WO2018020733A1 - 発熱体、基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

発熱体、基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2018020733A1
WO2018020733A1 PCT/JP2017/012082 JP2017012082W WO2018020733A1 WO 2018020733 A1 WO2018020733 A1 WO 2018020733A1 JP 2017012082 W JP2017012082 W JP 2017012082W WO 2018020733 A1 WO2018020733 A1 WO 2018020733A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electromagnetic wave
wafer
heating element
microwave
Prior art date
Application number
PCT/JP2017/012082
Other languages
English (en)
French (fr)
Inventor
愛彦 柳沢
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2018529356A priority Critical patent/JP6664487B2/ja
Publication of WO2018020733A1 publication Critical patent/WO2018020733A1/ja
Priority to US16/258,046 priority patent/US11127608B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Definitions

  • the present invention relates to a heating element, a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a modification process in which a substrate in a processing chamber is heated using a heating device to change the composition or crystal structure in a thin film formed on the surface of the substrate.
  • a modification process to a high-density substrate on which a pattern having a high aspect ratio is formed is required.
  • the substrate cannot be heated uniformly, and the target film cannot be uniformly processed.
  • An object of the present invention is to provide a technique that enables uniform substrate processing.
  • a heating element formed of a material that absorbs and heats an electromagnetic wave supplied from a heating device has an electromagnetic wave transmission region that transmits the electromagnetic wave, and an electromagnetic wave non-transmission region that does not transmit the electromagnetic wave, and a technique using the heating element.
  • FIG. 1 It is a schematic block diagram of the single wafer processing furnace of the substrate processing apparatus used suitably by the 1st Embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-section. It is a figure at the time of measuring the temperature of the board
  • (A) It is a schematic diagram which shows the relationship between a soaking plate, a wafer, and a microwave when not providing the microwave permeation
  • the substrate processing apparatus 100 is configured as a single wafer heat treatment apparatus that performs a predetermined heat treatment on a substrate.
  • the substrate processing apparatus 100 will be described as an apparatus that performs an annealing process (modification process) using an electromagnetic wave, which will be described later.
  • a substrate processing apparatus 100 includes a case 102 as a cavity made of a material that reflects electromagnetic waves such as metal, and an upper and lower ends in a vertical direction that are accommodated in the case 102. It has a cylindrical reaction tube 103 whose part is open.
  • the reaction tube 103 is made of a material that transmits electromagnetic waves, such as quartz.
  • a cap flange (blocking plate) 104 made of a metal material is brought into contact with the upper end of the reaction tube 103 via an O-ring 220 as a sealing member (seal member) to close the upper end of the reaction tube, A ceiling surface of the case 102 and the reaction tube 103 is formed.
  • a processing vessel for processing a substrate such as a silicon wafer is mainly constituted by the case 102, the reaction tube 103, and the cap flange 104.
  • the inner space of the reaction tube 103 is constituted as a processing chamber 201.
  • the processing vessel may be configured by the case 102 and the cap flange 104 without providing the reaction tube 103.
  • the internal space of the case 102 becomes the processing chamber 201.
  • a mounting table 210 is provided below the reaction tube 103, and a boat 217 serving as a substrate holder for holding the wafers 200 is mounted on the upper surface of the mounting table 210.
  • the boat 217 heats the wafer 200 as a processing target and the radiant heat generated when the wafer 200 is heated by a microwave supplied from a microwave oscillator, which will be described later, to uniformly heat the wafer 200.
  • Susceptors also referred to as radiation plates, dielectrics, energy conversion members, and soaking plates
  • 101a and 101b having a function as a body are arranged vertically above and below so as to sandwich the wafer 200 at a predetermined interval.
  • susceptors 101a and 101b are disposed immediately above and below wafer 200.
  • the susceptors 101a and 101b are made of a dielectric material such as a silicon plate (Si plate) or a silicon carbide plate (SiC plate).
  • a heat insulating plate such as a quartz plate may be provided immediately above the susceptor 101a and directly below the susceptor 101b so that heat radiation from the wafer 200 can be suppressed.
  • a protrusion (not shown) that protrudes in the radial direction of the mounting table 210 is provided on the bottom surface side of the mounting table 210 on the side wall of the mounting table 210.
  • the protruding portion approaches or contacts a squeezing plate 204 provided between the processing chamber 201 and the transfer area 203 described later, the atmosphere in the processing chamber 201 moves into the transfer area 203 or the transfer area 203. The atmosphere inside is prevented from moving into the processing chamber 201.
  • an end plate (ceiling plate) 217 a of the boat 217 is provided with a hole 217 b as a measurement window of the temperature sensor 263, and the susceptor 101 a has a surface temperature controlled by the temperature sensor 263. It is held in a boat 217 as measured.
  • the case 102 as the upper container has, for example, a circular cross section and is configured as a flat hermetic container.
  • the transport container 202 as a lower container is made of, for example, a metal material such as aluminum (Al) or stainless steel (SUS), quartz, or the like.
  • a transfer area 203 for transferring a wafer 200 such as a silicon wafer as a substrate is formed below the processing container. Note that a space surrounded by the case 102 or a space surrounded by the reaction tube 103 and above the partition plate 204 is referred to as a processing chamber 201 or a reaction area 201 as a substrate processing space, and is a transfer container.
  • a space surrounded by 202 and below the partition plate may be referred to as a transfer area 203 or a transfer space 203.
  • the processing chamber 201 and the transfer area 203 are not limited to being configured to be adjacent in the vertical direction as in the present embodiment, but may be configured to be adjacent to each other in the horizontal direction, or the processing chamber 201 and the transfer area 203 may be in the same space. You may comprise so that it may become.
  • a substrate loading / unloading port 206 adjacent to the gate valve 205 is provided on the side surface of the transfer container 202, and the wafer 2 moves between a substrate transfer chamber (not shown) via the substrate loading / unloading port 206.
  • the side surface of the case 102 is provided with an electromagnetic wave supply unit as a heating device that supplies an electromagnetic wave to be described later into the case 102 and heats the wafer 200.
  • the mounting table 210 is supported by a shaft 255 as a rotating shaft.
  • the shaft 255 passes through the bottom of the transport container 202 and is connected to a drive mechanism 267 that rotates and moves up and down outside the transport container 202.
  • a drive mechanism 267 that rotates and moves up and down outside the transport container 202.
  • the periphery of the lower end portion of the shaft 255 is covered with a bellows 212, and the inside of the processing chamber 201 and the transfer area 203 is kept airtight.
  • the mounting table 210 When the wafer 200 is transferred, the mounting table 210 is lowered so that the upper surface of the mounting table is positioned at the substrate loading / unloading port 206 (wafer transfer position), and when the wafer 200 is processed, the wafer 200 is processed as shown in FIG. It moves up to the processing position (wafer processing position) in the chamber 201.
  • An exhaust unit that exhausts the atmosphere of the processing chamber 201 is provided below the processing chamber 201 and on the outer peripheral side of the mounting table 210. As shown in FIG. 1, an exhaust port 221 is provided in the exhaust part. An exhaust pipe 231 is connected to the exhaust port 221, and a pressure regulator 244 such as an APC valve that controls the valve opening degree according to the pressure in the processing chamber 201 and a vacuum pump 246 are connected in series to the exhaust pipe 231. It is connected to the.
  • the pressure regulator 244 is not limited to an APC valve as long as it can receive pressure information in the processing chamber 201 (a feedback signal from a pressure sensor 245 described later) and adjust the exhaust amount.
  • the on-off valve and the pressure regulating valve may be used in combination.
  • the exhaust port 221, the exhaust pipe 231, and the pressure regulator 244 constitute an exhaust part (also referred to as an exhaust system or an exhaust line).
  • an exhaust path may be provided so as to surround the processing chamber 201 so that gas can be exhausted from the entire periphery of the wafer 200.
  • the cap flange 104 is provided with a gas supply pipe 232 for supplying a processing gas for processing various substrates such as an inert gas, a raw material gas, and a reactive gas into the processing chamber 201.
  • a mass flow controller (MFC) 241 that is a flow rate controller (flow rate control unit) and a valve 243 that is an on-off valve are provided in order from the upstream side.
  • MFC mass flow controller
  • N 2 nitrogen
  • an MFC that is a flow rate controller and a valve that is an on-off valve are provided on the downstream side of the valve 243 of the gas supply pipe 232 in order from the upstream direction.
  • a gas supply pipe may be connected.
  • a gas supply system gas supply unit
  • a gas supply source (not shown) may be included in the gas supply system.
  • the gas supply unit is not limited to being supplied from the ceiling portion of the processing container as shown in FIG. 1, and may be arranged to be supplied from any position.
  • an inert gas supply system (inert gas supply unit) is mainly configured by the gas supply pipe 232, the MFC 241, and the valve 243.
  • the inert gas for example, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
  • the cap flange 104 is provided with a temperature sensor 263 as a non-contact type temperature detector.
  • a temperature sensor 263 By adjusting the output of a microwave oscillator 655, which will be described later, based on the temperature information detected by the temperature sensor 263, the substrate is heated, and the substrate temperature has a desired temperature distribution.
  • the temperature sensor 263 is configured by a radiation thermometer such as an IR (Infrared Radiation) sensor.
  • the method for measuring the temperature of the substrate is not limited to the above-described radiation thermometer, and temperature measurement may be performed using a thermocouple, or temperature measurement may be performed using both a thermocouple and a radiation thermometer. Good.
  • thermocouple when temperature measurement is performed using a thermocouple, it is necessary to perform temperature measurement by placing the thermocouple in the vicinity of the processing wafer 200 in order to improve the temperature measurement accuracy of the thermocouple. Since the thermocouple itself is heated by the supplied microwave, it is preferable to use a radiation thermometer as the temperature sensor 263. Further, the temperature sensor 263 is not limited to being provided on the cap flange 104 but may be provided on the mounting table 210. With such a configuration, it is possible to use a reaction tube whose upper end is closed, and it is possible to reduce the possibility of leakage of microwaves, processing gas, and the like supplied to the processing chamber 201.
  • the temperature sensor 263 is not only directly installed on the cap flange 104 or the mounting table 210 but also indirectly measured by reflecting the radiated light from the measurement window provided on the cap flange 104 or the mounting table 210 with a mirror or the like. It may be configured to. With this configuration, it is possible to relax restrictions on the place where the temperature sensor 263 is installed.
  • Electromagnetic wave introduction ports 653-1 and 653-2 are installed on the side wall of the case 102.
  • One end of each of waveguides 654-1 and 654-2 for supplying electromagnetic waves into the processing chamber 201 is connected to each of the electromagnetic wave introduction ports 653-1 and 653-2.
  • microwave oscillators electromagnetically generating electromagnetic waves
  • the microwave oscillators 655-1 and 655-2 supply electromagnetic waves such as microwaves to the waveguides 654-1 and 654-2, respectively.
  • microwave oscillators 655-1 and 655-2 a magnetron, a klystron or the like is used.
  • the electromagnetic wave introduction ports 653-1 and 653-2, the waveguides 654-1 and 654-2, and the microwave oscillators 655-1 and 655-2 are respectively described in the general description.
  • the electromagnetic wave introduction port 653, the waveguide 654, and the microwave oscillator 655 are representatively described.
  • the frequency of the electromagnetic wave generated by the microwave oscillator 655 is preferably set to be in the frequency range of 13.56 MHz to 24.125 GHz. More preferably, the frequency is preferably set to be 2.45 GHz or 5.8 GHz.
  • two microwave oscillators 655 are described as being disposed on the side surface of the case 102, but the present invention is not limited to this, and one or more microwave oscillators may be provided. Moreover, you may arrange
  • the electromagnetic wave supply unit (electromagnetic wave supply device, microwave supply unit, micro wave) is mainly constituted by the microwave oscillators 655-1 and 655-2, the waveguides 654-1 and 654-2, and the electromagnetic wave introduction ports 653-1 and 653-2.
  • a heating device as a wave supply device is configured.
  • a controller 121 described later is connected to each of the microwave oscillators 655-1 and 655-2.
  • the controller 121 is connected to a susceptor 101 a or 101 b housed in the processing chamber 201 or a temperature sensor 263 that measures the temperature of the wafer 200.
  • the temperature sensor 263 measures the temperature of the susceptor 101a or 101b or the wafer 200 and transmits it to the controller 121.
  • the controller 121 controls the output of the microwave oscillators 655-1 and 655-2, thereby controlling the heating of the wafer 200.
  • the microwave oscillators 655-1 and 655-2 are controlled by the same control signal transmitted from the controller 121.
  • the present invention is not limited to this, and the microwave oscillators 655-1 and 655-2 are individually controlled by transmitting individual control signals from the controller 121 to the microwave oscillators 655-1 and 655-2, respectively. May be.
  • a boat 217 that holds one wafer 200 or a plurality of wafers arranged in a vertical direction at a predetermined interval is provided in the processing chamber 201.
  • the boat 217 holds susceptors 101 a and 101 b as soaking plates (radiation plates) above and below the wafer 200.
  • the susceptors 101a and 101b are the same parts, and hereinafter, the susceptors 101a and 101b will be referred to as the susceptor 101 when there is no need to distinguish them.
  • the susceptor 101 is formed in a disk shape having a diameter equal to or larger than that of the wafer 200 and is held in a wafer holding groove (not shown) provided in the boat 217 in the same manner as the wafer 200. Further, as shown in FIG. 3, the susceptor 101 includes a plurality of microwave transmission holes 300 having a predetermined diameter for transmitting microwaves. Furthermore, the susceptor 101 is made of a material (for example, SiC) that absorbs and does not transmit the microwave supplied into the processing chamber 201.
  • the susceptor 101 is configured by a member that does not transmit microwaves, and includes a plurality of microwave transmission holes 300, thereby configuring an electromagnetic wave non-transmitting region (non-transmitting portion) and a transmitting region (transmitting portion). It becomes possible to do. That is, as shown in FIG. 4A, when the microwave transmitting hole 300 is not provided in the susceptor 101, the microwave is reflected or absorbed by the susceptor 101a and the susceptor 101b, and the wafer 200 is generated by the radiant heat from the susceptor 101. Indirect heating is mainly performed, and the temperature rising rate becomes slow, or uniform heating of the wafer 200 becomes difficult. On the other hand, as shown in FIG.
  • the microwave 400 is transmitted through the microwave transmission holes 300 provided in the susceptor 101.
  • direct heating for heating the wafer 200 and indirect heating for heating the wafer 200 indirectly by heating the susceptor 101 can be performed simultaneously.
  • the direct heating of the wafer 200 by the microwave 400 can selectively heat only a predetermined film formed on the surface of the wafer 200, without damaging the selective heating feature. It is possible to improve the temperature uniformity.
  • a region where the susceptor 101 other than the microwave transmission hole 300 on the surface of the susceptor 101 absorbs the microwave 400 is referred to as an electromagnetic wave non-transmission region, and a region where the microwave transmission hole 300 is provided. It is called an electromagnetic wave transmission region.
  • the diameters of the microwave transmission holes 300 are formed in a staggered pattern, and as shown in FIG. 5, the horizontal and vertical pitches of the holes formed in the staggered pattern are respectively set.
  • the horizontal pitch a is It can be expressed by Equation 1.
  • the hole area ratio A with respect to the surface area of the susceptor 101 at this time can be expressed by Equation 2.
  • the microwave is leaking.
  • the aperture of the susceptor 101 can be adjusted by changing the hole diameter in accordance with the ratio to be leaked with the attenuation threshold being 40 dB.
  • the microwave transmitting hole 300 may have any shape, but is preferably formed in a circular shape that is easy to process.
  • the susceptor 101 is preferably formed of a material having a higher microwave absorption rate and a lower specific heat than the wafer 200. By forming the susceptor 101 with such a material, the susceptor 101 is heated faster than the wafer 200, so that indirect heating by radiation can be uniformly performed on the wafer 200, and the wafer 200 is preliminarily heated. It becomes possible to do. Accordingly, it is possible to prevent thermal escape from the wafer 200 while reducing temperature unevenness during heating of the wafer 200 having a large specific heat.
  • the microwave transmitting holes 300 are provided as a plurality of holes even if the sum of the opening areas is the same, rather than providing only one.
  • the microwave transmitting holes 300 it is possible to disperse the positions where the microwaves are transmitted and disperse the positions where the wafer 200 is directly heated. Therefore, it is easy to uniformly heat the wafer 200. It becomes.
  • the microwave transmission hole 300 provided in the susceptor 101 is preferably provided in line symmetry or point symmetry with respect to the center of the susceptor 101. By arranging the microwave transmission holes 300 in this way, it is possible to facilitate control for uniformly heating the wafer 200.
  • the susceptor 101a and the susceptor 101b may be held on the boat 217 so that the microwave transmission holes 300 face each other, that is, arranged in the same position in the vertical direction, or shifted in the circumferential direction and held on the boat 217.
  • the microwave transmitting holes 300 may be held so as not to be opposed to each other by the susceptor 101a and the susceptor 101b, that is, arranged at different positions in the vertical direction.
  • the susceptor 101a and the susceptor 101b hold the microwave transmitting hole 300 at a position facing each other, thereby increasing the speed at which the temperature of the wafer 200 is raised to a predetermined temperature.
  • the susceptor 101a and the susceptor 101b by holding the susceptor 101a and the susceptor 101b so that the microwave transmission holes 300 are not opposed to each other, it is possible to make different regions for heating the wafer 200, and it is possible to heat the wafer 200 more uniformly.
  • microwave transmission is applied to the susceptor 101 placed on the wafer surface (back surface) side on which the processing target film is not formed, that is, the susceptor 101b placed on the lower side of the wafer 200 in the present embodiment.
  • the microwave transmission hole 300 is formed in the susceptor 101a, and the susceptor 101b is formed in the susceptor 101b.
  • the microwave transmission hole 300 is not formed.
  • the wafer 200 can be heated uniformly by controlling the hole diameter and the number of holes of the microwave transmission holes 300 of the susceptor 101a placed on the main surface side, and the temperature control of the wafer 200 is possible. Can be facilitated.
  • the susceptors 101 are arranged one by one above and below the wafer 200, but the present invention is not limited to this, and a plurality of susceptors 101 may be installed according to the substrate processing temperature.
  • a plurality of wafers By installing a plurality of wafers in this way, it is possible to improve the heating performance of the region where the wafers 200 are placed. As a result, it is possible to prevent the temperature of the wafer 200 from decreasing due to heat radiation from the wafer 200. Therefore, the in-plane or inter-surface temperature uniformity of the wafer 200 can be improved.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing the annealing (modification) processing procedure and conditions, and the like are stored in a readable manner.
  • the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • the process recipe is also simply called a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d is connected to the aforementioned MFC 241, valves 243 and 244, pressure sensor 245, vacuum pump 246, temperature sensor 263, drive mechanism 267, microwave oscillator 655, and the like.
  • the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFC 241, the opening / closing operations of the valves 243 and 244, the pressure adjusting operation by the valve 244 based on the pressure sensor 245, the start and stop of the vacuum pump 246, in accordance with the contents of the read recipe.
  • the output adjustment operation of the microwave oscillator 655 based on the temperature sensor 263, the rotation and rotation speed adjustment operation of the mounting table 210 (or the boat 217) by the drive mechanism 267, the raising / lowering operation, and the like are controlled.
  • the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • wafer when used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface when used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
  • substrate is also synonymous with the term “wafer”.
  • the atmosphere in the processing chamber 201 is controlled so that the processing chamber 201 has a predetermined pressure (for example, 10 to 102000 Pa).
  • a predetermined pressure for example, 10 to 102000 Pa.
  • the valve opening of the pressure regulator 244 is feedback-controlled based on the pressure information detected by the pressure sensor 245 so that the inside of the processing chamber 201 is set to a predetermined pressure.
  • the microwave supply unit may be controlled as preliminary heating to control the heating to a predetermined temperature (S702).
  • the microwave oscillators 655-1 and 655-2 cause the wafer 200 to have a temperature range of 100 ° C. to 1000 ° C., preferably 600 ° C. to 900 ° C. It heats so that it may become a belt
  • the wafer 200 becomes difficult to absorb the microwave, and the wafer 200 is efficiently heated. It becomes impossible to do.
  • the temperature of the wafer 200 is estimated from the value obtained by measuring the surface temperature of the susceptor 101a with the temperature sensor 263, based on the temperature conversion data stored in advance in the storage device 121c or the external storage device 122.
  • the microwave oscillators 655-1 and 655-2 supply microwaves from the electromagnetic wave introduction ports 653-1 and 653-2 into the processing chamber 201 via the waveguides 654-1 and 654-2.
  • the microwave 400 supplied into the processing chamber 201 enters the non-transmission region and the transmission region of the susceptor 101.
  • the microwave 400 incident on the opaque region of the susceptor 101 is absorbed by the susceptor 101 and heats the susceptor 101, and the wafer 200 is heated by radiant heat from the susceptor 101.
  • the microwave 400 incident on the microwave transmission hole 300 which is a transmission region of the susceptor 101 is transmitted through the susceptor 101 and incident on the wafer 200 and absorbed. That is, the wafer 200 is directly heated. With this configuration, direct heating and indirect heating can be simultaneously performed on the wafer 200, and uniform heating can be performed extremely effectively.
  • the processing temperature is maintained for a predetermined time.
  • the microwave oscillator 655 By controlling the microwave oscillator 655 in this manner, the amorphous silicon film formed on the surface of the microwave wafer 200 is modified.
  • the microwave oscillators 655-1 and 655-2 can be controlled to increase the outputs of the microwave oscillators 655-1 and 655-2 while intermittently supplying the microwaves. preferable.
  • the carrier density and carrier temperature dependence of the wafer 200 As shown in FIG. 8, when an example of the temperature dependence of the carrier density of the wafer 200 with the vertical axis representing the carrier density (proportional to the conductivity) and the horizontal axis representing the temperature, the region (A) and the region depend on the temperature. It can be divided into (B) and region (C).
  • the temperature dividing the regions (A) and (B) is about 327 ° C.
  • the temperature dividing the regions (B) and (C) is about ⁇ 73 ° C.
  • the carrier density greatly increases as the temperature rises, but in region (B), the carrier density greatly increases even when the temperature rises. do not do.
  • the heat generation amount per unit time of the wafer 200 is proportional to the carrier density of the wafer 200, when the carrier density varies, the heat generation amount changes accordingly. For this reason, when microwave heating is performed in the region (A) where the change in carrier density is large, the rate at which the carrier density increases according to the temperature change is large. The heating rate of 200 increases. Therefore, it is preferable that heating by microwaves is performed in the region (A).
  • the heating rate of the wafer 200 is large as described above, when the microwaves are locally concentrated, the concentrated portion becomes high temperature, and the temperature difference is partially large in the plane of the wafer 200. Thus, the wafer 200 is deformed due to the difference in thermal expansion. For this reason, the in-plane temperature of the wafer 200 is cooled by supplying the inert gas as the cooling gas from the gas supply unit while heating by the microwave in the temperature zone of the region (A).
  • the modification processing speed of the wafer 200 can be improved while reducing the difference and suppressing the deformation of the wafer 200.
  • the amorphous silicon film formed on the surface of the wafer 200 is uniformly modified (crystallized) into a polysilicon film. That is, the wafer 200 can be uniformly modified (S704).
  • the controller 121 controls the rotation of the boat 217, gas supply, microwave supply, and exhaust pipe exhaust to be stopped.
  • an inert gas such as N 2 gas is supplied, and the pressure in the processing chamber 201 is returned to atmospheric pressure. At this time, when the substrate processing is performed under atmospheric pressure, the step of returning to atmospheric pressure is omitted.
  • Substrate unloading step (S705) After the pressure in the processing chamber 201 is returned to atmospheric pressure, the drive mechanism 267 lowers the mounting table 210 to open the furnace port and unload the boat 217 to the transfer area 203 (boat unloading). Thereafter, the wafer 200 placed on the boat is carried out to a transfer chamber (not shown) located outside the transfer area 203 (S705). By repeating the above operation, a plurality of wafers 200 are subjected to a modification process.
  • the substrate processing step in the present embodiment is not limited to the above-described aspect, and can be changed as in the following modified example.
  • Modification 1 has a configuration in which the microwave transmission holes 300 are not provided in the entire susceptor as shown in FIG. 3, and a large number of microwave transmission holes 300 are provided in the outer periphery of the susceptor 101.
  • the outer periphery of the susceptor 101 becomes an electromagnetic wave transmission region, and the center side where the microwave transmission hole 300 is not provided becomes an electromagnetic wave non-transmission region. That is, it becomes possible to concentrate and directly heat the outer peripheral portion of the wafer 200, which is difficult to insulate due to easy heat dissipation, by microwaves.
  • the central portion of the wafer 200 that is easily insulated is heated by thermal diffusion of thermal energy generated by direct heating or by indirect heating from the susceptor 101. Accordingly, it becomes easier to uniformly heat the wafer 200 as compared with the embodiment described above.
  • the electromagnetic wave transmission region in the present modification is obtained by measuring the temperature distribution of the wafer 200 in advance, and grasping the portion that is lower than the reference processing temperature by a predetermined temperature or more so that the outside of the portion is the transmission region.
  • the microwave transmission hole 300 may be provided as follows.
  • the second modification is a form in which many microwave transmission holes 300 are provided in the central portion of the susceptor 101, contrary to the first modification.
  • the central portion becomes an electromagnetic wave transmission region
  • the outer peripheral portion where the microwave transmission hole 300 is not provided becomes an electromagnetic wave non-transmission region.
  • an electromagnetic wave transmission region is provided in the central portion to directly heat the central portion of the wafer 200 in a concentrated manner.
  • the position where the electromagnetic wave transmission region is set may be determined by measuring the temperature distribution of the wafer 200 in advance as in the first modification.
  • the third modification is a length of a predetermined distance d (preferably a quarter ⁇ which is an antinode of the microwave wavelength ⁇ supplied into the processing chamber 201) from the center of the surface of the susceptor 101 in the radial direction.
  • a plurality of microwave transmission holes 300 are provided and an electromagnetic wave transmission region is provided in a circumferential shape. In other words, the electromagnetic wave transmission region and the electromagnetic wave non-transmission region are alternately provided in the radial direction (concentrically).
  • the microwave transmitting hole 300 is not provided in the susceptor 101, as shown in FIG.
  • the value of the sheet resistance ( ⁇ / sq) increases and decreases in a wavy manner at a predetermined interval on the wafer 200. It can be seen that the modified portion and the unmodified portion are unevenly concentrically. This has been found to be formed at a location where the amplitude of the wavelength of the microwave supplied to the processing chamber 201 is large, that is, according to a quarter of the wavelength where the microwave energy is high.
  • the microwave transmission hole 300 allows the microwave to reach a portion of the wafer 200 that has not been sufficiently modified to directly heat it.
  • the susceptor 101 made of SiC has higher specific heat while performing auxiliary heating by radiation to the wafer 200 that is heated faster than the wafer 200 to be processed because the microwave absorption is larger and the specific heat is smaller than Si. It is possible to alleviate temperature unevenness when the wafer 200 is heated. At this time, heat radiation from the wafer 200 can be suppressed at the same time.
  • the wafer 200 can be uniformly heated more efficiently than in the above-described embodiment and modification.
  • a countersink portion 350 for transmitting microwaves for each radial direction ⁇ / 4 of the susceptor 101 instead of providing a plurality of microwave transmission holes 300 in the circumferential direction, a countersink portion 350 for transmitting microwaves for each radial direction ⁇ / 4 of the susceptor 101. have.
  • the counterbored portion 350 is notched so as to leave a thickness that allows microwave transmission (that is, a thickness obtained by cutting H1 to H2) with respect to the thickness H1 of the susceptor 101 (for example, It is formed so as to have a groove shape.
  • the notch depth H2 can be expressed by the following Equation 3.
  • f represents the microwave frequency
  • ⁇ r represents the relative permittivity
  • tan ⁇ represents the dielectric loss angle.
  • the density distribution of electromagnetic wave transmission takes into account not only the pores but also the penetration depth due to the dielectric properties of the substance, that is, the half-power depth at which the power generated by the microwave penetrating from the surface of the susceptor 101 is reduced by half.
  • the transmission amount can be adjusted in the thickness direction of the susceptor 101.
  • the microwave supplied into the processing chamber 201 causes energy loss due to the susceptor 101. It is possible to reach the wafer 200 while restraining. That is, the microwave passes through the susceptor 101.
  • Modification 5 is a form in which a plurality of microwave transmission holes 300 are provided in the counterbore part 350 provided in Modification 4.
  • the wafer 200 can be more efficiently heated by microwaves when compared with the third and fourth modifications. That is, the microwave is attenuated by the counterbore part 350 having a half-power depth, and by providing the microwave transmission hole 300 that transmits the microwave, the microwave that reaches the wafer 200 can be controlled. It is possible to easily control that the temperature of 200 is raised to a predetermined temperature. Therefore, according to this modification, the wafer 200 can be heated uniformly.
  • an inert gas such as nitrogen gas
  • a nozzle 105 may be provided on the side of the wafer 200, an inert gas may be supplied from the side surface of the wafer 200, and a gas flow may be formed parallel to the surface of the wafer 200.
  • the annealing (modification) process has been described as the predetermined process using the substrate processing apparatus of the present invention.
  • the present invention is not limited to this, and a film forming process or an etching process for forming a predetermined film is performed. It is good also as using for.
  • the recipe used for the substrate processing is preferably prepared individually according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123.
  • the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content.
  • thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed for general use and with good reproducibility using a single substrate processing apparatus.
  • the burden on the operator can be reduced, and various processes can be started quickly while avoiding an operation error.
  • the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
  • an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • SYMBOLS 100 Substrate processing apparatus, 101a, 101b ... Susceptor (heating element, radiation plate), 121 ... Controller, 200 ... Wafer, 300 ... Hole, 350 ... Countersink part, 400 ... Microwave, 653-1, 653-2 ... Electromagnetic wave introduction port, 655-1, 655-2 ... microwave oscillator (electromagnetic wave source).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

均一な基板処理を行うことができる技術を提供する。加熱装置から供給された電磁波を吸収して加熱される材質で形成され、電磁波を透過する電磁波透過領域と、電磁波を透過しない電磁波不透過領域とを有する発熱体とそれを用いた技術を提供する。

Description

発熱体、基板処理装置、半導体装置の製造方法およびプログラム
 本発明は、発熱体、基板処理装置、半導体装置の製造方法およびプログラムに関する。
 半導体装置の製造工程の一工程として、例えば、加熱装置を用いて処理室内の基板を加熱し、基板の表面に成膜された薄膜中の組成や結晶構造を変化させる改質処理がある。最近の半導体デバイスにおいては、微細化に伴い、高いアスペクト比を有するパターンが形成された高密度の基板への改質処理が求められている。
特開平11-251323号公報
 従来の改質処理方法では、基板を均一に加熱することができず、対象膜の均一な処理ができなかった。
 本発明の目的は、均一な基板処理を行うことが可能となる技術を提供することにある。
 本発明の一態様によれば、
 加熱装置から供給された電磁波を吸収して加熱される材質で形成され、前記電磁波を透過する電磁波透過領域と、前記電磁波を透過しない電磁波不透過領域とを有する発熱体とそれを用いた技術が提供される。
 本発明によれば均一な基板処理を行うことができる技術を提供することが可能となる。
本発明の第1の実施形態で好適に用いられる基板処理装置の枚葉型処理炉の概略構成図であり、処理炉部分を縦断面で示す図である。 本発明における基板の温度を測定する際の図である。 本発明における第1の実施形態を示す図である。 (A)均熱板の表面に電磁波透過領域としてのマイクロ波透過孔を設けない場合の均熱板、ウエハ、マイクロ波の関係を示す模式図である。(B)本発明における均熱板、ウエハ、マイクロ波の関係を示す模式図である。 本発明におけるマイクロ波透過孔のピッチaを説明する図である。 本発明で好適に用いられる基板処理装置のコントローラの概略構成図である。 本発明における基板処理装置のフローを示す図である。 本発明におけるウエハのキャリア密度の温度依存性に関する一例を示す図である。 本発明における変形例1を示す図である。 本発明における変形例2を示す図である。 本発明における変形例3を示す図である。 (A)均熱板の表面に電磁波透過領域としてのマイクロ波透過孔を設けない場合のウエハの面内の温度分布を示した図である。(B)本発明における変形例3の均熱板を用いた場合のウエハの面内の温度分布を示した図である。 本発明における変形例4を示す図である。 本発明における電磁波透過領域を説明する図である。 本発明における変形例5を示す図である。 本発明における基板処理装置の第2の実施形態を示す図である。
<第1の実施形態>
 以下、本発明の第1の実施形態について図1から図7を参照しながら説明する。
(1)基板処理装置の構成
 本実施の形態において、本発明に係る基板処理装置100は、基板に所定の熱処理を施す枚葉式熱処理装置として構成されている。本実施の形態において基板処理装置100は後述する電磁波を用いたアニール処理(改質処理)を行う装置として説明を行う。
(処理室)
 図1に示すように、本実施形態に係る基板処理装置100は、金属などの電磁波を反射する材料で構成されるキャビティとしてのケース102と、ケース102の内部に収容され、垂直方向の上下端部が開放された筒形状の反応管103を有している。反応管103は、石英などの電磁波を透過する材料で構成される。また、金属材料で構成されたキャップフランジ(閉塞板)104が、封止部材(シール部材)としてのOリング220を介して反応管103の上端と当接されて反応管の上端を閉塞し、ケース102および反応管103の天井面を形成している。主にケース102と反応管103、および、キャップフランジ104によってシリコンウエハ等の基板を処理する処理容器を構成し、特に反応管103の内側空間を処理室201として構成している。反応管103を設けずに、ケース102、キャップフランジ104により処理容器を構成するようにしても良い。その場合、ケース102の内部空間が処理室201となる。また、キャップフランジを設けずに、天井が閉塞しているケース102を用いて処理容器を構成するようにしてもよい。
 反応管103の下方には載置台210が設けられており、載置台210の上面には、ウエハ200を保持する基板保持具としてのボート217が載置されている。ボート217には、処理対象としてのウエハ200と、後述するマイクロ波発振器から供給されるマイクロ波によって自身が加熱されることで生じる輻射熱によってウエハ200を加熱し、当該ウエハ200を均一に加熱する発熱体としての機能を有するサセプタ(輻射板、誘電体、エネルギー変換部材、均熱板とも称する)101a、101bが、所定の間隔でウエハ200を挟み込むように垂直方向上下に配置されている。本実施の形態においては、ウエハ200の直上および直下にサセプタ101a、101bを配置した構成について説明する。しかし、ウエハ200の直上および直下である必要はなく、垂直方向に多段に載置された複数枚のウエハ200を挟み込むように配置されていてもよい。なお、サセプタ101a、101bは例えばシリコンプレート(Si板)、炭化シリコンプレート(SiC板)などの誘電体で構成される。さらに、サセプタ101aの直上およびサセプタ101bの直下に石英板等の断熱板を設けることによって、ウエハ200からの放熱を抑制可能に構成してもよい。
 また、載置台210の側壁には、載置台210の径方向に向かって突出した図示しない突出部が載置台210の底面側に設けられる。この突出部が、後述する処理室201と搬送エリア203との間に設けられるしきり板204と接近または接触することで処理室201内の雰囲気が搬送エリア203内へ移動することや、搬送エリア203内の雰囲気が処理室201内へ移動することを抑制させる。また、後述する図2に示すように、ボート217の端板(天井板)217aには、温度センサ263の測定窓としての孔217bが設けられており、サセプタ101aが温度センサ263によって表面温度を測定されるようにボート217に保持される。
 上部容器としてのケース102は、例えば横断面が円形であり、平らな密閉容器として構成されている。また、下部容器としての搬送容器202は、例えばアルミニウム(Al)やステンレス(SUS)などの金属材料または、石英などにより構成されている。処理容器の下方には、基板としてのシリコンウエハ等のウエハ200を搬送する搬送エリア203が形成されている。なお、ケース102に囲まれた空間、または、反応管103に囲まれた空間であって、仕切り板204よりも上方の空間を基板処理空間としての処理室201又は反応エリア201と称し、搬送容器202に囲まれた空間であって、仕切り板よりも下方の空間を搬送エリア203または搬送空間203と称する場合もある。なお、処理室201と搬送エリア203は、本実施例のように垂直方向に隣接させて構成することに限らず、水平方向に隣接させて構成したり、処理室201と搬送エリア203が同一空間となるように構成してもよい。
 搬送容器202の側面には、ゲートバルブ205に隣接した基板搬入搬出口206が設けられており、ウエハ2は基板搬入搬出口206を介して図示しない基板搬送室との間を移動する。
 ケース102の側面には、後述する電磁波をケース102内に供給してウエハ200を加熱する加熱装置としての電磁波供給部が設けられている。
 載置台210は回転軸としてのシャフト255によって支持される。シャフト255は、搬送容器202の底部を貫通しており、更には搬送容器202の外部で回転、昇降動作を行う駆動機構267に接続されている。駆動機構267を作動させてシャフト255及び載置台210を回転、昇降させることにより、ボート217上に載置されるウエハ200を回転または昇降させることが可能となっている。なお、シャフト255下端部の周囲はベローズ212により覆われており、処理室201および搬送エリア203内は気密に保持されている。
 載置台210は、ウエハ200の搬送時には、載置台上面が基板搬入搬出口206の位置(ウエハ搬送位置)となるよう下降し、ウエハ200の処理時には図1で示されるように、ウエハ200が処理室201内の処理位置(ウエハ処理位置)まで上昇する。
(排気部)
 処理室201の下方であって、載置台210の外周側には、処理室201の雰囲気を排気する排気部が設けられている。図1に示すように、排気部には排気口221が設けられている。排気口221には排気管231が接続されており、排気管231には、処理室201内の圧力に応じて弁開度を制御するAPCバルブなどの圧力調整器244、真空ポンプ246が順に直列に接続されている。ここで、圧力調整器244は、処理室201内の圧力情報(後述する圧力センサ245からのフィードバック信号)を受信して排気量を調整することができるものであればAPCバルブに限らず、通常の開閉バルブと圧力調整弁を併用するように構成されていてもよい。
 主に、排気口221、排気管231、圧力調整器244により排気部(排気系または排気ラインとも称する)が構成される。なお、処理室201を囲むように排気路を設け、ウエハ200の全周からガスを排気可能に構成してもよい。また、排気部の構成に、真空ポンプ246を加えるようにしてもよい。
(ガス供給部)
 キャップフランジ104には、不活性ガス、原料ガス、反応ガスなどの各種基板処理のための処理ガスを処理室201内に供給するためのガス供給管232が設けられている。ガス供給管232には、上流から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241、および、開閉弁であるバルブ243が設けられている。ガス供給管232の上流側には、例えば不活性ガスである窒素(N)ガス源が接続され、MFC241、バルブ243を介して処理室201内へ供給される。基板処理の際に複数種類のガスを使用する場合には、ガス供給管232のバルブ243よりも下流側に、上流方向から順に流量制御器であるMFCおよび開閉弁であるバルブがそれぞれ設けられたガス供給管が接続されていてもよい。ここで、主に、ガス供給管232、MFC241、バルブ243によってガス供給系(ガス供給部)が構成される。なお、図示しないガス供給源をガス供給系に含めてもよい。また、ガス供給部は図1に示すような処理容器の天井部より供給されることに限らず、どのような位置から供給されるように配置されていてもよい。
 ガス供給管232から不活性ガスを供給する場合、主に、ガス供給管232、MFC241、バルブ243により不活性ガス供給系(不活性ガス供給部)が構成される。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(温度センサ)
 キャップフランジ104には、非接触式の温度検出器として温度センサ263が設置されている。温度センサ263により検出された温度情報に基づき後述するマイクロ波発振器655の出力を調整することで、基板を加熱し、基板温度が所望の温度分布となる。温度センサ263は、例えばIR(Infrared Radiation)センサなどの放射温度計で構成されている。なお、基板の温度を測定する方法として、上述した放射温度計に限らず、熱電対を用いて温度測定を行ってもよいし、熱電対と放射温度計を併用して温度測定を行ってもよい。ただし、熱電対を用いて温度測定を行った場合、熱電対の測温精度を向上させるために処理ウエハ200の近傍に配置して温度測定を行う必要があることから、後述するマイクロ波発振器から供給されたマイクロ波によって熱電対自体が加熱されてしまうため、放射温度計を温度センサ263として用いることが好ましい。また、温度センサ263は、キャップフランジ104に設けることに限らず、載置台210に設けるようにしてもよい。このように構成することによって、上端が閉塞された反応管を用いることが可能となり、処理室201に供給されるマイクロ波や処理ガス等が漏洩する可能性を低減することが可能となる。また、温度センサ263は、キャップフランジ104や載置台210に直接設置するだけでなく、キャップフランジ104や載置台210に設けられた測定窓からの放射光を鏡等で反射させて間接的に測定するように構成されていてもよい。このように構成することによって、温度センサ263を設置する場所の制限を緩和することが可能となる。
(電磁波供給部)
 ケース102の側壁には電磁波導入ポート653-1、653-2が設置されている。電磁波導入ポート653-1、653-2のそれぞれには処理室201内に電磁波を供給するための導波管654-1、654-2のそれぞれの一端が接続されている。導波管654-1、654-2それぞれの他端には処理室201内に電磁波を供給して加熱する加熱源としてのマイクロ波発振器(電磁波源)655-1、655-2が接続されている。マイクロ波発振器655-1、655-2は、マイクロ波などの電磁波を導波管654-1、654-2にそれぞれ供給する。また、マイクロ波発振器655-1、655-2は、マグネトロンやクライストロンなどが用いられる。ここで、電磁波導入ポート653-1、653-2、導波管654-1、654-2、マイクロ波発振器655-1、655-2は、一般的な説明等をする場合には、それぞれを代表して電磁波導入ポート653、導波管654、マイクロ波発振器655と記載する。
 マイクロ波発振器655によって生じる電磁波の周波数は、好ましくは13.56MHz以上24.125GHz以下の周波数範囲となるように設定される。さらに好適には、2.45GHzまたは5.8GHzの周波数となるように設定されることが好ましい。また、本実施形態において、マイクロ波発振器655は、ケース102の側面に2つ配置されるように記載されているが、これに限らず、1つ以上設けられていればよい。また、ケース102の対向する側面等の異なる側面に設けられるように配置してもよい。このように構成することによって、後述するマイクロ波がウエハ200上で部分的に吸収される領域、すなわち、ウエハ200が部分的に加熱されることを抑制することが可能となり、ウエハ200の面内温度均一性を向上させることが可能となる。主に、マイクロ波発振器655-1、655-2、導波管654-1、654-2および電磁波導入ポート653-1、653-2によって電磁波供給部(電磁波供給装置、マイクロ波供給部、マイクロ波供給装置)としての加熱装置が構成される。
 マイクロ波発振器655-1、655-2それぞれには後述するコントローラ121が接続されている。コントローラ121には処理室201内に収容されるサセプタ101aまたは101b、若しくはウエハ200の温度を測定する温度センサ263が接続されている。温度センサ263は、サセプタ101aまたは101b、若しくはウエハ200の温度を測定してコントローラ121に送信し、コントローラ121によってマイクロ波発振器655-1、655-2の出力を制御し、ウエハ200の加熱を制御する。ここで、マイクロ波発振器655-1、655-2は、コントローラ121から送信される同一の制御信号によって制御される。しかし、これに限らず、マイクロ波発振器655-1、655-2それぞれにコントローラ121から個別の制御信号を送信することでマイクロ波発振器655-1、655-2が個々に制御されるように構成してもよい。
(均熱板)
 図1に示すように処理室201内には、ウエハ200を1枚或いは所定の間隔で垂直方向に配置された複数枚を保持するボート217が設けられている。ボート217は、ウエハ200の上下に均熱板(輻射板)としてのサセプタ101a、101bを保持している。本実施形態において、サセプタ101a、101bは、同一の部品であり、以後、特に区別して説明する必要が無い場合には、サセプタ101と称して説明する。
 サセプタ101は、ウエハ200と同等またはそれ以上の直径を有する円盤状に形成され、ウエハ200と同様にボート217に設けられた図示しないウエハ保持溝に保持されている。また、図3に示すようにサセプタ101は、マイクロ波を透過させるための所定の直径を有するマイクロ波透過孔300を複数個備えている。さらに、サセプタ101は、処理室201内に供給されたマイクロ波を吸収し、透過させない材質(例えばSiCなど)で構成される。このように、サセプタ101は、マイクロ波を透過させない部材で構成すると共に、マイクロ波透過孔300を複数設けることによって、電磁波の不透過領域(不透過部)と透過領域(透過部)とを構成することが可能となる。すなわち、図4(A)に示すように、サセプタ101にマイクロ波透過孔300を設けない場合、マイクロ波はサセプタ101aおよびサセプタ101bによって、反射または吸収されてしまい、サセプタ101からの輻射熱によるウエハ200の間接加熱が主となり、昇温速度が遅くなったり、ウエハ200の均一加熱が困難になったりしてしまう。これに対し図4(B)に示すように、サセプタ101にマイクロ波透過孔300を複数設けた本発明においては、サセプタ101に複数設けられたマイクロ波透過孔300によって、マイクロ波400を透過させてウエハ200を加熱する直接加熱と、サセプタ101を加熱して間接的にウエハ200を加熱させる間接加熱を同時に実施可能となる。これによって、マイクロ波400によるウエハ200の直接加熱することでウエハ200の表面に形成された所定の膜のみを選択的に加熱することができるという選択加熱の特徴を損なわずに、ウエハ200面内の温度均一性を向上させることが可能となる。なお、本発明においてサセプタ101の表面のマイクロ波透過孔300以外の部分であるサセプタ101がマイクロ波400を吸収する領域を電磁波不透過領域と称し、マイクロ波透過孔300が設けられている領域を電磁波透過領域と称する。
 なお、前記したマイクロ波透過孔300の径は千鳥格子状に形成されており、図5に記載されているように、千鳥格子状に形成された孔の横、縦方向のピッチをそれぞれa,b、マイクロ波の自由空間波長をλ、サセプタ101の厚さをt、マイクロ波の入射角をβとした場合はマイクロ波透過孔300の直径をDとすると、横のピッチaは、数式1で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 この時のサセプタ101の表面積に対する開孔率Aは、数式2で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 サセプタが金属板の場合、表面にマイクロ波が入射した時の減衰量αが40dB未満の場合は、マイクロ波が漏洩している。サセプタ101の開口は、減衰量閾値を40dBとして漏洩させたい割合に合わせて孔径を変更することで透過する量を調整することが可能となる。
 ここでマイクロ波透過孔300の形状は、どのような形状とすることも可能であるが、加工が簡単である円形状に形成されることが好ましい。また、サセプタ101は、ウエハ200よりもマイクロ波の吸収率が大きく、比熱が小さい材質で形成されることが好ましい。このような材質でサセプタ101を形成することによって、サセプタ101がウエハ200よりも早く加熱されるため、ウエハ200に対し輻射による間接加熱を均一に行うことが可能となり、ウエハ200を予備的に加熱することが可能となる。したがって、比熱が大きいウエハ200の加熱時の温度ムラを緩和させつつ、ウエハ200からの熱逃げも防止することが可能となる。
 また、マイクロ波透過孔300は、1つのみを設けるよりも開口面積の総和が同一であっても複数の孔として設けることが好ましい。複数のマイクロ波透過孔300を設けることによって、マイクロ波が透過する位置を分散させ、ウエハ200を直接加熱する位置を分散させることが可能となることから、ウエハ200を均一に加熱することが容易となる。
 また、サセプタ101に設けたマイクロ波透過孔300は、サセプタ101の中心に対して線対称または点対称に設けることが好ましい。このようにマイクロ波透過孔300を配置することによって、ウエハ200を均一に加熱するための制御を容易にすることが可能となる。
 また、サセプタ101aとサセプタ101bはマイクロ波透過孔300が互いに対向するように、すなわち垂直方向において同じ位置に配置されるようにボート217に保持させても良く、周方向にずらしてボート217に保持させることでマイクロ波透過孔300をサセプタ101aとサセプタ101bで対向しないように、すなわち垂直方向において異なる位置に配置されるように保持させても良い。このように、サセプタ101aとサセプタ101bがマイクロ波透過孔300を対向する位置に保持することで、ウエハ200を所定の温度まで昇温する速度を向上させることが可能となる。また、マイクロ波透過孔300を対向しないようにサセプタ101aとサセプタ101bを保持することでウエハ200を加熱する領域を異ならせることが可能となり、ウエハ200をより均一に加熱することが可能となる。
 また、処理対象膜が形成されていないウエハ面(裏面)側に載置されているサセプタ101、すなわち、本実施形態におけるウエハ200の下方側に載置されているサセプタ101bには、マイクロ波透過孔300を設けないように構成しても良い。例えば、本実施形態のように垂直方向上側のウエハ200面が処理対象膜が形成されている面(主面)とする場合、サセプタ101aにはマイクロ波透過孔300が形成され、サセプタ101bにはマイクロ波透過孔300を形成しないように構成する。このように構成することによって、主面側に載置されるサセプタ101aのマイクロ波透過孔300の孔径や孔数を制御すればウエハ200を均一に加熱することが可能となり、ウエハ200の温度制御を容易にすることが可能となる。
 また、図1において、サセプタ101はウエハ200の上下に1枚ずつ配置されるように構成されているが、これに限らず、基板処理温度に応じて複数枚ずつ設置してもよい。このように複数枚ずつ設置することによってウエハ200が載置されている領域の加熱性能を向上することが可能となる。これによりウエハ200から放熱が生じてウエハ200の温度が低下してしまうことを抑制することが可能となる。したがって、ウエハ200の面内または面間温度均一性を向上させることが可能となる。
(制御装置)
 図6に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、アニール(改質)処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単にレシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241、バルブ243、244、圧力センサ245、真空ポンプ246、温度センサ263、駆動機構267、マイクロ波発振器655等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241による各種ガスの流量調整動作、バルブ243、244の開閉動作、圧力センサ245に基づくバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくマイクロ波発振器655の出力調整動作、駆動機構267による載置台210(またはボート217)の回転および回転速度調節動作、または、昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 次に、上述の基板処理装置100の処理炉を用いて、半導体装置(デバイス)の製造工程の一工程として、例えば、基板上に形成されたシリコン含有膜としてのアモルファスシリコン膜の改質(結晶化)方法の一例について図7に示した処理フローに沿って説明する。以下の説明において、基板処理装置100を構成する各部の動作はコントローラ121により制御される。
 ここで、本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(基板搬入工程(S701))
 図1に示されているように、所定枚数のウエハ200がボート217に移載されると、駆動機構267は、載置台210を上昇させることでボート217を反応管103内側の処理室201に搬入(ボートローディング)する(S701)。
(炉内圧力・温度調整工程(S702))
 処理室201内へのボート217の搬入が完了したら、処理室201内が所定の圧力(例えば10~102000Pa)となるよう処理室201内の雰囲気を制御する。具体的には、真空ポンプ246により排気しつつ、圧力センサ245により検出された圧力情報に基づいて圧力調整器244の弁開度をフィードバック制御し、処理室201内を所定の圧力とする。また、同時に予備加熱としてマイクロ波供給部を制御し、所定の温度まで加熱を行うように制御してもよい(S702)。なお、大気圧下で基板処理を行う場合、炉内圧力調整を行わず、炉内の温度調整のみを行った後、後述する不活性ガス供給工程S603へ移行するように制御してもよい。
(不活性ガス供給工程(S703))
 炉内圧力・温度調整工程S602によって処理室201内の圧力と温度を所定の値に制御すると、駆動機構267は、シャフト255を回転させ、載置台210上のボート217を介してウエハ200を回転させる。このとき、窒素ガス等の不活性ガスがガス供給管232を介してノズル105から供給される(S703)。さらにこのとき、処理室201内の圧力は10Pa以上102000Pa以下の範囲となる所定の値であって、例えば101300Pa以上101650Pa以下となるように調整される。
(基板処理工程(S704))
 処理室201内を所定の圧力となるように維持すると、マイクロ波発振器655-1、655-2はウエハ200を100℃以上1000℃以下の温度帯、好適には600℃以上900℃以下の温度帯となるように加熱し、さらに好適には、800℃以上850℃以下となるように加熱する。ウエハ200が100℃より低い温度で処理しようとした場合や、1000℃よりも高い温度で処理しようとした場合、ウエハ200がマイクロ波を吸収し難くなってしまい、ウエハ200を効率的に加熱することができなくなってしまう。
 ウエハ200の温度は、サセプタ101aの表面温度を温度センサ263によって測定した値から、記憶装置121cまたは外部記憶装置122に予め記憶された温度変換データによって推測される。マイクロ波発振器655-1、655-2は、導波管654-1と654-2を介して、電磁波導入ポート653-1と653-2からマイクロ波を処理室201内に供給する。
 図4(B)に示すように処理室201内に供給されたマイクロ波400は、サセプタ101の不透過領域と透過領域に入射することとなる。サセプタ101の不透過領域に入射したマイクロ波400はサセプタ101に吸収されてサセプタ101を加熱し、サセプタ101からの輻射熱によってウエハ200を加熱する。サセプタ101の透過領域であるマイクロ波透過孔300に入射したマイクロ波400は、サセプタ101を透過してウエハ200に入射し、吸収される。すなわち、ウエハ200が直接加熱される。このように構成することによって、ウエハ200に対して直接加熱と間接加熱を同時に行うことが可能となり、極めて効果的に均一加熱することが可能となる。
 マイクロ波発振器655を制御することでウエハ200を上述した所定の処理温度まで加熱すると、予め定められた時間、当該処理温度を維持する。このようにマイクロ波発振器655を制御することでマイクロ波ウエハ200の表面上に形成されたアモルファスシリコン膜の改質処理を行う。
 ウエハ200を加熱する場合、マイクロ波発振器655-1、655-2は、マイクロ波を間欠的に供給しながらマイクロ波発振器655-1、655-2の出力を大きくするように制御されることが好ましい。
 ここで、ウエハ200を効率よく加熱する、すなわち、ウエハ200がマイクロ波を効率よく吸収させるためには、ウエハ200のキャリア密度とキャリア温度依存性について検討する必要がある。図8に示すように、縦軸をキャリア密度(導電率に比例)、横軸を温度としたウエハ200のキャリア密度の温度依存性の一例を示した場合、温度によって、領域(A)、領域(B)、領域(C)に分けることができる。ウエハ200がシリコン(Si)基板である場合、例えば領域(A)と(B)を分ける温度は約327℃、領域(B)と(C)とを分ける温度は約-73℃である。図8から明らかであるように、領域(A)と(C)は温度上昇とともに、キャリア密度も大きく上昇するが、領域(B)は温度が上昇した場合であっても、キャリア密度は大きく上昇しない。
 ウエハ200の単位時間当たりの発熱量はウエハ200のキャリア密度に比例するため、キャリア密度が変動するとそれに伴って発熱量も変化する。このため、キャリア密度の変化が大きい領域(A)で、マイクロ波加熱を行った場合、温度変化に応じてキャリア密度が増加する割合が大きいため、照射されるマイクロ波の電力が同じでも、ウエハ200の昇温速度が大きくなる。したがって、領域(A)において、マイクロ波による加熱が行われることが好ましい。
 また、領域(A)は、上述したようにウエハ200の昇温速度が大きいため、マイクロ波が局所的に集中すると、集中した箇所が高温となりウエハ200の面内で部分的に温度差が大きくなり、熱膨張差でウエハ200が変形してしまう。このため、領域(A)の温度帯でマイクロ波による加熱を行いつつ、ガス供給部より冷却ガスとしての不活性ガスを供給することによって、ウエハ200を冷却することで、ウエハ200の面内温度差を小さくしてウエハ200が変形することを抑制しつつ、ウエハ200の改質処理速度を向上させることが可能となる。
 以上のようにウエハ200を加熱処理することによってウエハ200表面上に形成されているアモルファスシリコン膜がポリシリコン膜へと均一に改質(結晶化)することとなる。すなわち、ウエハ200を均一に改質することが可能となる(S704)。
 予め設定された処理時間が経過すると、コントローラ121によって、ボート217の回転、ガスの供給、マイクロ波の供給および排気管の排気を停止するように制御される。
 基板処理工程の終了後、Nガスなどの不活性ガスを供給し、処理室201内の圧力を大気圧に復帰する。このとき、基板処理を大気圧下で行う場合には、大気圧復帰の工程は省略される。
(基板搬出工程(S705))
 処理室201内の圧力を大気圧復帰させた後に、駆動機構267は載置台210を下降させることにより、炉口を開口するとともに、ボート217を搬送エリア203に搬出(ボートアンローディング)する。その後ボートに載置されているウエハ200を搬送エリア203の外部に位置する図示しない搬送室に搬出する(S705)。
 以上の動作が繰り返されることにより、複数枚のウエハ200が改質処理されることとなる。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)マイクロ波による直接加熱と、サセプタによる間接加熱を同時に行うことを可能とすることでマイクロ波加熱の特徴である高速加熱や選択加熱を損なわずに、ウエハに対する均一加熱が可能となる。すなわち、ウエハの面内温度均一性を向上させることが可能となる。
(b)サセプタにマイクロ波透過孔を設けることで、単純な構造でマイクロ波の透過領域と不透過領域を構築することが可能となり、サセプタの加工費用の増大を抑制できる。
(c)上下に配置されたサセプタのマイクロ波透過孔が、対向しないように配置されることによって、マイクロ波によるウエハの集中加熱領域を分散させることが可能となり、ウエハの均一加熱が可能となる。
(d)ウエハの処理対象となる主面側にのみマイクロ波透過孔を有するサセプタを載置することによって、主面とは反対側のウエハ裏面を過加熱してしまうことを抑制することが可能となり、ウエハを効率良く昇温することが可能となる。
(4)変形例
 本実施形態における基板処理工程は、上述の態様に限定されず、以下に示す変形例のように変更することができる。
(変形例1)
 図9に示すように、変形例1は、図3のようにサセプタ全体にマイクロ波透過孔300を設けず、サセプタ101の外周部にマイクロ波透過孔300を多数設けた形態である。このように構成することによって、サセプタ101の外周部が電磁波透過領域となり、マイクロ波透過孔300の設けられていない中心側が電磁波不透過領域となる。すなわち、放熱され易いために断熱することが難しいウエハ200の外周部分に対し、集中してマイクロ波による直接加熱することが可能となる。反対に、断熱し易いウエハ200の中心部は直接加熱によって生じた熱エネルギーの熱拡散や、サセプタ101からの間接加熱によって加熱されることとなる。これによって、ウエハ200を均一に加熱することが上述した実施形態に比べて容易となる。
 なお、本変形例における電磁波透過領域は、予めウエハ200の温度分布を計測しておき、基準となる処理温度から所定の温度以上低くなる箇所を把握することで、当該箇所よりも外側を透過領域としてマイクロ波透過孔300を設けるようにすればよい。
(変形例2)
 図10に示すように、変形例2は、変形例1とは逆にサセプタ101の中心部にマイクロ波透過孔300が多数設けられている形態である。このように構成することによって、中心部が電磁波透過領域となり、マイクロ波透過孔300の設けられていない外周部が電磁波不透過領域となる。本変形例によれば、基板処理装置の構成において、図1に示すようなウエハ200の中心の上側から不活性ガスを供給するような構成である場合、ウエハ200の中心部分が冷やされてしまう可能性がある。そこで、本変形例のように、中心部に電磁波透過領域を設けて直接加熱する構造とすることにより、ウエハ200の中心部分を集中的に直接加熱することが可能となる。本変形例の場合においても、変形例1と同様に予めウエハ200の温度分布を計測しておくことで電磁波透過領域を設定する位置を決定すればよい。
(変形例3)
 図11に示すように、変形例3は、サセプタ101の表面の中心から径方向に所定の距離d(好ましくは処理室201内に供給するマイクロ波波長λの腹となる1/4λ)の長さおきに、マイクロ波透過孔300が複数個で円周状に電磁波透過領域が設けられている形態である。換言すると電磁波透過領域と電磁波不透過領域とが径方向に(同心円状に)交互に設けられている形態である。サセプタ101にマイクロ波透過孔300を設けない場合、図12(a)に示すように、ウエハ200に所定の間隔おきにシート抵抗(Ω/sq)の値が波状に上下しており、十分に改質されている部分と、改質されていない部分が同心円状にムラになっていることがわかる。これは、処理室201に供給されるマイクロ波の波長の振幅が大きい箇所、すなわち、マイクロ波エネルギーが高い、波長の4分の1に合わせて形成されていることが判明した。
 これに対し、本変形例のようにサセプタ101にマイクロ波透過孔300を配置した場合、すなわち、電磁波透過領域をマイクロ波の波長λの4分の1おきに設けて加熱した場合、図12(b)に示すように、マイクロ波透過孔300によって、マイクロ波がウエハ200の十分に改質されていない部分にも到達して直接加熱を行うことが可能となる。例えばSiCで構成されるサセプタ101は、Siよりもマイクロ波吸収が大きく、比熱も小さいことから処理対象となるウエハ200よりも早く加熱されウエハ200への輻射による補助加熱を行いつつ、比熱が大きいウエハ200の加熱時の温度ムラを緩和させることが可能となる。このとき同時にウエハ200からの放熱も抑制することが可能である。囲繞のように本変形例によれば、上述した実施形態や変形例よりも効率的にウエハ200を均一に加熱することが可能となる。
(変形例4)
 図13に示すように、変形例4は、複数のマイクロ波透過孔300を円周方向に設ける代わりに、サセプタ101の径方向λ/4毎に、マイクロ波を透過させるための座繰り部350を有している。図14に示すように、座繰り部350は、サセプタ101の厚みH1に対し、マイクロ波が透過可能な厚み(すなわち、H1からH2を切り欠いた厚さ)を残して切り欠くように(例えば溝形状となるように)形成されている。このとき切り欠く深さH2は、以下の数式3で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、fはマイクロ波の周波数、εは比誘電率、tanθは誘電体損失角を表している。電磁波の透過量の粗密分布は、孔だけでなく物質の誘電特性による浸透深さ、すなわち、マイクロ波がサセプタ101の表面から内部に浸透して発生する電力が半分に減じる電力半減深度を考慮して、サセプタ101の板厚方向で透過量を調整することも可能となっている。例えば、図14においてサセプタの厚みH1に対し、電力半減深度以上の深さなるように切り欠き深さH2を設定することで、処理室201内に供給されたマイクロ波がサセプタ101によるエネルギー損失を抑えつつ、ウエハ200に到達することが可能となる。すなわち、マイクロ波がサセプタ101を透過することとなる。
 このように構成することによって、マイクロ波透過孔300を複数設ける実施形態や他の変形例に対してサセプタ101の強度を向上させることが可能となる。また、マイクロ波透過孔300を複数設けるよりもサセプタ101の加工費用の増大を抑制することが可能となる。
(変形例5)
 図15に示すように、変形例5は、変形例4で設けた座繰り部350にマイクロ波透過孔300を複数設けた形態である。
 このように構成することによって、変形例3や変形例4と比較した場合、より効率的にウエハ200をマイクロ波加熱することが可能となる。すなわち、電力半減深度となる座繰り部350によってマイクロ波が減衰するとともに、マイクロ波を透過するマイクロ波透過孔300を設けることによって、ウエハ200に到達するマイクロ波を制御することが可能となり、ウエハ200が所定温度に昇温されることを簡易に制御することが可能となる。
 したがって、本変形例によれば、ウエハ200を均一に加熱することが可能となる。
 以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。また、実施形態および各変形例のそれぞれに記載されたサセプタは、適宜組み合わせて用いることが可能であり、それぞれの効果を合わせて得ることも可能である。
 例えば、本発明に用いられる基板処理装置の形態として、上記の実施形態においては、窒素ガス等の不活性ガスが基板処理装置100の処理室201の天井部から供給される形態を説明したが、図16に示すように、ウエハ200の側方にノズル105を設け、ウエハ200の側面から不活性ガスを供給し、ウエハ200の表面と平行にガス流れを形成する構成としてもよい。
 また、上述した実施形態では、本発明の基板処理装置を用いた所定の処理としてアニール(改質)処理について説明したが、これに限らず、所定の膜を形成する成膜処理や、エッチング処理に用いることとしてもよい。
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 以上述べたように、本発明によれば、均一な基板処理を行うことができる技術を提供することができる。
 100…基板処理装置、101a、101b…サセプタ(発熱体、輻射板)、121…コントローラ、200…ウエハ、300…孔、350…座繰り部、400…マイクロ波、653-1、653-2…電磁波導入ポート、655-1、655-2…マイクロ波発振器(電磁波源)。   

Claims (15)

  1. 加熱装置から供給された電磁波を吸収して加熱される材質で形成され、前記電磁波を透過する電磁波透過領域と、前記電磁波を透過しない電磁波不透過領域とを有する発熱体。
  2. 前記電磁波透過領域は、前記発熱体の中心から径方向に向かって前記電磁波の波長の1/4の長さおきに設けられる請求項1に記載の発熱体。
  3. 前記電磁波透過領域は、所定の直径を有する少なくとも1つの透過孔である請求項1に記載の発熱体。
  4. 前記電磁波透過領域は、前記発熱体の外周部に設けられる請求項1に記載の発熱体。
  5. 前記電磁波透過領域は、前記発熱体の中心部に設けられる請求項1に記載の発熱体。
  6. 前記電磁波透過領域は、前記発熱体の厚みに対し、電力半減深度の深さを有する溝が形成されている請求項1に記載の発熱体。
  7. 電磁波によって処理室内の基板を加熱する加熱装置と、前記基板の上方と下方に少なくとも1つずつ配置され、前記電磁波を透過する電磁波透過領域と、前記電磁波を透過しない電磁波不透過領域とを有する発熱体と、を有する基板処理装置。
  8. 前記電磁波透過領域は、前記発熱体の中心から径方向に向かって前記電磁波の波長の1/4の長さおきに設けられる請求項7に記載の基板処理装置。
  9. 前記電磁波透過領域は、所定の直径を有する少なくとも1つの透過孔である請求項7に記載の基板処理装置。
  10. 前記電磁波透過領域は、前記発熱体の厚みに対し、電力半減深度の深さを有する溝が形成されている請求項7に記載の基板処理装置。
  11. 前記基板を挟み込むように配置され、前記基板の主面側に配置された前記発熱体は前記電磁波透過領域を有し、前記主面と反対側の面に配置された前記発熱体は前記電磁波透過領域を有さない請求項7に記載の基板処理装置。
  12. 前記発熱体は前記基板の上方と下方に前記基板を挟み込むように配置され、前記上方と下方に配置された前記発熱体の前記電磁波透過領域は、垂直方向において同じ位置に配置される請求項7に記載の基板処理装置。
  13. 前記発熱体は前記基板の上方と下方に前記基板を挟み込むように配置され、前記上方と下方に配置された前記発熱体の前記電磁波透過領域は、垂直方向において異なる位置に配置される請求項7に記載の基板処理装置。
  14. 電磁波によって処理室内の基板を加熱する加熱装置と、前記基板を挟み込むように配置され、前記電磁波を透過する電磁波透過領域と、前記電磁波を透過しない電磁波不透過領域とを有する発熱体と、を有する基板処理装置の前記処理室内に前記基板を搬入する工程と、前記基板を加熱して所定の処理を行う工程と、前記基板を前記処理室から搬出する工程と、を有する半導体装置の製造方法。
  15. 電磁波によって処理室内の基板を加熱する加熱装置と、前記基板を挟み込むように配置され、前記電磁波を透過する電磁波透過領域と、前記電磁波を透過しない電磁波不透過領域とを有する発熱体と、を有する基板処理装置の前記処理室内に前記基板を搬入する手順と、前記基板を加熱して所定の処理を行う手順と、前記基板を前記処理室から搬出する手順と、をコンピュータによって前記基板処理装置に実行させるプログラム。  
PCT/JP2017/012082 2016-07-26 2017-03-24 発熱体、基板処理装置、半導体装置の製造方法およびプログラム WO2018020733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018529356A JP6664487B2 (ja) 2016-07-26 2017-03-24 発熱体、基板処理装置、半導体装置の製造方法およびプログラム
US16/258,046 US11127608B2 (en) 2016-07-26 2019-01-25 Heating element, substrate processing apparatus, and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146275 2016-07-26
JP2016-146275 2016-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/258,046 Continuation US11127608B2 (en) 2016-07-26 2019-01-25 Heating element, substrate processing apparatus, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018020733A1 true WO2018020733A1 (ja) 2018-02-01

Family

ID=61017213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012082 WO2018020733A1 (ja) 2016-07-26 2017-03-24 発熱体、基板処理装置、半導体装置の製造方法およびプログラム

Country Status (3)

Country Link
US (1) US11127608B2 (ja)
JP (1) JP6664487B2 (ja)
WO (1) WO2018020733A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021034355A1 (en) * 2019-08-20 2021-02-25 Applied Materials, Inc. Methods and apparatus for processing a substrate using microwave energy
US11239098B2 (en) 2018-03-22 2022-02-01 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2022051437A (ja) * 2020-09-18 2022-03-31 株式会社Kokusai Electric 基板処理装置、基板保持具、及び、半導体装置の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3623779A1 (de) * 2018-09-13 2020-03-18 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Modulation eines beweglichen ir-emitters durch eine blendenstruktur
JP1700778S (ja) * 2021-03-15 2021-11-29

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216522A (ja) * 1988-02-25 1989-08-30 Toshiba Corp 半導体基板の熱処理方法及びそれに用いる熱処理装置
JPH05330939A (ja) * 1992-05-27 1993-12-14 Mitsubishi Materials Corp マイクロ波吸収発熱体
JP2005268624A (ja) * 2004-03-19 2005-09-29 Sumitomo Osaka Cement Co Ltd 加熱装置
JP2010517294A (ja) * 2007-01-25 2010-05-20 ビーティーユー インターナショナル インコーポレイテッド 半導体ウェーハのマイクロ波ハイブリッドおよびプラズマ急速熱処理
JP2011094222A (ja) * 2009-11-02 2011-05-12 Tokki Corp 蒸着装置における蒸発源及び蒸着装置
JP2013073947A (ja) * 2011-09-26 2013-04-22 Hitachi Kokusai Electric Inc 基板処理装置
JP2014090058A (ja) * 2012-10-30 2014-05-15 Tokyo Electron Ltd マイクロ波加熱処理装置および処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414290B1 (en) * 1998-03-19 2002-07-02 Graphic Packaging Corporation Patterned microwave susceptor
US20170142785A1 (en) * 2015-11-13 2017-05-18 Bottle-Top Development Co. Microwave heating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216522A (ja) * 1988-02-25 1989-08-30 Toshiba Corp 半導体基板の熱処理方法及びそれに用いる熱処理装置
JPH05330939A (ja) * 1992-05-27 1993-12-14 Mitsubishi Materials Corp マイクロ波吸収発熱体
JP2005268624A (ja) * 2004-03-19 2005-09-29 Sumitomo Osaka Cement Co Ltd 加熱装置
JP2010517294A (ja) * 2007-01-25 2010-05-20 ビーティーユー インターナショナル インコーポレイテッド 半導体ウェーハのマイクロ波ハイブリッドおよびプラズマ急速熱処理
JP2011094222A (ja) * 2009-11-02 2011-05-12 Tokki Corp 蒸着装置における蒸発源及び蒸着装置
JP2013073947A (ja) * 2011-09-26 2013-04-22 Hitachi Kokusai Electric Inc 基板処理装置
JP2014090058A (ja) * 2012-10-30 2014-05-15 Tokyo Electron Ltd マイクロ波加熱処理装置および処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239098B2 (en) 2018-03-22 2022-02-01 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
WO2021034355A1 (en) * 2019-08-20 2021-02-25 Applied Materials, Inc. Methods and apparatus for processing a substrate using microwave energy
JP2022051437A (ja) * 2020-09-18 2022-03-31 株式会社Kokusai Electric 基板処理装置、基板保持具、及び、半導体装置の製造方法
JP7361005B2 (ja) 2020-09-18 2023-10-13 株式会社Kokusai Electric 基板処理装置、基板保持具、半導体装置の製造方法、及び、プログラム

Also Published As

Publication number Publication date
JPWO2018020733A1 (ja) 2019-01-31
US20200152490A1 (en) 2020-05-14
US11127608B2 (en) 2021-09-21
JP6664487B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
US11127608B2 (en) Heating element, substrate processing apparatus, and method of manufacturing semiconductor device
JP6454425B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR102282631B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR102259316B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP6838010B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US20210407865A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-transitory Computer-readable Recording Medium
JP6731471B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
JP7033651B2 (ja) 基板処理装置、半導体装置の製造方法、プログラム、および、基板処理方法
WO2018173197A1 (ja) 発熱体、基板処理装置および半導体装置の製造方法
JP6986562B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6823709B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2022118470A (ja) 基板処理装置、基板保持装置及び半導体装置の製造方法
US20220384206A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP6949080B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP2023141761A (ja) 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
JP2023143716A (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018529356

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833744

Country of ref document: EP

Kind code of ref document: A1