WO2018019215A1 - 一种骨修复支架及其制备方法 - Google Patents

一种骨修复支架及其制备方法 Download PDF

Info

Publication number
WO2018019215A1
WO2018019215A1 PCT/CN2017/094196 CN2017094196W WO2018019215A1 WO 2018019215 A1 WO2018019215 A1 WO 2018019215A1 CN 2017094196 W CN2017094196 W CN 2017094196W WO 2018019215 A1 WO2018019215 A1 WO 2018019215A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
bone
bracket
porous
inner diameter
Prior art date
Application number
PCT/CN2017/094196
Other languages
English (en)
French (fr)
Inventor
李波
张国伟
Original Assignee
北京形梦信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京形梦信息技术有限公司 filed Critical 北京形梦信息技术有限公司
Publication of WO2018019215A1 publication Critical patent/WO2018019215A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses

Definitions

  • the invention belongs to the technical field of biomedical materials, and in particular relates to a bone repairing stent and a preparation method thereof.
  • Femoral head necrosis is a common and refractory disease in the field of orthopedics. If not treated effectively, about 80% of patients will have femoral head collapse within 4 years, secondary joint dysfunction, and eventually patients have to undergo artificial joint replacement. The high cost of artificial joint replacement brings patients and society. The huge economic burden, and because of the certain life span of artificial joints, the joint replacement of young and middle-aged patients often faces the problem of loose joints. Artificial joint revision will further increase the economic burden and reduce the quality of life of patients. Therefore, early treatment of femoral head necrosis, in order to preserve the patient's own joints, has been receiving much attention.
  • the present invention provides a bone repair stent and a preparation method thereof, which can be used for repairing a bone defect and capable of enhancing an osteogenesis.
  • a bone repair scaffold is a porous structure that matches the size of a bone defect site of a patient.
  • a method for preparing a bone repair stent comprises the steps of: S100, constructing a design entity of the stent by using a three-dimensional design software; S110, constructing a three-dimensional model of a porous matrix structure building unit; S200, constructing a three-dimensional model by using three-dimensional design software The unit fills the design entity and produces the design entity as a porous matrix structure; the S300 prints the multi-matrix structure through a 3D printer to obtain a printed piece.
  • the stent of the invention is a porous stent, which can be implanted into a cavity formed by a large segmental bone defect or an early avascular necrosis of the femoral head, and plays a role in biomechanical support and promoting the growth of blood vessels and bone tissues.
  • the porous structure may be loaded with a biologically active growth factor (such as BMP-2/VEGF, etc.) or stem cells to further enhance its ability to promote bone regeneration; a single through-hole provided in the stent may be used for bone transplantation or vascular transplantation, and enhanced Bone tissue and vascular repair ability; the stent is provided with two penetrating channels, which can realize the combined transplantation of arteries and veins to promote the growth of blood vessels in the stent and the lesion area, and realize the reconstruction of the microcirculatory system in the necrotic area. Bone tissue provides the nutrients needed and removes local metabolic waste.
  • a biologically active growth factor such as BMP-2/VEGF, etc.
  • stem cells to further enhance its ability to promote bone regeneration
  • a single through-hole provided in the stent may be used for bone transplantation or vascular transplantation, and enhanced Bone tissue and vascular repair ability
  • the stent is provided with two penetrating channels, which can realize the combined transplantation of arteries and veins to
  • Figure 1 is an embodiment of a cylindrical porous titanium alloy stent of the present invention.
  • FIG. 2 is another embodiment of a cylindrical porous titanium alloy stent of the present invention.
  • Fig. 3 is an embodiment of a columnar porous titanium alloy stent of the present invention.
  • Fig. 4 is another embodiment of the columnar porous titanium alloy stent of the present invention.
  • Fig. 5 is another embodiment of the columnar porous titanium alloy stent of the present invention.
  • Figure 6 is a schematic illustration of the porous structure of the stent of Figure 1.
  • Figure 7 is a schematic illustration of the porous structure of the stent of Figure 2.
  • Figure 8 is a schematic illustration of the porous structure of the stent of Figure 3.
  • Figure 9 is a schematic illustration of the porous structure in the stent of Figure 4.
  • Figure 10 is a schematic illustration of the porous structure of the stent of Figure 5.
  • Figure 11 is a structural view showing the structure of a porous matrix structure in the present invention.
  • Figure 12 is another structural diagram of the unit of the porous matrix structure of the present invention.
  • Figure 13 is a schematic view of the stent in the stent prior to bone grafting in the present invention.
  • Figure 14 is a schematic view of a channel in a stent after bone grafting in the present invention.
  • the stent of the present invention can be used to repair bone defects such as large segmental bone defects and early femoral head necrosis.
  • the stent is a columnar structure
  • the outer dimensions of the stent should be determined according to the outer shape of the bone defect portion, such as a large segment of the bone defect region and the femoral head.
  • the size of the residual cavity and the opening area of the femoral head neck after necrotic decompression treatment can be based on CT scan.
  • Figure 1-2 shows two embodiments of the stent of the present invention as a cylindrical porous titanium alloy stent.
  • the outer dimensions of the stent depend on the location, length and shape of the bone defect. For example, when repairing a large segment of the bone defect, the size of the stent should match the size of the large segment of the bone defect; When the femoral head necrosis lesion is removed, the size of the stent should match the residual cavity after treatment of the patient's femoral head necrosis.
  • the size of the cylindrical bracket may be: the diameter of the bracket is 10-12 mm, and the length of the bracket is 70-130 mm.
  • a longitudinal cylindrical bore is provided in the interior of the bracket, and the inner diameter of the bore may be 5-10 mm.
  • two longitudinal cylindrical channels are provided in the interior of the stent, and the inner diameter of the channels can be 3-4 mm.
  • 3-5 are three embodiments of the stent of the present invention as a columnar porous titanium alloy stent.
  • the outer shape of the stent depends on the location, length and shape of the bone defect. For example, when repairing a large segment of the bone defect, the size of the stent should match the size of the large segment of the bone defect; When the femoral head necrosis lesion is removed, the size of the stent should be based on the size of the patient's femoral neck opening area.
  • the size of the columnar support can be: 15 x 25 x 15 mm3 .
  • a straight bore is provided in the interior of the stent, the bore having an inner diameter of 5-10 mm.
  • two cylindrical holes are provided inside the bracket, and the inner diameter of the holes may be 3-5 mm.
  • two arcuate holes are provided inside the bracket, and the inner diameter of the holes is 3-5 mm.
  • the bracket in Figure 1-5 is a bracket with a porous structure.
  • the bracket has a hole column with a column width of 100-1000 um (median 300 um) and a hole diameter of 300-3000 um (medium The value is 1000 um), and the porosity of the stent is 70-90%, which is a stent having mechanical biomimetic properties matched with the shape of the bone defect region which is filled and expanded in a porous matrix structure unit.
  • the porous matrix structure unit is shown in Figures 11-12, of course, not limited to the structural units in Figures 11-12.
  • the stent of the present invention is a porous titanium alloy stent.
  • the material of the stent may also be pure titanium, cobalt alloy, tantalum, titanium-niobium alloy, calcium phosphate, polylactic acid (PLA), lactic acid-glycolic acid copolymer (PLGA), A bone biomaterial such as polyacetal lactone (PCL), coral, or bioceramic may be any material that has mechanical biomimetic properties.
  • the stent of the invention can be implanted into a cavity formed by a large segmental bone defect or an early ischemic necrosis of the femoral head, which plays a role in biomechanical support and promotes the growth of blood vessels and bone tissues. Bone ingrowth is promoted by the design of the porous structure, and bioactive growth factors (such as BMP-2/VEGF, etc.) or stem cells can be loaded in the porous structure to further enhance its ability to promote bone regeneration.
  • bioactive growth factors such as BMP-2/VEGF, etc.
  • the inside of the stent has a channel, and both ends of the channel pass through the upper and lower sides of the stent, and the inside of the channel can be used for bone implantation or blood vessel transplantation (as shown in Fig. 13-14) to enhance the ward.
  • the local bone repair ability, the stent can play a role in biomechanical support and promote the growth of blood vessels and bone tissue.
  • the inside of the bracket has two holes. In Fig. 2, the two ends of the tunnel pass through the upper and lower sides of the cylindrical bracket. In Fig. 4, the two ends of the tunnel pass through the upper surface of the cylindrical bracket.
  • a blood vessel which is anastomosed to the artery is transplanted as a blood supply passage in one of the channels, and a blood vessel which is anastomosed to the vein is transplanted in the other channel as an outlet for blood supply.
  • the arteriovenous system and the lateral femoral arteriovenous system are anastomosed to achieve vascularization of the stent to promote the reconstruction of the local microcirculatory system of the lesion, provide the required nutrients for the stem cells and new bone tissue in the stent region, and remove the metabolic waste in time.
  • the size of the internal tunnel of the stent should match the bone tissue or blood vessel to be implanted, and thus is not limited to the dimensional structure in the drawings.
  • the invention also provides a method for preparing a bone repair stent, which can be used for preparing the above stent, and is of course not limited to the stent of the above size.
  • the steps include:
  • the unit element of the building unit is a porous matrix structure (as shown in Fig. 11-12), and the pore column of the porous matrix structure is 100-1000um (median 300um) ), the pore size is 200-3000um (median 1000um), the porosity of the stent is 70-90%;
  • the design entity of the scaffold in step 1) is filled with the building unit by the magics three-dimensional design software, and the design entity is produced into a porous matrix structure;
  • step 3 using a 3D printer, printing with a bone biomaterial such as titanium alloy (Ti6Al4V), the printing layer thickness is 0.025 mm;
  • a bone biomaterial such as titanium alloy (Ti6Al4V)
  • step 5) The print piece obtained in step 4) is heat-treated in the furnace, heated to 840 degrees Celsius in 4 hours under argon gas protection for 2 hours, and then the furnace temperature is cooled to 500 degrees Celsius, and the printed part is taken out. , placed on the workbench and naturally cooled to room temperature;
  • step 6) cutting the print obtained in step 5) by wire cutting, cutting from the working platform;
  • the printing member obtained in the step 6) is sandblasted to remove excess raw materials which are melted on the printing surface;

Abstract

一种骨修复支架及其制备方法,该支架为与骨缺损部位的尺寸相匹配的多孔结构。该制备方法包括:S100,通过三维设计软件构建支架的设计实体;S110,构建多孔矩阵结构构建单元的三维模型;S200,通过三维设计软件,以三维模型的构建单元填充设计实体,将设计实体生产为多孔矩阵结构;S300,通过3D打印机,对多矩阵结构进行打印,得到打印件。该支架可用于修复骨缺损,能够增强成骨成血管的能力,可植入大段骨缺损处或早期股骨头缺血性坏死病灶清除后形成的空腔内,起到生物力学支撑和促进血管及骨组织长入的作用。

Description

一种骨修复支架及其制备方法 技术领域
本发明属于生物医学材料技术领域,具体涉及一种骨修复支架及其制备方法。
背景技术
创伤、感染、肿瘤等疾病造成的大段骨缺损依然是临床治疗的极大难题,治疗效果不佳的原因之一就是移植骨或骨替代材料的无血管性:而体内氧气和营养物质的有效弥散距离只有200um。传统的移植骨以及组织工程骨替代材料大多是没有微循环系统的。移植物的中心区域无法得到所需的氧气和营养物质,从而容易导致植骨愈合失败。
股骨头坏死是骨科领域的常见且难治性疾病。若未经有效治疗,约80%的患者会在4年内发生股骨头塌陷,继发关节功能障碍,最终患者不得不接受人工关节置换术,人工关节置换的高额费用给患者及社会带来了巨大的经济负担,而且由于人工关节有一定的寿命,中青年患者的关节置换后往往还面临着关节松动的问题,人工关节翻修将进一步加重经济负担并降低患者的生活质量。因此早期治疗股骨头坏死,以保留患者自身关节的治疗方法一直备受关注。
早期清除病灶,使用植入材料填充支撑缺损区域并促进骨再生是目前研究和临床治疗的热点之一。既往的材料研究中采取了干细胞治疗、人工骨填充材料及支架治疗等,然而并未取得令人满意的治疗效果。因为股骨头坏死的重要病因是其病变区域内血供受损或中断,这些材料虽然具有良好的支撑或促进成骨性能,但是难以重建病变区域的微循环系统,因此无法为注射的干细胞或新生的骨组织提供必须的营养及清除代谢废物,从而无法得到理想的治疗效果。
综上所述,修复大段骨缺损及早期股骨头坏死的重点在于解决以下三个问题:
1、骨缺损区域的生物力学支撑;2、局部微循环系统的重建;3、促进骨组织的再生修复。
发明内容
针对上述问题,本发明提出了一种骨修复支架及其制备方法,所述支架可用于修复骨缺损,能够增强成骨成血管的能力。
一种骨修复支架,所述支架为与患者的骨缺损部位的尺寸相匹配的多孔结构。
一种骨修复支架的制备方法,包括步骤:S100,通过三维设计软件构建所述支架的设计实体;S110,构建多孔矩阵结构构建单元的三维模型;S200,通过三维设计软件,以三维模型的构建单元填充设计实体,将设计实体生产为多孔矩阵结构;S300,通过3D打印机,对多矩阵结构进行打印,得到打印件。
本发明所述的支架为多孔支架,可植入大段骨缺损处或早期股骨头缺血性坏死病灶清除后形成的空腔内,起到生物力学支撑和促进血管及骨组织长入的作用;多孔结构内部可负载生物活性生长因子(如BMP-2/VEGF等)或干细胞从而进一步加强其促进骨再生的能力;所述支架内设有的单个贯穿孔道可进行骨移植或者血管移植,增强骨组织及血管修复能力;所述支架内设有两个贯穿的孔道,可实现动静脉的联合移植,以促进支架及病变区域内的血管长入,实现坏死区域微循环系统的重建,为新生骨组织提供所需的营养物质及清除局部的代谢废物。
附图说明
图1为本发明的圆柱状多孔钛合金支架的一种实施方式。
图2为本发明的圆柱状多孔钛合金支架的另一种实施方式。
图3为本发明的立柱状多孔钛合金支架的一种实施方式。
图4为本发明的立柱状多孔钛合金支架的另一种实施方式。
图5为本发明的立柱状多孔钛合金支架的另一种实施方式。
图6为图1中支架中多孔结构的示意图。
图7为图2中支架中多孔结构的示意图。
图8为图3中支架中多孔结构的示意图。
图9为图4中支架中多孔结构的示意图。
图10为图5中支架中多孔结构的示意图。
图11为本发明中多孔矩阵结构单位的结构图。
图12为本发明中多孔矩阵结构单位的另一种结构图。
图13为本发明中支架进行骨移植前支架中孔道的示意图。
图14为本发明中支架进行骨移植后支架中孔道的示意图。
具体实施方式
下面参照附图描述本发明的实施方式,其中相同的部件用相同的附图标记表示。
本发明所述的支架可用于修复骨缺损,例如大段骨缺损及早期股骨头坏死。下面仅给出所述支架为柱状结构的一些实施方式,当然所述支架不仅限于柱状结构,所述支架的外形尺寸应根据骨缺损部位的外形尺寸而定,例如大段骨缺损区域、股骨头坏死减压治疗后残留空腔及股骨头颈开窗区域的尺寸,可以以CT扫描为依据。
图1-2为本发明所述支架为圆柱状多孔钛合金支架的两种实施方式。所述支架的外形尺寸根据骨缺损部位、长度及外形而定,例如,当修复大段骨缺损,支架的尺寸应与大段骨缺损区域的尺寸相匹配;当修复以髓芯减压的方式进行股骨头坏死病灶清除时,支架的尺寸应与患者股骨头坏死减压治疗后残留空腔相匹配。在图1-2中,圆柱状支架的尺寸可为:支架的直径为10-12mm,支架的长度为70-130mm。在图1中,在支架的内部设有一个纵向的圆柱状孔道,孔道内径可为5-10mm。在图2中,在支架的内部设有两个纵向的圆柱状孔道,孔道内径可为3-4mm。
图3-5为本发明所述支架为立柱状多孔钛合金支架的三种实施方式。所述支架的外形尺寸根据骨缺损部位、长度及外形而定,例如,当修复大段骨缺损,支架的尺寸应与大段骨缺损区域的尺寸相匹配;当修复以股骨头颈开窗减压的方式进行股骨头坏死病灶清除时,支架的大小应根据患者股骨头颈开窗区域的大小而定。在图3-5中,立柱状支架的尺寸可为:15×25×15mm3。在图3中,在支架的内部设有一个直形的孔道,孔道内径可为5-10mm。在图4中,在支架的内部设有两个圆柱状孔道,孔道内径可为3-5mm。在图5中,在支架的内部设有两个弧形的孔道,孔道内径为3-5mm。
如图6-10所示,图1-5中的支架为具有多孔结构的支架,支架内具有孔柱,孔柱的柱宽为100-1000um(中值300um)、孔径为300-3000um(中值1000um),并且支架的孔隙率为70-90%,是以多孔矩阵结构单位充填、扩展得到的与骨缺损区域外形相匹配的具有力学仿生性能的上述支架。其中,多孔矩阵结构单位如图11-12所示,当然不仅限于图11-12中的结构单位。
本发明所述的支架为多孔钛合金支架,当然支架的材料也可为纯钛、钴合金、钽、钛钽合金、磷酸钙、聚乳酸(PLA)、乳酸-羟基乙酸共聚物(PLGA)、聚乙酸内脂(PCL)、珊瑚、生物陶瓷等骨生物材料,只要是能够具有力学仿生性能的材料即可。本发明的所述的支架可植入大段骨缺损处或者早期股骨头缺血性坏死病灶清除后形成的空腔内,起到生物力学支撑和促进血管及骨组织长入的作用。通过多孔结构的设计促进骨长入,并可在多孔结构内负载生物活性生长因子(如BMP-2/VEGF等)或干细胞从而进一步加强其促进骨再生的能力。
在图1及图3中,支架内部具有一个孔道,孔道的两端贯穿支架的上面及下面,孔道内部可用于进行骨植入或者血管移植(如图13-14所示),来增强病区局部的骨修复能力,支架则可起到生物力学支撑和促进血管及骨组织长入的作用。如图2、图4及图5所示,支架内部具有两个孔道,在图2中孔道的两端贯穿圆柱状支架的上面及下面,在图4中孔道的两端贯穿立柱状支架的上面及下面,在图5中孔道的两端立柱状支架的上面及侧面,其中,一个孔道内移植与动脉吻合的血管作为供血通道,另一个孔道里移植与静脉吻合的血管作为血供的出口。通过将血管(如大隐静脉或邻近的小动静脉束)移植入支架内贯通的两个孔道内,并与大段骨缺损附近或髋关节周围现存的血供系统(如胫前/胫后动静脉系统、旋股外侧动静脉系统)吻合,实现支架的血管化,以促进病灶局部微循环系统的重建,为支架区域的干细胞及新生骨组织提供所需的营养物质并及时清除代谢废物。需要指出的是,支架内部孔道的尺寸应与需要进行植入的骨组织或者血管相匹配,因而不仅限于附图中的尺寸结构。
本发明还提出一种骨修复支架的制备方法,本方法可用于制备上述支架,当然不仅限于上述尺寸的支架。
在一种实施方式中,步骤包括:
1)通过proe三维设计软件,在计算机中建立上述支架结构的设计实体(如 图1-5);
2)构建多孔矩阵结构构建单元的三维模型(如图6-10),构建单元的单元要素为多孔矩阵结构(如图11-12),多孔矩阵结构的孔柱为100-1000um(中值300um),孔径为200-3000um(中值1000um),支架的孔隙率70-90%;
3)依据步骤2)中的三维构建单元,通过magics三维设计软件以构建单元充填步骤1)中支架的设计实体,将设计实体生产为多孔矩阵结构;
4)依据步骤3)中的多孔矩阵结构,采用3D打印机,以钛合金(Ti6Al4V)等骨生物材料进行打印,打印层厚为0.025mm;
5)将步骤4)获得的打印件在炉内进行热处理,在氩气保护条件下,在4小时内升温到840摄氏度,并保持2小时,然后将炉内温度冷却到500摄氏度后取出打印件,放于工作台上并自然冷却到室温;
6)将步骤5)获得的打印件采用线切割,从工作平台上切下;
7)将步骤6)获得的打印件采用喷砂处理,除去打印表面粘熔的多余原材料;
8)将步骤7)获得的打印件采用超声波清洗,除去表面杂质;
9)将打印件放入高温高压蒸汽灭菌器中进行灭菌,并独立分装处理。
以上所述的实施例,只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (10)

  1. 一种骨修复支架,其特征在于:
    所述支架为与患者的骨缺损部位的尺寸相匹配的多孔结构。
  2. 根据权利要求1所述的骨修复支架,其特征在于:
    所述支架的材料为骨生物材料。
  3. 根据权利要求1所述的骨修复支架,其特征在于:
    所述支架内部具有一个或者两个贯穿支架的孔道。
  4. 根据权利要求1所述的骨修复支架,其特征在于:
    所述多孔结构的孔隙率为70-90%,
    优选地,所述多孔结构的孔柱的尺寸为:柱宽为100-1000um,孔径为300-3000um,
    优选地,所述孔柱的柱宽为300um,孔柱的孔径为1000um。
  5. 根据权利要求4所述的骨修复支架,其特征在于:
    所述支架为圆柱状的多孔钛合金支架,支架的直径为10-12mm,支架的长度为70-130mm,支架内部设有一个贯穿圆柱状结构的孔道,孔道的内径为5-10mm,或者支架内部设有两个贯穿圆柱状结构的孔道,孔道的内径为3-4mm;或者
    所述支架为立柱状的多孔钛合金支架,支架的尺寸为15×25×15mm3,支架内部设有一个贯穿立柱状结构的孔道,孔道的内径为5-10mm,或者支架内部设有两个贯穿立柱状结构的孔道,孔道的内径为3-5mm。
  6. 一种骨修复支架的制备方法,其特征在于,包括步骤:
    S100,通过三维设计软件构建所述支架的设计实体;
    S110,构建多孔矩阵结构构建单元的三维模型;
    S200,通过三维设计软件,以三维模型的构建单元填充设计实体,将设计实体生产为多孔矩阵结构;
    S300,通过3D打印机,对多矩阵结构进行打印,得到打印件。
  7. 根据权利要求6所述的骨修复支架的制备方法,其特征在于:
    步骤S110中,所述多孔矩阵结构的孔柱的尺寸为:柱宽为100 -1000um,孔径为300-3000um,优选地,孔柱的柱宽为300um,孔柱的孔径为1000um;所述多孔矩阵结构的孔隙率为70-90%;所述构建单元的单元要素为多孔矩阵结构单位。
  8. 根据权利要求6所述的骨修复支架的制备方法,其特征在于:步骤S100中,
    所述三维模型为圆柱状结构,圆柱状结构的直径为10-12mm,圆柱状结构的长度为70-130mm,圆柱状结构内部设有一个贯穿圆柱状结构的孔道,孔道的内径为5-10mm,或者圆柱状结构内部设有两个贯穿圆柱状结构的孔道,孔道的内径为3-4mm;或者
    所述三维模型为立柱状结构,立柱状结构的尺寸为15×25×15mm3,立柱状结构内部设有一个贯穿立柱状结构的孔道,孔道的内径为5-10mm,或者立柱状结构内部设有两个贯穿立柱状结构的孔道,孔道的内径为3-5mm。
  9. 根据权利要求6所述的骨修复支架的制备方法,其特征在于:
    步骤S300中,以骨生物材料作为打印的原材料,打印层厚为0.025mm。
  10. 根据权利要求6所述的骨修复支架的制备方法,其特征在于,还包括步骤:
    S400,在氩气保护下,对打印件进行热处理,
    优选地,步骤S400依次包括步骤:
    S410,在4小时内升温到840摄氏度;
    S420,保持840摄氏度2小时;
    S430,将温度冷却至500摄氏度;
    S440,自然冷却到室温。
    优选地,还包括步骤:
    S600,除去打印件表面粘熔的多余原材料;及/或
    S700,除去打印件表面的杂质;及/或
    S800,对打印件进行灭菌处理;及/或
    S900,对打印件进行分装处理。
PCT/CN2017/094196 2016-07-29 2017-07-25 一种骨修复支架及其制备方法 WO2018019215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610608414.1A CN107661160A (zh) 2016-07-29 2016-07-29 一种骨修复支架及其制备方法
CN201610608414.1 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019215A1 true WO2018019215A1 (zh) 2018-02-01

Family

ID=61015652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094196 WO2018019215A1 (zh) 2016-07-29 2017-07-25 一种骨修复支架及其制备方法

Country Status (2)

Country Link
CN (1) CN107661160A (zh)
WO (1) WO2018019215A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559483A (zh) * 2018-06-06 2019-12-13 广州溯原生物科技有限公司 一种3d打印技术制备的松质骨仿生支架的设计与应用
CN111973810A (zh) * 2019-05-23 2020-11-24 浙江大学 一种肢体大段骨缺损再生修复重建多孔中空管状材料及制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109481108B (zh) * 2018-09-28 2021-01-05 西安点云生物科技有限公司 一种具有侧面孔隙结构的生物陶瓷支架及其制备方法
CN109513050B (zh) * 2018-12-17 2021-08-17 广东省新材料研究所 渐变梯度多孔结构个性化钽植入体及其制备方法与应用
CN109966027B (zh) * 2019-04-28 2021-02-19 华南协同创新研究院 一种骨修复用梯度单元、多孔支架及制备方法
CN112168429B (zh) * 2020-10-14 2021-12-31 华中科技大学 一种仿海胆刺形连续梯度变化的生物支架及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683593A2 (en) * 2004-12-30 2006-07-26 Howmedica Osteonics Corp. Laser produced porous structure
CN103767807A (zh) * 2014-01-10 2014-05-07 中国医学科学院整形外科医院 一种新型血管化组织工程骨及其构建方法
CN104353122A (zh) * 2014-11-24 2015-02-18 吴志宏 一种具有仿生三维微支架的3d打印多孔金属及其制备方法
CN104758042A (zh) * 2015-04-20 2015-07-08 吴志宏 一种具有三维贯通多孔结构的骨螺钉
CN105559947A (zh) * 2015-12-15 2016-05-11 广州中国科学院先进技术研究所 一种由O-intersecting lines单元填充的多孔植入体的制备方法
CN105641753A (zh) * 2016-03-08 2016-06-08 吴志宏 一种复合rhBMP-2的可实现血管转移的3D打印可降解支架
CN106798601A (zh) * 2017-01-23 2017-06-06 北京形梦信息技术有限公司 一种支架

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683593A2 (en) * 2004-12-30 2006-07-26 Howmedica Osteonics Corp. Laser produced porous structure
CN103767807A (zh) * 2014-01-10 2014-05-07 中国医学科学院整形外科医院 一种新型血管化组织工程骨及其构建方法
CN104353122A (zh) * 2014-11-24 2015-02-18 吴志宏 一种具有仿生三维微支架的3d打印多孔金属及其制备方法
CN104758042A (zh) * 2015-04-20 2015-07-08 吴志宏 一种具有三维贯通多孔结构的骨螺钉
CN105559947A (zh) * 2015-12-15 2016-05-11 广州中国科学院先进技术研究所 一种由O-intersecting lines单元填充的多孔植入体的制备方法
CN105641753A (zh) * 2016-03-08 2016-06-08 吴志宏 一种复合rhBMP-2的可实现血管转移的3D打印可降解支架
CN106798601A (zh) * 2017-01-23 2017-06-06 北京形梦信息技术有限公司 一种支架

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559483A (zh) * 2018-06-06 2019-12-13 广州溯原生物科技有限公司 一种3d打印技术制备的松质骨仿生支架的设计与应用
CN111973810A (zh) * 2019-05-23 2020-11-24 浙江大学 一种肢体大段骨缺损再生修复重建多孔中空管状材料及制备方法
CN111973810B (zh) * 2019-05-23 2022-05-24 浙江大学 一种肢体大段骨缺损再生修复重建多孔中空管状材料及制备方法

Also Published As

Publication number Publication date
CN107661160A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2018019215A1 (zh) 一种骨修复支架及其制备方法
Vidal et al. Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing
US8353967B2 (en) Self-supporting collagen tunnel for guided tissue regeneration and method of using same
TWI316860B (en) Multi-layered matrix, method of tissue repair using the same and multi-layered implant prepared thereof
RU173381U1 (ru) Персональный биоактивный структурированный имплантат для замещения дефекта кости
CN106798601B (zh) 一种支架
Grecchi et al. Reconstruction of the zygomatic bone with smartbone®: Case report
CN206621456U (zh) 一种骨修复支架
CN107683130A (zh) 包括氧固醇的植入物和使用方法
RU171823U1 (ru) Ячеистый цилиндрический биоактивный имплантат для замещения циркулярных дефектов трубчатых костей
CN110916853A (zh) 一种胫骨中段重建装置及制备方法、装置模型构建方法、计算机可读存储介质、设备
CN106798600B (zh) 一种组合支架
Saijo et al. Clinical experience of full custom-made artificial bones for the maxillofacial region
Laskowska et al. Additive manufacturing methods, materials and medical applications-the review
CN211187658U (zh) 一种胫骨中段重建装置
CN206239777U (zh) 子宫置入物及子宫置入物的置入系统
RU2570619C1 (ru) Способ реконструкции обширных дефектов дна передней черепной ямки
US9833544B2 (en) Biphasic collagen membrane or capsule for guided tissue regeneration
EP3621552B1 (en) A device for carrying out a method for the non-invasive fragmentation of residual biomaterial after bone augmentation
CN112842623A (zh) 一种羟基磷灰石表面修饰3d生物打印可降解人工肋骨的方法
CN210494322U (zh) 一种支架
US20220168474A1 (en) Methods and Devices for Improving Bone Healing
Wang et al. Additive manufacturing of metal implants and surgical plates
WO2021200573A1 (ja) 乳房用処置具
WO2010043177A1 (zh) 生物诱导型人体腔管代用品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833518

Country of ref document: EP

Kind code of ref document: A1