WO2016148362A1 - 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치 - Google Patents

무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016148362A1
WO2016148362A1 PCT/KR2015/010821 KR2015010821W WO2016148362A1 WO 2016148362 A1 WO2016148362 A1 WO 2016148362A1 KR 2015010821 W KR2015010821 W KR 2015010821W WO 2016148362 A1 WO2016148362 A1 WO 2016148362A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
symbols
gfdm
symbol
subsymbols
Prior art date
Application number
PCT/KR2015/010821
Other languages
English (en)
French (fr)
Inventor
이상림
고현수
최국헌
노광석
김동규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/559,223 priority Critical patent/US10454634B2/en
Publication of WO2016148362A1 publication Critical patent/WO2016148362A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/12Channels characterised by the type of signal the signals being represented by different phase modulations of a single carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for allocating resources for supporting a plurality of wireless communication schemes in a wireless communication system.
  • the 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (LTE) system is designed as a frame structure with a 1ms transmission time interval (TTI), and the data request delay time is 10ms for video applications.
  • TTI transmission time interval
  • future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G data demand latency will be lowered to 1ms. It is expected.
  • 5G aims to provide about 10 times less data delay than before.
  • 5G communication system requires a new TTI structure and a new type of symbol.
  • An object of the present invention is to provide a method for allocating resources for supporting a plurality of wireless communication methods by a base station in a wireless communication system.
  • Another object of the present invention is to provide a base station for allocating resources for supporting a plurality of wireless communication schemes in a wireless communication system.
  • Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time and frequency domain Allocating a second zone by a frequency division multiplexing scheme using a first zone and generalized frequency division multiplexing (GFDM) symbols comprising: a first zone; And assigning a predetermined number of guard subcarriers to a boundary between the first zone and the second zone.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the predetermined number may be determined based on the number of subsymbols of the GFDM symbols of the second zone.
  • the number of subsymbols of the GFDM symbols of the second zone may be determined based on the number of resource blocks or subcarriers of the second zone.
  • the number of subsymbols (M sub ) of the GFDM symbols of the second zone is Is an integer closest to and is a divisor of the number N sc of subcarriers in the second zone, where N sym is the number of OFDM symbols belonging to one TTI and N RS is the number of OFDM symbols allocated as a reference signal.
  • the predetermined number may be the number of subsymbols of the GFDM symbol of the second zone -1.
  • the transmission time interval (TTI) of the first zone may be a subframe composed of 14 or 12 OFDM symbols, and the TTI of the second zone may be a subframe composed of three OFDM symbols.
  • the base station may allocate a terminal requiring low latency communication to the second zone than the terminal allocated to the first zone.
  • a base station for allocating resources for supporting a plurality of wireless communication schemes in a wireless communication system includes: a first zone configured with orthogonal frequency division multiplexing (OFDM) symbols in a time and frequency domain; And a processor configured to allocate a second zone with Generalized Frequency Division Multiplexing (GFDM) symbols in a frequency division multiplexing scheme, and to allocate a predetermined number of guard subcarriers to a boundary between the first zone and the second zone. The number may be determined based on the number of subsymbols of the GFDM symbols of the second zone.
  • OFDM orthogonal frequency division multiplexing
  • GFDM Generalized Frequency Division Multiplexing
  • the number of subsymbols of the GFDM symbols of the second zone may be determined based on the number of resource blocks or subcarriers of the second zone.
  • the number of subsymbols (M sub ) of the GFDM symbols of the second zone is Is an integer closest to and is a divisor of the number N sc of subcarriers in the second zone, where N sym is the number of OFDM symbols belonging to one TTI and N RS is the number of OFDM symbols allocated as a reference signal.
  • the predetermined number may be the number of subsymbols of the GFDM symbol of the second zone -1.
  • the transmission time interval (TTI) of the first zone may be a subframe composed of 14 or 12 OFDM symbols, and the TTI of the second zone may be a subframe composed of three OFDM symbols.
  • the processor may allocate a terminal requiring low latency communication to the second zone than the terminal allocated to the first zone.
  • the present invention it is possible to improve the time-frequency resource efficiency by proposing a subsymbol configuration method using a new waveform for the TDM reference signal allocation scheme when configuring a short TTI for low latency communication.
  • the system according to the subsymbol configuration using this new waveform can be multiplexed while maintaining the matching with the existing OFDM system.
  • FIG. 1 is a diagram illustrating an FDD frame structure in a 3GPP LTE / LTE-A system.
  • FIG. 2 is a diagram illustrating a TDD frame structure in a 3GPP LTE / LTE-A system.
  • FIG. 3 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • FIG. 4 is a diagram illustrating a definition of a general downlink resource of a 3GPP LTE / LTE-A system.
  • FIG. 5 illustrates a structure of a downlink subframe in a 3GPP LTE / LTE-A system.
  • FIG. 6 shows a PSS / SSS structure in an FDD frame structure in a 3GPP LTE / LTE-A system.
  • FIG. 7 is an exemplary diagram for explaining LTE Round Trip Time (over the air latency) in a 3GPP LTE system.
  • FIG. 8 is a diagram illustrating an uplink structure (eg, LTE Uplink PUSCH (short TTI)) when configuring a short TTI.
  • LTE Uplink PUSCH short TTI
  • FIG. 9 is a diagram for comparing a new type symbol having a short interval with existing LTE OFDM symbols.
  • FIG. 10 is a diagram illustrating a time-frequency waveform between an OFDM symbol and a new type of symbol having a short symbol length by way of example.
  • FIG. 11 is a diagram illustrating a resource grid for comparing GFDM symbols, conventional OFDM symbols, and short symbol length OFDM symbols.
  • 13 is an exemplary diagram for multiplexing of GFDM and OFDM.
  • FIG. 14 is a diagram illustrating waveforms when the GFDM symbol having four subsymbols and the existing OFDM symbol are located at adjacent frequencies as shown in FIG. 13.
  • FIG. 15 illustrates multiplexing of OFDM symbols and GFDM symbols in order to reduce overhead of a reference signal according to the present invention.
  • FIG. 16 is a diagram exemplarily illustrating a case in which a base station allocates a dedicated zone for short TTI for uplink.
  • 17 is a diagram illustrating a signaling procedure for providing a low delay (or low delay and high reliability) service between a base station and a terminal.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • the transmission from the base station to the terminal is referred to as downlink transmission and the transmission from the terminal to the base station are collectively referred to as uplink transmission.
  • a method of dividing the radio resources between the downlink transmission and the uplink transmission is defined as a duplex, and when a frequency band is divided into a downlink transmission band and an uplink transmission band and bi-directionally transmitted and received, a frequency division duplex (Frequency Division Duplex) FDD).
  • FDD Frequency Division Duplex
  • FIG. 1 is a diagram illustrating an FDD frame structure in a 3GPP LTE / LTE-A system.
  • one radio frame has a length of 10 ms (327200 Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 Ts).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • FIG. 2 is a diagram illustrating a TDD frame structure in a 3GPP LTE / LTE-A system.
  • time division duplex In case of transmitting and receiving time domain radio resources in downlink time duration resources and uplink time duration resources in the same frequency band, they are referred to as time division duplex (TDD). do.
  • TDD time division duplex
  • FIG. 3 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • FIG. 4 is a diagram illustrating a definition of a general downlink resource of a 3GPP LTE / LTE-A system.
  • OFDM orthogonal frequency division multiplexing
  • the number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP) and the interval of subcarriers.
  • CP cyclic prefix
  • one resource grid may be defined per one antenna port.
  • Each element in the resource grid for each antenna port is called a resource element (RE) and is uniquely identified by an index pair (k, l) in the slot.
  • k is the index in the frequency domain
  • l is the index in the time domain and k is 0, ...
  • Has a value of -1 and l is 0, ..., It has any one of -1.
  • the resource block shown in FIG. 4 is used to describe a mapping relationship between certain physical channels and resource elements.
  • the RB may be divided into a physical resource block (PRB) and a virtual resource block (VRB).
  • PRB physical resource block
  • VRB virtual resource block
  • the one PRB is a time domain Contiguous OFDM symbols and frequency domain It is defined as two consecutive subcarriers. here and May be a predetermined value. E.g and Can be given as Table 1 below. So one PRB ⁇ It consists of four resource elements.
  • One PRB may correspond to one slot in the time domain and 180 kHz in the frequency domain, but is not limited thereto.
  • 3GPP LTE defines sub-bands as bundles of resource blocks (RBs)
  • the size of the sub-band can be calculated by the following formula.
  • N sb and the hopping-mode related parameters are all provided by higher layers. May be expressed as in Equation 1 below.
  • FIG. 5 illustrates a structure of a downlink subframe in a 3GPP LTE / LTE-A system.
  • one downlink subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the downlink subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in 3GPP LTE systems include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Negative Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the base station sets a resource allocation and transmission format of the PDSCH (also referred to as a DL grant), a resource allocation information of the PUSCH (also referred to as a UL grant) through a PDCCH, a set of transmission power control commands for an arbitrary terminal and individual terminals in a group. And activation of Voice over Internet Protocol (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of an aggregation of one or several consecutive Control Channel Elements (CCEs).
  • the PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of possible bits of the PDCCH are determined by the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • Control information transmitted through the PDCCH is called downlink control information (DCI). Table 1 below shows DCI according to DCI format.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols or a single carrier-frequency division multiple access (SC-FDMA) symbol.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the above-described radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe, the number of OFDM symbols or SC-FDMA symbols included in the slot may be variously changed. have.
  • FIG. 6 shows a PSS / SSS structure in an FDD frame structure in a 3GPP LTE / LTE-A system.
  • a base station periodically performs a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for downlink synchronization in an FDD frame.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the same PSS / SSS signal is repeatedly transmitted twice through the last two symbols (6RBs, 72 subcarriers) of the first slot of subframes having subframe indexes 0 and 5.
  • the PBCH Physical Broadcast Channel
  • MIB master information block
  • SIM system information transmitted on the physical downlink shared channel
  • FIG. 7 is an exemplary diagram for explaining LTE Round Trip Time (over the air latency) in a 3GPP LTE system.
  • the delay until the ACK / NACK reception for the unidirectional data transmission is generally 4ms.
  • Two methods can be considered as a method for reducing wireless transmission / reception delays. It is a method of reducing the number of symbols belonging to the TTI while maintaining one symbol length and a method of reducing the length of one symbol.
  • the first is to reduce the scheduling unit by configuring the TTI (1ms) consisting of 14 symbols of the existing LTE system with a new TTI consisting of a small number of symbols. This has the effect of reducing the time for transmission and reception by reducing the TTI.
  • time / frequency resources that can be sent to one TTI are reduced, resulting in an increase in overhead of control information. For example, when a short TTI is configured with three symbols, the uplink structure is as shown in FIG.
  • FIG. 8 is a diagram illustrating an uplink structure (eg, LTE Uplink PUSCH (short TTI)) when configuring a short TTI.
  • LTE Uplink PUSCH short TTI
  • the second method it is possible to consider reducing the length of one OFDM symbol. Even if the short TTI is configured by reducing the symbol length, more symbols may be included in one TTI than the first method of reducing the TTI while maintaining the existing length. This method can be expected to have a good effect in terms of reference signal overhead. Although the symbol length seems to use more time-frequency resources because it is shorter, the total time-frequency resources are the same because in practice, decreasing symbol length increases the frequency width of the signal proportionally.
  • FIG. 9 is a diagram for comparing a new type symbol having a short interval with existing LTE OFDM symbols.
  • FIG. 9 shows an example of time-frequency resource 36 (3 subcarriers x 12 OFDM symbols), assuming that 1 RB is reduced by 1/4 of the existing symbol length.
  • the reference signal is mapped to the TDM, one symbol is used as the reference signal, and as a result, 9% overhead is generated, which is a gain compared to the first method.
  • the number of cyclic prefix (CP) occupying a portion of each Orthorgonal Frequency Division Multiplexing (OFDM) symbol length is increased by four times, thereby increasing the CP overhead.
  • the second method (reducing the length of one OFDM symbol) is more efficient than the first method in terms of time-frequency resource efficiency. Assuming that the CP length is 4 us and the symbol length is 66 us, the second method is more efficient with RS and CP total overhead of 37% and 27%, respectively.
  • the second method also has the following new problems in terms of matching with the existing LTE system compared to the first method.
  • FIG. 10 is a diagram illustrating a time-frequency waveform between an OFDM symbol and a new type of symbol having a short symbol length by way of example.
  • the orthogonality between subcarriers is maintained only when the number of times coincides with an integer multiple of the period of the sine waveform in the FFT window size.
  • the orthogonality between subcarriers is maintained only when the number of times coincides with an integer multiple of the period of the sine waveform in the FFT window size.
  • the first method when constructing a short TTI, is advantageous in terms of matching with an existing OFDM symbol, while the second method is more advantageous in terms of efficiency of time-frequency resources.
  • the method of reducing the symbol length has low matching with the existing OFDM symbol.
  • the present invention intends to propose a new type of symbol or a new waveform.
  • GFDM Generalized Frequency Division Multiplexing
  • the configuration of time-frequency resources is more flexible based on the concept of sub-symbol, and pulse shaping and tail-biting techniques are introduced by using symbol superposition between subsymbols.
  • a new block-based structure symbol can be designed.
  • FIG. 11 is a diagram illustrating a resource grid for comparing GFDM symbols, conventional OFDM symbols, and short symbol length OFDM symbols.
  • FIG. 11 illustrates a total of twelve time-frequency resources in the LTE / LTE-A system.
  • FIG. 11 (a) shows a GFDM symbol composed of four subsymbols
  • FIG. 11 (b) shows an existing OFDM symbol
  • FIG. 11 (c) shows a case in which the length of an existing OFDM symbol is reduced to 1/4. Is shown.
  • the GFDM symbol shown in FIG. 11A is similar to having a quarter length of the existing OFDM symbol shown in FIG. 11C, but there is a big difference that the CP configuration is different.
  • a pulse shape other than the existing rectangular pulse shape is applied through the signal pulse overlapping the subsymbols.
  • the GFDM newly proposed in the present invention it is possible to approach the problem newly. Based on the structure of the GFDM in the Short TTI situation, the GFDM symbol length is kept the same as the existing OFDM symbol to have consistency, and the overhead of time frequency resources can be reduced through the subsymbol.
  • GFDM a new waveform called GFDM can be used for short TTI configuration.
  • the GFDM symbol has no influence on the GFDM symbol by the existing OFDM symbol, but the effect of the GFDM symbol still exists.
  • the present invention proposes a new waveform-based time-frequency resource structure and a multiplexing technique of OFDM and GFDM suitable for short length TTI for low latency communication. Specifically, a guard subcarrier is required for multiplexing maintaining the orthogonality between GFDM and OFDM, and a method of determining the number of subsymbols of GFDM having a minimum overhead based on this is proposed.
  • 13 is an exemplary diagram for multiplexing of GFDM and OFDM.
  • one TTI (subframe) is composed of three OFDM symbols.
  • FIG. 13 illustrates a time-frequency resource grid in which GFDM symbols having four subsymbols and existing OFDM symbols are located at adjacent frequencies.
  • FIG. 14 is a diagram illustrating waveforms when the GFDM symbol having four subsymbols and the existing OFDM symbol are located at adjacent frequencies as shown in FIG. 13.
  • N sc total number of subcarriers
  • N sym Number of symbols belonging to one TTI
  • T sym length of one symbol (sec)
  • T CP length of CP
  • N RS Number of symbols allocated as reference signals
  • M sub Number of subsymbols of GFDM symbol (should be a divisor of N sc )
  • N guard Number of guard subcarriers between GFDM symbol and OFDM symbol (M sub- 1 or less)
  • Equation 2 The efficiency of the frequency resource of the existing OFDM symbol is defined by Equation 2 below, and the efficiency of the frequency resource of the GFDM symbol is defined by Equation 3 below.
  • Overhead OFDM (N sc ⁇ N RS + T CP / T sym ⁇ N sym ) / (N sc ⁇ N sym )
  • Overhead GFDM (N sc / M sub ⁇ N RS + N guard ⁇ N sym + T CP / T sym ⁇ N sym ) / (N sc ⁇ N sym )
  • Equation 4 the resource efficiency is increased when the GFDM symbol is configured.
  • N guard the number of guard subcarriers (N guard ) should be determined according to the value of M sub (number of subsymbols of GFDM symbols) for orthogonality between the OFDM symbol and the GFDM symbol. Therefore, the solution depends on how the function is set according to M sub of N guard .
  • Equation 4 Equation 5 below.
  • Equation 6 the number of subsymbols of GFDM is determined as in Equation 6 below.
  • Equation 7 the equation in which the derivative value of Equation 5 becomes 0 is expressed by Equation 7 below.
  • Equation 8 the number of subsymbols (M sub ) for minimizing overhead is as shown in Equation 8.
  • M sub It is the integer closest to and is a divisor of N sc .
  • the configuration of the number of subsymbols possible from Equation 6 is 2, 4, 5, 8, 10, 16, 20.
  • the number of subsymbols having the maximum time-frequency efficiency is 5 from Equation (8).
  • the time-frequency resource efficiency according to it is shown in Table 1 below.
  • the overhead of the OFDM scheme according to Equation 3 is 0.3340.
  • M sub2 (N sc ⁇ N RS ) / (N sym ⁇ M sub1 ), and M sub2 is the divisor of N sc
  • Equation 9 the left value of Equation 5 is the same, that is, has the same value in overhead.
  • the maximum number of subsymbols is two.
  • Equation 8 When the value obtained from Equation 8 is M sub1 , when M sub2 satisfying Equation 9 exists, both M sub1 and M sub2 become maximum values.
  • the configuration of the number of subsymbols possible from Equation 6 is 2,3,4,6,8,9,12,18.
  • the number of subsymbols having the maximum time-frequency efficiency is 4 and 6 from Equations 8 and 9, respectively.
  • the time-frequency resource efficiency according to it is shown in Table 2 below.
  • the overhead of the OFDM scheme according to Equation 3 is 0.3340.
  • Equation 4 for determining the number of subsymbols of the GFDM symbol may be modified as in Equation 10 below, and the number of subsymbols of the GFDM symbol may be determined according to Equation 10.
  • the number of subsymbols of the GFDM symbol is an M sub value satisfying Equation 10 above.
  • N guard value can be set smaller than M sub -1 for orthogonality. That is, in this case, the frequency domain overlaps with M / 2 (1 + ⁇ ) OFDM symbols. therefore, Orthogonality can be maintained by setting as many guard subcarriers as possible. here Means the number of rounded up.
  • 2, 3, 4, 6, 8, 9, 12, 18, and 24 may be the number of subsymbols from Equation (10).
  • the number of subsymbols with the maximum time-frequency efficiency is 6 or 8.
  • the time-frequency resource efficiency is as shown in Table 3 below, and the overhead of the OFDM scheme according to Equation 3 is 0.3341.
  • the present invention considers a system that configures a short transmit time interval (TTI) for supporting a short response time based on a TDM-based reference signal allocation method.
  • TTI transmit time interval
  • Embodiments of a time-frequency resource structure configuration in a short TTI configuration are presented.
  • PUSCH Physical Uplink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • the center symbol is allocated as a reference signal among the seven symbols in the case of normal CP based on one slot.
  • Reference signal overhead in such an LTE system corresponds to 1/7.
  • the reference signal overhead is increased to 1/3. To solve this problem, the proposed method can reduce overhead of the reference signal.
  • FIG. 15 illustrates multiplexing of OFDM symbols and GFDM symbols in order to reduce overhead of a reference signal according to the present invention.
  • the TTI is composed of three symbols, and 6 RBs (72 subcarriers) are allocated to the OFDM symbols and the GFDM symbols on the frequency band, respectively.
  • the reference signal overhead is 33%.
  • the reference signal overhead is 12% (Embodiment 1) or 9% (Embodiment 2), which can significantly reduce the reference signal overhead.
  • end-to-end latency of data packets must be several ms or less.
  • the end-to-end delay of a data packet can be largely divided into a communication section between a base station and a terminal and a CN (core network) section.
  • the communication section between the base station and the terminal may be further divided into a radio access section and a radio transmission section.
  • a scheduling request, resource allocation, and the like correspond to a wireless access section, and data transmission and data demodulation correspond to a wireless transmission section.
  • the transmission time interval (TTI) should be basically reduced.
  • TTI transmission time interval
  • a new TTI structure and a GFDM symbol configuration have been proposed, and the base station can allocate the new short TTI structure to the UE.
  • FIG. 16 is a diagram exemplarily illustrating a case in which a base station allocates a dedicated zone for short TTI for uplink.
  • the base station may allocate an existing LTE TTI zone and a new short TTI zone by frequency division multiplexing.
  • the original LTE TTI zone is a zone allocated for terminals using an existing LTE / LTE-A system
  • the new short TTI zone is a zone allocated for terminals requiring communication such as low latency and high reliability.
  • a guard subcarrier may exist at the boundary between the existing LTE TTI zone and the new short TTI zone, and the size of the guard subcarrier may be a subunit of the GFDM symbol in the new short TTI zone as described in Embodiments 1 to 2. It is determined based on the number of symbols.
  • an optimal number of subsymbols according to the first embodiment may be configured as shown in Table 4 below.
  • the base station may allocate a predetermined number of RBs by multiplexing the new short TTI zone on the frequency axis with the existing LTE TTI zone for a terminal requiring low latency communication.
  • the new short TTI zone is adjacent to the existing LTE TTI zone on the frequency axis.
  • a guard subcarrier is required at the boundary between the new short TTI zone and the existing LTE TTI zone, and the size (or number) of the guard subcarriers is, for example, the corresponding RB of the new short TTI zone allocated using Table 4 above.
  • the number of subsymbols corresponding to the size of the number can be known, and the number of subsymbols having the minimum overhead can be identified.
  • the number of subsymbols -1 having the minimum overhead can be determined as the number of guard subcarriers, and the base station allocates the guard band to the boundary between the new short TTI zone and the existing LTE TTI zone by this guard subcarrier number. can do.
  • 17 is a diagram illustrating a signaling procedure for providing a low delay (or low delay and high reliability) service between a base station and a terminal.
  • the terminal may transmit an indicator indicating that there is a service requiring low delay to the base station (S1710). Then, the base station allocates a new TTI zone for the low-delay service for the terminal according to the indicator (S1720), and the physical layer signal (for example, PDCCH) or higher layer signal (for example, to the terminal) Information about a time and frequency domain for a new TTI zone allocated as an RRC (Radio Resource Control) signal may be transmitted (S1730). Subsequently, the terminal checks the frequency amount of the allocated frequency domain, and the subsymbol corresponding to the allocated frequency amount (for example, the number of RBs (PRB number or VRB number) based on the predefined Table 4). In operation S1740, the terminal may transmit the data to the base station by configuring the number of subsymbols corresponding to the allocated frequency amount (S1750).
  • the base station allocates a new TTI zone for the low-delay service for the terminal according to the indicator (S1720), and the physical
  • the present invention has proposed a subsymbol configuration method using a new waveform to increase the time-frequency resource efficiency for the TDM reference signal allocation scheme when configuring a short TTI for low latency communication. Also, a structure that can be multiplexed with the existing OFDM system is proposed.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method and apparatus for allocating resources for supporting a plurality of wireless communication schemes in a wireless communication system can be applied industrially in various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 따른 무선통신 시스템에서 기지국이 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법은, 시간 및 주파수 영역 상에서 OFDM(Orthogonal Frequency Divsion Multiplexing) 심볼들로 구성된 제 1 존과 GFDM(Generalized Frequency Division Multiplexing) 심볼들로 제 2 존을 주파수 분할 다중화 방식으로 할당하는 단계; 및 상기 제 1 존과 상기 제 2 존의 경계에 소정 개수의 가드 부반송파를 할당하는 단계를 더 포함하되,상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수에 기초하여 결정된다.

Description

무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치에 관한 것이다.
3GPP LTE (3rd Generation Partnership Project Long Term Evolution) 시스템은 1ms TTI (transmission time interval)를 가지는 프레임 구조로 디자인 되었으며, 비디오(video) 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다. 그러나, 미래의 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터 요구 지연은 1ms까지 낮춰질 것으로 예상된다.
그러나, 종래 1ms TTI를 가지는 프레임 구조로는 1ms 데이터 요구 지연을 만족시킬 수 없는 문제가 있다. 5G는 종래 대비 약 10배 감소된 데이터 지연 제공을 목표로 하고 있다. 이와 같은 문제를 해결하기 위해 5G 통신 시스템에서는 새로운 TTI 구조와 새로운 타입의 심볼이 필요한데 아직까지 구체적으로 제시된 적이 없었다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 기지국이 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 무선통신 시스템에서 기지국이 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법에 있어서, 시간 및 주파수 영역 상에서 OFDM(Orthogonal Frequency Division Multiplexing) 심볼들로 구성된 제 1 존과 GFDM(Generalized Frequency Division Multiplexing) 심볼들로 제 2 존을 주파수 분할 다중화 방식으로 할당하는 단계; 및 상기 제 1 존과 상기 제 2 존의 경계에 소정 개수의 가드 부반송파를 할당하는 단계를 포함할 수 있다,
상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수에 기초하여 결정될 수 있다. 상기 제 2 존의 GFDM 심볼의 부심볼의 개수는 상기 제 2 존의 자원블록(Resource Block)의 수 혹은 부반송파 개수에 기초하여 결정된 것일 수 있다. 상기 제 2 존의 GFDM 심볼의 부심볼 개수 (Msub )는
Figure PCTKR2015010821-appb-I000001
에 가장 가까운 정수이며 제 2 존의 부반송파의 수(Nsc)의 약수인 수이고, 여기서, Nsym 는 한 TTI에 속하는 OFDM 심볼 개수, NRS 는 참조 신호로 할당된 OFDM 심볼 수이다. 상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수 -1 일 수 있다. 상기 제 1 존의 TTI(Transmission Time Interval)는 14개 또는 12개의 OFDM 심볼로 구성된 서브프레임이고, 상기 제 2 존의 TTI는 3개의 OFDM 심볼로 구성된 서브프레임일 수 있다. 상기 기지국은 상기 제 2 존에는 상기 제 1 존에 할당한 단말보다 더 저지연(low latency) 통신이 요구되는 단말을 할당할 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 기지국은, 시간 및 주파수 영역 상에서 OFDM(Orthogonal Frequency Division Multiplexing) 심볼들로 구성된 제 1 존과 GFDM(Generalized Frequency Division Multiplexing) 심볼들로 제 2 존을 주파수 분할 다중화 방식으로 할당하고, 상기 제 1 존과 상기 제 2 존의 경계에 소정 개수의 가드 부반송파를 할당하도록 구성된 프로세서를 포함하되, 상기 소정 개수를 상기 제 2 존의 GFDM 심볼의 부심볼 개수에 기초하여 결정될 수 있다.
상기 제 2 존의 GFDM 심볼의 부심볼의 개수는 상기 제 2 존의 자원블록(Resource Block)의 수 혹은 부반송파 개수에 기초하여 결정될 수 있다. 상기 제 2 존의 GFDM 심볼의 부심볼 개수 (Msub )는
Figure PCTKR2015010821-appb-I000002
에 가장 가까운 정수이며 제 2 존의 부반송파의 수(Nsc)의 약수인 수이고, 여기서, Nsym 는 한 TTI에 속하는 OFDM 심볼 개수, NRS 는 참조 신호로 할당된 OFDM 심볼 수이다. 상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수 -1일 수 있다. 상기 제 1 존의 TTI(Transmission Time Interval)는 14개 또는 12개의 OFDM 심볼로 구성된 서브프레임이고, 상기 제 2 존의 TTI는 3개의 OFDM 심볼로 구성된 서브프레임일 수 있다. 상기 프로세서는 상기 제 2 존에는 상기 제 1 존에 할당한 단말보다 더 저지연 통신이 요구되는 단말을 할당할 수 있다.
본 발명에서는 저지연 통신을 위한 short TTI 구성 시 TDM 방식의 참조 신호 할당 방식을 위해 새로운 파형을 활용한 부심볼 구성 방법을 제안하여 시간-주파수 자원 효율성 높일 수 있다. 또한, 이러한 새로운 파형을 활용한 부심볼 구성에 따른 시스템은 기존 OFDM 시스템과 정합성도 유지하면서 다중화될 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 3GPP LTE/LTE-A 시스템에서의 FDD 프레임 구조를 예시한 도면이다.
도 2는 3GPP LTE/LTE-A 시스템에서의 TDD 프레임 구조를 예시한 도면이다.
도 3은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 4는 3GPP LTE/LTE-A 시스템의 일반적인 하향링크 자원에 대한 정의를 나타낸 도면이다.
도 5는 3GPP LTE/LTE-A 시스템에서의 하향링크 서브프레임의 구조에 대해 설명하기 위한 도면이다.
도 6은 3GPP LTE/LTE-A 시스템에서의 FDD 프레임 구조에서의 PSS/SSS 구조를 나타낸다.
도 7은 3GPP LTE 시스템에서 LTE Round Trip Time (over the air latency)를 설명하기 위한 예시적 도면이다.
도 8은 Short TTI를 구성하는 경우의 상향링크 구조(예를 들어, LTE Uplink PUSCH (short TTI)를 예시한 도면이다.
도 9는 짧은 구간을 가지는 새로운 타입의 심볼과 기존 LTE OFDM 심볼들을 비교하기 위한 도면이다.
도 10은 OFDM 심볼과 짧은 심볼 길이를 가진 새로운 타입의 심볼간의 시간- 주파수 파형을 예시적으로 도시한 도면이다.
도 11은 GFDM 심볼, 기존 OFDM 심볼 및 짧은 심볼 길이의 OFDM 심볼 비교를 위한 자원 그리드(resource grid)를 도시한 도면이다.
도 12는 GFDM의 부심볼 당 펄스 모양(raised cosine filter with roll-off =0.25)을 도시한 도면이다.
도 13은 GFDM과 OFDM의 다중화를 위한 예시적인 도면이다.
도 14는 도 13에서와 같이 부심볼 4개를 가지는 GFDM 심볼과 기존 OFDM 심볼의 다중화를 위해 인접 주파수에 위치시킨 경우의 파형을 도시하고 있는 도면이다.
도 15는 본 발명에 따른 참조신호의 오버헤드를 줄이기 위해 OFDM 심볼들과 GFDM 심볼들을 다중화한 것을 도시한 도면이다.
도 16은 기지국이 상향링크를 위한 short TTI 용으로 전용 존(dedicate Zone)을 할당한 경우를 예시적으로 나타낸 도면이다.
도 17은 기지국과 단말 간에 저지연(혹은 저지연 및 고신뢰) 서비스를 제공을 위한 시그널링 프로시저를 예시적으로 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
기지국과 단말 간의 무선 전송에 대하여 기지국에서 단말로의 전송을 하향 링크 전송, 단말로부터 기지국으로의 전송을 상향링크 전송으로 통칭하여 표현한다. 이러한 하향링크 전송과 상향링크 전송 간의 무선 자원을 구분하는 방식을 듀플렉스(duplex)라고 정의하며 주파수 밴드를 하향링크 전송 밴드와 상향링크 전송 밴드로 구분하여 양방향 송수신하는 경우 주파수 분할 듀플렉스(Frequency Division Duplex, FDD)라고 표현한다.
도 1은 3GPP LTE/LTE-A 시스템에서의 FDD 프레임 구조를 예시한 도면이다.
도 1을 참조하면, 하나의 무선 프레임(radio frame)은 10ms(327200Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
도 2는 3GPP LTE/LTE-A 시스템에서의 TDD 프레임 구조를 예시한 도면이다.
동일 주파수 밴드에서 시간 영역(time domain) 무선 자원을 하향 링크 시구간(time duration) 자원과 상향링크 시구간(time duration) 자원으로 구분하여 송수신하는 경우 시간 분할 듀플렉스(Time Division Duplex, TDD)라고 표현한다.
도 3은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 3을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
도 4는 3GPP LTE/LTE-A 시스템의 일반적인 하향링크 자원에 대한 정의를 나타낸 도면이다.
각 슬롯에서 전송되는 하향링크 신호는
Figure PCTKR2015010821-appb-I000003
×
Figure PCTKR2015010821-appb-I000004
개의 부반송파(subcarrier)와
Figure PCTKR2015010821-appb-I000005
개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로 구성되는 자원 격자(resource grid) 구조로 이용한다. 여기서,
Figure PCTKR2015010821-appb-I000006
은 하향링크에서의 자원 블록(RB: Resource Block)의 개수를 나타내고,
Figure PCTKR2015010821-appb-I000007
는 하나의 RB을 구성하는 부반송파의 개수를 나타내고,
Figure PCTKR2015010821-appb-I000008
는 하나의 하향링크 슬롯에서의 OFDM 심볼의 개수를 나타낸다.
Figure PCTKR2015010821-appb-I000009
의 크기는 셀 내에서 구성된 하향링크 전송 대역폭에 따라 달라지며
Figure PCTKR2015010821-appb-I000010
Figure PCTKR2015010821-appb-I000011
Figure PCTKR2015010821-appb-I000012
을 만족해야 한다. 여기서,
Figure PCTKR2015010821-appb-I000013
는 무선 통신 시스템이 지원하는 가장 작은 하향링크 대역폭이며
Figure PCTKR2015010821-appb-I000014
는 무선 통신 시스템이 지원하는 가장 큰 하향링크 대역폭이다.
Figure PCTKR2015010821-appb-I000015
=6이고
Figure PCTKR2015010821-appb-I000016
=110일 수 있지만, 이에 한정되는 것은 아니다. 하나의 슬롯 내에 포함된 OFDM 심볼의 개수는 순환 전치(CP: Cyclic Prefix)의 길이 및 부반송파의 간격에 따라 다를 수 있다. 다중안테나 전송의 경우에, 하나의 안테나 포트 당 하나의 자원 격자가 정의될 수 있다.
각 안테나 포트에 대한 자원 격자 내의 각 요소는 자원 요소(RE: Resource Element)라고 불리우며, 슬롯 내의 인덱스 쌍 (k,l)에 의해 유일하게 식별된다. 여기서, k는 주파수 영역에서의 인덱스이고, l는 시간 영역에서의 인덱스이며 k는 0,...,
Figure PCTKR2015010821-appb-I000017
-1 중 어느 하나의 값을 갖고, l는 0,...,
Figure PCTKR2015010821-appb-I000018
-1 중 어느 하나의 값을 갖는다.
도 4에 도시된 자원 블록은 어떤 물리 채널과 자원 요소들 간의 매핑(mapping) 관계를 기술하기 위해 사용된다. RB는 물리 자원 블록(Physical Resource Block, PRB)과 가상 자원 블록(Virtual Resource Block, VRB)으로 나눌 수 있다. 상기 하나의 PRB는 시간 영역의 개의 연속적인 OFDM 심볼과 주파수 영역의
Figure PCTKR2015010821-appb-I000020
개의 연속적인 부반송파로 정의된다. 여기서
Figure PCTKR2015010821-appb-I000021
Figure PCTKR2015010821-appb-I000022
는 미리 결정된 값일 수 있다. 예를 들어
Figure PCTKR2015010821-appb-I000023
Figure PCTKR2015010821-appb-I000024
는 다음 표 1과 같이 주어질 수 있다. 따라서 하나의 PRB는
Figure PCTKR2015010821-appb-I000025
×
Figure PCTKR2015010821-appb-I000026
개의 자원 요소로 구성된다. 하나의 PRB는 시간 영역에서는 하나의 슬롯에 대응되고 주파수 영역에서는 180kHz에 대응될 수 있지만 이에 한정되는 것은 아니다.
3GPP LTE는 부대역(sub-band)를 resource block (RB)의 묶음으로 정의(
Figure PCTKR2015010821-appb-I000027
)하고 있으며, sub-band의 사이즈는 아래와 같은 수식을 통해 산출될 수 있다. 여기서, sub-band의 수(Nsb) 및 Hopping-mode 관련 파라미터는 모두 상위 계층에 의해 제공된다.
Figure PCTKR2015010821-appb-I000028
는 다음 수학식 1과 같이 나타낼 수 있다.
[수학식 1]
Figure PCTKR2015010821-appb-I000029
도 5는 3GPP LTE/LTE-A 시스템에서의 하향링크 서브프레임의 구조에 대해 설명하기 위한 도면이다.
도 5를 참조하면, 하나의 하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함한다. 하향링크 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심볼들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE 시스템 등에서 사용되는 하향링크 제어 채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫 번째 OFDM 심볼에서 전송되는 PCFICH는 서브프레임 내에서 제어 채널들의 전송에 사용되는 OFDM 심볼의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(Downlink Control Information, DCI)라고 한다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 임의의 단말 그룹들에 대한 상향링크 전송 파워 제어 명령 등을 가리킨다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
이제, 하향링크 물리채널인 PDCCH에 대해 기술한다.
기지국은 PDCCH를 통해 PDSCH의 자원 할당 및 전송 포맷(이를 DL grant라고도 한다), PUSCH의 자원 할당 정보(이를 UL grant라고도 한다), 임의의 단말, 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 전송할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(Control Channel Elements)의 집합(aggregation)으로 구성된다. 하나 또는 몇몇 연속적인 CCE의 집합으로 구성된 PDCCH는 서브블록 인터리빙(subblock interleaving)을 거친 후에 제어 영역을 통해 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. 다음 표 1은 DCI 포맷에 따른 DCI를 나타낸다.
LTE/LTE-A 시스템에서 하나의 자원블록(Resource Block, RB)은 12개의 부반송파×7(6)개의 OFDM 심볼 또는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼 또는 SC-FDMA 심볼의 수는 다양하게 변경될 수 있다.
도 6은 3GPP LTE/LTE-A 시스템에서의 FDD 프레임 구조에서의 PSS/SSS 구조를 나타낸다.
도 6에 도시한 바와 같이, 3GPP LTE/LTE-A 시스템은 FDD 프레임에서 하향링크 동기를 위해 기지국이 주 동기 신호(primary synchronization signal, PSS)와 부 동기신호(secondary synchronization signal, SSS)를 주기적으로 단말에게 전송한다. LTE FDD의 경우, 서브프레임 인덱스 0와 5인 서브프레임들의 첫 번째 슬롯의 마지막 두 심볼을 통해(6RBs, 72 subcarriers) 동일한 PSS/SSS 신호를 두 번 반복 전송한다. PBCH(Physical Broadcast Channel는 첫 번째 서브프레임(인덱스 0인 서브프레임)의 두 번째 슬롯의 앞선 4개의 OFDM 심볼(심볼 인덱스 0,1,2,3)을 통해 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH(Physical Downlink Shared CHannel) 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
도 7은 3GPP LTE 시스템에서 LTE Round Trip Time (over the air latency)를 설명하기 위한 예시적 도면이다.
무선 송수신 지연의 레퍼런스를 1ms 서브프레임을 가지는 3GPP LTE 시스템의 하향링크 송수신 구현 관점으로 예시하면 도 6과 같이 나타낼 수 있다. 도 6에서 보는 것과 같이, 단 방향 데이터 전송에 대한 ACK/NACK 수신까지의 지연은 일반적으로 4ms이다.
Short TTI를 위한 2가지 접근 방법
무선 송수신 지연을 줄이기 위한 방법으로 크게 2가지 방안을 고려할 수 있다. 한 심볼 길이를 유지하면서 TTI에 속하는 심볼의 개수를 줄이는 방법과 한 심볼 길이를 줄이는 방법이다. 첫 번째는 기존 LTE 시스템의 14개 심볼로 구성된 TTI (1ms) 구성을 작은 심볼 개수로 구성된 새로운 TTI로 구성함으로써 스케줄링 단위를 줄이는 방법이다. 이는 TTI를 줄임으로써 송수신을 위한 시간을 줄이는 효과를 가져온다. 그러나, 심볼 개수를 축소하였기 때문에 한 TTI에 보낼 수 있는 시간/주파수 자원이 줄어들어 제어 정보의 오버헤드가 커지는 단점이 있다. 예를 들어, 3개의 심볼로 short TTI를 구성 시 상향링크 구조는 다음 도 8과 같이 된다.
도 8은 Short TTI를 구성하는 경우의 상향링크 구조(예를 들어, LTE Uplink PUSCH (short TTI)를 예시한 도면이다.
도 8을 참조하면, 데이터 검출을 위한 참조 신호(reference signal)의 할당으로 인해 시 주파수 자원의 효율성이 기존 LTE 시스템에 비해 현격히 나빠지는 문제점이 있다. 예를 들어, 한 사용자가 1RB(12 subcarriers)를 할당 받았다고 가정했을 때, 총 시간-주파수 자원은 36(12x3) RE가 되고, 이중 12 RE를 참조 신호로 사용하여 33% 오버헤드가 발생한다.
두 번째 방법으로 한 OFDM 심볼의 길이를 줄이는 것을 간주할 수 있다. 심볼 길이를 줄임으로써 short TTI로 구성하더라도 기존 길이로 유지하면서 TTI를 줄이는 첫 번째 방법에 비해 한 TTI에 더 많은 심볼을 포함할 수 있다. 이 방법은 참조 신호 오버헤드 측면에서 좋은 효과를 기대할 수 있다. 심볼 길이가 짧아져서 더 많은 시간-주파수 자원을 사용하는 것처럼 보이지만, 실제적으로 심볼 길이가 줄어들면 그만큼 비례해서 신호의 주파수 폭이 커지므로 전체 시간-주파수 자원은 같다.
도 9는 짧은 구간을 가지는 새로운 타입의 심볼과 기존 LTE OFDM 심볼들을 비교하기 위한 도면이다.
도 9는 일 예로서 기존 심볼 길이의 1/4만큼 줄였을 때는 1 RB를 가정하면, 시간-주파수 자원 36 (3 subcarriers x 12 OFDM symbols)로 동일한 자원을 가진다. 그리고, TDM으로 참조 신호를 맵핑 시 1개의 심볼을 참조신호를 사용하게 되고 그 결과 9%의 오버헤드가 발생하고 이는 첫 번째 방법에 비해 이득을 가져온다. 그러나, 추가적으로 각 OFDM(Orthorgonal Frequency Division Multiplexing) 심볼 길이의 일부분을 차지하는 cyclic prefix(CP) 개수가 4배로 늘어나게 되어 CP 오버헤드가 증가하게 된다. 이 두 측면을 다 고려하더라도 시간-주파수 자원 효율성 측면에서는 첫 번째 방법에 비해 두 번째 방법(한 OFDM 심볼의 길이를 줄이는 것 방법)이 좀 더 효율적이라고 볼 수 있다. CP의 길이를 4 us, 심볼 길이를 66us라고 가정하면 두 방법은 RS와 CP 총 오버헤드는 각각 37%와 27%로 두 번째 방법이 좀 더 효율적이다.
그러나, 두 번째 방법도 첫 번째 방법에 비해 기존 LTE 시스템과의 정합 측면에서 다음과 같은 새로운 문제점이 발생하게 된다.
도 10은 OFDM 심볼과 짧은 심볼 길이를 가진 새로운 타입의 심볼간의 시간- 주파수 파형을 예시적으로 도시한 도면이다.
기본적으로 OFDM 심볼의 직교성 확보를 위해서는 FFT(Fast Fourier Transform) 윈도우 크기안에서 sine 파형의 주기의 정수 배만큼과 일치해야 부반송파간의 직교성이 유지된다. 그러나, 도 10에서와 같이 서로 다른 심볼 길이를 가지는 경우에는 두 심볼 모두 각 FFT 윈도우 크기에 주기의 정수배 만큼이 확보되지 않아 서로 서로 부반송파간의 간섭이 일어날 수 밖에 없고 이는 성능 열화로 나타난다.
요약하면, short TTI를 구성 시 기존 OFDM 심볼과의 정합성 관점에서는 첫 번째 방법이 유리한 반면에, 시간-주파수 자원의 효율성 측면에서는 두 번째 방법이 더 유리한 것을 알 수 있다. 그리고, 심볼 길이를 줄이는 방법은 기존 OFDM 심볼과의 정합성이 낮아진다. 이와 같이, short TTI를 구성하는 두 가지 방법들은 각각 장단점이 있기 때문에, 본 발명에서는 새로운 타입의 심볼 혹은 새로운 파형(New waveform)을 제안하고자 한다.
이를 위해, Generalized Frequency Division Multiplexing (GFDM)이라는 새로운 타입의 심볼을 활용한다. GFDM 심볼의 파형(waveform)에서는 부심볼(sub-symbol)이라는 개념을 기반으로 시간-주파수 자원의 구성을 좀 더 유연하게 하고, 부심볼 간의 심볼 중첩을 이용하여 pulse shaping와 tail-biting 기술을 도입하는 새로운 블록-기반(block-based) 구조의 심볼을 설계할 수 있다.
도 11은 GFDM 심볼, 기존 OFDM 심볼 및 짧은 심볼 길이의 OFDM 심볼 비교를 위한 자원 그리드(resource grid)를 도시한 도면이다.
도 11은 모두 LTE/LTE-A 시스템에서의 총 12개의 시간-주파수 자원을 도시하고 있다. 도 11의 (a)는 4개의 부심볼로 구성된 GFDM 심볼을 나타내며, 도 11의 (b)는 기존 OFDM 심볼을 나타나며, 도 11의 (c)는 기존 OFDM 심볼의 길이를 1/4로 줄인 경우에 도시하고 있다. 도 11의 (a)에 도시한 GFDM 심볼은 도 11의 (c)에 도시한 기존 OFDM 심볼의 1/4 길이를 가지는 것과 비슷해 보이나 CP의 구성이 다르다는 큰 차이점이 있다.
도 12는 GFDM의 부심볼 당 펄스 모양(raised cosine filter with roll-off =0.25)을 도시한 도면이다.
부심볼간의 중첩이 되는 신호 pulse를 통해서 기존 Rectangular pulse 모양이 아닌 다른 pulse 모양을 적용한다. 이로써 기존의 심볼 구조에 비해 부반송파의 다른 부반송파로 미치는 leakage power를 줄이는 효과도 얻을 수 있다. 이와 같이, 본 발명에서 새롭게 제안된 GFDM을 활용함으로써 앞서 문제를 새롭게 접근할 수 있다. Short TTI 상황에서 GFDM의 구조를 기반으로 GFDM 심볼 길이를 기존 OFDM 심볼과 동일하게 유지하여 정합성을 가지고, 부심볼을 통해 시 주파수 자원의 오버헤드를 감소시킬 수 있다.
구체적으로, CP 오버헤드를 기존 OFDM과 동일하게 유지하면서 참조 신호의 오버헤드 감소 및 기존 시스템과의 정합성을 유지하는 것이 가능해진다. Short TTI 구성을 위해 GFDM이라는 새로운 파형을 활용할 수 있음을 앞서 언급하였다. 그러나 GFDM 심볼의 장점을 획득하기 위해서 기존 OFDM 심볼과 GFDM 심볼간의 부심볼 길이 차이로 오는 직교성이 깨지는 문제를 해결할 필요가 있다. 서로간 간섭을 주는 길이가 짧은 OFDM 심볼을 사용하는 방법에 비해, GFDM 심볼은 기존 OFDM 심볼이 GFDM심볼에 주는 영향은 없지만 GFDM 심볼이 주는 영향은 여전히 존재한다.
본 발명에서는 저지연 통신을 위한 짧은 길이의 TTI에 적합한 새로운 파형 기반의 시간-주파수 자원 구조 및 OFDM과 GFDM의 다중화 기법을 제안한다. 구체적으로는, GFDM과 OFDM의 직교성을 유지한 다중화를 위해서는 가드(guard) 부반송파가 필요하며, 이를 전제로 한 최소 오버헤드를 가지는 GFDM의 부심볼 개수를 정하는 방법을 제안한다.
먼저, 기존 LTE OFDM 심볼과 새로운 GFDM 심볼을 시간-주파수 자원에서 다음도 13과 같이 구성했다고 가정하자.
도 13은 GFDM과 OFDM의 다중화를 위한 예시적인 도면이다.
도 13에서는 하나의 TTI(subframe)가 3개의 OFDM 심볼로 구성되어 있다. 도 13에서는 부심볼 4개를 가지는 GFDM 심볼과 기존 OFDM 심볼을 인접 주파수에 위치시킨 시간-주파수 자원 그리드를 도시하고 있다. 이 경우, 주파수 영역에서의 pulse 모양(GFDM은 raised cosine filter with roll-off factor =0.25)을 보면 다음 도 14와 같다.
도 14는 도 13에서와 같이 부심볼 4개를 가지는 GFDM 심볼과 기존 OFDM 심볼의 다중화를 위해 인접 주파수에 위치시킨 경우의 파형을 도시하고 있는 도면이다.
도 14에서와 같이 주파수 영역(주파수 축 방향으로 f1, f2, ..., f24)에서 샘플을 볼 때 인접 부반송파(f13, f14, f15) 간의 간섭이 서로간 발생하고 이는 부심볼의 개수를 몇 개로 하느냐에 따라 결정된다. 따라서, 시간-주파수 자원을 효율적으로 사용하기 위한 구조를 제안하고자 한다. 먼저 다음과 같은 정의를 사용한다.
Nsc : 전체 부반송파(subcarrier)의 수
Nsym : 한 TTI에 속하는 심볼 개수
Tsym : 한 심볼의 길이 (sec)
TCP : CP의 길이
NRS : 참조 신호로 할당된 심볼 수
Msub : GFDM 심볼의 부심볼 개수 (단, Nsc의 약수여야 한다)
Nguard : GFDM 심볼과 OFDM 심볼간의 가드 부반송파(guard subcarrier)의 수 (Msub-1 이하의 수)
기존 OFDM 심볼의 주파수 자원의 효율성은 다음 수학식 2, GFDM 심볼의 주파수 자원 효율성은 다음 수학식 3과 같이 각각 정의 된다.
[수학식 2]
OverheadOFDM= (Nsc×NRS+TCP/Tsym×Nsym)/(Nsc×Nsym)
[수학식 3]
OverheadGFDM= (Nsc/Msub×NRS+ Nguard×Nsym+TCP/Tsym×Nsym)/(Nsc×Nsym)
따라서, 상기 수학식 2, 3으로부터 다음 수학식 4의 기준을 만족하면 GFDM 심볼로 구성 시 자원 효율성에 이득을 가지는 것을 알 수 있다.
[수학식 4]
Nsc×NRS - Nsc/Msub ×NRS - Nguard×Nsym > 0
여기서,가드 부반송파의 수(Nguard)는 OFDM 심볼과 GFDM 심볼의 직교성을 위해 Msub (GFDM 심볼의 부심볼 개수)의 값에 따라 결정되어야 한다. 따라서, Nguard 의 Msub 따라 함수(function)을 어떻게 설정하느냐에 따라 솔루션도 달라진다.
실시예 1: 가드 부반송파 개수를 GFDM 심볼의 부심볼 개수 -1 로 설정한 경우 (N guard = M sub -1 )
먼저, OFDM 심볼 및 GFDM 심볼의 다중화를 위해서는 서로 직교성을 유지해야 한다. Raised cosine 필터 roll-off factor를 1로 두는 경우 최대 Msub-1의 개수만큼 가드 부반송파를 두어야 한다. 이 직교성을 위해서 가장 많은 가드 부반송파를 두는 경우인 Nguard 를 Msub-1 로 설정한 경우를 고려하고, 이 경우 상기 수학식 4는 다음 수학식 5와 같이 나타낼 수 있다.
[수학식 5]
Nsc×NRS - Nsc/Msub ×NRS - (Msub-1)×Nsym > 0
상기 수학식 5에 의해, GFDM의 부심볼의 개수는 다음 수학식 6과 같이 결정된다.
[수학식 6]
1 < Msub< (Nsc×NRS)/Nsym 및 Msub = Nsc의 약수
그리고, 최대값을 구하기 위해, 상기 수학식 5의 미분 값이 0이 되는 수식은 다음 수학식 7과 같다.
[수학식 7]
(Nsc × NRS)/Msub 2 - Msub×Nsym =0
상기 수학식 7을 풀면, 오버헤드를 최소화 시키는 부심볼 개수 (Msub)는 다음수학식 8과 같다.
[수학식 8]
Msub =
Figure PCTKR2015010821-appb-I000030
에 가장 가까운 정수이면서 Nsc 의 약수일 때 가진다.
예를 들어,Nsc=80, Nsym = 3, NRS=1, TCP/Tsym =0.05 라고 가정하자. 이 경우, 상기 수학식 6으로부터 가능한 부심볼 개수의 구성은 2,4,5,8,10,16,20이 된다. 그리고, 상기 수학식 8로부터 최대 시간-주파수 효율을 가지는 부심볼의 개수는 5이 된다. 그리고, 그에 따른 시간-주파수 자원 효율은 다음 표 1과 같다. 이때, 수학식 3에 따른 OFDM 방식의 오버헤드는 0.3340이다.
표 1
Msub 2 4 5 8 10 16 20
Overhead(수학식 3) 0.1799 0.1215 0.1174(최소값) 0.1299 0.1465 0.209 0.2549
또한, 상기 수학식 5로부터 상기 수학식 5를 만족하는 부심볼 Msub1이 있다고 가정할 때, 다음 수학식 9의 조건을 만족하는 Msub2 역시 동일한 오버헤드 값을 가짐을 알 수 있다.
[수학식 9[
Msub2= (Nsc×NRS)/(Nsym×Msub1), 그리고 Msub2 는 Nsc 의 약수
상기 수학식 9를 만족하는 부심볼 개수 Msub2의 경우 상기 수학식 5의 좌측 값이 같아지며, 즉 오버헤드에서 동일한 값을 가지게 된다. 다음의 경우는 최대값을 가지는 부심볼의 개수가 두 개가 된다.
수학식 8로부터의 얻은 값을 Msub1 라고 할 때,수학식 9를 만족하는 Msub2 가 존재할 때 Msub1 과 Msub2 두 값 모두 최대값이 된다.
다른 예로서, Nsc=72,Nsym=3, NRS=1,TCP/Tsym=0.05 라고 가정하자. 이 경우, 수학식 6으로부터 가능한 부심볼 개수의 구성은 2,3,4,6,8,9,12,18 이 된다. 그리고, 수학식 8과 수학식 9로부터 최대 시간-주파수 효율을 가지는 부심볼의 개수는 4와 6이 된다. 그리고, 그에 따른 시간-주파수 자원 효율은 다음 표 2와 같다. 이 때, 수학식 3에 따른 OFDM 방식의 오버헤드는 0.3340이다.
표 2
Msub 2 3 4 6 8 9 12 18 24 36
Overhead(수학식 3) 0.1813 0.1397 0.1258(최소값) 0.1258(최소값) 0.1397 0.1489 0.1813 0.2554 0.3341 0.4962
실시예2: N guard 가 M sub 과 관련된 함수로 된 경우 (N guard = f(M sub ))
일반적으로 GFDM의 경우 상기 도 14에서 도시한 바와 같이, 필터 적용에 따라 펄스 모양 조절이 가능하다. 따라서, Nguard를 직교성을 위해 Msub-1 보다 짧게 설정할 수 있다. 따라서, GFDM 심볼의 부심볼 개수를 결정하는 상기 수학식 4는 다음 수학식 10과 같이 수정될 수 있고, 상기 수학식 10에 따라 GFDM 심볼의 부심볼 개수를 결정할 수 있다.
[수학식 10]
Nsc×NRS - Nsc/Msub ×NRS - f(Msub)×Nsym > 0
GFDM 심볼의 부심볼 개수는 상기 수학식 10을 만족하는 Msub 값이 된다.
도 14와 같이 GFDM의 펄스 모양으로 raised cosine 필터 (roll-off factor=β)를 사용한 경우를 고려해보자. 이 경우는 직교성을 위해 Nguard 값을 Msub-1 보다 작게 설정 가능하다. 즉, 이 경우는 M/2(1+β) 만큼의 OFDM의 심볼과의 주파수 영역의 중복이 일어난다. 따라서,
Figure PCTKR2015010821-appb-I000031
만큼의 가드 부반송파를 설정함으로써 직교성을 유지할 수 있다. 여기서
Figure PCTKR2015010821-appb-I000032
의 올림 수를 의미한다.
실시예 2의 예로서, Nsc=72,Nsym = 3, NRS=1, TCP/Tsym=0.05, β=0.25라고 가정하자. 이 경우, 상기 수학식 10으로부터 2,3,4,6,8,9,12,18,24가 부심볼 개수로 가능하다. 최대 시간-주파수 효율을 가지는 부심볼의 개수는 6혹은 8이 된다. 그리고, 그에 따른 시간-주파수 자원 효율은 다음 표 3과 같고 수학식 3에 따른 OFDM 방식의 오버헤드는 0.3341이다.
표 3
Msub 2 3 4 6 8 9 12 18 24
오버헤드(수학식 3) 0.1813 0.1258 0.1119 0.098 0.098 0.1073 0.1258 0.1721 0.2091
또한, 본 발명에서는 TDM 방식의 참조 신호 할당 방법을 기반으로, 짧은 응답 시간을 지원하기 위한 짧은 TTI (transmit time interval)을 구성하는 시스템을 고려한다. 기존 시스템과의 다중화 및 자원 효율성을 위해 새로운 파형 기반으로 새로운 시간 구간 자원 구조를 제안한다. 본 제안 구조를 짧은 TTI 구성시 시간- 주파수 자원 구조 구성의 실시 예들을 제시한다.
3GPP LTE/LTE-A 시스템에서의 PUSCH(Physical Uplink Shared CHannel) 및 PUCCH(Physical Uplink Control CHannel)의 경우
3GPP LTE/LTE-A 시스템의 PUSCH의 경우 하나의 슬롯(slot)을 기준으로 normal CP의 경우 7개의 심볼 중에서 가운데 심볼을 참조신호로 할당하고 있다. 이러한 LTE 시스템에서의 참조 신호 오버헤드는 1/7에 해당한다. 하지만, 저지연 통신을 위해서 TTI를 3개의 심볼로 구성 시, 참조 신호 오버헤드는 1/3으로 증가한다. 이를 해결하기 위해서 상기 제안한 방법을 활용하면 참조 신호의 오버헤드를 줄일 수 있다.
도 15는 본 발명에 따른 참조신호의 오버헤드를 줄이기 위해 OFDM 심볼들과 GFDM 심볼들을 다중화한 것을 도시한 도면이다.
도 15에서와 같이, TTI는 3개 심볼로 구성하되, OFDM 심볼들과 GFDM 심볼들을 각각 주파수 대역상으로 6 RB (72 subcarrier)를 할당하였다. 6 RB (72 subcarrier)에 대해 기존 OFDM 심볼로만 구성하는 경우에는 참조신호 오버헤드가 33%이다. 도 15에 도시한 바와 같이, 6 RB (72 subcarrier)에 대해 기존 OFDM 심볼로만 구성하는 경우에는 하나의 OFDM 심볼이 참조신호 전송 대역으로 되어 참조신호 오버헤드가 33%이다. 그러나, 본 발명에서 제안한 GFDM 심볼들로 구성하는 경우 참조신호 오버헤드가 12%(실시예 1) 혹은 9%(실시예 2)로 되어, 참조신호 오버헤드를 상당히 감소시킬 수 있다.
이상에서 살펴본 바와 같이, 5G 이동통신 서비스로 실시간 게임, 실감형 통신, 원격 의료, 원격 제어 등이 대두되고 있다. 이 서비스들은 공통으로 저지연 고신뢰 무선전송을 필요로 하는데, 이 서비스들을 원활히 지원하기 위해서는 데이터 패킷의 단대단 지연(End-To-End Latency)이 수 ms 이하여야 한다. 현재 LTE 시스템의 데이터 패킷의 단대단 지연은 ~20ms 정도로 위의 서비스들을 원활히 지원하는데 한계가 있다. 데이터 패킷의 단대단 지연은 크게 기지국과 단말간의 통신 구간과 CN(Core Network) 구간으로 나눌 수 있다. 기지국과 단말간의 통신 구간은 다시 무선접속 구간과 무선전송 구간으로 나눌 수 있다. 무선접속 구간에는 스케줄링 요청, 자원할당 등이 해당되고, 무선전송 구간에는 데이터 전송, 데이터 복조 등이 해당된다. 무선전송 구간에서 데이터 패킷의 단대단 지연을 줄이기 위해서는 기본적으로 TTI(Transmission Time Interval)를 줄여야 한다. 이와 같은 저지연, 고신뢰 서비스를 제공을 위해 새로운 TTI 구조 및 GFDM 심볼 구성을 제안하였고, 기지국은 이러한 새로운 short TTI 구조를 단말에게 할당할 수 있다.
도 16은 기지국이 상향링크를 위한 short TTI 용으로 전용 존(dedicate Zone)을 할당한 경우를 예시적으로 나타낸 도면이다.
도 16에서와 같이, 기지국은 기존의(original) LTE TTI 존과 새로운 short TTI존을 주파수 분할 다중화하여 할당할 수 있다. 여기서, 기존의(original) LTE TTI 존은 기존의 LTE/LTE-A 시스템을 이용하는 단말들을 위해 할당된 존이고, 새로운 short TTI 존은 저지연, 고신뢰 등의 통신이 요구되는 단말들을 위해 할당된 존이다. 이때, 기존의 LTE TTI 존과 새로운 short TTI 존의 경계에는 가드 부반송파가 존재할 수 있고, 이때 가드 부반송파의 크기는 상기 실시예 1 내지 실시예2에서 설명한 바와 같이 새로운 short TTI 존에서의 GFDM 심볼의 부심볼 개수에 기초하여 결정된다. 대역폭(BW)이 10MHz(RB개수 50)에 short TTI (3개 OFDM 심볼) 적용할 시 실시예 1에 따른 최적의 부심볼 개수를 다음 표 4와 같이 구성할 수 있다.
표 4
할당받은 RB 수 1 5 10 20
가능한 부심볼 개수 2,3 2,3,4,6,8,9,12,18 2,3,4,5,6,8,10,12,15,20,24,30 2,3,4,5,6,8,10,12,15,16,20,24,20,40,48,60
최소 오버헤드 부심볼 개수 2 4 또는 6 6 8 또는 10
기지국은 저지연 통신 수행이 요구되는 단말을 위해 소정 개수의 RB를 새로운 short TTI 존을 기존의 LTE TTI 존과 주파수 축 상으로 다중화하여 할당할 수 있다. 일 예로서, 새로운 short TTI 존을 기존의 LTE TTI 존과 주파수 축 상에서 인접하다. 이 경우, 새로운 short TTI 존과 기존의 LTE TTI 존의 경계에 가드 부반송파가 필요하며, 이 가드 부반송파의 크기(혹은 개수)는 일 예로서 상기 표 4를 이용하여 할당한 새로운 short TTI 존의 해당 RB 수의 크기에 대응하는 부심볼 개수(들)을 알 수 있고, 이 중에서 최소 오버헤드를 가지는 부심볼 개수를 확인할 수있다. 실시예 1에서와 같이 최소 오버헤드를 가지는 부심볼 개수 -1을 가드 부반송파 개수로 정할 수 있고, 기지국은 이 가드 부반송파 개수만큼 가드 대역을 새로운 short TTI 존과 기존의 LTE TTI 존 사이의 경계에 할당할 수 있다.
도 17은 기지국과 단말 간에 저지연(혹은 저지연 및 고신뢰) 서비스를 제공을 위한 시그널링 프로시저를 예시적으로 나타낸 도면이다.
도 17을 참조하면, 단말이 저지연을 요구하는 서비스가 있음을 가리키는 지시자를 기지국에 전송할 수 있다(S1710). 그러면, 기지국은 상기 지시자에 따라 상기 단말을 위해 저지연 서비스를 위한 새로운 TTI 존을 할당하고(S1720), 이를 상기 단말에게 물리계층 신호(예를 들어, PDCCH) 혹은 상위 계층 신호(예를 들어, RRC(Radio Resource Control) 신호)로 할당된 새로운 TTI 존에 대한 시간과 주파수 영역에 대한 정보를 전송해 줄 수 있다(S1730). 이후, 단말은 할당받은 주파수 영역에 대한 주파수 양을 확인하고, 미리정의된 상기 표 4에 기초하여 할당받은 주파수 양(예를 들어, RB의 개수(PRB 개수 혹은 VRB 개수)에 대응하는 부심볼의 개수를 알 수 있다(S1740). 이후, 단말은 할당받은 주파수 양에 대응하는 부심볼 개수를 구성하여 기지국으로 데이터를 전달할 수 있다(S1750).
이상에서 살펴본 바와 같이, 본 발명에서는 저지연 통신을 위한 short TTI 구성 시 TDM 방식의 참조 신호 할당 방식을 위한 시간-주파수 자원 효율성 높이기 위해 새로운 파형을 활용한 부심볼 구성 방법을 제안하였다. 또한, 기존 OFDM 시스템과의 다중화도 가능한 구조를 제안하였다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치는 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (12)

  1. 무선통신 시스템에서 기지국이 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법에 있어서,
    시간 및 주파수 영역 상에서 OFDM(Orthogonal Frequency Divsion Multiplexing) 심볼들로 구성된 제 1 존과 GFDM(Generalized Frequency Division Multiplexing) 심볼들로 제 2 존을 주파수 분할 다중화 방식으로 할당하는 단계; 및
    상기 제 1 존과 상기 제 2 존의 경계에 소정 개수의 가드 부반송파를 할당하는 단계를 더 포함하되,
    상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수에 기초하여 결정되는, 자원 할당 방법.
  2. 제 1항에 있어서,
    상기 제 2 존의 GFDM 심볼의 부심볼의 개수는 상기 제 2 존의 자원블록(Resource Block)의 수 혹은 부반송파 개수에 기초하여 결정된 것인, 자원 할당 방법.
  3. 제 1항에 있어서,
    상기 제 2 존의 GFDM 심볼의 부심볼 개수 (Msub )는
    Figure PCTKR2015010821-appb-I000033
    에 가장 가까운 정수이며 제 2 존의 부반송파의 수(Nsc)의 약수인 수이고,
    여기서, Nsym 는 한 TTI에 속하는 OFDM 심볼 개수, NRS 는 참조 신호로 할당된 OFDM 심볼 수인, 자원 할당 방법.
  4. 제 1항에 있어서,
    상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수 -1인, 자원 할당 방법.
  5. 제 1항에 있어서,
    상기 제 1 존의 TTI(Transmission Time Interval)는 14개 또는 12개의 OFDM 심볼로 구성된 서브프레임이고, 상기 제 2 존의 TTI는 3개의 OFDM 심볼로 구성된 서브프레임인, 자원 할당 방법.
  6. 제 1항에 있어서,
    상기 제 2 존에는 상기 제 1 존에 할당한 단말보다 더 저지연(low latency) 통신이 요구되는 단말을 할당하는, 자원 할당 방법.
  7. 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 기지국에 있어서,
    시간 및 주파수 영역 상에서 OFDM(Orthogonal Frequency Divsion Multiplexing) 심볼들로 구성된 제 1 존과 GFDM(Generalized Frequency Division Multiplexing) 심볼들로 제 2 존을 주파수 분할 다중화 방식으로 할당하고,
    상기 제 1 존과 상기 제 2 존의 경계에 소정 개수의 가드 부반송파를 할당하도록 구성된 프로세서를 포함하되,
    상기 소정 개수를 상기 제 2 존의 GFDM 심볼의 부심볼 개수에 기초하여 결정하는, 기지국.
  8. 제 7항에 있어서,
    상기 제 2 존의 GFDM 심볼의 부심볼의 개수는 상기 제 2 존의 자원블록(Resource Block)의 수 혹은 부반송파 개수에 기초하여 결정된 것인, 기지국.
  9. 제 7항에 있어서,
    상기 제 2 존의 GFDM 심볼의 부심볼 개수 (Msub )는
    Figure PCTKR2015010821-appb-I000034
    에 가장 가까운 정수이며 제 2 존의 부반송파의 수(Nsc)의 약수인 수이고,
    여기서, Nsym 는 한 TTI에 속하는 OFDM 심볼 개수, NRS 는 참조 신호로 할당된 OFDM 심볼 수인, 기지국.
  10. 제 7항에 있어서,
    상기 소정 개수는 상기 제 2 존의 GFDM 심볼의 부심볼 개수 -1인, 기지국.
  11. 제 7항에 있어서,
    상기 제 1 존의 TTI(Transmission Time Interval)는 14개 또는 12개의 OFDM 심볼로 구성된 서브프레임이고, 상기 제 2 존의 TTI는 3개의 OFDM 심볼로 구성된 서브프레임인, 기지국.
  12. 제 7항에 있어서,
    상기 프로세서는 상기 제 2 존에는 상기 제 1 존에 할당한 단말보다 더 저지연 통신이 요구되는 단말을 할당하는, 기지국.
PCT/KR2015/010821 2015-03-19 2015-10-14 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치 WO2016148362A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/559,223 US10454634B2 (en) 2015-03-19 2015-10-14 Method for allocating resources for supporting plurality of wireless communication modes in wireless communication system, and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562135174P 2015-03-19 2015-03-19
US62/135,174 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148362A1 true WO2016148362A1 (ko) 2016-09-22

Family

ID=56920128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010821 WO2016148362A1 (ko) 2015-03-19 2015-10-14 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10454634B2 (ko)
WO (1) WO2016148362A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479310A (zh) * 2016-09-30 2019-03-15 华为技术有限公司 一种数据传输方法、设备及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550480B (zh) * 2015-09-21 2021-09-17 中兴通讯股份有限公司 一种随机接入方法、装置及系统
WO2017085971A1 (ja) * 2015-11-19 2017-05-26 ソニー株式会社 装置、方法及びプログラム
CN106688203B (zh) * 2016-11-29 2021-01-29 北京小米移动软件有限公司 确定传输时间间隔的方法、装置及基站、用户设备
CN109219134B (zh) * 2017-06-30 2020-11-06 华为技术有限公司 一种发送方法及装置
WO2021156658A1 (en) * 2020-02-05 2021-08-12 Zeku Inc. Dynamic symbol pulse-shaping based on resource allocation
CN115134048B (zh) * 2021-03-26 2024-04-26 维沃移动通信有限公司 上行传输方法及装置、终端及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323515A1 (en) * 2007-02-09 2009-12-31 Katsutoshi Ishikura Ofdm transmittter and ofdm receiver
EP2200244A1 (en) * 2008-12-18 2010-06-23 Vodafone Holding GmbH Method and apparatus for multi-carrier frequency division multiplexing transmission
WO2010117208A2 (ko) * 2009-04-09 2010-10-14 (주)엘지전자 릴레이 방식의 통신 시스템에서 신호 전송 방법 및 장치
US20150071242A1 (en) * 2013-09-09 2015-03-12 Futurewei Technologies, Inc. System and Method for Channel Estimation for Generalized Frequency Division Multiplexing (GFDM)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823402B (zh) * 2012-11-29 2017-07-28 Idac控股公司 一种用于在无线通信设备内执行多载波调制的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090323515A1 (en) * 2007-02-09 2009-12-31 Katsutoshi Ishikura Ofdm transmittter and ofdm receiver
EP2200244A1 (en) * 2008-12-18 2010-06-23 Vodafone Holding GmbH Method and apparatus for multi-carrier frequency division multiplexing transmission
WO2010117208A2 (ko) * 2009-04-09 2010-10-14 (주)엘지전자 릴레이 방식의 통신 시스템에서 신호 전송 방법 및 장치
US20150071242A1 (en) * 2013-09-09 2015-03-12 Futurewei Technologies, Inc. System and Method for Channel Estimation for Generalized Frequency Division Multiplexing (GFDM)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FETTWEIS, GERHARD ET AL.: "GFDM - Generalized Frequency Division Multiplexing''.", 2009 IEEE 69 TH VEHICULAR TECHNOLOGY CONFERENCE, 26 April 2009 (2009-04-26), BARCELONA, SPAIN, XP055312048 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479310A (zh) * 2016-09-30 2019-03-15 华为技术有限公司 一种数据传输方法、设备及系统
CN109479310B (zh) * 2016-09-30 2021-06-22 华为技术有限公司 一种数据传输方法、设备及系统
CN113473618A (zh) * 2016-09-30 2021-10-01 华为技术有限公司 一种数据传输方法、设备及系统

Also Published As

Publication number Publication date
US10454634B2 (en) 2019-10-22
US20180083749A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2016148362A1 (ko) 무선통신 시스템에서 복수의 무선통신 방식을 지원하기 위한 자원을 할당하는 방법 및 이를 위한 장치
WO2018225998A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017034125A1 (ko) 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치
WO2013066075A1 (ko) 무선통신 시스템에서 단말의 사운딩 참조신호 전송 결정 방법 및 이를 위한 단말
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2013069994A1 (ko) 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2012077974A2 (ko) 복수의 콤포넌트 캐리어를 지원하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 기지국 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016056876A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013073916A1 (ko) 무선통신 시스템에서 상기 단말이 상향링크 제어 채널 전송 방법
WO2012118345A2 (ko) 무선통신 시스템에서 d-tdd(dynamic-time division duplex) 하향링크-상향링크 구성을 지원하는 방법 및 이를 위한 장치
WO2016048111A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 모니터링 방법 및 이를 위한 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016048112A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
WO2013151339A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2017135712A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016018132A1 (ko) 무선 통신 시스템에서 d2d 통신을 지원하는 방법 및 이를 위한 장치
WO2015163748A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017022961A1 (ko) Fdr 방식을 이용하는 통신 장치가 비선형 자기간섭 신호의 채널 추정을 위한 참조신호를 전송하는 방법
WO2017171327A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2016036103A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 신호 송수신 방법 및 이를 위한 장치
WO2013094967A1 (ko) Tdd 기반 무선통신 시스템에서 통신 방법 및 무선기기
WO2019216727A1 (ko) 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559223

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885664

Country of ref document: EP

Kind code of ref document: A1