WO2019216727A1 - 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 - Google Patents

하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019216727A1
WO2019216727A1 PCT/KR2019/005704 KR2019005704W WO2019216727A1 WO 2019216727 A1 WO2019216727 A1 WO 2019216727A1 KR 2019005704 W KR2019005704 W KR 2019005704W WO 2019216727 A1 WO2019216727 A1 WO 2019216727A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
decoding
urllc
harq
embb
Prior art date
Application number
PCT/KR2019/005704
Other languages
English (en)
French (fr)
Inventor
황대성
배덕현
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019216727A1 publication Critical patent/WO2019216727A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving downlink data, and more particularly, when eMBB (Enhanced Mobile Broadband) data and URL-L (Ultra-Reliable Low-Latency Communication) data are received in parallel.
  • eMBB Enhanced Mobile Broadband
  • URL-L Ultra-Reliable Low-Latency Communication
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system, is required.
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and mass connectivity. (e.g., IoT).
  • the present invention provides a method for transmitting and receiving downlink data and an apparatus therefor.
  • a wireless communication system in a method for a terminal to decode a physical downlink shared channel (PDSCH), a first physical downlink shared channel (PDSCH) and an ultra reliable URLLC for an enhanced mobile broadband (eMBB) and a second PDSCH for low latency communication, and decoding the first PDSCH and the second PDSCH, wherein the first processing time required for decoding of the first PDSCH is: It may be based on a second processing time for decoding of the PDSCH.
  • PDSCH physical downlink shared channel
  • eMBB enhanced mobile broadband
  • the first processing time may further consider a time from the last symbol of the first PDSCH to the last symbol of the second PDSCH.
  • the first processing time may further consider the number of symbols overlapping the first PDSCH and the second PDSCH.
  • start symbol of the first PDSCH may be located before the start symbol of the second PDSCH.
  • the last symbol of the first PDSCH may be located before the last symbol of the second PDSCH.
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • decoding of the first PDSCH may be stopped and decoding of the second PDSCH may be performed.
  • decoding of the second PDSCH when decoding of the second PDSCH is completed, decoding of the first PDSCH may be resumed.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for decoding a Physical Downlink Shared Channel comprising: a memory; And at least one processor coupled to the memory, wherein the at least one processor is configured to perform a first physical downlink shared channel (PDSCH) and ultra reliable and low latency communication (URLLC) for enhanced mobile broadband (eMBB).
  • PDSCH physical downlink shared channel
  • URLLC ultra reliable and low latency communication
  • Receive a second PDSCH for the first PDSCH and decode the first PDSCH and the second PDSCH, wherein a first processing time required for decoding the first PDSCH is determined by a second method for decoding the second PDSCH; 2 may be based on processing time.
  • the first processing time may further consider a time from the last symbol of the first PDSCH to the last symbol of the second PDSCH.
  • the first processing time may further consider the number of symbols overlapping the first PDSCH and the second PDSCH.
  • the start symbol of the first PDSCH may be located before the start symbol of the second PDSCH, and the last symbol of the first PDSCH may be located before the last symbol of the second PDSCH.
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • decoding of the first PDSCH may be stopped and decoding of the second PDSCH may be performed.
  • decoding of the second PDSCH when decoding of the second PDSCH is completed, decoding of the first PDSCH may be resumed.
  • the apparatus may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the apparatus.
  • a terminal for decoding a Physical Downlink Shared Channel comprising: a transceiver; And at least one processor coupled to the transceiver, wherein the at least one processor comprises: a first physical downlink shared channel (PDSCH) and an ultra reliable and low latency communication (URLLC) for enhanced mobile broadband (eMBB); Control the transceiver to receive a second PDSCH, and decode the first PDSCH and the second PDSCH, wherein the first processing time required for decoding the first PDSCH is: The second processing time may be varied based on a second processing time for decoding.
  • PDSCH Physical Downlink Shared Channel
  • URLLC ultra reliable and low latency communication
  • eMBB enhanced mobile broadband
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • FIGS. 6 to 8 are diagrams for explaining transmission and reception of Ultra-Reliable Low-Latency Communication (URLLC) data in an NR system.
  • URLLC Ultra-Reliable Low-Latency Communication
  • FIGS 9 to 11 are diagrams for explaining a downlink control channel (PDCCH) in an NR system.
  • PDCCH downlink control channel
  • FIG. 12 is a diagram for explaining multiplexing of a Long PUCCH and a Short PUCCH in an NR system.
  • FIG. 13 is a diagram for explaining HARQ-ACK timing in an NR system.
  • CBGs Code Block Groups
  • 16 to 18 are diagrams for describing an operation from a terminal, a base station, and a network point of view for transmitting and receiving eMBB data and URLLC data according to an exemplary embodiment of the present invention.
  • 19 is a block diagram illustrating components of a wireless device for implementing the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP-based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • Uplink Shared CHannel / PACH Physical Random Access CHannel
  • PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH Resource the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used for uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively. It is used in the same sense as transmitting a data / random access signal, and the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • An OFDM symbol / subcarrier / RE to which PSS / SSS is assigned or configured is referred to as a PSS / SSS symbol / subcarrier / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are respectively an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs.
  • the antenna ports configured to transmit the CSI-RSs can be distinguished from each other by the positions of the REs occupied by the UE-RS according to the -RS ports, and the CSI-RSs occupy They can be distinguished from each other by the location of the REs.
  • CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE performs an initial cell search operation such as synchronizing with the base station (S201).
  • the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have.
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • Half-frames are defined as five 1 ms subframes (SFs).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplarily shows that when the CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • 4 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which a DL control channel, DL or UL data, UL control channel, and the like can be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • a data region between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink control information (DCI) for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink control information
  • uplink control information (UCI) for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • UCI uplink control information
  • ACK / NACK positive acknowledgment / negative acknowledgment
  • CSI channel state information
  • SR scheduling request
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP
  • URLLC transmissions defined by NR include (1) relatively low traffic size, (2) relatively low arrival rate, (3) extremely low latency requirements (e.g., 0.5, 1 ms), (4) relatively short transmission duration (eg, 2 OFDM symbols), and (5) urgent service / message transmission.
  • transmissions for certain types of traffic eg URLLC
  • eMBB previously scheduled transmissions
  • it informs the previously scheduled UE that it will be preemulated for a specific resource, and allows the URLLC UE to use the UL resource for the UL transmission.
  • FIG. 6 illustrates resource sharing for eMBB transmission and URLLC transmission.
  • the eMBB transmission and the URLLC transmission may share time / frequency resources that are non-overlapping on a scheduling basis as shown in FIG.
  • the eMBB transmission and the URLLC transmission may share time / frequency resources that are non-overlapping on a scheduling basis as shown in FIG.
  • the eMBB transmission and the URLLC transmission may share time / frequency resources that are non-overlapping on a scheduling basis as shown in FIG.
  • the eMBB transmission and the URLLC transmission may share time / frequency resources that are non-overlapping on a scheduling basis as shown in FIG.
  • FIG. 6 (b) for different delay and / or reliability requirements for eMBB transmission and URLLC transmission, as shown in FIG. 6 (b), on the resource for ongoing eMBB transmission as shown in FIG. 6 (b). May occur.
  • DCI format 2_1 transmits (for URLURL transmission purposes) the resource information (for URLLC transmission purposes) that overlaps (partially) scheduled resources for downlink eMBB transmission to the UE.
  • the terminal assumes that there is no signal transmission in the resource block and symbol indicated by DCI format 2_1.
  • the UE may exclude the indicated coded bits from the soft buffer and may (re) decode the PDSCH by referring to the downlink preemption instruction.
  • Preemption Instruction (Pre- emption indication)
  • eMBB and URLLC services may be scheduled on non-overlapping time / frequency resources, and URLLC transmission may occur on resources scheduled for ongoing eMBB traffic.
  • the eMBB UE may not know whether the PDSCH transmission of the UE is partially punctured, and due to corrupted coded bits, the UE may not be able to decode the PDSCH.
  • NR provides a preemption indication.
  • the preemption indication may be referred to as an interrupted transmission indication.
  • the UE receives the Downlink Preemption IE via RRC signaling from the BS.
  • Table 3 shows an example of the DownlinkPreemption IE.
  • the UE is configured with the INT-RNTI provided by the parameter int-RNTI in the DownlinkPreemption IE for monitoring of the PDCCH that carries DCI format 2_1.
  • the UE is additionally set with the set of serving cells by INT-ConfigurationPerServing Cell including the set of serving cell indices provided by servingCellID and the corresponding set of positions for fields in DCI format 2_1 by positionInDCI, dci-PayloadSize Is configured with the information payload size for DCI format 2_1, and is set with the indication granularity of time-frequency resources by timeFrequencySect.
  • the UE receives DCI format 2_1 from the BS based on the DownlinkPreemption IE.
  • 14 parts in the time domain correspond one-to-one to 14 bits of the 14-bit bitmap, as shown in the left figure of FIG. 8, and the 14 bits
  • the part corresponding to the bit set to 1 is a part including pre-empted resources.
  • the total 14 time-frequency parts correspond one-to-one to the 14 bits of the 14-bit bitmap, and the part corresponding to the bit set to 1 of the 14 bits is a part including pre-empted resources. .
  • the base station transmits a related signal to a terminal through a downlink channel, which will be described later, and the terminal receives a related signal from the base station through a downlink channel, which will be described later.
  • PDSCH physical downlink shared channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry a maximum of two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • 64 QAM 64 QAM
  • 256 QAM 256 QAM
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents an RE to which DMRS is mapped.
  • DMRS is mapped to the 1st, 5th, and 9th REs in the frequency domain direction in one symbol.
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.). A plurality of OCRESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (maximum 3) constituting the CORESET may be set by higher layer signaling.
  • the precoder granularity in the frequency domain for each CORESET is set to one of the following by higher layer signaling:
  • allContiguousRBs equal to the number of consecutive RBs in the frequency domain inside the CORESET
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, the REGs are numbered sequentially from zero starting from the first OFDM symbol in the lowest-numbered resource block within CORESET.
  • the mapping type from CCE to REG is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • FIG. 10A illustrates a non-interleaved CCE-REG mapping type
  • FIG. 10B illustrates an interleaved CCE-REG mapping type.
  • Non-interleaved CCE-REG mapping type (or localized mapping type): 6 REGs for a given CCE constitute one REG bundle, and all REGs for a given CCE are contiguous. One REG bundle corresponds to one CCE
  • Interleaved CCE-REG mapping type (or distributed mapping type): 2, 3 or 6 REGs for a given CCE constitute one REG bundle, and the REG bundle is interleaved in CORESET.
  • the REG bundle in CORESET consisting of one OFDM symbol or two OFDM symbols consists of 2 or 6 REGs, and the REG bundle in CORESET consisting of three OFDM symbols consists of 3 or 6 REGs.
  • REG bundle size is set per CORESET
  • FIG. 11 illustrates a block interleaver.
  • the number of rows A of the (block) interleaver for the interleaving operation as described above is set to one of 2, 3, and 6. If the number of interleaving units for a given CORESET is P, the number of columns of the block interleaver is equal to P / A.
  • a write operation on the block interleaver is performed in a row-first direction as shown in FIG. 11, and a read operation is performed in a column-first direction.
  • a cyclic shift (CS) of interleaving units is applied based on an id settable independently of an ID settable for DMRS.
  • the UE performs decoding (aka blind decoding) on the set of PDCCH candidates to obtain a DCI transmitted on the PDCCH.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire the DCI by monitoring PDCCH candidates in one or more sets of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId indicates the control resource set associated with the search space set
  • monitoringSlotPeriodicityAndOffset indicates the PDCCH monitoring interval section (slot unit) and the PDCCH monitoring interval offset (slot unit).
  • monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for monitoring the PDCCH (eg, indicates the first symbol (s) of the control resource set)
  • Table 4 illustrates features by search space type.
  • Type Search space RNTI Use case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 5 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used for scheduling TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH. It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. Can be.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the terminal transmits a related signal to a base station through an uplink channel to be described later, and the base station receives a related signal from the terminal through an uplink channel to be described later.
  • PUSCH physical uplink shared channel
  • the PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform. Or based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on a CP-OFDM waveform, and when conversion precoding is possible (eg, transform precoding is enabled), the UE is CP-OFDM.
  • PUSCH may be transmitted based on the waveform or the DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI, or semi-statically based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 6 illustrates the PUCCH formats.
  • PUCCH format 0 carries a maximum of 2 bits of UCI, and is mapped and transmitted based on a sequence. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. The UE transmits PUCCH having PUCCH format 0 in the PUCCH resource for SR configuration only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of up to 2 bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) that is set differently depending on whether frequency hopping or not.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (ie, transmitted by time division multiplexing (TDM)).
  • PUCCH format 2 carries a UCI having a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM).
  • the DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3.
  • PN Pulseudo Noise sequence is used for DM_RS sequence.
  • Frequency hopping may be activated for two symbol PUCCH format 2.
  • PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted by time division multiplexing (DMD) with DMRS.
  • FIG. 12 illustrates a configuration in which a short PUCCH and a long PUCCH are multiplexed with an uplink signal.
  • PUCCH (eg, PUCCH format 0/2) and PUSCH may be multiplexed by TDM or FDM.
  • Short PUCCH and long PUCCH from different terminals may be multiplexed by TDM or FDM.
  • Short PUCCHs from a single terminal in one slot may be multiplexed by TDM.
  • Short PUCCH and long PUCCH from a single terminal in one slot may be multiplexed by TDM or FDM.
  • HARQ Hybrid Automatic Repeat and reQuest
  • HARQ-ACK is information indicating whether the UE has successfully received the physical downlink channel, and if the UE successfully receives the physical downlink channel, an acknowledgment (ACK) is not provided. Feedback to the base station.
  • HARQ in NR supports 1 bit of HARQ-ACK feedback per transport block. 13 is a diagram illustrating an example of the HARQ-ACK timing K1.
  • K0 represents the number of slots from a slot having a PDCCH carrying a DL assignment (i.e., a DL grant) to a slot having a corresponding PDSCH transmission
  • K1 represents a slot of a corresponding HARQ-ACK transmission from the slot of the PDSCH
  • K2 represents the number of slots up to K2
  • K2 represents the number of slots from a slot having a PDCCH carrying a UL grant to a slot having a corresponding PUSCH transmission. That is, KO, K1, K2 can be summarized as shown in Table 7 below.
  • the base station may provide HARQ-ACK feedback timing to the UE either dynamically in DCI or semi-statically via RRC signaling.
  • the NR supports different minimum HARQ processing times between UEs.
  • the HARQ processing time includes a delay between the DL data reception timing and the corresponding HARQ-ACK transmission timing and a delay between the UL grant reception timing and the corresponding UL data transmission timing.
  • the UE sends information about the capability of its minimum HARQ processing time to the base station. From the UE perspective, HARQ ACK / NACK feedback for multiple DL transmissions in the time domain can be sent in one UL data / control region. The timing between DL data reception and the corresponding ACK is indicated by the DCI.
  • a code block group (CBG) based transmission with single / multi-bit HARQ-ACK feedback is not used in the NR system.
  • a transport block (TB) may be mapped to one or more CBs according to the size of the TB. For example, in the channel coding process, the CRC code is attached to the TB, and if the CRC attached TB is not larger than a predetermined size, the CRC attached TB soon corresponds to one code block (CB), but the CRC attached TB is the constant. If greater than size, the CRC attached TB is segmented into a plurality of CBs.
  • a UE may be configured to receive CBG based transmissions, and retransmissions may be scheduled to carry a subset of all CBs of the TB.
  • a transport block (TB) -based HARQ process is supported.
  • CBG-based HARQ process is supported along with TB-based HARQ process.
  • FIG. 14 illustrates the process and structure of TB.
  • the process of FIG. 14 may be applied to data of a shared channel (DL-SCH), a paging channel (PCH), and a multicast channel (MCH) transport channel.
  • DL-SCH shared channel
  • PCH paging channel
  • MCH multicast channel
  • UL TB (or data of UL transport channel) may be similarly processed.
  • the transmitter performs a CRC (eg 24-bit) (TB CRC) to check the TB for error. Thereafter, the transmitter may divide TB + CRC into a plurality of code blocks in consideration of the size of the channel encoder. As an example, the maximum size of a codeblock in LTE is 6144-bits. Therefore, if the TB size is 6144-bit or less, no code block is configured. If the TB size is larger than 6144-bit, the TB is divided into 6144-bit units to form a plurality of code blocks. Each code block is separately appended with a CRC (eg 24-bit) (CB CRC) for error checking.
  • CRC eg 24-bit
  • Each code block undergoes channel coding and rate matching, and then merges into one to form a codeword.
  • data scheduling and a corresponding HARQ process are performed in units of TBs, and CB CRC is used to determine early termination of TB decoding.
  • FIG. 15 illustrates a CBG-based HARQ procedure.
  • data scheduling and a corresponding HARQ process may be performed in units of TBs.
  • the terminal may receive information about the number M of code block groups per transport block from the base station through an upper layer signal (eg, an RRC signal) (S1602). Thereafter, the terminal can receive the initial data transmission from the base station (via PDSCH) (S1604).
  • the data may include a transport block
  • the transport block may include a plurality of code blocks
  • the plurality of code blocks may be divided into one or more code block groups.
  • some of the code block groups may include ceiling (K / M) code blocks, and the remaining code blocks may include flooring (K / M) code blocks.
  • K represents the number of code blocks in the data.
  • the terminal may feed back code block group-based A / N information to the base station for the data (S1606), and the base station may perform data retransmission based on the code block group (S1608).
  • a / N information may be transmitted through PUCCH or PUSCH.
  • the A / N information may include a plurality of A / N bits for the data, and each of the A / N bits may indicate each A / N response generated in units of code block groups for the data.
  • the payload size of the A / N information may be kept the same based on M regardless of the number of code block groups constituting the data.
  • NR supports dynamic HARQ-ACK codebook and quasi-static HARQ-ACK codebook.
  • the HARQ-ACK (or A / N) codebook may be replaced with a HARQ-ACK payload.
  • the size of the A / N payload is changed according to the actual number of scheduled DL data.
  • the PDCCH related to DL scheduling includes a counter-DAI (Downlink Assignment Index) and a total-DAI.
  • the counter-DAI indicates a ⁇ CC, slot ⁇ scheduling order value calculated in a CC (or cell) -first manner and is used to specify the position of A / N bits in the A / N codebook.
  • total-DAI represents a slot-based scheduling cumulative value up to the current slot and is used to determine the size of the A / N codebook.
  • the size of the A / N codebook is fixed (to the maximum value) regardless of the actual number of scheduled DL data.
  • the (maximum) A / N payload (size) transmitted through one PUCCH in one slot includes all CCs configured to the UE and all DL scheduling slots in which the A / N transmission timing may be indicated.
  • the number of A / N bits corresponding to a combination of PDSCH transmission slots or PDCCH monitoring slots hereinafter, referred to as a bundling window may be determined.
  • the DL grant DCI includes PDSCH-to-A / N timing information
  • the PDSCH-to-A / N timing information may have one of a plurality of values (eg, k).
  • k a PDSCH is received in slot #m and PDSCH-to-A / N timing information in a DL grant DCI (PDCCH) scheduling the PDSCH indicates k
  • the A / N information for the PDSCH is May be sent in slot # (m + k).
  • k ⁇ ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ can be given.
  • a / N information may include the maximum A / N possible based on the bundling window. That is, the A / N information of slot #n may include A / N corresponding to slot # (n-k). For example, in the case of k ⁇ ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ , the A / N information of slot #n is received from slot # (n-8) ⁇ regardless of actual DL data reception. A / N corresponding to slot # (n-1) is included (that is, the maximum number of A / Ns).
  • the A / N information may be replaced with an A / N codebook and an A / N payload.
  • the slot may be understood / replaced as a candidate opportunity for receiving DL data.
  • the bundling window is determined based on PDSCH-to-A / N timing based on the A / N slot, and the PDSCH-to-A / N timing set has a pre-defined value (eg, ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ ), and higher layer (RRC) signaling.
  • RRC higher layer
  • a reference time unit used or assumed to transmit and receive a physical channel may vary according to an application or a type of traffic.
  • the reference time may be a basic unit for scheduling a specific physical channel, and the reference time unit may be determined according to the number of symbols and / or subcarrier spacing that constitutes the scheduling unit. Can be different.
  • description will be made based on a slot and a mini-slot as reference time units.
  • the slot may be a basic unit for scheduling for general data traffic such as enhanced mobile broadband (eMBB).
  • eMBB enhanced mobile broadband
  • a mini-slot may have a shorter time interval than a slot in the time-domain.
  • the mini slot may be a basic unit of scheduling for traffic or a communication method having a special purpose such as ultra reliable and low latency communication (URLLC), an unlicensed band, or a millimeter wave. .
  • URLLC ultra reliable and low latency communication
  • unlicensed band or a millimeter wave.
  • mini slot or mini slot is only one embodiment, and even if the eMBB data, it is possible to transmit and receive a physical channel based on the mini-slot (mini-slot).
  • URLLC and other communication schemes can also transmit and receive physical channels on a slot basis, and in this case, it is obvious that the expansion can be performed according to an embodiment of the present invention.
  • 16 to 18 are diagrams for describing an operation process from a terminal, a base station, and a network perspective according to an exemplary embodiment of the present invention.
  • the terminal receives a first DCI (Downlink Control Information) for scheduling eMBB data and a second DCI for scheduling URLLC data (S1601).
  • the information included in the second DCI to schedule the URLLC data may be according to the third embodiment.
  • the size of the second DCI may be determined based on the fourth embodiment.
  • the UE Upon receiving the first and second DCI, the UE receives the eMBB PDSCH (Physical Downlink Shared Channel) and URLLC PDSCH based on the scheduling information included in the first and second DCI (S1603), and receives the received eMBB PDCSH and URLLC PDSCH. Decode (S1605).
  • a method for decoding the eMBB PDSCH and the URLLC PDSCH and a processing time therefor may be determined according to the second embodiment.
  • the first HARQ-ACK feedback for the eMBB PDSCH and the second HARQ-ACK feedback for the URLLC PDSCH may be generated and transmitted according to the decoding result (S1607).
  • the decoding result S1607.
  • whether the corresponding HARQ-ACK feedback is valid may be determined according to the second embodiment.
  • the method of mapping and transmitting the second HARQ-ACK feedback may be according to the first embodiment.
  • the base station transmits a first DCI (Downlink Control Information) for scheduling eMBB data and a second DCI for scheduling URLLC data (S1701).
  • a first DCI Downlink Control Information
  • a second DCI for scheduling URLLC data
  • the information included in the second DCI to schedule the URLLC data may be according to the third embodiment.
  • the size of the second DCI may be determined based on the fourth embodiment.
  • the base station transmits the eMBB PDSCH and the URLLC PDSCH based on the scheduling information included in the first and second DCIs (S1703).
  • a first HARQ-ACK feedback for an eMBB PDSCH and a second HARQ-ACK feedback for a URLLC PDSCH are received from the UE.
  • the method of mapping and receiving the second HARQ-ACK feedback may be according to the first embodiment.
  • the base station transmits a first DCI (Downlink Control Information) for scheduling eMBB data and a second DCI for scheduling URLLC data to the terminal (S1801).
  • a first DCI Downlink Control Information
  • a second DCI for scheduling URLLC data
  • the information included in the second DCI to schedule the URLLC data may be according to the third embodiment.
  • the size of the second DCI may be determined based on the fourth embodiment.
  • the base station transmits the eMBB PDSCH and the URLLC PDSCH based on the scheduling information included in the first and second DCIs (S1803).
  • the terminal receiving the eMBB PDSCH and URLLC PDSCH transmitted by the base station decodes the received eMBB PDCSH and URLLC PDSCH (S1805).
  • a method for decoding the eMBB PDSCH and the URLLC PDSCH and a processing time therefor may be determined according to the second embodiment.
  • the first HARQ-ACK feedback for the eMBB PDSCH and the second HARQ-ACK feedback for the URLLC PDSCH may be generated and transmitted according to the decoding result (S1807).
  • the decoding result S1807.
  • whether the corresponding HARQ-ACK feedback is valid may be determined according to the second embodiment.
  • the method of mapping and transmitting the second HARQ-ACK feedback may be according to the first embodiment.
  • Example 1 URLLC For data HARQ - ACK feedback
  • HARQ-ACK feedback timing for the PDSCH is determined by the slot where the PDSCH transmission is terminated and the PUCCH resource by the DCI indicating the PUCCH resource and K1 which is an offset value indicated by the DCI scheduling the PDSCH.
  • the PUCCH resource for HARQ-ACK feedback is determined based on this, when at least one slot including the PUCCH is first determined, and a start symbol corresponding to the selected PUCCH resource is indicated within the determined slots.
  • a gap between an end symbol of PDSCH transmission and a start symbol for HARQ-ACK feedback may be shorter than a time interval corresponding to one slot. Therefore, depending on the PDCCH opportunity (Occasion), even if the gap (gap) is constant, the slot index to which the HARQ-ACK feedback is transmitted may be changed. For example, if the gap between the end symbol of PDSCH transmission and the start symbol of HARQ-ACK feedback is 8 symbols, the value of K1 will be 0 or 1, and the PUCCH resource to be indicated by the DCI is shown in [Table 8]. Can be.
  • the above-mentioned combination of K1 and PUCCH resource indexes need not be supported.
  • the start symbol of HARQ-ACK feedback is determined only by the offset value K1
  • K1 is defined as the number of symbols between the end symbol of PDSCH and the start symbol of HARQ-ACK feedback
  • the bit for K1 The field and the PUCCH resource indicator can be used efficiently. For example, if K1 for URLLC is redesigned as described above, all indexes in Table 8 may be regarded as a single state since the number of symbols is two. In addition, the 'first symbol' column of Table 8 may be ignored.
  • K1 and PUCCH resources may be indicated together by a single bit field in DCI scheduling PDCSH. Otherwise, K1 may be ignored and a 'first symbol' symbol of the PUCCH resource may be defined in association with an end symbol of the corresponding PDSCH.
  • the same HARQ-ACK codebook and the same HARQ-ACK codebook size are used regardless of the start symbol of the PUCCH resource in the slot in which the PUCCH is transmitted.
  • the terminal may transmit one HARQ-ACK feedback per slot.
  • two or more HARQ-ACK feedback instances are allowed in a slot, and each PUCCH timing instance is different from HARQ.
  • the terminal may have to wait for transmission of the HARQ-ACK feedback, which may cause a problem of increased latency.
  • a HARQ-ACK codebook for starting symbol index of each PUCCH resource may be determined. For example, if K1 is defined as 8 or 10 symbols to indicate a gap between the end symbol of PDSCH and the start symbol of HARQ-ACK feedback, then the HARQ-ACK codebook for each PUCCH transmission timing in the slot The size may be defined as 2 bits.
  • uplink control information for eMBB and URLLC, such as HARQ-ACK feedback
  • the terminal may transmit a specific uplink priority.
  • the transmission for the URLLC uplink may be prioritized, in which case, the UCI for the eMBB may be dropped or at least HARQ-ACK may be piggybacked on the URLLC uplink channel for transmission. have.
  • the terminal may decode the URLLC PDSCH first even if the start symbol of the URLLC PDSCH is located behind the start symbol of the eMBB PDSCH.
  • eMBB data and URLLC data may use different Radio Network Temporary Identifier (RNTI) or different Cyclic Redundancy Check Masking (CRC) for PDCCH scheduling PDSCH.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check Masking
  • the UE when the UE decodes the PDSCH, when the UE receives the eMBB PDSCH and the URLLC PDSCH in parallel, the UE may stop decoding the eMBB PDSCH and start decoding the URLLC PDSCH. After decoding the URLLC PDSCH, the eMBB PDSCH may be continuously decoded.
  • receiving the eMBB PDSCH and the URLLC PDSCH simultaneously or in parallel may refer to a case in which the URLLC PDSCH is received after receiving the eMBB PDSCH and before processing for decoding is completed.
  • an additional margin may be needed at the processing time of the UE for the eMBB PDSCH.
  • the additional margin may mean additional time required to completely complete the decoding of the eMBB PDSCH stopped in order to preferentially decode the URLLC PDSCH.
  • an additional margin for the eMBB PDSCH processing time of the UE may be defined by Equation 1 below. That is, when the URLLC PDSCH and the eMBB PDSCH are simultaneously received, the total processing time for the eMBB PDSCH may be determined by adding d 1,3 according to [Equation 1] below to the processing time required when only the eMBB PDSCH is received. Can be.
  • d means the number of overlapping symbols between the symbols of the PDCCH and the symbols of the PDSCH for URLLC.
  • x is a value obtained by subtracting the end symbol index of the eMBB PDSCH from the URLLC end symbol index. That is, it means the difference between the URLLC end symbol and the end symbol of the eMBB PDSCH.
  • the N 1 value means processing time for URLLC PDSCH.
  • the value of x may be used only in a specific case.
  • the end symbol of the URLLD PDSCH precedes the end symbol of the eMBB PDSCH only the N 1 value and / or the d value may be considered as an additional margin for the eMBB PDSCH, and the x value may not be considered.
  • the HARQ-ACK transmission timing when only the eMBB PDSCH is transmitted is determined based on the end symbol of the eMBB PDSCH. Therefore, when the end symbol of the URLLC PDSCH is preceded, it is not meaningful to consider the x value. This is because only the ACK transmission timing can be delayed.
  • the time from the end symbol of the eMBB PDSCH reception to the first time point of the HARQ-ACK feedback transmission is greater than or equal to the minimum processing time based on the minimum processing time calculated based on the additional margin. It can be assumed that a valid HARQ-ACK feedback is generated and is invalid if the time from the end symbol of the eMBB PDSCH reception to the first time point of the HARQ-ACK feedback transmission is less than the minimum processing time. It can be assumed as HARQ-ACK feedback.
  • Embodiment 3 DCI Content for URLLC Scheduling
  • the DCI for URLLC may include an identifier for identifying the purpose of the DCI.
  • a carrier indicator may be needed to determine whether to use cross-carrier scheduling for URLLC. Given the robustness of PDCCH detection, it may be desirable to support cross-carrier scheduling for URLLC.
  • Bandwidth Part (BWP) indicator may not be needed. This is because DCI-based BWP switching causes a problem of increasing latency.
  • the BWP used for URLLC transmission may be configured by RRC (ie, higher layer).
  • bit field for frequency domain resource assignment needs to support discontinuous resource allocation as well as a reasonable bit field size for the URLLC service.
  • resource allocation type 1 having interleaved VRB-to-PRB mapping may be used, or resource allocation type 0 may be used together with configuration 2 for RBG size. Given the various packet sizes or URLLC requirements, it is not necessary to limit the type of resource allocation for URLLC.
  • the time domain resource allocation for the PDSCH or PUSCH will be different, and the bit width for the time domain resource allocation will also be different.
  • the bit width required for time domain resource allocation may be less than 4 bits, which is the bit width of the fall back DCI.
  • the PRB bundle size indicator can control channel estimation performance / complexity according to allocated resources and channel conditions, it can be efficiently used for URLLC PDSCH reception.
  • Rate matching indicator and ZP CSI-RS triggering are used for PDSCH rate matching.
  • the RBG size of the URLLC PDSCH In order for the RBG size of the URLLC PDSCH to be set to a large value, it is necessary to have an efficient rate matching mechanism.
  • the bit width of the HARQ process number for URLLC is preferably adjusted.
  • DAI Downlink Assignment Index
  • the URLLC HARQ-ACK feedback timing is not dynamically changed or the packet arrival rate is extremely low, the DAI field may not be required. In such a case, it may be considered that this field does not exist based on the configuration.
  • the PUCCH related parameters may be further reduced or omitted depending on the PUCCH resource and the design of K1.
  • the first symbol of the PUCCH resource may be indicated by only K1 defined as the number of symbols.
  • MIMO Multi Input Multi Output
  • TCI Transmission Configuration Indictor
  • SRS Sounding Reference Signal
  • precoding information and number of layers precoding information and number of layers
  • SRS resource indicator or CSI request can be used for URLLC transmission.
  • bit field for the above-described MIMO related parameters may be omitted.
  • CBG-based HARQ-ACK causes a loss of PUCCH detection performance, it is unclear whether CBG-based HARQ-ACK transmission is useful for URLLC.
  • CBG Flush Indicator CBGFI
  • DMRS sequence initialization can be used for URLLC transmission.
  • TBS transport block size
  • the DCI format for URLLC downlink allocation may be designed based on DCI format 1_1, and the DCI format for URLLC uplink grant may be designed based on DCI format 0_1.
  • the total bit width of the non-fallback DCI may be less than the bit width of the fallback DCI. In this way, PDCCH detection performance can be improved to meet the reliability requirements for URLLC.
  • URLLC DCI DL URLLC DCI UL Common fields between non-fallback DCIs and URLLC DCI carrier indicator [0 or 3] frequency-domain resource assignment time-domain resource assignment [0-4] VRB-to-PRB mapping [0 or 1] PRB bundling size indicator [0 or 1] New data indicator [1] Downlink assignment index [0-4] TPC command for scheduled PUCCH [2] PUCCH resource indicator [3] DMRS sequence initialization [0 or 1] carrier indicator [0 or 3] UL / SUL indicator [0 or 1] frequency-domain resource assignment time-domain resource assignment [0-4] Frequency hopping [0 or 1] New data indicator [1] 1st Downlink assignment index [1 or 2] TPC command for scheduled PUSCH [2] CSI request [0-6] beta_offset indicator [0 or 2] DMRS sequence initialization [0 or 1] Modified fields in size from non-fallback DCI Modulation and coding scheme [4 or 5] Redundancy version [0-2] HARQ process number [
  • Example 4 URLLC Control / data Based DCI Allow Resize ( DCI size budget handling considering URLLC control / data)
  • the allowable size for the current DCI is sufficient. For example, for a given C-RNTI, the UE will monitor three different DCI sizes. One may be for DCI format 0_0 / 1_0, the other may be for DCI format 0_1, and the other may be for DCI format 1_1.
  • the size of URLLC DCI format matches the size of other DCI formats to maintain the allowable size of DCI and reduce the number of blind decoding attempts of PDCCH. I need to. In this case, the size of the URLLC DCI should be reduced as much as possible in order to robust the PDCCH detection performance.
  • URLLC DCI format 1_1 / 0_1 may have a smaller payload size than DCI format 1_1 / 0_1 for eMBB.
  • the URLLC DCI format 1_1 / 0_1 has a payload size having a minimum value among the sizes of eMBB DCI format 0_1, eMBB DCI format 1_1, and eMBB DCI format 1_0 / 0_0. You can add a value of zero until it is equal. For example, zero-padding may be performed until the size of the eMBB DCI format is equal to the size of the smallest DCI format.
  • RNTIs different RNTIs, additional identifiers for the DCI format, or additional CRC masking for the PDCCH may be used for the eMBB DCI and the URLLC DCI.
  • the length of the CRC for the current PDCCH is 24 bits
  • the number of bits for the RNTI is 16 bits. Therefore, the remaining 8 bits can be used to indicate service type, latency / reliability requirement, and the like.
  • URLLC / eMBB uplink is scheduled through the Configured Grant method, it may be assumed that different DCI formats are used for URLLC uplink and eMBB uplink.
  • an explicit configuration for the Type 1 / Type 2 Configuration of Configured Grant may be used, and in Type 2, the active DCI may be used to distinguish the DCI format for URLLC / eMBB.
  • Type 1 when the Configured Grant of Type 1 is configured, a DCI format for URLLC / eMBB may be distinguished.
  • the eMBB DCI and the URLLC DCI may be distinguished through a transmission interval.
  • the transmission interval for URLLC may be shorter than the transmission interval for eMBB.
  • eMBB / URLLC can be distinguished based on the existence of the 'non-pre-emptible' field carried by DCI. If the 'non-pre-emptible' field is present, even if the PUSCH for URLLC collides with another PUSCH, the URLLC transmission may be regarded as not being dropped. In other words, when a PUSCH for URLLC collides with another PUSCH, another PUSCH transmission may be dropped. Therefore, for URLLC traffic scheduling, a 'non-pre-emptible' field may be added in the DCI so that preemption can be dynamically adjusted. In addition, when Configured Grant Type 1 is set, an explicit configuration of whether or not the 'non-pre-emptible' is required may be required.
  • FIG. 19 illustrates an embodiment of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described with reference to FIG. 19 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 19 is not necessarily limited to a terminal and / or a base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like.
  • the apparatus includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), and artificial intelligence (AI).
  • UAV unmanned aerial vehicle
  • AI artificial intelligence
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the MTC device and the IoT device are devices that do not require human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, various sensors, and the like.
  • a medical device is a device used to examine, replace, or modify a device, structure, or function used for diagnosing, treating, alleviating, treating, or preventing a disease, such as a medical device, a surgical device, ( In vitro) diagnostic devices, hearing aids, surgical devices, and the like.
  • the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like.
  • the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device or a point of sales (POS).
  • the climate / environmental device may mean a device for monitoring and predicting the climate / environment.
  • the transmitting terminal and the receiving terminal are mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants, portable multimedia players, navigation, slate PCs. , Tablet PCs, ultrabooks, wearable devices, such as smartwatches, glass glasses, head mounted displays, and foldables foldable) devices and the like.
  • the HMD is a display device of a type worn on the head and may be used to implement VR or AR.
  • a terminal and / or a base station may include at least one processor 10, a transceiver 35, such as a digital signal processor (DSP) or a microprocessor, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like.
  • the terminal and / or the base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as a radio frequency module (RF module).
  • RF module radio frequency module
  • the processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. 1-18. In at least some of the embodiments described in FIGS. 1-18, the processor 10 may implement one or more protocols, such as layers of a wireless interface protocol (eg, functional layers).
  • layers of a wireless interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user may enter various types of information (eg, indication information such as a telephone number) by various techniques such as pressing a button on the keypad 20 or voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information.
  • the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data.
  • Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting.
  • Antenna 40 facilitates the transmission and reception of wireless signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
  • the senor may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like.
  • the processor 10 receives and processes sensor information obtained from a sensor such as proximity, location, and image, thereby performing various functions such as collision avoidance and autonomous driving.
  • a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving, vehicle safety service, and the like.
  • FIG. 19 is only an embodiment of devices configuring a terminal and / or a base station, but is not limited thereto.
  • some components such as keypad 20, global positioning system (GPS) chip, sensor, speaker 45, and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
  • GPS global positioning system
  • the operation of the wireless communication device represented in FIG. 19 is a terminal according to an embodiment of the present invention.
  • the processor 10 may receive a transceiver to receive a first DCI (Downlink Control Information) for scheduling eMBB data and a second DCI for scheduling URLLC data. Control 35.
  • the information included in the second DCI to schedule the URLLC data may be according to the third embodiment.
  • the size of the second DCI may be determined based on the fourth embodiment.
  • the processor 10 Upon receiving the first and second DCIs, the processor 10 controls the transceiver 35 to receive an eMBB PDSCH (Physical Downlink Shared Channel) and a URLLC PDSCH based on the scheduling information included in the first and second DCIs. Decoded eMBB PDCSH and URLLC PDSCH). In this case, a method for decoding the eMBB PDSCH and the URLLC PDSCH and a processing time therefor may be determined according to the second embodiment.
  • eMBB PDSCH Physical Downlink Shared Channel
  • URLLC PDSCH Physical Downlink Shared Channel
  • the processor 10 may control the transceiver 35 to generate and transmit the first HARQ-ACK feedback for the eMBB PDSCH and the second HARQ-ACK feedback for the URLLC PDSCH according to the decoding result.
  • the processor 10 may control the transceiver 35 to generate and transmit the first HARQ-ACK feedback for the eMBB PDSCH and the second HARQ-ACK feedback for the URLLC PDSCH according to the decoding result.
  • whether the corresponding HARQ-ACK feedback is valid may be determined according to the second embodiment.
  • the method of mapping and transmitting the second HARQ-ACK feedback may be according to the first embodiment.
  • the processor 10 may include a first downlink control for scheduling eMBB data. Information) and the transceiver 35 to transmit a second DCI for scheduling the URLLC data.
  • the information included in the second DCI to schedule the URLLC data may be according to the third embodiment.
  • the size of the second DCI may be determined based on the fourth embodiment.
  • the processor 10 controls the transceiver 35 to transmit the eMBB PDSCH and the URLLC PDSCH based on the scheduling information included in the first and second DCI.
  • the processor 10 controls the transceiver 35 to receive the first HARQ-ACK feedback for the eMBB PDSCH and the second HARQ-ACK feedback for the URLLC PDSCH.
  • the method of mapping and receiving the second HARQ-ACK feedback may be according to the first embodiment.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서, 단말이 PDSCH(Physical Downlink Shared Channel)를 디코딩하는 방법을 개시한다. 특히, 상기 방법은 eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하고, 상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고, 상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임에 기반하는 것을 특징으로 한다.

Description

하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
본 발명은 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, eMBB (Enhanced Mobile Broadband) 데이터와 URLLC (Ultra-Reliable Low-Latency Communication) 데이터가 병렬적으로 수신되었을 때의 eMBB 데이터와 URLLC 데이터를 디코딩하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 단말이 PDSCH(Physical Downlink Shared Channel)를 디코딩하는 방법에 있어서, eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하고, 상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고, 상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임에 기반할 수 있다.
이 때, 상기 제 1 프로세싱 타임은, 상기 제 1 PDSCH의 마지막 심볼에서 상기 제 2 PDSCH의 마지막 심볼까지의 시간이 더 고려될 수 있다.
또한, 상기 제 1 프로세싱 타임은, 상기 제 1 PDSCH와 상기 제 2 PDSCH가 겹치는(overlapping) 심볼의 수가 더 고려될 수 있다.
또한, 상기 제 1 PDSCH의 시작 심볼은, 상기 제 2 PDSCH의 시작 심볼 이전에 위치할 수 있다.
또한, 상기 제 1 PDSCH의 마지막 심볼은, 상기 제 2 PDSCH의 마지막 심볼 이전에 위치할 수 있다.
또한, 상기 제 1 PDSCH의 마지막 심볼과 상기 제 1 PDSCH를 위한 HARQ-ACK (Hybrid Automatic Repeat Request - Acknowledgement) 피드백 전송 타이밍 간의 간격이 상기 제 1 프로세싱 타임 이상인 경우, 상기 제 1 PDSCH를 위한 HARQ-ACK 피드백은 유효할 수 있다.
또한, 상기 제 1 PDSCH의 디코딩을 수행하는 중에 상기 제 2 PDSCH가 수신되면, 상기 제 1 PDSCH의 디코딩이 중단되고, 상기 제 2 PDSCH의 디코딩이 수행될 수 있다.
또한, 상기 제 2 PDSCH의 디코딩이 완료되면, 상기 제 1 PDSCH의 디코딩이 재개될 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, PDSCH(Physical Downlink Shared Channel)를 디코딩하기 위한 장치에 있어서, 메모리; 및 상기 메모리와 결합된 적어도 하나의 프로세서;를 포함하고, 상기 적어도 하나의 프로세서는, eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하고, 상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고, 상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임을 기반할 수 있다.
이 때, 상기 제 1 프로세싱 타임은, 상기 제 1 PDSCH의 마지막 심볼에서 상기 제 2 PDSCH의 마지막 심볼까지의 시간이 더 고려될 수 있다.
또한, 상기 제 1 프로세싱 타임은, 상기 제 1 PDSCH와 상기 제 2 PDSCH가 겹치는(overlapping) 심볼의 수가 더 고려될 수 있다.
또한, 상기 제 1 PDSCH의 시작 심볼은, 상기 제 2 PDSCH의 시작 심볼 이전에 위치하고, 상기 제 1 PDSCH의 마지막 심볼은, 상기 제 2 PDSCH의 마지막 심볼 이전에 위치할 수 있다.
또한, 상기 제 1 PDSCH의 마지막 심볼과 상기 제 1 PDSCH를 위한 HARQ-ACK (Hybrid Automatic Repeat Request - Acknowledgement) 피드백 전송 타이밍 간의 간격이 상기 제 1 프로세싱 타임 이상인 경우, 상기 제 1 PDSCH를 위한 HARQ-ACK 피드백은 유효할 수 있다.
또한, 상기 제 1 PDSCH의 디코딩을 수행하는 중에 상기 제 2 PDSCH가 수신되면, 상기 제 1 PDSCH의 디코딩이 중단되고, 상기 제 2 PDSCH의 디코딩이 수행될 수 있다.
또한, 상기 제 2 PDSCH의 디코딩이 완료되면, 상기 제 1 PDSCH의 디코딩이 재개될 수 있다.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, PDSCH(Physical Downlink Shared Channel)를 디코딩하기 위한 단말에 있어서, 트랜시버; 및 상기 트랜시버와 결합된 적어도 하나의 프로세서;를 포함하고, 상기 적어도 하나의 프로세서는, eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하도록 상기 트랜시버를 제어하고, 상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고, 상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임을 기반으로 가변될 수 있다.
본 발명에 따르면, URLLC 데이터를 송수신하기 위한 제어 정보의 오버헤드를 효율적으로 관리할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 6 내지 도 8은 NR 시스템에서 URLLC (Ultra-Reliable Low-Latency Communication) 데이터의 송수신을 설명하기 위한 도면이다.
도 9 내지 도 11은 NR 시스템에서 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH)에 대해 설명하기 위한 도면이다.
도 12는 NR 시스템에서 Long PUCCH (Physical Uplink Control Channel)과 Short PUCCH의 다중화를 설명하기 위한 도면이다.
도 13은 NR 시스템에서의 HARQ-ACK 타이밍에 대해 설명하기 위한 도면이다.
도 14 내지 도 15는 NR 시스템에서 코드 블록 그룹(Code Block Group; CBG) 단위의 HARQ-ACK 전송을 설명하기 위한 도면이다.
도 16 내지 도 18은 본 발명의 실시 예에 따른 eMBB 데이터와 URLLC 데이터를 송수신하기 위한 단말, 기지국 및 네트워크 관점에서의 동작을 설명하기 위한 도면이다.
도 19는 본 발명을 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다.
UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
도 6은 eMBB전송 및 URLLC 전송을 위한 자원 공유를 예시한다.
eMBB 전송 및 URLLC 전송이 동일한 전송 길이 (transmission duration)을 갖는다면, eMBB 전송 및 URLLC 전송은 도 6(a)와 같이 스케줄링 기반으로 비-중첩되는 시간/주파수 자원을 공유할 수 있다. 또는, 하향링크 전송에 있어, eMBB 전송 및 URLLC 전송을 위해 상이한 지연 및/또는 신뢰성 (reliability) 요구 사항을 위해, 도 6(b)와 같이 URLLC 전송이 진행 중인 (ongoing) eMBB 전송을 위한 자원 상에서 발생할 수 있다.
이를 위해, DCI format 2_1은 하향링크 eMBB 전송을 위해 스케줄링된 자원과 (일부) 중첩되는 자원 정보를 (URLLC 전송 목적을 위해) 단말에게 전달한다. 단말은 DCI format 2_1에 의해 지시된 자원 블록 및 심볼 내 어떠한 신호 전송이 존재하지 않는다고 가정한다. 단말은 지시된 코딩된 비트를 소프트 버퍼 (soft buffer)로부터 제외할 수 있고, 하향링크 선취 지시를 참고하여 PDSCH를 (재)복호 할 수 있다.
프리엠션 지시(Pre- emption indication)
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. 아래 표 3은 DownlinkPreemption IE의 일례를 나타낸다.
-- ASN1START-- TAG-DOWNLINKPREEMPTION-STARTDownlinkPreemption ::= SEQUENCE { int-RNTI RNTI-Value, timeFrequencySet ENUMERATED {set0, set1}, dci-PayloadSize INTEGER (0..maxINT-DCI-PayloadSize), int-ConfigurationPerServingCell SEQUENCE (SIZE (1..maxNrofServingCells)) OF INT-ConfigurationPerServingCell, ...}INT-ConfigurationPerServingCell ::= SEQUENCE { servingCellId ServCellIndex, positionInDCI INTEGER (0..maxINT-DCI-PayloadSize-1)}-- TAG-DOWNLINKPREEMPTION-STOP-- ASN1STOP
UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, 도 7을 참조하면, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다. 도 7에서 보는 바와 같이, 프리엠션 지시를 위해서 RRC 파라미터 timeFrequencySet에 의해 {M,N}의 조합이 설정된다. {M,N}={14,1}, {7,2}일 수 있다.
도 8은 프리엠션 지시의 시간/주파수 세트(timefrequency set)의 일례를 나타낸다.
프리엠션 지시를 위한 14-비트 비트맵(bitmap)은 하나 이상의 주파수 파트들(N>=1) 및/또는 하나 이상의 시간 도메인 파트들(M>=1)를 지시한다. {M,N}={14,1}인 경우, 도 8의 좌측 도면에서와 같이 시간 도메인에서 14개 파트들이 14-비트 비트맵의 14개 비트들에 일대일로 대응하고, 상기 14개 비트들 중 1로 세팅된 비트에 대응하는 파트가 프리엠트된 자원들을 포함하는 파트이다. {M,N}={14,2}인 경우, 도 8의 우측 도면에서와 같이, 모니터링 기간의 시간-주파수 자원이 시간 도메인에서 7개 파트들로, 그리고 주파수 도메인에서 2개 파트들로 나뉘어, 총 14개 시간-주파수 파트들로 나뉜다. 상기 총 14개 시간-주파수 파트들이 14-비트 비트맵의 14개 비트들에 일대일로 대응하고, 상기 14개 비트들 중 1로 세팅된 비트에 대응하는 파트가 프리엠트된 자원들을 포함하는 파트이다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 9는 하나의 REG 구조를 예시한다. 도 9에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정된다:
- sameAsREG -bundle: 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs: CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다. 도 10(a)는 비-인터리빙된 CCE-REG 매핑 타입을 예시하고, 도 10(b)는 인터리빙된 CCE-REG 매핑 타입을 예시한다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 11은 블록 인터리버를 예시한다. 위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 11과 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 4는 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 5는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
(1) 물리 상향링크 공유 채널(PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
(2) 물리 상향링크 제어 채널(PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 6은 PUCCH 포맷들을 예시한다.
PUCCH format Length in OFDM symbols
Figure PCTKR2019005704-appb-img-000001
Number of bits Usage Etc
0 1 - 2 =2 HARQ, SR Sequence selection
1 4 - 14 =2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
Short PUCCH 및 Long PUCCH의 다중화
도 12는 Short PUCCH 및 Long PUCCH가 상향링크 신호와 다중화되는 구성을 예시한다.
PUCCH (예, PUCCH format 0/2)와 PUSCH는 TDM 또는 FDM 방식으로 다중화될 수 있다. 서로 다른 단말로부터의 short PUCCH 와 long PUCCH는 TDM 또는 FDM 방식으로 다중화될 수 있다. 하나의 슬롯 내 단일 단말로부터의 short PUCCH들은 TDM 방식으로 다중화될 수 있다. 하나의 슬롯 내 단일 단말로부터의 short PUCCH 와 long PUCCH는 TDM 또는 FDM 방식으로 다중화될 수 있다.
HARQ (Hybrid Automatic Repeat and reQuest )
제어 정보를 보고하기 위한 UE 동작과 관련하여 HARQ-ACK 동작에 대해 살펴본다. HARQ-ACK은 UE가 물리 하향링크 채널을 성공적으로 수신했는지 여부를 나타내는 정보이며, UE가 물리 하향링크 채널을 성공적으로 수신한 경우에는 ACK(acknowledgement)을 그렇지 못한 경우에는 부정 ACK(negative ACK, NACK)을 기지국에게 피드백한다. NR에서의 HARQ는 수송 블록당 1 비트의 HARQ-ACK 피드백을 지원한다. 도 13은 HARQ-ACK 타이밍(K1)의 일례를 나타낸 도이다.
도 13에서, K0는 DL 배정(즉, DL 그랜트)을 나르는 PDCCH를 가진 슬롯부터 대응하는 PDSCH 전송을 가진 슬롯까지의 슬롯의 개수를 나타내며, K1은 PDSCH의 슬롯으로부터 대응하는 HARQ-ACK 전송의 슬롯까지의 슬롯의 개수를 나타내고, K2는 UL 그랜트를 나르는 PDCCH를 가진 슬롯부터 대응하는 PUSCH 전송을 가진 슬롯까지의 슬롯의 개수를 나타낸다. 즉, KO, K1, K2를 아래 표 7과 같이 간략히 정리할 수 있다.
A B
K0 DL scheduling DCI Corresponding DL data transmission
K1 DL data reception Corresponding HARQ-ACK
K2 UL scheduling DCI Corresponding UL data transmission
기지국은 HARQ-ACK 피드백 타이밍을 DCI에서 동적으로 혹은 RRC 시그널링을 통해 준-정적으로 UE에게 제공할 수 있다.
NR은 UE들 간에 서로 다른 최소 HARQ 프로세싱 시간을 지원한다. HARQ 프로세싱 시간은 DL 데이터 수신 타이밍과 대응하는 HARQ-ACK 전송 타이밍 사이의 딜레이(delay)와 UL 그랜트 수신 타이밍과 대응하는 UL 데이터 전송 타이밍 사이의 딜레이를 포함한다. UE는 기지국에게 자신의 최소 HARQ 프로세싱 시간의 능력(capability)에 대한 정보를 전송한다. UE 관점에서, 시간 도메인에서 다수의 DL 전송들에 대한 HARQ ACK / NACK 피드백은 하나의 UL 데이터 / 제어 영역에서 전송될 수 있다. DL 데이터 수신과 대응하는 ACK 사이의 타이밍은 DCI에 의해 지시된다.
수송 블록 혹은 코드워드별로 HAQR 과정이 수행되던 LTE 시스템과 달리, NR 시스템에서는 단일(single)/다중(multi)-비트 HARQ-ACK 피드백을 갖는 코드 블록 그룹(code block group, CBG) 기반의 전송이 지원된다. 수송 블록(transport block, TB)는 TB의 크기에 따라 하나 이상의 CB에 매핑될 수 있다. 예를 들어, 채널 코딩 과정에서 TB에는 CRC 코드가 부착되며, CRC 부착 TB가 일정 크기보다 크지 않으면 CRC 부착 TB가 곧 하나의 코드 블록(code block, CB)에 대응하지만 상기 CRC 부착 TB가 상기 일정 크기보다 크면 상기 CRC 부착 TB는 복수의 CB로 세그먼트된다. NR 시스템에서 UE는 CBG 기반 전송들을 수신하도록 설정될 수 있으며, 재전송은 TB의 모든 CB들의 서브셋을 나르도록 스케줄링될 수 있다.
CBG (Code Block Group)-기반 HARQ 과정
LTE에서는 TB(Transport Block)-기반 HARQ 과정이 지원된다. NR에서는 TB-기반 HARQ 과정과 함께 CBG-기반 HARQ 과정이 지원된다.
도 14은 TB의 처리 과정 및 구조를 예시한다. 도 14의 과정은 DL-SCH(Shared Channel), PCH(Paging Channel) 및 MCH(Multicast Channel) 전송 채널의 데이터에 적용될 수 있다. UL TB (혹은, UL 전송 채널의 데이터)도 유사하게 처리될 수 있다.
도 14를 참조하면, 송신기는 TB에 에러 체크를 위해 CRC(예, 24-비트)(TB CRC)가한다. 이후, 송신기는 채널 인코더의 사이즈를 고려하여 TB+CRC를 복수의 코드블록으로 나눌 수 있다. 일 예로, LTE에서 코드블록의 최대 사이즈는 6144-비트이다. 따라서, TB 사이즈가 6144-비트 이하이면 코드블록은 구성되지 않고, TB 사이즈가 6144-비트보다 큰 경우 TB는 6144-비트 단위로 분할되어 복수의 코드블록이 구성된다. 각각의 코드블록에는 에러 체크를 위해 CRC(예, 24-비트)(CB CRC)가 개별적으로 부가된다. 각각의 코드블록은 채널 코딩 및 레이트 매칭을 거친 뒤, 하나로 합쳐져 코드워드를 구성한다. TB-기반 HARQ 과정에서 데이터 스케줄링과 그에 따른 HARQ 과정은 TB 단위로 수행되며, CB CRC는 TB 디코딩의 조기 종료(early termination)를 판단하기 위해 사용된다.
도 15는 CBG-기반 HARQ 과정을 예시한다. CBG-기반 HARQ 과정에서 데이터 스케줄링과 그에 따른 HARQ 과정은 TB 단위로 수행될 수 있다.
도 15를 참조하면, 단말은 상위 계층 신호(예, RRC 신호)를 통해 전송블록 당 코드블록 그룹의 개수 M에 관한 정보를 기지국으로부터 수신할 수 있다(S1602). 이후, 단말은 데이터 초기 전송을 (PDSCH를 통해) 기지국으로부터 수신할 수 있다(S1604). 여기서, 데이터는 전송블록을 포함하고, 전송블록은 복수의 코드블록을 포함하며, 복수의 코드블록은 하나 이상의 코드블록 그룹으로 구분될 수 있다. 여기서, 코드블록 그룹 중 일부는 ceiling (K/M)개의 코드블록을 포함하고, 나머지 코드블록은 flooring (K/M)개의 코드블록을 포함할 수 있다. K는 데이터 내의 코드블록의 개수를 나타낸다. 이후, 단말은 데이터에 대해 코드블록 그룹-기반의 A/N 정보를 기지국에게 피드백 할 수 있고(S1606), 기지국은 코드블록 그룹에 기반하여 데이터 재전송을 수행할 수 있다(S1608). A/N 정보는 PUCCH 또는 PUSCH를 통해 전송될 수 있다. 여기서, A/N 정보는 데이터에 대해 복수의 A/N 비트를 포함하고, 각각의 A/N 비트는 데이터에 대해 코드블록 그룹 단위로 생성된 각각의 A/N 응답을 나타낼 수 있다. A/N 정보의 페이로드 사이즈는 데이터를 구성하는 코드블록 그룹 개수와 관계없이 M에 기반하여 동일하게 유지될 수 있다.
동적(dynamic)/준-정적(semi-static) HARQ - ACK 코드북 방식
NR에서는 동적 HARQ-ACK 코드북 방식과 준-정적 HARQ-ACK 코드북 방식을 지원한다. HARQ-ACK (또는, A/N) 코드북은 HARQ-ACK 페이로드로 대체될 수 있다.
동적 HARQ-ACK 코드북 방식이 설정된 경우, A/N 페이로드의 사이즈는 실제 스케줄링된 DL 데이터 개수에 따라 A/N 페이로드의 사이즈가 가변된다. 이를 위해, DL 스케줄링과 관련된 PDCCH에는 counter-DAI(Downlink Assignment Index)와 total-DAI가 포함된다. counter-DAI는 CC(Component Carrier) (또는, 셀)-first 방식으로 기산된 {CC, 슬롯} 스케줄링 순서 값을 나타내며, A/N 코드북 내에서 A/N 비트의 위치를 지정하는데 사용된다. total-DAI는 현재 슬롯까지의 슬롯-단위 스케줄링 누적 값을 나타내며, A/N 코드북의 사이즈를 결정하는데 사용된다.
준-정적 A/N 코드북 방식이 설정된 경우, 실제 스케줄링된 DL 데이터 수에 관계없이 A/N 코드북의 사이즈가 (최대 값으로) 고정된다. 구체적으로, 하나의 슬롯 내 하나의 PUCCH를 통해 전송되는 (최대) A/N 페이로드 (사이즈)는, 단말에게 설정된 모든 CC들 및 상기 A/N 전송 타이밍이 지시될 수 있는 모든 DL 스케줄링 슬롯 (또는 PDSCH 전송 슬롯 또는 PDCCH 모니터링 슬롯)들의 조합 (이하, 번들링 윈도우)에 대응되는 A/N 비트 수로 결정될 수 있다. 예를 들어, DL 그랜트 DCI (PDCCH)에는 PDSCH-to-A/N 타이밍 정보가 포함되며, PDSCH-to-A/N 타이밍 정보는 복수의 값 중 하나(예, k)를 가질 수 있다. 예를 들어, PDSCH가 슬롯 #m에서 수신되고, 상기 PDSCH를 스케줄링 하는 DL 그랜트 DCI (PDCCH) 내의 PDSCH-to-A/N 타이밍 정보가 k를 지시할 경우, 상기 PDSCH에 대한 A/N 정보는 슬롯 #(m+k)에서 전송될 수 있다. 일 예로, k ∈ {1, 2, 3, 4, 5, 6, 7, 8}로 주어질 수 있다. 한편, A/N 정보가 슬롯 #n에서 전송되는 경우, A/N 정보는 번들링 윈도우를 기준으로 가능한 최대 A/N을 포함할 수 있다. 즉, 슬롯 #n의 A/N 정보는 슬롯 #(n-k)에 대응되는 A/N을 포함할 수 있다. 예를 들어, k ∈ {1, 2, 3, 4, 5, 6, 7, 8}인 경우, 슬롯 #n의 A/N 정보는 실제 DL 데이터 수신과 관계없이 슬롯 #(n-8)~슬롯 #(n-1)에 대응되는 A/N을 포함한다(즉, 최대 개수의 A/N). 여기서, A/N 정보는 A/N 코드북, A/N 페이로드와 대체될 수 있다. 또한, 슬롯은 DL 데이터 수신을 위한 후보 기회(occasion)으로 이해/대체될 수 있다. 예시와 같이, 번들링 윈도우는 A/N 슬롯을 기준으로 PDSCH-to-A/N 타이밍에 기반하여 결정되며, PDSCH-to-A/N 타이밍 세트는 기-정의된 값을 갖거나(예, {1, 2, 3, 4, 5, 6, 7, 8}), 상위 계층(RRC) 시그널링에 의해 설정될 수 있다.
이제, 본격적으로 본 발명에 따른 eMBB 데이터와 URLLC 데이터가 병렬적으로 수신되는 경우의 URLLC 데이터의 송수신 방법, 디코딩 방법 그리고 HARQ-ACK 피드백 방법에 대해서 살펴보도록 한다.
NR 시스템에서는 응용분야 혹은 트래픽(traffic)의 종류에 따라, 물리 채널을 송수신하는데 가정하거나 사용하는 기준 시간 단위가 다양할 수 있다. 상기 기준 시간은 특정 물리 채널을 스케줄링(scheduling)하는 기본 단위일 수 있으며, 해당 스케줄링 단위(scheduling unit)를 구성하는 심볼 (symbol)의 개수 및/또는 부반송파 간격(subcarrier spacing) 등에 따라서 기준 시간 단위가 상이해질 수 있다. 본 발명의 실시 예에서는 설명의 편의상 기준 시간 단위로써 슬롯(Slot)과 미니 슬롯(Mini-slot)을 기반으로 설명하도록 한다. 여기서, 슬롯(Slot)은 eMBB (enhanced mobile broadband)와 같은 일반적인 데이터 트래픽을 위한 스케줄링 (scheduling) 기본 단위일 수 있다.
반면, 미니 슬롯(Mini-slot)은 시간 도메인(time-domain)에서 슬롯(slot)보다 짧은 시간 구간을 가질 수 있다. 이 때, 미니 슬롯은 URLLC (Ultra reliable and low latency communication), 비면허 대역(unlicensed band) 또는 밀리미터 파(millimeter wave) 등의 특별한 목적을 가지는 트래픽 혹은 통신 방식을 위한 스케줄링(scheduling) 기본 단위일 수 있다.
그러나, 상술한 슬롯 또는 미니 슬롯의 용도는 하나의 일 실시 예에 불과하며 eMBB 데이터라고 하더라도, 미니 슬롯(mini-slot)을 기반으로 물리 채널을 송수신할 수 있다. 또한, URLLC나 다른 통신 기법도 슬롯(slot) 기반으로 물리 채널 송수신할 수 있으며, 상기와 같은 경우에도 본 발명의 실시 예에 따라 확장이 가능함은 자명하다.
도 16 내지 도 18은 본 발명의 실시 예에 따른 단말, 기지국 및 네트워크 관점에서의 동작 과정을 설명하기 위한 도면이다.
도 16을 참조하면, 본 발명의 실시 예에 따른 단말은 eMBB 데이터를 스케줄링 하기 위한 제 1 DCI(Downlink Control Information)와 URLLC 데이터를 스케줄링 하기 위한 제 2 DCI를 수신한다(S1601). 이 때, URLLC 데이터를 스케줄링 하기 위해 제 2 DCI에 포함되는 정보들은 실시 예 3에 따를 수 있다. 또한, 제 2 DCI의 크기는 실시 예 4를 기반으로 결정될 수 있다.
상기 제 1, 2 DCI를 수신한 단말은 제 1, 2 DCI에 포함된 스케줄링 정보를 기반으로 eMBB PDSCH (Physical Downlink Shared Channel) 및 URLLC PDSCH를 수신하고(S1603), 수신된 eMBB PDCSH 및 URLLC PDSCH를 디코딩 한다(S1605). 이 때, eMBB PDSCH 및 URLLC PDSCH를 디코딩하는 방법 및 이를 위한 프로세싱 타임은 실시 예 2에 따라 결정될 수 있다.
그 후, 상기 디코딩 결과에 따라 eMBB PDSCH를 위한 제 1 HARQ-ACK 피드백과 URLLC PDSCH를 위한 제 2 HARQ-ACK 피드백을 생성하여 전송할 수 있다(S1607). 이 때, 제 1, 2 HARQ-ACK 피드백을 생성하는데 있어서, 해당 HARQ-ACK 피드백이 유효한지 여부는 실시 예 2에 따라 결정될 수 있다. 또한, 제 2 HARQ-ACK 피드백을 맵핑하는 방법 및 전송하는 방법은 실시 예 1 에 따를 수 있다.
도 17을 참조하여, 기지국의 동작 과정을 살펴보면, 기지국은 eMBB 데이터를 스케줄링 하기 위한 제 1 DCI(Downlink Control Information)와 URLLC 데이터를 스케줄링 하기 위한 제 2 DCI를 전송한다(S1701). 이 때, URLLC 데이터를 스케줄링 하기 위해 제 2 DCI에 포함되는 정보들은 실시 예 3에 따를 수 있다. 또한, 제 2 DCI의 크기는 실시 예 4를 기반으로 결정될 수 있다.
그 후, 기지국은 제 1, 2 DCI에 포함된 스케줄링 정보를 기반으로 eMBB PDSCH 및 URLLC PDSCH를 전송한다(S1703). 그리고, eMBB PDSCH를 위한 제 1 HARQ-ACK 피드백과 URLLC PDSCH를 위한 제 2 HARQ-ACK 피드백을 단말로부터 수신한다(S1705). 이 때, 제 2 HARQ-ACK 피드백을 맵핑하는 방법 및 수신하는 방법은 실시 예 1 에 따를 수 있다.
이제, 도 18에 따라 전체적인 네트워크의 동작 과정을 살펴보도록 한다. 기지국은 eMBB 데이터를 스케줄링 하기 위한 제 1 DCI(Downlink Control Information)와 URLLC 데이터를 스케줄링 하기 위한 제 2 DCI를 단말에게 전송한다(S1801). 이 때, URLLC 데이터를 스케줄링 하기 위해 제 2 DCI에 포함되는 정보들은 실시 예 3에 따를 수 있다. 또한, 제 2 DCI의 크기는 실시 예 4를 기반으로 결정될 수 있다.
그 후, 기지국은 제 1, 2 DCI에 포함된 스케줄링 정보를 기반으로 eMBB PDSCH 및 URLLC PDSCH를 전송한다(S1803). 상기 기지국이 전송한 eMBB PDSCH 및 URLLC PDSCH를 수신한 단말은 수신된 eMBB PDCSH 및 URLLC PDSCH를 디코딩 한다(S1805). 이 때, eMBB PDSCH 및 URLLC PDSCH를 디코딩하는 방법 및 이를 위한 프로세싱 타임은 실시 예 2에 따라 결정될 수 있다.
그 후, 상기 디코딩 결과에 따라 eMBB PDSCH를 위한 제 1 HARQ-ACK 피드백과 URLLC PDSCH를 위한 제 2 HARQ-ACK 피드백을 생성하여 전송할 수 있다(S1807). 이 때, 제 1, 2 HARQ-ACK 피드백을 생성하는데 있어서, 해당 HARQ-ACK 피드백이 유효한지 여부는 실시 예 2에 따라 결정될 수 있다. 또한, 제 2 HARQ-ACK 피드백을 맵핑하는 방법 및 전송하는 방법은 실시 예 1 에 따를 수 있다.
실시 예 1: URLLC 데이터를 위한 HARQ - ACK 피드백
PDSCH에 대한 HARQ-ACK 피드백 타이밍은 PDSCH 전송이 종료되는 슬롯과 PDSCH를 스케줄링하는 DCI에 의해 지시되는 오프셋 값인 K1 및 PUCCH 자원을 지시하는 DCI에 의한 PUCCH 자원에 의해 정해진다.
구체적으로, HARQ-ACK 피드백을 위한 PUCCH 자원은 PUCCH를 포함하는 적어도 하나의 슬롯이 먼저 결정되고, 상기 결정된 슬롯들 내에서, 선택된 PUCCH 자원에 대응하는 시작 심볼이 지시되면 이를 기반으로 결정된다.
그러나, URLLC의 경우, PDSCH 전송의 종료 심볼과 HARQ-ACK 피드백을 위한 시작 심볼 사이의 갭(gap)은 하나의 슬롯에 대응하는 시간 구간보다 짧을 수 있다. 따라서, PDCCH 기회(Occasion)에 따라, 갭(gap) 값이 일정하더라도 HARQ-ACK 피드백이 전송되는 슬롯 인덱스가 변경 될 수 있다. 예를 들어, PDSCH 전송의 종료 심볼과 HARQ-ACK 피드백의 시작 심볼 사이의 갭이 8 심볼이면, K1의 값은 0 또는 1이 될 것이며, DCI에 의해 지시 될 PUCCH 자원은 [표 8] 과 같을 수 있다.
Index PUCCH format First symbol Number of symbols PRB offset CS index set
0 8 2
1 10 2
2 12 2
3 0 2
4 2 2
5 4 2
6 6 2
이 경우, K1과 PUCCH 자원의 가능한 조합은 {K1 = 0, PUCCH 자원 인덱스 0}, {K1 = 0, PUCCH 자원 인덱스 1}, {K1 = 0, PUCCH 자원 인덱스 2} {K1 = 1, PUCCH 자원 인덱스 4}, {K1 = 1, PUCCH 자원 인덱스 5} 및 {K1 = 1, PUCCH 자원 인덱스 6} 이 있을 수 있다. 그런데, URLLC의 프로세싱 타임 및 지연 시간(latency) 요구 사항 등을 고려해보면, 상술한 K1 및 PUCCH 자원 인덱스의 조합이 모두 지원될 필요는 없다.
또한, URLLC의 경우, HARQ-ACK 피드백의 시작 심볼이 오직 오프셋 값 K1에 의해 정해지고, K1이 PDSCH의 종료 심볼과 HARQ-ACK 피드백의 시작 심볼 사이의 심볼들의 수로서 정의된다면, K1을 위한 비트 필드와 PUCCH 자원 지시자가 효율적으로 사용될 수 있다. 예를 들어, 상술한 것처럼 URLLC를 위한 K1이 재설계(redesign)되면, [표 8]의 모든 인덱스는 심볼들의 수가 2 이므로, 단일 상태(state)로 간주할 수 있다. 또한, [표 8]의 'first symbol' 열은 무시될 수 있다.
그러므로, K1과 PUCCH 자원의 조합은 PDCSH를 스케줄링하는 DCI 에서 단일 비트 필드에 의해 함께 지시될 수 있다. 아니면, K1이 무시되고 PUCCH 자원의 'first symbol' 심볼이 해당 PDSCH의 종료 심볼과 연관되어 정의될 수도 있다.
한편, 현재 일반적인 데이터를 위한 HARQ-ACK 코드북 결정(determination)에 있어서, PUCCH가 전송되는 슬롯 내에서 PUCCH 자원의 시작 심볼에 관계 없이 동일한 HARQ-ACK 코드북 및 동일한 HARQ-ACK 코드북 크기가 사용된다. 또한, 단말은 슬롯 당 한번의 HARQ-ACK 피드백을 전송할 수 있다. 그러나, URLLC의 경우, 지연 시간(latency) 및 PUCCH 검출 성능 관점에서 이점을 가지기 위하여, 슬롯 내에서 둘 이상의 HARQ-ACK 피드백 인스턴스(instance)를 허용하고, 각각의 PUCCH 타이밍 인스턴스(instance)가 상이한 HARQ-ACK 코드북을 가질 수 있어야 한다.
그렇지 않으면, 단말은 HARQ-ACK 피드백을 전송을 대기해야 할 수 있으며, 이는 지연 시간(latency)이 증가하는 문제를 유발할 수 있다. 또한, 반-정적 (Semi-static) HARQ-ACK 코드북이 설정(Configuration)되면, 일부 HARQ-ACK 비트가 프로세싱 타임으로 인하여 실행 불가능하지는 않더라도, HARQ-ACK 코드북 크기는 불필요하게 클 수 있다. 예를 들어, 표 8과 K1={0, 1}을 고려할 때, 반-정적 HARQ-ACK 코드북 크기는 14 비트로 설정(set)된다. 그리고 14비트의 HARQ-ACK 코드북을 위한 프로세싱 타임으로 발생되는 지연 시간(latency)은 URLLC를 위해서는 너무 길 수 있다.
또한, URLLC의 경우, 각각의 PUCCH 자원의 시작 심볼 인덱스를 위한 HARQ-ACK 코드북이 결정될 수 있다. 예를 들어, K1이 PDSCH의 종료 심볼과 HARQ-ACK 피드백의 시작 심볼 사이의 갭(gap)을 나타내기 위해 8 또는 10 심볼로 정의되는 경우, 슬롯 내의 각각의 PUCCH 전송 타이밍에 대한 HARQ-ACK 코드북 크기는 2 비트로 정의될 수 있다.
한편, 단말이 eMBB 데이터 및 URLLC 데이터를 모두 지원하는 경우, eMBB 및 URLLC에 대한 HARQ-ACK 피드백을 동시에 지원하는 것을 허용할지를 고려할 필요가 있다. 예를 들어, 기본적으로 HARQ-ACK 피드백과 같은 eMBB와 URLLC에 대한 UCI(Uplink Control Information)는 별도의 채널을 이용하여 전송할 수 있다. 다만, URLLC 상향링크 전송과 eMBB 상향링크 전송이 시간 상 겹칠 경우, 단말은 특정 상향링크를 우선하여 전송할 수 있다. 예를 들어, URLLC 상향링크에 대한 전송을 우선할 수 있으며, 이 때, eMBB에 대한 UCI는 드롭(drop)되거나, 적어도 HARQ-ACK에 대해서는 URLLC 상향링크 체널에 피기백(piggyback)되어 전송될 수 있다.
실시 예 2: eMBB 데이터와 URLLC 데이터를 위한 병렬적(Parallel) 하향링크 수신
단말이 eMBB 및 URLLC를 모두 지원하는 경우, 단말은 URLLC PDSCH의 시작 심볼이 eMBB PDSCH의 시작 심볼보다 뒤에 위치하는 경우에도 URLLC PDSCH를 먼저 디코딩 할 수 있다.
그러나 상술한 단말의 동작을 위해서는, eMBB 데이터와 URLLC 데이터를 구별하는 방법을 정의해야 한다. 예를 들어, eMBB 데이터와 URLLC 데이터는 PDSCH를 스케줄링 하는 PDCCH를 위해 상이한 RNTI (Radio Network Temporary Identifier) 또는 상이한 CRC 마스킹(Cyclic Redundancy Check Masking)을 사용할 수 있다.
또한, 단말이 PDSCH를 디코딩 할 때, 단말은 eMBB PDSCH와 URLLC PDSCH를 동시에(in parallel) 수신하면, 단말은 eMBB PDSCH의 디코딩을 중단하고, URLLC PDSCH의 디코딩을 시작할 수 있다. 그리고 URLLC PDSCH를 디코딩 한 후, eMBB PDSCH를 계속해서 디코딩할 수 있다.
여기서, eMBB PDSCH와 URLLC PDSCH를 동시에 또는 병렬적으로 수신함은, eMBB PDSCH를 수신한 후, 디코딩을 위한 프로세싱이 완료되기 전에 URLLC PDSCH를 수신되는 경우를 의미할 수 있다.
이러한 경우, eMBB PDSCH을 위한 단말의 프로세싱 타임에 추가 마진(additional margin)이 필요할 수 있다. 여기서, 추가 마진이란, URLLC PDSCH를 우선적으로 디코딩하기 위해 중단된 eMBB PDSCH의 디코딩을 완전히 완료하기 위하여 필요한 추가 시간을 의미할 수 있다.
여기서, 추가 마진의 값은 얼마나 많은 심볼들이 URLLC PDSCH를 위해 할당되는지 및 URLLC PDSCH의 종료 심볼이 eMBB PDSCH의 종료 심볼보다 빠르거나 늦었는지를 고려할 필요가 있다. 예를 들어, URLLC PDSCH가 Mapping Type B 인 경우, 단말의 eMBB PDSCH 프로세싱 타임을 위한 추가 마진은 아래의 [수학식 1] 에 의해 정의될 수 있다. 즉, URLLC PDSCH와 eMBB PDSCH가 동시에 수신되는 경우, eMBB PDSCH를 위한 총 프로세싱 타임은 eMBB PDSCH만 수신되는 경우에 필요한 프로세싱 타임에 아래 [수학식 1]에 의한 d 1,3을 더한 값으로 정해질 수 있다.
[수학식 1]
Figure PCTKR2019005704-appb-img-000002
여기서, d는 PDCCH의 심볼들과 URLLC를 위한 PDSCH의 심볼들 간의 겹치는(overlapping) 심볼 수를 의미한다. 또한, x는 URLLC 종료 심볼 인덱스로부터 eMBB PDSCH의 종료 심볼 인덱스를 뺀 값이다. 즉, URLLC 종료 심볼과 eMBB PDSCH의 종료 심볼 간의 차이를 의미한다. 또한, N 1 값은 URLLC PDSCH를 위한 프로세싱 타임을 의미한다.
한편, x의 값은 특정 경우에 한정하여 사용될 수 있다. 예를 들어, URLLD PDSCH의 종료 심볼이 eMBB PDSCH의 종료 심볼보다 앞서는 경우에는 eMBB PDSCH를 위한 추가 마진으로 N 1 값 및/또는 d 값만을 고려하고, x 값은 고려하지 않을 수 있다. 이는 eMBB PDSCH만 전송되는 경우의 HARQ-ACK 전송 타이밍이 eMBB PDSCH의 종료 심볼을 기준으로 결정되므로, URLLC PDSCH의 종료 심볼이 앞서는 경우에 x 값을 고려하는 것은 크게 의미가 없을 수 있고, 오히려 HARQ-ACK 전송 타이밍만 늦출 수 있기 때문이다.
다만, URLLC PDSCH의 종료 심볼이 eMBB PDSCH의 종료 심볼보다 뒤에 오는 경우에는 URLLC PDSCH의 종료 심볼에서 eMBB PDSCH의 종료 심볼을 뺀 값에 대응하는 심볼 구간만큼의 시간이 더 필요할 수 있기 때문에, x를 고려하여 추가 마진을 결정하는 것이 바람직하다.
한편, 상기 추가 마진(margin)을 기반으로 산출되는 최소 프로세싱 타임(minimum processing time)을 기반으로 eMBB PDSCH 수신의 종료 심볼부터 HARQ-ACK 피드백 전송의 첫 시점까지의 시간이 상기 최소 프로세싱 타임 이상인 경우에는 유효한 (valid) HARQ-ACK 피드백이 생성되는 것으로 가정할 수 있고, eMBB PDSCH 수신의 종료 심볼부터 HARQ-ACK 피드백 전송의 첫 시점까지의 시간이 상기 최소 프로세싱 타임보다 작은 경우에는 유효하지 않은 (invalid) HARQ-ACK 피드백으로 가정할 수 있다.
실시 예 3: URLLC 스케줄링을 위한 DCI 컨텐츠
하향링크 할당(assignment)를 위한 DCI 포맷 크기와 상향링크 승인(grant)을 위한 DCI 포맷의 크기는 설정(Configuration)에 따라 동일할 수 있기 때문에, 이를 구별하기 위한 DCI 포맷의 식별자(identifier)가 필요할 수 있다. 또한, 하향링크 할당을 위한 DCI 포맷 크기와 상향링크 승인을 위한 DCI 포맷 크기를 일치(align)시키면, PDCCH 블라인드 검출(Blind Detection)에 있어서 유리할 수 있다. 그러므로, URLLC를 위한 DCI에는 DCI의 용도를 구별하기 위한 식별자(identifier)가 포함될 수 있다.
또한, 캐리어 지시자(Carrier Indicator)는, URLLC에 대해 크로스-캐리어 스케줄링(Cross-Carrier Scheduling)의 사용여부를 결정하기 위해 필요할 수 있다. PDCCH 검출(detection)의 견고성(robusteness)을 고려하면, URLLC에 대한 크로스-캐리어 스케줄링을 지원하는 것이 바람직할 수 있다.
대역폭 파트(Bandwidth Part; BWP) 지시자는 필요하지 않을 수 있다. 왜냐하면, DCI 기반 BWP 스위칭(Switching)은 지연 시간(latency)을 증가시키는 문제를 발생시키기 때문이다. 이 때, URLLC 전송을 위해 사용되는 BWP는 RRC (즉, 상위 계층)에 의해 설정(Configuration)될 수 있다.
주파수 도메인 자원 할당(assignment)을 위한 비트 필드는 URLLC 서비스를 위한 합리적인 비트 필드 크기뿐만 아니라 불연속 자원 할당(allocation)을 지원할 필요가 있다. 이 경우, 인터리빙된 VRB-to-PRB 매핑을 갖는 자원 할당(allocation) 타입 1을 사용하거나 RBG 크기를 위한 설정(Configuration) 2와 함께 자원 할당(allocation) 타입 0을 사용할 수 있다. 다양한 패킷 크기 또는 URLLC 요구 사항(requirement)을 고려할 때 URLLC를 위한 자원 할당(allocation) 유형을 제한할 필요는 없다.
URLLC 요구 사항(requirement) 또는 URLLC 서비스에 따라, PDSCH 또는 PUSCH에 대한 시간 도메인 자원 할당(allocation)은 상이할 것이며, 시간 도메인 리소스 할당을 위한 비트 폭도 상이할 것이다. 예들 들어, 시간 영역 자원 할당(allocation)을 위해 필요한 비트 폭(bitwidth)은 폴 백 DCI의 비트 폭(bitwidth)인 4 비트보다 작을 수 있다.
PRB 번들 크기 지시자는 할당된 자원 및 채널 조건에 따라 채널 추정 성능/복잡성을 제어 할 수 있으므로 URLLC PDSCH 수신에 효율적으로 사용될 수 있다.
레이트 매칭 지시자 및 ZP CSI-RS 트리거링(triggering)은 PDSCH 레이트 매칭을 위해 사용된다. URLLC PDSCH의 RBG 크기가 큰 값으로 설정(set)되려면 효율적인 레이트 매칭 메커니즘을 가질 필요가 있다.
HARQ 프로세스 넘버(number)의 경우, URLLC의 지연 시간(latency) 요구 사항(requirement) 또는 낮은 패킷 도착률(arrival rate)을 고려하여 최대 HARQ 프로세스 넘버의 수를 더 줄일 수 있다. 그러므로, URLLC를 위한 HARQ 프로세스 넘버의 비트 폭은 조정되는 것이 바람직하다.
하향링크 할당 인덱스(Downlink Assignment Index; DAI)는 실제 스케줄링된 PDSCH에 따라 HARQ-ACK 코드북 크기를 감소시키는데 유용할 수 있다. 한편, URLLC HARQ-ACK 피드백 타이밍이 동적으로 변경되지 않거나 패킷 도착률이 극도로 낮으면 DAI 필드는 필요하지 않을 수도 있다. 이러한 경우, 이 필드는 설정(configuration)을 기반으로 존재하지 않도록 하는 것을 고려할 수 있다.
URLLC는 단 하나의 전송 블록(Transport Block; TB) 전송만을 지원하기 때문에, 2번째 전송 블록을 위한 파라미터는 사용되지 않는다.
PUCCH 관련 파라미터들은, PUCCH 자원 및 K1의 설계(design)에 따라, 비트 폭이 더 감소되거나 생략 될 수 있다. URLLC의 경우, PUCCH 자원의 첫 번째 심볼은 심볼의 수로 정의된 K1만으로 지시될 수 있다.
URLLC의 패킷 크기에 따라 CSI 측정은 URLLC에서도 중요하다. 따라서, 안테나 포트, TCI(Transmission Configuration Indictor), SRS (Sounding Reference Signal) 요청, 프리코딩 정보 및 레이어 수, SRS 자원 지시자 또는 CSI 요청과 같은 MIMO (Multi Input Multi Output) 관련 파라미터가 URLLC 전송에 사용될 수 있다. 다만, 상술한 MIMO 관련 파라미터들에 대한 비트 필드는 생략될 수도 있다.
CBG 기반의 HARQ-ACK은 PUCCH 검출 성능의 손실을 야기하므로, URLLC를 위해 CBG 기반의 HARQ-ACK 전송이 유용한지 여부는 불분명하다. 또한, URLLC 전송이 다른 전송에 의해 선점(pre-empted)될 것으로 예상되지 않기 때문에, CBGFI(CBG Flush Indicator)는 필요하지 않을 것이다.
MU-MIMO (Multi User - Multi Input Multi Ouput) 동작을 고려하면, DMRS 시퀀스 초기화는 URLLC 전송을 위해 사용될 수 있다.
또한, P-RNTI 또는 RA-RNTI 에서처럼 TBS (Transport Block Size) 결정에 사용될 스케일링 인자(Scaling Factor)를 지원할지 여부를 결정할 필요가 있다. URLLC 전송을 위한 주파수 다이버시티(diversity) 및/또는 전력 부스팅을 위해 광대역 전송(wideband transmission)을 지원하는 것이 유용할 수 있다.
그러나, URLLC의 패킷 크기가 작으므로, 전송 블록의 크기가 매우 작은 경우, 할당된 PRB의 수가 증가함에 따라 TBS가 증가 할 것이기 때문에 둘 이상의 PRB를 전송할 수는 없다.
URLLC에 필요한 DCI 컨텐츠를 위해, 넌 폴백 DCI(non-fallback DCI)가 URLLC 용 DCI 포맷을 설계(design)하는 출발점으로 간주되는 것이 효율적이다.
즉, URLLC 하향링크 할당을 위한 DCI 포맷을 DCI 포맷 1_1을 기반으로 설계될 수 있고, URLLC 상향링크 승인을 위한 DCI 포맷은 DCI 포맷 0_1을 기반으로 설계될 수 있다.
또한, 설정(configuration)에 따라 넌 폴백 DCI의 총 비트 폭은 폴백 DCI의 비트 폭보다 작을 수 있다. 이렇게 하면, PDCCH 검출 성능은 URLLC를 위한 신뢰성 요구 사항들을 충족 시키도록 향상될 수 있다.
상술한 DCI 컨텐츠를 위한 필드들을 정리하면 아래의 [표 9]와 같다.
URLLC DCI DL URLLC DCI UL
Common fields between non-fallback DCIs and URLLC DCI carrier indicator [0 or 3]frequency-domain resource assignmenttime-domain resource assignment [0-4]VRB-to-PRB mapping [0 or 1]PRB bundling size indicator [0 or 1]New data indicator [1]Downlink assignment index [0-4]TPC command for scheduled PUCCH [2]PUCCH resource indicator [3]DMRS sequence initialization [0 or 1] carrier indicator [0 or 3]UL/SUL indicator [0 or 1]frequency-domain resource assignmenttime-domain resource assignment [0-4]Frequency hopping [0 or 1]New data indicator [1]1st Downlink assignment index [1 or 2]TPC command for scheduled PUSCH [2]CSI request [0-6]beta_offset indicator [0 or 2]DMRS sequence initialization [0 or 1]
Modified fields in size from non-fallback DCI Modulation and coding scheme [4 or 5]Redundancy version [0-2]HARQ process number [0-4]Antenna port(s) [0-6]SRS request [0-2]Transmission configuration indication [0-3]PDSCH-to-HARQ_feedback timing indicator [0-1] Modulation and coding scheme [4 or 5]Redundancy version [0-2]HARQ process number [0-4]SRS request [0-2]SRS resource indicator [0-]Precoding information and number of layers [0-5]Antenna ports [0-4]
New fields Scaling factor [2] Scaling factor [2]
Removed fields from the existing DCIs Bandwidth part indicatorRate matching indicatorZP CSI-RS trigger2nd MCS, NDI, RVCBG transmission informationCBG flushing out information (CBGFI) Bandwidth part indicator2nd Downlink assignment indexCBG transmission informationPTRS-DMRS association
실시 예 4: URLLC 제어/데이터에 기반한 DCI 허용 크기 조정 ( DCI size budget handling considering URLLC control/data)
URLLC DCI 포맷이 넌-폴백(non-fallback) DCI를 기반으로 설계되고, 단말이 eMBB 및 URLLC 중 하나만을 지원하는 경우, 현재 DCI를 위한 허용 크기(budget)은 충분하다. 예를 들어, 주어진 C-RNTI에 대해, 단말은 3 개의 상이한 DCI 크기를 모니터링 할 것이다. 하나는 DCI 포맷 0_0/1_0 용이고, 다른 하나는 DCI 포맷 0_1 용이고, 다른 하나는 DCI 포맷 1_1 용일 수 있다.
그러나, 단말이 eMBB 및 URLLC 를 모두 지원하는 경우, DCI의 허용 크기(budget)를 유지하고, PDCCH의 블라인드 디코딩(Blind Decoding) 시도 횟수를 줄이기 위해 URLLC DCI 포맷의 크기는 다른 DCI 포맷의 크기와 일치시킬 필요가 있다. 이 경우, URLLC DCI의 크기는 PDCCH 검출 성능을 강인하게 하기 위하여 가능한 한 줄여야 한다.
만약, eMBB 및 URLLC를 위한 별도의 파라미터 또는 설정(Configuration)이 지원된다면, URLLC DCI 포맷 1_1/0_1은 eMBB를 위한 DCI 포맷 1_1/0_1에 비해 페이로드 크기가 작을 수 있다.
따라서, URLLC DCI가 DCI 허용 크기(budget)를 충족 시키려면, URLLC DCI 포맷 1_1/0_1은 eMBB DCI 포맷 0_1, eMBB DCI 포맷 1_1 및 eMBB DCI 포맷 1_0/0_0의 크기 중 최소 값을 가지는 페이로드 크기와 같아질 때까지 0의 값을 추가할 수 있다. 예를 들어, eMBB DCI 포맷 중 가장 크기가 작은 DCI 포맷의 크기와 같아질 때까지 제로 패딩(zero-padding)을 수행할 수 있다.
이러한 경우, eMBB DCI와 URLLC DCI를 구별하기 위해, eMBB DCI와 URLLC DCI에 서로 상이한 RNTI, DCI 포맷을 위한 추가 식별자 또는 PDCCH를 위한 추가적인 CRC 마스킹을 사용할 수 있다. 구체적으로, 현재 PDCCH를 위한 CRC의 길이는 24 비트이고, RNTI를 위한 비트의 수는 16 비트이다. 따라서, 나머지 8 비트를 이용하여 서비스 유형, 지연 시간(latency)/신뢰성 요구 사항 등을 나타 낼 수 있다.
아니면, Configured Grant 방법을 통해 URLLC /eMBB 상향링크가 스케줄링 되는 경우, URLLC 상향링크와 eMBB 상향링크를 위해 각각 서로 다른 DCI 포맷이 사용되는 것을 가정할 수 있다. 이를 위해, Configured Grant의 타입 1/타입 2 설정(Configuration)을 위한 명시적인 설정(configuration)이 사용될 수 있고, 타입 2에서는 활성 DCI가 URLLC/eMBB를 위한 DCI 포맷을 구분하기 위해 사용될 수 있다. 또한, 타입 1에서는 타입 1의 Configured Grant를 설정할 때, URLLC/eMBB를 위한 DCI 포맷이 구분될 수 있다.
또한, eMBB DCI와 URLLC DCI는 전송 구간을 통해 구별할 수 도 있다. 예를 들어, URLLC를 위한 전송 구간이 eMBB를 위한 전송 구간보다 짧을 수 있다.
반면, DCI가 운반하는 'non-pre-emptible' 필드의 존재 여부를 통해 eMBB/URLLC를 구분할 수도 있다. 만약, 'non-pre-emptible' 필드가 존재하면, URLLC를 위한 PUSCH가 다른 PUSCH와의 충돌하더라도, URLLC 전송은 드롭(drop)되지 않는 것으로 간주할 수 있다. 다시 말해, URLLC를 위한 PUSCH가 다른 PUSCH와 충돌되는 경우, 다른 PUSCH 전송이 드롭(drop)될 수 있다. 그러므로, URLLC 트래픽 스케줄링을 위하여, 선점(preemption)이 동적으로 조정될 수 있도록 DCI 내에 'non-pre-emptible' 필드는 추가할 수 있다. 또한, Configured Grant 타입 1이 설정되는 경우, 상기 'non-pre-emptible' 여부에 대한 명시적인 설정(Configuration)이 필요할 수도 있다.
도 19는 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.
도 19에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 19의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다. 좀 더 구체적으로, 상기 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.
또한, 전송 단말 및 수신 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 폴더블(foldable) 디바이스 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. 
도 19를 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.
프로세서(10)는 도 1 내지 18에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 18에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.
이와 같이, 도 19는 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 19에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 eMBB 데이터를 스케줄링 하기 위한 제 1 DCI(Downlink Control Information)와 URLLC 데이터를 스케줄링 하기 위한 제 2 DCI를 수신하도록 트랜시버(35)를 제어한다. 이 때, URLLC 데이터를 스케줄링 하기 위해 제 2 DCI에 포함되는 정보들은 실시 예 3에 따를 수 있다. 또한, 제 2 DCI의 크기는 실시 예 4를 기반으로 결정될 수 있다.
상기 제 1, 2 DCI를 수신한 프로세서(10)는 제 1, 2 DCI에 포함된 스케줄링 정보를 기반으로 eMBB PDSCH (Physical Downlink Shared Channel) 및 URLLC PDSCH를 수신하도록 트랜시버(35)를 제어하고, 수신된 eMBB PDCSH 및 URLLC PDSCH를 디코딩한다). 이 때, eMBB PDSCH 및 URLLC PDSCH를 디코딩하는 방법 및 이를 위한 프로세싱 타임은 실시 예 2에 따라 결정될 수 있다.
그 후, 프로세서(10)는 상기 디코딩 결과에 따라 eMBB PDSCH를 위한 제 1 HARQ-ACK 피드백과 URLLC PDSCH를 위한 제 2 HARQ-ACK 피드백을 생성하여 전송하도록 트랜시버(35)를 제어할 수 있다. 이 때, 제 1, 2 HARQ-ACK 피드백을 생성하는데 있어서, 해당 HARQ-ACK 피드백이 유효한지 여부는 실시 예 2에 따라 결정될 수 있다. 또한, 제 2 HARQ-ACK 피드백을 맵핑하는 방법 및 전송하는 방법은 실시 예 1 에 따를 수 있다.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 19에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 eMBB 데이터를 스케줄링 하기 위한 제 1 DCI(Downlink Control Information)와 URLLC 데이터를 스케줄링 하기 위한 제 2 DCI를 전송하도록 트랜시버(35)를 제어한다. 이 때, URLLC 데이터를 스케줄링 하기 위해 제 2 DCI에 포함되는 정보들은 실시 예 3에 따를 수 있다. 또한, 제 2 DCI의 크기는 실시 예 4를 기반으로 결정될 수 있다.
그 후, 프로세서(10)는 제 1, 2 DCI에 포함된 스케줄링 정보를 기반으로 eMBB PDSCH 및 URLLC PDSCH를 전송하도록 트랜시버(35)를 제어한다. 그리고, 프로세서(10)는 eMBB PDSCH를 위한 제 1 HARQ-ACK 피드백과 URLLC PDSCH를 위한 제 2 HARQ-ACK 피드백을 단말로부터 수신하도록 트랜시버(35)를 제어한다. 이 때, 제 2 HARQ-ACK 피드백을 맵핑하는 방법 및 수신하는 방법은 실시 예 1 에 따를 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (17)

  1. 무선 통신 시스템에서, 단말이 PDSCH(Physical Downlink Shared Channel)를 디코딩하는 방법에 있어서,
    eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하고,
    상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고,
    상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임에 기반하는,
    PDSCH 디코딩 방법.
  2. 제 1 항에 있어서,
    상기 제 1 프로세싱 타임은,
    상기 제 1 PDSCH의 마지막 심볼에서 상기 제 2 PDSCH의 마지막 심볼까지의 시간이 더 고려되는,
    PDSCH 디코딩 방법.
  3. 제 1 항에 있어서,
    상기 제 1 프로세싱 타임은,
    상기 제 1 PDSCH와 상기 제 2 PDSCH가 겹치는(overlapping) 심볼의 수가 더 고려되는,
    PDSCH 디코딩 방법.
  4. 제 1 항에 있어서,
    상기 제 1 PDSCH의 시작 심볼은, 상기 제 2 PDSCH의 시작 심볼 이전에 위치하는,
    PDSCH 디코딩 방법.
  5. 제 1 항에 있어서,
    상기 제 1 PDSCH의 마지막 심볼은, 상기 제 2 PDSCH의 마지막 심볼 이전에 위치하는,
    PDSCH 디코딩 방법.
  6. 제 1 항에 있어서,
    상기 제 1 PDSCH의 마지막 심볼과 상기 제 1 PDSCH를 위한 HARQ-ACK (Hybrid Automatic Repeat Request - Acknowledgement) 피드백 전송 타이밍 간의 간격이 상기 제 1 프로세싱 타임 이상인 경우, 상기 제 1 PDSCH를 위한 HARQ-ACK 피드백은 유효한,
    PDSCH 디코딩 방법.
  7. 제 1 항에 있어서,
    상기 제 1 PDSCH의 디코딩을 수행하는 중에 상기 제 2 PDSCH가 수신되면, 상기 제 1 PDSCH의 디코딩이 중단되고, 상기 제 2 PDSCH의 디코딩이 수행되는,
    PDSCH 디코딩 방법.
  8. 제 7 항에 있어서,
    상기 제 2 PDSCH의 디코딩이 완료되면, 상기 제 1 PDSCH의 디코딩이 재개되는,
    PDSCH 디코딩 방법.
  9. 제 1 항에 있어서,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    PDSCH 디코딩 방법.
  10. 무선 통신 시스템에서, PDSCH(Physical Downlink Shared Channel)를 디코딩하기 위한 장치에 있어서,
    메모리; 및
    상기 메모리와 결합된 적어도 하나의 프로세서;를 포함하고,
    상기 적어도 하나의 프로세서는,
    eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하고,
    상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고,
    상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임에 기반하는,
    장치.
  11. 제 10 항에 있어서,
    상기 제 1 프로세싱 타임은,
    상기 제 1 PDSCH의 마지막 심볼에서 상기 제 2 PDSCH의 마지막 심볼까지의 시간이 더 고려되는,
    장치.
  12. 제 10 항에 있어서,
    상기 제 1 프로세싱 타임은,
    상기 제 1 PDSCH와 상기 제 2 PDSCH가 겹치는(overlapping) 심볼의 수가 더 고려되는,
    장치.
  13. 제 10 항에 있어서,
    상기 제 1 PDSCH의 시작 심볼은, 상기 제 2 PDSCH의 시작 심볼 이전에 위치하고,
    상기 제 1 PDSCH의 마지막 심볼은, 상기 제 2 PDSCH의 마지막 심볼 이전에 위치하는,
    장치.
  14. 제 10 항에 있어서,
    상기 제 1 PDSCH의 마지막 심볼과 상기 제 1 PDSCH를 위한 HARQ-ACK (Hybrid Automatic Repeat Request - Acknowledgement) 피드백 전송 타이밍 간의 간격이 상기 제 1 프로세싱 타임 이상인 경우, 상기 제 1 PDSCH를 위한 HARQ-ACK 피드백은 유효한,
    장치.
  15. 제 10 항에 있어서,
    상기 제 1 PDSCH의 디코딩을 수행하는 중에 상기 제 2 PDSCH가 수신되면, 상기 제 1 PDSCH의 디코딩이 중단되고, 상기 제 2 PDSCH의 디코딩이 수행되며,
    상기 제 2 PDSCH의 디코딩이 완료되면, 상기 제 1 PDSCH의 디코딩이 재개되는,
    장치.
  16. 제 10 항에 있어서,
    상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능한,
    장치.
  17. 무선 통신 시스템에서, PDSCH(Physical Downlink Shared Channel)를 디코딩하기 위한 단말에 있어서,
    트랜시버; 및
    상기 트랜시버와 결합된 적어도 하나의 프로세서;를 포함하고,
    상기 적어도 하나의 프로세서는,
    eMBB(enhanced Mobile Broadband)를 위한 제 1 PDSCH(Physical Downlink Shared Channel) 및 URLLC (Ultra Reliable and Low latency communication)을 위한 제 2 PDSCH를 수신하도록 상기 트랜시버를 제어하고,
    상기 제 1 PDSCH 및 상기 제 2 PDSCH를 디코딩하는 것을 특징으로 하고,
    상기 제 1 PDSCH의 디코딩을 위해 요구되는 제 1 프로세싱 타임은, 상기 제 2 PDSCH의 디코딩을 위한 제 2 프로세싱 타임에 기반하는,
    단말.
PCT/KR2019/005704 2018-05-11 2019-05-13 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치 WO2019216727A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862670032P 2018-05-11 2018-05-11
US62/670,032 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019216727A1 true WO2019216727A1 (ko) 2019-11-14

Family

ID=68468111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005704 WO2019216727A1 (ko) 2018-05-11 2019-05-13 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2019216727A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821995A (zh) * 2019-11-15 2021-05-18 大唐移动通信设备有限公司 一种信道状态信息的反馈方法、基站及终端
CN112865917A (zh) * 2019-11-27 2021-05-28 中国信息通信研究院 一种混合自动重传应答信息传送方法和设备
CN113439469A (zh) * 2020-01-23 2021-09-24 华为技术有限公司 一种通信方法、装置及系统
WO2021203287A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Uplink control information reporting
CN114868417A (zh) * 2019-12-31 2022-08-05 华为技术有限公司 一种通信方法、通信装置和系统
WO2023193248A1 (en) * 2022-04-08 2023-10-12 Lenovo (Beijing) Limited Method and apparatus for cbg-based harq-ack feedback for variable size data transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132237A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Ultra-reliable low-latency communication mini-slot control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132237A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Ultra-reliable low-latency communication mini-slot control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "PUCCH reliability", R1-1804291, 3GPP TSG RAN WG1 MEETING #92BIS, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, China, XP051413860 *
HUAWEI: "Remaining issues on HARQ management", R1-1802697, 3GPP TSG RAN WG1 MEETING #92, vol. RAN WG1, 17 February 2018 (2018-02-17), Athens, Greece, XP051398130 *
HUAWEI: "Remaining issues on scheduling and HARQ", R1-1804431, 3GPP TSG RAN WG1 MEETING #92BIS, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, China, XP051413601 *
VIVO: "Summary of handling UL multiplexing of transmission with different reliability requirements", R1-1805629, 3GPP TSG RAN WG1 MEETING #92BIS, vol. RAN WG1, 18 April 2018 (2018-04-18), Sanya, China, XP051427669 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821995A (zh) * 2019-11-15 2021-05-18 大唐移动通信设备有限公司 一种信道状态信息的反馈方法、基站及终端
CN112865917A (zh) * 2019-11-27 2021-05-28 中国信息通信研究院 一种混合自动重传应答信息传送方法和设备
CN112865917B (zh) * 2019-11-27 2022-07-19 中国信息通信研究院 一种混合自动重传应答信息传送方法和设备
CN114868417A (zh) * 2019-12-31 2022-08-05 华为技术有限公司 一种通信方法、通信装置和系统
EP4072186A4 (en) * 2019-12-31 2022-12-28 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, COMMUNICATION DEVICE AND SYSTEM
CN113439469A (zh) * 2020-01-23 2021-09-24 华为技术有限公司 一种通信方法、装置及系统
CN113439469B (zh) * 2020-01-23 2023-04-28 华为技术有限公司 一种通信方法、装置及系统
WO2021203287A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Uplink control information reporting
WO2023193248A1 (en) * 2022-04-08 2023-10-12 Lenovo (Beijing) Limited Method and apparatus for cbg-based harq-ack feedback for variable size data transmission

Similar Documents

Publication Publication Date Title
WO2019221527A1 (ko) 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2019194643A1 (ko) 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2019160364A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019216727A1 (ko) 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
WO2017217797A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017135713A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2013191360A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2011136586A2 (ko) 경쟁 기반의 식별자를 이용한 상향링크 신호 전송 방법
WO2020067750A1 (ko) Harq-ack 정보를 전송하는 방법 및 통신 장치
WO2021091318A1 (ko) Harq-ack 코드북 전송 방법, 사용자기기, 장치, 및 컴퓨터 판독 가능 저장 매체, 그리고 harq-ack 코드북 수신 방법 방법 및 기지국.
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018012910A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032558A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019209085A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020167056A1 (ko) 다중 전송 블록 스케줄링을 위한 하향링크 신호의 송수신 방법 및 이를 위한 장치
WO2015064924A1 (ko) 하향링크 데이터를 포함하는 pdsch를 mtc 기기로 전송하는 방법 및 그 기지국
WO2017150944A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019182349A1 (ko) Harq-ack 신호를 송수신하는 방법 및 이를 위한 장치
WO2021194301A1 (ko) Harq-ack 전송 방법, 사용자기기 및 저장 매체, 그리고 harq-ack 수신 방법 및 기지국
WO2021100981A1 (ko) 하향링크 제어 정보를 전송하는 방법 및 기지국, 그리고 하향링크 제어 정보를 수신하는 사용자기기, 장치 및 저장 매체
WO2020226403A1 (ko) 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
WO2016072746A1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 기계타입통신 단말이 데이터를 송수신하는 방법 및 장치
WO2020222598A1 (ko) 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
WO2017196079A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799798

Country of ref document: EP

Kind code of ref document: A1