WO2018018709A1 - 红外探测器像元结构及其制备方法 - Google Patents
红外探测器像元结构及其制备方法 Download PDFInfo
- Publication number
- WO2018018709A1 WO2018018709A1 PCT/CN2016/098381 CN2016098381W WO2018018709A1 WO 2018018709 A1 WO2018018709 A1 WO 2018018709A1 CN 2016098381 W CN2016098381 W CN 2016098381W WO 2018018709 A1 WO2018018709 A1 WO 2018018709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- layer
- trench
- pattern
- conductive beam
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 197
- 239000002184 metal Substances 0.000 claims abstract description 197
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 65
- 239000010703 silicon Substances 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 495
- 239000011241 protective layer Substances 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 47
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000004804 winding Methods 0.000 abstract 1
- 239000007787 solid Substances 0.000 description 60
- 239000000463 material Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0009—Structural features, others than packages, for protecting a device against environmental influences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00055—Grooves
- B81C1/00063—Trenches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
- G01J5/22—Electrical features thereof
- G01J5/24—Use of specially adapted circuits, e.g. bridge circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
Definitions
- the present invention relates to the field of semiconductor technology, and in particular, to an infrared detector pixel structure and a method for fabricating the same.
- the infrared detector is a device that converts the incident infrared radiation signal into an electrical signal output, and uses the thermal element to detect the presence or movement of the object, and the infrared radiation outside the detector mobile phone is concentrated on the infrared sensor, and the infrared sensor uses the thermal element.
- the thermal element outputs a signal when it receives a change in the temperature of the infrared radiation, converts it into an electrical signal, and then performs waveform analysis on the electrical signal.
- only one type of thermistor is used, which is usually a negative temperature coefficient of amorphous silicon or vanadium oxide, and the signal of the change thereof is amplified and output through a circuit.
- thermosensitive element the sensitivity of the detector structure using the thermosensitive element is generally not very high, and the structure is complicated, and the detection process is complicated. If a heat sensitive element with higher sensitivity is used, the material is expensive;
- the present invention is directed to an infrared detector pixel structure and a method of fabricating the same.
- the present invention provides an infrared detector pixel structure on a silicon substrate, comprising: a conductive metal region on the surface of the silicon substrate, and an infrared detecting structure above the silicon substrate for detecting Infrared light and generating an electrical signal; and a conductive beam structure electrically connected to the infrared detecting structure for transmitting an electrical signal generated by the infrared detecting structure to the conductive metal region; the conductive beam structure comprising: at least arranged in a vertical direction a layer of conductive beam and a plurality of conductive grooves; wherein
- the infrared detecting structure is in contact with one of the conductive trenches or one of the conductive beams; the conductive metal region is in contact with the bottom of the other conductive trench;
- the electrical signal generated by the infrared detecting structure is transmitted along the height direction of the conductive trench and the horizontal direction of the conductive beam, thereby being transferred to the conductive metal region in a radial direction in a vertical direction.
- the topmost layer of the conductive beam structure has a top conductive beam;
- the conductive trench comprises: a first conductive trench whose bottom is in contact with the conductive metal region and whose top is located at the topmost layer of the conductive beam structure, and the bottom is higher than the first conductive a second conductive trench at the bottom of the trench and at the top of the conductive beam structure; the top of the first conductive trench and the top of the second conductive trench are respectively connected to both ends of the top conductive beam; the bottom of the second conductive trench and the infrared Detecting a phase connection of the structure; the electrical signal generated by the infrared detecting structure is first transmitted to the top of the second conductive trench through the bottom of the second conductive trench, and then transmitted to the top of the first conductive trench through the top conductive beam, and then A conductive trench top is transferred to the bottom of the first conductive trench for transport to the conductive metal region; and then transferred to the interconnect layer via the conductive metal region.
- each layer of the conductive trench is connected to the same conductive beam at the top of the conductive trench of the adjacent layer below and is respectively connected to the two ends of the conductive beam;
- the top layer of the conductive beam structure has only the top layer a conductive trench, the top of the top conductive trench is connected to the infrared detecting structure, so that the infrared detecting structure is located above the conductive beam structure, and the conductive trench and the conductive beam of each layer constitute a circuitous structure, thereby enabling infrared detection
- the transmission path of the electrical signal generated by the structure is stepped back; the electrical signal generated by the infrared detection structure is transmitted from the top of the top conductive trench to the bottom of the top conductive trench, and then transmitted to the conductive trench of the next layer through the conductive beam.
- the top, through the transmission between the multilayer conductive trenches and the conductive beam, is finally transferred to the conductive metal region.
- the bottom of each layer of the conductive trench and the top of the conductive trench of the adjacent layer below are respectively connected to two ends of a conductive beam; wherein the bottom of one of the conductive trenches is in contact with the conductive metal region; the conductive beam structure
- the topmost layer has a top conductive trench and a top conductive beam; the top conductive beam is connected to the infrared detecting structure, so that the microbridge structure is located above the conductive beam structure, and the conductive trench and the conductive beam of each layer form a loopback step
- the structure is such that the transmission path of the electrical signal generated by the microbridge structure is stepped back; the electrical signal generated by the infrared detection structure is transmitted from the top conductive beam to the top of the top conductive trench and then to the bottom of the top conductive trench.
- the transmission between the multilayer conductive trench and the conductive beam is finally transmitted to the conductive metal region.
- the conductive beam is composed of a conductive layer and an upper release protective layer and a lower release protective layer surrounding the conductive layer; the conductive trench is released from the upper release protective layer, the lower release protective layer, and the upper release protective layer and the lower release layer The conductive layer between the protective layers is formed.
- the conductive beam is composed of a conductive layer and a release protective layer on the upper surface of the conductive layer;
- the conductive trench is composed of a conductive layer and an upper release protective layer on the conductive layer.
- the conductive beam is composed of a conductive layer; the conductive groove is composed of a conductive layer.
- the conductive layer fills the conductive trenches.
- the bottom of the conductive beam has a protrusion.
- the projection is located at a non-center of the conductive beam.
- the projection is located at an aliquot of the conductive beam.
- the protrusion and the conductive beam are both groove bodies.
- the protrusions are inverted hemispheres or inverted vertebral bodies.
- the surface of the silicon substrate further has a reflective area, and the reflective area is located below the infrared detecting structure.
- a dielectric layer is disposed between the reflective region and the conductive metal region; the interconnect layer is connected to an external circuit.
- the present invention also provides a method for preparing the above-described infrared detector pixel structure, comprising:
- Step 01 providing a silicon substrate and forming a conductive metal region on the surface of the silicon substrate;
- Step 02 forming the conductive beam structure on the silicon substrate to form the infrared detecting structure, or forming the infrared detecting structure on the silicon substrate to form the conductive beam structure, wherein the infrared The detection structure is in contact with a conductive beam or a conductive trench of one of the conductive beam structures, and another conductive trench portion of the conductive beam structure is in contact with the conductive metal region.
- the topmost layer of the conductive beam structure has only the top conductive trench; the step 02 specifically includes: forming a sacrificial layer on the silicon substrate; etching a pattern of the conductive trench in the sacrificial layer of the layer and/or Or a pattern of conductive beams, and forming a conductive layer in a pattern of conductive trenches and/or a pattern of conductive beams to form the conductive trenches and/or the conductive beams; repeating the process to complete the structure of the conductive beam Preparing; wherein, after forming the topmost sacrificial layer, patterning the top conductive trench is etched in the topmost sacrificial layer, and forming a conductive layer in the pattern of the top conductive trench to form the top conductive trench a trench to complete the preparation of the conductive beam structure; then, forming the infrared detecting structure on the topmost sacrificial layer and the top conductive trench to contact the infrared detecting structure with
- the topmost layer of the conductive beam structure has a top conductive trench and a top conductive beam; the step 02 specifically includes: forming a sacrificial layer on the silicon substrate; etching a conductive trench in the sacrificial layer of the layer Pattern and/or pattern of conductive beams, and forming a conductive layer in the pattern of conductive trenches and/or patterns of conductive beams to form conductive trenches or conductive beams of the layer; repeating the process in which the topmost portion is formed After the sacrificial layer, a pattern of the top conductive trench and a pattern of the top conductive beam are etched in the topmost sacrificial layer, and a conductive layer is formed in the pattern of the top conductive trench and the pattern of the top conductive beam to form a top layer a conductive trench and a top conductive beam to complete the preparation of the conductive beam structure; then, forming the infrared detecting structure on the topmost sacrificial layer and the
- the conductive beam is a top conductive beam located at the topmost layer of the conductive beam structure;
- the conductive trench comprises: a first conductive trench whose bottom is in contact with the conductive metal region and the top is located at the topmost layer of the conductive beam structure, and the bottom is high a second conductive trench at the bottom of the first conductive trench and at the top of the conductive beam structure;
- the step 02 specifically includes: first, forming a first sacrificial layer on the silicon substrate; sacrificing in the first layer Forming a pattern of a lower portion of the first conductive trench in the layer, and forming a conductive layer in a pattern of a lower portion of the first conductive trench, thereby forming a lower portion of the first conductive trench; and then, at the first sacrifice Forming the infrared detecting structure on the layer, the infrared detecting structure is not in contact with the lower portion of the first conductive trench; secondly, forming a second sacrificial layer on the silicon substrate completing step
- the process of forming the conductive layer comprises: sequentially forming a lower release protective layer, a conductive layer and an upper release protective layer in a pattern of the conductive trench and/or a pattern of the conductive beam; or The conductive layer and the release protective layer are sequentially formed in the pattern of the conductive trench and/or the pattern of the conductive beam; or only the conductive layer is formed in the pattern of the conductive trench and/or the pattern of the conductive beam.
- the conductive layer fills a pattern of the conductive trenches, or a gap exists between conductive layers of sidewalls of the conductive trenches.
- the infrared detector pixel structure and the preparation method thereof of the invention realize the step transmission of the electrical signal in the longitudinal direction by setting the conductive beam structure formed by the plurality of conductive grooves and the conductive beam distributed in the longitudinal direction, thereby reducing the horizontal occupation of the device.
- the area increases the integration density of the pixel structure, that is, increases the fill factor of the pixel structure; and the microbridge structure can be placed on the conductive beam structure or suspended in the conductive beam structure, visible, the microbridge structure
- the position is made more flexible, and the horizontal area occupancy of the micro-bridge structure is improved, which not only reduces the horizontal area of a single pixel, but also improves the integration degree of a single silicon wafer, and the horizontal area occupancy rate of the micro-bridge structure is improved. Improve detection sensitivity and signal-to-noise ratio, and improve the performance of the entire infrared detector.
- FIG. 1a is a top plan view showing the structure of an infrared detector pixel according to Embodiment 1 of the present invention
- FIG. 1b is a side view showing the structure of an infrared detector pixel structure according to Embodiment 1 of the present invention.
- FIG. 1c is a schematic cross-sectional view of a microbridge structure according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic flow chart of a method for fabricating an image structure of an infrared detector according to Embodiment 1 of the present invention
- 3-7 are schematic diagrams showing respective preparation steps of a method for preparing an image structure of an infrared detector according to Embodiment 1 of the present invention.
- FIG. 8a is a schematic structural view of a conductive trench and a conductive beam according to a preferred embodiment of the present invention.
- FIG. 8b is a schematic structural view of a conductive trench and a conductive beam according to a preferred embodiment of the present invention.
- FIG. 8c is a schematic structural view of a conductive trench and a conductive beam according to a preferred embodiment of the present invention.
- 9a is a top plan view showing the structure of an infrared detector pixel according to Embodiment 2 of the present invention.
- 9b is a side view showing the structure of an infrared detector pixel structure according to Embodiment 2 of the present invention.
- FIG. 10 is a schematic flow chart of a method for fabricating an image structure of an infrared detector according to Embodiment 2 of the present invention.
- 11-14 are schematic diagrams showing respective preparation steps of a method for preparing an image structure of an infrared detector according to a second embodiment of the present invention.
- 15a is a top plan view showing the structure of an infrared detector pixel according to a third embodiment of the present invention.
- 15b is a side view showing the structure of an infrared detector pixel structure according to Embodiment 3 of the present invention.
- 16 is a schematic flow chart of a method for fabricating an image structure of an infrared detector according to a third embodiment of the present invention.
- 17-21 are schematic views showing preparation steps of a method for preparing an infrared detector pixel structure according to a third embodiment of the present invention.
- Figure 22a is a schematic view showing the bottom structure of a solid conductive beam according to a preferred embodiment of the present invention.
- Figure 22b is a schematic view showing the bottom structure of a solid conductive beam according to a preferred embodiment of the present invention.
- Figure 22c is a schematic view showing the bottom structure of a solid conductive beam according to a preferred embodiment of the present invention.
- Figure 22d is a schematic view showing the bottom structure of a solid conductive beam according to a preferred embodiment of the present invention
- 23a is a schematic view showing the bottom structure of a conductive beam of a trough body according to a preferred embodiment of the present invention.
- 23b is a schematic view showing the bottom structure of a conductive beam of a trough body according to a preferred embodiment of the present invention.
- 23c is a schematic view showing the bottom structure of a conductive beam of a trough body according to a preferred embodiment of the present invention.
- 23d is a schematic view showing the bottom structure of a conductive beam of a trough body according to a preferred embodiment of the present invention.
- the infrared detector pixel structure is located on a silicon substrate, comprising: a conductive metal region on the surface of the silicon substrate, and an infrared detecting structure above the silicon substrate for detecting infrared light and generating an electrical signal;
- the infrared detecting structure is electrically connected to the conductive beam structure for transmitting the electrical signal generated by the infrared detecting structure to the conductive metal region;
- the conductive beam structure comprises: at least one conductive beam and a plurality of conductive grooves arranged in the vertical direction Wherein, the two ends of each layer of the conductive beam are respectively connected to two conductive grooves whose bottoms are not at the same horizontal plane, and the infrared detecting structure is in contact with one of the conductive grooves or one of the conductive beams; the conductive metal region and the other one of them The bottom layer of the conductive trench is contacted; the electrical signal generated by the infrared detecting structure is transmitted along the height direction of the conductive trench and the horizontal direction of the
- the infrared detecting structure forms a cavity below; the reflecting area at the bottom of the cavity reflects the infrared light not absorbed by the infrared detecting structure onto the infrared detecting structure, Detecting infrared light by infrared detection structure after multiple reflections;
- the cavity constitutes a resonant cavity of the infrared detector pixel structure;
- the topmost layer of the conductive beam structure has a top conductive beam;
- the conductive trench includes: a first conductive trench whose bottom is in contact with the conductive metal region and the top is located at the topmost layer of the conductive beam structure, and the bottom is higher than the first a second conductive trench at the bottom of the conductive trench and at the top of the conductive beam structure; the top of the first conductive trench and the top of the second conductive trench are respectively connected to the two ends of the top conductive beam; the bottom of the second conductive trench
- the infrared detecting structure is connected; the electrical signal generated by the infrared detecting structure is first transmitted to the top of the second conductive trench through the bottom of the second conductive trench, and then transmitted to the top of the first conductive trench through the top conductive beam, and then from the first The top of the conductive trench is transferred to the bottom of the first conductive trench and then transferred to the conductive metal region.
- each layer of the conductive trench is connected to the same conductive beam at the top of the conductive trench of the adjacent layer below and is respectively connected to the two ends of the conductive beam;
- the top layer of the conductive beam structure is only Having a top conductive trench, the top of the top conductive trench is connected to the infrared detecting structure, so that the infrared detecting structure is located above the conductive beam structure, and the conductive trench and the conductive beam of each layer constitute a loop-like structure, thereby
- the transmission path of the electrical signal generated by the infrared detecting structure is stepped back; the electrical signal generated by the infrared detecting structure is transmitted from the top of the top conductive trench to the bottom of the top conductive trench, and then transmitted to the conductive trench of the next layer through the conductive beam.
- the top of the trough is transported between the plurality of conductive trenches and the conductive beam and finally transferred to the conductive metal region;
- the bottom of each layer of the conductive trench and the top of the conductive trench of the adjacent layer below are respectively connected to both ends of a conductive beam; the topmost conductive trench of the top layer of the conductive beam structure And the top conductive beam; the top conductive beam is connected with the infrared detecting structure, so that the infrared detecting structure is located above the conductive beam structure, and the conductive groove and the conductive beam of each layer constitute a loop-like structure, thereby generating the infrared detecting structure
- the transmission path of the electrical signal is stepped back; infrared detection
- the electrical signal generated by the structure is transmitted from the top conductive beam to the top of the top conductive trench, then to the bottom of the top conductive trench, through the transmission between the multilayer conductive trench and the conductive beam, and finally to the conductive metal region.
- each of the conductive beam structures has a plurality of protrusions at the bottom thereof, as shown in Figures 22a-22d, and the conductive beam of a preferred embodiment shown in Figure 22a is not
- the bottom of the central portion has elongated strip-like projections in the vertical direction, and the bottom ends of the conductive beams of a preferred embodiment shown in Fig. 22b have elongated strip-like projections in the vertical direction. It is also particularly suitable for the top conductive beam of the first embodiment of the present invention described below.
- the protrusions are disposed at the bottom ends of the conductive beams to avoid excessive bending of the ends of the conductive beams.
- the thickness of the elongated protrusions is the same as the thickness of the conductive beam, and the length of the protrusion is less than half of the length of the conductive beam; in other embodiments of the invention, the plurality of protrusions may also be located at any part of the conductive beam.
- the shape of the protrusion may also be a reverse hemisphere as shown in Fig. 22c, the inverted cone is as shown in Fig. 22d, etc., and the distribution of the protrusions may be arranged in an equally spaced array, such as a rectangular array, or may be located at the conductive The aliquot of the beam, for example, as shown in Fig.
- the dotted line is at the center, the protrusion is located at the quarter of the conductive beam and is not at the center, as shown in Fig. 22c, the protrusion is located at the third bisector of the conductive beam
- These raised arrangements are used to enhance the strength of the conductive beam, avoid excessive bending of the conductive beam when suspended, resulting in deformation and performance failure of the entire device; at the same time, the bending strength of the conductive beam can be enhanced, and in the case of vibration, the conductive beam can be generated.
- the protrusions are not disposed at the center of the conductive beam; and the density of these protrusions may be from the ends of the conductive beam to the middle Gradually decreasing, i.e. the distance between the projections is gradually increased from the center toward both ends of the conductive beams to serve as an effective support and protection of the conductive floating center beam.
- a preferred embodiment of the present invention is various due to the conductive metal layer and/or Or each layer of the upper release protective layer and/or the lower release protective layer is simultaneously deposited in the pattern of the conductive trenches, the pattern of the conductive beams, and the raised pattern at the bottom thereof, and it is possible to fill the patterns to form a solid, It is also possible that the groove body is not filled. Then, the combined structure of the conductive beam and the protrusion and the conductive groove at the bottom thereof comprises a solid conductive beam or a grooved conductive beam, a solid protrusion or a groove protrusion at the bottom of the conductive beam, and Any combination of solid conductive trenches or trench conductive trenches is within the scope of the present invention.
- the infrared detector pixel structure of the present invention may be either a front-illuminated type or a back-illuminated type.
- a layer of conductive cells is formed by a layer of conductive trenches and a layer of conductive beams in contact with the top thereof; if there is no conductive beam at the top of a layer of conductive trenches, the layer of conductive trenches is considered to be a single layer.
- the layer unit if there are conductive grooves whose lengths are inconsistent in the vertical direction, it is considered that the shorter one of the conductive grooves is a layer unit, and the longer conductive grooves span two or more layers.
- the method for preparing the above-described infrared detector pixel structure may include:
- the surface of the silicon substrate further has a reflective area, the reflective area is located below the infrared detecting structure, and has a dielectric layer between the reflective area and the conductive metal area;
- the interconnect layer is connected to an external circuit.
- the infrared detection structure adopts a microbridge structure.
- the conductive layer is made of a conductive metal layer.
- the surface of the silicon substrate further has a reflective area, the reflective area is located below the infrared detecting structure, and has a dielectric layer between the reflective area and the conductive metal area; the interconnect layer is connected to an external circuit.
- the infrared detection structure adopts a microbridge structure.
- the conductive layer is made of a conductive metal layer.
- FIG. 1b is a schematic view of the cross-sectional structure along AA' in FIG. 1a.
- the micro-bridge structure is removed for convenience of representation, and the micro-bridge structure is indicated by a thick dotted frame.
- the occupied area, the infrared detector pixel structure is located on a silicon substrate 101 having an interconnect layer (not shown) therein, and the silicon substrate surface 101 has a conductive metal region electrically connected to the interconnect layer
- the reflective region F and the dielectric region 103 between the conductive metal region 102 and the reflective region F; the interconnect layer is connected to an external circuit; it should be noted that the interconnect layer in this embodiment may be connected to other conductive metal regions. Replace with the conductive structure of the external circuit.
- the pixel structure of this embodiment further includes:
- the microbridge structure 105 is located above the reflective area F for detecting infrared light and generating an electrical signal.
- the microbridge structure may include a lower release protection layer 1063, an infrared sensitive material layer 1061, an electrode layer 1062, and an upper release protection. Layer 1064.
- the electrode layer 1062 is coupled to the conductive beam 107 of the conductive beam structure to ensure that electrical signals generated by the microbridge structure 106 are transmitted through the conductive beam structure to the conductive metal region 102 for transport to the interconnect layer and external circuitry.
- the conductive beam structure is electrically connected to the microbridge structure 106.
- the conductive beam structure includes a first conductive trench 104 and a second conductive trench 105 that are not in the same layer at the bottom.
- the conductive trench can be divided into two layers.
- the first layer is below the dotted line
- the second layer is above the dotted line
- the first conductive trench 104 penetrates the first layer and the second layer
- the second conductive trench 105 is located in the second layer
- the first conductive trench 104 is not limited to only penetrating through two layers
- the bottom of the second conductive trench 105 is not limited to being located only in the second layer; here, the vertical direction of the first conductive trench 104 is The length of the first conductive trench 104 is flush with the top of the second conductive trench 105.
- the top conductive beam 107, the first conductive trench The top of the groove 104 is in contact with one end of the top conductive beam 107; the top of the second conductive groove 105 is in contact with the other end of the top conductive beam 107, and the bottom of the second conductive groove 105 is in contact with the microbridge structure 106, thereby making the micro
- the bridge structure 106 is suspended between the conductive beam structures, and the electrical signal generated by the microbridge structure 106 is first transmitted to the top of the second conductive trench 105 via the bottom of the second conductive trench 105, and then transmitted to the first conductive trench through the top conductive beam 107.
- the top of the trench 104 is then transferred from the top of the first conductive trench 104 to the bottom of the first conductive trench 104 for transport to the conductive metal region 102.
- the second conductive trench 105 is located above the reflective region F, and the first conductive trench 104 is located on the metal conductive region 102.
- the top conductive beam 107 and the microbridge structure 106 are both empty;
- the microbridge structure 106 is suspended in the conductive beam structure, and the two sides of the silicon substrate 101 respectively have two conductive beam structures, and the two conductive beam structures respectively and the microbridge structure The two diagonal corners of 106 are in contact with each other.
- the embodiment realizes the step transmission of the electrical signal in the longitudinal direction, reduces the lateral occupied area of the device, improves the integration density of the pixel structure, and improves the fill factor of the pixel structure.
- the first conductive channel or the second conductive trench is indicated in the dotted line frame, and the structure outside the dotted line represents the conductive beam.
- the conductive beam may be provided by the conductive metal layer M and the upper protective layer S1 surrounding the conductive metal layer M.
- a lower release protection layer S2; correspondingly, the first conductive trench and the second conductive trench may be: an upper release protection layer S1, a lower release protection layer S2, and an upper release protection layer S1 and a lower release protection layer S2
- the conductive metal layer M is formed between.
- the first conductive channel or the second conductive trench is indicated in the dotted line frame, and the structure outside the dotted line represents the conductive beam, and the conductive beam may be composed of the conductive metal layer M and the release protective layer on the upper surface of the conductive metal layer M.
- S is configured; correspondingly, the first conductive trench and the second conductive trench are both composed of a conductive metal layer M and a release protective layer S on the conductive metal layer M.
- the first conductive channel or the second conductive groove is indicated in the dotted line frame, the structure outside the dotted line represents the conductive beam, and the cross-sectional view in the direction of the dotted line is shown in the left figure of FIG. 8c.
- the conductive beam may be composed of a conductive metal layer M; correspondingly, the first conductive trench and the second conductive trench are composed of a conductive metal layer M.
- the bottom of the top conductive beam 107 in the conductive beam structure has a protrusion, as shown in Figures 9a-9d, the bottom of the non-central portion of the conductive beam of the preferred embodiment shown in Figure 9a has a vertical
- the elongated strip of the direction, the bottom end of the conductive beam of a preferred embodiment shown in Fig. 9b has a vertically elongated strip-like projection, and the arrangement of the projection is particularly suitable for the bottom of the conductive beam.
- the protrusions are placed at the bottom ends of the conductive beams to avoid excessive bending at both ends of the conductive beams.
- the thickness of the elongated protrusions is the same as the thickness of the conductive beam, and the length of the protrusion is less than half of the length of the conductive beam; in other embodiments of the invention, the plurality of protrusions may also be located at any part of the conductive beam.
- the shape of the protrusion may also be a reverse hemisphere as shown in FIG. 9c, the inverted cone is as shown in FIG. 9d, etc., and the distribution of the protrusions may be arranged in an equally spaced array, such as a rectangular array, or may be located at the conductive The aliquot of the beam, for example, as shown in Fig.
- the dotted line is at the center
- the protrusion is located at the quarter of the conductive beam and is not at the center, as shown in Fig. 9c, the protrusion is located at the third bisector of the conductive beam.
- the protrusions are not disposed at the center of the conductive beam; and the density of the protrusions may gradually decrease from the both ends of the conductive beam toward the center, that is, the distance between the protrusions from both ends of the conductive beam Gradually increasing toward the center to effectively support and protect the center of the suspended conductive beam.
- a lower release protective layer, a conductive metal layer and an upper release protective layer or forming a conductive metal, in a pattern of the second conductive trench, a pattern of the bump, a pattern of the top conductive beam, and a pattern of a portion of the upper portion of the first conductive trench And releasing a protective layer on the layer and or forming only a conductive metal layer, and having a gap between the conductive metal layers on the sidewall of the first conductive trench, and a gap between the conductive metal layers on the sidewall of the second conductive trench; or
- the conductive metal layer fills the pattern of the second conductive trench and the remaining portion of the first conductive trench, and the first conductive trench and the second conductive trench are in the shape of a conductive pillar.
- each of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is a pattern of a second conductive trench deposited simultaneously, a raised pattern, a pattern of the top conductive beam, and In the pattern of the upper portion of the first conductive trench, it is possible to fill the pattern to form a solid, or it may not fill up, forming a trench, wherein the bump may or may not be filled to form a solid or
- the structure of the conductive beam, the protrusion, the first conductive groove and the second conductive groove comprises a conductive beam of a solid conductive beam or a groove body, a convex protrusion of a solid body or a groove body, a solid body Any combination of the first conductive structure of a conductive trench or trench, and the second conductive structure of the solid or the second conductive trench of the trench are all within the scope of the present invention.
- FIG. 23a The four structures of the solid conductive beam and the projections at the bottom thereof are shown in Figures 22a-22d, and the four structures of the channel conductor beam and the groove protrusion at the bottom are shown in Figures 23a-23d.
- the position of the groove protrusion in FIG. 23a is the same as the position of the solid groove body in FIG. 22a;
- the position of the groove protrusion in FIG. 23b is the same as the position of the solid groove body in FIG. 22b;
- the groove body in FIG. 23c The position of the protrusion is the same as the position of the solid body of Fig. 22c;
- the position of the groove protrusion in Fig. 23d is the same as the position of the solid body of Fig.
- both the first conductive trench and the second conductive trench may be filled with a conductive metal to form a shape of the conductive pillar.
- the method for preparing the infrared detector pixel structure described above includes:
- Step 1 Referring to FIG. 3, a silicon substrate 101 is provided.
- the surface of the silicon substrate 101 has a conductive metal region 102; here, the surface of the silicon substrate 101 further has a reflective region F and is located between the conductive metal region 102 and the reflective region F. a dielectric region 103; an interconnect layer in the silicon substrate 101, the interconnect layer is electrically connected to the conductive metal region 102, and the interconnect layer is connected to an external circuit;
- Step 2 Referring to FIG. 4, a first sacrificial layer X11 is formed on the silicon substrate 101; a pattern 104' of the lower portion of the first conductive trench is etched in the first sacrificial layer X11, and is in the first conductive Forming a conductive metal layer in the pattern 104' of the lower portion of the trench to form a lower portion of the first conductive structure;
- the step 02 specifically includes:
- a first sacrificial layer X11 is formed on the silicon substrate 101;
- a pattern 104' of the lower portion of the first conductive trench is etched in the first sacrificial layer X11; here, only the pattern 104' of the lower portion of the first conductive trench is prepared, and subsequently in the second sacrificial layer
- the pattern of the remaining upper portion of the first conductive trench continues to be formed, thereby constituting a first conductive trench having a bottom portion at the first layer and a top portion at the second layer.
- a lower release protective layer, a conductive metal layer and an upper release protective layer are formed in the pattern 104' of the lower portion of the first conductive trench, or a conductive metal layer and an upper release protective layer are formed, or only a conductive metal layer is formed, and There is a gap between the conductive metal layers of the pattern sidewalls of the lower portion of the first conductive trench; or the conductive metal layer fills the pattern of the lower portion of the first conductive trench to form a conductive pillar.
- the upper release protective layer and the lower release protective layer are used to protect the conductive metal layer from damage during the release process, ensuring electrical conductivity and sensitivity of the device;
- the conductive material may be a conductive metal such as aluminum, copper, etc.; if aluminum, It is not necessary to form an upper release protective layer and a lower release protective layer;
- the method further includes: planarizing the conductive metal layer to remove the conductive metal layer higher than the surface of the first sacrificial layer X11.
- Step 3 Referring to FIG. 5, an infrared detecting structure is formed on the first sacrificial layer X11, and the infrared detecting structure is not in contact with the first conductive trench lower portion 104';
- the electrode layer of the microbridge structure 106 is not in contact with the top of the pattern 104' of the lower portion of the first conductive trench in the first sacrificial layer X11 that has been prepared.
- Step 4 Referring to FIG. 6, a second sacrificial layer X12 is formed on the silicon substrate 101 completing step 03, and a pattern of the second conductive trench and a pattern of the top conductive beam are etched in the second sacrificial layer X12. And a pattern of a portion of the remaining first conductive trench, and depositing a conductive material in the pattern of the second conductive trench, the pattern of the top conductive beam, and the pattern of the lower portion of the first conductive trench to form the first conductive trench 104, a second conductive trench 105 and a top conductive beam 107;
- a pattern of a convex pattern, a pattern of the second conductive trench, and a pattern of a portion of the remaining portion of the first conductive trench are formed in the second sacrificial layer X12 corresponding to the pattern of the top conductive beam; and then, the top conductive layer is formed.
- the pattern of the beam For a description of the raised pattern, reference may be made to the above description of the bump, which will not be described again, so that the subsequently deposited conductive layer is also deposited in the raised pattern to form a top conductive beam having a bump at the bottom.
- the microbridge structure 106 is in contact with the bottom of the second conductive trench 105; the process of forming the conductive metal layer includes:
- each of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is a pattern of a second conductive trench deposited simultaneously, a raised pattern, a pattern of the top conductive beam, and In the pattern of the upper portion of the first conductive trench, it is possible to fill the pattern to form a solid, or it may not fill up, forming a trench, wherein the bump may or may not be filled to form a solid or
- the structure of the conductive beam, the protrusion, the first conductive groove and the second conductive groove comprises a conductive beam of a solid conductive beam or a groove body, a convex protrusion of a solid body or a groove body, a solid body Any combination of the first conductive structure of a conductive trench or trench, and the second conductive structure of the solid or the second conductive trench of the trench are all within the scope of the present invention.
- the method further includes: planarizing the conductive metal layer to remove the conductive metal layer higher than the surface of the second sacrificial layer X12; the microbridge structure 106 is in contact with the bottom of the second conductive trench 105;
- Step 5 Referring to Figure 7, all the sacrificial layers X11, X12 are released by the release process.
- the release process can set appropriate process parameters according to the material of the sacrificial layer, and details are not described herein again.
- FIG. 9b is a schematic view of the cross-sectional structure along BB′ in FIG. 9a.
- the micro-bridge structure is removed for convenience of representation, and the micro-bridge structure is represented by a thick dotted frame.
- the occupied area, the infrared detector pixel structure is located on a silicon substrate 201 having an interconnect layer (not shown) therein, and the surface of the silicon substrate 201 has a conductive metal region electrically connected to the interconnect layer 202, a reflective area F' and a dielectric region 203 between the conductive metal region 202 and the reflective region F'; the interconnect layer is connected to an external circuit; it should be noted that the interconnect layer in this embodiment may be connected to other conductive The metal structure and the conductive structure of the external circuit are replaced.
- the pixel structure of this embodiment further includes:
- the micro-bridge structure 206 is located above the reflection area F′ for detecting infrared light and generating an electrical signal.
- the micro-bridge structure of the second embodiment is the same as the micro-bridge structure of the first embodiment. Please refer to FIG. 1 c again, and the micro-bridge structure can be A lower release protective layer 1063, an infrared sensitive material layer 1061, an electrode layer 1062, and an upper release protective layer 1064 are included.
- the electrode layer 1062 is connected to the top of the third conductive trench 209 to ensure that the electrical signal generated by the microbridge structure 206 is transmitted to the conductive metal region 102 through the conductive beam structure, and then transferred to the interconnect layer and the external circuit;
- the conductive beam structure is electrically connected to the microbridge structure 206.
- the bottom of each layer of the conductive trench is connected to the top of the conductive trench of the adjacent layer below and connected to the same conductive beam and respectively connected to a conductive beam Both ends;
- the top layer of the conductive beam structure only has a top conductive trench, and the top of the top conductive trench is connected to the infrared detecting structure, that is, the conductive trenches of adjacent layers are electrically connected through the conductive beam;
- the top of the conductive trench at the lower layer is connected to the bottom of the conductive trench at the upper layer through the conductive beam; here, as shown in FIG.
- the conductive beam structure is divided into two layers, and the first layer is below the broken line L1, and the dotted line
- the second layer is between L1 and the dotted line L2
- the third layer is above the broken line L3
- the conductive beam has two layers, including the first conductive beam 207 and the second conductive beam 208; the conductive trench is three
- the layers are a first conductive trench 204, a second conductive trench 205 and a third conductive trench 209 (top conductive trench); the bottom of the first conductive trench 204 is in contact with the conductive metal region 202.
- the top of the first conductive trench 204 is connected to the bottom of the second conductive trench 205 through the first conductive beam 207; the top of the second conductive trench 205 and the bottom of the third conductive trench 209 pass through;
- the second layer of conductive beams 208 are connected; the bottom of the third layer of conductive trenches 209 at the topmost layer is connected to the second layer of conductive beams 208, and the top of the third layer of conductive trenches 209 is in contact with the microbridge structure 206, thereby making micro
- the bridge structure 206 is located above the conductive beam structure, and the electrical signal generated by the microbridge structure 206 is first transmitted to the bottom of the third conductive trench 209 via the top of the topmost third conductive trench 209, and then through the second conductive beam.
- the 208 is transferred to the top of the second conductive trench 205, and then transferred from the top of the second conductive trench 205 through the first conductive beam 207 to the top of the first conductive trench 204, and then from the top of the first conductive trench 204. Transfer to the bottom of the first conductive trench 204, and then to the conductive It belongs to region 202, and then transmitted to the region 202 from the conductive metal interconnect layer and the external circuit.
- the second conductive trench 205 is located above the reflective region F', and the first conductive trench 204 is located on the metal conductive region 202.
- the microbridge structure 206 is located above the conductive beam structure, and the conductive trenches and the conductive beams of each layer constitute a loop-like structure, so that the transmission path of the electrical signal generated by the microbridge structure 206 is stepped back.
- the embodiment realizes the step transmission of the electrical signal in the longitudinal direction, reduces the lateral occupied area of the device, improves the integration density of the pixel structure, and improves the fill factor of the pixel structure.
- the conductive groove is indicated in the dotted line frame, and the structure outside the dotted line represents the conductive beam.
- the conductive beam may be composed of the conductive metal layer M and the upper release protective layer S1 and the lower release protective layer S2 surrounding the conductive metal layer M.
- the conductive trench can be released by: releasing the protective layer S1
- the protective layer S2 and the conductive metal layer M between the upper release protective layer S1 and the lower release protective layer S2 are formed.
- the dotted frame indicates a conductive trench
- the structure outside the dotted frame indicates a conductive beam.
- the conductive beam may be composed of a conductive metal layer M and a release protective layer S on the upper surface of the conductive metal layer M; correspondingly, conductive
- the trench may be composed of a conductive metal layer M and a release protective layer S on the conductive metal layer M.
- the dotted line indicates a conductive groove, and the structure outside the dotted line indicates a conductive beam.
- the cross-sectional view in the direction of the dotted line is as shown in the left diagram of FIG. 8c, and the conductive beam may be electrically conductive.
- the metal layer M is formed; correspondingly, the conductive trench may be composed of the conductive metal layer M.
- the bottom of the first conductive beam 207 and the bottom of the second conductive beam 208 in the conductive beam structure have protrusions as shown in FIGS. 22a-22d, and are not described herein again.
- the conductive trench may also be filled with a conductive metal to form a shape of the conductive pillar.
- Each of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is a pattern of the first layer of conductive trenches 204, a pattern of the first layer of conductive beams 207, and a bump at the bottom thereof.
- the pattern or simultaneously deposited in the pattern of the second layer of the conductive trench 205, the second layer of the conductive beam 207 and the raised pattern at the bottom thereof it is possible to fill the pattern to form a solid, or it may not fill the groove.
- the combined structure of the first conductive beam and the protrusion at the bottom thereof and the first conductive groove comprises a solid first beam or a first conductive beam of the cavity, and a solid protrusion at the bottom of the first conductive beam
- the combination of the second layer of conductive beams and the protrusions at the bottom thereof and the second layer of conductive grooves comprise entities a second layer of conductive beam or a second layer of conductive beam of the channel, a solid protrusion or a groove protrusion at the bottom of the second layer of conductive beam, and any combination of a second layer of conductive groove or a second layer of conductive groove of the body , both in this hair
- the four structures of the solid conductive beam and the projections at the bottom thereof are shown in Figures 22a-22d, and the four structures of the channel conductor beam and the groove protrusion at the bottom are shown in Figures 23a-23d.
- the position of the groove protrusion in FIG. 23a is the same as the position of the solid groove body in FIG. 22a;
- the position of the groove protrusion in FIG. 23b is the same as the position of the solid groove body in FIG. 22b;
- the groove body in FIG. 23c The position of the protrusion is the same as the position of the solid body of Fig. 22c;
- the position of the groove protrusion in Fig. 23d is the same as the position of the solid body of Fig. 22d; with respect to Fig. 23a-23d, the groove is convex relative to the groove
- the position of the conductive beam can refer to the position of the solid protrusion in FIG. 22a-22d relative to the solid beam body conductive beam, and details are not described herein
- the method for preparing the infrared detector pixel structure described above includes:
- Step 01 Referring to FIG. 11, a silicon substrate 201 is provided, and an interconnect layer and a conductive metal region 202 electrically connected to the interconnect layer are formed on the surface of the silicon substrate 201; here, the interconnect layer and the conductive metal region 202 The surface of the silicon substrate 201 further has a reflective region F' and a dielectric region 203 between the conductive metal region 202 and the reflective region F'; the interconnect layer is connected to an external circuit;
- Step 02 forming the above-mentioned conductive beam structure on the silicon substrate 201 to form the infrared detecting structure; wherein the infrared detecting structure is in contact with the conductive beam or the conductive groove of one of the conductive beam structures, and the conductive beam structure is further The bottom of a layer of conductive trench is in contact with the conductive metal region.
- the preparation process of the conductive beam structure specifically includes:
- Step 021 depositing a first sacrificial layer X21 on the silicon substrate 201, etching a pattern of the first conductive trench 204 and a pattern of the first conductive strip 207 in the first sacrificial layer, and forming a pattern therein a conductive metal layer to form a first conductive trench 204 and a first conductive conductive layer 207; further comprising, after forming the conductive metal layer, planarizing the conductive metal layer to remove the surface of the sacrificial layer X21 above the first layer Conductive metal layer.
- the first layer of conductive beam 207 has a bottom
- protrusions which are formed in the first sacrificial layer X21 below the pattern corresponding to the first layer of the conductive beam 207 before forming the pattern of the first layer of the conductive beam 207, and the description about the protrusion pattern may be Referring to the above description of the bumps, no further details will be described herein, so that a subsequently deposited conductive metal layer is also deposited in the bump pattern to form a first layer of conductive beam 207 having a bump at the bottom.
- the formed lower release protective layer, the conductive metal layer and the upper release protective layer, or the conductive metal layer and the upper release protective layer, or the conductive metal layer are also located in the convex pattern at the same time, thereby forming the conductive beam on the first layer The bulge at the bottom of 207.
- Step 022 depositing a second sacrificial layer X22 on the silicon substrate 201, etching a pattern of the second conductive trench 205 and a pattern of the second conductive beam 208 in the second sacrificial layer, and Forming a conductive metal layer to form a second conductive trench 205 and a second conductive bump 208; further comprising, after forming the conductive metal layer, planarizing the conductive metal layer to remove the surface of the sacrifice layer X22 higher than the second layer Conductive metal layer.
- a second sacrifice below the pattern corresponding to the second layer of conductive beam 208 is formed before the pattern of the second layer of conductive beam 208 is formed.
- These raised patterns are formed in the layer X22.
- the raised patterns reference may be made to the above description of the bumps, which will not be described again, so that the subsequently deposited conductive layer is also deposited in the raised pattern to form a raised portion at the bottom.
- each layer of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is simultaneously deposited on the first layer of the conductive trench 204 pattern, the first layer.
- the pattern of the conductive beam 207 and the raised pattern at the bottom thereof are simultaneously deposited in the second layer of the conductive trench 205, the pattern of the second layer of the conductive beam 207, and the raised pattern at the bottom thereof, It is possible to fill the patterns to form a solid body, or it may not fill the groove body.
- the first conductive layer of the first layer and the protrusion of the bottom layer and the first layer of the conductive groove comprise a solid first layer of conductive beam or a first layer of conductive beam of the trough body, a solid protrusion or a trough protrusion at the bottom of the first layer of the conductive beam, and any combination of the first layer of the conductive groove or the first layer of the channel of the channel, the second layer of the conductive beam
- a combination of the bottom bump and the second conductive trench comprises a solid second conductive beam or a second conductive beam of the trench, a solid bump or a trench bump at the bottom of the second conductive beam, and a solid Any combination of the second conductive trench or the second conductive trench of the trench is within the scope of the present invention.
- Step 023 depositing a third sacrificial layer X23 on the silicon substrate 201, etching a pattern of the third conductive trench 205 in the third sacrificial layer X23, and forming a conductive metal layer therein, including After forming the conductive metal layer, planarizing the conductive metal layer to remove the conductive metal layer higher than the surface of the third sacrificial layer X23 to form the third conductive trench 209, thereby completing the preparation of the conductive beam structure;
- the process of forming the conductive metal layer in the pattern of each layer may specifically include: sequentially forming a lower release protective layer, a conductive metal layer, and an upper release protective layer in the conductive trench and/or the conductive beam; or Forming a conductive metal layer and releasing a protective layer in the conductive trench and/or the conductive beam; or forming only a conductive metal layer in the conductive trench and/or the conductive beam; and having a conductive metal layer between the sidewalls of the conductive trench a void; if the conductive metal layer is filled with a conductive trench, the conductive trench is in the shape of a conductive pillar.
- the material of the conductive metal layer may be a conductive metal such as aluminum, copper or the like; if it is aluminum, it is not necessary to form an upper release protective layer and a lower release protective layer; the upper release protective layer and the lower release protective layer are used to protect the conductive metal layer. No damage during the release process, ensuring the conductivity and sensitivity of the device;
- the preparation of the microbridge structure in the step 02 specifically includes: Step 024: Please refer to FIG. Forming a microbridge structure 206 on the third sacrificial layer X23 and the third layer of the conductive trench 209, contacting the microbridge structure 206 with the topmost third conductive trench 209;
- step 025 is included: Referring to Figure 14, all of the sacrificial layers are released by the release process. Specifically, the release process can set appropriate process parameters according to the material of the sacrificial layer, and details are not described herein again.
- FIG. 15b is a schematic diagram of the CC' cross-sectional structure along FIG. 15a.
- the micro-bridge structure is removed for convenience of representation, and the micro-bridge structure is indicated by a thick dotted frame.
- the occupied area, the infrared detector pixel structure is located on a silicon substrate 301 having an interconnect layer in the silicon substrate 301, and the surface of the silicon substrate 301 has a conductive metal region 302 and a reflective region 303 electrically connected to the interconnect layer.
- the infrared detector pixel structure in this embodiment further includes:
- the micro-bridge structure 306 is located above the reflection area F" for detecting infrared light and generating an electrical signal.
- the micro-bridge structure of the third embodiment can be the same as the micro-bridge structure of the first embodiment. Please refer to FIG. 1c again, the micro-bridge structure.
- the lower release protective layer 1063, the infrared sensitive material layer 1061, the electrode layer 1062, and the upper release protective layer 1064 may be included.
- the electrode layer 1062 is connected to the conductive beam 308 of the conductive beam structure to ensure that the electrical signal generated by the microbridge structure 306 passes through the conductive beam.
- the structure is transferred to the conductive metal region 302, and then transmitted It is input to the interconnect layer and external circuits.
- the conductive beam structure is electrically connected to the microbridge structure 306; in the conductive beam structure, the second conductive trench 305 (top conductive trench) and the second conductive beam 308 (top conductive beam) are disposed in the topmost layer of the conductive beam structure As shown in FIG. 15b, the conductive beam structure is divided into two layers, the first layer below the broken line and the second layer above the broken line.
- conductive trenches which are respectively the first conductive trench 304 and a second conductive trench 305 having at least one layer of conductive bumps, here a first conductive beam 307 and a second conductive beam 308; a top of the first conductive trench 304 and a bottom of the second conductive trench 305 Connected by a first layer of conductive beam 307; the bottom of the first conductive trench 204 is in contact with the conductive metal region 302, and the top of the second conductive trench 305 is in contact with one end of the second conductive beam 308, the second layer
- the other end of the conductive beam 308 is in contact with the microbridge structure 306 such that the microbridge structure 306 is located above the conductive beam structure, and the conductive trenches and the conductive beams of each layer form a loop-like structure, thereby generating an infrared detecting structure.
- the transmission path of the electrical signal is stepped back
- the electrical signal generated by the microbridge structure 306 is first transmitted to the top of the second conductive trench 305 via the second conductive beam 308, then to the bottom of the second conductive trench 305, and then transmitted through the first conductive beam 307.
- the top of the first conductive trench 304 is finally transferred to the conductive metal region 302 via the bottom of the first conductive trench 304, and is transferred from the conductive metal region 302 to the interconnect layer for transmission to an external circuit; wherein the second layer is conductive
- the trench 305 is located above the reflective region F"
- the first conductive trench 304 is located on the metal conductive region 302.
- the embodiment realizes the step transmission of the electrical signal in the longitudinal direction, reduces the lateral occupied area of the device, improves the integration density of the pixel structure, and improves the fill factor of the pixel structure.
- the conductive groove is indicated in the dotted line frame, and the structure outside the dotted line represents the conductive beam.
- the conductive beam may be provided by the conductive metal layer M and the upper protective layer S1 surrounding the conductive metal layer M.
- the protective layer S2 is formed.
- the conductive trench may be composed of an upper release protective layer S1, a lower release protective layer S2, and a conductive metal layer M between the upper release protective layer S1 and the lower release protective layer S2.
- the dotted frame indicates a conductive trench
- the structure outside the dotted frame indicates a conductive beam.
- the conductive beam may be composed of a conductive metal layer M and a release protective layer S on the upper surface of the conductive metal layer M; correspondingly, conductive
- the trench may be composed of a conductive metal layer M and a release protective layer S on the conductive metal layer M.
- the dotted line indicates a conductive groove, and the structure outside the dotted line indicates a conductive beam.
- the cross-sectional view in the direction of the dotted line is as shown in the left diagram of FIG. 8c, and the conductive beam may be electrically conductive.
- the metal layer M is formed; correspondingly, the conductive trench may be composed of the conductive metal layer M.
- the first layer of the conductive beam 307 and the second layer of the conductive beam 308 have a plurality of protrusions at the bottom of the conductive beam structure, as shown in FIGS. 22a-22d.
- the protrusion reference may be made to the above description. No longer.
- each layer of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is a pattern of the first layer of conductive trenches 304 and a pattern of the first layer of conductive bumps 307.
- the first layer of conductive trench 304 combination structure comprises a solid first layer of conductive beam 307 or a trough body of the first layer of conductive beam 307, a solid bump or trench bump at the bottom of a layer of conductive beam 307, and any combination of a solid first conductive trench 304 or a trench first conductive trench 304, a second conductive bump 308 and a bump at the bottom thereof
- the four structures of the solid conductive beam and the projections at the bottom thereof are shown in Figures 22a-22d, and the four structures of the channel conductor beam and the groove protrusion at the bottom are shown in Figures 23a-23d.
- the position of the groove protrusion in FIG. 23a is the same as the position of the solid groove body in FIG. 22a;
- the position of the groove protrusion in FIG. 23b is the same as the position of the solid groove body in FIG. 22b;
- the groove body in FIG. 23c The position of the protrusion is the same as the position of the solid body of Fig. 22c;
- the position of the groove protrusion in Fig. 23d is the same as the position of the solid body of Fig. 22d; with respect to Fig. 23a-23d, the groove is convex relative to the groove
- the position of the conductive beam can refer to the position of the solid protrusion in FIG. 22a-22d relative to the solid beam body conductive beam, and details are not described herein
- the conductive trench may also be filled with a conductive metal to form a shape of the conductive pillar.
- the method for preparing the infrared detector pixel structure described above includes:
- Step 001 Referring to FIG. 17, a silicon substrate 301 is provided, and a conductive metal region 302 is formed on the surface of the silicon substrate 301; here, the silicon substrate 301 has an interconnect layer, and the conductive metal region 302 is electrically connected to the interconnect layer.
- the surface of the silicon substrate 301 further has a reflective area F" and a dielectric region between the conductive metal region 302 and the reflective region F"; the interconnect layer is connected to an external circuit;
- Step 002 forming a sacrificial layer on the silicon substrate; etching a pattern of the conductive trench and/or a pattern of the conductive beam in the sacrificial layer, and patterning the conductive trench and/or pattern of the conductive beam Forming a conductive metal layer to form a conductive trench or a conductive beam of the layer;
- a first sacrificial layer X31 is formed on the silicon substrate 301, and a pattern of the first conductive trench 304 and a first conductive strip 307 are etched in the first sacrificial layer X31. And forming a conductive metal layer therein to form a first conductive trench 304 and a first conductive conductive layer 307; further comprising, after depositing the conductive metal layer, planarizing the conductive metal layer to remove A conductive metal layer on the surface of the first sacrificial layer X31.
- the process of forming the conductive metal layer specifically includes sequentially forming a lower release protective layer, a conductive metal layer, and an upper release protective layer in the pattern of the first conductive trench 304 and the pattern of the first conductive bump 307, and the formed structure is as follows. Or shown in FIG. 8a; or a conductive metal layer and an upper release protective layer are sequentially formed in the pattern of the first conductive trench 304 and the first conductive bump 307, and the formed structure is as shown in FIG.
- the pattern of one layer of the conductive trench 304 and the pattern of the first layer of the conductive beam 307 form only a conductive metal layer; the conductive metal layer located on the sidewall of the first layer of the conductive trench 304 may have a gap, and the formed structure is as shown in FIG. 8c; if the conductive metal layer fills the pattern of the first conductive trench 304 and the pattern of the first conductive bump 307, the first conductive trench 304 is in the shape of a conductive pillar.
- the first sacrificial layer below the pattern corresponding to the first layer of the conductive beam 307 is formed before the pattern of the first layer of the conductive beam 307 is formed.
- These raised patterns are formed in X31.
- the formed lower release protective layer, the conductive metal layer and the upper release protective layer, or the conductive metal layer and the upper release protective layer, or the conductive metal layer are also located in the convex pattern at the same time, thereby forming the conductive beam on the first layer The bulge at the bottom of 307.
- Step 003 repeat the process of step 002, wherein after forming the topmost sacrificial layer, the pattern of the top conductive trench and the pattern of the top conductive beam are etched in the topmost sacrificial layer, and the pattern of the top conductive trench Forming a conductive metal layer in a pattern of the top conductive beam to complete the preparation of the conductive beam structure;
- a second surface is formed on the silicon substrate 301 that completes step 002.
- a sacrificial layer X32 etching a pattern of the second conductive trench 305 and a pattern of the second conductive bump 308 in the second sacrificial layer X32, and forming a conductive metal layer therein to form a second conductive trench
- the trench 305 and the second conductive strip 308 further comprising, after forming the conductive metal layer, planarizing the conductive metal layer to remove the conductive metal layer higher than the surface of the second sacrificial layer X32.
- the process of forming the conductive metal layer specifically includes sequentially forming a lower release protective layer, a conductive metal layer, and an upper release protective layer in the pattern of the second conductive trench 305 and the pattern of the second conductive bump 308, as shown in FIG. 8a.
- the structure is shown; or a conductive metal layer and an upper release protective layer are sequentially formed in the pattern of the second conductive trench 305 and the pattern of the second conductive beam 308, and the formed structure is as shown in FIG. 8b; or in the second layer Only the conductive metal layer is formed in the pattern of the conductive trench 305 and the pattern of the second conductive beam 308; the conductive metal layer 305 located on the sidewall of the second conductive trench may have a gap, and the structure is as shown in FIG.
- the conductive metal layer fills the pattern of the second conductive trench 305, it is in the shape of a conductive pillar.
- a second sacrifice below the pattern corresponding to the second layer of conductive beam 308 is formed before the pattern of the second layer of conductive beam 308 is formed.
- the formed lower release protective layer, the conductive metal layer and the upper release protective layer, or the conductive metal layer and the upper release protective layer, or the conductive metal layer are also located in the convex pattern at the same time, thereby forming the conductive beam on the second layer 308 raised.
- each layer of the conductive metal layer and/or the upper release protective layer and/or the lower release protective layer is simultaneously deposited on the pattern of the first conductive trench 304, the first layer.
- the pattern of the conductive beam 307 and the convex pattern at the bottom thereof or in the pattern of the second layer conductive trench 305, the second layer conductive beam 307 and the convex pattern at the bottom thereof may fill the patterns.
- the entity may also not fill the cavity, then the first layer of conductive beam 307 and its bottom
- the combined structure of the protrusions and the first conductive trenches 304 includes a solid first conductive beam 307 or a first conductive layer 307 of the trench, a solid bump or a trench protrusion at the bottom of the first conductive beam 307, And any combination of the physical first conductive trench 304 or the first conductive trench 304 of the trench, the combined structure of the second conductive bump 308 and the bump at the bottom thereof and the second conductive trench 305 include the second entity Layer conductive beam 308 or trench second conductive beam 308, solid bump or trench bump at the bottom of second conductive beam 308, and solid second conductive trench 305 or trench second conductive trench 305 Any combination of these is within the scope of the invention.
- Step 004 forming an infrared detecting structure on the topmost sacrificial layer and the top conductive beam, so that one end of the top conductive beam is in contact with the infrared detecting structure;
- a microbridge structure 306 is formed on the second sacrificial layer X32 and the second layer of the conductive beam 308, so that the microbridge structure 306 is in contact with the third layer of the conductive beam 308;
- Step 005 Referring to Figure 21, all the sacrificial layers are released by the release process.
- the release process can set appropriate process parameters according to the material of the sacrificial layer, and details are not described herein again.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
一种三维红外探测器像元结构及其制备方法,包括硅衬底表面的导电金属区,位于硅衬底上方的红外探测结构,其用于探测红外光并产生电信号;以及与红外探测结构相连接的导电梁结构,其用于将红外探测结构产生的电信号传输到导电金属区;导电梁结构包括:竖直方向上排布的至少一层导电梁和多层导电沟槽;每一层导电梁的两端分别接触底部不在同一水平面的两层导电沟槽,红外探测结构与其中一层导电沟槽或其中一层导电梁相接触;导电金属区与其中另一层导电沟槽底部接触;红外探测结构产生的电信号沿着导电沟槽的高度方向和导电梁的水平方向传输,从而在竖直方向上呈迂回路径向下传输到导电金属区
Description
本申请要求于2016年7月28日提交中国专利局、申请号为201610605284.6、名称为“高填充红外探测器像元结构及其制备方法”,于2016年7月28日提交中国专利局、申请号为201610605232.9、名称为“三
维红外探测器像元结构及其制备方法”,于2016年7月28日提交中国专利局、申请号为201610602975.0、名称为“悬挂式红外探测器像元结构及
其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及半导体技术领域,具体涉及一种红外探测器像元结构及其制备方法。
红外探测器是将入射的红外辐射信号转变为电信号输出的器件,其利用热敏元件检测物体的存在或移动,探测器手机外界的红外辐射进而聚集到红外传感器上,红外传感器采用热敏元件,热敏元件在接受了红外辐射温度发生变化时就会输出信号,将其转换为电信号,然后对电信号进行波形分析。传统红外探测器像元结构中仅使用一种类型热敏电阻,通常是负温度系数的非晶硅或者氧化钒,并通过电路将其变化的信号放大输出。
然而,采用热敏元件的探测器结构的灵敏度通常不是很高,且结构较为复杂,探测过程复杂,如果采用灵敏度较高的热敏元件则材料的成本昂贵;
因此,急需对现有红外探测器进行改进,来提高灵敏度,降低结构复杂度和成本。
发明概要
为了克服以上问题,本发明旨在提供一种红外探测器像元结构及其制备方法。
为了达到上述目的,本发明提供了一种红外探测器像元结构,位于一硅衬底上,包括:硅衬底表面的导电金属区,位于硅衬底上方的红外探测结构,其用于探测红外光并产生电信号;以及与红外探测结构相电连的导电梁结构,其用于将红外探测结构产生的电信号传输到导电金属区;导电梁结构包括:竖直方向上排布的至少一层导电梁和多层导电沟槽;其中,
每一层导电梁的两端分别连接底部不在同一水平面的两层导电沟槽;
红外探测结构与其中一层导电沟槽或其中一层导电梁相接触;导电金属区与其中另一层导电沟槽底部接触;
所述红外探测结构产生的电信号沿着导电沟槽的高度方向和导电梁的水平方向传输,从而在竖直方向上呈迂回路径向下传输到导电金属区。
优选地,所述导电梁结构最顶层具有顶层导电梁;所述导电沟槽包括:底部与导电金属区接触且顶部位于导电梁结构最顶层的第一导电沟槽,以及底部高于第一导电沟槽底部且顶部位于导电梁结构最顶层的第二导电沟槽;第一导电沟槽的顶部和第二导电沟槽顶部分别与顶层导电梁两端连接;第二导电沟槽的底部与红外探测结构的相连接;所述红外探测结构产生的电信号首先经第二导电沟槽底部传输到第二导电沟槽顶部,再经顶层导电梁传输到第一导电沟槽的顶部,然后从第一导电沟槽顶部传输到第一导电沟槽底部进而传输到导电金属区;再经导电金属区传输到互连层中。
优选地,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部连接于同一导电梁并且分别连接于该导电梁的两端;导电梁结构最顶层只有顶层
导电沟槽,顶层导电沟槽的顶部与红外探测结构相连接,使红外探测结构位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使红外探测结构产生的电信号的传输路径呈迂回阶梯状;红外探测结构产生的电信号从顶层导电沟槽的顶部传输到顶层导电沟槽的底部,再经导电梁传输到下一层的导电沟槽的顶部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区。
优选地,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部分别连接于一导电梁的两端;其中一层导电沟槽的底部与导电金属区相接触;导电梁结构的最顶层中具有顶层导电沟槽和顶层导电梁;顶层导电梁与红外探测结构相连接,使微桥结构位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使微桥结构产生的电信号的传输路径呈迂回阶梯状;红外探测结构产生的电信号从顶层导电梁传输到顶层导电沟槽的顶部,再传输到顶层导电沟槽的底部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区。
优选地,所述导电梁由导电层以及包围导电层的上释放保护层和下释放保护层构成;所述导电沟槽由上释放保护层、下释放保护层以及位于上释放保护层和下释放保护层之间的导电层构成。
优选地,所述导电梁由导电层以及位于导电层上表面的释放保护层构成;所述导电沟槽由导电层以及位于导电层上的上释放保护层构成。
优选地,所述导电梁由导电层构成;所述导电沟槽由导电层构成。
优选地,所述导电层填充满所述导电沟槽。
优选地,所述导电梁底部具有凸起。
优选地,所述凸起位于所述导电梁的非中心处。
优选地,所述凸起位于所述导电梁的等分处。
优选地,所述凸起与所述导电梁均呈槽体。
优选地,所述凸起呈倒半球体或倒椎体。
优选地,所述硅衬底表面还具有反射区,反射区位于红外探测结构下方,
且在反射区和导电金属区之间具有介质层;互连层连接外部电路。
为了达到上述目的,本发明还提供了一种制备上述的红外探测器像元结构的方法,包括:
步骤01:提供一硅衬底,并且在硅衬底表面形成导电金属区;
步骤02:在硅衬底上方先形成所述导电梁结构再形成所述红外探测结构,或者,在硅衬底上方先形成所述红外探测结构再形成所述导电梁结构,其中,所述红外探测结构与所述导电梁结构的其中一层的导电梁或导电沟槽相接触,所述导电梁结构的另一层导电沟槽底部与导电金属区相接触。
优选地,导电梁结构最顶层只有顶层导电沟槽;所述步骤02具体包括:在所述硅衬底上形成一层牺牲层;在该层牺牲层中刻蚀出导电沟槽的图案和/或导电梁的图案,并且在导电沟槽的图案和/或导电梁的图案中形成导电层,从而形成所述导电沟槽和/或所述导电梁;重复该过程从而完成对导电梁结构的制备;其中,当形成最顶层的牺牲层后,在最顶层的牺牲层中刻蚀出顶层导电沟槽的图案,并且在顶层导电沟槽的图案中形成导电层,以形成所述顶层导电沟槽,从而完成所述导电梁结构的制备;然后,在最顶层的牺牲层和顶层导电沟槽上形成所述红外探测结构,使红外探测结构与顶层导电沟槽接触;最后,经释放工艺,将所有的牺牲层都释放掉。
优选地,导电梁结构最顶层具有顶层导电沟槽和顶层导电梁;所述步骤02具体包括:在所述硅衬底上形成一层牺牲层;在该层牺牲层中刻蚀出导电沟槽的图案和/或导电梁的图案,并且在导电沟槽的图案和/或导电梁的图案中形成导电层,从而形成该层的导电沟槽或导电梁;重复该过程,其中,形成最顶部的牺牲层后,在最顶部的牺牲层中刻蚀出顶层导电沟槽的图案和顶层导电梁的图案,并且在顶层导电沟槽的图案和顶层导电梁的图案中形成导电层,从而形成顶层导电沟槽和顶层导电梁,以完成所述导电梁结构的制备;然后,在最顶层的牺牲层和和顶层导电梁上形成所述红外探测结构,使顶层导电梁的一端与红外探测结构相接触;最后,经释放工艺,将所有的牺牲层都释放掉。
优选地,所述导电梁为位于导电梁结构最顶层的顶层导电梁;所述导电沟槽包括:底部与导电金属区接触且顶部位于导电梁结构最顶层的第一导电沟槽,以及底部高于第一导电沟槽底部且顶部位于导电梁结构最顶层的第二导电沟槽;所述步骤02具体包括:首先,在所述硅衬底上形成第一层牺牲层;在第一层牺牲层中刻蚀出第一导电沟槽下部分的图案,并且在第一导电沟槽下部分的图案中形成导电层,从而形成所述第一导电沟槽的下部分;然后,在第一牺牲层上形成所述红外探测结构,红外探测结构与所述第一导电沟槽的下部分不接触;其次,在完成步骤03的硅衬底上形成第二层牺牲层,在第二层牺牲层中刻蚀出第二导电沟槽的图案、顶层导电梁的图案、以及剩余的第一导电沟槽上部分的图案,并且在第二导电沟槽的图案、顶层导电梁的图案、以及剩余的第一导电沟槽上部分的图案中形成导电层,从而形成完整的所述第一导电沟槽、所述第二导电沟槽和所述顶层导电梁;最后,经释放工艺,将所有的牺牲层都释放掉。
优选地,所述步骤02中,所述形成导电层的过程具体包括:在导电沟槽的图案和/或导电梁的图案中依次形成下释放保护层、导电层和上释放保护层;或者在导电沟槽的图案和/或导电梁的图案中依次形成导电层和释放保护层;或者在导电沟槽的图案和/或导电梁的图案中只形成导电层。
优选地,所述导电沟槽的图案中只沉积导电层时,所述导电层填充满所述导电沟槽的图案,或者所述导电沟槽侧壁的导电层之间具有空隙。
本发明的红外探测器像元结构及其制备方法,通过设置纵向上多层分布的导电沟槽和导电梁构成的导电梁结构,实现了电信号在纵向上的阶梯传输,减少了器件横向占用面积,提高了像元结构的集成密度,即提高了像元结构的填充因子;并且,微桥结构可以设置于导电梁结构之上、也可以悬挂于导电梁结构中,可见,微桥结构的设置位置变得更加灵活,使微桥结构的水平面积占用率提高,不仅减小了单个像元的水平面积,提高了单个硅片的集成度,微桥结构的水平面积占用率提高,还能够提高探测灵敏度和信噪比,提高了整个红外探测器的性能。
图1a为本发明的实施例一的红外探测器像元结构的俯视结构示意图
图1b为本发明的实施例一的红外探测器像元结构的侧视结构示意图
图1c为本发明的实施例一的微桥结构的截面结构示意图
图2为本发明的实施例一的红外探测器像元结构的制备方法的流程示意图
图3-7为本发明的实施例一的红外探测器像元结构的制备方法的各制备步骤的示意图
图8a为本发明的一个较佳实施例的导电沟槽和导电梁的结构示意图
图8b为本发明的一个较佳实施例的导电沟槽和导电梁的结构示意图
图8c为本发明的一个较佳实施例的导电沟槽和导电梁的结构示意图
图9a为本发明的实施例二的红外探测器像元结构的俯视结构示意图
图9b为本发明的实施例二的红外探测器像元结构的侧视结构示意图
图10为本发明的实施例二的红外探测器像元结构的制备方法的流程示意图
图11-14为本发明的实施例二的红外探测器像元结构的制备方法的各制备步骤的示意图
图15a为本发明的实施例三的红外探测器像元结构的俯视结构示意图
图15b为本发明的实施例三的红外探测器像元结构的侧视结构示意图
图16为本发明的实施例三的红外探测器像元结构的制备方法的流程示意图
图17-21为本发明的实施例三的红外探测器像元结构的制备方法的各制备步骤的示意图
图22a为本发明的一个较佳实施例的实体导电梁底部结构示意图
图22b为本发明的一个较佳实施例的实体导电梁底部结构示意图
图22c为本发明的一个较佳实施例的实体导电梁底部结构示意图
图22d为本发明的一个较佳实施例的实体导电梁底部结构示意图
图23a为本发明的一个较佳实施例的槽体导电梁底部结构示意图
图23b为本发明的一个较佳实施例的槽体导电梁底部结构示意图
图23c为本发明的一个较佳实施例的槽体导电梁底部结构示意图
图23d为本发明的一个较佳实施例的槽体导电梁底部结构示意图
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明中,红外探测器像元结构,位于一硅衬底上,包括:硅衬底表面的导电金属区,位于硅衬底上方的红外探测结构,用于探测红外光并产生电信号;与红外探测结构相电连的导电梁结构,用于将红外探测结构产生的电信号传输到导电金属区;导电梁结构包括:竖直方向上排布的至少一层导电梁和多层导电沟槽;其中,每一层导电梁的两端分别连接底部不在同一水平面的两层导电沟槽,红外探测结构与其中一层导电沟槽或其中一层导电梁相接触;导电金属区与其中另一层导电沟槽底部接触;红外探测结构产生的电信号沿着导电沟槽的高度方向和导电梁的水平方向传输,从而在竖直方向上呈迂回路径传输向下到导电金属区;
红外探测结构下方、导电梁之间和导电梁下方均为空腔;红外探测结构下方构成空腔;空腔底部的反射区将未被红外探测结构吸收的红外光反射到红外探测结构上,可以经多次反射来完成红外探测结构对红外光的探测;该
空腔构成红外探测器像元结构的谐振腔;
本发明的一个实施例中,导电梁结构最顶层具有顶层导电梁;导电沟槽包括:底部与导电金属区接触且顶部位于导电梁结构最顶层的第一导电沟槽,以及底部高于第一导电沟槽底部且顶部位于导电梁结构最顶层的第二导电沟槽;第一导电沟槽的顶部和第二导电沟槽顶部分别与顶层导电梁两端连接;第二导电沟槽的底部与红外探测结构的相连接;红外探测结构产生的电信号首先经第二导电沟槽底部传输到第二导电沟槽顶部,再经顶层导电梁传输到第一导电沟槽的顶部,然后从第一导电沟槽顶部传输到第一导电沟槽底部进而传输到导电金属区。
本发明的另一个实施例中,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部连接于同一导电梁并且分别连接于该导电梁的两端;导电梁结构最顶层只具有顶层导电沟槽,顶层导电沟槽的顶部与红外探测结构相连接,使红外探测结构位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使红外探测结构产生的电信号的传输路径呈迂回阶梯状;红外探测结构产生的电信号从顶层导电沟槽的顶部传输到顶层导电沟槽的底部,再经导电梁传输到下一层的导电沟槽的顶部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区;
本发明的另一个实施例中,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部分别连接于一导电梁的两端;导电梁结构的最顶层中具有顶层导电沟槽和顶层导电梁;顶层导电梁与红外探测结构相连接,使红外探测结构位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使红外探测结构产生的电信号的传输路径呈迂回阶梯状;红外探测
结构产生的电信号从顶层导电梁传输到顶层导电沟槽的顶部,再传输到顶层导电沟槽的底部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区。
在本发明的一个较佳实施例中,导电梁结构中的每个导电梁底部具有多个凸起,如图22a-22d所示,图22a中所示的一个较佳实施例的导电梁非中心区域的底部具有竖直方向的长条状凸起,图22b中所示的一个较佳实施例的导电梁的两端底部具有竖直方向的长条状凸起,这种凸起的设置还特别适用于本发明下述的第一实施例的顶层导电梁,凸起设置于导电梁两端底部可以避免导电梁两端的过度弯曲。此外,这些长条状凸起的厚度与导电梁的厚度相同,凸起的长度为导电梁长度的一半以下;在本发明的其它实施例中,多个凸起还可以位于导电梁任意部分的底部,该凸起的形状还可以为倒半球体如图22c所示,倒锥体如图22d所示等,这些凸起的分布可以呈等间距阵列排布,如矩形阵列,或可以位于导电梁的等分处,例如,如图22a所示,虚线为中心所在位置,凸起位于导电梁的四等分处且非中心处,如图22c所示凸起位于导电梁的三等分处,这些凸起的设置用于增强导电梁的强度,避免导电梁悬空设置时过度弯曲导致整个器件变形和性能失效;同时还可以增强导电梁的弯曲强度,在震动情况下,可以对导电梁产生有效支撑,使其不易由于突发的变形产生断裂;较佳的,凸起不设置于导电梁的中心处;并且,这些凸起分布的密度可以从导电梁的两端向中心逐渐递减,也即是凸起之间的间距从导电梁的两端向中心逐渐增加,从而对悬空的导电梁的中心起到有效的支撑和保护。
还需要说明的是,本发明的一个较佳实施例多种,由于导电金属层和/
或上释放保护层和/或下释放保护层的每一层均是同时沉积在导电沟槽的图案、导电梁的图案及其底部的凸起图案中,有可能把这些图案填满形成实体,也有可能不填满形成槽体,那么,导电梁及其底部的凸起、导电沟槽的组合结构包括实体导电梁或槽体导电梁、导电梁底部的实体凸起或槽体凸起、以及实体导电沟槽或槽体导电沟槽的任意组合,均在本发明的范围之内。
需要说明的是,本发明的红外探测器像元结构可以为前照式也可以为背照式。本发明导电梁结构中,以一层导电沟槽和与其顶部相接触的一层导电梁来构成一个层单元;如果某一层导电沟槽顶部没有导电梁则认为该层导电沟槽为一个单独的层单元;如果有竖直方向上长度不一致的导电沟槽,则认为较短的那个导电沟槽所在层为一个层单元,则较长的导电沟槽就跨两层或多层。
此外,本发明中,制备上述红外探测器像元结构的方法可以包括:
提供一硅衬底,并且在硅衬底表面形成导电金属区;
在硅衬底上方先形成所述导电梁结构再形成所述红外探测结构,或者,在硅衬底上方先形成所述红外探测结构再形成所述导电梁结构,其中,所述红外探测结构与所述导电梁结构的其中一层的导电梁或导电沟槽相接触,所述导电梁结构的另一层导电沟槽底部与导电金属区相接触。
需要说明的是,以下实施例一、实施例二和实施例三中,硅衬底表面还具有反射区,反射区位于红外探测结构下方,且在反射区和导电金属区之间具有介质层;互连层连接外部电路。红外探测结构采用微桥结构。导电层采用导电金属层。
实施例一
以下结合附图1a-8c和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
需要说明的是,本实施例中,硅衬底表面还具有反射区,反射区位于红外探测结构下方,且在反射区和导电金属区之间具有介质层;互连层连接外部电路。红外探测结构采用微桥结构。导电层采用导电金属层。
本实施例中,请参阅图1a和图1b,图1b为沿图1a中AA’截面结构示意图图,图1a中,为了方便表示,将微桥结构揭掉,用粗虚线框表示微桥结构所占区域,红外探测器像元结构位于一硅衬底101上,硅衬底101中具有互连层(未示出),硅衬底表面101具有与互连层相电连的导电金属区102、反射区F以及位于导电金属区102和反射区F之间的介质区103;互连层连接外部电路;需要说明的是,本实施例中的互连层可以用其它可以连接导电金属区和外部电路的导电结构替代。本实施例的像元结构还包括:
微桥结构105,位于反射区F上方,用于探测红外光并产生电信号;请参阅图1c,微桥结构可以包括下释放保护层1063、红外敏感材料层1061、电极层1062和上释放保护层1064。电极层1062与导电梁结构的导电梁107相连接,确保微桥结构106产生的电信号通过导电梁结构传输到导电金属区102,进而传输到互连层和外部电路中。
导电梁结构,与微桥结构106相电连;导电梁结构包括底部不在同一层的第一导电沟槽104、第二导电沟槽105,本实施例中,导电沟槽可以分为两层,图1b中虚线所示,虚线下方为第一层,虚线上方为第二层,第一导电沟槽104贯穿第一层和第二层,第二导电沟槽105位于第二层;需要说明
的是,本发明中,第一导电沟槽104不限于只贯穿两层,第二导电沟槽105的底部也不限于只位于第二层;这里,第一导电沟槽104的竖直方向的长度大于第二导电沟槽105竖直方向的长度,第一导电沟槽104的顶部与第二导电沟槽105的顶部齐平;本实施例中,还具有顶层导电梁107,第一导电沟槽104的顶部与顶层导电梁107的一端接触;第二导电沟槽105的顶部与该顶层导电梁107的另一端接触,第二导电沟槽105的底部与微桥结构106接触,从而使微桥结构106悬挂于导电梁结构之间,微桥结构106产生的电信号首先经第二导电沟槽105底部传输到第二导电沟槽105顶部,再经顶层导电梁107传输到第一导电沟槽104顶部,然后从第一导电沟槽104顶部传输到第一导电沟槽104底部进而传输到导电金属区102。其中,第二导电沟槽105位于反射区F的上方,第一导电沟槽104位于金属导电区102上。
微桥结构106下方、顶层导电梁107与微桥结构106之间均为空的;
这里需要说明的是,如图1a和1b所示,微桥结构106悬挂于导电梁结构中,硅衬底101两侧分别具有两个导电梁结构,这两个导电梁结构分别与微桥结构106的两个对角相接触连接。
因此,本实施例实现了电信号在纵向上的阶梯传输,减少了器件横向占用面积,提高了像元结构的集成密度,即提高了像元结构的填充因子。
请参阅图8a,虚线框内表示第一导电沟道或第二导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及包围导电金属层M的上释放保护层S1、下释放保护层S2构成;相应的,第一导电沟槽和第二导电沟槽均可以由:上释放保护层S1、下释放保护层S2以及位于上释放保护层S1和下释放保护层S2之间的导电金属层M构成。
请参阅图8b,虚线框内表示第一导电沟道或第二导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及位于导电金属层M上表面的释放保护层S构成;相应的,第一导电沟槽和第二导电沟槽均由导电金属层M以及位于导电金属层M上的释放保护层S构成。
请参阅图8c,图8c中,右图中,虚线框内表示第一导电沟道或第二导电沟槽,虚线框外的结构表示导电梁,虚线方向的截面图如图8c的左图所示,导电梁可以由导电金属层M构成;相应的,第一导电沟槽和第二导电沟槽由导电金属层M构成。
在本实施例中,导电梁结构中的顶层导电梁107底部具有凸起,如图9a-9d所示,图9a中所示的一个较佳实施例的导电梁非中心区域的底部具有竖直方向的长条状凸起,图9b中所示的一个较佳实施例的导电梁的两端底部具有竖直方向的长条状凸起,这种凸起的设置还特别适用于导电梁底部无任何支撑的情况,凸起设置于导电梁两端底部可以避免导电梁两端的过度弯曲。此外,这些长条状凸起的厚度与导电梁的厚度相同,凸起的长度为导电梁长度的一半以下;在本发明的其它实施例中,多个凸起还可以位于导电梁任意部分的底部,该凸起的形状还可以为倒半球体如图9c所示,倒锥体如图9d所示等,这些凸起的分布可以呈等间距阵列排布,如矩形阵列,或可以位于导电梁的等分处,例如,如图9a所示,虚线为中心所在位置,凸起位于导电梁的四等分处且非中心处,如图9c所示凸起位于导电梁的三等分处,这些凸起的设置用于增强导电梁的强度,避免导电梁悬空设置时过度弯曲导致整个器件变形和性能失效;同时还可以增强导电梁的弯曲强度,在震动情况下,可以对导电梁产生有效支撑,使其不易由于突发的变形产生断裂;
较佳的,凸起不设置于导电梁的中心处;并且,这些凸起分布的密度可以从导电梁的两端向中心逐渐递减,也即是凸起之间的间距从导电梁的两端向中心逐渐增加,从而对悬空的导电梁的中心起到有效的支撑和保护。
在第二导电沟槽的图案、凸起图案、顶层导电梁的图案和第一导电沟槽上部分的图案中均依次形成下释放保护层、导电金属层和上释放保护层,或者形成导电金属层和上释放保护层,或者只形成导电金属层,且位于第一导电沟槽侧壁的导电金属层之间具有空隙,位于第二导电沟槽侧壁的导电金属层之间具有空隙;或者导电金属层填充满第二导电沟槽的图案和剩余的第一导电沟槽上部分的图案,则第一导电沟槽和第二导电沟槽呈导电柱的形状。
本实施例中,由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第二导电沟槽的图案、凸起图案、顶层导电梁的图案和第一导电沟槽上部分的图案中,有可能把这些图案填满,形成实体,也有可能不填满,形成槽体,其中,凸起可能被填满也可能不被填满,形成实体或槽体,那么,导电梁、凸起、第一导电沟槽和第二导电沟槽的结构包括实体的导电梁或槽体的导电梁、实体的凸起或槽体的凸起、实体的第一导电沟槽或槽体的第一导电结构、以及实体的第二导电结构或槽体的第二导电沟槽的结构的任意组合,均在本发明的范围之内。如图22a-22d显示了实体导电梁及其底部的凸起的四种结构,图23a-23d显示了槽体导电梁及其底部的槽体凸起的四种结构。其中,图23a中的槽体凸起的位置与图22a的实体槽体的位置相同;图23b中的槽体凸起的位置与图22b的实体槽体的位置相同;图23c中的槽体凸起的位置与图22c的实体槽体的位置相同;图23d中的槽体凸起的位置与图22d的实体槽体的位置相同;关于图23a-23d中槽体凸起
相对于槽体导电梁的位置可以参考图22a-22d中实体凸起相对于实体槽体导电梁的位置,这里不再赘述。此外,本实施例中,第一导电沟槽和第二导电沟槽均可以填充满导电金属,从而形成导电柱的形状。
请参阅图2,本实施例中,制备上述的红外探测器像元结构的方法,包括:
步骤1:请参阅图3,提供一硅衬底101,硅衬底101表面具有导电金属区102;这里,硅衬底101表面还具有反射区F以及位于导电金属区102和反射区F之间的介质区103;硅衬底101中具有互连层,互连层与导电金属区102相电连,互连层连接外部电路;
步骤2:请参阅图4,在硅衬底101上形成第一层牺牲层X11;在第一层牺牲层X11中刻蚀出第一导电沟槽下部分的图案104’,并且在第一导电沟槽下部分的图案104’中形成导电金属层,从而形成第一导电结构的下部分;
具体的,步骤02中具体包括:
首先,在硅衬底101上形成第一层牺牲层X11;
然后,在第一层牺牲层X11中刻蚀出第一导电沟槽下部分的图案104’;这里,仅制备了第一导电沟槽下部分的图案104’,后续在第二层牺牲层中继续形成剩余的第一导电沟槽上部分的图案,从而构成最终的底部位于第一层且顶部位于第二层的第一导电沟槽。
其次,在第一导电沟槽下部分的图案104’中依次形成下释放保护层、导电金属层和上释放保护层,或者形成导电金属层和上释放保护层,或者只形成导电金属层,且位于第一导电沟槽下部分的图案侧壁的导电金属层之间具有空隙;或者导电金属层填充满第一导电沟槽下部分的图案,形成导电柱。
上释放保护层和下释放保护层是用于保护导电金属层在释放工艺中不受到损伤,确保器件的导电性能和灵敏度;导电材料可以为导电金属,如铝、铜等;如果是铝,则无需形成上释放保护层和下释放保护层;
在沉积了导电金属层之后还包括:将导电金属层平坦化,去除高于第一层牺牲层X11表面的导电金属层。
步骤3:请参阅图5,在第一牺牲层X11上形成红外探测结构,红外探测结构与第一导电沟槽下部分104’不接触;
具体的,此时微桥结构106的电极层不与已经制备的第一层牺牲层X11中的第一导电沟槽下部分的图案104’的顶部接触。
步骤4:请参阅图6,在完成步骤03的硅衬底101上形成第二层牺牲层X12,在第二层牺牲层X12中刻蚀出第二导电沟槽的图案、顶层导电梁的图案和剩余的第一导电沟槽上部分的图案,并且在第二导电沟槽的图案、顶层导电梁的图案和第一导电沟槽下部分的图案中沉积导电材料,从而形成第一导电沟槽104,第二导电沟槽105和顶层导电梁107;
具体的,首先,在顶层导电梁的图案对应下方的第二牺牲层X12中形成凸起图案、第二导电沟槽的图案和剩余的第一导电沟槽上部分的图案;然后,形成顶层导电梁的图案。关于凸起图案的描述可以参考上述关于凸起的描述,这里不再赘述,从而使得后续沉积的导电层也沉积在凸起图案中,以形成底部具有凸起的顶层导电梁。这里,微桥结构106与第二导电沟槽105的底部相接触;形成导电金属层的过程,包括:
在第二导电沟槽的图案、凸起图案、顶层导电梁的图案和第一导电沟槽上部分的图案中均依次形成下释放保护层、导电金属层和上释放保护层,或
者形成导电金属层和上释放保护层,或者只形成导电金属层,且位于第一导电沟槽侧壁的导电金属层之间具有空隙,位于第二导电沟槽侧壁的导电金属层之间具有空隙;或者导电金属层填充满第二导电沟槽的图案和剩余的第一导电沟槽上部分的图案,则第一导电沟槽和第二导电沟槽呈导电柱的形状。本实施例中,由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第二导电沟槽的图案、凸起图案、顶层导电梁的图案和第一导电沟槽上部分的图案中,有可能把这些图案填满,形成实体,也有可能不填满,形成槽体,其中,凸起可能被填满也可能不被填满,形成实体或槽体,那么,导电梁、凸起、第一导电沟槽和第二导电沟槽的结构包括实体的导电梁或槽体的导电梁、实体的凸起或槽体的凸起、实体的第一导电沟槽或槽体的第一导电结构、以及实体的第二导电结构或槽体的第二导电沟槽的结构的任意组合,均在本发明的范围之内。
在形成导电金属层之后还包括:将导电金属层平坦化,去除高于第二层牺牲层X12表面的导电金属层;微桥结构106与第二导电沟槽105的底部相接触;
步骤5:请参阅图7,经释放工艺,将所有的牺牲层X11、X12都释放掉。
具体的,释放工艺可以根据牺牲层的材料来设置合适的工艺参数,这里不再赘述。
实施例二
以下结合附图8a-14和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清
晰地达到辅助说明本实施例的目的。
本实施例中,请参阅图9a和图9b,图9b为沿图9a中BB’截面结构示意图图,图9a中,为了方便表示,将微桥结构揭掉,用粗虚线框表示微桥结构所占区域,红外探测器像元结构位于一硅衬底201上,硅衬底201中具有互连层(未示出)、硅衬底201表面具有与互连层相电连的导电金属区202、反射区F’以及位于导电金属区202和反射区F’之间的介质区203;互连层连接外部电路;需要说明的是,本实施例中的互连层可以用其它可以连接导电金属区和外部电路的导电结构替代。本实施例的像元结构还包括:
微桥结构206,位于反射区F’上方,用于探测红外光并产生电信号;本实施例二的微桥结构与实施例一的微桥结构相同,请再次参阅图1c,微桥结构可以包括下释放保护层1063、红外敏感材料层1061、电极层1062和上释放保护层1064。电极层1062与第三层导电沟槽209顶部连接,确保微桥结构206产生的电信号通过导电梁结构传输到导电金属区102,进而传输到互连层和外部电路中;
导电梁结构,与微桥结构206相电连;导电梁结构中,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部连接于同一导电梁并且分别连接于一导电梁的两端;导电梁结构最顶层只具有顶层导电沟槽,顶层导电沟槽的顶部与红外探测结构相连接,也就是相邻层的导电沟槽之间通过导电梁相电连;相邻层的导电沟槽中,位于下层的导电沟槽顶部与位于上层的导电沟槽底部通过导电梁相连接;这里,如图9b所示,导电梁结构分两层,虚线L1下方为第一层,虚线L1和虚线L2之间为第二层,虚线L3上方为第三层,导电梁有两层,包括第一层导电梁207和第二层导电梁208;导电沟槽为三
层,分别是第一层导电沟槽204,第二层导电沟槽205和第三层导电沟槽209(顶层导电沟槽);第一层导电沟槽204的底部与导电金属区202相接触;第一层导电沟槽204的顶部与第二层导电沟槽205的底部通过第一层导电梁207相连接;第二层导电沟槽205的顶部与第三层导电沟槽209的底部通过第二层导电梁208相连接;位于最顶层的第三层导电沟槽209底部与第二层导电梁208相连接,第三层导电沟槽209的顶部与微桥结构206接触,从而使微桥结构206位于导电梁结构之上,微桥结构206产生的电信号首先经最顶层的第三层导电沟槽209的顶部传输到第三层导电沟槽209底部,再经第二层导电梁208传输到第二层导电沟槽205顶部,再从第二层导电沟槽205顶部经第一层导电梁207传输到第一层导电沟槽204顶部,然后从第一层导电沟槽204顶部传输到第一层导电沟槽204底部,进而传输到导电金属区202,再从导电金属区202传输到互连层和外部电路中。其中,第二层导电沟槽205位于反射区F’的上方,第一层导电沟槽204位于金属导电区202上。从而使微桥结构206位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,使微桥结构206产生的电信号的传输路径呈迂回阶梯状。
微桥结构206下方、导电梁208之间、以及导电梁208下方均为空腔;。
因此,本实施例实现了电信号在纵向上的阶梯传输,减少了器件横向占用面积,提高了像元结构的集成密度,即提高了像元结构的填充因子。
请再次参阅图8a,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及包围导电金属层M的上释放保护层S1、下释放保护层S2构成;相应的,导电沟槽可以由:上释放保护层S1、下释放
保护层S2以及位于上释放保护层S1和下释放保护层S2之间的导电金属层M构成。
请再次参阅图8b,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及位于导电金属层M上表面的释放保护层S构成;相应的,导电沟槽可以由导电金属层M以及位于导电金属层M上的释放保护层S构成。
请再次参阅图8c,图8c中,右图中,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,虚线方向的截面图如图8c的左图所示,导电梁可以由导电金属层M构成;相应的,导电沟槽可以由导电金属层M构成。
在本实施例中,导电梁结构中的第一层导电梁207的底部、第二层导电梁208底部具有凸起,如图22a-22d所示,这里不再赘述。此外,本实施例中,导电沟槽还可以填充满导电金属,从而形成导电柱的形状。
由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第一层导电沟槽204的图案、第一层导电梁207的图案及其底部的凸起图案中或者同时沉积在第二层导电沟槽205、第二层导电梁207的图案及其底部的凸起图案中,有可能把这些图案填满形成实体,也有可能不填满形成槽体,那么,第一层导电梁及其底部的凸起、第一层导电沟槽的组合结构包括实体第一层导电梁或槽体第一层导电梁、第一层导电梁底部的实体凸起或槽体凸起、以及实体第一层导电沟槽或槽体第一层导电沟槽的任意组合,第二层导电梁及其底部的凸起、第二层导电沟槽的组合结构包括实体第二层导电梁或槽体第二层导电梁、第二层导电梁底部的实体凸起或槽体凸起、以及实体第二层导电沟槽或槽体第二层导电沟槽的任意组合,均在本发
明的范围之内。如图22a-22d显示了实体导电梁及其底部的凸起的四种结构,图23a-23d显示了槽体导电梁及其底部的槽体凸起的四种结构。其中,图23a中的槽体凸起的位置与图22a的实体槽体的位置相同;图23b中的槽体凸起的位置与图22b的实体槽体的位置相同;图23c中的槽体凸起的位置与图22c的实体槽体的位置相同;图23d中的槽体凸起的位置与图22d的实体槽体的位置相同;关于图23a-23d中槽体凸起相对于槽体导电梁的位置可以参考图22a-22d中实体凸起相对于实体槽体导电梁的位置,这里不再赘述。
请参阅图10,本实施例中,制备上述的红外探测器像元结构的方法,包括:
步骤01:请参阅图11,提供一硅衬底201,并且在硅衬底201表面形成互连层和与互连层相电连的导电金属区202;这里,互连层与导电金属区202相电连;硅衬底201表面还具有反射区F’以及位于导电金属区202和反射区F’之间的介质区203;互连层连接外部电路;
步骤02:在硅衬底201上方先形成上述导电梁结构再形成上述红外探测结构;其中,红外探测结构与导电梁结构的其中一层的导电梁或导电沟槽相接触,导电梁结构的另一层导电沟槽底部与导电金属区相接触。
具体的,请参阅图12,关于导电梁结构的制备过程具体包括:
步骤021,在硅衬底201上沉积第一层牺牲层X21,在第一层牺牲层中刻蚀出第一层导电沟槽204的图案和第一层导电梁207的图案,并在其中形成导电金属层,以形成第一层导电沟槽204和第一层导电梁207;这里还包括,在形成导电金属层之后,将导电金属层平坦化,去除高于第一层牺牲层X21表面的导电金属层。此外,本实施例中,由于第一层导电梁207底部具
有凸起,在形成第一层导电梁207的图案之前,先在对应于第一层导电梁207的图案的下方的第一牺牲层X21中形成这些凸起图案,关于凸起图案的描述可以参考上述凸起的描述,这里不再赘述,从而使得后续沉积的导电金属层也沉积在凸起图案中,以形成底部具有凸起的第一层导电梁207。然后,所形成的下释放保护层、导电金属层和上释放保护层、或导电金属层和上释放保护层、或导电金属层也同时位于该凸起图案中,从而形成位于第一层导电梁207底部的凸起。
步骤022,在上述硅衬底201上沉积第二层牺牲层X22,在第二层牺牲层中刻蚀出第二层导电沟槽205的图案和第二层导电梁208的图案,并在其中形成导电金属层,以形成第二层导电沟槽205和第二层导电梁208;这里还包括,在形成导电金属层之后,将导电金属层平坦化,去除高于第二层牺牲层X22表面的导电金属层。此外,本实施例中,由于第二层导电梁208底部具有凸起,所以在形成第二层导电梁208的图案之前,先在对应于第二层导电梁208的图案的下方的第二牺牲层X22中形成这些凸起图案,关于凸起图案的描述可以参考上述凸起的描述,这里不再赘述,从而使得后续沉积的导电层也沉积在凸起图案中,以形成底部具有凸起的第二层导电梁208。然后,所形成的下释放保护层、导电金属层和上释放保护层、或导电金属层和上释放保护层、或导电金属层也同时位于该凸起图案中,从而形成位于第二层导电梁208凸起。需要说明的是,本实施例中,由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第一层导电沟槽204的图案、第一层导电梁207的图案及其底部的凸起图案中或者同时沉积在第二层导电沟槽205、第二层导电梁207的图案及其底部的凸起图案中,
有可能把这些图案填满形成实体,也有可能不填满形成槽体,那么,第一层导电梁及其底部的凸起、第一层导电沟槽的组合结构包括实体第一层导电梁或槽体第一层导电梁、第一层导电梁底部的实体凸起或槽体凸起、以及实体第一层导电沟槽或槽体第一层导电沟槽的任意组合,第二层导电梁及其底部的凸起、第二层导电沟槽的组合结构包括实体第二层导电梁或槽体第二层导电梁、第二层导电梁底部的实体凸起或槽体凸起、以及实体第二层导电沟槽或槽体第二层导电沟槽的任意组合,均在本发明的范围之内。
步骤023,在上述硅衬底201上沉积第三层牺牲层X23,在第三层牺牲层X23中刻蚀出第三层导电沟槽205的图案,并且在其中形成导电金属层,这里还包括,在形成导电金属层之后,将导电金属层平坦化,去除高于第三层牺牲层X23表面的导电金属层,以形成第三层导电沟槽209,从而完成导电梁结构的制备;
本步骤02中,在每一层的图案中形成导电金属层的过程可以具体包括:在导电沟槽和/或导电梁中依次形成下释放保护层、导电金属层和上释放保护层;或者在导电沟槽和/或导电梁中依次形成导电金属层和释放保护层;或者在导电沟槽和/或导电梁中只形成导电金属层;位于导电沟槽侧壁的导电金属层之间可以具有空隙;如果导电金属层填充满导电沟槽,则导电沟槽呈导电柱的形状。
导电金属层的材料可以为导电金属,如铝、铜等;如果是铝,则无需形成上释放保护层和下释放保护层;上释放保护层和下释放保护层是用于保护导电金属层在释放工艺中不受到损伤,确保器件的导电性能和灵敏度;
关于本步骤02中的微桥结构的制备具体包括:步骤024:请参阅图13,
在第三层牺牲层X23和第三层导电沟槽209上形成微桥结构206,使微桥结构206与最顶层的第三导电沟槽209接触;
微桥结构制备好后,包括步骤025:请参阅图14,经释放工艺,将所有的牺牲层都释放掉。具体的,释放工艺可以根据牺牲层的材料来设置合适的工艺参数,这里不再赘述。
实施例三
以下结合附图15a-21和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
本实施例中,请参阅图15a和图15b,图15b为沿图15a中CC’截面结构示意图图,图15a中,为了方便表示,将微桥结构揭掉,用粗虚线框表示微桥结构所占区域,红外探测器像元结构位于一硅衬底301上,硅衬底301中具有互连层,硅衬底301表面具有与互连层相电连的导电金属区302、反射区303以及位于导电金属区302和反射区303之间的介质区303;互连层连接外部电路;需要说明的是,本实施例中的互连层可以用其它可以连接导电金属区和外部电路的导电结构替代。本实施例中红外探测器像元结构还包括:
微桥结构306,位于反射区F”上方,用于探测红外光并产生电信号;本实施例三的微桥结构可以与实施例一的微桥结构相同,请再次参阅图1c,微桥结构可以包括下释放保护层1063、红外敏感材料层1061、电极层1062和上释放保护层1064。电极层1062与导电梁结构的导电梁308相连接,确保微桥结构306产生的电信号通过导电梁结构传输到导电金属区302,进而传
输到互连层和外部电路中。
导电梁结构,与微桥结构306相电连;导电梁结构中,在导电梁结构的最顶层中具有第二导电沟槽305(顶层导电沟槽)和第二导电梁308(顶层导电梁);如图15b所示,导电梁结构分两层,虚线下方为第一层,虚线上方为第二层,本实施例中,具有两层导电沟槽,分别是第一层导电沟槽304和第二层导电沟槽305,导电梁至少有一层,这里分别是第一层导电梁307和第二层导电梁308;第一层导电沟槽304的顶部和第二层导电沟槽305的底部通过第一层导电梁307相连接;第一层导电沟槽204的底部与导电金属区302相接触,第二层导电沟槽305的顶部与第二层导电梁308的一端接触,第二层导电梁308的另一端与微桥结构306接触,从而使微桥结构306位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使红外探测结构产生的电信号的传输路径呈迂回阶梯状;微桥结构306产生的电信号首先经第二层导电梁308传输到第二层导电沟槽305顶部,再传输到第二层导电沟槽305底部,然后经第一层导电梁307传输到第一层导电沟槽304顶部,最后经第一层导电沟槽304底部传输到导电金属区302,由导电金属区302传输到互连层中进而传输到外部电路中;其中,第二层导电沟槽305位于反射区F”的上方,第一导电沟槽304位于金属导电区302上。
微桥结构306下方、导电梁307、308之间、导电梁307下方均为空的。
因此,本实施例实现了电信号在纵向上的阶梯传输,减少了器件横向占用面积,提高了像元结构的集成密度,即提高了像元结构的填充因子。
请再次参阅图8a,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及包围导电金属层M的上释放保护层S1、下
释放保护层S2构成;相应的,导电沟槽可以由:上释放保护层S1、下释放保护层S2以及位于上释放保护层S1和下释放保护层S2之间的导电金属层M构成。
请再次参阅图8b,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,导电梁可以由导电金属层M以及位于导电金属层M上表面的释放保护层S构成;相应的,导电沟槽可以由导电金属层M以及位于导电金属层M上的释放保护层S构成。
请再次参阅图8c,图8c中,右图中,虚线框内表示导电沟槽,虚线框外的结构表示导电梁,虚线方向的截面图如图8c的左图所示,导电梁可以由导电金属层M构成;相应的,导电沟槽可以由导电金属层M构成。
在本实施例中,导电梁结构中的第一层导电梁307和第二层导电梁308底部具有多个凸起,如图22a-22d所示,凸起的具体描述可以参考上述描述,这里不再赘述。
本实施例中,由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第一层导电沟槽304的图案、第一层导电梁307的图案及其底部的凸起图案中或者同时沉积在第二层导电沟槽305、第二层导电梁307的图案及其底部的凸起图案中,有可能把这些图案填满形成实体,也有可能不填满形成槽体,那么,第一层导电梁307及其底部的凸起、第一层导电沟槽304的组合结构包括实体第一层导电梁307或槽体第一层导电梁307、第一层导电梁307底部的实体凸起或槽体凸起、以及实体第一层导电沟槽304或槽体第一层导电沟槽304的任意组合,第二层导电梁308及其底部的凸起、第二层导电沟槽305的组合结构包括实体第二层导电梁308或槽
体第二层导电梁308、第二层导电梁308底部的实体凸起或槽体凸起、以及实体第二层导电沟槽305或槽体第二层导电沟槽305的任意组合,均在本发明的范围之内。如图22a-22d显示了实体导电梁及其底部的凸起的四种结构,图23a-23d显示了槽体导电梁及其底部的槽体凸起的四种结构。其中,图23a中的槽体凸起的位置与图22a的实体槽体的位置相同;图23b中的槽体凸起的位置与图22b的实体槽体的位置相同;图23c中的槽体凸起的位置与图22c的实体槽体的位置相同;图23d中的槽体凸起的位置与图22d的实体槽体的位置相同;关于图23a-23d中槽体凸起相对于槽体导电梁的位置可以参考图22a-22d中实体凸起相对于实体槽体导电梁的位置,这里不再赘述。
此外,本实施例中,导电沟槽还可以填充满导电金属,从而形成导电柱的形状。
请参阅图16,本实施例中,制备上述的红外探测器像元结构的方法,包括:
步骤001:请查阅图17,提供一硅衬底301,并且在硅衬底301表面形成导电金属区302;这里,硅衬底301中具有互连层,导电金属区302与互连层相电连;硅衬底301表面还具有反射区F”以及位于导电金属区302和反射区F”之间的介质区;互连层连接外部电路;
步骤002:在硅衬底上形成一层牺牲层;在该层牺牲层中刻蚀出导电沟槽的图案和/或导电梁的图案,并且在导电沟槽的图案和/或导电梁的图案中形成导电金属层,从而形成该层的导电沟槽或导电梁;
具体的,请参阅图18,这里,在硅衬底301上形成第一牺牲层X31,在第一层牺牲层X31中刻蚀出第一层导电沟槽304的图案和第一层导电梁307
的图案,并在其中形成导电金属层,以形成第一层导电沟槽304和第一层导电梁307;这里还包括,在沉积了导电金属层之后,将导电金属层平坦化,去除高于第一层牺牲层X31表面的导电金属层。
形成导电金属层的过程具体包括:在第一层导电沟槽304的图案和第一层导电梁307的图案中依次形成下释放保护层、导电金属层和上释放保护层,所形成的结构如图8a所示;或者在第一层导电沟槽304的图案和第一层导电梁307的图案中依次形成导电金属层和上释放保护层,所形成的结构如图8b所示;或者在第一层导电沟槽304的图案和第一层导电梁307的图案中只形成导电金属层;位于第一层导电沟槽304侧壁的导电金属层之间可以具有空隙,所形成的结构如图8c所示;如果导电金属层填充满第一层导电沟槽304的图案和第一层导电梁307的图案,则第一层导电沟槽304则呈导电柱的形状。此外,本实施例中,由于第一层导电梁307底部具有凸起,在形成第一层导电梁307的图案之前,先在对应于第一层导电梁307的图案的下方的第一牺牲层X31中形成这些凸起图案,关于凸起图案的描述可以参考上述凸起的描述,这里不再赘述。然后,所形成的下释放保护层、导电金属层和上释放保护层、或导电金属层和上释放保护层、或导电金属层也同时位于该凸起图案中,从而形成位于第一层导电梁307底部的凸起。
步骤003:重复步骤002的过程,其中,形成最顶部的牺牲层后,在最顶部的牺牲层中刻蚀出顶层导电沟槽的图案和顶层导电梁的图案,并且在顶层导电沟槽的图案和顶层导电梁的图案中形成导电金属层,从而完成导电梁结构的制备;
具体的,请参阅图19,这里,在完成步骤002的硅衬底301上形成第二
层牺牲层X32,在第二层牺牲层X32中刻蚀出第二层导电沟槽305的图案和第二层导电梁308的图案,并在其中形成导电金属层,以形成第二层导电沟槽305和第二层导电梁308;这里还包括,在形成导电金属层之后,将导电金属层平坦化,去除高于第二层牺牲层X32表面的导电金属层。
形成导电金属层的过程具体包括:在第二层导电沟槽305的图案和第二层导电梁308的图案中依次形成下释放保护层、导电金属层和上释放保护层,形成如图8a所示的结构;或者在第二层导电沟槽305的图案和第二层导电梁308的图案中依次形成导电金属层和上释放保护层,形成的结构如图8b所示;或者在第二层导电沟槽305的图案和第二层导电梁308的图案中只形成导电金属层;位于第二层导电沟槽侧壁的导电金属层305之间可以具有空隙,形成的结构如图8c所示;如果导电金属层填充满第二导电沟槽305的图案,则呈导电柱的形状。此外,本实施例中,由于第二层导电梁308底部具有凸起,所以在形成第二层导电梁308的图案之前,先在对应于第二层导电梁308的图案的下方的第二牺牲层X32中形成这些凸起图案,关于凸起图案的描述可以参考上述凸起的描述,这里不再赘述。然后,所形成的下释放保护层、导电金属层和上释放保护层、或导电金属层和上释放保护层、或导电金属层也同时位于该凸起图案中,从而形成位于第二层导电梁308凸起。
需要说明的是,本实施例中,由于导电金属层和/或上释放保护层和/或下释放保护层的每一层均是同时沉积在第一层导电沟槽304的图案、第一层导电梁307的图案及其底部的凸起图案中或者同时沉积在第二层导电沟槽305、第二层导电梁307的图案及其底部的凸起图案中,有可能把这些图案填满形成实体,也有可能不填满形成槽体,那么,第一层导电梁307及其底
部的凸起、第一层导电沟槽304的组合结构包括实体第一层导电梁307或槽体第一层导电梁307、第一层导电梁307底部的实体凸起或槽体凸起、以及实体第一层导电沟槽304或槽体第一层导电沟槽304的任意组合,第二层导电梁308及其底部的凸起、第二层导电沟槽305的组合结构包括实体第二层导电梁308或槽体第二层导电梁308、第二层导电梁308底部的实体凸起或槽体凸起、以及实体第二层导电沟槽305或槽体第二层导电沟槽305的任意组合,均在本发明的范围之内。
步骤004:在最顶层的牺牲层和和顶层导电梁上形成红外探测结构,使顶层导电梁的一端与红外探测结构相接触;
具体的,请参阅图20,在第二层牺牲层X32和第二层导电梁308上形成微桥结构306,使微桥结构306与第三层导电梁308接触;
步骤005:请参阅图21,经释放工艺,将所有的牺牲层都释放掉。
具体的,释放工艺可以根据牺牲层的材料来设置合适的工艺参数,这里不再赘述。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。
Claims (20)
- 一种红外探测器像元结构,位于一硅衬底上,包括:硅衬底表面的导电金属区,位于硅衬底上方的红外探测结构,其用于探测红外光并产生电信号;以及与红外探测结构相电连的导电梁结构,其用于将红外探测结构产生的电信号传输到导电金属区;其特征在于,导电梁结构包括:竖直方向上排布的至少一层导电梁和多层导电沟槽;其中,每一层导电梁的两端分别连接底部不在同一水平面的两层导电沟槽;红外探测结构与其中一层导电沟槽或其中一层导电梁相接触;导电金属区与其中另一层导电沟槽底部接触;所述红外探测结构产生的电信号沿着导电沟槽的高度方向和导电梁的水平方向传输,从而在竖直方向上呈迂回路径向下传输到导电金属区。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述导电梁结构最顶层具有顶层导电梁;所述导电沟槽包括:底部与导电金属区接触且顶部位于导电梁结构最顶层的第一导电沟槽,以及底部高于第一导电沟槽底部且顶部位于导电梁结构最顶层的第二导电沟槽;第一导电沟槽的顶部和第二导电沟槽顶部分别与顶层导电梁两端连接;第二导电沟槽的底部与红外探测结构的相连接;所述红外探测结构产生的电信号首先经第二导电沟槽底部传输到第二导电沟槽顶部,再经顶层导电梁传输到第一导电沟槽的顶部,然后从第一导电沟槽顶部传输到第一导电沟槽底部进而传输到导电金属区;再经导电金属区传输到互连层中。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部连接于同一导电梁并且分别连接于该导电梁的两端;导电梁结构最顶层只有顶层导电沟槽,顶层导电沟槽的顶部与红外探测结构相连接,使红外探测结构位于导电梁结构之上, 每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使红外探测结构产生的电信号的传输路径呈迂回阶梯状;红外探测结构产生的电信号从顶层导电沟槽的顶部传输到顶层导电沟槽的底部,再经导电梁传输到下一层的导电沟槽的顶部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,每一层导电沟槽的底部与其下方相邻层的导电沟槽的顶部分别连接于一导电梁的两端;其中一层导电沟槽的底部与导电金属区相接触;导电梁结构的最顶层中具有顶层导电沟槽和顶层导电梁;顶层导电梁与红外探测结构相连接,使微桥结构位于导电梁结构之上,每一层的导电沟槽和导电梁构成了迂回阶梯状的结构,从而使微桥结构产生的电信号的传输路径呈迂回阶梯状;红外探测结构产生的电信号从顶层导电梁传输到顶层导电沟槽的顶部,再传输到顶层导电沟槽的底部,经过多层导电沟槽和导电梁之间的传输,最后传输到导电金属区。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述导电梁由导电层以及包围导电层的上释放保护层和下释放保护层构成;所述导电沟槽由上释放保护层、下释放保护层以及位于上释放保护层和下释放保护层之间的导电层构成。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述导电梁由导电层以及位于导电层上表面的释放保护层构成;所述导电沟槽由导电层以及位于导电层上的上释放保护层构成。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述导电梁由导电层构成;所述导电沟槽由导电层构成。
- 根据权利要求7所述的红外探测器像元结构,其特征在于,所述导电层填充满所述导电沟槽。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述导电梁底部具有凸起。
- 根据权利要求9所述的红外探测器像元结构,其特征在于,所述凸起位于所述导电梁的非中心处。
- 根据权利要求9所述的红外探测器像元结构,其特征在于,所述凸起位于所述导电梁的等分处。
- 根据权利要求9所述的红外探测器像元结构,其特征在于,所述凸起与所述导电梁均呈槽体。
- 根据权利要求9所述的红外探测器像元结构,其特征在于,所述凸起呈倒半球体或倒椎体。
- 根据权利要求1所述的红外探测器像元结构,其特征在于,所述硅衬底表面还具有反射区,反射区位于红外探测结构下方,且在反射区和导电金属区之间具有介质层;互连层连接外部电路。
- 一种制备权利要求1所述的红外探测器像元结构的方法,其特征在于,包括:步骤01:提供一硅衬底,并且在硅衬底表面形成导电金属区;步骤02:在硅衬底上方先形成所述导电梁结构再形成所述红外探测结构,或者,在硅衬底上方先形成所述红外探测结构再形成所述导电梁结构,其中,所述红外探测结构与所述导电梁结构的其中一层的导电梁或导电沟槽相接触,所述导电梁结构的另一层导电沟槽底部与导电金属区相接触。
- 根据权利要求15所述的方法,其特征在于,导电梁结构最顶层只有顶层导电沟槽;所述步骤02具体包括:在所述硅衬底上形成一层牺牲层;在该层牺牲层中刻蚀出导电沟槽的图案和/或导电梁的图案,并且在导电沟槽的图案和/或导电梁的图案中形成导电层,从而形成所述导电沟槽和/或所述导电梁;重复该过程从而完成对导电梁结构的制备;其中,当形成最顶层的牺牲层后,在最顶层的牺牲层中刻蚀出顶层导电沟槽的图案,并且在顶层导电沟槽的图案中形成导电层,以形成所述顶层导电沟槽,从而完成所述导电梁结构的制备;然后,在最顶层的牺牲层和顶层导电沟槽上形成所述红外探测结构,使红外探测结构与顶层导电沟槽接触;最后,经释放工艺,将所有 的牺牲层都释放掉。
- 根据权利要求15所述的方法,其特征在于,导电梁结构最顶层具有顶层导电沟槽和顶层导电梁;所述步骤02具体包括:在所述硅衬底上形成一层牺牲层;在该层牺牲层中刻蚀出导电沟槽的图案和/或导电梁的图案,并且在导电沟槽的图案和/或导电梁的图案中形成导电层,从而形成该层的导电沟槽或导电梁;重复该过程,其中,形成最顶部的牺牲层后,在最顶部的牺牲层中刻蚀出顶层导电沟槽的图案和顶层导电梁的图案,并且在顶层导电沟槽的图案和顶层导电梁的图案中形成导电层,从而形成顶层导电沟槽和顶层导电梁,以完成所述导电梁结构的制备;然后,在最顶层的牺牲层和和顶层导电梁上形成所述红外探测结构,使顶层导电梁的一端与红外探测结构相接触;最后,经释放工艺,将所有的牺牲层都释放掉。
- 根据权利要求15所述的方法,其特征在于,所述导电梁为位于导电梁结构最顶层的顶层导电梁;所述导电沟槽包括:底部与导电金属区接触且顶部位于导电梁结构最顶层的第一导电沟槽,以及底部高于第一导电沟槽底部且顶部位于导电梁结构最顶层的第二导电沟槽;所述步骤02具体包括:首先,在所述硅衬底上形成第一层牺牲层;在第一层牺牲层中刻蚀出第一导电沟槽下部分的图案,并且在第一导电沟槽下部分的图案中形成导电层,从而形成所述第一导电沟槽的下部分;然后,在第一牺牲层上形成所述红外探测结构,红外探测结构与所述第一导电沟槽的下部分不接触;其次,在完成步骤03的硅衬底上形成第二层牺牲层,在第二层牺牲层中刻蚀出第二导电沟槽的图案、顶层导电梁的图案、以及剩余的第一导电沟槽上部分的图案,并且在第二导电沟槽的图案、顶层导电梁的图案、以及剩余的第一导电沟槽上部分的图案中形成导电层,从而形成完整的所述第一导电沟槽、所述第二导电沟槽和所述顶层导电梁;最后,经释放工艺,将所有的牺牲层都释放掉。
- 根据权利要求15所述的方法,其特征在于,所述步骤02中,所述形成导电层的过程具体包括:在导电沟槽的图案和/或导电梁的图案中依次形成下释放保护层、导电层和上释放保护层;或者在导电沟槽的图案和/或导 电梁的图案中依次形成导电层和释放保护层;或者在导电沟槽的图案和/或导电梁的图案中只形成导电层。
- 根据权利要求19所述的方法,其特征在于,所述导电沟槽的图案中只沉积导电层时,所述导电层填充满所述导电沟槽的图案,或者所述导电沟槽侧壁的导电层之间具有空隙。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/310,821 US11034577B2 (en) | 2016-07-28 | 2016-09-08 | Infrared detector pixel structure and manufacturing method thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610605232.9 | 2016-07-28 | ||
CN201610605284.6A CN106430076B (zh) | 2016-07-28 | 2016-07-28 | 高填充红外探测器像元结构及其制备方法 |
CN201610602975.0A CN106449852B (zh) | 2016-07-28 | 2016-07-28 | 悬挂式红外探测器像元结构及其制备方法 |
CN201610605284.6 | 2016-07-28 | ||
CN201610602975.0 | 2016-07-28 | ||
CN201610605232.9A CN106448972B (zh) | 2016-07-28 | 2016-07-28 | 三维红外探测器像元结构及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018018709A1 true WO2018018709A1 (zh) | 2018-02-01 |
Family
ID=61016132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/098381 WO2018018709A1 (zh) | 2016-07-28 | 2016-09-08 | 红外探测器像元结构及其制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11034577B2 (zh) |
WO (1) | WO2018018709A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7719318B1 (en) * | 2008-11-05 | 2010-05-18 | Sandia Corporation | Nanoeletromechanical switch and logic circuits formed therefrom |
CN204597104U (zh) * | 2015-04-13 | 2015-08-26 | 广州耐得实业有限公司 | 一种半浮动自适应接触式导电装置 |
US9249010B2 (en) * | 2013-06-25 | 2016-02-02 | Analog Devices, Inc. | Electrical shielding in a MEMS leadframe package |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080988A (en) * | 1996-12-20 | 2000-06-27 | Nikon Corporation | Optically readable radiation-displacement-conversion devices and methods, and image-rendering apparatus and methods employing same |
JP3921320B2 (ja) * | 2000-01-31 | 2007-05-30 | 日本電気株式会社 | 熱型赤外線検出器およびその製造方法 |
WO2006025456A1 (ja) * | 2004-09-01 | 2006-03-09 | Advantest Corporation | バイモルフ素子、バイモルフスイッチ、ミラー素子及びこれらの製造方法 |
ATE458186T1 (de) * | 2005-05-12 | 2010-03-15 | Commissariat Energie Atomique | Thermischer detektor für elektromagnetische strahlung in einer die detektoren verwendenden infrarot-detektionseinrichtung |
JP4441578B2 (ja) * | 2006-10-11 | 2010-03-31 | パナソニック株式会社 | 電子デバイスおよびその制御方法 |
US20080135758A1 (en) * | 2006-12-06 | 2008-06-12 | Electronics And Telecommunications Research Institute | Bolometer and method of manufacturing the same |
JP2009222489A (ja) * | 2008-03-14 | 2009-10-01 | Oki Semiconductor Co Ltd | 赤外線検出素子およびその製造方法 |
FR3026483A1 (fr) * | 2014-09-26 | 2016-04-01 | Commissariat Energie Atomique | Detecteur bolometrique a structures mim de dimensions differentes |
FR3048125B1 (fr) * | 2016-02-24 | 2020-06-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif de detection de rayonnement electromagnetique a plot de connexion electrique sureleve |
FR3066321B1 (fr) * | 2017-05-09 | 2019-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de realisation d'un detecteur bolometrique |
US11626484B2 (en) * | 2017-09-20 | 2023-04-11 | Wisconsin Alumni Research Foundation | High efficiency room temperature infrared sensor |
-
2016
- 2016-09-08 US US16/310,821 patent/US11034577B2/en active Active
- 2016-09-08 WO PCT/CN2016/098381 patent/WO2018018709A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7719318B1 (en) * | 2008-11-05 | 2010-05-18 | Sandia Corporation | Nanoeletromechanical switch and logic circuits formed therefrom |
US9249010B2 (en) * | 2013-06-25 | 2016-02-02 | Analog Devices, Inc. | Electrical shielding in a MEMS leadframe package |
CN204597104U (zh) * | 2015-04-13 | 2015-08-26 | 广州耐得实业有限公司 | 一种半浮动自适应接触式导电装置 |
Also Published As
Publication number | Publication date |
---|---|
US11034577B2 (en) | 2021-06-15 |
US20190177158A1 (en) | 2019-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5751544B2 (ja) | 非冷却マイクロボロメータを製造する際に使用するシリコン・オン・インシュレーター(soi)相補型金属酸化物半導体(cmos)ウェーハ | |
JP5934809B2 (ja) | 高い充填レベルを持った構造 | |
JP6758053B2 (ja) | 向上した機械的強度を有する封入構造を有する放射検出装置 | |
WO2022267584A1 (zh) | 一种基于cmos工艺的多层结构的红外探测器 | |
KR101624762B1 (ko) | 광 검출기 | |
CN113447141B (zh) | 一种基于cmos工艺的红外微桥探测器 | |
CN113447146B (zh) | 一种台阶型红外探测器 | |
CN113447148B (zh) | 一种红外焦平面探测器 | |
JP2013026285A (ja) | 赤外線検知器及び赤外線検知器の製造方法 | |
WO2018018709A1 (zh) | 红外探测器像元结构及其制备方法 | |
CN116002606B (zh) | 一种红外热辐射探测器及制作方法 | |
CN106449852B (zh) | 悬挂式红外探测器像元结构及其制备方法 | |
US11085828B2 (en) | Device for detecting electromagnetic radiation with reduced crosstalk | |
CN115060371B (zh) | 一种微测辐射热计、制作方法及红外探测器 | |
CN103922270A (zh) | 非制冷光读出红外焦平面阵列结构和制作方法 | |
JP6164819B2 (ja) | 赤外線サーマルディテクタ及びその製造方法 | |
CN113432726B (zh) | 一种具有组合柱状结构的红外探测器 | |
CN106448972B (zh) | 三维红外探测器像元结构及其制备方法 | |
CN106430076A (zh) | 高填充红外探测器像元结构及其制备方法 | |
CN113447143A (zh) | 一种热对称型红外探测器 | |
CN113432724A (zh) | 一种非制冷调谐型红外探测器 | |
JP5264471B2 (ja) | 赤外線検出器および赤外線固体撮像装置 | |
JP6576906B2 (ja) | 赤外線センサ及びその製造方法 | |
CN113447149B (zh) | 一种红外微桥结构及红外探测器 | |
CN114088209B (zh) | 基于cmos工艺的红外探测器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16910288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16910288 Country of ref document: EP Kind code of ref document: A1 |