WO2018019011A1 - 微距拍摄处理方法、装置和终端设备 - Google Patents

微距拍摄处理方法、装置和终端设备 Download PDF

Info

Publication number
WO2018019011A1
WO2018019011A1 PCT/CN2017/085204 CN2017085204W WO2018019011A1 WO 2018019011 A1 WO2018019011 A1 WO 2018019011A1 CN 2017085204 W CN2017085204 W CN 2017085204W WO 2018019011 A1 WO2018019011 A1 WO 2018019011A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
camera module
move
module
terminal device
Prior art date
Application number
PCT/CN2017/085204
Other languages
English (en)
French (fr)
Inventor
吴磊
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Publication of WO2018019011A1 publication Critical patent/WO2018019011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the field of photographing technology, and in particular, to a macro photographing processing method, apparatus, and terminal device.
  • Macro shooting is a way of shooting an image that is large (1:1) or slightly larger than the actual object by the optical power of the lens. This shooting method is often used to display small figures such as flowers, birds, and fish. The details of things.
  • any shooting device When taking a picture using the macro shooting mode, the subject to be photographed is closer to the lens. However, any shooting device has the shortest distance to focus on the subject, that is, the closest focusing distance. If the distance between the subject and the lens is less than the distance, It is impossible to focus, so that the subject that is smaller than the closest focusing distance will be completely blurred, and no clear scene can be seen in the viewfinder.
  • the object of the present invention is to solve at least one of the above technical problems to some extent.
  • the first object of the present invention is to provide a macro shooting processing method, which controls the camera module to move the focus by the MEMS system, expands the focus range, and improves the flexibility of macro shooting.
  • a second object of the present invention is to provide a macro shooting processing apparatus.
  • a third object of the present invention is to provide a terminal device.
  • a fourth object of the present invention is to propose another terminal device.
  • a fifth object of the present invention is to provide a non-volatile computer storage medium.
  • a first aspect of the present invention provides a macro shooting processing method, including the following steps:
  • the MEMS system is used to control the camera module to move to focus.
  • the macro shooting processing method of the embodiment of the present invention acquires a focus request and determines whether the motor stroke has reached the limit position. If yes, the MEMS system is used to control the camera module to move to focus. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • the macro shooting processing method of the embodiment of the present invention further has the following additional technical features:
  • the method before the controlling, by the MEMS, the camera module moves to perform focusing, the method further includes:
  • the controlling the camera module to perform focusing by using the MEMS system comprises:
  • the MEMS system is used to control the camera module to move in the opposite direction of the shooting direction to expand the focus range.
  • the acquiring an focus request includes:
  • the focus request is triggered when it is determined that the currently captured picture of the lens does not meet the preset requirement.
  • a second aspect of the present invention provides a macro shooting processing apparatus, including:
  • a judging module for judging whether the motor stroke has reached the limit position
  • the focusing module is used to control the camera module to move to focus when the motor stroke has reached the limit position.
  • the macro shooting processing device of the embodiment of the present invention acquires a focus request and determines whether the motor stroke has reached the limit position. If so, the MEMS system controls the camera module to move to perform focusing. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • the macro shooting processing apparatus of the embodiment of the present invention further has the following additional technical features:
  • the device further includes:
  • a determination module for determining that the current shooting mode is the macro shooting mode is the macro shooting mode.
  • the focusing module is configured to:
  • the MEMS system is used to control the camera module to move in the opposite direction of the shooting direction to expand the focus range.
  • the acquiring module is specifically configured to:
  • the focus request is triggered when it is determined that the currently captured picture of the lens does not meet the preset requirement.
  • a third aspect of the present invention provides a terminal device, including: the second The macro shooting processing device of the embodiment.
  • the terminal device of the embodiment of the present invention acquires a focus request and determines whether the motor stroke has reached the limit position. If yes, the MEMS system is used to control the camera module to move to perform focusing. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • a fourth aspect of the present invention provides another terminal device including one or more of the following components: a housing and a processor, a memory, a camera module, a MEMS, and a motor located in the housing.
  • the MEMS control the movement of the camera module;
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for performing the following step:
  • the MEMS system is used to control the camera module to move to focus.
  • the terminal device of the embodiment of the present invention acquires a focus request and determines whether the motor stroke has reached the limit position. If yes, the MEMS system is used to control the camera module to move to perform focusing. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • a fifth aspect of the present application provides a non-volatile computer storage medium storing one or more programs, when the one or more programs are executed by one device, causing the device Perform the following steps:
  • the MEMS system is used to control the camera module to move to focus.
  • FIG. 1 is a flow chart of a macro shooting processing method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical principle of convex lens imaging according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a MEMS control camera module according to an embodiment of the present application.
  • FIG. 4 is a schematic view of the travel of a motor and a microelectromechanical system in accordance with an embodiment of the present application
  • FIG. 5 is a flowchart of a macro shooting processing method according to another embodiment of the present application.
  • FIGS. 6(a)-6(b) are schematic diagrams showing the optical principle of macro shooting according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a macro shooting processing apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a macro shooting processing apparatus according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device according to another embodiment of the present application.
  • the macro shooting processing method, apparatus, and terminal device of the embodiment of the present application are described below with reference to the accompanying drawings. It should be noted that the macro shooting processing method described in the embodiments of the present application may be used in the scenes of macro shooting and non-macro shooting. Preferably, the following embodiments focus on the macro shooting scene. description:
  • FIG. 1 is a flowchart of a macro shooting processing method according to an embodiment of the present application. As shown in FIG. 1 , the method includes:
  • the macro shooting processing method of the embodiment of the present application is applied to a terminal device that realizes a shooting function by using a camera module, wherein the imaging principle of the camera module that performs shooting is a convex lens. Imaging principle.
  • the real image of the scene can be obtained on the camera module, such as the image sensor of the camera module;
  • the distance from the lens is greater than one focal length and less than twice the focal length, an image of the enlarged scene is obtained on the image sensing component of the camera module;
  • the distance of the captured scene from the lens is greater than twice the focal length, in the imaging mode What is obtained on the image sensing element of the group is a reduced image of the subject.
  • the convex lens imaging formula is (u is the distance from the scene to the lens, which can be called the object distance; v is the distance of the image of the scene captured in the camera module from the lens, which can be the image distance, f is the focal length of the lens, and is gathered by the lens.
  • the change of v and u exhibits an opposite change trend when f is constant, that is, when u increases, v decreases, and u decreases, and v increases.
  • macro shooting is a method of photographing an image of a zoomed scene at a close distance, that is, an image of a photographed scene obtained on an image sensing element of the camera module, the magnification of the photographed scene should be greater than or equal to One.
  • the image distance and the object distance make the object distance u, that is, the distance from the shot to the lens more than double the focal length, less than twice the focal length, and the object distance and the image distance should satisfy the above convex lens imaging formula as much as possible.
  • the process of the object distance to see a clear image of the scene in the viewfinder also called focus.
  • whether the object distance or the image distance of the camera module is adjusted to adapt to the current shooting scene can be determined by acquiring the focus request.
  • the MEMS system is used to control the movement of the camera module to perform focusing.
  • the motor can be controlled by the motor in the camera module to shorten the direction of the opposite direction. To increase the size of u.
  • the distance of the motor control lens in the camera module to the rearward contraction is limited.
  • the lens is The distance from the distance is very close. Even if the control lens is shortened to the opposite direction of the shooting direction to the stroke limit of the motor, the distance from the subject to the subject is still small.
  • the value of u is small at this time. If the subject can be focused, the value of v must be relatively large, and the distance between the camera module and the lens obviously cannot meet the focus of the camera module. condition.
  • the macro shooting processing method of the embodiment of the present application introduces a micro electro-mechanical system (MEMS), and when the motor stroke reaches the limit position, the camera module can be controlled to move by the MEMS system.
  • MEMS micro electro-mechanical system
  • MEMS is developed on the basis of microelectronics technology (semiconductor manufacturing technology), combining high-tech manufacturing technology such as lithography, etching, thin film, LIGA, silicon micromachining, non-silicon micromachining and precision machining. Electromechanical devices.
  • the MEMS includes a fixed electrode 122, a movable electrode 124, and a deformable connection member 126.
  • the movable electrode 124 is mated with the fixed electrode 122.
  • the connecting member 126 is fixedly connected to the fixed electrode 122 and the movable electrode 124.
  • the fixed electrode 122 and the movable electrode 124 are used to generate an electrostatic force under the action of a driving voltage.
  • the connecting member 126 is configured to deform in a direction in which the movable electrode 124 moves under the action of an electrostatic force to allow the movable electrode 124 to move to drive the camera module to move.
  • the step size of each movement of the MEMS control camera module can be calibrated by the system according to a large amount of experimental data, or can be set by the user according to requirements.
  • the MEMS is more sensitive and flexible, and the efficiency of controlling the movement of the camera module is higher and the speed is faster than that of the motor control lens.
  • the motor stroke reaches the limit position, for example, the motor can be The resulting extreme position provides a sensor that, when the sensor detects that the motor has reached the position, issues a warning that the motor stroke has reached the extreme position.
  • the position of the lens cannot be controlled to further move in the opposite direction of the photographing direction, so that the camera module can be moved in the opposite direction of the photographing direction by the MEMS, that is, by adding The size of v increases the focus range of the camera module, so that the camera module can focus on a large range of scenes.
  • the MEMS system can control the image sensing element in the camera module to move, thereby controlling the MEMS.
  • the size of v increases.
  • the size of u also increases, thereby expanding the focus range of the camera module and improving the flexibility of macro shooting. Sex.
  • the macro shooting processing method of the embodiment of the present application acquires a focus request to determine whether the motor stroke has reached the limit position, and if so, uses the MEMS system to control the camera module to move to focus. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • the focus operation initiated by the trigger operation can be obtained by the user's trigger operation on the focus button or the like in the terminal device.
  • the focus request can be automatically triggered by the processor of the camera module itself, etc., when it is determined that the currently acquired picture does not meet the preset requirement.
  • the method of obtaining the in-focus request is taken as an example for the macro shooting processing method of the embodiment of the present application.
  • FIG. 5 is a flowchart of a macro shooting processing method according to another embodiment of the present application. As shown in FIG. 5, the method includes:
  • the viewfinder it is seen from the viewfinder that the currently collected picture quality is not good, for example, when the image is blurred, it indicates that the current camera module is not in focus, and thus the focus request is triggered.
  • the shooting scene is far away from the lens, that is, u is large, and the range of the moving distance of the micro electromechanical control shooting module is small, that is, the variation range of v is small, therefore, Non-macro processing In the scene, it is of little significance to use the MEMS system to control the movement of the camera module for focusing.
  • the distance u of the subject from the lens is within a small range between one focal length and twice the focal length, even if the distance v between the image sensing element and the lens is slightly adjusted, such as controlling the image. Moving the sensor element a small distance in the opposite direction of the shooting direction can increase the focus range significantly.
  • the distance between the camera module and the lens is L1
  • the distance between the camera module and the lens is L1.
  • the distance to the lens can be The object is clearly imaged, when the distance of the scene is less than the distance from the lens When you are unable to focus, or the focus is not accurate.
  • the distance of the camera module from the lens that is, the image distance is increased to L2.
  • the distance to the lens can be The object is clearly imaged, when the distance of the scene is less than the distance from the lens When you are unable to focus, or the focus is not accurate.
  • L1 is smaller than L2, More than 1, that is, controlling the image sensing element to move the distance of L2-L1 in the opposite direction of the shooting direction, so that it can make the lens To In the range of the range, the focus can still be accurately focused, and the range of this increase is obvious for the range of the focal length of one to two times, so the macro shooting processing method of the present application has a high degree for macro shooting. feasibility.
  • the MEMS system is used to control the movement of the camera module to perform focusing.
  • the macro shooting processing method of the embodiment of the present application first determines whether the current position is a macro shooting scene after acquiring the focus request and determining that the motor stroke reaches the limit position, and if so, controlling the camera module by using the MEMS system. Move to focus.
  • the MEMS system controls the camera module to move the focus, which expands the focus range, improves the flexibility of macro shooting, and improves the practicality of the MEMS system.
  • FIG. 7 is a schematic structural diagram of a macro shooting processing device according to an embodiment of the present application.
  • the macro shooting processing device Including acquisition The module 110, the judging module 120 and the focusing module 130.
  • the obtaining module 110 is configured to acquire a focus request.
  • the acquiring module 10 may determine whether to adjust the object distance or the image distance of the camera module to adapt to the current shooting scene by acquiring the focus request.
  • the determining module 120 is configured to determine whether the motor stroke has reached the limit position.
  • the focusing module 130 is configured to control the movement of the camera module to perform focusing by using the MEMS system when the motor stroke has reached the limit position.
  • the determining module 120 may determine whether the motor stroke reaches the limit position after the acquiring module 110 acquires the focus request.
  • a sensor may be disposed at a limit position formed by the motor, and when the sensor detects that the motor reaches the position, the determining module The 120 can determine whether the motor stroke reaches the limit position by the presence or absence of a warning that the motor stroke reaches the limit position.
  • the position of the lens cannot be controlled to further move in the opposite direction of the shooting direction, so that the focusing module 130 can move the camera module in the opposite direction of the shooting direction through the MEMS system.
  • the camera module can focus on a large range of scenes.
  • the macro shooting processing device of the embodiment of the present application acquires a focus request to determine whether the motor stroke has reached the limit position, and if so, uses the MEMS system to control the camera module to move to focus. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • the acquiring module 110 may obtain a focus request in different manners:
  • the obtaining module 110 may obtain a focus request initiated by the triggering operation by a trigger operation of a focus button or the like in the terminal device by the user.
  • the acquiring module 110 may automatically trigger the focus request by the processor of the camera module itself or the like when determining that the currently acquired screen does not meet the preset requirement.
  • the quality of the currently acquired picture is not good when viewed from the viewfinder, such as when the image is blurred, indicating that the focus of the current camera module is not suitable, and thus the acquisition module 110 acquires the trigger focus request.
  • the macro shooting processing apparatus may further include:
  • the determining module 140 is configured to determine that the current shooting mode is a macro shooting mode.
  • the determining module 140 determines that the current shooting mode is a macro shooting mode.
  • the focusing module 130 controls the camera module by using the MEMS system. Move to focus.
  • the macro shooting processing device of the embodiment of the present application first determines whether the current macro is a macro shooting scene after acquiring the focus request and determining that the motor stroke reaches the limit position, and if so, controlling the camera module by using the MEMS system. Move to focus.
  • the MEMS system controls the camera module to move the focus, which expands the focus range, improves the flexibility of macro shooting, and improves the practicality of the MEMS system.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 9, the terminal device includes a macro shooting processing device 100.
  • the terminal device in the embodiment of the present application acquires a focus request and determines whether the motor stroke has reached the limit position. If yes, the MEMS system is used to control the camera module to move to focus. Thereby, the MEMS system controls the camera module to move the focus, which expands the focus range and improves the flexibility of macro shooting.
  • FIG. 10 is a schematic structural diagram of a terminal device according to another embodiment of the present application.
  • the terminal device 1000 includes: a housing 1100 and The camera module 1111, the microelectromechanical system 1112, the motor 1113, the memory 1114, and the processor 1115 are located in the housing 1100.
  • the MEMS 1112 controls the camera module 1111 to move; the processor 1115 runs the program corresponding to the executable program code by reading the executable program code stored in the memory 1114 for performing the following steps:
  • the MEMS 1111 is used to control the camera module 1111 to move to focus.
  • the terminal device in the embodiment of the present application acquires a focus request and determines whether the motor stroke has reached the limit position. If yes, the MEMS system is used to control the camera module to move to focus. Thus, controlled by MEMS The camera module moves the focus, which expands the focus range and increases the flexibility of macro shooting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种微距拍摄处理方法、装置和终端设备,其中,方法包括:获取对焦请求;判断马达行程是否已达到极限位置;若是,则利用微机电系统控制摄像模组移动进行对焦。该方法通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。

Description

微距拍摄处理方法、装置和终端设备
相关申请的交叉引用
本申请要求广东欧珀移动通信有限公司于2016年07月29日提交的、申请名称为“微距拍摄处理方法、装置和终端设备”的、中国专利申请号“201610615861.X”的优先权。
技术领域
本申请涉及拍摄技术领域,尤其涉及一种微距拍摄处理方法、装置和终端设备。
背景技术
微距拍摄是一种通过镜头的光学能力,拍摄与实际物体等大(1:1)或比实际物体稍大的图像的拍摄方式,该拍摄方式常被用于展示表现花鸟鱼虫等细小的东西的细节。
在使用微距拍摄模式进行拍照时,待拍摄景物距离镜头较近,然而,任意拍摄设备都具有对被摄景物对焦的最短距离即最近对焦距离,如果被摄景物与镜头的距离小于该距离,是无法对焦的,这样距离镜头小于最近对焦距离的被摄景物将会被全部虚化,在取景器中看不到清晰的景物。
因而,在待拍摄景物距离镜头距离一旦近到一定程度,会因无法对该景物聚焦,而不能得到质量较好的微距拍摄图像,微距拍摄的灵活性不高。
发明内容
本发明的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明的第一个目的在于提出一种微距拍摄处理方法,该方法通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
本发明的第二个目的在于提出一种微距拍摄处理装置。
本发明的第三个目的在于提出一种终端设备。
本发明的第四个目的在于提出另一种终端设备。
本发明的第五个目的在于提出一种非易失性计算机存储介质。
为了实现上述目的,本发明第一方面实施例提出了一种微距拍摄处理方法,包括以下步骤:
获取对焦请求;
判断马达行程是否已达到极限位置;
若是,则利用微机电系统控制摄像模组移动进行对焦。
本发明实施例的微距拍摄处理方法,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
另外,本发明实施例的微距拍摄处理方法,还具有如下附加的技术特征:
在本发明的一个实施例中,所述利用微机电系统控制摄像模组移动进行对焦之前,还包括:
确定当前拍摄模式为微距拍摄模式。
在本发明的一个实施例中,所述利用微机电系统控制摄像模组移动进行对焦,包括:
利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
在本发明的一个实施例中,所述获取对焦请求,包括:
获取用户通过终端设备中的对焦按钮,触发的对焦请求;
或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
为了实现上述目的,本发明第二方面实施例提出了一种微距拍摄处理装置,包括:
获取模块,用于获取对焦请求;
判断模块,用于判断马达行程是否已达到极限位置;
对焦模块,用于在马达行程已达到极限位置时,利用微机电系统控制摄像模组移动进行对焦。
本发明实施例的微距拍摄处理装置,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
另外,本发明实施例的微距拍摄处理装置,还具有如下附加的技术特征:
在本发明的一个实施例中,所述装置还包括:
确定模块,用于确定当前拍摄模式为微距拍摄模式。
在本发明的一个实施例中,所述对焦模块用于:
利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
在本发明的一个实施例中,所述获取模块,具体用于:
获取用户通过终端设备中的对焦按钮,触发的对焦请求;
或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
为了实现上述目的,本发明第三方面实施例提出了一种终端设备,包括:本发明第二 方面实施例所述的微距拍摄处理装置。
本发明实施例的终端设备,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
为了实现上述目的,本发明第四方面实施例提出了另一种终端设备,包括以下一个或多个组件:壳体和位于壳体内的处理器、存储器、摄像模组、微机电系统和马达,其中,所述微机电系统控制所述摄像模组移动;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行以下步骤:
获取对焦请求;
判断马达行程是否已达到极限位置;
若是,则利用微机电系统控制摄像模组移动进行对焦。
本发明实施例的终端设备,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
本申请第五方面实施例提供了一种非易失性计算机存储介质,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行以下步骤:
获取对焦请求;
判断马达行程是否已达到极限位置;
若是,则利用微机电系统控制摄像模组移动进行对焦。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的微距拍摄处理方法的流程图;
图2是根据本申请一个实施例的凸透镜成像光学原理示意图;
图3是根据本申请一个实施例的微机电系统控制摄像模组的结构示意图;
图4是根据本申请一个实施例的马达和微机电系统的行程示意图;
图5是根据本申请另一个实施例的微距拍摄处理方法的流程图;
图6(a)-图6(b)是根据本申请一个实施例的微距拍摄光学原理示意图;
图7是根据本申请一个实施例的微距拍摄处理装置的结构示意图;
图8是根据本申请另一个实施例的微距拍摄处理装置的结构示意图;
图9是根据本申请一个实施例的终端设备的结构示意图;以及
图10是根据本申请另一个实施例的终端设备的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的微距拍摄处理方法、装置和终端设备。需要说明的是,本申请实施例惨重图1-图4描述的微距拍摄处理方法可以用于微距拍摄和非微距拍摄的场景中,优选地,以下实施例集中为微距拍摄场景进行描述:
图1是根据本申请一个实施例的微距拍摄处理方法的流程图,如图1所示,该方法包括:
S110,获取对焦请求。
可以理解,本申请实施例的微距拍摄处理方法,应用于通过摄像模组实现拍摄功能的终端设备中,其中,无论进行拍摄的摄像模组的镜头组成是怎样的,其成像原理都是凸透镜成像原理。
即如图2所示,当拍摄的景物距离镜头的距离大于一倍焦距时,可在摄像模组上,比如在摄像模组的图像传感器上,得到的是拍摄景物的实像;当拍摄的景物距离镜头的距离大于一倍焦距小于两倍焦距时,在摄像模组的图像感应元件上得到的是放大的拍摄景物的像;当拍摄的景物距离镜头的距离大于两倍焦距时,在摄像模组的图像感应元件上得到的是缩小的拍摄景物的像。
其中,凸透镜成像公式为
Figure PCTCN2017085204-appb-000001
(u为拍摄景物距离镜头的距离,可以称为物距;v为呈现在摄像模组上中的拍摄景物的像距离镜头的距离,可以成为像距,f为镜头的焦距,由镜头的聚光性能等决定),由凸透镜成像公式可知,在f不变的情况下,v和u的变化呈现相反的变化趋势,即u增加,则v减小,u减小,则v增加。
而由于微距拍摄是一种近距离拍摄以得到放大的景物的图像的拍摄方式,即在摄像模组的图像感应元件上得到的拍摄景物的像,相较于拍摄景物的放大倍数应该大于等于一。
因而,在进行微距拍摄时,为了在取景器中看到拍摄景物的清晰的像,需要通过调整 像距以及物距的大小,使得物距u即拍摄景物距离镜头的距离大于一倍的焦距,小于两倍的焦距,且物距和像距的大小尽量满足上述凸透镜成像公式,该调整像距以及物距的以在取景器中看到拍摄景物的清晰的像的过程,也可称为对焦。
具体地,在本申请实施例的微距拍摄处理方法中,可通过获取对焦请求,确定是否调整摄像模组的物距或者像距以适应当前拍摄场景。
S120,判断马达行程是否已达到极限位置。
S130,若是,则利用微机电系统控制摄像模组移动进行对焦。
通常,在使用摄像模组进行微距拍摄时,如果镜头距离拍摄的景物的距离u较近,则为了便于对拍摄景物聚焦,可通过摄像模组中的马达控制镜头向拍摄方向相反的方向缩短,以增加u的大小。
但是,由于摄像模组空间的限制等,摄像模组中的马达控制镜头向后缩的距离是有限的,比如仅仅可以控制镜头向拍摄方向相反的方向缩短的距离为6mm等,因而,在镜头距离拍摄的距离非常接近,即使控制镜头向拍摄方向相反的方向缩短至马达的行程极限,镜头距离拍摄景物的距离仍然较小。
也就是说,此时u的值较小,如果能够对拍摄景物进行对焦,v的值必须相对较大,而此时摄像模组和镜头之间的距离显然不能满足摄像模组拍摄景物的对焦条件。
为了解决上述问题,本申请实施例的微距拍摄处理方法,引入微机电系统(micro electro-mechanical system,MEMS),在马达行程达到极限位置时,可通过该微机电系统控制摄像模组移动,以实现对拍摄景物的对焦,完成对拍摄景物的微距拍摄。
其中,微机电系统是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制造的高科技电子机械器件。
如图3所示,MEMS包括固定电极122、活动电极124及可形变连接件126。活动电极124与固定电极122配合。连接件126固定连接固定电极122及活动电极124。固定电极122及活动电极124用于在驱动电压的作用下产生静电力。连接件126用于在静电力的作用下沿活动电极124移动的方向形变以允许活动电极124移动从而带动摄像模组进行移动。
其中,需要说明的是,根据具体应用需求的不同,上述MEMS控制摄像模组每次移动的步长等,可由系统根据大量实验数据进行标定,也可由用户根据需求自行设置等。且MEMS较为灵敏,灵活性高,其控制摄像模组移动的效率相较于马达控制镜头移动的效率更高,速度更快。
具体地,可在获取对焦请求后,判断马达行程是否达到极限位置,比如,可以在马达 形成的极限位置设置一传感器,当该传感器检测到马达达到该位置时,可发出马达行程达到极限位置的警示。
进而,可以理解,由于马达行程的已经达到极限位置,因此不能控制镜头的位置进一步向拍摄方向相反的方向移动,从而可以通过微机电系统将摄像模组向拍摄方向相反的方向移动,即通过增加v的大小,以扩大摄像模组的对焦范围,使摄像模组可以对较大的范围内的拍摄景物进行对焦。
举例而言,如图4所示,当获取对焦请求时,如果判断马达行程已经达到极限位置A点,则微机电系统可以控制摄像模组中的图像感应元件进行移动,从而当微机电系统控制图像感应元件从A点到B点之间移动时,v的大小的增加了,根据凸透镜成像规律,u的大小也增加了,从而扩大了摄像模组的对焦范围,提高了微距拍摄的灵活性。
综上所述,本申请实施例的微距拍摄处理方法,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
基于以上实施例,需要说明的是,根据具体应用需求的不同,可采取的不同的方式获取对焦请求:
第一种示例,可以通过用户对终端设备中的对焦按钮等的触发操作,获取其因触发操作发起的对焦请求。
第二种示例,可以在确定当前采集的画面不满足预设的要求时,由摄像模组自身的处理器等自动触发对焦请求。
为了更加全面的说明本申请实施例的微距拍摄处理方法,下面以获取对焦请求的方式为以上第二种示例示出的方式为例,举例说明本申请实施例的微距拍摄处理方法:
图5是根据本申请另一个实施例的微距拍摄处理方法的流程图,如图5所示,该方法包括:
S510,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
具体地,在从取景器中看到当前采集的画面质量不好,比如图像模糊时,则表明当前摄像模组的对焦不合适,因此触发对焦请求。
S520,判断马达行程是否已达到极限位置。
S530,若是,确定当前拍摄模式为微距拍摄模式。
S540,利用微机电系统控制摄像模组移动进行对焦。
具体地,由于在非微距拍摄处理场景下,拍摄景物距离镜头较远,即u较大,而微机电控制拍摄模组的移动距离的范围较小,即v的变化范围很小,因此,在非微距拍摄处理 场景下,使用微机电系统控制摄像模组移动进行对焦的意义不大。
而在微距拍摄场景下,拍摄景物距离镜头的距离u处于一倍焦距到两倍焦距之间的较小值域内,即使稍调整下图像传感元件和镜头之间的距离v,比如控制图像传感元件向拍摄方向相反的方向移动微小的距离,都可以使得对焦范围增加明显。
举例说明,如图6(a)所示,对焦距为f的摄像模组,摄像模组距离镜头的距离即像距为L1时,根据凸透镜成像公式可知,其可以对距离镜头距离为
Figure PCTCN2017085204-appb-000002
的物体进行清晰成像,当拍摄景物距离镜头距离小于
Figure PCTCN2017085204-appb-000003
时,则无法对焦,或者对焦不准。
当向拍摄方向的相反方向移动传感器时,摄像模组距离镜头的距离即像距增大为L2,根据凸透镜成像公式可知,其可以对距离镜头距离为
Figure PCTCN2017085204-appb-000004
的物体进行清晰成像,当拍摄景物距离镜头距离小于
Figure PCTCN2017085204-appb-000005
时,则无法对焦,或者对焦不准。
而将
Figure PCTCN2017085204-appb-000006
相比,得到的值为
Figure PCTCN2017085204-appb-000008
由于L1小于L2,因
Figure PCTCN2017085204-appb-000009
大于1,即控制图像传感元件向拍摄方向相反的方向移动L2-L1的距离,使得其可在使得镜头在
Figure PCTCN2017085204-appb-000010
Figure PCTCN2017085204-appb-000011
的范围内,仍然可以准确对焦,且这个增加的范围对于一倍到两倍的焦距的值域范围来讲是很明显的,因而本申请微距拍摄处理方法对微距拍摄,具有很高的可行性。
因而,为了增加本申请实施例的微距拍摄方法的实用性,需要确定当前拍摄模式为微距拍摄模式,在当前拍摄模式为微距拍摄时,利用微机电系统控制摄像模组移动进行对焦。
综上所述,本申请实施例的微距拍摄处理方法,在获取对焦请求并确定马达行程到达极限位置后,首先确定当前是否是微距拍摄场景,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性,提高了微机电系统的实用性。
为了实现上述实施例,本申请还提出了一种微距拍摄处理装置,图7是根据本申请一个实施例的微距拍摄处理装置的结构示意图,如图7所示,该微距拍摄处理装置包括获取 模块110、判断模块120和对焦模块130。
其中,获取模块110,用于获取对焦请求。
具体地,在本申请实施例的微距拍摄处理方法中,获取模块10可通过获取对焦请求,确定是否调整摄像模组的物距或者像距以适应当前拍摄场景。
判断模块120,用于判断马达行程是否已达到极限位置。
对焦模块130,用于在马达行程已达到极限位置时,利用微机电系统控制摄像模组移动进行对焦。
具体地,判断模块120可在获取模块110获取对焦请求后,判断马达行程是否达到极限位置,比如,可以在马达形成的极限位置设置一传感器,当该传感器检测到马达达到该位置时,判断模块120可通过有无发出马达行程达到极限位置的警示,判断马达行程是否达到极限位置。
进而,可以理解,由于马达行程的已经达到极限位置,因此不能控制镜头的位置进一步向拍摄方向相反的方向移动,从而对焦模块130可以通过微机电系统将摄像模组向拍摄方向相反的方向移动,以扩大摄像模组的对焦范围,使摄像模组可以对较大的范围内的拍摄景物进行对焦。
需要说明的是,前述对微距拍摄处理方法实施例的描述,也适用于本申请实施例的微距拍摄处理装置,其实现原理类似,在此不再赘述。
综上所述,本申请实施例的微距拍摄处理装置,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
基于以上实施例,需要说明的是,根据具体应用需求的不同,获取模块110可采取的不同的方式获取对焦请求:
第一种示例,获取模块110可以通过用户对终端设备中的对焦按钮等的触发操作,获取其因触发操作发起的对焦请求。
第二种示例,获取模块110可以在确定当前采集的画面不满足预设的要求时,由摄像模组自身的处理器等自动触发对焦请求。
为了更加全面的说明本申请实施例的微距拍摄处理方法,下面以获取模块110获取对焦请求的方式为以上第二种示例示出的方式为例,举例说明本申请实施例的微距拍摄处理装置:
具体地,在从取景器中看到当前采集的画面质量不好,比如图像模糊时,则表明当前摄像模组的对焦不合适,因此获取模块110获取触发对焦请求。
进而,图8是根据本申请另一个实施例的微距拍摄处理装置的结构示意图,如图8所示,在如图7所示的基础上,该微距拍摄处理装置还可包括:
确定模块140,用于确定当前拍摄模式为微距拍摄模式。
为了增加本申请实施例的微距拍摄方法的实用性,需要确定模块140确定当前拍摄模式为微距拍摄模式,在当前拍摄模式为微距拍摄时,对焦模块130利用微机电系统控制摄像模组移动进行对焦。
需要说明的是,前述对微距拍摄处理方法实施例的描述,也适用于本申请实施例的微距拍摄处理装置,其实现原理类似,在此不再赘述。
综上所述,本申请实施例的微距拍摄处理装置,在获取对焦请求并确定马达行程到达极限位置后,首先确定当前是否是微距拍摄场景,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性,提高了微机电系统的实用性。
为了实现上述实施例,本申请还提出了一种终端设备,图9是根据本申请一个实施例的终端设备的结构示意图,如图9所示,该终端设备包括微距拍摄处理装置100。
需要说明的是,前述对微距拍摄处理装置实施例的描述,也适用于本申请实施例的微距拍摄处理装置100,其实现原理类似,在此不再赘述。
综上所述,本申请实施例的终端设备,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
为了实现上述实施例,本申请还提出了另一种终端设备,图10是根据本申请另一个实施例的终端设备的结构示意图,如图10所示,该终端设备1000包括:壳体1100和位于壳体1100内的摄像模组1111、微机电系统1112、马达1113、存储器1114和处理器1115。
其中,微机电系统1112控制摄像模组1111移动;处理器1115通过读取存储器1114中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行以下步骤:
获取对焦请求。
判断马达1113行程是否已达到极限位置。
若是,则利用微机电系统1112控制摄像模组1111移动进行对焦。
需要说明的是,前述对微距拍摄处理方法实施例的描述,也适用于本申请实施例的微距拍摄处理装置1000,其实现原理类似,在此不再赘述。
综上所述,本申请实施例的终端设备,获取对焦请求,判断马达行程是否已达到极限位置,若是,则利用微机电系统控制摄像模组移动进行对焦。由此,通过微机电系统控制 摄像模组移动对焦,扩大了对焦范围,提高了微距拍摄的灵活性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种微距拍摄处理方法,其特征在于,包括以下步骤:
    获取对焦请求;
    判断马达行程是否已达到极限位置;
    若是,则利用微机电系统控制摄像模组移动进行对焦。
  2. 如权利要求1所述的方法,其特征在于,所述利用微机电系统控制摄像模组移动进行对焦之前,还包括:
    确定当前拍摄模式为微距拍摄模式。
  3. 如权利要求1或2所述的方法,其特征在于,所述利用微机电系统控制摄像模组移动进行对焦,包括:
    利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述获取对焦请求,包括:
    获取用户通过终端设备中的对焦按钮,触发的对焦请求;
    或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
  5. 一种微距拍摄处理装置,其特征在于,包括:
    获取模块,用于获取对焦请求;
    判断模块,用于判断马达行程是否已达到极限位置;
    对焦模块,用于在马达行程已达到极限位置时,利用微机电系统控制摄像模组移动进行对焦。
  6. 如权利要求5所述的装置,其特征在于,还包括:
    确定模块,用于确定当前拍摄模式为微距拍摄模式。
  7. 如权利要求5或6所述的装置,其特征在于,所述对焦模块用于:
    利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
  8. 如权利要求5-7任一所述的装置,其特征在于,所述获取模块,具体用于:
    获取用户通过终端设备中的对焦按钮,触发的对焦请求;
    或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
  9. 一种终端设备,其特征在于,包括一种微距拍摄处理装置,其中,所述微距拍摄处理装置包括:
    获取模块,用于获取对焦请求;
    判断模块,用于判断马达行程是否已达到极限位置;
    对焦模块,用于在马达行程已达到极限位置时,利用微机电系统控制摄像模组移动进行对焦。
  10. 如权利要求9所述的终端设备,其特征在于,所述微距拍摄处理装置还包括:
    确定模块,用于确定当前拍摄模式为微距拍摄模式。
  11. 如权利要求9或10所述的终端设备,其特征在于,所述对焦模块用于:
    利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
  12. 如权利要求9-11任一所述的终端设备,其特征在于,所述获取模块,具体用于:
    获取用户通过终端设备中的对焦按钮,触发的对焦请求;
    或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
  13. 一种终端设备,其特征在于,包括以下一个或多个组件:壳体和位于所述壳体内的处理器、存储器、摄像模组、微机电系统和马达,其中,所述微机电系统控制所述摄像模组移动;所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行以下步骤:
    获取对焦请求;
    判断马达行程是否已达到极限位置;
    若是,则利用微机电系统控制摄像模组移动进行对焦。
  14. 如权利要求13所述的终端设备,其特征在于,所述处理器还用于:
    确定当前拍摄模式为微距拍摄模式。
  15. 如权利要求13或14所述的终端设备,其特征在于,所述处理器还用于:
    利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
  16. 如权利要求13-15任一所述的终端设备,其特征在于,所述处理器获取对焦请求,包括:
    获取用户通过终端设备中的对焦按钮,触发的对焦请求;
    或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
  17. 一种非易失性计算机存储介质,其特征在于,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行以下步骤:
    获取对焦请求;
    判断马达行程是否已达到极限位置;
    若是,则利用微机电系统控制摄像模组移动进行对焦。
  18. 如权利要求17所述的非易失性计算机存储介质,其特征在于,所述设备还用于:
    确定当前拍摄模式为微距拍摄模式。
  19. 如权利要求17所述的非易失性计算机存储介质,其特征在于,所述设备还用于:
    利用微机电系统控制摄像模组向拍摄方向的相反方向移动,以扩大对焦范围。
  20. 如权利要求17-19任一所述的非易失性计算机存储介质,其特征在于,所述设备获取对焦请求,包括:
    获取用户通过终端设备中的对焦按钮,触发的对焦请求;
    或者,在确定镜头当前采集的画面不满足预设的要求时,触发对焦请求。
PCT/CN2017/085204 2016-07-29 2017-05-19 微距拍摄处理方法、装置和终端设备 WO2018019011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610615861.X 2016-07-29
CN201610615861.XA CN106254768B (zh) 2016-07-29 2016-07-29 微距拍摄处理方法、装置和终端设备

Publications (1)

Publication Number Publication Date
WO2018019011A1 true WO2018019011A1 (zh) 2018-02-01

Family

ID=57606009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085204 WO2018019011A1 (zh) 2016-07-29 2017-05-19 微距拍摄处理方法、装置和终端设备

Country Status (2)

Country Link
CN (1) CN106254768B (zh)
WO (1) WO2018019011A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254768B (zh) * 2016-07-29 2018-05-22 广东欧珀移动通信有限公司 微距拍摄处理方法、装置和终端设备
CN109151307A (zh) * 2018-08-27 2019-01-04 惠州Tcl移动通信有限公司 一种用于解决拍照界面模糊的方法、存储介质及移动终端
CN113472977B (zh) 2018-10-16 2024-05-14 华为技术有限公司 微距成像的方法及终端
CN110351405A (zh) * 2019-07-03 2019-10-18 肯维捷斯(武汉)科技有限公司 一种具有微观成像功能的移动通讯设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525053A (en) * 1982-05-10 1985-06-25 Nippon Kogaku K.K. Motor-drivable photographing lens assembly
CN1570689A (zh) * 2003-07-15 2005-01-26 葛大庆 一体化变焦镜头
CN1690833A (zh) * 2004-04-20 2005-11-02 鸿富锦精密工业(深圳)有限公司 数码相机的自动对焦方法
US20080158372A1 (en) * 2006-12-27 2008-07-03 Palum Russell J Anti-aliasing in an imaging device using an image stabilization system
CN104170366A (zh) * 2012-03-16 2014-11-26 株式会社理光 成像设备和图像处理方法
CN106254768A (zh) * 2016-07-29 2016-12-21 广东欧珀移动通信有限公司 微距拍摄处理方法、装置和终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081287B (zh) * 2009-11-30 2012-06-27 亚洲光学股份有限公司 投影装置
EP2946547B1 (en) * 2012-12-31 2019-03-27 DigitalOptics Corporation Auto-focus camera module with mems closed loop compensator
US9578217B2 (en) * 2014-05-27 2017-02-21 Mems Drive, Inc. Moving image sensor package
CN105022204B (zh) * 2015-08-07 2017-10-31 深圳市世尊科技有限公司 一种移动终端用摄像头模组和移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525053A (en) * 1982-05-10 1985-06-25 Nippon Kogaku K.K. Motor-drivable photographing lens assembly
CN1570689A (zh) * 2003-07-15 2005-01-26 葛大庆 一体化变焦镜头
CN1690833A (zh) * 2004-04-20 2005-11-02 鸿富锦精密工业(深圳)有限公司 数码相机的自动对焦方法
US20080158372A1 (en) * 2006-12-27 2008-07-03 Palum Russell J Anti-aliasing in an imaging device using an image stabilization system
CN104170366A (zh) * 2012-03-16 2014-11-26 株式会社理光 成像设备和图像处理方法
CN106254768A (zh) * 2016-07-29 2016-12-21 广东欧珀移动通信有限公司 微距拍摄处理方法、装置和终端设备

Also Published As

Publication number Publication date
CN106254768B (zh) 2018-05-22
CN106254768A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018019011A1 (zh) 微距拍摄处理方法、装置和终端设备
JP6147347B2 (ja) 撮像装置
EP3318054B1 (en) Systems and methods for autofocus trigger
CN107257934B (zh) 用于深度辅助式自动聚焦的搜索范围扩展
JP4679349B2 (ja) 撮像装置及びレンズの移動制御方法
WO2018018930A1 (zh) 图像变焦处理方法、装置及终端设备
WO2018018929A1 (zh) 图像暗角补偿方法、装置和终端设备
JP6027308B2 (ja) 撮影装置およびその制御方法
CN112752026A (zh) 自动对焦方法、装置、电子设备和计算机可读存储介质
EP2357793A1 (en) Method and apparatus for auto-focus control of digital camera
WO2015062215A1 (zh) 图像获取的装置及方法
WO2018019012A1 (zh) 全景拍照时的处理方法、装置和移动终端
CN107076959B (zh) 控制聚焦透镜组装件
US8737831B2 (en) Digital photographing apparatus and method that apply high-speed multi-autofocusing (AF)
JP2011239131A (ja) 撮像装置
WO2018019020A1 (zh) 控制方法、装置及移动终端
JP2013130761A (ja) 撮像装置、その制御方法およびプログラム
JP2013130762A (ja) 撮像装置、その制御方法およびプログラム
JP2015212746A (ja) ズームトラッキング制御装置、ズームトラッキング制御プログラム、光学機器および撮像装置
JP2008249966A (ja) オートフォーカス装置及びカメラ
JP2009015147A (ja) フォーカスリミッタを有するレンズ装置
JP2013061584A (ja) 光学機器
JP2007240832A (ja) 自動合焦点装置
JP2011064988A (ja) 撮像装置およびレンズ装置
JP2019219529A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833316

Country of ref document: EP

Kind code of ref document: A1