WO2018018818A1 - 一种配置时域调度单元的方法及基站 - Google Patents

一种配置时域调度单元的方法及基站 Download PDF

Info

Publication number
WO2018018818A1
WO2018018818A1 PCT/CN2016/107923 CN2016107923W WO2018018818A1 WO 2018018818 A1 WO2018018818 A1 WO 2018018818A1 CN 2016107923 W CN2016107923 W CN 2016107923W WO 2018018818 A1 WO2018018818 A1 WO 2018018818A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
symbols
time domain
scheduling unit
Prior art date
Application number
PCT/CN2016/107923
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2018018818A1 publication Critical patent/WO2018018818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a base station for configuring a time domain scheduling unit.
  • the time domain scheduling unit ie, the minimum time domain scheduling resource granularity supported by the system
  • the frame in the LTE and LTE-A radio access technologies are all based on Structure to carry out.
  • the size of the time domain scheduling unit is usually fixed, and its frame structure is also fixed.
  • Fixed time domain resource granularity, large scheduling delay (greater than or equal to 4 milliseconds), and long hybrid automatic repeat request (HARQ) feedback delay (more than or equal to 4 milliseconds) are not achievable. .
  • the technical problem to be solved by the embodiments of the present invention is to provide a method and a base station for configuring a time domain scheduling unit.
  • the time domain resource scheduling is not flexible and the system handles a large delay.
  • a first aspect of the embodiments of the present invention provides a method for configuring a time domain scheduling unit, including:
  • a time length of the time domain scheduling unit Determining, by the base station, a time length of the time domain scheduling unit, where the time domain scheduling unit includes a downlink, a protection time slot, and an uplink, and the time length of the time domain scheduling unit is 2 n *5 m milliseconds, m And n are integers;
  • the time domain scheduling unit includes only one subframe, the subframe includes 14 symbols, and the symbols sequentially occupied by the three are sequentially arranged according to the downlink, the protection slot, and the uplink;
  • the information transmitted by the time domain scheduling unit includes only uplink information, set the number of symbols occupied by the downlink to be 0, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 14;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupied by the downlink to be 1 or 2 or 3, setting the number of symbols occupied by the protection slot to 1 or 2, and setting the remaining symbols as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or sounding reference.
  • the number of symbols occupied by the downlink is set to be greater than or equal to 3 and less than or equal to 11, and the number of symbols occupied by the protection slot is set to 1 or 2, and the remaining symbols are set as The length of the uplink; or the number of symbols occupied by the downlink is 12, the number of symbols occupied by the protection slot is set to 1, and the remaining symbols are set as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupied by the downlink is set to 7
  • the number of symbols occupied by the protection time slot is set to 1 or 2
  • the remaining symbols are set as uplink. length;
  • the information transmitted by the time domain scheduling unit includes only downlink information, set the number of symbols occupied by the downlink to 14, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 0.
  • time domain scheduling unit includes M subframes, M is an integer greater than or equal to 2, each subframe includes 14 symbols; and the three are sequentially occupied according to the order of the downlink, the protection slot, and the uplink. symbol;
  • the number of symbols occupied by the downlink is set to 0, the number of symbols occupied by the protection slot is 0, and the length occupied by the uplink is M subframes;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupying the first subframe of the downlink to be 1 or 2 or 3, setting the number of symbols occupying the first subframe to be 1 or 2, and setting the rest of the first subframe. The symbol and the remaining subframes other than the first subframe as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel or downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data. And/or uplink control information and/or sounding reference signal and/or random access preamble, setting the number of symbols of the remaining subframes except the last subframe and the last subframe to be greater than or equal to 3 and less than or equal to 11, setting the guard slot to occupy the last subframe, the number of symbols is 1 or 2, setting the remaining symbols of the last subframe as the length of the uplink; or setting the downlink to occupy the last one.
  • the number of symbols of the remaining sub-frames and the last sub-frame is 12, and the number of symbols occupying the last sub-frame of the protection slot is set to 1, and the remaining symbols of the last sub-frame are set as the length of the uplink. ;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupying the first subframe of the downlink is set to 7
  • the number of symbols occupying the first subframe is set to 1 or 2.
  • the information transmitted by the time domain scheduling unit includes only downlink information
  • set the length occupied by the downlink to be M subframes, and the number of symbols occupied by the protection slot is 0, and the symbol occupied by the uplink The number is 0.
  • the downlink control information of the first subframe of the time domain scheduling unit includes scheduling information for scheduling the entire time domain scheduling unit.
  • the time domain scheduling unit includes only one downlink and uplink conversion.
  • a second aspect of the embodiments of the present invention provides a base station, including:
  • a determining unit configured to determine a time length of the time domain scheduling unit, where the time domain scheduling unit includes a downlink, a guard slot, and an uplink, and the time domain scheduling unit has a time length of 2 n *5 m milliseconds , m and n are integers;
  • a configuration unit configured to configure information transmitted by the time domain scheduling unit according to service requirements, where the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information;
  • a setting unit configured to set a length of the downlink, the protection slot, and the uplink in the time domain scheduling unit according to the information transmitted by the time domain scheduling unit.
  • the time domain scheduling unit includes only one subframe, the subframe includes 14 symbols, and the setting unit is configured to sequentially set the three according to the downlink, the protection slot, and the uplink. symbol;
  • the information transmitted by the time domain scheduling unit includes only uplink information, set the number of symbols occupied by the downlink to be 0, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 14;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupied by the downlink to be 1 or 2 or 3, setting the number of symbols occupied by the protection slot to 1 or 2, and setting the remaining symbols as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or sounding reference.
  • the number of symbols occupied by the downlink is set to be greater than or equal to 3 and less than or equal to 11, and the number of symbols occupied by the protection slot is set to 1 or 2, and the remaining symbols are set as The length of the uplink; or the number of symbols occupied by the downlink is 12, the number of symbols occupied by the protection slot is set to 1, and the remaining symbols are set as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupied by the downlink is set to 7
  • the number of symbols occupied by the protection time slot is set to 1 or 2
  • the remaining symbols are set as uplink. length;
  • the information transmitted by the time domain scheduling unit includes only downlink information, set the number of symbols occupied by the downlink to 14, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 0.
  • the time domain scheduling unit includes M subframes, M is an integer greater than or equal to 2, each subframe includes 14 symbols; and the setting unit is set according to a downlink, a guard slot, and an uplink. The symbols that are sequentially occupied by the three are sequentially set;
  • the number of symbols occupied by the downlink is set to 0, the number of symbols occupied by the protection slot is 0, and the length occupied by the uplink is M subframes;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupying the first subframe of the downlink to be 1 or 2 or 3, setting the number of symbols occupying the first subframe to be 1 or 2, and setting the rest of the first subframe. The symbol and the remaining subframes other than the first subframe as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel or downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data. And/or uplink control information and/or sounding reference signal and/or random access preamble, setting the number of symbols of the remaining subframes except the last subframe and the last subframe to be greater than or equal to 3 and less than or equal to 11, setting the guard slot to occupy the last subframe, the number of symbols is 1 or 2, setting the remaining symbols of the last subframe as the length of the uplink; or setting the downlink to occupy the last one.
  • the number of symbols of the remaining sub-frames and the last sub-frame is 12, and the number of symbols occupying the last sub-frame of the protection slot is set to 1, and the remaining symbols of the last sub-frame are set as the length of the uplink. ;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupying the first subframe of the downlink is set to 7
  • the number of symbols occupying the first subframe is set to 1 or 2.
  • the information transmitted by the time domain scheduling unit includes only downlink information
  • set the length occupied by the downlink to be M subframes, and the number of symbols occupied by the protection slot is 0, and the symbol occupied by the uplink The number is 0.
  • the downlink control information of the first subframe of the time domain scheduling unit includes scheduling information for scheduling the entire time domain scheduling unit.
  • the time domain scheduling unit includes only one downlink and uplink conversion.
  • the time domain scheduling granularity requirement of different services can be met, and after the information required by the time domain scheduling unit is configured according to the service requirement, the downlink and the protection time slot are set according to the transmitted information.
  • the specific length of the uplink so that the base station performs flexible time domain resource scheduling, and can perform downlink and uplink transmissions simultaneously in one time domain scheduling unit, so that downlink downlink data is in the same.
  • the uplink data in the time domain scheduling unit that can be fed back as soon as possible or the uplink authorization scheduling can be sent as soon as possible, so that the system can better adapt to the 5G new service with high delay requirements and possible new services in the future, thereby greatly improving the processing of the system. Efficiency and user experience.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for configuring a time domain scheduling unit according to the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a method for configuring a time domain scheduling unit according to the present invention
  • FIG. 3 is a schematic flow chart of a third embodiment of a method for configuring a time domain scheduling unit according to the present invention.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the main scenarios of future 5G communication include the following three types: enhanced mobile broadband (eMBB), massive machine type communication (mMTC) and high-reliability low latency (Ultra-Reliable and Low Latency Communications, URLLC). ). These three scenarios are different for the type of business, and their needs are different.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low Latency Communications
  • the two main indicators are high bandwidth and low latency (requires 4ms).
  • the uplink scheduling delay and the HARQ feedback delay also have delay effects.
  • the mMTC service requires a narrowband service and requires a long battery life. This service requires a smaller granularity of frequency domain and a wider granularity of time domain resources.
  • the delay requirement is 0.5 ms. It is also necessary to reduce the time domain scheduling granularity, the uplink scheduling delay, and the delay effect caused by the HARQ feedback delay.
  • the embodiment of the present invention discloses a method for configuring a time domain scheduling unit and a base station.
  • the communication system may include a base station and a terminal.
  • the user equipment in the embodiment of the present invention may also be referred to as a terminal, which may include a smart phone (such as an Android mobile phone, an IOS mobile phone, a Windows Phone mobile phone, etc.), a tablet computer, a palmtop computer, a notebook computer, and a mobile Internet device (Mobile Internet Devices). , MID) or wearable device, etc., the above user equipment is only an example, not exhaustive, including but not limited to the above user equipment.
  • the base station in the embodiment of the present invention may configure the time length of the time domain scheduling unit and the specific structure of the time domain scheduling unit according to the service between the terminal, including the specific composition and the specific length of each component, that is, the occupied subframe and / or the number of symbols.
  • the following description will be specifically made in conjunction with FIGS. 1 to 3.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for configuring a time domain scheduling unit according to the present invention.
  • the method includes the following steps:
  • the base station determines a time length of the time domain scheduling unit.
  • the time domain scheduling unit includes a downlink, a protection slot, and an uplink, and the time length of the time domain scheduling unit is 2 n *5 m milliseconds, and m and n are integers.
  • the minimum time domain scheduling granularity of the system may include a downlink (DL), a guard time slot (GP), and an uplink (UL), and the three may be sequentially arranged in the time domain scheduling unit.
  • the order of the three sorting may be the order of the GP-UL-DL or the UL-DL-GP in addition to the order of the DL-GP-UL described in this embodiment.
  • the embodiment of the invention is not limited at all. For ease of description, the following is introduced in the order of DL-GP-UL.
  • m and n herein may be a positive integer or a negative integer, and may also be 0.
  • the base station may determine to use time domain scheduling units of different time lengths for different services. For example, for the A service, it can be determined that m is 0, n can be equal to -3, -2, -1, or can be equal to 1, 2, 3, and can also be equal to 0.
  • the time length of the time domain scheduling unit can be sequentially It is 0.125ms, 0.25ms, 0.5ms, 2ms, 4ms, 8ms or 1ms.
  • n is 0, m can be equal to -3, -2, -1, or can be equal to 1, 2, 3, and can also be equal to 0, so that the time length of the time domain scheduling unit is 0.008 ms in order. , 0.04ms, 0.2ms, 5ms, 25ms, 125ms or 1ms.
  • m and n may not be 0.
  • the time length of the time domain scheduling unit is 0.8 ms, and the base station can perform according to different service requirements.
  • the values of m and n are adaptively adjusted to suit the service requirements, and are not limited in any embodiment of the present invention.
  • the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information.
  • the time domain scheduling unit mainly transmits downlink information; if the terminal needs to send data to the base station when performing the existing service, the time domain scheduling unit mainly transmits the uplink information.
  • the downlink information and the uplink information can also be transmitted simultaneously in one time domain scheduling unit.
  • the number of symbols occupied by the DL is greater than UL.
  • the DL includes downlink data, and the UL occupies a small number of symbols, and may mainly include a Sounding Reference Signal (SRS) and/or an Uplink Control Information (UCI) and/or a random access preamble.
  • SRS Sounding Reference Signal
  • UCI Uplink Control Information
  • the GP takes up 1-2 matches.
  • the number of symbols occupied by the UL is greater than DL.
  • the DL only includes Downlink Control Information (DCI) or reference signals.
  • DCI Downlink Control Information
  • the UL contains a large number of symbols and includes uplink data or a random access preamble (RA preamble).
  • RA preamble random access preamble
  • the GP can occupy 1-2 symbols. .
  • the time domain scheduling granularity requirement of different services can be met, and after the information required by the time domain scheduling unit is configured according to the service requirement, the downlink and protection are set according to the transmitted information.
  • the specific length of the time slot and the uplink makes the base station flexible in time domain resource scheduling, and can perform downlink and uplink transmission simultaneously in one time domain scheduling unit, so that the downlink downlink data Uplink data that can be fed back as soon as possible or uplink grant scheduling in the same time domain scheduling unit can be sent as soon as possible, so that the system can better adapt to the 5G new service with higher delay requirements and possible new services in the future, thereby greatly improving the system. Processing efficiency and user experience.
  • FIG. 2 is a schematic flowchart of a second embodiment of a method for configuring a time domain scheduling unit according to the present invention.
  • a description is provided for a case where a time domain scheduling unit includes only one subframe, and the method includes The following steps:
  • the base station determines a time length of the time domain scheduling unit.
  • the time domain scheduling unit includes a downlink, a protection slot, and an uplink, and the time length of the time domain scheduling unit is 2 n *5 m milliseconds, and m and n are integers.
  • the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information.
  • the time domain scheduling unit includes only one subframe, the subframe includes 14 symbols, and the symbols sequentially occupied by the three are set according to the downlink, the protection slot, and the uplink.
  • the symbols in the subframe are consecutive, and the symbols occupied by the downlink, the protection slot, and the uplink are also consecutive and arranged in a certain order. Since the length of the sub-frame is adjustable, the length of each symbol is determined according to the length of the sub-frame, which can be calculated by 2 n *5 m /14.
  • the UL may be used to transmit uplink information, or for a short period of time in the UL header or trailer for Listening Before Talk (LBT) detection.
  • LBT Listening Before Talk
  • the information that is transmitted by the time domain scheduling unit includes downlink control information (Downlink Control Information (DCI) and/or downlink reference information of a physical downlink control channel (PDCCH), and uplink data and/or uplink.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • uplink data and/or uplink When the control information (UCI) and/or the Sounding Reference Signal (SRS) and/or the random access preamble) are set, the number of symbols occupied by the downlink is set to 1 or 2 Or 3, set the number of symbols occupied by the protection slot to be 1 or 2, and set the remaining symbols as the length of the uplink.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • RA preamble random access preamble
  • the downlink control information in step S205 mainly includes uplink resource scheduling signaling.
  • the downlink reference signal may include a Common Reference Signal (CRS), a Channel Status Information Reference Signal (CSI-RS), a Demodulation Reference Signal (DM-RS), and a discovery reference.
  • CRS Common Reference Signal
  • CSI-RS Channel Status Information Reference Signal
  • DM-RS Demodulation Reference Signal
  • DRS Discovery Reference Signal
  • the uplink control information may be Channel Quality Indicator (CQI) feedback and/or HARQ feedback.
  • CQI Channel Quality Indicator
  • the information that is transmitted by the time domain scheduling unit includes downlink control information of a physical downlink control channel and/or downlink data and/or downlink reference information of a physical downlink shared channel (PDSCH), and uplink data and And if the uplink control information and/or the sounding reference signal and/or the random access preamble are set, the number of symbols occupied by the downlink is set to be greater than or equal to 3 and less than or equal to 11, and the number of symbols occupied by the protection time slot is set. 1 or 2, the remaining symbols are set as the length of the uplink; or the number of symbols occupied by the downlink is set to 12, the number of symbols occupied by the protection slot is set to 1, and the remaining symbols are set as uplinks. The length of the road.
  • PDSCH physical downlink shared channel
  • the downlink control information in step S206 mainly includes downlink resource scheduling signaling, or mainly includes downlink resource scheduling signaling and uplink resource scheduling signaling.
  • the structure of downlink data transmission of LTE may be multiplexed.
  • the downlink reference signal may include one or more of a CRS, a CSI-RS, a DM-RS, a DRS, or a new reference signal in a new wireless technology.
  • the uplink control information may be CQI feedback and/or HARQ feedback.
  • the information that is transmitted by the time domain scheduling unit includes downlink control information of an enhanced physical downlink control channel (ePDCCH) and/or downlink data and/or downlink reference information of a physical downlink shared channel, and uplink.
  • ePDCCH enhanced physical downlink control channel
  • uplink When the data and/or the uplink control information and/or the sounding reference signal and/or the random access preamble are set, the number of symbols occupied by the downlink is set to 7, and the number of symbols occupied by the protection time slot is set to 1 or 2. Set the remaining symbols as the length of the uplink.
  • the DL may be used to transmit downlink information, or for a short period of time in the DL header or trailer for Listening Before Talk (LBT) detection.
  • LBT Listening Before Talk
  • the structure of downlink data transmission of LTE can be multiplexed.
  • the length of the DL can also be 4 or 5 or 7 or 8 or 13 symbols, when the DL occupies 4 or 5 or When 7 or 8 or 13 symbols are used, DCI control signaling and/or PDSCH downlink data and/or downlink reference signals (CRS, CSI-RS, DM-RS, DRS or new wireless technologies) for transmitting PDCCH may be used.
  • One or more of the new reference signals may be used.
  • the time domain scheduling unit when the time domain scheduling unit includes only one subframe, how to configure the specific length of the downlink, the protection slot, and the downlink according to the information transmitted by the time domain scheduling unit,
  • the frame structure and length can be adapted to the needs of various services through flexible adjustment.
  • FIG. 3 is a schematic flowchart of a third embodiment of a method for configuring a time domain scheduling unit according to the present invention.
  • a description is given for a case where a time domain scheduling unit includes M subframes, where M is greater than or equal to An integer of 2, the method comprising the steps of:
  • the base station determines a time length of the time domain scheduling unit.
  • the time domain scheduling unit includes a downlink, a protection slot, and an uplink, and the time length of the time domain scheduling unit is 2 n *5 m milliseconds, and m and n are integers.
  • the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information.
  • time domain scheduling unit includes M subframes, M is an integer greater than or equal to 2, each subframe includes 14 symbols; and the three are sequentially occupied according to the downlink, the protection slot, and the uplink sequence. symbol.
  • the M subframes are consecutive, and the symbols in each subframe are also consecutive, and the subframes or symbols occupied by the downlink, the protection slot, and the uplink are also sequentially consecutive and arranged according to a certain order.
  • the information that is transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles.
  • the code When the code is set, the number of symbols occupying the first subframe of the downlink is 1 or 2 or 3. The number of symbols occupying the first subframe is 1 or 2, and the first sub-set is set. The remaining symbols of the frame and the remaining subframes other than the first subframe are used as the length of the uplink.
  • the downlink control information in step S305 mainly includes uplink resource scheduling signaling.
  • the downlink reference signal may include one or more of a CRS, a CSI-RS, a DM-RS, a DRS, or a new reference signal in a new wireless technology.
  • the uplink control information may be CQI feedback and/or HARQ feedback.
  • the time domain scheduling unit when the information transmitted by the time domain scheduling unit includes downlink control information of a physical downlink control channel or downlink control information of an enhanced physical downlink control channel and/or downlink data and/or downlink reference information of a physical downlink shared channel, and
  • the uplink data and/or the uplink control information and/or the sounding reference signal and/or the random access preamble are set, the number of symbols of the remaining subframes except the last subframe and the last subframe is set to be If the number of symbols of the last subframe is 1 or 2, the remaining symbols of the last subframe are set as the length of the uplink, or the downlink is occupied.
  • the number of symbols of the remaining sub-frames and the last sub-frame of the last sub-frame is 12.
  • the number of symbols of the last sub-frame is set to 1 and the remaining symbols of the last sub-frame are set as uplinks. length.
  • the downlink control information in step S306 mainly includes downlink resource scheduling signaling, or mainly includes downlink resource scheduling signaling and uplink resource scheduling signaling.
  • the structure of downlink data transmission of LTE may be multiplexed.
  • the structure of downlink data transmission of LTE can also be multiplexed.
  • the downlink reference signal may include one or more of a CRS, a CSI-RS, a DM-RS, a DRS, or a new reference signal in a new wireless technology.
  • the uplink control information may be CQI feedback and/or HARQ feedback.
  • the information that is transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information. And when detecting the reference signal and/or the random access preamble, setting the number of symbols occupied by the downlink to the first subframe to be 7, and setting the number of symbols occupying the first subframe to be 1 Or 2, set the remaining symbols of the first subframe and the remaining subframes other than the first subframe as the length of the uplink.
  • the downlink control information of the first subframe of the time domain scheduling unit includes scheduling information for scheduling the entire time domain scheduling unit, and the time domain scheduling unit includes only one downlink and uplink. Conversion.
  • time domain scheduling unit when the time domain scheduling unit includes more than one subframe, how to configure the specific length of the downlink, the protection slot, and the downlink according to the information transmitted by the time domain scheduling unit is specifically described.
  • the structure and length of the time domain scheduling unit can simultaneously be compatible with and schedule more than one subframe, which can be adapted to various service requirements through flexible adjustment.
  • the base station includes:
  • the determining unit 100 is configured to determine a time length of the time domain scheduling unit, where the time domain scheduling unit includes a downlink, a protection slot, and an uplink, and the time domain scheduling unit has a time length of 2 n *5 m Milliseconds, m and n are integers;
  • the configuration unit 200 is configured to configure information transmitted by the time domain scheduling unit according to service requirements, and the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information.
  • the setting unit 300 is configured to set a downlink, a guard slot, and an uplink length in the time domain scheduling unit according to the information transmitted by the time domain scheduling unit.
  • the time domain scheduling unit includes only one subframe, the subframe includes 14 symbols, and the setting unit 300 is configured to set three according to a downlink, a protection slot, and an uplink sequence. Symbols in turn;
  • the information transmitted by the time domain scheduling unit includes only uplink information, set the number of symbols occupied by the downlink to be 0, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 14;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupied by the downlink to be 1 or 2 or 3, setting the number of symbols occupied by the protection slot to 1 or 2, and setting the remaining symbols as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or sounding reference.
  • the number of symbols occupied by the downlink is set to be greater than or equal to 3 and less than or equal to 11, and the number of symbols occupied by the protection slot is set to 1 or 2, and the remaining symbols are set as The length of the uplink; or the number of symbols occupied by the downlink is 12, the number of symbols occupied by the protection slot is set to 1, and the remaining symbols are set as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupied by the downlink is set to 7
  • the number of symbols occupied by the protection time slot is set to 1 or 2
  • the remaining symbols are set as uplink. length;
  • the information transmitted by the time domain scheduling unit includes only downlink information, set the number of symbols occupied by the downlink to 14, the number of symbols occupied by the protection slot is 0, and the number of symbols occupied by the uplink Is 0.
  • the time domain scheduling unit includes M subframes, M is an integer greater than or equal to 2, each subframe includes 14 symbols; and the setting unit 300 is configured to be according to a downlink, a protection slot, and an uplink.
  • the order of the links sets the symbols occupied by the three in sequence;
  • the number of symbols occupied by the downlink is set to 0, the number of symbols occupied by the protection slot is 0, and the length occupied by the uplink is M subframes;
  • the information transmitted by the time domain scheduling unit includes downlink control information and/or downlink reference information of the physical downlink control channel, and uplink data and/or uplink control information and/or sounding reference signals and/or random access preambles, Setting the number of symbols occupying the first subframe of the downlink to be 1 or 2 or 3, setting the number of symbols occupying the first subframe to be 1 or 2, and setting the rest of the first subframe. The symbol and the remaining subframes other than the first subframe as the length of the uplink;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the physical downlink control channel or downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data. And/or uplink control information and/or sounding reference signal and/or random access preamble, setting the number of symbols of the remaining subframes except the last subframe and the last subframe to be greater than or equal to 3 and less than or equal to 11, setting the guard slot to occupy the last subframe, the number of symbols is 1 or 2, setting the remaining symbols of the last subframe as the length of the uplink; or setting the downlink to occupy the last one.
  • the number of symbols of the remaining sub-frames and the last sub-frame is 12, and the number of symbols occupying the last sub-frame of the protection slot is set to 1, and the remaining symbols of the last sub-frame are set as the length of the uplink. ;
  • the information transmitted by the time domain scheduling unit includes downlink control information of the enhanced physical downlink control channel and/or downlink data and/or downlink reference information of the physical downlink shared channel, and uplink data and/or uplink control information and/or
  • the number of symbols occupying the first subframe of the downlink is set to 7
  • the number of symbols occupying the first subframe is set to 1 or 2.
  • the information transmitted by the time domain scheduling unit includes only downlink information
  • set the length occupied by the downlink to be M subframes, and the number of symbols occupied by the protection slot is 0, and the symbol occupied by the uplink The number is 0.
  • the downlink control information of the first subframe of the time domain scheduling unit includes scheduling information for scheduling the entire time domain scheduling unit.
  • the time domain scheduling unit includes only one downlink and uplink conversion.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station 5 includes a processor 501, a memory 502, and a transceiver 503.
  • the transceiver 503 is configured to transmit and receive data with and from an external device.
  • the number of processors 501 in the base station 5 may be one or more.
  • the processor 501, the memory 502, and the transceiver 503 may be connected by a bus system or other means.
  • the base station 5 can be used to perform the method illustrated in Figures 1-3.
  • the program code is stored in the memory 502, and the processor 501 can call the program code stored in the memory 502 to perform related functions through a bus system.
  • the respective units described in FIG. 4 are program codes stored in the memory 302, and are processed by the processor 301 is executed to implement the functions of the various units to implement a method of configuring a time domain scheduling unit.
  • the processor 501 determines a time length of the time domain scheduling unit, where the time domain scheduling unit includes a downlink, a protection slot, and an uplink, and the time length of the time domain scheduling unit is 2 n *5 m milliseconds, m and n are integers;
  • the processor 501 configures information transmitted by the time domain scheduling unit according to service requirements, and the information transmitted by the time domain scheduling unit includes uplink information and/or downlink information.
  • the processor 501 sets the downlink, the guard slot, and the length of the uplink in the time domain scheduling unit according to the information transmitted by the time domain scheduling unit.
  • the present invention has the following advantages:
  • the time domain scheduling granularity requirement of different services can be met, and after the information required by the time domain scheduling unit is configured according to the service requirement, the downlink and the protection time slot are set according to the transmitted information.
  • the specific length of the uplink so that the base station performs flexible time domain resource scheduling, and can perform downlink and uplink transmissions simultaneously in one time domain scheduling unit, so that downlink downlink data is in the same.
  • the uplink data in the time domain scheduling unit that can be fed back as soon as possible or the uplink authorization scheduling can be sent as soon as possible, so that the system can better adapt to the 5G new service with high delay requirements and possible new services in the future, thereby greatly improving the processing of the system. Efficiency and user experience.
  • the disclosed apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种配置时域调度单元的方法,包括:基站确定所述时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。本发明实施例还公开了一种基站。采用本发明,可提高时域资源调度的灵活性,降低业务处理时延。

Description

一种配置时域调度单元的方法及基站
本申请要求于2016年7月29日提交中国专利局,申请号为201610615543.3、发明名称为“一种配置时域调度单元的方法及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种配置时域调度单元的方法及基站。
背景技术
随着用户通信需求的快速提升,通信业务量呈现爆发式增长,长期演进(Long Term Evolution,LTE)以及增强的长期演进(Long Term Evolution-Advanced,LTE-A)的资源调度粒度以及处理时延已经不能充分满足用户的需求。具体地,在现有的4G以及4.5G移动通信技术中,都是基于LTE及LTE-A无线接入技术中的时域调度单元(即系统支持的最小的时域调度的资源粒度)和帧结构来进行。其时域调度单元的大小通常是固定,且其帧结构也是固定的,对于未来5G业务的多样化需求,希望得到非常灵活的资源调度以及较小的处理时延,但是使用目前固定的帧结构,固定的时域资源粒度,较大的调度时延(大于等于4毫秒)和较长混合自动重传请求(Hybrid Auto Repeat Request,HARQ)反馈时延(大于等于4毫秒)等是无法实现的。
发明内容
本发明实施例所要解决的技术问题在于,提供一种配置时域调度单元的方法及基站。以解决时域资源调度不灵活,系统处理时延较大的问题。
为了解决上述技术问题,本发明实施例第一方面提供了一种配置时域调度单元的方法,包括:
基站确定所述时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
其中,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
其中,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和除第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
其中,所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息。
其中,所述时域调度单元中仅包括一次下行链路和上行链路的转换。
本发明实施例第二方面提供了一种基站,包括:
确定单元,设置为确定时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
配置单元,设置为根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
设置单元,设置为根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
其中,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,所述设置单元设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
其中,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;所述设置单元设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和除第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
其中,所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息。
其中,所述时域调度单元中仅包括一次下行链路和上行链路的转换。
实施本发明实施例,具有如下有益效果:
通过确定时域调度单元的长度,可满足不同业务的时域调度粒度需求,并且在根据业务需求配置需要时域调度单元传输的信息之后,根据传输的信息设置其中的下行链路、保护时隙以及上行链路的具体长度,使得基站进行时域资源调度时十分的灵活,且在一个时域调度单元内可同时进行下行链路和上行链路的传输,使得下行链路的下行数据在同一时域调度单元内能得到尽快反馈或者上行授权调度的上行数据能尽快发送,使得系统能够更好地适应时延要求较高的5G新业务及未来可能的新业务,从而大大提升了系统的处理效率以及用户的使用体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明配置时域调度单元的方法的第一实施例的流程示意图;
图2是本发明配置时域调度单元的方法的第二实施例的流程示意图;
图3是本发明配置时域调度单元的方法的第三实施例的流程示意图;
图4是本发明实施例提供的基站的组成示意图;
图5是本发明实施例提供的另一种基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明说明书、权利要求书和附图中出现的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
未来5G通信主要场景包括以下三种:增强的移动宽带(enhanced Mobile BroadBand,eMBB),大量机器类通信(massive Machine Type Communications,mMTC)和高可靠低时延(Ultra-Reliable and Low Latency Communications,URLLC)。这三种场景所针对的业务类型不一样,其需求也不一样。
例如eMBB业务,两个主要的指标是高带宽和低时延(要求4ms)。在未来的高频通信上,可能支持100MHz的大带宽,而且很可能某个时刻整个带宽都直接分配给一个用户。而上行调度时延和HARQ反馈时延也会带来时延影响。
mMTC业务,需要的是窄带服务,需要电池寿命很长,这种业务就需要更小粒度的频域和更宽粒度的时域资源。
对于URLLC业务,时延要求是0.5ms,也需要减小时域调度粒度,上行调度时延和HARQ反馈时延带来的时延影响。
因此,本发明实施例公开一种时域调度单元的配置方法及基站,在本发明实施例中,通信系统可以包括基站以及终端。
本发明实施例中的用户设备也可以称之为终端,其可以包括智能手机(如Android手机、IOS手机、Windows Phone手机等)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备(Mobile Internet Devices,MID)或穿戴式设备等,上述用户设备仅是举例,而非穷举,包含但不限于上述用户设备。
本发明实施例中的基站可以根据与终端之间进行业务来配置时域调度单元的时间长度以及时域调度单元的具体结构,包括具体组成和每个组成部分的具体长度即占用的子帧和/或符号数。下面具体结合图1-图3进行说明。
请参照图1,为本发明配置时域调度单元的方法的第一实施例的流程示意图,在本实施例中,所述方法包括以下步骤:
S101,基站确定所述时域调度单元的时间长度。
其中,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数。
即系统的最小的时域调度粒度中,可包括下行链路(DL),保护时隙(GP)和上行链路(UL),三者可以在时域调度单元中依次排列。当然,根据业务传输信息的不同需求,三者排序的方式除了本实施例中描述的DL-GP-UL的顺序之外,也可以是GP-UL-DL或UL-DL-GP的排序,本发明实施例不作任何限定。为了便于描述说明,以下均采用DL-GP-UL的顺序进行介绍。
此外,需要说明的是,此处的m和n可以是正整数也可以负整数,还可以是0。可选地,基站可以针对不同业务确定使用不同时间长度的时域调度单元。例如,针对A业务,可以确定m为0,n可以等于-3、-2、-1,也可以等于1、2、3,还可以等于0,这样,时域调度单元的时间长度则依次可以为0.125ms,0.25ms、0.5ms、2ms、4ms、8ms或1ms。针对B业务,可以确定n为0,m可以等于-3、-2、-1,也可以等于1、2、3,还可以等于0,这样,时域调度单元的时间长度则依次为0.008ms、0.04ms、0.2ms、5ms、25ms、125ms或1ms。当然,针对另一种业务如C业务,m和n可以都不为0,如m为-1,n为2,则时域调度单元的时间长度为0.8ms,根据不同的业务需求基站可以进行自适应调整m和n的值来适应业务需求,本发明实施例不作任何限定。
S102,根据业务需求配置所述时域调度单元传输的信息。
其中,所述时域调度单元传输的信息包括上行信息和/或下行信息。
可选地,若进行现有业务时若基站需要向终端发送数据,则时域调度单元主要传输下行信息;若进行现有业务时终端需要向基站发送数据,则时域调度单元主要传输上行信息;当然,下行信息和上行信息也可以在一个时域调度单元内同时传输。
S103,根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
例如,在以DL为主时,即时域调度单元传输的信息包括下行数据时,DL占用的符号数大于UL。DL包含了下行数据,而UL占用的符号数较少,主要可包括探测参考信号(Sounding Reference Signal,SRS)和/或上行控制信息(Uplink Control Information,UCI)和/或随机接入前导码,GP则占用1-2个符合即可。
在以UL为主时,即时域调度单元传输的信息包括上行数据时,UL占用的符号数大于DL。DL只包含下行控制信息(Downlink Control Information,DCI)或参考信号, UL包含了较多的符号数且包含上行数据或随机接入前导码(RA preamble),GP则占用1-2个符号即可。
这样,通过确定时域调度单元的长度,可满足不同业务的时域调度粒度需求,并且在根据业务需求配置需要时域调度单元传输的信息之后,根据传输的信息设置其中的下行链路、保护时隙以及上行链路的具体长度,使得基站进行时域资源调度时十分的灵活,且在一个时域调度单元内可同时进行下行链路和上行链路的传输,使得下行链路的下行数据在同一时域调度单元内能得到尽快反馈或者上行授权调度的上行数据能尽快发送,使得系统能够更好地适应时延要求较高的5G新业务及未来可能的新业务,从而大大提升了系统的处理效率以及用户的使用体验。
请参照图2,为本发明配置时域调度单元的方法的第二实施例的流程示意图,在本实施例中,针对时域调度单元仅包括一个子帧的情况进行了描述,所述方法包括以下步骤:
S201,基站确定所述时域调度单元的时间长度。
其中,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数。
S202,根据业务需求配置所述时域调度单元传输的信息。
其中,所述时域调度单元传输的信息包括上行信息和/或下行信息。
S203,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号。
其中,子帧中的符号是连续的,下行链路、保护时隙以及上行链路三者占用的符号也是依次连续的且根据一定的顺序排列。由于子帧的时间长度是可调整的,因此每个符号的长度根据子帧的长度来确定,其可以通过2n*5m/14计算得到。
S204,当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14。
可选地,UL可全部用于传输上行信息,或者在UL首部或尾部的一小段时间用于进行先听后说(Listen Before Talk,LBT)检测。
S205,当所述时域调度单元传输的信息包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)的下行控制信息(Downlink Control Information,DCI)和/或下行参考信息,以及上行数据和/或上行控制信息(Uplink Control Information,UCI)和/或探测参考信号(Sounding Reference Signal,SRS)和/或随机接入前导码(RA preamble)时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度。
需要说明的是,步骤S205中的下行控制信息中主要包括上行资源调度信令。
下行参考信号可以包括公共参考信号(Common Reference Signal,CRS)、信道状态信息的参考信号(Channel Status Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DM-RS)、发现参考信号(Discovery Reference Signal,DRS)或者新的无线技术中新的参考信号中的一种或多种。
而上行控制信息则可以是信道质量指示(Channel Quality Indicator,CQI)反馈和/或HARQ反馈。
S206,当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度。
需要说明的是,步骤S206中的下行控制信息主要包括下行资源调度信令,或者主要包括下行资源调度信令和上行资源调度信令。
可选地,当下行链路占用的符号数为3,6,9,10,11,12时,可以复用LTE的下行数据发送的结构。下行参考信号可以包括CRS、CSI-RS、DM-RS、DRS或者新的无线技术中新的参考信号中的一种或多种。
而上行控制信息则可以是CQI反馈和/或HARQ反馈。
S207,当所述时域调度单元传输的信息包括增强的物理下行控制信道(enhancedPhysical Downlink Control Channel,ePDCCH)的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度。
S208,当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
可选地,DL可全部用于传输下行信息,或者在DL首部或尾部的一小段时间用于进行先听后说(Listen Before Talk,LBT)检测。
可选地,除了以上所述的DL可以为0,1,2,3,6,9,10,11,12,14之外(其中下行符号数为,3,6,9,10,11,12,14时,可以复用LTE的下行数据发送的结构),DL的长度还可以为4个或5个或7个或8个或13个符号的长度,当DL占用4个或5个或7个或8个或13个符号时,可用于发送PDCCH的DCI控制信令和/或PDSCH下行数据和/或下行参考信号(CRS,CSI-RS,DM-RS,DRS或者新的无线技术中新的参考信号中的一种或多种)。
在本发明实施例中,具体描述了时域调度单元仅包括一个子帧时,如何根据时域调度单元传输的信息配置其中下行链路、保护时隙和下行链路的具体长度,明确了子帧结构和长度,可通过灵活的调整适应于各种业务的需求。
请参照图3,为本发明配置时域调度单元的方法的第三实施例的流程示意图,在本实施例中,针对时域调度单元包括M个子帧的情况进行了描述,M为大于或等于2的整数,所述方法包括以下步骤:
S301,基站确定所述时域调度单元的时间长度。
其中,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数。
S302,根据业务需求配置所述时域调度单元传输的信息。
其中,所述时域调度单元传输的信息包括上行信息和/或下行信息。
S303,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号。
其中,M个子帧是连续的,且每个子帧中的符号也是连续的,下行链路、保护时隙以及上行链路三者占用的子帧或符号也是依次连续的且根据一定的顺序排列。
S304,当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧。
S305,当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度。
需要说明的是,步骤S305中的下行控制信息中主要包括上行资源调度信令。
下行参考信号可以包括CRS、CSI-RS、DM-RS、DRS或者新的无线技术中新的参考信号中的一种或多种。
而上行控制信息则可以是CQI反馈和/或HARQ反馈。
S306,当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度。
需要说明的是,步骤S306中的下行控制信息主要包括下行资源调度信令,或者主要包括下行资源调度信令和上行资源调度信令。
可选地,当下行链路占用的符号数为3,6,9,10,11,12时,可以复用LTE的下行数据发送的结构。此外,占用的符号数为14个时,同样可以复用LTE的下行数据发送的结构。
下行参考信号可以包括CRS、CSI-RS、DM-RS、DRS或者新的无线技术中新的参考信号中的一种或多种。
而上行控制信息则可以是CQI反馈和/或HARQ反馈。
S307,当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和第一个子帧之外的其余子帧作为上行链路的长度。
S308,当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
其中,所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息,且所述时域调度单元中仅包括一次下行链路和上行链路的转换。
即当时域调度单元中包括一个以上的子帧时,可以将其包含的所有子帧当做一个整体来进行调度。
在本发明实施例中,具体描述了时域调度单元包括一个以上后的子帧时,如何根据时域调度单元传输的信息配置其中下行链路、保护时隙和下行链路的具体长度,明确了时域调度单元的结构和长度,可同时兼容和调度一个以上的子帧,可通过灵活的调整适应于各种业务的需求。
请参照图4,为本发明实施例提供的基站的组成示意图;在本实施例中,所述基站包括:
确定单元100,设置为确定时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
配置单元200,设置为根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
设置单元300,设置为根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
可选地,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,所述设置单元300设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
可选地,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;所述设置单元300设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度;
当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和第一个子帧之外的其余子帧作为上行链路的长度;
当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息。且所述时域调度单元中仅包括一次下行链路和上行链路的转换。
图5是本发明实施例提供的另一种基站的结构示意图。
参见图5,为本发明实施例提供的另一种基站的结构示意图,在本发明实施例中,所述基站5包括处理器501、存储器502和收发器503。收发器503用于与外部设备之间收发数据。所述基站5中的处理器501的数量可以是一个或多个。本发明的一些实施例中,所述处理器501、存储器502和收发器503可通过总线系统或其他方式连接。所述基站5可以用于执行图1至图3所示的方法。
其中,存储器502中存储程序代码,且所述处理器501可通过总线系统,调用所述存储器502中存储的程序代码以执行相关的功能。例如,图4中所述的各个单元(例如,所述确定单元100、所述配置单元200、所述设置单元300等)是存储在所述存储器302中的程序代码,并由所述处理器301所执行,从而实现所述各个单元的功能以实现配置时域调度单元的方法。
具体而言,所述处理器501确定所述时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
所述处理器501根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
所述处理器501根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
通过上述实施例的描述,本发明具有以下优点:
通过确定时域调度单元的长度,可满足不同业务的时域调度粒度需求,并且在根据业务需求配置需要时域调度单元传输的信息之后,根据传输的信息设置其中的下行链路、保护时隙以及上行链路的具体长度,使得基站进行时域资源调度时十分的灵活,且在一个时域调度单元内可同时进行下行链路和上行链路的传输,使得下行链路的下行数据在同一时域调度单元内能得到尽快反馈或者上行授权调度的上行数据能尽快发送,使得系统能够更好地适应时延要求较高的5G新业务及未来可能的新业务,从而大大提升了系统的处理效率以及用户的使用体验。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
在本申请所提供的实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种配置时域调度单元的方法,其特征在于,包括:
    基站确定所述时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
    根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
    根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
  2. 如权利要求所述1的方法,其特征在于,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
    当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
  3. 如权利要求1所述的方法,其特征在于,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
    当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和除第一个子帧之外的其余子帧作为上行链路的长度;
    当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
  4. 如权利要求3所述的方法,其特征在于,所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息。
  5. 如权利要求3或4所述的方法,其特征在于,所述时域调度单元中仅包括一次下行链路和上行链路的转换。
  6. 一种基站,其特征在于,包括:
    确定单元,设置为确定时域调度单元的时间长度,所述时域调度单元包括下行链路、保护时隙以及上行链路,且所述时域调度单元的时间长度为2n*5m毫秒,m和n为整数;
    配置单元,设置为根据业务需求配置所述时域调度单元传输的信息,所述时域调度单元传输的信息包括上行信息和/或下行信息;
    设置单元,设置为根据所述时域调度单元传输的信息设置所述时域调度单元中的下行链路、保护时隙以及上行链路的长度。
  7. 如权利要求6所述的基站,其特征在于,若所述时域调度单元仅包括1个子帧,所述子帧包括14个符号,所述设置单元设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
    当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为14;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为1或2或3,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为大于等于3且小于等于11,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;或者设置所述下行链路占用的符号数为12,设置所述保护时隙占用的符号数为1,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用的符号数为7,设置所述保护时隙占用的符号数为1或2,设置其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的符号数为14,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
  8. 如权利要求6所述的基站,其特征在于,若所述时域调度单元包括M个子帧,M为大于或等于2的整数,每个子帧包括14个符号;所述设置单元设置为根据下行链路、保护时隙以及上行链路的顺序设置三者依次占用的符号;
    当所述时域调度单元传输的信息仅包括上行信息时,设置所述下行链路占用的符号数为0,所述保护时隙占用的符号数为0,所述上行链路占用的长度为M个子帧;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为1或2或3,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号以及第一个子帧之外的其余子帧作为上行链路的长度;
    当所述时域调度单元传输的信息包括物理下行控制信道的下行控制信息或增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为大于等于3且小于等于11,设置所述保护时隙占用最后一个子帧的符号数为1或2,设置最后一个子帧其余的符号作为上行链路的长度;或者设置所述下行链路占用最后一个子帧之外的其余子帧以及最后一个子帧的符号数为12,设置所述保护时隙占用最后一个子帧的符号数为1,设置最后一个子帧其余的符号作为上行链路的长度;
    当所述时域调度单元传输的信息包括增强的物理下行控制信道的下行控制信息和/或物理下行共享信道的下行数据和/或下行参考信息,以及上行数据和/或上行控制信息和/或探测参考信号和/或随机接入前导码时,设置所述下行链路占用第一个子帧的符号数为7,设置所述保护时隙占用第一个子帧的符号数为1或2,设置第一个子帧其余的符号和除第一个子帧之外的其余子帧作为上行链路的长度;
    当所述时域调度单元传输的信息仅包括下行信息时,设置所述下行链路占用的长度为M个子帧,所述保护时隙占用的符号数为0,所述上行链路占用的符号数为0。
  9. 如权利要求8所述的基站,其特征在于,所述时域调度单元的第一个子帧的下行控制信息中包含调度整个所述时域调度单元的调度信息。
  10. 如权利要求8或9所述的基站,其特征在于,所述时域调度单元中仅包括一次下行链路和上行链路的转换。
PCT/CN2016/107923 2016-07-29 2016-11-30 一种配置时域调度单元的方法及基站 WO2018018818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610615543.3 2016-07-29
CN201610615543.3A CN106255213B (zh) 2016-07-29 2016-07-29 一种配置时域调度单元的方法及基站

Publications (1)

Publication Number Publication Date
WO2018018818A1 true WO2018018818A1 (zh) 2018-02-01

Family

ID=57605724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107923 WO2018018818A1 (zh) 2016-07-29 2016-11-30 一种配置时域调度单元的方法及基站

Country Status (2)

Country Link
CN (1) CN106255213B (zh)
WO (1) WO2018018818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757479A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666946B (zh) * 2016-12-22 2019-07-21 財團法人資訊工業策進會 支援低延遲高可靠性通訊服務之使用者裝置、支援增強型行動寬頻服務之使用者裝置及基地台
EP3340697B1 (en) * 2016-12-23 2019-12-04 ASUSTek Computer Inc. Method and apparatus for multiplexing transmissions for different services in a wireless communication system
CN114158122A (zh) * 2017-01-06 2022-03-08 大唐移动通信设备有限公司 一种数据传输方法、终端及基站
US11240835B2 (en) * 2017-01-17 2022-02-01 Huawei Technologies Co., Ltd. System and method for co-existence of low-latency and latency-tolerant communication resources
EP3598819B1 (en) * 2017-04-20 2021-08-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, apparatus and system for transmitting periodic uplink information/signals
CN109474995B (zh) * 2017-09-08 2024-05-03 华为技术有限公司 一种无线通信方法及装置
CN110034862B (zh) * 2018-01-12 2021-05-28 维沃移动通信有限公司 一种下行反馈方法、移动通信终端及网络侧设备
ES2968863T3 (es) * 2018-08-06 2024-05-14 Beijing Xiaomi Mobile Software Co Ltd Aparato y método de envío-recepción y planificación de información
WO2021163929A1 (zh) * 2020-02-19 2021-08-26 华为技术有限公司 业务传输的方法和通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160128095A1 (en) * 2014-10-29 2016-05-05 Qualcomm Incorporated Variable length transmission time intervals (tti)
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588632B (zh) * 2009-06-17 2011-04-20 华为技术有限公司 物理下行控制信道时域符号数的分配方法、装置及基站
CN101931962B (zh) * 2009-06-22 2013-06-05 华为技术有限公司 一种传输数据的方法、中继和基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160128095A1 (en) * 2014-10-29 2016-05-05 Qualcomm Incorporated Variable length transmission time intervals (tti)
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Low Latency Frame Structure Design for NR", 3GPP TSG RAN WG1 MEETING #85 RL-164180, 27 May 2016 (2016-05-27), XP051096540 *
LG ELECTRONICS: "Discussion on frame structure for NR", 3GPP TSG RAN WG1 MEETING #85 RL-164560, 27 May 2016 (2016-05-27), XP051096379 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757479A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信的方法及装置
CN111757479B (zh) * 2019-03-29 2022-10-11 华为技术有限公司 通信的方法及装置

Also Published As

Publication number Publication date
CN106255213A (zh) 2016-12-21
CN106255213B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2018018818A1 (zh) 一种配置时域调度单元的方法及基站
WO2018018817A1 (zh) 一种通信的方法及基站
WO2018023938A1 (zh) 一种上行传输的方法及基站
WO2013012190A2 (ko) Tdd 모드에서 다운링크 서브프레임을 한정하는 방법 및 장치
WO2018023906A1 (zh) 通信方法及通信装置
WO2014017877A1 (en) Method and apparatus for harq-ack transmission in traffic adaptive tdd system
WO2016200236A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2011099715A2 (ko) 채널추정 기준신호의 주기/비주기 전송 스위칭 방법, 그를 이용한 채널추정 기준신호의 송수신 장치 및 방법
WO2019035584A1 (ko) 통신 시스템에서 슬롯 설정 정보의 송수신 방법
WO2019050165A1 (ko) 통신 시스템에서 시스템 정보의 송수신 방법
WO2021034124A1 (ko) 통신 시스템에서 사이드링크 자원의 예약을 위한 방법 및 장치
WO2019066318A1 (ko) 통신 시스템에서 프리엠션의 지시 방법
WO2017023150A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2017099369A1 (ko) 다중 tti 구조를 이용하여 통신 방법 및 장치
WO2018093162A1 (ko) 차세대 무선망에서 하향링크 신호를 송수신하는 방법 및 그 장치
WO2021034045A1 (ko) 통신 시스템에서 사이드링크 제어 정보의 송수신을 위한 방법 및 장치
WO2013109084A1 (en) Method and apparatus for operating plural time alignment timers in wireless communication system using coordinated multipoint technology
WO2017166810A1 (zh) 多子帧调度的方法、装置和终端
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2011126279A2 (ko) 채널 추정 기준 신호의 확장 전송 방법 및 이를 이용한 채널 추정 기준 신호의 송수신 방법 및 장치
WO2010095883A2 (ko) 무선 통신 시스템의 중계기 및 단말에 대한 통신 방법 및 장치
WO2016195411A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2011129632A2 (ko) 제어 신호의 비주기적 전송을 제어하는 방법 및 이를 이용한 제어 신호의 송수신 방법 및 장치
WO2019216727A1 (ko) 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016148362A1 (ko) 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910396

Country of ref document: EP

Kind code of ref document: A1