なお、別体に設けた複数の部分を貼り合わせてなる誘電体複合フィルタは、上述の例には限られない。図示はしていないが、例えば、誘電体複合フィルタ6の第1部分61および第2部分62の実装面(図11において手前に表されている面)に背向する反対面(図11における奥側の不可視面)に、さらに第3部分および第4部分をそれぞれ貼り合わせてもよい。この場合、第1部分61および第2部分62が実装面を含む第1階層に位置し、第3部分および第4部分が実装面の上方の第2階層に位置する、2階建て構造の誘電体複合フィルタが構成される。このような誘電体複合フィルタでは、例えば、第1部分61、第3部分、第4部分、および第2部分62の順に信号が伝達するように、結合窓の配置が変更および追加される。 Note that the dielectric composite filter formed by bonding a plurality of parts provided separately is not limited to the above example. Although not shown, for example, the opposite surface (the back in FIG. 11) that faces away from the mounting surface (the surface that is shown in the front in FIG. 11) of the first portion 61 and the second portion 62 of the dielectric composite filter 6. The third portion and the fourth portion may be further bonded to the invisible surface on the side. In this case, a dielectric having a two-story structure in which the first portion 61 and the second portion 62 are located in the first layer including the mounting surface, and the third portion and the fourth portion are located in the second layer above the mounting surface. A body composite filter is constructed. In such a dielectric composite filter, for example, the arrangement of the coupling window is changed and added so that a signal is transmitted in the order of the first portion 61, the third portion, the fourth portion, and the second portion 62.
 (実施の形態5)
 本実施の形態では、実施の形態1から4に係る誘電体複合フィルタを備える高周波フロントエンド回路110について説明する。
(Embodiment 5)
In the present embodiment, a high frequency front end circuit 110 including the dielectric composite filter according to the first to fourth embodiments will be described.
 図13Aは、実施の形態6に係る高周波フロントエンド回路110およびその周辺回路を示す回路図である。同図には、高周波フロントエンド回路110と、アンテナ素子150と、RF信号処理回路191と、ベースバンド信号処理回路192とが示されている。 FIG. 13A is a circuit diagram showing the high-frequency front-end circuit 110 and its peripheral circuits according to the sixth embodiment. In the figure, a high-frequency front-end circuit 110, an antenna element 150, an RF signal processing circuit 191 and a baseband signal processing circuit 192 are shown.
 高周波フロントエンド回路110は、フィルタ161、162および163と、スイッチ回路170と、パワーアンプ回路181と、ローノイズアンプ回路182とを備える。 The high-frequency front end circuit 110 includes filters 161, 162, and 163, a switch circuit 170, a power amplifier circuit 181, and a low noise amplifier circuit 182.
 パワーアンプ回路181は、RF信号処理回路191から出力された高周波送信信号を増幅し、スイッチ回路170およびフィルタ161を経由してアンテナ素子150に出力する送信増幅回路である。 The power amplifier circuit 181 is a transmission amplification circuit that amplifies the high-frequency transmission signal output from the RF signal processing circuit 191 and outputs the amplified signal to the antenna element 150 via the switch circuit 170 and the filter 161.
 ローノイズアンプ回路182は、アンテナ素子150、フィルタ161およびスイッチ回路170を経由した高周波信号を増幅し、RF信号処理回路191へ出力する受信増幅回路である。 The low noise amplifier circuit 182 is a reception amplification circuit that amplifies a high-frequency signal that has passed through the antenna element 150, the filter 161, and the switch circuit 170 and outputs the amplified signal to the RF signal processing circuit 191.
 フィルタ161は、アンテナ素子150に接続され、例えば、送信帯域および受信帯域の高周波信号を選択的に通過させるアンテナフィルタである。フィルタ162は、パワーアンプ回路181とRF信号処理回路191との間に配置され、送信帯域の高周波信号を選択的に通過させる段間フィルタである。フィルタ163は、ローノイズアンプ回路182とRF信号処理回路191との間に配置され、受信帯域の高周波信号を選択的に通過させる段間フィルタである。 The filter 161 is an antenna filter that is connected to the antenna element 150 and selectively allows high-frequency signals in the transmission band and the reception band to pass therethrough, for example. The filter 162 is an interstage filter that is disposed between the power amplifier circuit 181 and the RF signal processing circuit 191 and selectively passes a high-frequency signal in the transmission band. The filter 163 is an interstage filter that is disposed between the low noise amplifier circuit 182 and the RF signal processing circuit 191 and selectively passes a high frequency signal in the reception band.
 スイッチ回路170は、アンテナ素子150と送信信号経路および受信信号経路との接続を切り替えるスイッチである。 The switch circuit 170 is a switch that switches connection between the antenna element 150 and the transmission signal path and the reception signal path.
 RF信号処理回路191は、アンテナ素子150から受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路192へ出力する。RF信号処理回路191は、例えば、RFIC(Radio Frequency Integrated Circuit)である。また、RF信号処理回路191は、ベースバンド信号処理回路192から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をパワーアンプ回路181へ出力する。 The RF signal processing circuit 191 processes the high-frequency reception signal input from the antenna element 150 via the reception signal path by down-conversion or the like, and the baseband signal processing circuit 192 generates the reception signal generated by the signal processing. Output to. The RF signal processing circuit 191 is, for example, an RFIC (Radio Frequency Integrated Circuit). Further, the RF signal processing circuit 191 performs signal processing on the transmission signal input from the baseband signal processing circuit 192 by up-conversion or the like, and outputs the high-frequency transmission signal generated by the signal processing to the power amplifier circuit 181.
 ベースバンド信号処理回路192で処理された信号は、例えば、画像信号として画像表示のために、または、音声信号として通話のために使用される。 The signal processed by the baseband signal processing circuit 192 is used, for example, for displaying an image as an image signal or for calling as an audio signal.
 なお、高周波フロントエンド回路110は、フィルタ161、162および163、スイッチ回路170、パワーアンプ回路181、ならびにローノイズアンプ回路182の間に、他の回路素子を備えていてもよい。 The high-frequency front end circuit 110 may include other circuit elements between the filters 161, 162, and 163, the switch circuit 170, the power amplifier circuit 181, and the low noise amplifier circuit 182.
 ここで、本実施の形態に係る高周波フロントエンド回路110では、フィルタ161、162および163として、実施の形態1から4に係る誘電体複合フィルタを用いることができる。 Here, in the high-frequency front-end circuit 110 according to the present embodiment, the dielectric composite filters according to the first to fourth embodiments can be used as the filters 161, 162, and 163.
 上記構成によれば、フィルタ161、162および163において、スプリアスを抑制しながら小さい挿入損失を達成するので、高周波特性に優れた高周波フロントエンド回路を実現することが可能となる。 According to the above configuration, the filters 161, 162, and 163 achieve a small insertion loss while suppressing spurious, so that a high-frequency front-end circuit having excellent high-frequency characteristics can be realized.
 図13Bは、実施の形態6の変形例1に係る高周波フロントエンド回路110Bを示す回路図である。高周波フロントエンド回路110Bは、フィルタ161、162および163と、パワーアンプ回路181と、ローノイズアンプ回路182と、サーキュレータ171と、スイッチ回路172と、を備える。本変形例に係る高周波フロントエンド回路110Bは、高周波フロントエンド回路110と比較して、送信信号経路および受信信号経路を切り替えるための構成が異なる。本変形例に係る高周波フロントエンド回路110Bについて、高周波フロントエンド回路110と同じ構成については説明を省略し、異なる構成を中心に説明する。 FIG. 13B is a circuit diagram showing the high-frequency front end circuit 110B according to the first modification of the sixth embodiment. The high frequency front end circuit 110 </ b> B includes filters 161, 162 and 163, a power amplifier circuit 181, a low noise amplifier circuit 182, a circulator 171, and a switch circuit 172. The high-frequency front end circuit 110B according to this modification is different from the high-frequency front end circuit 110 in the configuration for switching between the transmission signal path and the reception signal path. Regarding the high-frequency front end circuit 110B according to this modification, the description of the same configuration as that of the high-frequency front end circuit 110 will be omitted, and a description will be given focusing on different configurations.
 サーキュレータ171は、アンテナ側端子、送信側端子、および受信側端子を有し、受信時には、アンテナ素子150から受信信号経路へ受信信号を選択的に伝搬させ、送信時には、送信信号経路からアンテナ素子150へ送信信号を選択的に伝搬させる回路素子である。 The circulator 171 has an antenna-side terminal, a transmission-side terminal, and a reception-side terminal. During reception, the circulator 171 selectively propagates a reception signal from the antenna element 150 to the reception signal path, and at the time of transmission, the antenna element 150 is transmitted from the transmission signal path. This is a circuit element that selectively propagates a transmission signal to.
 スイッチ回路172は、サーキュレータ171と受信信号経路との接続を切り替えるスイッチである。送信時には、サーキュレータ171の受信側端子を終端抵抗で(50Ω)終端させる。受信時には、サーキュレータ171の受信側端子をローノイズアンプ回路182に接続させる。 The switch circuit 172 is a switch for switching the connection between the circulator 171 and the reception signal path. At the time of transmission, the receiving side terminal of the circulator 171 is terminated with a terminating resistor (50Ω). At the time of reception, the reception side terminal of the circulator 171 is connected to the low noise amplifier circuit 182.
 上記回路構成により、高周波フロントエンド回路110Bは、時分割複信(Time Division Duplex)方式のフロントエンド回路として適用される。 With the above circuit configuration, the high-frequency front end circuit 110B is applied as a time division duplex front-end circuit.
 ここで、本変形例に係る高周波フロントエンド回路110Bでは、フィルタ161、162および163として、実施の形態1から4に係る誘電体複合フィルタを用いることができる。 Here, in the high-frequency front-end circuit 110B according to this modification, the dielectric composite filters according to the first to fourth embodiments can be used as the filters 161, 162, and 163.
 図13Cは、実施の形態6の変形例2に係る高周波フロントエンド回路110Cを示す回路図である。高周波フロントエンド回路110Cは、デュプレクサ164と、フィルタ162および163と、パワーアンプ回路181と、ローノイズアンプ回路182と、アイソレータ173と、を備える。本変形例に係る高周波フロントエンド回路110Cは、高周波フロントエンド回路110と比較して、送信信号経路および受信信号経路を切り替えるための構成が異なる。本変形例に係る高周波フロントエンド回路110Cについて、高周波フロントエンド回路110と同じ構成については説明を省略し、異なる構成を中心に説明する。 FIG. 13C is a circuit diagram showing a high-frequency front-end circuit 110C according to the second modification of the sixth embodiment. The high frequency front end circuit 110 </ b> C includes a duplexer 164, filters 162 and 163, a power amplifier circuit 181, a low noise amplifier circuit 182, and an isolator 173. The high-frequency front end circuit 110C according to this modification is different from the high-frequency front end circuit 110 in the configuration for switching between the transmission signal path and the reception signal path. Regarding the high-frequency front end circuit 110C according to this modification, the description of the same configuration as that of the high-frequency front end circuit 110 will be omitted, and a description will be given focusing on different configurations.
 デュプレクサ164は、アンテナ端子、送信側端子、および受信側端子を有し、アンテナ端子と送信側端子との間に送信用フィルタを有し、アンテナ端子と受信側端子との間に受信用フィルタを有している。 The duplexer 164 has an antenna terminal, a transmission side terminal, and a reception side terminal, has a transmission filter between the antenna terminal and the transmission side terminal, and has a reception filter between the antenna terminal and the reception side terminal. Have.
 アイソレータ173は、デュプレクサ164の送信側端子とパワーアンプ回路181との間に配置され、送信信号をパワーアンプ回路181からデュプレクサ164への1方向に伝搬させる回路素子である。アイソレータ173は、例えば、サーキュレータの3端子のうちの1端子を50Ω終端することで実現できる。 The isolator 173 is a circuit element that is disposed between the transmission-side terminal of the duplexer 164 and the power amplifier circuit 181 and propagates a transmission signal in one direction from the power amplifier circuit 181 to the duplexer 164. The isolator 173 can be realized, for example, by terminating one terminal among the three terminals of the circulator by 50Ω.
 上記回路構成により、高周波フロントエンド回路110Cは、周波数分割複信(Frequency Division Duplex)方式のフロントエンド回路として適用される。 With the above circuit configuration, the high frequency front end circuit 110C is applied as a front end circuit of a frequency division duplex system.
 ここで、本変形例に係る高周波フロントエンド回路110Cでは、デュプレクサ164の送信側フィルタおよび受信側フィルタならびにフィルタ162および163として、実施の形態1から4に係る誘電体複合フィルタを用いることができる。 Here, in the high-frequency front-end circuit 110C according to this modification, the dielectric composite filter according to the first to fourth embodiments can be used as the transmission-side filter and the reception-side filter of the duplexer 164 and the filters 162 and 163.
 (実施の形態6)
 本実施の形態では、実施の形態1から4に係る誘電体複合フィルタを備えるMassive MIMOシステムを例示する。
(Embodiment 6)
In this embodiment, a Massive MIMO system including the dielectric composite filter according to Embodiments 1 to 4 is illustrated.
 5G(第5世代移動通信システム)で有望な無線伝送技術の1つは、ファントムセルとMassive MIMOシステムとの組み合わせである。ファントムセルは、低い周波数帯のマクロセルと高い周波数帯のスモールセルとの間で通信の安定性を確保するための制御信号と、高速データ通信の対象であるデータ信号とを分離するネットワーク構成である。各ファントムセルにMassive MIMOのアンテナ装置が設けられる。Massive MIMOシステムは、ミリ波帯等において伝送品質を向上させるための技術であり、各アンテナ素子から送信される信号を制御することで、当該アンテナ素子の指向性を制御する。また、Massive MIMOシステムは、多数のアンテナ素子を用いるため、鋭い指向性のビームを生成することができる。ビームの指向性を高めることで高い周波数帯でも電波をある程度遠くまで飛ばすことができるとともに、セル間の干渉を減らして周波数利用効率を高めることができる。 One of the promising wireless transmission technologies in 5G (5th generation mobile communication system) is a combination of a phantom cell and a Massive MIMO system. The phantom cell is a network configuration that separates a control signal for ensuring communication stability between a macro cell in a low frequency band and a small cell in a high frequency band and a data signal that is a target of high-speed data communication. . Each phantom cell is provided with a Massive MIMO antenna device. The Massive MIMO system is a technique for improving transmission quality in a millimeter wave band or the like, and controls the directivity of the antenna element by controlling a signal transmitted from each antenna element. Further, the Massive MIMO system uses a large number of antenna elements, and therefore can generate a sharp directional beam. By increasing the directivity of the beam, it is possible to fly radio waves to some extent even in a high frequency band, and it is possible to reduce the interference between cells and increase the frequency utilization efficiency.
 図14Aは、実施の形態7に係るMassive MIMOシステムを示す回路図である。また、図14Bは、実施の形態7に係るMassive MIMOシステムのアンテナ装置の平面図である。 FIG. 14A is a circuit diagram showing a Massive MIMO system according to Embodiment 7. FIG. 14B is a plan view of the antenna device of the Massive MIMO system according to Embodiment 7.
 図14Bに示されたアンテナ装置111は、図14Aに示されたMassive MIMOシステムで用いられる。アンテナ装置111は、行列状に配列された複数のパッチアンテナ112を備える。図14Aには、アンテナ装置111を含む高周波フロントエンド回路110Aの構成を示す図である。この高周波フロントエンド回路110Aは、本実施の形態に係るMassive MIMOシステムである。 The antenna device 111 shown in FIG. 14B is used in the Massive MIMO system shown in FIG. 14A. The antenna device 111 includes a plurality of patch antennas 112 arranged in a matrix. FIG. 14A is a diagram illustrating a configuration of a high-frequency front-end circuit 110A including the antenna device 111. This high-frequency front end circuit 110A is a Massive MIMO system according to the present embodiment.
 パッチアンテナ112には、帯域通過型のフィルタ161a、161bおよび161cが接続されている。フィルタ161aとパワーアンプ回路181aおよびローノイズアンプ回路182aとの間には、スイッチ回路170aが接続されている。フィルタ161bとパワーアンプ回路181bおよびローノイズアンプ回路182bとの間には、スイッチ回路170bが接続されている。フィルタ161cとパワーアンプ回路181cおよびローノイズアンプ回路182cとの間には、スイッチ回路170cが接続されている。ローノイズアンプ回路182a、182bおよび182cは、ベースバンド信号処理回路192に接続されている。ベースバンド信号処理回路192とパワーアンプ回路181aとの間には、帯域通過型のフィルタ162aおよびミキサ194aが接続されている。ベースバンド信号処理回路192とパワーアンプ回路181bとの間には、帯域通過型のフィルタ162bよびミキサ194bが接続されている。ベースバンド信号処理回路192とパワーアンプ回路181cとの間には、帯域通過型のフィルタ162cおよびミキサ194cが接続されている。ミキサ194a、194bおよび194cには、ローカルオシレータ193が接続されている。ローカルオシレータ193は、ミキサ194a~194cにおいて高い周波数へアップコンバート、低い周波数へダウンコンバートするための基準周波数を、ミキサ194a~194cへ出力する。 The patch antenna 112 is connected with band- pass filters 161a, 161b and 161c. A switch circuit 170a is connected between the filter 161a, the power amplifier circuit 181a, and the low noise amplifier circuit 182a. A switch circuit 170b is connected between the filter 161b, the power amplifier circuit 181b, and the low noise amplifier circuit 182b. A switch circuit 170c is connected between the filter 161c, the power amplifier circuit 181c, and the low noise amplifier circuit 182c. The low noise amplifier circuits 182a, 182b, and 182c are connected to the baseband signal processing circuit 192. A band pass filter 162a and a mixer 194a are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181a. A band-pass filter 162b and a mixer 194b are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181b. A band-pass filter 162c and a mixer 194c are connected between the baseband signal processing circuit 192 and the power amplifier circuit 181c. A local oscillator 193 is connected to the mixers 194a, 194b and 194c. The local oscillator 193 outputs, to the mixers 194a to 194c, a reference frequency for up-conversion to a high frequency and down-conversion to a low frequency in the mixers 194a to 194c.
 フィルタ161a~161cは、送受信周波数帯域を通過させ、その他の周波数成分を除去する。スイッチ回路170a~170cは、送信信号と受信信号とを切り替える。フィルタ162a~162cは、送信信号の周波数帯域を通過させ、その他の周波数成分を除去する。 Filters 161a to 161c pass the transmission / reception frequency band and remove other frequency components. The switch circuits 170a to 170c switch between a transmission signal and a reception signal. The filters 162a to 162c pass the frequency band of the transmission signal and remove other frequency components.
 フィルタ161a~161cおよび162a~162cとして、実施の形態1から4に係る誘電体複合フィルタを用いることができる。 As the filters 161a to 161c and 162a to 162c, the dielectric composite filters according to the first to fourth embodiments can be used.
 実施の形態1から4に係る誘電体複合フィルタは、小型に構成できるので、パッチアンテナ112に接続されるフィルタ161a~161cを、パッチアンテナ112が形成される基板の裏面に配置してもよい。これにより、フィルタ161a~161c付きのパッチアンテナ112を備えるアンテナ装置111が構成される。 Since the dielectric composite filters according to Embodiments 1 to 4 can be made compact, the filters 161a to 161c connected to the patch antenna 112 may be arranged on the back surface of the substrate on which the patch antenna 112 is formed. Thereby, the antenna device 111 including the patch antenna 112 with the filters 161a to 161c is configured.
 本実施の形態に係る高周波フロントエンド回路110Aによれば、フィルタ161a~161cおよび162a~162cにおいて、スプリアスを抑制しながら小さい挿入損失を達成するので、高周波特性に優れたMassive MIMOシステムを実現することが可能となる。 According to the high-frequency front-end circuit 110A according to the present embodiment, the filters 161a to 161c and 162a to 162c achieve a small insertion loss while suppressing spurious, so that a Massive MIMO system having excellent high-frequency characteristics can be realized. Is possible.
 以上、本発明の実施の形態に係る誘電体複合フィルタ、高周波モジュール、高周波フロントエンド回路、通信装置、及びMassive MIMOシステムについて説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。 Although the dielectric composite filter, the high frequency module, the high frequency front end circuit, the communication device, and the Massive MIMO system according to the embodiments of the present invention have been described above, the present invention is not limited to individual embodiments. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
 本発明は、スプリアスを抑制しながら挿入損失が小さい誘電体複合フィルタとして、ミリ波帯移動体通信システムおよびMassive MIMOシステムなどの通信装置に広く利用できる。 The present invention can be widely used in communication devices such as millimeter wave mobile communication systems and massive MIMO systems as dielectric composite filters with low insertion loss while suppressing spurious.
    1~7  誘電体複合フィルタ
    8  高周波モジュール
   10、11  導波管フィルタ
   12~16、12a~14a、16a、31  誘電体共振器
   18、19  入出力部
   21~23  伝送線路フィルタ
   40~42  誘電体ブロック
   40a、40b、40c、41a、41b、42a 溝
   50~52  導電性被膜
   51a、51b、52a、52b 結合窓
   53、54  配線導体
   56  主導体
   57~59  オープンスタブ
   80  基板
   81  導体箔
   82  接続電極
   83、84  コプレーナライン
  110、110A~110C  高周波フロントエンド回路
  111  アンテナ装置
  112  パッチアンテナ
  150  アンテナ素子
  161、161a~161c、162、162a~162c、163  フィルタ
  164  デュプレクサ
  170、170a~170c、172  スイッチ回路
  171  サーキュレータ
  173  アイソレータ
  181、181a~181c  パワーアンプ回路
  182、182a~182c  ローノイズアンプ回路
  191  RF信号処理回路
  192  ベースバンド信号処理回路
  193  ローカルオシレータ
  194a~194c ミキサ
1-7 Dielectric Composite Filter 8 High Frequency Module 10, 11 Waveguide Filter 12-16, 12a-14a, 16a, 31 Dielectric Resonator 18, 19 Input / Output Unit 21-23 Transmission Line Filter 40-42 Dielectric Block 40a, 40b, 40c, 41a, 41b, 42a Groove 50-52 Conductive coating 51a, 51b, 52a, 52b Coupling window 53, 54 Wiring conductor 56 Main conductor 57-59 Open stub 80 Substrate 81 Conductive foil 82 Connection electrode 83, 84 Coplanar lines 110, 110A to 110C High-frequency front end circuit 111 Antenna device 112 Patch antenna 150 Antenna element 161, 161a to 161c, 162, 162a to 162c, 163 Filter 164 Duplexer 1 0,170a ~ 170c, 172 switching circuit 171 circulator 173 isolators 181,181a ~ 181c power amplifier circuit 182,182a ~ 182c low-noise amplifier circuit 191 RF signal processing circuit 192 baseband signal processing circuit 193 the local oscillator 194a ~ 194c mixer

Claims (17)

  1.  複数の誘電体共振器を連結してなり、少なくとも一方端の誘電体共振器に、信号の伝搬モードを変換する入出力部が設けられている導波管フィルタと、
     前記一方端の誘電体共振器に連結された誘電体ブロックと、前記誘電体ブロックの表面に形成され、かつ、前記入出力部から延びる配線導体と、を有する伝送線路フィルタと、
     を備える誘電体複合フィルタ。
    A waveguide filter in which a plurality of dielectric resonators are connected, and at least one dielectric resonator is provided with an input / output unit for converting a signal propagation mode;
    A transmission line filter having a dielectric block connected to the dielectric resonator at the one end, and a wiring conductor formed on the surface of the dielectric block and extending from the input / output unit;
    A dielectric composite filter comprising:
  2.  前記伝送線路フィルタは、ローパスフィルタである、
     請求項1に記載の誘電体複合フィルタ。
    The transmission line filter is a low-pass filter.
    The dielectric composite filter according to claim 1.
  3.  前記配線導体は、前記配線導体における信号の伝搬方向に直交する方向の寸法である幅が異なる部分を少なくとも2以上有する、
     請求項2に記載の誘電体複合フィルタ。
    The wiring conductor has at least two or more portions having different widths that are dimensions in a direction orthogonal to a signal propagation direction in the wiring conductor.
    The dielectric composite filter according to claim 2.
  4.  前記伝送線路フィルタは、バンドエリミネーションフィルタ又はノッチフィルタである、
     請求項1に記載の誘電体複合フィルタ。
    The transmission line filter is a band elimination filter or a notch filter.
    The dielectric composite filter according to claim 1.
  5.  前記配線導体は、前記配線導体における信号の伝搬方向に設けられた主導体と、当該主導体から分岐する複数のオープンスタブとを有する、
     請求項4に記載の誘電体複合フィルタ。
    The wiring conductor has a main conductor provided in a signal propagation direction in the wiring conductor, and a plurality of open stubs branched from the main conductor.
    The dielectric composite filter according to claim 4.
  6.  前記複数のオープンスタブは、前記主導体の一方側へ延びる第1のオープンスタブと、前記主導体の他方側へ延びる第2のオープンスタブとを含む、
     請求項5に記載の誘電体複合フィルタ。
    The plurality of open stubs include a first open stub extending to one side of the main conductor and a second open stub extending to the other side of the main conductor.
    The dielectric composite filter according to claim 5.
  7.  前記伝送線路フィルタの表面のうち前記配線導体が形成されている面の反対面に、導体膜が形成されている、
     請求項1から6の何れか1項に記載の誘電体複合フィルタ。
    A conductor film is formed on the surface of the transmission line filter opposite to the surface on which the wiring conductor is formed.
    The dielectric composite filter according to any one of claims 1 to 6.
  8.  前記導波管フィルタの表面に導体膜が形成されており、
     前記伝送線路フィルタの前記反対面に形成されている導体膜は、前記導波管フィルタの表面に形成されている導体膜である、
     請求項7に記載の誘電体複合フィルタ。
    A conductor film is formed on the surface of the waveguide filter,
    The conductor film formed on the opposite surface of the transmission line filter is a conductor film formed on the surface of the waveguide filter.
    The dielectric composite filter according to claim 7.
  9.  前記配線導体と前記入出力部とは、前記誘電体複合フィルタの同一面に形成されている、
     請求項1から8の何れか1項に記載の誘電体複合フィルタ。
    The wiring conductor and the input / output unit are formed on the same surface of the dielectric composite filter.
    The dielectric composite filter according to any one of claims 1 to 8.
  10.  前記入出力部が、前記一方端の誘電体共振器の角部に設けられている、
     請求項1から9の何れか1項に記載の誘電体複合フィルタ。
    The input / output unit is provided at a corner of the dielectric resonator at the one end;
    The dielectric composite filter according to any one of claims 1 to 9.
  11.  前記導波管フィルタの他方端の誘電体共振器に連結された誘電体共振器を、さらに備える、
     請求項1に記載の誘電体複合フィルタ。
    A dielectric resonator coupled to the dielectric resonator at the other end of the waveguide filter;
    The dielectric composite filter according to claim 1.
  12.  前記伝送線路フィルタは、ローパスフィルタであり、
     前記他方端の誘電体共振器に連結された誘電体共振器は、バンドエリミネーションフィルタである、
     請求項11に記載の誘電体複合フィルタ。
    The transmission line filter is a low-pass filter,
    The dielectric resonator connected to the dielectric resonator at the other end is a band elimination filter.
    The dielectric composite filter according to claim 11.
  13.  請求項1から12の何れか1項に記載の誘電体複合フィルタと、
     前記誘電体複合フィルタの配線導体と同一形状の接続電極が形成された基板と、を備え、
     前記誘電体複合フィルタの前記配線導体と前記基板の前記接続電極とが結合されてなる、
     高周波モジュール。
    The dielectric composite filter according to any one of claims 1 to 12,
    A substrate on which a connection electrode having the same shape as the wiring conductor of the dielectric composite filter is formed,
    The wiring conductor of the dielectric composite filter and the connection electrode of the substrate are combined,
    High frequency module.
  14.  アンテナ素子に接続された、請求項1から12の何れか1項に記載の誘電体複合フィルタと、
     前記アンテナ素子へ送信する高周波送信信号を増幅する送信増幅回路と、
     前記アンテナ素子で受信した高周波受信信号を増幅する受信増幅回路と、
     前記送信増幅回路及び前記受信増幅回路と、前記誘電体複合フィルタとの接続を切り替えるスイッチ回路と、
     を備える高周波フロントエンド回路。
    The dielectric composite filter according to any one of claims 1 to 12, connected to an antenna element,
    A transmission amplifier circuit for amplifying a high-frequency transmission signal to be transmitted to the antenna element;
    A reception amplification circuit for amplifying a high-frequency reception signal received by the antenna element;
    A switch circuit that switches connection between the transmission amplifier circuit and the reception amplifier circuit, and the dielectric composite filter;
    High frequency front-end circuit with
  15.  RF信号処理回路から出力される高周波送信信号を増幅する送信増幅回路と、
     高周波受信信号を増幅して前記RF信号処理回路へ出力する受信増幅回路と、
     前記RF信号処理回路と前記送信増幅回路との間、又は、前記RF信号処理回路と前記受信増幅回路との間に配置された、請求項1から12の何れか1項に記載の誘電体複合フィルタと、
     を備える高周波フロントエンド回路。
    A transmission amplifier circuit for amplifying a high-frequency transmission signal output from the RF signal processing circuit;
    A reception amplification circuit that amplifies a high-frequency reception signal and outputs the amplified signal to the RF signal processing circuit;
    The dielectric composite according to any one of claims 1 to 12, wherein the dielectric composite is disposed between the RF signal processing circuit and the transmission amplifier circuit, or between the RF signal processing circuit and the reception amplifier circuit. Filters,
    High frequency front-end circuit with
  16.  アンテナ素子に接続され、前記アンテナ素子で送信及び受信される高周波信号を増幅する、請求項14又は15に記載の高周波フロントエンド回路と、
     前記高周波フロントエンド回路に接続され、前記高周波信号とベースバンド信号との間の周波数変換を含む信号処理を行うRF信号処理回路と、
     前記RF信号処理回路に接続され、前記ベースバンド信号を信号処理するベースバンド信号処理回路と、
     を備える通信装置。
    A high-frequency front-end circuit according to claim 14 or 15, which is connected to an antenna element and amplifies a high-frequency signal transmitted and received by the antenna element;
    An RF signal processing circuit connected to the high-frequency front-end circuit for performing signal processing including frequency conversion between the high-frequency signal and a baseband signal;
    A baseband signal processing circuit connected to the RF signal processing circuit and processing the baseband signal;
    A communication device comprising:
  17.  行列状に配列された複数のパッチアンテナを含むアンテナと、
     パッチアンテナごとに請求項1から12のいずれか1項に記載の誘電体複合フィルタと、
     を備えるMassive MIMOシステム。
    An antenna including a plurality of patch antennas arranged in a matrix;
    The dielectric composite filter according to any one of claims 1 to 12, for each patch antenna,
    Massive MIMO system comprising:
PCT/JP2017/036181 2016-11-18 2017-10-04 DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM WO2018092453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016225253 2016-11-18
JP2016-225253 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018092453A1 true WO2018092453A1 (en) 2018-05-24

Family

ID=62146465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036181 WO2018092453A1 (en) 2016-11-18 2017-10-04 DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM

Country Status (1)

Country Link
WO (1) WO2018092453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276879A1 (en) * 2021-07-02 2023-01-05 株式会社村田製作所 Filter device, antenna device, and antenna module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150303U (en) * 1984-09-07 1986-04-04
JPH11312902A (en) * 1998-04-30 1999-11-09 Murata Mfg Co Ltd Dielectric filter, transmission/reception equipment and communication equipment
JP2016171557A (en) * 2015-03-13 2016-09-23 東光株式会社 I/O STRUCTURE OF DIELECTRIC WAVEGUIDE, MOUNTING STRUCTURE OF DIELECTRIC WAVEGUIDE, DIELECTRIC WAVEGUIDE FILTER AND MassiveMIMO SYSTEM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150303U (en) * 1984-09-07 1986-04-04
JPH11312902A (en) * 1998-04-30 1999-11-09 Murata Mfg Co Ltd Dielectric filter, transmission/reception equipment and communication equipment
JP2016171557A (en) * 2015-03-13 2016-09-23 東光株式会社 I/O STRUCTURE OF DIELECTRIC WAVEGUIDE, MOUNTING STRUCTURE OF DIELECTRIC WAVEGUIDE, DIELECTRIC WAVEGUIDE FILTER AND MassiveMIMO SYSTEM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276879A1 (en) * 2021-07-02 2023-01-05 株式会社村田製作所 Filter device, antenna device, and antenna module

Similar Documents

Publication Publication Date Title
CN213906658U (en) High-frequency module and communication device
JP6849086B2 (en) Antenna module and communication device
WO2019244815A1 (en) High-frequency module and communication device
KR102438877B1 (en) High-frequency modules and communication devices
CN112005501B (en) High-frequency module and communication device provided with same
US8367941B2 (en) Filter, branching filter, communication module, and communication equipment
WO2018096731A1 (en) Dielectric waveguide filter, high-frequency front-end circuit, communication device, massive mimo system, and adjustment method for dielectric waveguide filter
CN213213452U (en) High-frequency module and communication device
WO2019240095A1 (en) High-frequency module and communication device
US10484039B2 (en) Multiplexer, radio frequency front-end circuit, and communication device
CN215186735U (en) High-frequency module and communication device
US11495884B2 (en) Antenna device and communication device
JP2021048566A (en) High frequency module and communication device
WO2017203918A1 (en) Dielectric waveguide filter, high frequency front end circuit, and massive mimo system
WO2018029956A1 (en) Dielectric waveguide filter, high-frequency front-end circuit, massive mimo system, and method for manufacturing dielectric waveguide filter
WO2022107460A1 (en) High-frequency module and communication apparatus
CN205178991U (en) 6 -18GHz down coversion subassembly
JP2018196037A (en) Directional coupler, radio frequency front-end module, and communication apparatus
CN213879808U (en) High-frequency module and communication device
WO2018092453A1 (en) DIELECTRIC COMPOSITE FILTER, HIGH-FREQUENCY MODULE, HIGH-FREQUENCY FRONT-END CIRCUIT, COMMUNICATION DEVICE, AND Massive MIMO SYSTEM
WO2018139321A1 (en) Dielectric waveguide filter, high-frequency front-end circuit, and communication device
CN106656052A (en) 6-18GHz down conversion subassembly
KR20210146787A (en) Radio-frequency module and communication device
JP2019036806A (en) Dielectric waveguide filter, high frequency front end circuit and communication apparatus
JP2003060404A (en) Microwave stripline filter and high-frequency transmitter using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP