WO2016048112A2 - 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치 - Google Patents

반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016048112A2
WO2016048112A2 PCT/KR2015/010280 KR2015010280W WO2016048112A2 WO 2016048112 A2 WO2016048112 A2 WO 2016048112A2 KR 2015010280 W KR2015010280 W KR 2015010280W WO 2016048112 A2 WO2016048112 A2 WO 2016048112A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
downlink
terminal
signal
radio resources
Prior art date
Application number
PCT/KR2015/010280
Other languages
English (en)
French (fr)
Other versions
WO2016048112A3 (ko
Inventor
이승민
양석철
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/514,354 priority Critical patent/US20170303304A1/en
Priority to CN201580051901.6A priority patent/CN107079446B/zh
Priority to EP15843870.5A priority patent/EP3200541B1/en
Publication of WO2016048112A2 publication Critical patent/WO2016048112A2/ko
Publication of WO2016048112A3 publication Critical patent/WO2016048112A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving signals of a terminal in a wireless communication system supporting carrier aggregation.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of a network node for the user registration of the AG and the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • TA tracking area
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the present invention proposes a method and apparatus for transmitting and receiving signals of a terminal in a wireless communication system supporting carrier aggregation.
  • a first cell and a first cell configured with continuous radio resources
  • the downlink data may be self-scheduled by the second cell.
  • the downlink data may be received through a plurality of subframes indicated by downlink control information received from a downlink radio resource of the first cell.
  • the downlink control information may be configured to be decoded based on a radio network temporary identifier (RNTI) defined for multi subframe scheduling.
  • RNTI radio network temporary identifier
  • the downlink data is located for the downlink radio resources on the second cell at the closest point in time where the downlink transmission is set for both the first cell and the second cell and is located before the specific time interval. It is characterized by being scheduled by the downlink control information. Furthermore, the downlink radio resource on the second cell may be located within a preset range from the specific time interval.
  • the first cell is a licensed band (Licensed band)
  • the second cell is characterized in that the unlicensed band (Unlicensed band).
  • the radio resources of the second cell may be occupied only by the terminal.
  • the radio resources of the second cell may be set in the terminal when not used by another terminal through carrier sensing of the base station.
  • a terminal for transmitting and receiving a signal in a wireless communication system supporting carrier aggregation includes: a radio frequency unit; And a processor, wherein the processor is configured for a first cell configured with continuous radio resources and a second cell cross-carrier scheduled by the first cell and configured with discontinuous radio resources.
  • the uplink transmission is configured in the first cell and the second cell is downlink in a specific time interval.
  • link transmission is set, it is configured to receive downlink data on the second cell.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 illustrates a structure of a radio frame used in an LTE system.
  • 5 illustrates a resource grid for a downlink slot.
  • FIG. 6 illustrates a structure of a downlink radio frame used in an LTE system.
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • FIG. 10 illustrates a case in which an eNB transmits a signal to a UE or a UE transmits a signal to an eNB under a carrier aggregation situation of a licensed band and an unlicensed band.
  • 11 shows a reserved resource interval according to the present invention.
  • FIG. 12 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301.
  • the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the message may be received (S304).
  • contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
  • UCI uplink control information
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the current 3GPP standard document defines a configuration as shown in Table 1 below.
  • Table 1 In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
  • the structure of the type 2 radio frame that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • 5 illustrates a resource grid for a downlink slot.
  • the downlink slot is in the time domain Contains OFDM symbols and in the frequency domain Contains resource blocks.
  • the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index.
  • the number of resource blocks included in the downlink slot ( ) depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI includes resource allocation information and other control information for the user device or user device group.
  • the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 7 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality (eg, two) slots.
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CSI Channel State Information
  • the CSI includes a channel quality indicator (CQI), and the feedback information related to multiple input multiple output (MIMO) includes a rank indicator (RI), a precoding matrix indicator (PMI), a precoding type indicator (PTI), and the like. 20 bits are used per subframe.
  • CQI channel quality indicator
  • MIMO multiple input multiple output
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • the amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SC-FDMAs available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • component carrier CC
  • the term “component carrier (CC)” may be replaced with other equivalent terms (eg, carrier, cell, etc.).
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently.
  • Asymmetrical carrier aggregation in which the number of UL CCs and the number of DL CCs are different is also possible.
  • the control information may be set to be transmitted and received only through a specific CC. This particular CC may be referred to as the primary CC (or anchor CC) and the remaining CCs may be referred to as the secondary CC.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indicator field (CIF) may be considered.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling eg, RRC signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • LTE PDCCH structure (same encoding, same CCE-based resource mapping) and same as DCI format
  • a PDCCH on a DL CC can allocate PDSCH or PUSCH resources on a specific DL / UL CC among a plurality of merged DL / UL CCs using the CIF.
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal side.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the merged total DL CCs, and the UE performs detection / decoding of the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-specific, UE-group-specific or cell-specific manner.
  • the term “PDCCH monitoring DL CC” may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as a serving CC, a serving carrier, a serving cell, and the like.
  • DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC may transmit only the PDCCH scheduling its PDSCH without the CIF according to the LTE PDCCH configuration.
  • DL CC A uses the CIF to schedule PDSCH of DL CC A.
  • the PDCCH scheduling the PDSCH of another CC may be transmitted.
  • PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH monitoring DL CC.
  • the DL CC A (monitoring DL CC) must include both the PDCCH search region associated with the DL CC A, the PDCCH search region associated with the DL CC B, and the PDCCH search region associated with the DL CC C. In this specification, it is assumed that the PDCCH search region is defined for each carrier.
  • LTE-A considers the use of CIF in the PDCCH for cross-CC scheduling. Whether to use CIF (ie, support for cross-CC scheduling mode or non-cross-CC scheduling mode) and switching between modes may be semi-static / terminal-specifically configured through RRC signaling, and the corresponding RRC signaling process may be configured. After coarse, the UE can recognize whether CIF is used in the PDCCH to be scheduled to it.
  • LTE-U LTE in unlicensed band
  • cellular communication systems such as LTE systems also offload unlicensed bands, such as the 2.4 GHz band used by existing WiFi systems, or unlicensed bands, such as the emerging 5 GHz band. (offloading) is being discussed.
  • the unlicensed band assumes a method of wireless transmission and reception through competition between communication nodes. Therefore, channel sensing is performed before each communication node transmits a signal so that other communication nodes do not transmit a signal. It is required to confirm that no. This is called clear channel assessment (CCA), and eNB or UE of LTE system may need to perform CCA for signal transmission in unlicensed band (hereinafter, LTE-U band).
  • CCA clear channel assessment
  • LTE-U band unlicensed band
  • the licensed band may be a frequency band in which the telecommunications carrier exclusively secures the frequency use through auction or purchase. That is, a specific frequency band corresponding to a licensed band may be used only by a specific subject who has obtained a licensed band, and no other user or operator can use the frequency of the licensed band.
  • the unlicensed band may be an area that is not exclusively licensed.
  • the unlicensed band may mean a frequency band in which a large number of communication facilities or systems can coexist and be used.
  • the unlicensed band can be used without restriction because a large number of communication facilities can be used without restriction if only a certain level of neighboring band protection and in-band interference regulations are complied with, so that the communication service through the licensed band with exclusive license is provided. It may be difficult to achieve a high level of communication quality.
  • the unlicensed band may be an area set in consideration of temporal and spatial characteristics.
  • the above-described specific frequency band is an unlicensed band as long as it does not affect the propagation of a specific operator using the frequency band temporally or spatially under certain conditions.
  • the frequency band licensed for the unlicensed device may be the unlicensed band described above under conditions that do not interfere with TV broadcasting, such as TV white space.
  • the unlicensed band may mean a frequency region that is not exclusively occupied, unlike the licensed band, and is not limited to the above-described embodiment.
  • the unlicensed band may be an area used based on conditions and other constraints such as carrier sensing, and the like will be described below in consideration of the characteristics of the unlicensed band. .
  • the CCA threshold is defined as -62 dBm for non-WiFi signals and -82 dBm for WiFi signals, which means that STA (Station) or AP (Access Point) If a signal other than WiFi is received with power above -62dBm, it means no signal transmission to avoid interference.
  • the STA or the AP may perform CCA and perform signal transmission if it does not detect a signal higher than the CCA threshold for 4 us or more.
  • the name of the base station described in the present invention is used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay a relay
  • the proposed scheme will be described based on the 3GPP LTE system.
  • the scope of the system to which the proposed scheme is applied can be extended to other systems (e.g., UTRA, etc.) in addition to the 3GPP LTE system.
  • FIG. 10 illustrates that an eNB transmits a signal to a UE or a UE sends a signal to an eNB under a carrier aggregation situation of an LTE-A band that is a licensed band and an unlicensed band (“LTE-U Band”). Indicates when to send.
  • LTE-A band that is a licensed band and an unlicensed band (“LTE-U Band”).
  • the UE is configured to perform wireless communication through two component carriers (CC) in each of the licensed and unlicensed bands as shown in FIG. 10.
  • the carrier of the licensed band may be applied as a primary component carrier (hereinafter referred to as PCC or PCell), and the carrier of the unlicensed band may be applied as a secondary component carrier (hereinafter referred to as SCC or SCell).
  • PCC primary component carrier
  • SCC secondary component carrier
  • embodiments of the present invention can be extended and applied even in a case where a plurality of licensed bands and a plurality of unlicensed bands are used as a carrier aggregation technique, and even when a signal is transmitted and received between the eNB and the UE using only the unlicensed band. Applicable In addition, the embodiments of the present invention can be extended and applied to not only 3GPP LTE system but also other system.
  • the corresponding band is allocated for a specific time period through competition with other communication (eg, WiFi) systems unrelated to LTE.
  • RRP reserved resource period
  • Various methods may exist to secure such a reserved resource interval (RRP).
  • WiFi transmits a specific reservation signal to recognize that the wireless channel is occupied, or to continuously transmit a signal above a certain power level during the reserved resource interval (RRP).
  • RRP reserved resource interval
  • the base station pre-determines the reserved resource interval (RRP) to occupy the LTE-U band, it informs the terminal in advance so that the terminal maintains the communication transmission / reception link during the indicated reserved resource interval You can do that.
  • RRP reserved resource interval
  • RRP reserved resource interval
  • it may indicate the corresponding reserved resource interval (RRP) information through another CC (eg, LTE-A band) connected in the form of carrier aggregation.
  • another CC eg, LTE-A band
  • the eNB may first perform carrier sensing (CS) before data transmission and reception. If the current channel state of the SCell is checked to be busy or idle and is determined to be idle, then the eNB can determine (ie, cross carrier scheduling (CCS) through the (E) PDCCH of the PCell or the PDCCH of the SCell. Through control information (eg, scheduling grant) may be transmitted, data transmission and reception may be attempted.
  • CS carrier sensing
  • a reserved resource interval consisting of M consecutive subframes (SF) can be set (where M is a natural number).
  • the eNB may inform the UE of the M values and the M SFs in advance through higher layer signaling (using PCell) or a physical control / data channel.
  • the start time of the reserved resource interval (RRP) may be set periodically (or semi-statically) by higher layer signaling.
  • the start point of the reserved resource interval (RRP) may be designated through physical layer signaling in SF #n or SF # (n-k).
  • FIG. 11 shows a reserved resource interval according to the present invention.
  • the subframe boundary and the subframe number / index have a Pcell and a subframe boundary as shown in FIG. It can be configured in a matched form.
  • the same case as in FIG. 11 (a) is referred to as “aligned-RRP” below.
  • a subframe boundary or a subframe number / index may be configured to support a form that does not match the Pcell.
  • 11 (b) is referred to as “floating-RRP” for convenience of description.
  • subframe boundaries between cells coincide with each other, meaning that an interval between subframe boundaries of two different cells is determined at a specific time (for example, CP length, or X us where X ⁇ 0) may mean less than.
  • the Pcell is a specific reference to determine a subframe (and / or symbol) boundary of an LTE-U based SCell (hereinafter, Ucell) in terms of time (and / or frequency) synchronization. It may mean a cell.
  • the available resource interval is secured aperiodically or discontinuously.
  • CS carrier sensing
  • the LTE-U-based SCell is called “UCell”.
  • the resource interval that is secured / configured aperiodically in the corresponding UCell is named“ RRP (Reserved Resource Period) ”
  • the PUSCH related control information channel transmitted on the designated subframe may be set to be transmitted from the PCell (ie, Cross Carrier Scheduling) or transmitted from the same UCell (ie, Self-Scheduling (SFS)). Can also be.
  • the PDSCH reception related downlink control information channel on the reserved resource interval i) a type of scheduling one PDSCH in which one downlink control information channel is received at the same time (ie, “SSFS (Single SubFrame) Or ii) one downlink control information channel scheduling a predefined or signaled number of PDSCHs received at another time as well as one PDSCH received at the same time. It may be implemented (ie, “MultiFSFrame Scheduling” (MSFS)).
  • SSFS Single SubFrame
  • MSFS MultiFSFrame Scheduling
  • a reserved resource interval (RRP) on the UCell is a resource configured aperiodically or discontinuously depending on a carrier sensing (CS) result
  • the reserved resource interval (RRP) in terms of UE operation and assumption is It can be (re) defined or (re) interpreted.
  • a reserved resource interval (RRP) in a UCell is assumed that i) a UE performs a time / frequency synchronous operation for the UCell or a synchronization signal (eg, PSS, SSS) for it is transmitted (from eNB).
  • Interval or ii) a period in which a UE performs a CSI measurement operation for a UCell or (a eNB) assumes that a reference signal (eg, CRS, CSI-RS) is to be transmitted, or iii) a UE transmits data in a UCell.
  • a reference signal eg, CRS, CSI-RS
  • an efficient resource utilization method for CA operation including the RRP-based UCell is as follows.
  • the first to fifth embodiments below consider a situation in which a UCell is used as a CCS scheme from a PCell.
  • embodiments / measures of the present invention may be extended and applied even in a situation where another SCell (based on a licensed band and / or unlicensed band) other than a PCell is SCG_Cell of UCell.
  • the following first to fifth embodiments can be extended and applied even in a situation where UCell is used as the SFS technique.
  • the UCell RRP may consist entirely of DL SFs, or ii) some may consist of DL SFs (via predefined signals / settings / rules) and others may consist of UL SFs. Can also be.
  • first to fifth embodiments may be set to be limitedly applied only when i) UCell is used as the SSFS technique and / or ii) UCell is used as the MSFS technique. .
  • scheduling cell related to the CCS operation (SCHEDULING CELL) and the scheduled cell (SCHEDULED CELL) are defined as “SCG_Cell” and “SCD_Cell”, respectively.
  • DL SF on the UCell RRP corresponding to the UL SF time point of the PCell ie, CCS related SCG_Cell of UCell
  • DL SF on the UCell RRP partially overlapping with the UL SF view of the PCell or ii) DL SF on the UCell RRP overlapping more than a predefined or signaled allowed region
  • this DL SF on the UCell RRP is referred to as "PU_UD SF”.
  • a DL SF on a UCell RRP corresponding to a DL SF of a PCell ie, a CCS related SCG_Cell of UCell
  • a DL SF on the less overlapping UCell RRP is named “PD_UD SF”.
  • the DL SF of the SCell corresponding to the UL SF time point of the PCell i.e., the SCS CCG related SCG_Cell
  • the DL SF on the UCell RRP corresponding to the UL SF of the PU_UD SF (that is, the PCell (ie, the CCS related SCG_Cell of the UCell), the DL SF on the UCell RRP partially overlapping with the UL SF of the PCell, or in advance
  • DL data transmission may be configured to be performed based on the SFS scheme.
  • the application of the first embodiment may be interpreted, for example, that the CCS operation performed at the PD_UD SF time point at the PU_UD SF time point is temporarily stopped and the SFS technique is applied.
  • DL data transmission on the PU_UD SF may be set to be performed based on the MSFS scheme.
  • the control information eg, MSFS DL GRANT DCI
  • the control information for the second embodiment may be set to be received only in DL SF of the PCell or ii) only in DL SF of the PCell corresponding to the PD_UD SF time point.
  • Information can be transmitted.
  • the DL data transmission related scheduling information on DL SF (S) or PU_UD SF (S) of UCell may be set to be transmitted through the corresponding MSFS DL GRANT DCI. That is, the scheduling information related to DL data transmission on the DL SF (S) of the PCell may not be transmitted.
  • the MSFS DL GRANT DCI may be set to be decoded based on new RNTI information (e.g., MSFS-RNTI) previously defined or signaled, not C-RNTI.
  • the present invention may be configured to merge the PU_UD SF with PD_UD SF (S) (i.e. SF (S) on UCell to which CCS technique is applicable) at a specific time point.
  • S PD_UD SF
  • SF S
  • the SF generated after the merging process will be referred to as "COMB_SF”.
  • the PD_UD SF (S) merged with the PU_UD SF is i) one PD_UD SF closest to the corresponding PU_UD SF time point, or ii) a predefined number of PD_UD SFs closest to the corresponding PU_UD SF time point ( S) or iii) PD_UD SF immediately before the corresponding PU_UD SF time point).
  • the scheduling information related to DL data transmission on the corresponding COMB_SF may be set to be received on the PCell DL SF corresponding to the time point of the merged PD_UD SF. Can also be.
  • scheduling information eg, transport block size (TBS) information
  • TBS transport block size
  • the PD_UD SF (S) merged with the PU_UD SF may be set to be selected only within a predefined or signaled range before the time of the corresponding PU_UD SF.
  • the PD_UD SF (S) to be merged with the PU_UD SF does not exist within a predefined or signaled range before the time of the corresponding PU_UD SF, i) the corresponding PU_UD SF is set not to be used for DL data transmission, or ii) DL data transmission may be set on the corresponding PU_UD SF using the SFS technique.
  • the PU_UD SF may be configured to be used for another specific use that is previously defined or signaled, but not for DL data transmission.
  • the corresponding PU_UD SF is i) SYNCHRONIZATION SIGNAL (eg, PSS, SSS) transmission use, or ii) RRM / RLM measurement (RRM / RLM MEASUREMENT) or iii) CSI measurement and / or iv ) Can be set to be used for at least one of the interference measurement purposes.
  • the PU_UD SF may be set to be used as the UL SF in the same manner as the PCell.
  • the present embodiment may be configured to be applied only when SF on the UCell RRP immediately before the PU_UD SF time point is configured for UL (ie, overlapping between SFs).
  • the corresponding PU_UD SF may be set not to be used for data transmission / reception. That is, if the PU_UD SF is used as the UL SF, TA (Timing Advance) should be applied, and thus, some areas in front of the PU_UD SF may be interfered with by communication of other systems (e.g., Wifi).
  • TA Timing Advance
  • the PU_UD SF was the first SF on the UCell RRP
  • the corresponding PU_UD SF may be used as the DL SF, but may be configured to perform DL data transmission based on the SFS scheme.
  • the above-described embodiments / settings / rules of the present invention may correspond to one independent implementation method, and may be implemented in a form of combining / merge at least some of the above-described embodiments of the present invention. .
  • FIG. 12 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 장치에 관한 것이다. 구체적으로, 연속적인 무선 자원들로 구성된 제1셀 및 상기 제 1셀에 의하여 크로스-캐리어 스케쥴링(Cross-Carrier Scheduling)되며 불연속적인 무선 자원들로 구성된 제2셀에 대한 설정을 기지국으로부터 수신하는 단계, 설정에 따라 제 2 셀의 무선 자원들을 이용하여 신호를 송수신하는 단계를 포함하며, 특정 시간 구간 상에서 제 1 셀이 상향링크 전송이 설정되며 제 2 셀이 하향링크 전송이 설정된 경우, 제 2 셀 상에서 하향링크 데이터를 수신하도록 설정되는 것을 특징으로 한다.

Description

반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment, UE)과 기지국(eNode B, eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink, DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink, UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network, CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 장치를 제안하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 문제점을 해결하기 위한 본 발명의 일 양상인, 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법에 있어서, 연속적인 무선 자원들로 구성된 제1셀 및 상기 제 1셀에 의하여 크로스-캐리어 스케쥴링(Cross-Carrier Scheduling)되며 불연속적인 무선 자원들로 구성된 제2셀에 대한 설정을 기지국으로부터 수신하는 단계; 상기 설정에 따라, 상기 제 2 셀의 무선 자원들을 이용하여 신호를 송수신하는 단계를 포함하며, 특정 시간 구간 상에서 상기 제 1 셀이 상향링크 전송이 설정되며 상기 제 2 셀이 하향링크 전송이 설정된 경우, 상기 제 2 셀 상에서 하향링크 데이터를 수신하도록 설정되는 것을 특징으로 한다.
나아가, 상기 하향링크 데이터는, 상기 제 2 셀에 의하여 셀프-스케줄링(Self-Scheduling)되는 것을 특징으로 할 수 있다.
나아가, 상기 하향링크 데이터는, 상기 제 1 셀의 하향링크 무선 자원에서 수신된 하향링크 제어 정보에서 지시된 다수의 서브프레임들을 통하여 수신되는 것을 특징으로 할 수 있으며, 바람직하게는, 상기 하향링크 제어 정보는, 멀티 서브프레임 스케줄링(Multi Subframe Scheduling)을 위하여 정의된 RNTI(radio network temporary identifier)를 기반으로 디코딩되도록 설정된 것을 특징으로 할 수 있다.
나아가, 상기 하향링크 데이터는, 상기 특정 시간 구간 이전에 위치하며 상기 제 1 셀 및 상기 제 2 셀에 대하여 모두 하향링크 전송이 설정된 가장 근접한 시점의, 상기 제 2 셀 상의 하향링크 무선 자원을 위한, 하향링크 제어 정보에 의하여 스케줄링되는 것을 특징으로 한다. 더 나아가, 상기 제 2 셀 상의 하향링크 무선 자원은, 상기 특정 시간 구간으로부터 미리 설정된 범위 내에 위치하는 것을 특징으로 할 수 있다.
나아가, 상기 제 1 셀은, 면허 대역(Licensed band)이며, 상기 제 2 셀은, 비면허 대역(Unlicensed band)인 것을 특징으로 한다.
나아가, 상기 제 2 셀의 무선 자원들은, 오직 상기 단말에 의하여 점유되는 것을 특징으로 할 수 있다.
나아가, 상기 제 2 셀의 무선 자원들은, 상기 기지국의 캐리어 센싱(carrier sensing)을 통하여 다른 단말에 의하여 사용되지 않는 경우에, 상기 단말에 설정되는 것을 특징으로 할 수 있다.
상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 신호를 송수신하는 단말은, 무선 주파수 유닛; 및 프로세서를 포함하며, 상기 프로세서는, 연속적인 무선 자원들로 구성된 제1셀 및 상기 제 1셀에 의하여 크로스-캐리어 스케쥴링(Cross-Carrier Scheduling)되며 불연속적인 무선 자원들로 구성된 제2셀에 대한 설정을 기지국으로부터 수신하고, 상기 설정에 따라, 상기 제 2 셀의 무선 자원들을 이용하여 신호를 송수신하도록 구성되며, 특정 시간 구간 상에서 상기 제 1 셀이 상향링크 전송이 설정되며 상기 제 2 셀이 하향링크 전송이 설정된 경우, 상기 제 2 셀 상에서 하향링크 데이터를 수신하도록 설정되는 것을 특징으로 한다.
본 발명의 실시예에 따르면 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 예시한다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 예시한다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시한다.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.
도 6은 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시한다.
도 7은 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 9는 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다.
도 10은 면허 대역(licensed band)과 비 면허 대역(unlicensed band)의 반송파 집성 상황 하에서, eNB가 UE에게 신호를 송신하거나 UE가 eNB로 신호를 송신하는 경우를 나타낸다.
도 11은, 본 발명에 따른 예약 자원 구간을 나타낸다.
도 12는 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 나타낸다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용자 기기는 단계 S301에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 사용자 기기는 단계 S302에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내지 단계 S306과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S303), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S306)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S307) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S308)을 수행할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도4의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 사용자 기기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도4의 (b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다.
상기 특별 서브프레임에서, DwPTS는 사용자 기기에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1과 같이 설정을 정의하고 있다. 표 1에서
Figure PCTKR2015010280-appb-I000001
인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
표 1
Figure PCTKR2015010280-appb-T000001
한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 2와 같다.
표 2
Figure PCTKR2015010280-appb-T000002
상기 표 2에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.
도 5를 참조하면, 하향링크 슬롯은 시간 영역에서
Figure PCTKR2015010280-appb-I000002
OFDM 심볼을 포함하고 주파수 영역에서
Figure PCTKR2015010280-appb-I000003
자원블록을 포함한다. 각각의 자원블록이
Figure PCTKR2015010280-appb-I000004
부반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서
Figure PCTKR2015010280-appb-I000005
×
Figure PCTKR2015010280-appb-I000006
부반송파를 포함한다. 도 5는 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치(Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다.
자원그리드 상의 각 요소를 자원요소(Resource Element; RE)라 하고, 하나의 자원 요소는 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지시된다. 하나의 RB는
Figure PCTKR2015010280-appb-I000007
×
Figure PCTKR2015010280-appb-I000008
자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수(
Figure PCTKR2015010280-appb-I000009
)는 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 6은 하향링크 서브프레임의 구조를 예시한다.
도 6을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 상향/하향링크 스케줄링 정보, 상향링크 전송(Tx) 파워 제어 명령 등을 포함한다.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel,UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 사용자 기기는 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 사용자 기기에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system Information block, SIC))를 위한 것일 경우, SI-RNTI(system Information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.
도 7은 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 7을 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터영역은 PUSCH를 포함하고 음성등의 데이터 신호를 전송하는데 사용된다. 제어영역은 PUCCH를 포함하고 상향링크 제어정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK:PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. CSI는 CQI(Channel Quality Indicator)를 포함하고, MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator), PMI(Precoding Matrix Indicator), PTI(Precoding 타입 Indicator) 등을 포함한다. 서브프레임 당 20비트가 사용된다.
사용자 기기가 서브프레임에서 전송할 수 있는 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다.
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 8을 참조하면, 복수의 상/하향링크 컴포넌트 반송파(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 용어 “컴포넌트 반송파(CC)”는 등가의 다른 용어(예, 캐리어, 셀 등)로 대체될 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 컴포넌트 반송파의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 반송파 집성도 가능하다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC로 지칭할 수 있다.
크로스-캐리어 스케줄링 (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 크로스-CC 스케줄링을 위해, 캐리어 지시 필드(carrier indicator field, CIF)의 도입이 고려될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링(예, RRC 시그널링)에 의해 반-정적 및 단말-특정(또는 단말 그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
■ CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
● No CIF
● LTE PDCCH 구조(동일한 부호화, 동일한 CCE-기반 자원 맵핑) 및 DCI 포맷과 동일
■ CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당 가능
● CIF를 가지는 확장된 LTE DCI 포맷
- CIF (설정될 경우)는 고정된 x-비트 필드(예, x=3)
- CIF (설정될 경우) 위치는 DCI 포맷 사이즈에 관계 없이 고정됨
● LTE PDCCH 구조를 재사용(동일한 부호화, 동일한 CCE-기반 자원 맵핑)
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모니터링 DL CC 세트를 할당할 수 있다. PDCCH 모니터링 DL CC 세트는 병합된 전체 DL CC의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검출/복호화를 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH 모니터링 DL CC 세트를 통해서만 전송된다. PDCCH 모니터링 DL CC 세트는 단말-특정(UE-specific), 단말-그룹-특정 또는 셀-특정(cell-specific) 방식으로 설정될 수 있다. 용어 “PDCCH 모니터링 DL CC”는 모니터링 캐리어, 모니터링 셀 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다.
도 9는 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH 모니터링 DL CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 된 경우, 각각의 DL CC는 LTE PDCCH 설정에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할 수 있다. 반면, 단말-특정 (또는 단말-그룹-특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 된 경우, DL CC A(모니터링 DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다. 따라서, DL CC A(모니터링 DL CC)는 DL CC A와 관련된 PDCCH 검색 영역, DL CC B와 관련된 PDCCH 검색 영역 및 DL CC C와 관련된 PDCCH 검색 영역을 모두 포함해야 한다. 본 명세서에서, PDCCH 검색 영역은 캐리어 별로 정의된다고 가정한다.
상술한 바와 같이, LTE-A는 크로스-CC 스케줄링을 위하여 PDCCH 내에서 CIF 사용을 고려하고 있다. CIF의 사용 여부 (즉, 크로스-CC 스케줄링 모드 또는 논-크로스-CC 스케줄링 모드의 지원) 및 모드간 전환은 RRC 시그널링을 통해 반-정적/단말-특정하게 설정될 수 있고, 해당 RRC 시그널링 과정을 거친 후 단말은 자신에게 스케줄링 될 PDCCH 내에 CIF가 사용되는지 여부를 인식할 수 있다.
이하에서는 LTE-U(LTE in unlicensed band)에 대하여 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라서, 차기 무선 통신 시스템에서 제한된 주파수 대역의 효율적 활용은 점점 더 중요한 요구가 되고 있다.
이에 따라, LTE 시스템과 같은 셀룰러(Celluar) 통신 시스템도, 기존의 WiFi 시스템이 사용하는 2.4GHz 대역과 같은 비면허(unlicensed) 대역이나 새로 주목 받고 있는 5GHz 대역과 같은 비면허(unlicensed) 대역을 트래픽 오프로딩(offloading)에 활용하는 방안에 대하여 논의중이다.
기본적으로 비면허(unlicensed) 대역은 각 통신 노드 간의 경쟁을 통해 무선 송수신을 하는 방식을 가정하므로, 각 통신 노드가 신호를 전송하기 전에 채널 센싱(channel sensing)을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것을 요구하고 있다. 이를 CCA(clear channel assessment)라고 부르며, LTE 시스템의 eNB나 UE도 비면허(unlicensed) 대역(이하, LTE-U 대역)에서의 신호 전송을 위해서는 CCA를 수행해야 할 수 있다.
보다 상세하게는, 면허 대역은 통신 사업자가 경매 또는 구매 등의 절차를 통해서 독점적으로 주파수 사용권을 확보한 주파수 대역일 수 있다. 즉, 면허 대역에서 해당하는 특정 주파수 대역은 면허 대역에 대한 권리를 획득한 특정 주체만이 이용할 수 있으며, 다른 사용자 또는 사업자는 면허 대역에 대한 주파수를 이용할 수 없다.
반면, 비면허 대역은 독점적으로 사용권이 보장되지 않은 영역일 수 있다. 이때, 일 예로, 비면허 대역은 많은 수의 통신 설비 또는 시스템이 공존하여 사용될 수 있는 주파수 대역을 의미할 수 있다. 이때, 일 예로, 비면허 대역은 일정 수 준 이상의 인접 대역 보호 및 대역 내 간섭 관련 규정만을 준수하면 많은 수의 통신 설비가 제한 없이 사용될 수 있기 때문에 독점적 사용권이 보장된 면허 대역을 통한 통신 서비스가 제공할 수 있는 수준 의 통신 품질을 확보하기가 어려울 수 있다.
또 다른 일 예로, 비면허 대역은 시간적 및 공간적 특징을 고려하여 설정되는 영역일 수 있다. 이때, 일 예로, 특정 주파수 대역을 특정 사업자가 이용하고 있는 경우라도, 일정한 조건 하에 시간적으로 또는 공간적으로 주파수 대역을 사용하는 특정 사업자의 전파에 영향을 미치지 않는 경우라면 상술한 특정 주파수 대역은 비면허 대역일 수 있다. 이때, 일 예로, TV 화이트 스페이스처럼 TV 방송 등에 저해하지 않는 조건하에서 비인가된 디바이스에 대해 사용이 허가된 주파수 대역은 상술한 비면허 대역일 수 있다.
즉, 비면허 대역은 면허 대역과 달리 독점적으로 점유되지 않는 주파수 영역을 의미할 수 있으며, 상술한 실시예로 한정되지 않는다. 또한, 비면허 대역은 복수의 사용자에 의해 사용될 수 있다는 점을 고려할 때 캐리어 센싱 등과 같은 조건 및 기타 제약에 기초하여 사용되는 영역일 수 있으며, 이하에서는 이러한 비면허 대역의 특징을 고려하여 실시예를 서술한다.
또한, LTE 시스템의 eNB나 UE가 신호를 전송할 때에 WiFi 등 다른 통신 노드들도 CCA를 수행하여 간섭을 일으키지 않아야 한다. 예를 들어, WiFi 표준(801.11ac)에서 CCA 임계치(CCA threshold)는 non-WiFi 신호에 대하여 -62dBm, WiFi 신호에 대하여 -82dBm으로 규정되어 있으며, 이는 STA(Station)이나 AP(Access Point)는, WiFi 이외의 신호가 -62dBm 이상의 전력으로 수신되면 간섭을 일으키지 않도록 신호 전송을 하지 않음을 의미한다. 나아가, WiFi 시스템에서 STA나 AP는, 4us 이상 동안 CCA 임계치(CCA threshold) 이상의 신호를 검출하지 않으면 CCA를 수행하고 신호 전송을 수행할 수 있다.
이하, 본 발명에서 기술하는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용된다.
이하에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템(e.g., UTRA 등)으로도 확장 가능하다.
본 발명에서는 특정 시스템의 독점적인 사용이 보장되지 않는 비 면허 대역(unlicensed band)의 경우와 같이, 가용 자원 구간이 비주기적 혹은 불연속적으로 확보되거나 구성되는 셀(cell)/캐리어(carrier)에서의 자원 구간 설정 방법 및 수반되는 UE 동작을 설명한다.
도 10는 면허 대역(licensed band)인 LTE-A Band와 비 면허 대역(unlicensed band, 이하 “LTE-U Band”)의 반송파 집성 상황 하에서, eNB가 UE에게 신호를 송신하거나 UE가 eNB로 신호를 송신하는 경우를 나타낸다.
이하의 설명에서는 본 발명에 대한 설명의 편의를 위해서, 도 10와 같이 UE가 면허 대역과 비 면허 대역 각각에서 두 개의 컴포넌트 캐리어(component carrier; CC)를 통하여 무선 통신을 수행 하도록 설정된 상황을 가정하였다. 여기서, 면허 대역의 반송파는 주컴포넌트 캐리어(Primary CC; PCC 혹은 PCell로 지칭), 비 면허 대역의 반송파는 부컴포넌트 캐리어(Secondary CC; SCC 혹은 SCell로 지칭)로 적용될 수 있다.
하지만, 본 발명의 실시예들은 다수 개의 면허 대역과 다수 개의 비 면허 대역들이 반송파 집성 기법으로 이용되는 상황에서도 확장 적용이 가능하며, 또한 비-면허 대역만으로 eNB와 UE 사이의 신호 송수신이 이루어지는 경우에도 적용 가능하다. 또한, 본 발명의 실시예들은 3GPP LTE 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다.
LTE-U band에서 기지국과 단말이 통신을 수행하기 위해서는, 우선 해당 대역이 비면허 스펙트럼(unlicensed spectrum)이므로 LTE와 무관한 다른 통신(e.g., WiFi) 시스템과의 경쟁을 통해서 해당 대역을 특정 시간 구간 동안 점유/확보할 수 있어야 한다 (이하에서는 LTE-U band에서의 통신을 위해 점유/확보된 시간 구간을 예약 자원 구간(reserved resource period, RRP) 로 칭함). 이러한 예약 자원 구간(RRP)을 확보하기 위해서는 다양한 방법이 존재할 수 있다.
대표적으로는 WiFi 등 다른 통신 시스템 디바이스들이 해당 무선 채널이 점유(busy)된다고 인식할 수 있도록 특정 예약 신호(reservation signal)을 전송하거나, 예약 자원 구간(RRP) 동안 특정 전력 레벨 이상의 신호가 끊임없이 전송되도록 참조 신호(RS) 및 데이터 신호를 지속적으로 전송하는 방법이 가능하다.
이와 같이 기지국이 LTE-U band를 점유하고자 하는 예약 자원 구간(RRP)을 미리 결정하였다면, 단말한테 이를 미리 알려줌으로써 단말로 하여금 해당 지시된(indicated) 예약 자원 구간 동안 통신 송/수신 링크를 유지하고 있도록 할 수 있다.
단말에게 해당 예약 자원 구간(RRP) 정보를 알려주는 방식으로는, 반송파 집성 형태로 연결되어 있는 또 다른 CC (e.g., LTE-A band)를 통해서 해당 예약 자원 구간(RRP) 정보를 지시해줄 수 도 있다.
경쟁 기반의 임의 접속 방식으로 동작하는 비 면허 대역 동작의 또 다른 예로, eNB는 데이터 송수신 전에, 먼저 캐리어 센싱(carrier sensing, CS)를 수행할 수 있다. SCell의 현재 채널 상태가 점유(busy)인지 유휴(idle)인지를 체크하고 유휴(idle)라고 판단되면, eNB는 PCell의 (E)PDCCH를 통해 (i.e., cross carrier scheduling, CCS) 혹은 SCell의 PDCCH를 통해 제어 정보(예, scheduling grant)를 전송하고, 데이터 송수신을 시도할 수 있다.
이 때, M개의 연속된 서브프레임(subframe, SF)으로 구성된 예약 자원 구간(RRP)을 설정할 수 있다(여기서, M은 자연수). 여기서, M값 및 M개의 SF 용도를 사전에 eNB가 UE에게 상위 계층 시그널링(higher layer signaling) (using PCell)이나 물리 제어/데이터 채널(Physical control/data channel)을 통해 알려줄 수 있다. 예약 자원 구간(RRP)의 시작 시점은 상위 계층 시그널링에 의해 주기적으로 (혹은 반-정적(semi-static)하게) 설정될 수도 있다. 또는 RRP 시작 지점을 SF #n 으로 설정하고자 할 때, SF #n에서 혹은 SF #(n-k)에서 물리 계층 시그널링(physical layer signaling)을 통해 예약 자원 구간(RRP)의 시작 지점이 지정될 수 있다.
도 11은, 본 발명에 따른 예약 자원 구간을 나타낸다. 도 11을 참조하여, 이러한 예약 자원 구간(RRP)을 구성하는 서브프레임의 경우 도 11(a)에서와 같이 서브프레임 바운더리(subframe boundary) 및 서브프레임 넘버/인덱스(subframe number/index)가 Pcell과 일치된 형태로 구성될 수 있다. 도 11(a)와 같은 경우를 설명의 편의를 위하여 이하에서는 이를 “aligned-RRP”라 지칭한다.
혹은, 도 11(b)에서와 같이 서브프레임 바운더리(subframe boundary) 또는 서브프레임 넘버/인덱스(subframe number/index)가 Pcell과 일치되지 않은 형태까지 지원되도록 구성될 수 있다. 도 11(b)와 같은 경우를 설명의 편의를 위하여, “floating-RRP”라 지칭한다.
본 발명에서 셀(cell)간 서브프레임 바운더리(subframe boundary)가 일치된다 함은, 서로 다른 2개 셀(cell)의 서브프레임 바운더리(subframe boundary)간 간격이 특정 시간(예를 들어 CP length, 혹은 X us 여기서 X ≥ 0) 이하가 됨을 의미할 수 있다. 또한 본 발명에서 Pcell이라 함은, 시간(및/혹은 주파수) 동기화(synchronization) 관점에서 LTE-U 기반의 SCell(이하, Ucell)의 서브프레임(및/혹은 심볼) 바운더리를 결정하기 위해 참조하는 특정 셀(cell)을 의미할 수 있다.
전술한 내용을 바탕으로, 본 발명에서는 비면허 대역에서의 캐리어 센싱(Carrier Sensing, CS) 동작을 기반으로 기회적으로 동작하는 LTE-U 시스템과 같이, 가용 자원 구간이 비주기적 혹은 불연속적으로 확보/구성되는 셀(혹은 케리어)이 포함된 CA 상황을 위한, 효율적인 자원 활용 방법을 제안한다.
본 발명에서는, 기존 면허 대역에서 동작하는 PCell과 상기 LTE-U 방식으로 동작하는 SCell 간의 CA (Carrier Aggregation) 상황을 고려하며, 설명의 편의를 위해서 상술한 바와 같이 LTE-U 기반의 SCell을 “UCell”, 해당 UCell에서 비주기적으로 확보/구성되는 자원 구간을 “RRP (Reserved Resource Period)”로 명명한다.
또한, 예약 자원 구간(RRP)의 DL SF(Downlink Subframe, 혹은 하향링크 용도로 지정된 서브프레임) 상에서 전송되는 PDSCH 관련 제어 정보 채널, 혹은 예약 자원 구간(RRP)의 UL SF(Uplink Subframe, 혹은 상향링크 용도로 지정된 서브프레임) 상에서 전송되는 PUSCH 관련 제어 정보 채널은, PCell로부터 전송되도록 설정(즉, CCS (Cross Carrier Scheduling))되거나 혹은 동일 UCell로부터 전송(즉, SFS (Self-Scheduling))되도록 설정될 수 도 있다.
또한, 예약 자원 구간(RRP) 상에서의 PDSCH 수신 관련 하향링크 제어 정보 채널은, i)하나의 하향링크 제어 정보 채널이 동일 시점에서 수신되는 하나의 PDSCH을 스케줄링하는 형태 (i.e., “SSFS (Single SubFrame Scheduling)”로 명명)로 구현되거나, 혹은 ii)하나의 하향링크 제어 정보 채널이 동일 시점에서 수신되는 하나의 PDSCH 뿐만 아니라 다른 시점에서 수신되는 사전에 정의되거나 시그널링된 개수의 PDSCH들을 스케줄링하는 형태로 구현(i.e., “MSFS (Multi SubFrame Scheduling)”)될 수 도 있다.
예를 들어, UCell 상의 예약 자원 구간(RRP)이 캐리어 센싱(CS) 결과에 의존하여 비주기적 혹은 불연속적으로 구성되는 자원임을 고려할 때, UE 동작 및 가정의 관점에서 해당 예약 자원 구간(RRP)은 (재)정의되거나 (재)해석될 수 가 있다. 예를 들어, UCell에서의 예약 자원 구간(RRP)은, i)UE가 UCell에 대한 시간/주파수 동기 동작을 수행하거나 (eNB로부터) 이를 위한 동기 신호 (e.g., PSS, SSS)가 전송된다고 가정되는 구간, 혹은 ii)UE가 UCell에 대한 CSI 측정 동작을 수행하거나 (eNB로부터) 이를 위한 참조 신호 (e.g., CRS, CSI-RS)가 전송된다고 가정되는 구간, 혹은 iii)UE가 UCell에서의 데이터 송신(/수신) 관련 DCI 검출 동작을 수행하는 구간, 혹은 iv)UE가 UCell에서 수신되는 신호에 대해 (일시적인 혹은 임시적인) 버퍼링 동작을 수행하는 구간 중 적어도 하나로 (재)정의/(재)해석될 수 가 있다.
이하에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 본 발명을 설명한다. 하지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
상술한 조건들을 기반으로, RRP 기반의 UCell이 포함된 CA 동작을 위한, 효율적인 자원 활용 방법은 아래와 같다. 나아가, 일례로, 이하 제1실시예 내지 제5실시예는 UCell이 PCell로부터 CCS 기법으로 이용되는 상황을 고려한다. 하지만, 일례로, 본 발명의 실시예/방안들은 PCell이 아닌 (면허 대역 그리고/혹은 비면허 대역 기반의) 다른 SCell이 UCell의 SCG_Cell인 상황에서도 확장 적용이 가능하다. 또한, 일례로, 이하 제1실시예 내지 제5실시예는 UCell이 SFS 기법으로 이용되는 상황에서도 확장 적용이 가능하다. 또한, 일례로, i)UCell RRP는 모두 DL SF들로 구성되거나, 혹은 ii) (사전에 정의된 시그널/설정/규칙을 통해) 일부는 DL SF들로 구성되고 나머지는 UL SF들로 구성될 수 도 있다.
또한, 일례로, 이하 제1실시예 내지 제5실시예들은, i)UCell이 SSFS 기법으로 이용되는 경우 그리고/혹은 ii)UCell이 MSFS 기법으로 이용되는 경우에만 한정적으로 적용되도록 설정될 수 도 있다.
또한, 이하에서는 설명의 편의를 위해서 CCS 동작 관련 스케줄링 셀(SCHEDULING CELL)과 스케줄링된 셀(SCHEDULED CELL)을 각각 “SCG_Cell”, “SCD_Cell”로 정의한다.
또한, 일례로, 이하 제 1 실시예 내지 제 5 실시예 중 적어도 하나의 방식을 통해서, i)PCell(i.e., UCell의 CCS 관련 SCG_Cell)의 UL SF 시점에 해당되는 UCell RRP 상의 DL SF 그리고/혹은 PCell의 UL SF 시점과 일부 겹치는 UCell RRP 상의 DL SF, 혹은 ii)사전에 정의되거나 시그널링된 허용 영역보다 많이 겹치는 UCell RRP 상의 DL SF을 효율적으로 활용할 수 있게 된다. 이하에서, 설명의 편의를 위해서, 이러한 UCell RRP 상의 DL SF을 “PU_UD SF”으로 명명한다.
또한, 일례로, 설명의 편의를 위해서, PCell (i.e., UCell의 CCS 관련 SCG_Cell)의 DL SF 시점에 해당되는 UCell RRP 상의 DL SF 그리고/혹은 PCell의 UL SF 시점과 사전에 정의되거나 시그널링된 허용 영역보다 적게 겹치는 UCell RRP 상의 DL SF를 “PD_UD SF”으로 명명한다. 참고로, 기존 CSS 동작의 경우, PCell (i.e., SCell의 CCS 관련 SCG_Cell)의 UL SF 시점에 해당되는 SCell의 DL SF은 DL 데이터 전송 용도로 이용될 수 없다.
제 1 실시예
본 발명에 따르면, PU_UD SF(즉, PCell(i.e., UCell의 CCS 관련 SCG_Cell)의 UL SF 시점에 해당되는 UCell RRP 상의 DL SF, PCell의 UL SF 시점과 일부 겹치는 UCell RRP 상의 DL SF, 혹은 사전에 정의되거나 시그널링된 허용 영역보다 많이 겹치는 UCell RRP 상의 DL SF) 상에서는, 예외적으로, SFS 기법을 기반으로 DL 데이터 송신이 수행되도록 설정될 수 가 있다. 여기서, 제1실시예의 적용은, 일례로, PU_UD SF 시점에서 PD_UD SF 시점에서 수행되던 CCS 동작이 일시적으로 중단되고, SFS 기법이 적용되는 것으로 해석될 수 가 있다.
제 2 실시예
본 발명에 따르면, PU_UD SF 상에서의 DL 데이터 송신은 MSFS 기법을 기반으로 수행되도록 설정될 수 가 있다. 여기서, 제 2 실시예를 위한 제어 정보(예, MSFS DL GRANT DCI)는 i)PCell의 DL SF에서만 수신 가능하도록 설정되거나 혹은 ii)PD_UD SF 시점에 해당되는 PCell의 DL SF에서만 수신 가능하도록 설정될 수 있다. 예를 들어, 해당 MSFS DL GRANT DCI를 통해서, 사전에 정의된 개수/시점의 PD_UD SF(S) 그리고/혹은 PU_UD SF(S) 그리고/혹은 PCell의 DL SF(S) 상에서의 DL 데이터 송신 관련 스케줄링 정보가 전송될 수 있다.
또 다른 예로, 해당 MSFS DL GRANT DCI를 통해서, UCell의 DL SF(S) 혹은 PU_UD SF(S) 상에서의 DL 데이터 송신 관련 스케줄링 정보만이 전송되도록 설정될 수 도 있다. 즉, PCell의 DL SF(S) 상에서의 DL 데이터 송신 관련 스케줄링 정보는 전송되지 않을 수 도 있다. 예를 들어, MSFS DL GRANT DCI는 C-RNTI가 아닌, 사전에 정의되거나 시그널링된 새로운 RNTI 정보 (e.g., MSFS-RNTI)를 기반으로 디코딩되도록 설정될 수 도 있다.
제 3 실시예
본 발명에 따르면, PU_UD SF을 특정 시점의 PD_UD SF(S) (i.e., CCS 기법이 적용 가능한 UCell 상의 SF(S))과 병합하도록 설정될 수 가 있다. 여기서, 설명의 편의를 위해서, 해당 병합 과정 후에 생성된 SF을 “COMB_SF”로 명명한다.
예를 들어, PU_UD SF와 병합되는 PD_UD SF(S)은 i)해당 PU_UD SF 시점 이전에 가장 가까운 하나의 PD_UD SF, 혹은 ii)해당 PU_UD SF 시점 이전에 가장 가까운 사전에 정의된 개수의 PD_UD SF(S), 혹은 iii)해당 PU_UD SF 시점 직전의 PD_UD SF)으로 정의될 수 도 있다.
구체적으로, PU_UD SF이 해당 PU_UD SF 시점 이전의 가장 가까운 하나의 PD_UD SF과 병합될 경우, 해당 COMB_SF 상에서의 DL 데이터 송신 관련 스케줄링 정보는 병합된 PD_UD SF 시점에 해당되는 PCell DL SF 상에서 수신 되도록 설정될 수 도 있다. 여기서, COMB_SF 상의 기존 하나의 SF에 비해 증가된 이용 가능 자원 양이 (재)고려되어, 해당 COMB_SF 상에서의 DL 데이터 송신 관련 스케줄링 정보(e.g., 전송 블록 크기(Transport Block Size, TBS) 정보)가 정의되어야 한다.
또 다른 예로, PU_UD SF와 병합되는 PD_UD SF(S)은, 해당 PU_UD SF 시점 이전의 사전에 정의되거나 시그널링된 범위 내에서만 선정되도록 설정될 수 도 있다. 여기서, 만약 PU_UD SF와 병합될 PD_UD SF(S)이 해당 PU_UD SF 시점 이전의 사전에 정의되거나 시그널링된 범위 내에 존재하지 않는다면, i)해당 PU_UD SF은 DL 데이터 송신 용도로 이용되지 않도록 설정되거나, 혹은 ii)해당 PU_UD SF 상에서는 SFS 기법을 이용하여 DL 데이터 송신이 수행되도록 설정될 수 도 있다.
제 4 실시예
본 발명에 따르면, PU_UD SF은 하향링크(DL) 데이터 송신 용도가 아닌 사전에 정의되거나 시그널링된 다른 특정 용도로 이용되도록 설정될 수 도 있다. 여기서, 일례로, 해당 PU_UD SF은 i)동기화 신호(SYNCHRONIZATION SIGNAL, e.g., PSS, SSS) 전송 용도, 혹은 ii)RRM/RLM 측정(RRM/RLM MEASUREMENT) 용도 혹은 iii)CSI 측정 용도 그리고/혹은 iv)간섭 측정 용도 중 적어도 하나로 이용되도록 설정될 수 가 있다.
제 5 실시예
본 발명에 따르면, PU_UD SF은 PCell과 동일하게 UL SF으로 이용되도록 설정될 수 도 있다. 여기서, 본 실시예는 PU_UD SF 시점 직전의 UCell RRP 상의 SF이 UL 용도로 설정되었을 경우에만 적용되도록 설정(즉, SF 간의 오버랩핑 방지)될 수 도 있다.
또한, 만약 PU_UD SF이 UCell RRP 상의 첫 번째 SF이었다면, 해당 PU_UD SF은 데이터 송/수신 용도로 이용되지 않도록 설정될 수 있다. 즉, PU_UD SF이 UL SF으로 이용된다면, TA(Timing Advance)를 적용해야 하고, 이로 인해서 PU_UD SF의 앞쪽 일부 영역이 다른 시스템(e.g., Wifi)의 통신으로부터 간섭을 받을 수 있기 때문이다. 다른 예로, 만약 PU_UD SF이 UCell RRP 상의 첫 번째 SF이었다면, 해당 PU_UD SF은 DL SF으로 동일하게 이용되나, SFS 기법 기반의 DL 데이터 송신이 수행되도록 설정될 수 도 있다.
나아가, 상술한 본 발명의 실시예/설정/규칙들은 각각 하나의 독립적인 구현 방법에 해당할 수 있으며, 상술한 본 발명의 실시예들 중 적어도 일부를 조합/병합하는 형태로 구현될 수 도 있다.
도 12은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 액세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.
도 12을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency, RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 RF 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(110) 및/또는 단말(120)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNodeB(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다.
상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법에 있어서,
    연속적인 무선 자원들로 구성된 제1셀 및 상기 제 1셀에 의하여 크로스-캐리어 스케쥴링(Cross-Carrier Scheduling)되며 불연속적인 무선 자원들로 구성된 제2셀에 대한 설정을 기지국으로부터 수신하는 단계;
    상기 설정에 따라, 상기 제 2 셀의 무선 자원들을 이용하여 신호를 송수신하는 단계를 포함하며,
    특정 시간 구간 상에서 상기 제 1 셀이 상향링크 전송이 설정되며 상기 제 2 셀이 하향링크 전송이 설정된 경우, 상기 제 2 셀 상에서 하향링크 데이터를 수신하도록 설정되는 것을 특징으로 하는,
    신호 송수신 방법.
  2. 제 1 항에 있어서,
    상기 하향링크 데이터는,
    상기 제 2 셀에 의하여 셀프-스케줄링(Self-Scheduling)되는 것을 특징으로 하는,
    신호 송수신 방법.
  3. 제 1 항에 있어서,
    상기 하향링크 데이터는,
    상기 제 1 셀의 하향링크 무선 자원에서 수신된 하향링크 제어 정보에서 지시된 다수의 서브프레임들을 통하여 수신되는 것을 특징으로 하는,
    신호 송수신 방법.
  4. 제 3 항에 있어서,
    상기 하향링크 제어 정보는,
    멀티 서브프레임 스케줄링(Multi Subframe Scheduling)을 위하여 정의된 RNTI(radio network temporary identifier)를 기반으로 디코딩되도록 설정된 것을 특징으로 하는,
    신호 송수신 방법.
  5. 제 1 항에 있어서,
    상기 하향링크 데이터는,
    상기 특정 시간 구간 이전에 위치하며 상기 제 1 셀 및 상기 제 2 셀에 대하여 모두 하향링크 전송이 설정된 가장 근접한 시점의, 상기 제 2 셀 상의 하향링크 무선 자원을 위한, 하향링크 제어 정보에 의하여 스케줄링되는,
    신호 송수신 방법.
  6. 제 4 항에 있어서,
    상기 제 2 셀 상의 하향링크 무선 자원은, 상기 특정 시간 구간으로부터 미리 설정된 범위 내에 위치하는 것을 특징으로 하는,
    신호 송수신 방법.
  7. 제 1 항에 있어서,
    상기 제 1 셀은, 면허 대역(Licensed band)이며,
    상기 제 2 셀은, 비면허 대역(Unlicensed band)인 것을 특징으로 하는,
    신호 송수신 방법,
  8. 제 1 항에 있어서,
    상기 제 2 셀의 무선 자원들은, 오직 상기 단말에 의하여 점유되는 것을 특징으로 하는,
    신호 송수신 방법.
  9. 제 1 항에 있어서,
    상기 제 2 셀의 무선 자원들은,
    상기 기지국의 캐리어 센싱(carrier sensing)을 통하여 다른 단말에 의하여 사용되지 않는 경우에, 상기 단말에 설정되는 것을 특징으로 하는,
    신호 송수신 방법.
  10. 반송파 집성(Carrier Aggregation)을 지원하는 무선 통신 시스템에서 신호를 송수신하는 단말에 있어서,
    무선 주파수 유닛; 및
    프로세서를 포함하며,
    상기 프로세서는,
    연속적인 무선 자원들로 구성된 제1셀 및 상기 제 1셀에 의하여 크로스-캐리어 스케쥴링(Cross-Carrier Scheduling)되며 불연속적인 무선 자원들로 구성된 제2셀에 대한 설정을 기지국으로부터 수신하고,
    상기 설정에 따라, 상기 제 2 셀의 무선 자원들을 이용하여 신호를 송수신하도록 구성되며,
    특정 시간 구간 상에서 상기 제 1 셀이 상향링크 전송이 설정되며 상기 제 2 셀이 하향링크 전송이 설정된 경우, 상기 제 2 셀 상에서 하향링크 데이터를 수신하도록 설정되는 것을 특징으로 하는,
    단말.
PCT/KR2015/010280 2014-09-26 2015-09-30 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치 WO2016048112A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/514,354 US20170303304A1 (en) 2014-09-26 2015-09-30 Method for transmitting and receiving signal by terminal in wireless communication system supporting carrier aggregation and device for same
CN201580051901.6A CN107079446B (zh) 2014-09-26 2015-09-30 在无线通信系统中通过终端发送和接收信号的方法和设备
EP15843870.5A EP3200541B1 (en) 2014-09-26 2015-09-30 Method for receiving signal by terminal in wireless communication system supporting carrier aggregation and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462056478P 2014-09-26 2014-09-26
US62/056,478 2014-09-26

Publications (2)

Publication Number Publication Date
WO2016048112A2 true WO2016048112A2 (ko) 2016-03-31
WO2016048112A3 WO2016048112A3 (ko) 2016-05-12

Family

ID=55582221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010280 WO2016048112A2 (ko) 2014-09-26 2015-09-30 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US20170303304A1 (ko)
EP (1) EP3200541B1 (ko)
CN (1) CN107079446B (ko)
WO (1) WO2016048112A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174607A1 (ko) * 2017-03-22 2018-09-27 엘지전자(주) 무선 통신 시스템에서 시스템 정보를 송수신하는 방법 및 이를 위한 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018938B1 (en) * 2014-11-07 2020-09-16 Panasonic Intellectual Property Corporation of America System for LTE licensed assisted access in unlicensed bands
US11296837B2 (en) * 2016-01-28 2022-04-05 Qualcomm Incorporated Physical broadcast channel (PBCH) transmission and reception on a shared communication medium
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
CN110063080B (zh) * 2016-12-07 2023-08-11 瑞典爱立信有限公司 提供下行链路接收和上行链路传输的去耦的方法和装置
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation
US12010679B2 (en) * 2018-08-09 2024-06-11 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system for supporting unlicensed band, and device for supporting same
CN112640326B (zh) * 2018-09-20 2022-07-29 华为技术有限公司 用于在无线通信网络中使用波束赋形进行通信的设备
WO2021056583A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 一种上行传输方法及装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345605B2 (en) * 2008-02-21 2013-01-01 Texas Instruments Incorporated Transmission of bundled feedback in wireless networks
CN201967138U (zh) * 2009-11-19 2011-09-07 交互数字专利控股公司 无线发射/接收单元
KR20130121146A (ko) * 2011-01-07 2013-11-05 후지쯔 가부시끼가이샤 서브프레임들을 설정하는 방법, 매크로 기지국, 이동 단말 및 통신 시스템
WO2012106843A1 (en) * 2011-02-11 2012-08-16 Renesas Mobile Corporation Signaling method to enable controlled tx deferring in mixed licensed and unlicensed spectrum carrier aggregation in future lte-a networks
US9198188B2 (en) * 2011-03-01 2015-11-24 Broadcom Corporation Operating a wireless system in an unlicensed band
KR102088021B1 (ko) * 2011-03-11 2020-03-11 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9397801B2 (en) * 2011-04-08 2016-07-19 Lg Electronics Inc. Method for transmitting/receiving data in a wireless access system and base station for same
WO2012150807A2 (ko) * 2011-05-02 2012-11-08 엘지전자 주식회사 무선 접속 시스템에서 데이터 송수신 방법 및 이를 위한 기지국
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
WO2013043025A2 (ko) * 2011-09-23 2013-03-28 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US9374808B2 (en) * 2011-09-23 2016-06-21 Lg Electronics Inc. Method for transmitting control information and apparatus for same
KR101973466B1 (ko) * 2011-11-01 2019-04-30 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
CN104186018B (zh) * 2012-01-11 2018-07-24 交互数字专利控股公司 自适应控制信道
JP5933753B2 (ja) * 2012-01-15 2016-06-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて制御情報の送信方法及び装置
CN104081705B (zh) * 2012-01-15 2017-05-03 Lg电子株式会社 在无线通信系统中传送控制信息的方法和设备
HUE048594T2 (hu) * 2012-02-14 2020-08-28 Samsung Electronics Co Ltd Eljárás és berendezés uplink és downlink adatok átvitelére TDD rendszerben
CN103312467B (zh) * 2012-03-16 2018-11-27 北京三星通信技术研究有限公司 下行物理共享信道的传输方法
US9319213B2 (en) * 2012-04-20 2016-04-19 Lg Electronics Inc. Method for transceiving signals, and apparatus therefor
WO2014024304A1 (ja) * 2012-08-10 2014-02-13 富士通株式会社 基地局装置、移動局装置、通信システム及び通信方法
US8811332B2 (en) * 2012-10-31 2014-08-19 Sharp Laboratories Of America, Inc. Systems and methods for carrier aggregation
US9538503B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Aggregation of FDD and TDD cells
WO2015009004A1 (ko) * 2013-07-16 2015-01-22 한국전자통신연구원 반송파 집성 기반의 무선 통신 시스템에서 통신 방법
WO2015037250A1 (en) * 2013-09-16 2015-03-19 Nec Corporation Methods and apparatus relating to lte fdd-tdd inter-system carrier aggregation in advanced wireless communication systems
US9549080B2 (en) * 2014-02-05 2017-01-17 Apple Inc. Wi-Fi signaling by cellular devices for coexistence in unlicensed frequency bands
US20150365921A1 (en) * 2014-06-12 2015-12-17 Htc Corporation Device of Handling Subframe Allocation
EP3157273B1 (en) * 2014-06-13 2019-10-23 Sharp Kabushiki Kaisha Base-station device, terminal device, and communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174607A1 (ko) * 2017-03-22 2018-09-27 엘지전자(주) 무선 통신 시스템에서 시스템 정보를 송수신하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
EP3200541A2 (en) 2017-08-02
CN107079446A (zh) 2017-08-18
CN107079446B (zh) 2021-08-17
US20170303304A1 (en) 2017-10-19
EP3200541A4 (en) 2018-05-16
WO2016048112A3 (ko) 2016-05-12
EP3200541B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2016048111A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 모니터링 방법 및 이를 위한 장치
WO2016048112A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 신호 송수신 방법 및 이를 위한 장치
WO2014007593A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2014098522A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 방법 및 장치
WO2016028103A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2014107033A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 모니터링 방법 및 이를 위한 장치
WO2013095004A1 (ko) 무선 통신 시스템에서 랜덤 접속 과정의 수행 방법 및 장치
WO2016153290A1 (ko) 상향링크 데이터 전송 방법 및 사용자기기와, 상향링크 데이터 수신 방법 및 기지국
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016148530A1 (en) Method and apparatus for performing data rate matching in licensed assisted access carrier in wireless communication system
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2013043007A2 (ko) 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
WO2014081241A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2013066075A1 (ko) 무선통신 시스템에서 단말의 사운딩 참조신호 전송 결정 방법 및 이를 위한 단말
WO2018169327A1 (ko) 무선 통신 시스템에서 ack/nack 송수신 방법 및 이를 위한 장치
WO2013069994A1 (ko) 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2012118345A2 (ko) 무선통신 시스템에서 d-tdd(dynamic-time division duplex) 하향링크-상향링크 구성을 지원하는 방법 및 이를 위한 장치
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016126033A1 (ko) 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843870

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15514354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015843870

Country of ref document: EP