WO2018018868A1 - 无标题 - Google Patents

无标题 Download PDF

Info

Publication number
WO2018018868A1
WO2018018868A1 PCT/CN2017/072732 CN2017072732W WO2018018868A1 WO 2018018868 A1 WO2018018868 A1 WO 2018018868A1 CN 2017072732 W CN2017072732 W CN 2017072732W WO 2018018868 A1 WO2018018868 A1 WO 2018018868A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
motor
gear
driving
hub
Prior art date
Application number
PCT/CN2017/072732
Other languages
English (en)
French (fr)
Inventor
何国刚
Original Assignee
中冶京诚(湘潭)矿山装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶京诚(湘潭)矿山装备有限公司 filed Critical 中冶京诚(湘潭)矿山装备有限公司
Publication of WO2018018868A1 publication Critical patent/WO2018018868A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing

Definitions

  • the present invention relates to a traveling device for a motor vehicle, and more particularly to a traveling device for a dump truck. Background technique
  • 0HV off-highway vehicles
  • This efficiency is typically achieved by the use of a high horsepower diesel engine in combination with an alternator, a main traction inverter, and a pair of wheel drive assemblies housed in the rear tire of the vehicle.
  • the diesel engine is directly related to the alternator, which causes the diesel engine to drive the alternator.
  • the alternator powers the main traction inverter that supplies power to the drive electric motor of the two wheel drive assemblies with a controlled voltage and frequency.
  • Each wheel drive assembly houses a planetary gear member that converts the rotational energy of the associated drive motor into a high torque, low speed rotational energy output that is supplied to the rear wheel.
  • the main shaft is inserted into the inner peripheral side of the wheel on which the tire is mounted.
  • a wheel bearing is provided between the outer peripheral surface of the main shaft and the inner peripheral surface of the wheel, whereby the wheel is rotatable around the main shaft.
  • the motor is located on the axial one end side of the main shaft.
  • the rotating shaft is coupled to the output shaft in such a manner as to rotate integrally with the output shaft of the motor.
  • the rotating shaft is inserted into the inner peripheral side of the spindle and protrudes from the other end of the spindle in the axial direction.
  • the reducer is located on the other end side of the spindle.
  • the rotary shaft is coupled to the reducer in such a manner that the output of the motor can be transmitted to the reducer.
  • the output side of the reducer is driveably coupled to the wheel. That is, the wheel and the tire are rotated together by sequentially transmitting the output of the motor to the rotating shaft, the reducer, and the wheel.
  • the center of gravity deviates from the axis due to variations in the manufacturing of the rotating shaft, etc., and centrifugal force acts on the rotating shaft in rotation.
  • the number of revolutions per unit time at which the rotating shaft is destroyed by the centrifugal force is called a dangerous speed.
  • a technique has been adopted in which the dangerous rotational speed is set sufficiently higher than the rotational speed used by the traveling device, that is, the technique in which the rotating shaft is not broken by the centrifugal force accompanying the used rotational speed, so that the supporting bearing is interposed at the other end of the main shaft.
  • the rotating shaft is supported between the portion (the end on the reduction gear side) and the rotating shaft and at a position between the motor and the speed reducer.
  • the support bearing is embedded in a retainer mounted on the other end of the mandrel.
  • Patent Document 1 U.S. Patent Application Publication No. 2004/0065169;
  • Patent Document 2 U.S. Patent Application Publication No. 2005/0059523.
  • the reduction gear has a planetary gear mechanism on the input side (hereinafter referred to as “first planetary gear mechanism”) and a planetary gear mechanism on the output side (hereinafter referred to as “second planetary gear mechanism”),
  • the star gear mechanism includes a sun gear coupled to the rotating shaft, the second planetary gear mechanism transmitting power transmitted from the first planetary gear mechanism to the wheel.
  • the first sun gear rotates together with the rotating shaft.
  • the rotation of the first sun gear is transmitted to the first planetary gear. Since the first carrier supporting the first planetary gear is non-rotatably fixed with respect to the wheel, the three first planetary gears revolve around the first sun gear and rotate on one side with the rotation of the wheel, and rotate the first sun gear. Passed to the first ring gear. As a result, the first ring gear rotates.
  • the second sun gear rotates together with the first ring gear and the coupling.
  • the rotation of the second sun gear is transmitted to the three second planetary gears. Since the second carrier supporting the second planetary gears is non-rotatably coupled to the spindle, the second planetary gear rotates without revolving around the second sun gear, and the rotation of the second sun gear is transmitted to the second ring gear. Since the second ring gear is integrally fixed with respect to the wheel and the first carrier, it rotates together with the wheels and the first carrier (refer to Patent Documents 1 and 2). Since the power is input from the sun gear and output from the outer ring gear, the carrier is locked by the mechanism. Therefore, the transmitted torque is transmitted between the meshed gears, and the large torque cannot be transmitted, and the transmission efficiency is not high. Considering the need to support the load of a large load corresponding to a large dump truck for mines, the life of the gear unit in the reducer is short, which directly affects the working efficiency of the entire vehicle.
  • the hub that carries a large torque for a long time needs to be fastened by multiple components.
  • the tightness of the assembly directly affects the reliability of the vehicle.
  • this also constitutes a structure that requires further improvement of the driving device for a motor vehicle, and is particularly suitable for a mining dump truck that carries a large torque for a long period of time to solve the problem.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a driving device for a dump truck, wherein the rotational torque of the motor is increased and twisted by a multi-stage deceleration of the reducer, and the outer ring gear is input from the sun gear. Locked, output from the planet carrier, can transmit large torque to the integrally formed hub to drive the wheel to rotate.
  • a driving travel apparatus comprising a main shaft fixed to a body of the motor vehicle and co-moving with the vehicle body; a motor disposed at one end of the main shaft Side, and fixedly connected with the main shaft; and connected to a motor output shaft, the motor output shaft is built in the main shaft; the deceleration portion includes a deceleration input shaft and a reduction gear set, and the deceleration input shaft is coaxially connected with the motor output shaft, and The deceleration input shaft is disposed along the central axis of the main shaft and is movably connected to the reduction gear set in the main shaft.
  • the reduction gear set is disposed on the other end side of the main shaft, and the deceleration portion is configured to be driven to reduce the transmission to the hub of the motor vehicle after being driven by the motor, thereby
  • the deceleration drive is completed;
  • the hub is integrally formed and sleeved outside the main shaft, and rotates around the central axis of the main shaft, and then drives the wheel to rotate;
  • the brake is interposed between the main shaft and the hub, and one end is fixedly connected with the main shaft to form a static of the brake.
  • the other end is movably connected to the hub and rotates with the hub;
  • the rotating shaft provided by the body transmits the electric rotating motion to the reducer, and is transmitted to the integrally formed hub through the reducer, thereby driving the hub to rotate around the main shaft, and driving the left and right rear wheels fixed thereto, thereby driving
  • the driving of the unloading truck is different from the driving device of the prior art, and the hub of the driving device of the invention is integrally formed, which greatly improves the bearing capacity in the rotating motion of the motor and improves the power of the entire driving device.
  • the output increases the bearing capacity of the working vehicle and achieves a breakthrough in the carrying capacity of large trucks.
  • the decelerating input shaft is integrally formed, including the first rotating shaft and the second rotating shaft having different outer diameters, the first rotating shaft and The second axis of rotation is connected in series and coaxially.
  • the deceleration input shaft is rigidly connected to the motor output shaft through a coupling, the first rotating shaft is coupled to the coupling, and the second rotating shaft is oriented away from the main shaft axis.
  • the direction of the shaft extends, and the outer diameter of the second rotating shaft is larger than the outer diameter of the first rotating shaft.
  • the hub is sleeved on the outer side of the main shaft, and is sleeved between the speed reducing portion and the motor.
  • One end of the motor is rotatably fixed to the outer peripheral surface of the main shaft through a bearing, and the other end of the motor is far away from the motor to accommodate the deceleration.
  • the inner cavity of the part is connected to the deceleration part.
  • the hub comprises a hub outer ring and a hub connector
  • the outer ring of the hub is rotatably fixed to the outer peripheral surface of the main shaft by a bearing
  • the other end of the motor is connected to the reducer by bolts
  • the hub connector is clamped to
  • the outer ring of the hub is fastened by bolts
  • the second planet carrier is integrally fastened with the outer ring of the hub by bolts, and driven by the second planetary carrier, the hub connection is driven.
  • the units rotate together with respect to the main shaft, thereby converting the rotational motion of the motor into a rotational motion of the hub relative to the main shaft.
  • the heat generated during the transmission process is reduced, and further comprising a cooling assembly for supplying lubricating oil to the main shaft and the speed reducing portion, the cooling assembly comprising the oil suction pipe, the oil return pipe, and the first cavity
  • the cooling assembly comprising the oil suction pipe, the oil return pipe, and the first cavity
  • the oil suction pipe and the oil return pipe extend deep inside the main shaft and communicate with the inner cavity
  • the oil suction pipe and the oil return pipe are symmetrically distributed on both sides of the spindle axis
  • the first cavity and The second cavity is composed of a gap collet between the gears of the internal gear of the reducer;
  • the first cavity and the second cavity are fixedly connected and fixed to communicate with the oil suction pipe;
  • the third cavity is surrounded by the spindle hub and the brake And communicating with the second cavity and the oil return pipe; further, the first cavity and the second cavity are jointly enclosed by the first ring gear, the fixed gear plate, and the second planet carrier.
  • the first cavity and the second cavity communicated with each other through the gap between the meshing gears, after being aggregated through the third cavity, enter the oil return pipe, thereby forming a closed Cooling circuit.
  • a hydraulic pump for supplying pressure to the lubricating oil is further included, and the lubricating oil pressurized by the hydraulic pump is kept in communication with the inlet pipe.
  • a sensor for monitoring the temperature of the deceleration portion is provided inside the deceleration portion, and the sensor is electrically connected to a control system for controlling the cooling circuit of the entire vehicle.
  • the brake is a wet brake.
  • the brake comprises a brake fixing seat and a piston, and a friction plate interposed between the brake fixing seat and the piston.
  • the brake fixing seat is integrally connected with the wheel hub by bolts, and the piston and the main shaft are relatively movable along the axial direction of the main shaft. fixed.
  • the friction plate is made of at least one layer of paper-based friction material and at least one steel sheet base body, thereby obtaining a high friction coefficient, a close dynamic/static friction coefficient, a strong transmission torque capability, a soft combination, and low noise. Friction plate.
  • the friction plate comprises at least one movable friction plate and at least one fixed friction plate which are sequentially staggered, and the two sides of the movable friction plate and the fixed friction plate are provided with friction particles with high friction coefficient, and the movable friction plate and the fixed friction plate are fixed.
  • the friction plates are spaced apart and can be adjusted during relative rotation.
  • the movable friction plate is integrally connected with the brake fixing seat, and the fixed friction plate is integrally connected with the piston, so that the displacement between the movable friction plate and the fixed friction plate which are sequentially arranged alternately is fixed under the driving of the piston.
  • the distance between the driving piston, the fixed friction plate and the movable friction plate is reduced, and the frictional resistance between each other
  • the increase is such that the resistance between the relatively rotating fixed friction plate and the movable friction plate is increased, so that the resistance of the rotation of the hub integrated with the movable friction plate by the hub connector is increased, and the rotation speed of the hub is controlled.
  • the reduction gear set includes a first planetary gear mechanism and a second planetary gear mechanism, the first planetary gear mechanism and the second planetary gear mechanism are oriented in a radial direction of the main shaft away from the main shaft, according to the first planetary gear mechanism and The sequential configuration of the two planetary gear mechanisms.
  • the first planetary gear mechanism and the second planetary gear mechanism are in the axial direction of the main shaft, away from the direction of the motor, according to the A sequential arrangement of a planetary gear mechanism and a second planetary gear mechanism.
  • the output shaft of the motor is coaxially connected with the deceleration input shaft, the deceleration input shaft is disposed away from the other end of the motor and coaxially engaged with the first planetary gear mechanism, and the first planetary gear mechanism and the second planetary gear mechanism are coaxial Engagement connection, whereby the rotational movement of the motor output shaft drives the rotation of the first planetary gear mechanism through the meshing movement of the deceleration input shaft and the rotation of the first planetary gear mechanism, through the gear between the first planetary gear mechanism and the second planetary gear mechanism
  • the engaging drive of the group drives the rotation of the second planetary gear mechanism to rotate the traveling mechanism connected to the second planetary gear mechanism to output the rotational power of the motor to the rim, thereby driving the rotation thereof.
  • the first planetary gear mechanism comprises: a first sun gear, a first planetary gear, a bearing, a first planetary carrier, a first ring gear, wherein the first sun gear is coaxial with the second rotating shaft of the deceleration input shaft
  • the first planetary gear is interposed between the first sun gear and the first ring gear and meshes with the first planetary gear;
  • the first planetary carrier is integrally coupled with the first planetary gear through the bearing; the first ring gear Fastened to the main shaft by bolts.
  • the first planetary carrier comprises a stud, a connecting plate and a convex surface
  • the connecting plate is integrally fastened with the convex surface by a bolt
  • the convex surface is away from the other side of the fixed side of the connecting plate, along the axis direction of the main shaft, and away from The direction of the motor, the end side of the motor extends to protrude.
  • the convexly extending convex end is machined with an internal spline; further, the inner peripheral side of the convex end adjacent to the convex end of the main shaft is machined with internal splines.
  • the first ring gear comprises a first ring gear, a second ring gear, a fixed gear plate and a bolt, wherein the first ring gear and the second ring gear are in the axial direction of the main shaft, away from the direction of the motor, according to
  • the first ring gear and the second ring gear are sequentially arranged and coaxially connected integrally; one end of the fixed gear plate is non-rotatably fixed on the inner peripheral side of the main shaft, and the opposite end is fastened by bolts and a first ring gear.
  • the primary ring gear and the secondary ring gear are integrally formed.
  • the first ring gear further includes a pin shaft and a flange bolt for fixing the first ring gear, and the flange bolt is fastened through the first ring gear On the inner peripheral side of the main shaft.
  • the fixed gear plate in order to securely integrate the primary ring gear with the main shaft, includes a small end face and a large end face having different inner diameters, and the small end face of the fixed gear plate and the end side of the main shaft are tightly tightened by flange bolts.
  • the large end face of the pin extending through the fixed gear plate is fastened integrally with the first ring gear.
  • the second planetary gear mechanism comprises: a second sun gear, a second planetary gear, a bearing, a second planet carrier, a second planet carrier, wherein the first sun gear and the second sun gear are in the axial direction of the main shaft a direction away from the main shaft, arranged in the order of the first sun gear and the second sun gear, and arranged coaxially; the second planetary gear is interposed between the second sun gear and the first ring gear, and respectively meshed with The second planet carrier is integrally connected to the second planet gear via a bearing; the second planet carrier is integrally fastened with the second planet carrier and the hub by bolts.
  • the second planetary gears are evenly distributed in the ring gear of the first planetary gear mechanism, meshed with the gears, and in a radial direction of the main shaft toward the direction away from the main shaft, according to the second sun gear and the second planetary gears Order configuration.
  • the second planet carrier is fixed to the end side of the second sun gear remote from the main shaft.
  • the second planet carrier secures the bearing, the second planet gear and the second planet carrier in one piece by a stud extending through the interior thereof, the second planet carrier being bolted to the hub.
  • the second planetary gears are four, evenly distributed around the second sun gear, and the inner surface is meshed with the second sun gear by the bearing, and the outer surface of the machined tooth meshes with the inner ring gear of the first planetary gear mechanism. rotation.
  • the second planetary gear includes a cylindrical portion and a cylindrical projection connected in series, and the cylindrical projection is connected to the first-stage sun planetary gear through the shoulder; further, the cylindrical projection and the inner portion of the first planetary carrier The spline engages the drive, and further, the cylindrical face and the cylindrical projection are disposed coaxially to avoid shear stress generated by the torque during transfer.
  • a thruster end cover connected to the second planet carrier is further included, and the thruster end cover is fastened integrally with the second planet carrier by bolts; further, the thruster end cover is A cavity is provided for storing the cooling oil.
  • a thrust copper pad is mounted between the second sun gear and the thruster end cover, and the thrust copper pad is clamped to the second sun gear and the thrust end cover Between, moving along the axis of the second sun gear, the movable thrust pad prevents the axial rotation of the rotating shaft during the high torque transmission from interfering with the rotation of the thruster end cap.
  • a bridge base interposed between the motor and the main shaft and connected thereto is further included.
  • the bridge base is four, and the circumferential direction of the output shaft of the motor is evenly distributed, and further, the bridge base is integrally provided with the main shaft.
  • the utility model further comprises a rim sleeved on the hub, coaxially connected thereto, and integrally connected, the rim comprises an outer rim, a rim spacer and an inner rim, wherein the outer rim and the inner rim are respectively fastened with the rear wheel, Arranged along the axial direction of the main shaft; the rim spacer is sandwiched between the outer rim and the inner rim; in the axial direction of the main shaft, away from the direction of the motor, the inner rim, the rim spacer and the outer rim are sequentially abutted.
  • the hub in order to better secure the rim to the hub, it also includes a slanting iron that is integrally fastened to the main shaft.
  • the thickness of the oblique iron is gradually reduced between the rim and the hub, extending toward the direction of the motor, by setting the inclined iron with decreasing thickness, in the oblique iron and the main shaft Simultaneously, the oblique iron is forcibly squeezed to the gap between the rim and the hub, and the rim is further fastened to the hub, which ensures the connection between the hub and the rim is good, effectively avoiding driving.
  • a motor vehicle including a vehicle body and a vehicle body mounted on the vehicle body, a driving traveling device, and a rear wheel and a motor coupled to the vehicle body
  • the driving driving device is the above Drive the device.
  • the utility model further comprises a rear suspension oil cylinder interposed between the driving driving device and the vehicle body, and the two ends of the rear suspension oil cylinder are respectively movable and fixed to the driving driving device and the vehicle.
  • the direction of the bearing force is automatically adjusted, and the two ends of the rear suspension cylinder are respectively driven to drive the vehicle and the vehicle body Hinged.
  • the rear suspension cylinder comprises a piston rod and a cylinder body, one end of the piston rod is sleeved in the inner cavity of the cylinder body, and the opposite end is disposed opposite to the cylinder body;
  • the piston rod comprises a welded rod and a plug
  • the head, the plug rod and the plug head are integrally formed by forging;
  • the cylinder body comprises a cylinder tube and an end cover which are integrally connected, and the cylinder tube and the end cover are integrally connected by welding, and the cylinder tube and the end cover are integrally formed.
  • the integral; the plug rod, the plug, the cylinder, and the end cap are integrally formed by forging, and the residual defects caused by the welding process are avoided, and the residual due to the multi-pass welding is also eliminated.
  • the stress thus, improves the overall quality of the rear suspension cylinder, which greatly increases the safety margin, prolongs the service life of the rear suspension cylinder, reduces product safety and reduces customer maintenance costs.
  • An object of the present invention is to provide a travel drive device for a dump truck, which transmits an electric rotary motion to a reducer through a rotary shaft integrally provided with a motor output shaft, and transmits the rotary motion to the integrally formed hub through the reducer, thereby
  • the driving hub rotates around the main shaft to drive the left and right rear wheels fixed thereto, thereby driving the dump truck.
  • the hub of the driving device of the present invention is integrated. Molding greatly improves the bearing capacity of the motor in the rotary motion, improves the power output of the entire drive unit, increases the bearing capacity of the working vehicle, and achieves a breakthrough in the load capacity of the large truck.
  • the rotating torque of the motor passes through the reducer.
  • the outer ring gear After multi-stage deceleration and twisting, from the sun gear input, the outer ring gear is locked, and the output from the planet carrier can transmit a large torque to the integrally formed hub, thereby driving the wheel to rotate, passing between the hub and the rim.
  • the inclined iron is set to ensure the connection between the hub and the rim is effective, effective To avoid problems with the process easy to loose.
  • FIG. 1 shows a left side view of a vehicle of a travel drive implemented in accordance with an embodiment of the present invention
  • FIG. 2 shows a rear side view of a vehicle of a travel drive implemented in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic view showing the mechanism of a driving device according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing another mechanism of a driving device according to an embodiment of the present invention.
  • FIG. 5 is a partial schematic view of a mechanism of a travel drive device according to an embodiment of the invention
  • FIG. 6 is a schematic view showing the structure of a friction plate for a travel drive device according to an embodiment of the invention
  • Figure 7 is a block diagram showing the construction of a rear suspension cylinder for a travel drive according to an embodiment of the invention
  • Figure 8 is a view showing another suspension for a travel drive according to an embodiment of the invention. Schematic diagram of the structure of the cylinder. detailed description
  • spatial relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the figure.
  • the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figures. For example, if the device in the figures is inverted, the device described as “above other devices or configurations” or “above other devices or structures” will be positioned as “in other devices or” The construction “or” below “other devices or configurations”.
  • the exemplary term “above” can include both “above” and “below”.
  • the device can also be different. Mode positioning (rotation 90 degrees or in other orientations), and a corresponding explanation of the spatial relative description used here.
  • the dump truck 1 is a preferred embodiment of a motor vehicle driven by a driving device for a motor vehicle according to the present invention, for example, a dump truck for driving a driving device for a motor vehicle provided by the present invention, the dump truck used to carry a mine Excavated gravel, etc., and is a large truck with a load of more than 100 tons.
  • the dump truck 1 includes: a vehicle body 2 as a main body thereof, a body 3 that can be grounded on the vehicle body 2, and a wheel that rotatably supports the vehicle body 2 and is mounted with a tire, specifically Ground, the wheel includes a front wheel 4 and a rear wheel 5.
  • the rear wheel 5 is composed of tires 6A, 6B constituting the twin tires and wheels to which the two tires 6A, 6B are attached.
  • a traveling device includes a wheel, a driving device that is non-rotatably fixed to the vehicle body 2 and drives the wheel to rotate, and the traveling device is respectively disposed on the left and right sides of the rear wheel 5, and the left and right rear wheels 5 are Drive separately.
  • 100 is a motor 100 provided in a travel drive device, and is disposed to be inserted from the inner side of the rear wheel 5 in the width direction of the vehicle body 2, and the motor 100 is an electric motor and is received by a diesel engine mounted on the dump truck 1. The rotation of the generated electric power is performed.
  • the driving device for a motor vehicle includes: a wheel, a main shaft 10, a deceleration input shaft portion 20, a reduction gear set 30 (the deceleration portion is composed of 20 and 30, not shown), the coupling 40 and the hub.
  • the wheel is mounted with a tire;
  • the spindle 10 is integrally connected with the vehicle body 2, and is co-moved;
  • the deceleration input shaft 20 is non-rotatably connected to the output shaft 100a of the motor 100 through the coupling 40, and the coaxial 10 common axis setting, and deep inside the spindle 10, extending along the axis of the main shaft;
  • the reduction gear set 30 is fixed inside the main shaft 10, between the deceleration input shaft and the rear wheel 5, and the power is from the deceleration input shaft 20 is transmitted to the wheel, preferably, the reduction gear set 30 is disposed coaxially with the reduction input shaft 20;
  • the integrally formed hub 50 is interposed between the wheel and the main shaft 10, and is rotatably sleeved on the main shaft 10, through the bolt It is fastened integrally with the reduction gear set 30 and is disposed coaxially with the main shaft 10.
  • the travel drive device transmits the electric rotary motion to the speed reduction portion through the speed reduction input shaft integrally provided with the motor output shaft, and transmits the rotary motion to the integrally formed hub through the speed reduction portion, thereby driving the hub to rotate around the main shaft, driving and
  • the fixed left and right rear wheels drive the driving of the dump truck.
  • the hub of the driving device of the present invention is integrally formed, which greatly improves the rotational motion of the motor.
  • the carrying capacity enhances the power output of the entire drive unit, increases the bearing capacity of the work vehicle, and achieves a breakthrough in the load capacity of large trucks.
  • the deceleration input shaft 20 is formed into a body, including the first rotating shaft 21 and the second having different outer diameters.
  • the rotating shaft 22, the first rotating shaft 21 and the second rotating shaft 22 are connected in series and coaxially, and further, in order to provide a large power output, specifically, the speed reducing input shaft 20 passes through the coupling 40 and
  • the motor output shaft 100a is non-rotatably connected, the first rotating shaft 21 is coupled to the coupling 40, and the second rotating shaft 22 extends in the direction of the axis of the main shaft 10 toward the direction away from the coupling 40, and the second rotating shaft 22
  • the outer diameter is larger than the outer diameter of the first rotating shaft 22, and preferably, the outer peripheral surface of the end of the second rotating shaft 22 is evenly toothed and meshed with the gear inside the speed reducer, thereby torque of the output shaft 100a of the motor 100.
  • the coupling shaft 40 is integrally coupled to the deceleration input shaft 20, and the teeth of the outer peripheral surface of the second rotating shaft 22 are further transmitted, thereby transmitting the rotational torque of the motor 100 to the reduction gear set 30, through the reduction gear. After the transfer of torque multiplication reduction set 30 to the reduction gear set 30 is integrally secured to the hub 50, thereby driving the rear wheel rotation, driven dump trucks.
  • the coupling 40 is enclosed At the junction of the output shaft 100a of the motor 100 and the deceleration input shaft 20, the coupling 40 is sleeved on the outer peripheral surface of the end of the output shaft 100a, and is fixed to the main shaft 10 by the bracket in the axial direction of the deceleration input shaft 20, Extending away from the direction of the motor 100, preferably, the coupling 40 is a toothed coupling to facilitate the coaxial connection of the output shaft 100a with the deceleration input shaft 20, improving the ability to transmit torque and prolonging its service life.
  • the reduction gear set 30 includes a first planetary gear mechanism 31 and a second planetary gear mechanism 32, and the first planetary gear mechanism 31 and the second planetary gear mechanism 32 are oriented away from the main shaft 10 in the radial direction of the main shaft 10.
  • the first planetary gear mechanism 31 meshes with the reduction input shaft 20, specifically, the first planetary gear mechanism 31 is disposed around the second rotary shaft 22 The side of the circumference, and mesh with it.
  • the first planetary gear mechanism 31 and the second planetary gear mechanism 32 are in the axial direction of the main shaft 10,
  • the direction away from the motor 100 is arranged in the order of the first planetary gear mechanism 31 and the second planetary gear mechanism 32.
  • the output shaft 100a of the motor 100 is coaxially connected with the deceleration input shaft 20, and the deceleration input shaft 20 is disposed away from the other end of the motor 100 coaxially with the first planetary gear mechanism 31.
  • the first planetary gear mechanism 31 An in-line meshing connection with the second planetary gear mechanism 32.
  • the rotational movement of the output shaft 100a of the motor 100 is driven to rotate by the rotation of the deceleration input shaft 20 and the first planetary gear mechanism 31, and the first planetary gear mechanism 31 is driven to rotate, through the first planetary gear mechanism 31 and the second planetary gear mechanism.
  • the meshing transmission between the 32 sets of gears drives the second planetary gear mechanism 32 to rotate, thereby driving the hub that is integrally coupled with the second planetary gear mechanism 32 to rotate, thereby outputting the rotational power of the motor 100 to the rim, thereby driving Its rotating motion.
  • the first planetary gear mechanism 31 includes: a first sun gear 311, a first planetary gear 312, a bearing 313, a first planetary carrier 314, a first ring gear 315, wherein the first sun gear 311 and the deceleration input shaft
  • the second rotating shaft 22 of the 20 is coaxially engaged;
  • the first planetary gear 312 is interposed between the first sun gear 311 and the first ring gear 315 and meshes with the first planetary gear 311;
  • the first planetary carrier 314 passes through the bearing 313
  • the first planetary gear 312 is integrally coupled;
  • the first ring gear 315 is fastened integrally with the main shaft 10 by bolts.
  • the first planetary carrier 314 includes a stud 314a, a connecting plate 314b and a convex surface 314c.
  • the connecting plate 314b is integrally fastened with the convex surface 314c by a plurality of bolts 314a, and the convex surface 314c is away from the other side of the fixed side of the connecting plate 314b, along the main axis. In the direction of the axis of 10, away from the direction of the motor 100, the end sides thereof are extended and protruded.
  • the convex end 314c is extended with the inner end of the convex end.
  • the convex surface 314c is formed with an inner spline near the inner circumferential side of the convex end of the main shaft 10.
  • the first ring gear 315 includes a first ring gear 315a, a second ring gear 315b, a fixed gear plate 315c, and a bolt 315d.
  • the first ring gear 315a and the second ring gear 315b are in the axial direction of the main shaft 10 away from the motor 100.
  • the direction is arranged in the order of the first ring gear 315a and the second ring gear 315b, and the coaxial line is integrally connected;
  • the fixed gear plate 315c is non-rotatably fixed on the inner peripheral side of the main shaft 10, and the opposite end of the opposite end is passed.
  • the bolt 315d is fastened integrally with the primary ring gear 315a.
  • the main shaft 10 is rotatably fixed relative to the wheel 200, that is, the first ring gear 315 is rotationally fixed relative to the wheel 200.
  • the primary ring gear 315a and the secondary ring gear 315b are integrally formed.
  • a pin 315e and a flange bolt 315f for fixing the first ring gear 315 are further included, and the plurality of flange bolts 315f extend through the first ring gear. 315 is fastened to the inner peripheral side of the main shaft 10.
  • the sleeve 315e abuts against one end of the fixed gear plate 315c, and is fastened to the spindle 10 by a plurality of flange bolts 315f.
  • the fixed gear plate 315c is away from the main shaft 10 and the other end passes through the pin 315d and the first stage.
  • the connection of the ring gear 315a is further limited by the pin 315d to axial displacement of the primary ring gear 315a and the fixed gear plate 315c. In other words, the fixed gear plate 315c and the primary ring gear 315a are reliably integrated. connection.
  • the fixed gear plate 315c includes small end faces and large end faces having different inner diameters, small end faces of the fixed gear plate 315c and end side passes of the main shaft 10
  • the blue bolt 315f is fastened, and the pin end 315d penetrates the fastening of the large end surface of the fixed gear plate 315c with the primary ring gear 315a, whereby the fixed toothed disc 315b is fixedly connected by the pin 315d and the flange bolt 315f.
  • the main shaft 10 the fixed sprocket 315b, and the ring gear 315 are reliably fixed integrally.
  • the first planetary gears 312 are three, uniformly distributed on the circumferential side of the sun planet gears 31, and coaxially engaged therewith.
  • the first ring gear 315 can also be an integrally formed body for better mechanical properties.
  • the second planetary gear mechanism 32 includes: a second sun gear 321, a second planetary gear 322, a bearing 323, a second planetary carrier 324, and a second planet carrier 325, wherein the first sun gear 311 and the second sun gear 321 are In the axial direction of the main shaft 10, in the direction away from the main shaft 10, the first sun gear 311 and the second sun gear 321 are arranged in order, and are arranged coaxially; the second planetary gear 322 is interposed between the second sun gear 321 and the first A ring gear 315 is meshed with each other; the second planet carrier 324 is coupled to the second planet gear 322 via a bearing 323; the second planet carrier 325 is coupled to the second planet carrier 324 and the hub 50, respectively.
  • the bolts are fastened together.
  • the second planetary gears 322 are evenly distributed in the ring gear of the first planetary gear mechanism. Specifically, the second planetary gears 322 are evenly distributed inside the secondary ring gear 315b, and meshed with the gears, in the main shaft 10 Radially facing away from the main shaft 10, in the order of the second sun gear 321 and the second planetary gear 322; in the axial direction of the main shaft 10, away from the direction of the motor 100, the second planet carrier 325 is fixed to the second sun
  • the gear 321 is away from the end side of the main shaft 10; the second planetary carrier 324 fastens the bearing 323, the second planetary gear 321 and the second carrier 325 integrally by a plurality of studs 324a passing through the inside thereof, the second carrier 325 It is connected to the hub 50 by bolts.
  • the second sun gear 321 is rotationally fixed in the extending direction of the deceleration input shaft, and further, the second planetary gear 322 and the second sun gear 321 are coaxially rotat
  • the second planetary gears 322 are four, and the second sun gears 321 are evenly distributed, and the inner surface is meshed with the second sun gear 321 by the bearing 323, and the outer surface of the tooth is machined and the first planetary gear mechanism is processed.
  • the inner ring gear (secondary ring gear 315b) meshes and rotates.
  • the second sun gear 321 can be of various suitable configurations, for example, a toothed cylinder for the outer surface.
  • the second planetary gear 321 has a stepped cylindrical outer shape, and includes a cylindrical surface portion 321a and a cylindrical convex portion 321b which are sequentially connected, and the cylindrical convex portion 321b is connected to the first-stage solar planetary gear 31 through the shoulder, further
  • the cylindrical projection 321b is meshed with the internal spline of the first planetary carrier 314.
  • the cylindrical surface portion 321a and the cylindrical projection 321b are coaxially arranged to avoid the shear generated by the torque during the transmission. Shear stress.
  • the thruster end cover 326 coupled to the second planet carrier 325, the thruster end cover 326 being fastened integrally with the second planet carrier 325 by a plurality of bolts 326a. Further, a cavity is provided in the thruster end cap 326 for facilitating storage of the cooling oil.
  • a thrust copper pad 327 is mounted between the second sun gear 321 and the thruster end cap 326, and the thrust copper pad 327 is built on the second sun gear 321 and Between the thruster end caps 326, along the axis of the second sun gear 321, the arbitrarily disposed thrust copper pad avoids axial expansion of the rotating shaft during high torque transmission, interfering with the thruster end cap Rotate.
  • the reduction gear train 30 thus constructed operates as follows.
  • the coupling 40 connects the traction motor output shaft 100a and the deceleration input shaft 20 by splines, and the torque output from the traction motor output shaft 100a is torque-decelerated and then transmitted to the first planetary gear mechanism 31 through its internal gear meshing.
  • the first sun gear 311 transmits its rotation to the first planetary gear 312.
  • the first planetary gear 312 revolves around the first sun gear 311 while winding the first The gear 315 rotates, thereby driving the fixed first planet carrier 314 to rotate relative to the main shaft 10, thereby transmitting the rotation of the first sun gear 311 to the first planet carrier 314, and then through the convex surface of the first planet carrier 314 314c is transmitted to the second sun gear 321, and as a result, the second sun gear 321 is rotated.
  • the second sun gear 321 rotates in this manner, in the second planetary gear mechanism 32, the second sun gear 321 drives the second planetary gear 322 to rotate, and the second planetary gear 322 is self-transmitted along the second ring gear.
  • the 315b revolves, that is, revolves along the first ring gear 315, thereby driving the second planet carrier 324 to rotate. Since the second carrier 324 is fixed integrally with the hub 50, it rotates together with the rear wheel 5 mounted outside the hub 50.
  • the torque transmitted from the traction motor is transmitted to the rear wheel 5 via the first planetary gear mechanism 31 and the second planetary gear mechanism 32, and the wheel of the dump truck is driven.
  • the motor 100 is disposed on one axial side of the main shaft 10, and integrally connected to the vehicle body 2 includes a drive portion 100b and an output shaft 100a, the motor
  • the driving portion 100b has a conical outer shape and extends in a direction in which the vehicle body 2 faces the reduction gear train 30, and the outer diameter is reduced.
  • the output shaft 100a extends through the driving portion 100b and extends toward the reduction gear train 30, and is non-rotatable via the coupling 40.
  • the ground is connected to the deceleration input shaft 20.
  • the hub 50 can adopt various appropriate mechanisms as long as the motor 100 can be decelerated and twisted by the reduction gear set 30, and then transmitted to the rear wheel 5.
  • the hub 50 is sleeved on the outer side of the main shaft 10 and interposed between the reduction gear set 30 and the motor 100.
  • One end of the motor 100 is rotatably fixed to the outer peripheral surface of the main shaft 10 through a bearing, away from the motor 100.
  • the other end is internally machined with a cavity for housing the reduction gear set 30 and is coupled to the reduction gear train 30.
  • the hub 50 is integrally formed. Specifically, as shown in FIG.
  • the hub 50 includes a hub outer ring 51 and a hub connector 52.
  • the hub outer ring 51 is rotatably fixed to the outer peripheral surface of the main shaft 10 by bearings, and is separated from the other end of the motor 100 by bolts.
  • the reduction gear set 30 is integrally connected, and the hub connector 52 is interposed between the outer ring 51 of the hub and the main shaft 10, and is integrally fastened with the outer ring 51 of the hub by bolts. More specifically, the second carrier 325 passes through the bolt and the hub.
  • the outer ring 51 is fastened in one piece, and driven by the second carrier 324, the hub connector 52 is driven to rotate relative to the main shaft 10, thereby converting the rotational motion transmission of the motor 100 into the rotation of the hub 50 relative to the main shaft 10. motion.
  • a cooling assembly 60 for lubricating the main shaft 10 and the reduction gear set 30 is also included.
  • the cooling assembly 60 includes an oil suction pipe 61, a return oil pipe 62, a first cavity 63, a second cavity 64, and a third cavity 65, wherein the oil suction pipe 61 and the oil return pipe 62 penetrate the main axis 10 is internally extended and fixed, and communicates with the internal cavity.
  • the oil suction pipe 61 and the oil return pipe 62 are symmetrically distributed on both sides of the axis of the main shaft 10; the first cavity 63 and the second cavity 64 are meshed and transmitted by the internal gear of the reduction gear set 30.
  • the gap between the first cavity 63 and the second cavity 64 is fixed and communicated with the oil suction pipe 61.
  • the third cavity 65 is surrounded by the main shaft 10, the hub 50 and the brake 70, and The second cavity 64 and the oil return pipe 62 are kept in communication. Further, the first cavity 63 and the second cavity 64 are enclosed by the first ring gear 315, the fixed gear plate 315c, and the second carrier 325.
  • the first cavity 63 and the second cavity 64 connected thereto are injected through the gap between the meshing gears, and after being integrated by the third cavity 65, the oil return pipe 62 is entered.
  • a closed cooling circuit is formed, and the lubricating oil is conveniently injected into the interior of the reduction gear set 30 to achieve lubrication and cooling of the plurality of pairs of meshing gears inside the reduction gear set 30.
  • a hydraulic pump 66 for supplying pressure to the lubricating oil is also included, and the lubricating oil pressurized by the hydraulic pump 66 is kept in communication with the oil inlet pipe 61.
  • the lubricating oil enters the inside of the cavity 63 through the oil suction pipe 61, and the lubricating oil is brought into the second cavity 64 by the splashing action of the gear rotating process, so that the thrust copper bush 327 can be directly and effectively cooled, and the first cavity is simultaneously 63 and the second cavity 64 and the third cavity 65 are mutually penetrated, and the lubricating oil can effectively cool the gears and the bearings and the like in the respective cavities, and the lubricating oil passes through the plurality of pressures under the pressure of the hydraulic pump 66. After the meshed gear set, it circulates into the third cavity 65 and is then sucked away through the oil return pipe 62 to form a cooling circuit.
  • a sensor 67 (not shown) for monitoring the temperature of the reduction gear set 30 is provided inside the reduction gear set 30, and the sensor 67 controls the vehicle.
  • the control system of the cooling circuit is electrically connected.
  • a brake 70 interposed between the main shaft 10 and the hub 50 is provided, which is disposed on the outer peripheral surface of the main shaft, and the brake 70-end is fixed to the main shaft 10 as a brake.
  • the stationary end is connected to the hub 50 by bolts at the other end and rotates with the hub 50.
  • the brake 70 is a wet brake. Specifically, as shown in FIG.
  • the brake 70 includes a brake mount 71 and a piston 73, and a friction plate 72 interposed between the brake mount 71 and the piston 73.
  • the brake mount 71 is connected to the hub 50 by bolts.
  • the piston 73 and the main shaft 10 are relatively movable and fixed.
  • the travel drive is used on a motor vehicle loaded with more than 100 tons, and the friction lining of the brakes of the prior art is There are defects such as large heat generation, high noise, short service life and high maintenance cost.
  • the friction plate 72 is made of a paper-based wear-resistant material and a steel sheet, thereby making the friction sheet The coefficient of friction between the two is higher, resulting in a larger effective braking area of the brake.
  • the friction plate 72 is formed by laminating at least one paper-based friction material 72a and at least one steel substrate 72b, thereby obtaining a high friction coefficient, a close dynamic/static friction coefficient, and transmission. Friction plate with strong torque capability, soft combination and low noise.
  • the friction plate 72 includes at least one movable friction plate 721 and at least one fixed friction plate 722 which are sequentially staggered, and the movable friction plates 721 and the fixed friction plates 722 are provided with high friction on both sides in the radial direction. a coefficient of friction particles, and the movable friction plate 721 is spaced apart from the fixed friction plate 722, and can be adjusted during relative rotation. Further, the movable friction plate 721 is integrally coupled with the brake fixing base 71, and the fixed friction plate 722 is integrally coupled with the piston 73. Thereby, the movable friction plate 721 and the fixed friction which are sequentially arranged alternately are driven by the piston 73.
  • the displacement between the plates 722 is adjustable, and in the case of braking, the distance between the driving piston 73, the fixed friction plate 722 and the movable friction plate 721 is reduced, and the frictional resistance between each other is increased, so that the relative friction is fixed.
  • the resistance between the piece 722 and the movable friction piece 721 becomes large, so that the resistance of the rotation of the hub 50 integrally fixed to the movable friction piece 721 by the hub connector 52 with respect to the main shaft 10 is intensified, and the control of the rotational speed of the hub 50 is realized.
  • a bridge base 80 interposed between the motor 100 and the main shaft 10 and connected thereto is further included. Further, to avoid uneven force, the bridge base 80 is four, uniformly distributed along the circumferential direction of the output shaft 100a of the motor 100, and preferably, the bridge base 80 is disposed integrally with the main shaft 10.
  • a rim 90 connected between the rear wheel 5 and the hub 50 is further included, and the rim 90 is sleeved on the hub 50, coaxially therewith.
  • the arrangement, and the connection to one body distributes the load of the entire vehicle to the rear wheel 5 in a balanced manner by the weight of the entire vehicle through the rim 90 connected to the hub 50.
  • the rim 90 includes an outer rim 91, a rim spacer 92, and an inner rim 93, wherein the outer rim 91 and the inner rim 93 are respectively tightly engaged with the rear wheel 5, and are arranged along the axial direction of the main shaft 10; the rim spacer 92 is interposed between the outer rim 91 and the inner rim 93; in the axial direction of the main shaft 10, away from the direction of the motor 100, the inner rim 93, the rim spacer 92 and the outer rim 91 are sequentially abutted.
  • a slanting iron 94 integrally fastened with the main shaft 10 is included, in the axial direction of the main shaft 10, from the reverse of the motor 100, the thickness of the slanting iron 94
  • the decreasing clamping is disposed between the rim 90 and the hub 50, and extends toward the direction of the motor 100.
  • the inclined iron 94 is forcibly squeezed while being fixed between the inclined iron 94 and the main shaft 10. Pressing the gap between the rim 90 and the hub 50 further tightens the rim 90 to the hub 50, which ensures a good connection between the hub and the rim, and effectively avoids the problem of easy release during running.
  • a rear suspension cylinder 8 interposed between the driving traveling device and the body 3 is also included, and the rear suspension cylinder 8 the two ends are respectively movable and fixed on the driving traveling device and the vehicle body 3.
  • the bearing capacity is automatically adjusted.
  • the two ends of the rear suspension cylinder 8 are respectively hinged with the driving traveling device and the bucket 3.
  • the rear suspension cylinder 8 includes a piston rod 810 and a cylinder 820 , wherein the piston rod 810 is sleeved in the inner cavity of the cylinder 820 , and the opposite end is opposite to the cylinder 820 .
  • the piston rod 810 includes a welded rod 811 and a plug 812.
  • the plug rod 811 and the plug 812 are integrally formed integrally, preferably, Both the stopper rod 811 and the plug head 812 are integrally formed by forging.
  • the forged rod 811 and the plug 812 are welded into the integral piston rod 810, and the remaining portions are not welded, thereby avoiding the processing defects easily caused by the multiple parts during the welding process. It also eliminates the residual stress caused by multiple welds and improves the mechanical properties of the entire piston rod.
  • the cylinder block 820 includes a cylinder barrel 821 and an end cap 822 which are integrally connected.
  • the cylinder barrel 821 and the end cap 822 are integrally joined by welding, and further, in order to optimize the mechanical properties of the cylinder block 820.
  • the cylinder 821 and the end cap 822 are integrally formed integrally.
  • the cylinder 821 and the end cap 822 are integrally formed by forging.
  • the forged cylinder 821 and the end cap 822 are welded into an integral cylinder 820, which The remaining parts are not welded, which avoids the processing defects easily caused by the multiple parts during the welding process, and also eliminates the residual stress caused by the multi-pass welding, which improves the mechanical performance of the entire piston rod.
  • a dust seal 830 is disposed between the piston rod 810 and the cylinder 820 and is sealed therewith.
  • a ring cover on the cylinder 820, the dust cover 840 is disposed at an end away from the piston rod 810; further, in order to avoid bumping or impact of the vehicle on the outer surface of the cylinder of the rear suspension cylinder during running and work, ensuring The smoothness of the operation of the rear suspension cylinder further includes a fender 850 that is sleeved on the cylinder 820 and extends along the piston rod 810 away from the cylinder 820.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种机动车用行驶驱动装置,包括配置在主轴(10)的轴向一端侧,且相对于车体(2)固定的电机(100),还包括由联轴器(40)不可旋转的与电机(100)的输出轴(100a)结合、插通主轴(10)的内轴侧,并从该主轴(10)的轴向另一端突出的旋转轴,以及配置在主轴(100)的另一端侧,夹设在旋转轴与车轮(200)之间,且从该旋转轴给车轮传递动力的减速机,和与减速机连接的轮毂(50),轮毂(50)一体成型且安装在主轴(10)的外周面,其电机(100)的旋转扭矩经过减速机多级的减速增扭后,从太阳轮输入,外齿圈锁死,从行星架输出,能够将较大的扭矩传递给一体成型的轮毂(50)后,从而驱动车轮(200)旋转。

Description

机动车用行驶驱动装置 技术领域 本发明涉及机动车的行驶装置, 更具体地说, 尤其涉及一种自卸卡车的行驶装置。 背景技术
大型非公路车辆 ( " 0HV" ) ( 诸如用于拖运从露天采矿场挖掘的重有效载荷的矿用车 辆) 为众所周知的, 并且通常采用机动轮来以能量有效的方式推进车辆或使车辆减速。 该 效率典型地通过与交流发电机、 主牵引逆变器和容纳在车辆的后轮胎内的一对轮驱动组件 结合采用大马力柴油发动机而实现。 柴油发动机与交流发电机直接相关, 使得柴油发动机 驱动交流发电机。 交流发电机为主牵引逆变器提供动力, 该主牵引逆变器向两个轮驱动组 件的驱动电动马达供应具有受控电压和频率的电力。 每个轮驱动组件容纳行星齿轮传动件, 其将相关的驱动马达的旋转能转换成供应至后轮的高转矩低速旋转能输出。
在安装于自卸卡车上的现有行驶装置中, 主轴插入装有轮胎的车轮的内周侧。 主轴的 外周面与车轮的内周面之间设有车轮轴承, 由此车轮可绕主轴旋转。
电机位于主轴的轴向一端侧。 旋转轴以与该电机的输出轴一体旋转的方式与该输出轴 结合。 该旋转轴插通心轴的内周侧, 并从该主轴的轴向另一端突出。 减速机位于主轴的另 一端侧。 旋转轴以可将电机的输出传递给该减速机的方式与该减速机结合。 该减速机的输 出侧可传动地与车轮结合。 也就是说, 通过将电机的输出依次传递给旋转轴、 减速机和车 轮, 使车轮和轮胎一起旋转。
由于旋转轴的制作上的偏差等原因导致重心偏离轴心, 从而离心力作用于旋转中的旋 转轴。 旋转轴受该离心力破坏的每单位时间转数称为危险转速。 以往采用了作为将危险转 速设定得足够高于行驶装置所使用的转速的技术, 即让旋转轴不会因伴随所使用转速的离 心力而被破坏的技术, 使支撑轴承介于主轴的另一端部 (减速机侧的端部)与旋转轴之间并 在电机与减速机之间的位置支撑旋转轴。 该支撑轴承嵌入安装在心轴另一端部上的护圈中。 ( 参照专利文献 1)
另外, 作为用于防止旋转轴受离心力破坏的其它技术, 通过将旋转轴形成为中空来减 轻其重量, 从而减小离心力。 (参照专利文献 2)
现有技术文献
专利文献 1 : 美国专利申请公开第 2004/0065169 号说明书;
专利文献 2 : 美国专利申请公开第 2005/0059523 号说明书。
在上述的现有行驶装置中, 减速机具有输入侧的行星齿轮机构( 以下称为 "第一行 星齿轮机构") 和输出侧的行星齿轮机构 ( 以下称为 "第二行星齿轮机构 "), 该第一行 星齿轮机构包括与旋转轴结合的太阳齿轮, 该第二行星齿轮机构把从第一行星齿轮机构传 递来的动力传递给车轮。
现有技术中的驱动电机输出轴的旋转轴与电机的输出轴一起旋转时, 第一行星齿轮机 构中, 第一太阳齿轮与旋转轴一起旋转。 第一太阳齿轮的旋转传递到第一行星齿轮。 由于 支撑第一行星齿轮的第一齿轮架相对于车轮不可旋转地被固定, 所以三个第一行星齿轮一 边随车轮的旋转一起绕第一太阳齿轮公转、 一边自转, 将第一太阳齿轮的旋转传递到第一 齿圈。 结果, 第一齿圈进行旋转。 当第一齿圈如此旋转时, 第二行星齿轮机构中, 第二太 阳齿轮与第一齿圈及联轴器一起旋转。 第二太阳齿轮的旋转转传递到三个第二行星齿轮。 由于支撑这些第二行星齿轮的第二齿轮架不可旋转地与心轴结合, 所以第二行星齿轮自转 而不绕第二太阳齿轮公转, 第二太阳齿轮的旋转传递到第二齿圈。 由于第二齿圈相对于车 轮及第一齿轮架一体地被固定, 所以与这些车轮及第一齿轮架一起旋转 (参照专利文献 1 和 2)。 由于其动力从太阳轮输入, 从外齿圈输出, 行星架通过机构锁固, 所以, 其传递的 扭力是通过啮合的齿轮之间传递, 无法传递较大的扭矩, 其传动的效率不高, 考虑到对应 于矿山用大型自卸卡车等的需要支撑大负载的强度, 减速器内齿轮组的寿命较短, 直接影 响整车的作业效率。
同时, 由于其动力输出的原理决定了长期承载较大扭矩的轮毂需要通过多个部件的拼 合紧固, 在长期的高负荷运载作业过程中, 其拼合的紧密性直接影响整车的可靠性。
因此, 这也构成了需要进一步改进机动车用的行驶驱动装置的结构, 特别适用在长期 承载较大扭矩的矿用自卸车, 以解决所存在的问题。
发明内容
本发明是考虑到上述情况作出的, 本发明的目的是提供一种自卸卡车的行驶驱动装置, 其电机的旋转扭矩经过减速机多级的减速增扭后, 从太阳轮输入, 外齿圈锁死, 从行星架 输出, 能够将较大的扭矩传递给一体成型的轮毂后, 从而驱动车轮旋转。
为实现前述目的, 根据本发明的一个方面, 提供一种驱动行驶装置, 包括主轴, 其固定 在所述机动车的车体上且与车体共运动的设置; 电机, 其设置在主轴的一端侧, 且与主轴 固定连接; 且连接一电机输出轴, 所述电机输出轴内置于主轴内; 减速部, 包括减速输入 轴和减速齿轮组, 减速输入轴与电机输出轴同轴活动连接, 且减速输入轴沿主轴中心轴线 设置与主轴内并活动连接减速齿轮组, 减速齿轮组设置在主轴的另一端侧, 减速部配置地 用于经电机传动后减速传动至所述机动车的轮毂, 从而完成减速驱动; 轮毂, 其一体成型 并套设在主轴外侧, 且绕主轴的中心轴旋转, 继而驱动车轮旋转; 制动器, 其夹设与主轴 和轮毂之间, 一端与主轴固定连接形成制动器的静止部, 另一端与轮毂活动连接且随轮毂 一同旋转; 通过与电机输出轴一体设置的旋转轴, 将电动的旋转运动传递给减速机, 通过 减速机传递给一体成型的轮毂, 由此, 带动轮毂围绕主轴可旋转的回转, 驱动与之固定的 左右后轮, 从而驱动自卸卡车的行驶, 与现有技术中的行驶驱动装置不同的是, 本发明中 的行驶驱动装置的轮毂是一体成型, 极大的提高了电动机旋转运动中承载的能力, 提升整 个驱动装置的动力输出, 增加了作业车辆的承载力, 实现了大型载重汽车承载量的再次突 破。 优选地, 为了解决传递较大扭矩过程中旋转轴易断裂, 寿命较短的问题, 减速输入轴 一体的成型, 包括外径不等的第一旋转轴和第二旋转轴, 第一旋转轴和第二旋转轴顺次串 联且同轴线的连接。
优选地, 为了能够提供较大的动力输出, 减速输入轴通过联轴器与电机输出轴刚性连 接, 第一旋转轴与联轴器抵靠连接, 第二旋转轴沿主轴轴线方向, 朝向远离联轴器的方向 延伸, 且第二旋转轴的外径大于第一旋转轴的外径。
优选地, 轮毂为套设在主轴外侧, 夹设在减速部和电机之间的套筒, 靠近电机的一端 通过轴承可旋转的固定在主轴的外周面, 远离电机的另外一端内部加工有容纳减速部的内 腔, 且与减速部一体的连接。
优选地, 轮毂包括轮毂外环和轮毂连接器, 该轮毂外环通过轴承可转动的固定在主轴 的外周面上, 远离电机的另外一端通过螺栓与减速机连接成一体, 轮毂连接器夹设在轮毂 外环与主轴之间, 通过螺栓与轮毂外环紧固成一体; 进一步地, 第二行星架通过螺栓与轮 毂外环紧固成整体, 在第二行星齿轮架的驱动下, 带动轮毂连接器一起相对主轴旋转, 以 此, 将电机的旋转运动传递转换为轮毂相对主轴的旋转运动。
优选地, 为了使减速部能被润滑油良好的冷却, 降低传动过程中产生的热量, 还包括 为主轴和减速部提供润滑油的冷却组件, 冷却组件包括吸油管、 回油管、 第一型腔、 第二 型腔、 第三型腔, 其中, 吸油管和回油管深入主轴内部延伸固定, 且与内部空腔连通; 吸 油管和回油管对称分布在主轴轴线的两侧; 第一型腔和第二型腔由减速机内部啮合传动的 齿轮间的间隙串通组成; 第一型腔和第二型腔连通的固定, 且与吸油管连通的固定; 第三 型腔由主轴轮毂和制动器共同围成, 并与第二型腔和回油管保持连通; 进一步地, 第一型 腔和第二型腔由第一齿圈、 固定齿轮盘、 和第二行星架共同围成。
优选地, 润滑油通过吸油管后, 通过啮合齿轮之间的间隙注入与之连通的第一型腔和 第二型腔, 经第三型腔汇总后, 进入回油管, 以此形成一个封闭的冷却回路。
优选地, 为了实现冷却回路的自动循环, 还包括为润滑油提供压力的液压泵, 经该液 压泵加压后的润滑油与进油管保持连通。
优选地, 为了确保实时的掌握电动轮减速部内部的温度, 还包括设置在减速部内部, 用来监控减速部温度的传感器, 传感器与控制整车冷却回路的控制系统电连接。
优选地, 为了实现高效、 精准的制动, 制动器为湿式制动器。
优选地, 制动器包括制动器固定座和活塞, 以及夹设在制动器固定座和活塞之间的摩 擦片, 制动器固定座通过螺栓与轮毂连接成一体, 沿主轴的轴线方向, 活塞与主轴可相对 移动的固定。
优选地, 摩擦片由至少一层纸基摩擦材料和至少一层钢片基体贴合而成, 以此, 获得 摩擦系数较高、 动 /静摩擦系数接近、 传送扭矩能力强、 结合柔和、 噪音小的摩擦片。
优选地, 摩擦片包括依次交错设置的至少一个活动摩擦片和至少一个固定摩擦片, 活 动摩擦片与固定摩擦片径向的两个侧面设置有高摩擦系数的摩擦颗粒, 且活动摩擦片与固 定摩擦片间隙相距, 可在相对旋转的过程中调整。
优选地, 活动摩擦片与制动器固定座连接成一体, 固定摩擦片与活塞连接成一体, 以 此, 在活塞的驱动下, 依次交错设置的活动摩擦片和固定摩擦片之间位移可调的固定, 制 动的情况下, 驱动活塞、 固定摩擦片与活动摩擦片之间的间距缩小, 相互之间的摩擦阻力 增大, 使得相对旋转的固定摩擦片和活动摩擦片之间阻力变大, 使得通过轮毂连接器与活 动摩擦片固定成一体的轮毂相对主轴之间旋转的阻力加剧, 实现对轮毂旋转速度的控制。
优选地, 减速齿轮组包括第一行星齿轮机构和第二行星齿轮机构, 第一行星齿轮机构 和第二行星齿轮机构在主轴的径向上朝向离开该主轴的方向, 按照第一行星齿轮机构和第 二行星齿轮机构的顺序配置。
优选地, 为了增强整个减速机的承载强度, 优化减速部的承载能力, 以及拆卸检修的 便捷, 第一行星齿轮机构和第二行星齿轮机构在主轴的轴线方向上, 远离电机的方向, 按 照第一行星齿轮机构和第二行星齿轮机构的顺序配置。
优选地, 电机的输出轴与减速输入轴共轴线的连接, 减速输入轴远离电机的另外一端 与第一行星齿轮机构共轴线啮合的设置, 第一行星齿轮机构与第二行星齿轮机构共轴线的 啮合连接, 以此, 电机输出轴的旋转运动通过减速输入轴与第一行星齿轮机构旋转的啮合 运动, 驱动第一行星齿轮机构旋转, 通过第一行星齿轮机构和第二行星齿轮机构之间齿轮 组的啮合传动, 驱动第二行星齿轮机构旋转, 从而带动与第二行星齿轮机构连接的行走机 构一起旋转, 实现将电机的旋转动力输出给轮辋, 以此驱动其旋转的运动。
优选地, 第一行星齿轮机构包括: 第一太阳齿轮、 第一行星齿轮、 轴承、 第一行星齿 轮架、 第一齿圈, 其中, 第一太阳齿轮与减速输入轴的第二旋转轴共轴线的啮合活动连接; 第一行星齿轮夹设在第一太阳齿轮和第一齿圈之间, 且分别与之啮合; 第一行星齿轮架通 过轴承与第一行星齿轮连接成一体; 第一齿圈通过螺栓与主轴紧固成一体。
优选地, 所述第一行星齿轮架包括螺柱、 连接板和凸面, 连接板通过螺栓与凸面紧固 成一体, 凸面远离于连接板固定侧的另外一侧, 沿主轴的轴线方向, 并且远离电机的方向, 其端侧面延伸凸出。
优选地, 所述凸面延伸凸起端加工有内花键; 进一步地, 凸面靠近主轴的凸起端的内 侧周侧面加工有内花键。
优选地, 所述第一齿圈包括一级齿圈、 二级齿圈、 固定齿轮盘、 螺栓, 其中, 一级齿 圈和二级齿圈在主轴的轴线方向上, 远离电机的方向, 按照一级齿圈和二级齿圈顺序配置, 且共轴线的一体连接; 固定齿轮盘一端不可旋转地固定在主轴的内周侧面上, 相对设置的 另外一端通过螺栓与一级齿圈紧固成一体; 进一步地, 为了优化齿轮组之间传递力的效率, 一级齿圈和二级齿圈一体成型而成。
优选地, 为了第一齿圈可靠的与主轴之间的固定, 所述第一齿圈还包括用来固定第一 齿圈的销轴和法兰螺栓, 法兰螺栓贯穿第一齿圈紧固在主轴的内周侧面上。
优选地, 为了将一级齿圈可靠的与主轴紧固成一体, 所述固定齿轮盘包括内径大小不 同的小端面和大端面, 固定齿轮盘的小端面和主轴的端侧面通过法兰螺栓紧固, 销轴贯穿 固定齿轮盘的大端面与一级齿圈紧固成一体。
优选地, 第二行星齿轮机构包括: 第二太阳齿轮、 第二行星齿轮、 轴承、 第二行星齿 轮架、 第二行星架, 其中, 第一太阳齿轮和第二太阳齿轮在主轴的轴线方向上, 远离主轴 的方向上, 按照第一太阳齿轮和第二太阳齿轮顺序配置, 且共轴线的设置; 第二行星齿轮 夹设在第二太阳齿轮和第一齿圈之间, 且分别与之啮合; 第二行星齿轮架通过轴承与第二 行星齿轮一体的连接; 第二行星架分别与第二行星齿轮架和轮毂通过螺栓紧固成一体。 优选地, 所述第二行星齿轮均布在第一行星齿轮机构的齿圈内, 通过齿轮与之啮合, 在主轴的径向上朝向离开该主轴的方向, 按照第二太阳齿轮和第二行星齿轮的顺序配置。
优选地, 在主轴的轴线方向上, 远离电机的方向, 第二行星架固定在第二太阳齿轮远 离主轴的端侧面。
优选地, 第二行星齿轮架通过贯穿其内部的螺柱将轴承、 第二行星齿轮和第二行星架 紧固成一体, 第二行星架通过螺栓连接到轮毂。
优选地, 第二行星齿轮为四个, 环绕第二太阳齿轮均布, 且内表面通过轴承与第二太 阳齿轮啮合公转的同时, 加工有齿的外表面与第一行星齿轮机构内部齿圈啮合自转。
优选地, 第二行星齿轮包括依次连接的圆筒面部和圆柱凸出部, 圆柱凸出部通过轴肩 与一级太阳行星齿轮连接; 进一步地, 圆柱凸出部与第一行星齿轮架的内花键啮合传动, 进一步地, 圆筒面部和圆柱凸出部共轴线的设置, 以避免扭矩在传递过程中产生的剪切应 力。
优选地, 为了便于注入润滑油, 还包括连接在第二行星架的止推器端盖, 止推器端盖 通过螺栓与第二行星架紧固成一体; 进一步地, 止推器端盖内设有空腔, 用来便于储存冷 却油。
优选地, 为了消除减速输入轴的轴向热膨胀, 在第二太阳齿轮和止推器端盖之间安装 有止推铜垫, 止推铜垫夹设在第二太阳齿轮和止推器端盖之间, 沿第二太阳齿轮的轴线移 动, 通过活动设置的止推铜垫避免了旋转轴在大扭矩传递过程中的轴向因为膨胀, 干涉止 推器端盖的旋转。
优选地, 为了便于主轴与电机之间连接的稳定, 还包括夹设在电机与主轴之间, 且与 之连接的桥式底座。
优选地, 避免受力的不均匀, 桥式底座为四个, 沿电机的输出轴的周向均布, 进一步 地, 桥式底座与主轴一体的设置。
优选地, 还包括套设在轮毂上, 与之共轴线, 且连接成一体的轮辋, 轮辋包括外侧轮 辋、 轮辋隔圈、 内侧轮辋, 其中, 外侧轮辋和内侧轮辋分别与后轮紧固配合, 沿主轴的轴 线方向间隔的布置; 轮辋隔圈夹设在外侧轮辋和内侧轮辋之间; 在主轴的轴线方向上, 远 离电机的方向, 内侧轮辋、 轮辋隔圈和外侧轮辋顺序抵靠的连接。
优选地, 为了更好的将轮辋与轮毂紧固, 还包括与主轴紧固成一体的斜铁。
优选地, 沿主轴的轴线方向, 从远离电机的反向, 斜铁厚度递减的夹设在轮辋和轮毂 之间, 朝向电机的方向延伸, 通过设置厚度递减的斜铁, 在斜铁与主轴之间固定的同时, 将斜铁强制性的挤压至轮辋与轮毂之间的间隙, 进一步的将轮辋紧固在轮毂上, 很好的确 保了轮毂和轮辋之间连接成一体, 有效的避免行驶过程中容易松脱的问题。
根据本发明的另一个方面, 提供了一种机动车, 包括车体和装载在车体上的车斗、 驱 动行驶装置、 以及与车体连接的后轮和电机, 所述行驶驱动装置为上述的驱动行驶装置。 优选地, 为了缓解车辆行驶过程的振动对车斗的影响, 还包括夹设在驱动行驶装置与车斗 之间的后悬油缸, 后悬油缸两端分别可活动的固定在驱动行驶装置和车斗上; 进一步地, 为了便于组装和降低后续维护的成本, 以及在车辆行驶过程能够自动调节受力的支撑点, 自动调整承载力的方向, 后悬油缸两端分别与驱动行驶装置和车斗铰接。 优选地, 后悬油缸包括活塞杆和缸体, 活塞杆一端套设在缸体的内腔, 相对设置的另 外一端相对于缸体可伸缩的设置; 活塞杆包括焊接成一体的塞杆和塞头, 塞杆和塞头均为 通过锻造一体成型的整体; 缸体包括连接成一体的缸筒和端盖, 缸筒和端盖通过焊接, 连 接成整体, 缸筒和端盖均为一体成型的整体; 通过锻造一体成型的塞杆、 塞头、 缸筒、 和 端盖, 在避免了由于多个部件在焊合过程容易导致的加工缺陷的同时, 也杜绝了因为多道 焊接导致的残余应力, 从而, 使得后悬油缸整体质量得到稳定的提高, 使得其安全余量大 幅提升, 延长了后悬油缸的使用寿命、 减小了产品安全隐、 降低了客户维护保养成本。
本发明的目的是提供一种自卸卡车的行驶驱动装置, 通过与电机输出轴一体设置的旋 转轴, 将电动的旋转运动传递给减速机, 通过减速机传递给一体成型的轮毂, 由此, 带动 轮毂围绕主轴可旋转的回转, 驱动与之固定的左右后轮, 从而驱动自卸卡车的行驶, 与现 有技术中的行驶驱动装置不同的是, 本发明中的行驶驱动装置的轮毂是一体成型, 极大的 提高了电动机旋转运动中承载的能力, 提升整个驱动装置的动力输出, 增加了作业车辆的 承载力, 实现了大型载重汽车承载量的再次突破, 其电机的旋转扭矩经过减速机多级的减 速增扭后, 从太阳轮输入, 外齿圈锁死, 从行星架输出, 能够将较大的扭矩传递给一体成 型的轮毂后, 从而驱动车轮旋转, 通过在轮毂和轮辋之间设置的斜铁, 很好的确保了轮毂 和轮辋之间连接成一体, 有效的避免行驶过程中容易松脱的问题。 附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示意性 实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1示出了一种根据本发明实施例所实现的行驶驱动装置的车辆的左侧视图; 图 2示出了一种根据本发明实施例所实现的行驶驱动装置的车辆的后侧视图; 图 3示出了一种根据本发明实施例所实现的行驶驱动装置的机构示意图;
图 4示出了另一种根据本发明实施例所实现的行驶驱动装置的机构示意图;
图 5示出了一种根据本发明实施例所实现的行驶驱动装置的机构的局部示意图; 图 6示出了一种根据本发明实施例所实现用于行驶驱动装置的摩擦片的结构示意图; 图 7示出了一种根据本发明实施例所实现用于行驶驱动装置的后悬油缸的结构示意图; 图 8 示出了另一种根据本发明实施例所实现用于行驶驱动装置的后悬油缸的结构示意 图。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描述的 具体实施方式仅用于说明和解释本发明, 并不用于限制本发明。
为了便于描述, 在这里可以使用空间相对术语, 如 "在……之上"、 "在……上方"、 "在……上表面"、 "上面的"等, 用来描述如在图中所示的一个器件或特征与其他器件或 特征的空间位置关系。 应当理解的是, 空间相对术语旨在包含除了器件在图中所描述的方 位之外的在使用或操作中的不同方位。 例如, 如果附图中的器件被倒置, 则描述为 "在其 他器件或构造上方"或 "在其他器件或构造之上" 的器件之后将被定位为 "在其他器件或 构造下方"或"在其他器件或构造之下"。因而,示例性术语"在……上方"可以包括"在…… 上方"和 "在……下方"两种方位。 该器件也可以其他不同方式定位 (旋转 90度或处于其 他方位), 并且对这里所使用的空间相对描述作出相应解释。
图 1 为本发明提供的利用机动车用行驶驱动装置驱动的机动车一种较佳实施方式, 例 如利用本发明提供的机动车用行驶驱动装置的自卸卡车, 该自卸卡车用于搬运矿山采掘的 碎石等, 且是装载量超过 100 吨的大型载重汽车。 具体地, 该自卸卡车 1包括: 作为其主 体的车体 2、 可起落地设在该车体 2上的车斗 3、 以及可行驶地支撑该车体 2, 安装有轮胎 的车轮, 具体地, 车轮包括前轮 4和后轮 5。 具体地, 如图 2所示, 后轮 5由构成双轮胎 的轮胎 6A、 6B 和安装有这两个轮胎 6A、 6B 的车轮构成。
本发明的一个实施例的行驶装置包括车轮、 不可旋转地固定于车体 2 上且驱动车轮旋 转行进的行驶驱动装置, 该行驶装置分别设在后轮 5 的左右两方, 左右后轮 5 被分别驱 动。 在图 2中, 100是配备在行驶驱动装置中的电机 100, 且沿车体 2宽度方向从后轮 5的 内侧插入而配置, 电机 100 是电动机, 接受由安装在自卸卡车 1上的柴油机产生的电力的 供给而进行旋转动作。 通过自卸卡车上的柴油机产生的电力供给电机, 电机的旋转经过行 驶驱动装置减速增矩后, 并通过与行驶驱动装置部分紧固连接的轮毂, 传递给轮毂, 驱动 与之一体连接的左右后轮相对于车体旋转, 从驱动自卸卡车的行驶。 如图 3 所示, 机动车 用行驶驱动装置包括: 车轮、 主轴 10、 减速输入轴部 20、 减速齿轮组 30 (减速部由 20和 30组成, 图中未标注)、 联轴器 40和轮毂 50, 其中, 车轮安装有轮胎; 主轴 10与车体 2 一体的连接,且与之共运动的设置;减速输入轴 20通过联轴器 40与电机 100的输出轴 100a 不可旋转的连接, 与共轴 10共轴线线的设置, 且深入主轴 10 内部, 沿主轴的轴线方向延 伸; 减速齿轮组 30固定在主轴 10的内部, 介于减速输入轴和后轮 5之间, 且将动力从减 速输入轴 20传递到车轮, 优选地, 减速齿轮组 30与减速输入轴 20共轴线的设置; 一体成 型的轮毂 50, 夹设在车轮与主轴 10之间, 可旋转的套设在主轴 10上, 通过螺栓与减速齿 轮组 30紧固成一体, 且与主轴 10共轴线的设置。 上述行驶驱动装置通过与电机输出轴一 体设置的减速输入轴, 将电动的旋转运动传递给减速部, 通过减速部传递给一体成型的轮 毂, 由此, 带动轮毂围绕主轴可旋转的回转, 驱动与之固定的左右后轮, 从而驱动自卸卡 车的行驶, 与现有技术中的行驶驱动装置不同的是, 本发明中的行驶驱动装置的轮毂是一 体成型, 极大的提高了电动机旋转运动中承载的能力, 提升整个驱动装置的动力输出, 增 加了作业车辆的承载力, 实现了大型载重汽车承载量的再次突破。
在本发明的实施例中, 为了解决传递较大扭矩过程中旋转轴易断裂, 寿命较短的问题, 减速输入轴 20—体的成型, 包括外径不等的第一旋转轴 21和第二旋转轴 22, 第一旋转轴 21和第二旋转轴 22顺次串联且同轴线的连接, 进一步地, 为了能够提供较大的动力输出, 具体地, 减速输入轴 20通过联轴器 40与电机输出轴 100a不可旋转的连接, 第一旋转轴 21 抵靠联轴器 40连接, 第二旋转轴 22沿主轴 10轴线方向, 朝向远离联轴器 40的方向延伸, 且第二旋转轴 22的外径大于第一旋转轴 22的外径, 优选地, 第二旋转轴 22端部的外周面 均布有齿, 且与减速机内部的齿轮啮合, 以此将电机 100的输出轴 100a的扭矩通过连接成 一体的联轴器 40传递给减速输入轴 20,通过第二旋转轴 22外周面的齿进一步的进行传递, 从而实现将电机 100的旋转扭矩传递给减速齿轮组 30,经过减速齿轮组 30的减速增扭后传 递至与减速齿轮组 30紧固成一体的轮毂 50, 进而驱动后轮旋转, 驱动自卸卡车进行。 为了确保旋转轴之间传动的平稳性, 降低或者抵消传动过程中沿其长度方向的剪切应 力, 提高旋转轴径向、 轴向和角向等轴线偏差补偿能力, 联轴器 40围设在电机 100的输出 轴 100a与减速输入轴 20的连接处, 联轴器 40环套在输出轴 100a末端的外周面, 通过支 架内存式的固定在主轴 10上, 沿减速输入轴 20的轴向, 远离电机 100的方向延伸, 较佳 地, 联轴器 40为齿形联轴器, 以利于输出轴 100a与减速输入轴 20同轴的连接, 提高传递 转矩的能力, 延长其使用寿命。
如图 3所示, 减速齿轮组 30包括第一行星齿轮机构 31和第二行星齿轮机构 32, 第一 行星齿轮机构 31和第二行星齿轮机构 32在主轴 10的径向上朝向离开该主轴 10的方向, 按照第一行星齿轮机构 31和第二行星齿轮机构 32的顺序配置, 第一行星齿轮机构 31与减 速输入轴 20啮合, 具体地, 第一行星齿轮机构 31围设在第二旋转轴 22的周侧, 并与之啮 合。
为了增强整个减速部的承载强度, 优化减速部的均载能力, 以及拆卸检修的便捷, 在 结构上优选地, 第一行星齿轮机构 31和第二行星齿轮机构 32在主轴 10的轴线方向上, 远 离电机 100的方向, 按照第一行星齿轮机构 31和第二行星齿轮机构 32的顺序配置。 换而 言之,电机 100的输出轴 100a与减速输入轴 20共轴线的连接,减速输入轴 20远离电机 100 的另外一端与第一行星齿轮机构 31共轴线啮合的设置, 第一行星齿轮机构 31与第二行星 齿轮机构 32共轴线的啮合连接。 以此, 电机 100输出轴 100a的旋转运动通过减速输入轴 20与第一行星齿轮机构 31旋转的啮合运动, 驱动第一行星齿轮机构 31旋转, 通过第一行 星齿轮机构 31和第二行星齿轮机构 32之间齿轮组的啮合传动, 驱动第二行星齿轮机构 32 旋转, 从而带动与第二行星齿轮机构 32紧固成一体连接的轮毂旋转, 实现将电机 100的旋 转动力输出给轮辋, 以此驱动其旋转的运动。
优选地,第一行星齿轮机构 31包括: 第一太阳齿轮 311、第一行星齿轮 312、轴承 313、 第一行星齿轮架 314、 第一齿圈 315, 其中, 第一太阳齿轮 311与减速输入轴 20的第二旋 转轴 22共轴线的啮合连接; 第一行星齿轮 312夹设在第一太阳齿轮 311和第一齿圈 315之 间, 且分别与之啮合; 第一行星齿轮架 314通过轴承 313与第一行星齿轮 312连接成一体; 第一齿圈 315通过螺栓与主轴 10紧固成一体。
第一行星齿轮架 314包括螺柱 314a、 连接板 314b和凸面 314c, 连接板 314b通过多个 螺栓 314a与凸面 314c紧固成一体, 凸面 314c远离与连接板 314b固定侧的另外一侧, 沿 主轴 10的轴线方向, 远离电机 100的方向, 其端侧面延伸凸出。 较佳地, 凸面 314c延伸 凸起端加工有内花键, 优选地, 凸面 314c靠近主轴 10的凸起端的内侧周侧面加工有内花 键。
第一齿圈 315包括一级齿圈 315a、 二级齿圈 315b、 固定齿轮盘 315c、 螺栓 315d, 其 中, 一级齿圈 315a和二级齿圈 315b在主轴 10的轴线方向上, 远离电机 100的方向, 按照 一级齿圈 315a和二级齿圈 315b顺序配置, 且共轴线的一体连接; 固定齿轮盘 315c—端不 可旋转地固定在主轴 10的内周侧面上,相对设置的另外一端通过螺栓 315d与一级齿圈 315a 紧固成一体。 主轴 10相对于车轮 200可旋转的固定, 也就是说, 第一齿圈 315相对于车轮 200旋转地固定。 优选地, 为了优化齿轮组之间传递力的效率, 一级齿圈 315a和二级齿圈 315b一体成型而成。 进一步地, 为了第一齿圈 315可靠的与主轴 10之间的固定, 还包括用来固定第一齿圈 315的销轴 315e和法兰螺栓 315f, 多个法兰螺栓 315f贯穿第一齿圈 315紧固在主轴 10的 内周侧面上。 具体地, 轴套 315e抵靠固定齿轮盘 315c的一端, 通过多个法兰螺栓 315f将 其压紧与主轴 10紧固的连接, 固定齿轮盘 315c远离主轴 10另外一端通过销轴 315d与一 级齿圈 315a—体的连接,通过销轴 315d进一步地限制了一级齿圈 315a与固定齿轮盘 315c 的轴向位移, 换言之, 这样使得固定齿轮盘 315c和一级齿圈 315a可靠地成一体的连接。
进一步地, 为了将一级齿圈 315a可靠的与主轴 10紧固成一体, 固定齿轮盘 315c包括 内径大小不同的小端面和大端面, 固定齿轮盘 315c的小端面和主轴 10的端侧面通过法兰 螺栓 315f紧固, 销轴 315d贯穿固定齿轮盘 315c的大端面与一级齿圈 315a的紧固成一体, 以此, 通过销轴 315d和法兰螺栓 315f 将固定齿盘 315b固定的连接到主轴 10上。 至此, 主轴 10、 固定齿盘 315b、 齿圈 315就可靠地固连成一体。
较佳地, 第一行星齿轮 312为三个, 均布在太阳行星齿轮 31的周侧, 与之共轴线的啮 合。 此外, 第一齿圈 315还可以是一体成型的整体, 以此获得更好的力学性能。
第二行星齿轮机构 32包括: 第二太阳齿轮 321、 第二行星齿轮 322、 轴承 323、 第二行 星齿轮架 324、 第二行星架 325, 其中, 第一太阳齿轮 311和第二太阳齿轮 321在主轴 10 的轴线方向上, 远离主轴 10的方向上, 按照第一太阳齿轮 311和第二太阳齿轮 321顺序配 置, 且共轴线的设置; 第二行星齿轮 322夹设在第二太阳齿轮 321和第一齿圈 315之间, 且分别与之啮合; 第二行星齿轮架 324通过轴承 323与第二行星齿轮 322—体的连接; 第 二行星架 325分别与第二行星齿轮架 324和轮毂 50通过螺栓紧固成一体。
较佳地, 第二行星齿轮 322 均布在第一行星齿轮机构的齿圈内, 具体地, 第二行星齿 轮 322均布在二级齿圈 315b内部, 通过齿轮与之啮合, 在主轴 10的径向上朝向离开该主 轴 10的方向, 按照第二太阳齿轮 321和第二行星齿轮 322的顺序配置; 在主轴 10的轴线 方向上, 远离电机 100的方向, 第二行星架 325固定在第二太阳齿轮 321远离主轴 10的端 侧面;第二行星齿轮架 324通过贯穿其内部的多个螺柱 324a将轴承 323、第二行星齿轮 321 和第二行星架 325紧固成一体, 第二行星架 325通过螺栓连接到轮毂 50。 优选地, 第二太 阳齿轮 321沿减速输入轴的延伸方向旋转固定, 进一步地, 第二行星齿轮 322与第二太阳 齿轮 321共轴线可旋转的固定。
优选地, 第二行星齿轮 322为四个, 环绕第二太阳齿轮 321均布, 且内表面通过轴承 323与第二太阳齿轮 321啮合公转的同时,加工有齿的外表面与第一行星齿轮机构内部齿圈 (二级齿圈 315b ) 啮合自转。
第二太阳齿轮 321可以为各种适当的结构, 例如, 为外表面加工有齿的圆柱。 较佳地, 第二行星齿轮 321整体呈阶梯的圆柱体外形, 包括依次连接的圆筒面部 321a和圆柱凸出部 321b , 圆柱凸出部 321b通过轴肩与一级太阳行星齿轮 31连接,进一步地, 圆柱凸出部 321b 与第一行星齿轮架 314的内花键啮合传动, 较佳地, 圆筒面部 321a和圆柱凸出部 321b共 轴线的设置, 以避免扭矩在传递过程中产生的剪切应力。
为了便于注入润滑油, 较佳地, 还包括连接在第二行星架 325的止推器端盖 326, 该止 推器端盖 326通过多个螺栓 326a与第二行星架 325紧固成一体,进一步地,止推器端盖 326 内设有空腔, 用来便于储存冷却油。 为了消除减速输入轴的轴向热膨胀, 较佳地, 在第二太阳齿轮 321 和止推器端盖 326 之间安装有止推铜垫 327, 止推铜垫 327建设在第二太阳齿轮 321和止推器端盖 326之间, 沿第二太阳齿轮 321 的轴线移动, 通过活动设置的止推铜垫避免了旋转轴在大扭矩传递过 程中的轴向因为膨胀, 干涉止推器端盖的旋转。
这样构成的减速齿轮组 30如下所述地动作。
联轴器 40将牵引电机输出轴 100a与减速输入轴 20通过花键连接在一起, 从牵引电机 输出轴 100a输出的扭矩传减速增扭后递到第一行星齿轮机构 31,通过其内部齿轮啮合的第 一太阳齿轮 311, 将其旋转传递到第一行星齿轮 312, 由于第一齿圈 315与主轴 10固定成 一体, 所以第一行星齿轮 312绕第一太阳齿轮 311公转的同时, 绕第一齿轮 315 自转, 从 而驱动与之固定的第一行星齿轮架 314相对于主轴 10旋转, 故而将第一太阳齿轮 311的旋 转传递到第一行星齿轮架 314, 继而通过第一行星齿轮架 314的凸面 314c传递给第二太阳 齿轮 321, 结果, 第二太阳齿轮 321进行旋转。
由此, 当第二太阳齿轮 321如此旋转时, 第二行星齿轮机构 32中, 第二太阳齿轮 321 带动第二行星齿轮 322旋转, 第二行星齿轮 322—边自传的同时, 沿二级齿圈 315b公转, 即沿第一齿圈 315公转, 从而带动第二行星齿轮架 324旋转。 由于第二行星齿轮架 324与 轮毂 50—体地被固定, 所以与安装在轮毂 50外侧的后轮 5—起旋转。
如此, 将牵引电机的传来的扭矩经由第一行星齿轮机构 31和第二行星齿轮机构 32减 速增扭的作用后传递到后轮 5, 从而自卸车的车轮被驱动。
在本实施例的机动车用行驶驱动装置中, 优选地, 电机 100配置在主轴 10的轴向一端 侧, 且相对于车体 2一体的连接, 包括驱动部 100b和输出轴 100a, 该电机的驱动部 100b 呈圆锥的外形, 沿车体 2朝向减速齿轮组 30的方向, 外径减缩的延伸; 输出轴 100a贯穿 驱动部 100b, 朝向减速齿轮组 30的方向延伸, 经由联轴器 40不可旋转地与减速输入轴 20 连接。
在本发明的实施例中, 轮毂 50可以采用各种适当的机构, 只要能够将电机 100通过减 速齿轮组 30减速增扭后, 传递至后轮 5即可。 例如, 轮毂 50为套设在主轴 10外侧, 夹设 在减速齿轮组 30和电机 100之间的套筒, 靠近电机 100的一端通过轴承可旋转的固定在主 轴 10的外周面, 远离电机 100的另外一端内部加工有容纳减速齿轮组 30的内腔, 且与减 速齿轮组 30—体的连接。 进一步地, 为了实现较大扭矩的传递、 优化轮毂的受力、 延长轮 毂的使用寿命, 轮毂 50为一体成型的整体。 具体地, 如图 5所示, 轮毂 50包括轮毂外环 51和轮毂连接器 52, 该轮毂外环 51通过轴承可转动的固定在主轴 10的外周面上, 远离电 机 100的另外一端通过螺栓与减速齿轮组 30连接成一体, 轮毂连接器 52夹设在轮毂外环 51与主轴 10之间, 通过螺栓与轮毂外环 51紧固成一体, 更具体地, 第二行星架 325通过 螺栓与轮毂外环 51紧固成整体, 在第二行星齿轮架 324的驱动下, 带动轮毂连接器 52— 起相对主轴 10旋转, 以此, 将电机 100的旋转运动传递转换为轮毂 50相对主轴 10的旋转 运动。 为了使减速齿轮组 30能被润滑油良好的冷却, 降低传动过程中产生的热量, 还包括为 主轴 10和减速齿轮组 30提供润滑油的冷却组件 60。 该冷却组件 60包括吸油管 61、 回油 管 62、 第一型腔 63、 第二型腔 64、 第三型腔 65, 其中, 吸油管 61和回油管 62深入主轴 10内部延伸固定, 且与内部空腔连通, 吸油管 61和回油管 62对称分布在主轴 10轴线的两 侧; 第一型腔 63和第二型腔 64由减速齿轮组 30内部啮合传动的齿轮间的间隙串通组成, 第一型腔 63和第二型腔 64连通的固定, 且与吸油管 61连通的固定; 第三型腔 65由主轴 10、 轮毂 50和制动器 70共同围成, 与第二型腔 64和回油管 62保持连通, 进一步地, 第 一型腔 63和第二型腔 64由第一齿圈 315、 固定齿轮盘 315c、 和第二行星架 325共同围成。
综上所述, 润滑油通过吸油管 61后, 通过啮合齿轮之间的间隙注入与之连通的第一型 腔 63和第二型腔 64, 经第三型腔 65汇总后, 进入回油管 62, 以此形成一个封闭的冷却回 路, 方便的将润滑油注入减速齿轮组 30的内部, 实现对减速齿轮组 30 内部多对啮合的齿 轮的润滑和冷却。
为了实现冷却回路的自动循环, 还包括为润滑油提供压力的液压泵 66, 经该液压泵 66 加压后的润滑油与进油管 61保持连通。
润滑油通过吸油管 61进入型腔 63的内部, 通过齿轮旋转过程的飞溅作用, 将润滑油 带入第二型腔 64, 因此, 可以直接有效的冷却止推铜套 327, 同时第一型腔 63和第二型腔 64、第三型腔 65是相互贯通的,润滑油可以在各个型腔内有效的冷却齿轮和轴承等零件后, 在液压泵 66的压力作用下, 润滑油经过多个啮合的齿轮组后, 循环进入第三型腔 65, 然后 通过回油管 62吸走, 以此形成一个冷却的回路。
为了确保实时的掌握电动轮减速齿轮组 30 内部的温度, 还包括设置在减速齿轮组 30 内部, 用来监控减速齿轮组 30温度的传感器 67 (视图中未标示), 该传感器 67与控制整车 冷却回路的控制系统电连接。
此外, 为了实现对后轮 5的制动, 还包括介于在主轴 10和轮毂 50之间的制动器 70, 设置在主轴的外周面上, 该制动器 70—端固定在主轴 10上, 作为制动器的静止端, 另一 端通过螺栓与轮毂 50连接成一体, 并随轮毂 50—起旋转。 以此, 通过制动器对其旋转部 分的制动, 实现对轮毂 50旋转速度的控制, 从而限制整个车辆的行驶速度, 进一步地, 为 了实现高效、 精准的制动, 制动器 70为湿式制动器。 具体地, 如图 5所示, 制动器 70包 括制动器固定座 71和活塞 73, 以及夹设在制动器固定座 71和活塞 73之间的摩擦片 72, 该制动器固定座 71通过螺栓与轮毂 50连接成一体, 沿主轴 10的轴向方向, 活塞 73与主 轴 10可相对移动的固定。
众所周知, 当车辆的载重量越大, 对制动器的摩擦片要求越高, 在本发明优选实施例 中, 行驶驱动装置使用在装载超过 100 吨的机动车上, 现有技术中制动器的摩擦片在工作 时存在发热量大、 噪音大、 使用寿命短、 维护成本高等缺陷。 为了延长制动器使用寿命长, 降低制动过程中噪音, 降低制造及维护的成本, 在结构上优选地, 摩擦片 72采用纸基耐磨 材料和钢片混合制成, 以此, 使得摩擦片之间的摩擦系数更高, 使得制动器的有效制动面 积更大。
具体地,如图 6所示,摩擦片 72由至少一层纸基摩擦材料 72a和至少一层钢片基体 72b 贴合而成, 以此, 获得摩擦系数较高、 动 /静摩擦系数接近、 传送扭矩能力强、 结合柔和、 噪音小的摩擦片。
优选地, 如图 5所示, 摩擦片 72包括依次交错设置的至少一个活动摩擦片 721和至少 一个固定摩擦片 722,活动摩擦片 721与固定摩擦片 722径向的两个侧面设置有高摩擦系数 的摩擦颗粒, 且活动摩擦片 721与固定摩擦片 722间隙相距, 可在相对旋转过程中调整, 进一步地, 活动摩擦片 721与制动器固定座 71连接成一体的固定, 固定摩擦片 722与活塞 73连接成一体, 以此, 在活塞 73的驱动下, 依次交错设置的活动摩擦片 721和固定摩擦片 722之间位移可调的固定, 制动的情况下, 驱动活塞 73、 固定摩擦片 722与活动摩擦片 721 之间的间距缩小, 相互之间的摩擦阻力增大, 使得相对旋转的固定摩擦片 722 和活动摩擦 片 721之间阻力变大, 使得通过轮毂连接器 52与活动摩擦片 721固定成一体的轮毂 50相 对主轴 10之间旋转的阻力加剧, 实现对轮毂 50旋转速度的控制。 此外, 为了便于主轴 10 与电机 100之间连接的稳定, 如图 3所示, 还包括夹设在电机 100与主轴 10之间, 且与之 连接的桥式底座 80。 进一步地, 避免受力的不均匀, 桥式底座 80为四个, 沿电机 100的输 出轴 100a的周向均布, 较佳地, 桥式底座 80与主轴 10—体的设置。
在本发明的实施例中, 如图 5 所示, 为了增加车辆的载重质量, 还包括连接在后轮 5 和轮毂 50之间的轮辋 90, 轮辋 90套设在轮毂 50上, 与之共轴线的设置, 并与之一体的连 接, 通过与轮毂 50—体连接的轮辋 90, 将整个车辆的负载极其自身的重量均衡的分散到与 后轮 5上。
具体地, 轮辋 90包括外侧轮辋 91、 轮辋隔圈 92、 内侧轮辋 93, 其中, 外侧轮辋 91和 内侧轮辋 93分别与后轮 5紧固配合, 沿主轴 10的轴线方向间隔的布置; 轮辋隔圈 92夹设 在外侧轮辋 91和内侧轮辋 93之间; 在主轴 10的轴向上, 远离电机 100的方向, 内侧轮辋 93、 轮辋隔圈 92和外侧轮辋 91顺序抵靠的连接。 优选地, 为了更好的将轮辋 90与轮毂 50 紧固, 还包括与主轴 10紧固成一体的斜铁 94, 在主轴 10的轴向方向, 从远离电机 100的 反向, 斜铁 94厚度递减的夹设在轮辋 90和轮毂 50之间, 朝向电机 100的方向延伸, 通过 设置厚度递减的斜铁 94, 在斜铁 94与主轴 10之间固定的同时, 将斜铁 94强制性的挤压至 轮辋 90与轮毂 50之间的间隙, 进一步的将轮辋 90紧固在轮毂 50上, 很好的确保了轮毂 和轮辋之间连接成一体, 有效的避免行驶过程中容易松脱的问题。
值得一提的是, 为了缓解车辆行驶过程的振动对车斗 3的影响, 如图 2所示, 还包括 夹设在驱动行驶装置与车斗 3之间的后悬油缸 8,该后悬油缸 8两端分别可活动的固定在驱 动行驶装置和车斗 3 上, 优选地, 为了便于组装和降低后续维护的成本, 以及在车辆行驶 过程能够自动调节受力的支撑点, 自动调整承载力的方向, 后悬油缸 8 两端分别与驱动行 驶装置和车斗 3铰接。
具体地, 如图 7所示, 后悬油缸 8包括活塞杆 810和缸体 820, 其中, 活塞杆 810—端 套设在缸体 820 的内腔, 相对设置的另外一端相对于缸体 820可伸缩的设置, 活塞杆 810 包括焊接成一体的塞杆 811和塞头 812, 进一步的, 为了获得更加稳定、 可靠的机械性能, 塞杆 811和塞头 812均为一体成型的整体, 优选地, 塞杆 811和塞头 812均为通过锻造一 体成型的整体。 以此, 通过锻造而成的塞杆 811和塞头 812焊接成整体的活塞杆 810, 其余 部位均不使用焊接型式, 在避免了由于多个部件在焊合过程容易导致的加工缺陷的同时, 也杜绝了因为多道焊接导致的残余应力, 提升了整个活塞杆的机械性能。
如图 8所示, 缸体 820包括连接成一体的缸筒 821和端盖 822, 优选地, 缸筒 821和端 盖 822通过焊接, 连接成整体, 进一步的, 为了优化缸体 820的机械性能, 提升其力学性 能, 缸筒 821和端盖 822均为一体成型的整体, 优选地, 缸筒 821和端盖 822均为通过锻 造一体成型的整体。 同理, 通过锻造而成的缸筒 821和端盖 822焊接成整体的缸体 820, 其 余部位均不使用焊接型式, 在避免了由于多个部件在焊合过程容易导致的加工缺陷的同时, 也杜绝了因为多道焊接导致的残余应力, 提升了整个活塞杆的机械性能。
为了确保后悬油缸在车辆作业过程处于一个纯净的作业环境, 避免灰尘进入后悬油缸 体内部, 还包括夹设在活塞杆 810和缸体 820之间, 且与之保持密封的防尘圈 830, 以及环 罩在缸体 820上, 该防尘罩 840布置在远离活塞杆 810的末端; 进一步地, 为了避免车辆 在行驶和作业过程对后悬油缸的缸体外表面的磕碰或者撞击, 确保后悬油缸作业过程的平 稳性, 还包括套设在缸体 820上, 沿活塞杆 810远离缸体 820方向延伸的挡泥板 850。
综上所述, 通过锻造一体成型的塞杆、 塞头、 缸筒、 和端盖, 在避免了由于多个部件 在焊合过程容易导致的加工缺陷的同时, 也杜绝了因为多道焊接导致的残余应力, 从而, 使得后悬油缸整体质量得到稳定的提高, 使得其安全余量大幅提升, 延长了后悬油缸的使 用寿命、 减小了产品安全隐、 降低了客户维护保养成本。 本发明专利虽然已以较佳实施例 公开如上, 但其并不是用来限定本发明专利, 任何本领域技术人员在不脱离本发明专利的 精神和范围内, 都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动 和修改, 因此, 凡是未脱离本发明专利技术方案的内容, 依据本发明专利的技术实质对以 上实施例所作的任何简单的修改、 等同变化及修饰, 均属于本发明专利技术方案的保护范 围。

Claims

权 利 要 求 书
1.机动车用行驶驱动装置, 其特征在于, 包括:
主轴, 其固定在所述机动车的车体上且与车体共运动的设置;
电机, 其设置在主轴的一端侧, 且与主轴固定连接; 且连接一电机输出轴, 所述电机输 出轴内置于主轴内;
减速部, 包括减速输入轴和减速齿轮组, 减速输入轴与电机输出轴同轴活动连接, 且减 速输入轴沿主轴中心轴线设置与主轴内并活动连接减速齿轮组, 减速齿轮组设置在主轴的 另一端侧, 减速部配置地用于经电机传动后减速传动至所述机动车的轮毂, 从而完成减速 驱动;
轮毂, 其一体成型并套设在主轴外侧, 且绕主轴的中心轴旋转, 继而驱动车轮旋转; 制动器, 其夹设与主轴和轮毂之间, 一端与主轴固定连接形成制动器的静止部, 另一端 与轮毂活动连接且随轮毂一同旋转。
2. 根据权利要求 1所述的驱动行驶装置, 其特征在于, 减速输入轴一体成型, 其包括 外径不等的第一旋转轴和第二旋转轴, 且第一旋转轴与第二旋转轴同轴串联。
3. 根据权利要求 2所述的驱动行驶装置, 其特征在于, 减速输入轴通过联轴器与电机 输出轴刚性连接, 第一旋转轴与联轴器抵靠连接, 第二旋转轴沿主轴轴线方向, 朝向远离 联轴器的方向延伸, 且第二旋转轴的外径大于第一旋转轴的外径。
4. 根据权利要求 1所述的驱动行驶装置, 其特征在于, 轮毂为套设在主轴外侧且夹设 在减速部和电机之间的套筒, 靠近电机的一端通过轴承可旋转的固定在主轴的外周面, 远 离电机的另外一端设有容纳减速部的内腔, 且与减速部一体的连接。
5. 根据权利要求 1所述的驱动行驶装置, 其特征在于, 还包括分别为主轴和减速部提 供润滑油的冷却组件, 冷却组件包括吸油管、 回油管、 第一型腔、 第二型腔、 第三型腔, 其中, 吸油管和回油管深入主轴内部延伸固定, 且与内部空腔连通; 吸油管和回油管对称 分布在主轴轴线的两侧; 第一型腔和第二型腔由减速机内部啮合传动的齿轮间的间隙串通 而成; 第一型腔和第二型腔连通的固定, 且与吸油管连通的固定; 第三型腔由主轴、 轮毂 和制动器共同围成, 并与第二型腔和回油管保持连通。
6. 根据权利要求 5所述的驱动行驶装置, 其特征在于, 还包括设置在减速部内部, 用 来监控减速部温度的传感器, 传感器与控制整车冷却回路的控制系统电连接。
7. 根据权利要求 1所述的驱动行驶装置, 其特征在于, 制动器为湿式制动器。
8. 根据权利要求 7所述的驱动行驶装置, 其特征在于, 制动器包括制动器固定座和活 塞, 以及夹设在制动器固定座和活塞之间的摩擦片, 制动器固定座通过螺栓与轮毂连接成 一体, 沿主轴的轴线方向, 活塞与主轴可相对移动的固定。
9. 根据权利要求 8所述的驱动行驶装置, 其特征在于, 摩擦片由至少一层纸基摩擦材 料和至少一层钢片基体贴合而成。
10.根据权利要求 8或 9所述的驱动行驶装置, 其特征在于, 摩擦片包括依次交错设置 的至少一个活动摩擦片和至少一个固定摩擦片, 活动摩擦片与固定摩擦片径向的两个侧面 设置有高摩擦系数的摩擦颗粒, 且活动摩擦片与固定摩擦片间隙相距, 可相对旋转的分布。
11.根据权利要求 1至 9任一项所述的驱动行驶装置, 其特征在于, 减速齿轮组包括第 一行星齿轮机构和第二行星齿轮机构, 第一行星齿轮机构和第二行星齿轮机构在主轴的径 向上朝向远离该主轴的方向, 按照第一行星齿轮机构和第二行星齿轮机构的顺序配置。
12.根据权利要求 11 所述的驱动行驶装置, 其特征在于, 第一行星齿轮机构和第二行 星齿轮机构在主轴的轴线上, 远离电机的方向, 按照第一行星齿轮机构和第二行星齿轮机 构的顺序配置。
13.根据权利要求 11 所述的驱动行驶装置, 其特征在于, 第一行星齿轮机构包括: 第 一太阳齿轮、 第一行星齿轮、 轴承、 第一行星齿轮架、 第一齿圈, 其中, 第一太阳齿轮与 减速输入轴的第二旋转轴共轴线的啮合活动连接; 第一行星齿轮夹设在第一太阳齿轮和第 一齿圈之间, 且分别与之啮合; 第一行星齿轮架通过轴承与第一行星齿轮连接成一体; 第 一齿圈通过螺栓与主轴紧固成一体。
14.根据权利要求 13所述的驱动行驶装置, 其特征在于, 第一行星齿轮架包括螺柱、 连接板和凸面, 连接板通过螺栓与凸面紧固成一体, 凸面远离于连接板固定侧的另外一侧, 沿主轴的轴线并且远离电机的方向, 其端侧面延伸凸出。
15.根据权利要求 13所述的驱动行驶装置, 其特征在于, 第一齿圈包括一级齿圈、 二 级齿圈、 固定齿轮盘、 螺栓, 其中, 一级齿圈和二级齿圈在主轴的轴线上, 远离电机的方 向, 按照一级齿圈和二级齿圈顺序配置, 且共轴线的一体连接; 固定齿轮盘一端不可旋转 地固定在主轴的内周侧面上, 相对设置的另外一端通过螺栓与一级齿圈紧固成一体。
16.根据权利要求 15所述的驱动行驶装置, 其特征在于, 第一齿圈还包括用来固定第 一齿圈的销轴和法兰螺栓, 法兰螺栓贯穿第一齿圈紧固在主轴的内周侧面上。
17.根据权利要求 11 任一项所述的驱动行驶装置, 其特征在于, 第二行星齿轮机构包 括: 第二太阳齿轮、 第二行星齿轮、 轴承、 第二行星齿轮架、 第二行星架, 其中, 第一太 阳齿轮和第二太阳齿轮在主轴的轴线上, 远离主轴的方向上, 按照第一太阳齿轮和第二太 阳齿轮顺序配置, 且共轴线的设置; 第二行星齿轮夹设在第二太阳齿轮和第一齿圈之间, 且分别与之啮合; 第二行星齿轮架通过轴承与第二行星齿轮一体的连接; 第二行星架分别 与第二行星齿轮架和轮毂通过螺栓紧固成一体。
18.根据权利要求 17所述的驱动行驶装置, 其特征在于, 第二行星齿轮均布在第一行 星齿轮机构的齿圈内, 通过齿轮与之啮合, 在主轴的径向上朝向离开该主轴的方向, 按照 第二太阳齿轮和第二行星齿轮的顺序配置。
19.根据权利要求 17所述的驱动行驶装置, 其特征在于, 还包括连接在第二行星架的 止推器端盖, 推器端盖通过螺栓与第二行星架紧固成一体。
20.根据权利要求 19所述的驱动行驶装置, 其特征在于, 在第二太阳齿轮和止推器端 盖之间安装有止推铜垫, 止推铜垫在第二太阳齿轮和止推器端盖之间轴向移动。
21.根据权利要求 1所述的驱动行驶装置,其特征在于,还包括夹设在电机与主轴之间, 且与之连接的桥式底座。
22.根据权利要求 1所述的驱动行驶装置, 其特征在于, 还包括套设在轮毂上, 与之共 轴线, 且连接成一体的轮辋, 轮辋包括外侧轮辋、 轮辋隔圈、 内侧轮辋, 外侧轮辋和内侧 轮辋分别与后轮紧固配合, 沿主轴的轴线方向间隔的布置; 轮辋隔圈夹设在外侧轮辋和内 侧轮辋之间; 在主轴的轴线方向上, 远离电机的方向, 内侧轮辋、 轮辋隔圈和外侧轮辋顺 序抵靠的连接。
23.根据权利要求 22所述的驱动行驶装置, 其特征在于, 还包括与主轴紧固成一体的 斜铁。
24.根据权利要求 23所述的驱动行驶装置, 其特征在于, 沿主轴的轴线、 从远离电机 的反向, 斜铁厚度递减的夹设在轮辋和轮毂之间, 朝向电机的方向延伸。
25.一种机动车, 包括车体和装载在车体上的车斗、 驱动行驶装置、 以及与车体连接的 后轮和电机, 其特征在于, 所述行驶驱动装置为权利要求 1至 24所述的驱动行驶装置。
26.根据权利要求 25所述的驱动行驶装置, 其特征在于, 还包括夹设在驱动行驶装置 与车斗之间的后悬油缸, 后悬油缸两端分别可活动的固定在驱动行驶装置和车斗上。
27.根据权利要求 26所述的驱动行驶装置, 其特征在于, 后悬油缸包括活塞杆和缸体, 活塞杆一端套设在缸体的内腔, 相对设置的另外一端相对于缸体可伸缩的设置; 活塞杆包 括焊接成一体的塞杆和塞头, 塞杆和塞头均为通过锻造一体成型的整体; 缸体包括连接成 一体的缸筒和端盖, 缸筒和端盖通过焊接, 连接成整体, 缸筒和端盖均为一体成型的整体。
PCT/CN2017/072732 2016-07-26 2017-01-26 无标题 WO2018018868A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610597062 2016-07-26
CN201610597062.4 2016-07-26
CN201610850071 2016-09-26
CN201610850071.X 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018018868A1 true WO2018018868A1 (zh) 2018-02-01

Family

ID=61015909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072732 WO2018018868A1 (zh) 2016-07-26 2017-01-26 无标题

Country Status (1)

Country Link
WO (1) WO2018018868A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200369079A1 (en) * 2018-07-19 2020-11-26 Gacw Incorporated Off-highway vehicle including frame coupled gas spring wheel assemblies
WO2021071801A1 (en) * 2019-10-08 2021-04-15 Gacw Incorporated Off-highway vehicle including frame coupled gas spring wheel assemblies
US10987970B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including inner and outer rim coupled rings defining a mechanical stop and related methods
US10987969B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including lateral stops and related methods
US10987971B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including outer rim coupled ring defining a mechanical stop and related methods
US11135871B2 (en) 2018-07-19 2021-10-05 Gacw Incorporated Wheel assembly including inner and outer rim coupled hydraulic dampers and related methods
WO2021209830A1 (zh) * 2020-03-03 2021-10-21 罗伯特·博世有限公司 集成式驱动系统和电动车辆
US11325417B2 (en) 2018-07-19 2022-05-10 Gacw Incorporated Wheel assembly including arcuate inner and outer rim assemblies and related methods
US11479108B2 (en) * 2018-11-08 2022-10-25 Hitachi Construction Machinery Co., Ltd. Dump truck
US11565552B2 (en) 2018-07-19 2023-01-31 Gacw Incorporated Wheel assembly including spaced apart tread members having stacked rubber and reinforcing layers and related methods
US11590795B2 (en) 2018-07-19 2023-02-28 Gacw Incorporated Wheel assembly including sidewall cover assembly and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2644189Y (zh) * 2003-10-15 2004-09-29 苏州盛亿电机有限公司 长寿命电动轮毂
CN201393133Y (zh) * 2009-04-17 2010-01-27 宁波北斗科技有限公司 一种用于电动车的减速电机
CN202798317U (zh) * 2012-09-05 2013-03-13 四川阿克拉斯电动车有限公司 一种电动车轮毂电机双离合器行星变挡机构
CN204271815U (zh) * 2014-11-14 2015-04-15 中国第一汽车股份有限公司 一种新能源车用一体化驱动装置
JP2015190566A (ja) * 2014-03-28 2015-11-02 Ntn株式会社 インホイールモータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2644189Y (zh) * 2003-10-15 2004-09-29 苏州盛亿电机有限公司 长寿命电动轮毂
CN201393133Y (zh) * 2009-04-17 2010-01-27 宁波北斗科技有限公司 一种用于电动车的减速电机
CN202798317U (zh) * 2012-09-05 2013-03-13 四川阿克拉斯电动车有限公司 一种电动车轮毂电机双离合器行星变挡机构
JP2015190566A (ja) * 2014-03-28 2015-11-02 Ntn株式会社 インホイールモータ駆動装置
CN204271815U (zh) * 2014-11-14 2015-04-15 中国第一汽车股份有限公司 一种新能源车用一体化驱动装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279170B2 (en) 2018-07-19 2022-03-22 Gacw Incorporated Wheel assembly including flexible inboard seal and related methods
US10987971B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including outer rim coupled ring defining a mechanical stop and related methods
US20200369079A1 (en) * 2018-07-19 2020-11-26 Gacw Incorporated Off-highway vehicle including frame coupled gas spring wheel assemblies
US10987969B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including lateral stops and related methods
US11325417B2 (en) 2018-07-19 2022-05-10 Gacw Incorporated Wheel assembly including arcuate inner and outer rim assemblies and related methods
US11135871B2 (en) 2018-07-19 2021-10-05 Gacw Incorporated Wheel assembly including inner and outer rim coupled hydraulic dampers and related methods
US11801711B2 (en) 2018-07-19 2023-10-31 Gacw Incorporated Wheel assembly including controllable operating response gas spring and related methods
US11458759B2 (en) 2018-07-19 2022-10-04 Gacw Incorporated Wheel assembly including tread assemblies and related methods
US10987970B2 (en) 2018-07-19 2021-04-27 Gacw Incorporated Wheel assembly including inner and outer rim coupled rings defining a mechanical stop and related methods
US11590795B2 (en) 2018-07-19 2023-02-28 Gacw Incorporated Wheel assembly including sidewall cover assembly and related methods
US11173744B2 (en) 2018-07-19 2021-11-16 Gacw Incorporated Wheel assembly including disk defining a mechanical stop and related methods
US11458760B2 (en) 2018-07-19 2022-10-04 Gacw Incorporated Wheel assembly including relative movement sensor and related methods
US11565552B2 (en) 2018-07-19 2023-01-31 Gacw Incorporated Wheel assembly including spaced apart tread members having stacked rubber and reinforcing layers and related methods
US11554606B2 (en) 2018-07-19 2023-01-17 Gacw Incorporated Off-highway vehicle including frame coupled gas spring wheel assemblies
US11479108B2 (en) * 2018-11-08 2022-10-25 Hitachi Construction Machinery Co., Ltd. Dump truck
WO2021071801A1 (en) * 2019-10-08 2021-04-15 Gacw Incorporated Off-highway vehicle including frame coupled gas spring wheel assemblies
WO2021209830A1 (zh) * 2020-03-03 2021-10-21 罗伯特·博世有限公司 集成式驱动系统和电动车辆

Similar Documents

Publication Publication Date Title
WO2018018868A1 (zh) 无标题
US11479108B2 (en) Dump truck
CN101680524B (zh) 用于与多用途车辆一起使用的直角驱动器的润滑系统
EP3045336B1 (en) In-wheel motor drive device
US9550414B2 (en) Traveling drive device for dump truck
CN108146145B (zh) 一种具有大变速比行星减速器的电动轮及车辆
US6148941A (en) Wheel assembly for a ground-driven work machine and method for assembling the same
JP2003509283A (ja) 車両の車輪を駆動するための車輪駆動装置
CN105966219A (zh) 车辆及用于车辆的电驱动桥总成
CN103448536B (zh) 用于作业车辆的车轴的轮辋以及作业车辆的车轴
CN105984278A (zh) 自卸车
CN108128143A (zh) 一种集成式电动轮及车辆
JPH11500381A (ja) 特に無限軌道帯装着車のための駆動装置
JP4490317B2 (ja) ダンプトラックの走行駆動装置
US9421823B2 (en) Final drive assembly
CN111152607A (zh) 马达横置式液压平板运输车车桥
DE4110638A1 (de) Elektrischer radnabenantrieb fuer kraftfahrzeuge
US6676228B1 (en) Vehicle wheel end assembly with support tube
CN108146144B (zh) 一种用于电动轮的轮毂组件、电动轮及车辆
CN211843960U (zh) 一种马达横置式液压平板运输车车桥
WO2012109672A1 (en) Torque tube, torque transfer apparatus and method
CN210436907U (zh) 一种轮边驱动轮毂
WO2012093552A1 (ja) インホイールモータ駆動装置
CN114987193B (zh) 一种轮毂电驱动装置及车辆
CN212981784U (zh) 一种凸轮轴加工用上料机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833186

Country of ref document: EP

Kind code of ref document: A1