WO2018018510A1 - 传输导频信号的方法、终端设备和网络侧设备 - Google Patents

传输导频信号的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2018018510A1
WO2018018510A1 PCT/CN2016/092102 CN2016092102W WO2018018510A1 WO 2018018510 A1 WO2018018510 A1 WO 2018018510A1 CN 2016092102 W CN2016092102 W CN 2016092102W WO 2018018510 A1 WO2018018510 A1 WO 2018018510A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
terminal device
pilot pattern
network side
side device
Prior art date
Application number
PCT/CN2016/092102
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019504054A priority Critical patent/JP6995831B2/ja
Priority to CN201680088033.3A priority patent/CN109565433B/zh
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to EP16910091.4A priority patent/EP3474482B1/en
Priority to KR1020197005339A priority patent/KR20190034577A/ko
Priority to RU2019105091A priority patent/RU2713430C1/ru
Priority to SG11201900777XA priority patent/SG11201900777XA/en
Priority to PCT/CN2016/092102 priority patent/WO2018018510A1/zh
Priority to AU2016416207A priority patent/AU2016416207B2/en
Priority to US16/309,208 priority patent/US10791013B2/en
Priority to ES16910091T priority patent/ES2957545T3/es
Priority to MX2019001219A priority patent/MX2019001219A/es
Priority to CN202011483594.8A priority patent/CN112600658B/zh
Priority to CA3032007A priority patent/CA3032007A1/en
Priority to BR112019001723-2A priority patent/BR112019001723B1/pt
Priority to TW106123116A priority patent/TWI735616B/zh
Publication of WO2018018510A1 publication Critical patent/WO2018018510A1/zh
Priority to IL264480A priority patent/IL264480B/en
Priority to PH12019500192A priority patent/PH12019500192A1/en
Priority to ZA2019/01172A priority patent/ZA201901172B/en
Priority to US16/993,513 priority patent/US11368345B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method, a terminal device, and a network side device for transmitting a pilot signal.
  • the terminal device supports transmission at various moving speeds, specifically including high-speed scenes of up to 350 km/h and ordinary low-speed scenes.
  • the moving speed of the terminal devices is different, the channel change rate is also different.
  • the pilots used for signal measurement or signal demodulation require a corresponding density to ensure channel estimation accuracy. For example, at high speeds, higher pilot densities are required to track channel variations; at low speeds, lower pilot densities can be used to reduce overhead.
  • the current problem is that the existing technical solutions cannot flexibly adjust the pilot density and physical resources, which may result in higher pilot overhead. Therefore, there is a need to propose a way to solve this problem.
  • the embodiment of the invention provides a method for transmitting a pilot signal, a terminal device and a network side device, which can flexibly adjust the pilot density and physical resources, thereby reducing the pilot overhead.
  • a method of transmitting a pilot signal comprising:
  • the terminal device determines the first pilot pattern in the plurality of pilot patterns
  • the terminal device transmits or receives the pilot signal on the time-frequency resource.
  • the terminal device may determine the first pilot pattern in the multiple pilot patterns, and determine a time-frequency resource for transmitting the pilot signal according to the first pilot pattern, which can be flexibly adjusted. Frequency density and physical resources occupied.
  • the pilot signal may include: a Demodulation Reference Signal (DMRS), a Cell-specific Reference Signal (CRS), and a Channel State Information Reference Signal. , CSI-RS), Positioning Reference Signal (PRS), discovery reference letter Reference signal defined by each Rel version in LTE, such as the Discovery Reference Signal (DRS) or the Multicast/Multicast Network-Reference Signal (MBSFN-RS).
  • DMRS Demodulation Reference Signal
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PRS Positioning Reference Signal
  • DRS Discovery Reference Signal
  • MMSFN-RS Multicast/Multicast Network-Reference Signal
  • the pilot signal may also be a newly defined reference signal in 5G.
  • the pilot pattern indicates a resource unit (Resouce Element, RE) used for transmitting the pilot signal in a timing domain resource region.
  • RE Resource unit
  • the multiple pilot patterns may be pre-determined by the terminal device and the network side device, or may be indicated by the network side device to the terminal device.
  • the network side device can indicate multiple pilot patterns to the terminal device by using high-level signaling, for example, Radio Resource Control (RRC) signaling, which is not limited.
  • RRC Radio Resource Control
  • the method may further include:
  • the terminal device receives the indication information sent by the network device, where the indication information is used to indicate the multiple pilot patterns.
  • the multiple pilot patterns have different pilot resource densities, wherein the pilot resource densities include time domain resource densities and/or frequency domain resource densities.
  • the time domain resource density is the number of time domain transmission units spaced between adjacent pilot resources in the time domain;
  • the frequency domain resource density is the number of frequency domain transmission units spaced between pilot resources in the frequency domain.
  • the time domain transmission unit is a basic unit of a time domain physical resource used for transmitting a signal, and may be a subframe, a TTI, a time slot, an OFDM symbol, or an RE.
  • the frequency domain transmission unit is a basic unit of frequency domain physical resources for transmitting signals, and may be a subcarrier, a PRB, a subband, or the like.
  • determining, by the terminal device, the first pilot pattern in the multiple pilot patterns including:
  • the terminal device determines the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the terminal device determines the first pilot pattern according to the correspondence between the motion speed estimation value and the pilot pattern.
  • the corresponding relationship may be that the network side device and the terminal device are scheduled to be good, or are indicated by the network side device.
  • the terminal device determines the first pilot according to the correspondence between the transmission mode and the pilot pattern used by the data transmitted by the same time domain resource or the same frequency domain resource of the pilot signal. pattern.
  • the corresponding relationship may be that the network side device and the terminal device are scheduled to be good, or are indicated by the network side device.
  • the terminal device is configured according to a basic parameter set and a pilot pattern of data used for transmitting the pilot signal or the same time domain resource or the same frequency domain resource as the pilot signal.
  • Corresponding relationship determines the first pilot pattern.
  • the corresponding relationship may be that the network side device and the terminal device are scheduled to be good, or are indicated by the network side device.
  • the method further includes:
  • the terminal device receives the pilot pattern configuration information that is sent by the network side device and is indicated by the first downlink control information DCI, where the first DCI is used to schedule the same time domain resource or the same frequency domain resource as the pilot signal. DCI of the transmitted data;
  • the terminal device determines the first pilot pattern in the multiple pilot patterns, including:
  • the terminal device determines the first pilot pattern in the plurality of pilot patterns according to the pilot pattern configuration information indicated by the first DCI.
  • the method before the determining, by the terminal device, the first pilot pattern in the multiple pilot patterns according to the pilot pattern configuration information indicated by the first DCI, the method further includes:
  • the terminal device reports the moving speed estimation value information to the network side device, where the moving speed estimation value information is used by the network side device to determine the pilot pattern configuration information.
  • the basic parameter set information includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in the predetermined time length, and the length of the signal prefix.
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; PRB
  • the number of subcarriers included in the TTI may be an integer multiple of 12; the number of OFDM symbols included in the TTI may be, for example, an integer multiple of 14; the number of TTIs included in a certain time unit may be within a time length of 1 ms or 10 ms.
  • the method further includes:
  • the terminal device reports the information of the first pilot pattern to the network side device.
  • the terminal device can report the information of the first pilot pattern to the network side device by using the uplink control channel, so that the network side device can determine the resource location of the pilot signal, thereby performing channel estimation based on the pilot signal.
  • the multiple pilot patterns include a zero pilot pattern, where the zero pilot pattern indicates that there is no time-frequency resource for transmitting the pilot signal.
  • a zero pilot pattern may be included in the plurality of pilot patterns.
  • the pilot pattern 2 occupies one OFDM signal
  • the pilot pattern 3 occupies two OFDM signals
  • the pilot pattern 4 occupies three OFDM signals
  • the pilot pattern 1 occupies 0 OFDM signals.
  • the pilot pattern 1 is a zero pilot pattern.
  • At least one pilot pattern in which the pilot resources are not used is included in the plurality of pilot patterns.
  • “Pilot resources are not used” means that there is no need to transmit pilot signals in the current transmission time unit.
  • a method of transmitting a pilot signal including:
  • the network side device determines the first pilot pattern in a plurality of pilot patterns
  • the network side device determines, according to the first pilot pattern, a time-frequency resource used for transmitting the pilot signal
  • the network side device sends or receives the pilot signal on the time-frequency resource.
  • the network side device may determine the first pilot pattern in the multiple pilot patterns, and determine a time-frequency resource for transmitting the pilot signal according to the first pilot pattern, which can be flexibly adjusted.
  • the first pilot pattern is used to describe a resource unit RE that is used to transmit the pilot signal in a timing domain resource region.
  • the multiple pilot patterns may be pre-determined by the terminal device and the network side device, or may be indicated by the network side device to the terminal device.
  • the network side device can pass The high-level signaling, for example, the radio resource control (RRC) signaling, is used to indicate multiple pilot patterns to the terminal device, which is not limited.
  • RRC radio resource control
  • the method may further include:
  • the network side device sends indication information to the terminal device, where the indication information is used to indicate the multiple pilot patterns.
  • the multiple pilot patterns have different pilot resource densities, wherein the pilot resource densities include time domain resource densities and/or frequency domain resource densities.
  • the time domain resource density is the number of time domain transmission units spaced between adjacent pilot resources in the time domain;
  • the frequency domain resource density is the number of frequency domain transmission units spaced between pilot resources in the frequency domain.
  • the time domain transmission unit is a basic unit of a time domain physical resource used for transmitting a signal, and may be a subframe, a TTI, a time slot, an OFDM symbol, or an RE.
  • the frequency domain transmission unit is a basic unit of frequency domain physical resources for transmitting signals, and may be a subcarrier, a PRB, a subband, or the like.
  • the network side device determines, in the multiple pilot patterns, the first pilot pattern, including:
  • the network side device determines the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the basic parameter set information includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in the predetermined time length, and the length of the signal prefix.
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; the number of subcarriers included in the PRB is, for example, typical. Can be an integer multiple of 12; the OFDM symbol contained in the TTI The number may be, for example, an integer multiple of 14; the number of TTIs included in a unit of time may refer to the number of TTIs included in the length of time 1ms or 10ms; the length of the signal prefix, such as the length of the cyclic prefix of the signal, or the cyclic prefix used.
  • the regular CP still uses an extended CP.
  • the method further includes:
  • the network side device sends the pilot pattern configuration information indicated by the first downlink control information DCI to the terminal device, where the first DCI is used for scheduling the same time domain resource or the same frequency domain resource transmission with the pilot signal.
  • the DCI of the data, the pilot pattern configuration information is used to indicate the first pilot pattern.
  • the method further includes:
  • the network side device determines the first pilot pattern in the multiple pilot patterns, including:
  • the network side device determines the first pilot pattern in the plurality of pilot patterns according to the moving speed estimated value information.
  • the method further includes:
  • the network side device receives the information of the first pilot pattern reported by the terminal device.
  • the network side device determines the resource location of the pilot signal according to the received information of the first pilot pattern, thereby performing channel estimation based on the pilot signal.
  • the multiple pilot patterns include a zero pilot pattern, and the zero pilot pattern indicates that there is no time domain resource for transmitting the pilot signal.
  • At least one pilot pattern in which the pilot resources are not used is included in the plurality of pilot patterns.
  • “Pilot resources are not used” means that there is no need to transmit pilot signals in the current transmission time unit.
  • the pilot pattern indicates a resource unit RE for transmitting a pilot signal.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network side device for performing the method in any of the foregoing possible aspects of the second aspect or the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a pass Letter interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a network side device in a sixth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a seventh aspect a computer readable storage medium storing a program, the program causing a terminal device to perform the first aspect described above, and any one of the various implementations Frequency signal method.
  • a computer readable storage medium storing a program, the program causing a network side device to perform the second aspect described above, and any one of the various implementations of the transmission The method of pilot signals.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of transmitting a pilot signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an example of transmitting a pilot signal in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another example of transmitting a pilot signal in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another example of transmitting a pilot signal according to an embodiment of the present invention.
  • FIG. 6 is another schematic flowchart of a method for transmitting a pilot signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a network side device according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 10 is a structural diagram of a network side device according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the network side device may also be referred to as a network device or a base station, and the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA.
  • BTS Base Transceiver Station
  • NodeB base station
  • the present invention is not limited to this, and may be an evolved Node B (eNB or eNodeB) in LTE, or a base station device in a future 5G network.
  • the terminal device may communicate with one or more core networks through a Radio Access Network (RAN), and the terminal device may be referred to as an access terminal and a user.
  • RAN Radio Access Network
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • Figure 1 is a schematic diagram of a scene. It should be understood that, for ease of understanding, the scenario in FIG. 1 is introduced as an example, but the present invention is not limited. Terminal device 11 and terminal are shown in FIG. End device 12, terminal device 13 and base station 21.
  • the terminal device 11 can communicate with the base station 21, the terminal device 12 can communicate with the base station 21, and the terminal device 13 communicates with the base station 21.
  • the terminal device 12 can also communicate with the terminal device 11.
  • the terminal device 13 communicates with the base station 12.
  • the terminal device communicates with the base station, or the terminal device communicates with the terminal device, and the time-frequency physical resource may be determined according to the pilot pattern, so that the pilot signal is transmitted or received on the time-frequency physical resource.
  • the pilot pattern is used to describe a resource unit (Resouce Element, RE) occupied by the pilot signal in a time domain resource region.
  • the pilot signal occupies an RE within a resource range of one physical resource block (PRB) of one subframe.
  • PRB physical resource block
  • the "pilot signal” may also be simply referred to as "pilot".
  • the selection of the pilot pattern is completely based on the network side device decision, and the terminal device cannot select the pilot pattern.
  • the time-frequency resources required for transmitting the pilot are selected adaptively, and the flexibility is not flexible. Adjust the density of the pilots. Therefore, the terminal device or the network side device of the present patent attempts to flexibly adjust the density of the pilot and the occupied physical resources according to the current channel state or other changes in the transmission parameters.
  • the method 200 can be performed by a terminal device, for example, the terminal device can be the terminal device 11, the terminal device 12 or the terminal device 13 in FIG. As shown in FIG. 2, the method 200 includes:
  • the terminal device determines, in multiple pilot patterns, a first pilot pattern.
  • the terminal device may select the first pilot pattern in the plurality of pilot patterns.
  • the pilot pattern indicates a resource unit RE used for transmitting the pilot signal in a timing domain resource region.
  • the pilot signal may specifically include: a Demodulation Reference Signal (DMRS), a Cell-specific Reference Signal (CRS), and a Channel State Information Reference Signal. , CSI-RS), Positioning Reference Signal (PRS), Discovery Reference Signal (DRS), or Multicast/Multicast Single Frequency Network Reference Signal (MBSFN) -RS) A reference signal defined by each Rel version in LTE.
  • DMRS Demodulation Reference Signal
  • CRS Cell-specific Reference Signal
  • MMSFN Multicast/Multicast Single Frequency Network Reference Signal
  • the pilot signal may also be a newly defined reference signal in 5G.
  • the multiple pilot patterns may be pre-determined by the terminal device and the network side device, or may be indicated by the network side device to the terminal device.
  • the network side device can indicate multiple pilot patterns to the terminal device by using high-level signaling, for example, Radio Resource Control (RRC) signaling, which is not limited.
  • RRC Radio Resource Control
  • the multiple pilot patterns may be a pilot pattern subset determined by the terminal device or the network device, that is, the terminal device or the network device may determine the pilot pattern subset in the agreed pilot pattern set.
  • first pilot pattern is a pilot pattern suitable for use by the terminal device, and the introduction of "first” is merely for convenience of description and does not specifically limit the present invention.
  • the method may further include:
  • the terminal device receives the indication information sent by the network device, where the indication information is used to indicate the multiple pilot patterns.
  • the terminal device can receive the plurality of pilot patterns that are sent by the network device by using the indication information.
  • the terminal device determines, according to the first pilot pattern, a time-frequency resource used for transmitting the pilot signal.
  • the terminal device may determine a time-frequency physical resource used for transmitting the pilot signal according to the first pilot pattern.
  • the terminal device sends or receives the pilot signal on the time-frequency resource.
  • the terminal device may perform uplink pilot signal transmission on the time-frequency physical resource, or may perform downlink downlink on the time-frequency physical resource. Frequency signal reception.
  • the terminal device may determine the first pilot pattern in the multiple pilot patterns, and determine a time-frequency resource for transmitting the pilot signal according to the first pilot pattern, which can be flexibly adjusted. Frequency density and physical resources occupied.
  • the multiple pilot patterns have different pilot resource densities, wherein the pilot resource density includes a time domain resource density and/or a frequency domain resource density.
  • the time domain resource density is the number of time domain transmission units spaced between adjacent pilot resources in the time domain;
  • the frequency domain resource density is the number of frequency domain transmission units between the adjacent pilot resources in the frequency domain.
  • the time domain transmission unit is a basic unit of a time domain physical resource used for transmitting a signal, and may be a subframe, a TTI, a time slot, an OFDM symbol, or an RE.
  • the frequency domain transmission unit is used for transmitting signals
  • the basic unit of the frequency domain physical resource may be a subcarrier, a PRB, a subband, or the like.
  • the pilot resources in different pilot patterns have different numbers of OFDM symbols occupied in one subframe, or the number of subframes occupied by pilot resources in one radio frame is different in different pilot patterns.
  • the number of subcarriers occupied by pilot resources in one PRB is different, or the number of subcarriers occupied by pilot resources in one subband is different in different pilot patterns, or
  • the pilot resources in different pilot patterns have different numbers of subcarriers occupied in one bandwidth.
  • the terminal device can select a suitable pilot pattern for pilot transmission according to its actual situation; or, the network side device can change according to the actual situation of the current channel. Selecting a suitable pilot pattern for the terminal device, thereby achieving the purpose of flexibly adjusting the density of the pilot and occupying the physical resources.
  • S210 may include:
  • the terminal device determines the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the terminal device may use at least one of the foregoing information as a determining factor, and select a suitable pilot pattern, that is, a first pilot pattern, among the plurality of pilot patterns.
  • a suitable pilot pattern that is, a first pilot pattern, among the plurality of pilot patterns.
  • the terminal device may receive pilot pattern configuration information sent by the network side device, where the pilot pattern configuration information is Indicates configuration information of the first pilot pattern.
  • the network side device can select an appropriate pilot pattern for the terminal device.
  • the pilot pattern configuration information may be indicated by the network side device by using the high layer signaling, or may be indicated by the network side device by the physical layer downlink control information (DCI) signaling.
  • DCI physical layer downlink control information
  • the method further includes:
  • the network side device Receiving, by the network side device, the first downlink control information DCI Pilot pattern configuration information, wherein the first DCI is a DCI for scheduling data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal;
  • the terminal device determines the first pilot pattern in the multiple pilot patterns, including:
  • the terminal device determines the first pilot pattern in the plurality of pilot patterns according to the pilot pattern configuration information indicated by the first DCI.
  • the terminal device may receive the pilot pattern configuration information that is sent by the network side device and is indicated by the first DCI, and select the first pilot pattern according to the pilot pattern configuration information of the first DCI indication.
  • a pilot pattern For example, the network side device indicates the pilot pattern used by the terminal device with 2 bits in the first DCI.
  • the first DCI is a DCI for scheduling data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal.
  • the pilot pattern configuration information is a pilot pattern for scheduling data transmitted in the same time domain resource or the same frequency domain resource as the pilot signal.
  • the terminal device can determine the first pilot pattern according to the pilot pattern configuration information, so as to flexibly adjust the density of the pilot and the occupied physical resources.
  • the terminal device may according to the pilot signal
  • the first pilot pattern is selected in a transmission mode used by data transmitted by the same time domain resource or the same frequency domain resource, and a correspondence between the transmission mode and the pilot pattern.
  • the “time domain resource” may be a transmission time unit such as a subframe, a time slot, a transmission time interval (TTI), an OFDM symbol, a radio frame, or the like, or may be a newly defined transmission time unit in the 5G.
  • the "frequency domain resource” may be a subband, a PRB, a carrier, or a bandwidth.
  • mapping between the transmission mode and the pilot pattern may be pre-agreed by the network side device and the terminal device, or the network side device may directly send the indication information to the terminal device, where the indication information is used to indicate different The corresponding pilot pattern in the transmission mode.
  • transmission mode A and transmission B correspond to pilot pattern 1
  • transmission mode C corresponds to pilot pattern 2.
  • the terminal device uses a robust transmission mode such as Open-Input Multiple-Output (MIMO), wherein the open-loop transmission mode corresponds to the pilot pattern 1;
  • MIMO Open-Input Multiple-Output
  • the terminal device uses a spectrally efficient transmission mode such as closed-loop MIMO, where the closed-loop transmission mode corresponds to the pilot pattern 2.
  • the terminal device can determine the transmission mode information used by the data transmitted in the same time domain resource or the same frequency domain resource as the pilot signal, and the correspondence between the transmission mode and the pilot pattern.
  • the first pilot pattern is determined, so that the density of the pilot and the occupied physical resources are flexibly adjusted.
  • the terminal device may select the first according to the current moving speed estimation value and the correspondence between the moving speed value and the pilot pattern.
  • a pilot pattern In a specific implementation, the terminal device may estimate the moving speed value based on the transmitted pilot signal or the data signal, thereby acquiring the current moving speed estimation value, and then corresponding to the pilot pattern according to the speed range of the moving speed estimation value. The relationship selects the first pilot pattern corresponding to the current moving speed estimate.
  • the corresponding relationship between the estimated value of the moving speed and the pilot pattern may be pre-agreed by the network side device and the terminal device, or the network side device may directly send the indication information to the terminal device, where the indication information is used.
  • a pilot pattern corresponding to different moving speed estimates is indicated.
  • the correspondence between the moving speed range and the pilot pattern can be as shown in Table 1:
  • the corresponding pilot pattern is the pilot pattern 1; when the estimated speed of the moving speed of the terminal device is in the range of 3-30 km, the corresponding The pilot pattern is the pilot pattern 2; when the estimated speed of the terminal device is in the range of 30-120 km, the corresponding pilot pattern is the pilot pattern 3; when the moving speed of the terminal device is estimated to be in the range of 120-350 km
  • the corresponding pilot pattern is the pilot pattern 4; when the estimated speed of the terminal device is more than 350 km, the corresponding pilot pattern is the pilot pattern 5.
  • the terminal device can select the first pilot pattern according to the corresponding relationship between the estimated value of the moving speed and the pilot pattern in different moving speed scenarios, thereby flexibly adjusting the density of the pilot and the occupied physical resources.
  • the terminal device for "basic parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource with the pilot signal": specifically, the terminal device a base parameter set according to data for transmitting the pilot signal or data transmitted in the same time domain resource or the same frequency domain resource as the pilot signal, and the basic parameter set and the pilot pattern Corresponding relationship, or the correspondence between the parameters in the basic parameter set and the pilot pattern, selects the first pilot pattern.
  • the basic parameter set is at least one basic parameter for determining a time domain transmission unit and a frequency domain transmission unit used for transmitting the signal.
  • the correspondence between the parameters in the basic parameter set or the basic parameter set and the pilot pattern may be pre-agreed by the network side device and the terminal device; or the network side device may directly send the indication information to the terminal device.
  • the indication information is used to indicate a pilot pattern corresponding to different basic parameter sets, or the indication information is used to indicate a pilot pattern corresponding to the parameter in the basic parameter set.
  • the correspondence between the subcarrier spacing and the pilot pattern can be as shown in Table 2:
  • Subcarrier spacing Pilot pattern 15kHz Pilot pattern 1 30kHz Pilot pattern 2 60kHz Pilot pattern 3 120kHz Pilot pattern 4
  • the corresponding pilot pattern is pilot pattern 1; when the subcarrier spacing is 30kHZ, the corresponding pilot pattern is pilot pattern 2; when the subcarrier spacing is 60kHZ, The corresponding pilot pattern is the pilot pattern 3; when the subcarrier spacing is 120 kHz, the corresponding pilot pattern is the pilot pattern 4.
  • the correspondence between the subcarrier spacing and the pilot pattern may also be as shown in Table 3:
  • the corresponding pilot pattern subset when the subcarrier spacing is 15kHZ, the corresponding pilot pattern subset includes pilot pattern 1 and pilot pattern 2; when the subcarrier spacing is 30kHZ, the corresponding pilot pattern subset includes the pilot pattern 3 and pilot pattern 4.
  • each subcarrier spacing in Table 3 may correspond to a pilot pattern subset, the pilot pattern subset including a plurality of pilot patterns.
  • the terminal device can determine the first pilot pattern according to the corresponding relationship between the parameter set in the basic parameter set or the basic parameter set and the pilot pattern, thereby flexibly adjusting the density of the pilot and the occupied physical resources.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; the number of subcarriers included in the PRB is, for example, typical.
  • the number of OFDM symbols included in the TTI may be, for example, an integer multiple of 14; the number of TTIs included in a certain time unit may refer to the number of TTIs included in the length of 1 ms or 10 ms; the length of the signal prefix For example, the length of the cyclic prefix of the signal, or whether the cyclic prefix uses a regular CP or an extended CP.
  • the terminal device can determine the first pilot pattern according to at least one of the information described above. It should be noted that some of the at least one type of information may be used in combination.
  • the pilot pattern configuration information sent by the network side device is combined with the moving speed estimation value information of the terminal device. An embodiment in which the pilot pattern configuration information is used in conjunction with the moving speed estimation value information of the terminal device will be described below.
  • the method 200 before the terminal device determines the first pilot pattern in the multiple pilot patterns according to the pilot pattern configuration information indicated by the first DCI, the method 200 further includes:
  • the terminal device reports the moving speed estimation value information to the network side device, where the moving speed estimation value information is used by the network side device to determine the pilot pattern configuration information.
  • the terminal device may report its own moving speed estimation value to the network side device, so that the network side device determines the pilot pattern used by the terminal device according to the moving speed estimation finger.
  • the network side device may determine the pilot pattern configuration information according to the moving speed estimation value of the terminal device, and indicate the pilot pattern configuration information by using a downlink instruction (for example, a first DCI).
  • the terminal device may quantize the moving speed estimation value and report it to the network side device.
  • the network side device may know the transmission mode information or the basic parameter set information of the terminal device, and the terminal device needs to report the moving speed estimation value of the terminal device.
  • the method 200 may further include:
  • the terminal device reports the information of the first pilot pattern to the network side device.
  • the terminal device may report the information of the first pilot pattern to the network side device by using the uplink control channel, so that the network side device determines the resource location of the pilot signal according to the first pilot pattern, so that the network side The device performs channel estimation based on the pilot signal.
  • the multiple pilot patterns include a zero pilot pattern, and the zero pilot pattern indicates that there is no time-frequency resource for transmitting the pilot signal.
  • the pilot resources corresponding to at least one of the plurality of pilot patterns are not used, that is, the pilot signal is not required to be transmitted in the current transmission time unit.
  • a zero pilot pattern may be included in the plurality of pilot patterns.
  • the pilot pattern 2 occupies one OFDM signal
  • the pilot pattern 3 occupies two OFDM signals
  • the pilot pattern 4 occupies three OFDM signals
  • the pilot pattern 1 occupies 0 OFDM signals.
  • the pilot pattern 1 is a zero pilot pattern.
  • the terminal device may determine the first pilot pattern in the plurality of pilot patterns, and determine a time frequency for transmitting the pilot signal according to the first pilot pattern.
  • Resources flexible to adjust the density of pilots and the physical resources occupied.
  • the terminal device 30 and the network side device 31 stipulate a plurality of pilot patterns used by the downlink DMRS.
  • pilot patterns agreed by the terminal device 30 and the network side device 31 are respectively pilot pattern 1, pilot pattern 2, pilot pattern 3, and pilot pattern 4, wherein there is no pilot RE in the pilot pattern 1, pilot
  • the pilot signals in patterns 2-4 occupy 1, 2, and 3 OFDM symbols, respectively, and pilot pattern 1 does not need to transmit pilot signals.
  • the network side device 31 determines a pilot pattern used by the terminal.
  • the network side device 31 can select an appropriate DMRS pilot pattern for the terminal device 30 according to the change of the current channel. For example, when the channel changes rapidly, the pilot pattern occupying more OFDM symbols is selected, and when the channel changes slowly, the pilot pattern occupying less OFDM symbols is selected.
  • the terminal device 30 determines the pilot pattern used.
  • the terminal device 30 can select an appropriate pilot pattern among the plurality of pilot patterns. For example, combining the current moving speed value of the terminal device 30, the transmission mode used by the downlink DMRS signal in the same time domain resource or the data transmitted by the same frequency domain resource, the basic parameter set of the downlink DMRS signal, and the downlink DMRS signal are
  • the pilot pattern is determined by information such as a base parameter set used by the same time domain resource or data transmitted by the same frequency domain resource.
  • the network side device 31 sends the downlink control signaling DCI.
  • the network side device 31 may schedule downlink data transmission of the terminal device 30 by using downlink control signaling DCI.
  • the DMRS pilot pattern used by the terminal device 30 is indicated by 2 bits in the DCI.
  • the terminal device 30 determines a physical resource used by the downlink DMRS.
  • the terminal device 30 can determine the physical resources used by the downlink DMRS according to the pilot pattern selected by itself.
  • the terminal device 30 may also determine, according to the DMRS pilot pattern indicated by the DCI, physical resources used by the downlink DMRS.
  • the terminal device 30 transmits the downlink DMRS.
  • the terminal device 30 receives the downlink DMRS for demodulating the downlink data on the physical resource, so as to perform downlink channel estimation according to the received downlink DMRS, thereby demodulating the demodulation of the downlink data.
  • the downlink data and the downlink DMRS signal transmitted by the network side device 31 to the terminal device 30 are in the same subframe.
  • the terminal device 30 can determine the physical resource for transmitting the downlink DMRS according to the pilot pattern indicated by the network side device 31, thereby transmitting the downlink DMRS.
  • the terminal device 40 and the network side device 41 stipulate a pilot pattern set of the uplink DMRS.
  • the terminal device 40 and the network side device 41 can agree on a set of pilot patterns that can be used by the uplink DMRS.
  • the pilot pattern set includes four pilot patterns, and the four pilot patterns have different pilot resource densities.
  • the network side device 41 determines a pilot pattern subset used by the terminal device 40.
  • the network side device 41 may also determine the pilot pattern subset used for the terminal device 40 in the pilot pattern set, for example, the pilot pattern subset includes the pilot pattern 2 and the pilot pattern 4.
  • the network side device 41 can determine the pilot pattern subset according to the change of the channel. For example, when the channel changes rapidly, the pilot pattern occupying more OFDM symbols is selected, and when the channel changes slowly, the pilot pattern occupying less OFDM symbols is selected. For another example, the network side device 41 can adjust the pilot pattern subset according to the previous channel estimation performance.
  • the network side device 41 sends RRC signaling.
  • the network side device 41 can inform the terminal device 40 of the determined pilot pattern subset by RRC signaling.
  • the network side device 41 may indicate the currently available pilot pattern subset in the agreed pilot pattern set to the terminal device 40 by using the method for identifying the value bitmap, so that the terminal device 40 is in the pilot pattern. Focus on selecting the appropriate pilot pattern.
  • the terminal device 40 determines the pilot pattern used.
  • the terminal device 40 may itself select an appropriate pilot pattern in the pilot pattern subset. For example, the terminal device 40 combines the current moving speed value, the transmission mode used by the same time domain resource or the data transmitted by the same frequency domain resource with the uplink DMRS signal, the basic parameter set of the uplink DMRS signal, and the uplink DMRS signal.
  • the appropriate pilot pattern is selected by the same time domain resource or the basic parameter set used by the data transmitted by the same frequency domain resource. For example, the terminal device 40 selects a pilot pattern based on the current moving speed estimate, selects the pilot pattern 2 when the moving speed estimate is less than A, and selects the pilot pattern 4 when the moving speed estimate is greater than or equal to A.
  • the terminal device 40 selects an appropriate pilot pattern in the pilot pattern subset according to the received RRC signaling, where the RRC signaling is used to indicate the pilot pattern subset.
  • the terminal device 40 determines a physical resource used by the uplink DMRS.
  • the terminal device 40 may determine the physical resource used by the uplink DMRS according to the pilot pattern selected by the UE, and then transmit the uplink DMRS on the physical resource, where the uplink DMRS is used to demodulate the uplink data.
  • the terminal device 40 transmits an uplink DMRS.
  • the terminal device 40 transmits an uplink DMRS for demodulating uplink data on the physical resource.
  • the downlink data and the downlink DMRS signal transmitted by the network side device 41 to the terminal device 40 are in the same subframe.
  • the terminal device 40 sends indication information to the network side device 41, where the indication information is used to refer to The pilot pattern of the uplink DMRS is shown.
  • the terminal device 40 selects the pilot pattern of the uplink DMRS in the pilot pattern subset and feeds it back to the network side device 41 together with the uplink data.
  • the network side device 41 determines the location of the physical resource of the uplink DMRS.
  • the network side device 41 determines the location corresponding to the physical resource corresponding to the pilot pattern of the uplink DMRS according to the indication information sent by the terminal device 40.
  • the network side device 41 receives the uplink DMRS.
  • the network side device 41 receives the uplink DMRS on the physical resource according to the determined physical resource, and then performs uplink channel estimation based on the uplink DMRS, and performs demodulation of the uplink data according to the result of the uplink channel estimation.
  • the terminal device 40 may determine an appropriate pilot pattern in the pilot pattern subset, and determine a physical resource for transmitting the uplink DMRS according to the pilot pattern, thereby transmitting the uplink DMRS.
  • the terminal device 50 and the network side device 51 agree on a pilot pattern set of the CSI-RS.
  • the pilot pattern set includes N pilot patterns.
  • the set of pilot patterns can be defined in a protocol.
  • the terminal device 50 determines a pilot pattern subset for transmitting the CSI-RS.
  • the terminal device 50 may determine a pilot pattern subset corresponding to the basic parameter set in the N pilot patterns according to the currently used basic parameter set.
  • the pilot pattern subset includes M pilot patterns, and the M is less than or equal to N.
  • the basic parameter set may be configured by the network side device 51 to the terminal device 50 through other signaling.
  • the network side device 51 may also determine a pilot pattern subset for transmitting the CSI-RS.
  • the terminal device 50 determines, in a pilot pattern subset of the CSI-RS, a pilot pattern used for transmitting the CSI-RS.
  • the terminal device 50 can determine the pilot pattern used for transmitting the CSI-RS according to the correspondence between the basic parameter set and the pilot pattern in the pilot pattern subset.
  • the correspondence between the basic parameter set and the pilot pattern may be pre-approved by the network side device 51 and the terminal device 50, for example, the corresponding relationship is defined in the protocol.
  • the network side device 51 may also determine a pilot pattern used for transmitting the CSI-RS.
  • the network side device 51 sends RRC signaling.
  • the network side device 51 indicates the pilot pattern of the CSI-RS used by the terminal device 50 by the RRC signaling delivered to the terminal device 50.
  • the RRC signaling includes log2(M) (uprounded) bits.
  • the terminal device 50 determines a physical resource used for transmitting the CSI-RS according to the pilot pattern of the CSI-RS.
  • the terminal device 50 may determine a physical resource used for transmitting the CSI-RS according to the pilot pattern of the CSI-RS indicated by the RRC signaling. Alternatively, the terminal device 50 may also determine a physical resource for subsequently transmitting the CSI-RS according to the pilot pattern selected by itself.
  • the terminal device 50 receives the CSI-RS on the physical resource.
  • the terminal device 50 performs subsequent CSI-RS reception on the physical resource according to the determined physical resource, and performs downlink CSI measurement based on the received CSI-RS.
  • the terminal device 50 may determine a suitable pilot pattern in the pilot pattern subset, and determine a physical resource for transmitting the CSI-RS according to the pilot pattern, thereby receiving the uplink CSI-RS.
  • FIGS. 3 to 5 are merely for facilitating understanding of the technical solutions of the present invention and are not intended to limit the present invention.
  • FIG. 6 shows a schematic flow diagram of a method 600 of transmitting a pilot signal in accordance with an embodiment of the present invention.
  • the method 600 is performed by a network side device.
  • the network side device may be the base station 21 in FIG.
  • the method 600 includes:
  • the network side device determines, in multiple pilot patterns, a first pilot pattern.
  • the network side device determines, according to the first pilot pattern, a time-frequency resource used for transmitting the pilot signal.
  • the network side device sends or receives the pilot signal on the time-frequency resource.
  • the network side device may determine the first pilot pattern in the multiple pilot patterns, and then determine, according to the first pilot pattern, a time-frequency resource for transmitting the pilot signal, and The pilot signal is transmitted or received on the time-frequency resource, and the pilot density and physical resources can be flexibly adjusted. Source, thereby reducing pilot overhead.
  • the plurality of pilot patterns have different pilot resource densities, wherein the pilot resource density comprises a time domain resource density and/or a frequency domain resource density.
  • the network side device determines, in the multiple pilot patterns, the first pilot pattern, including:
  • the network side device determines the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the method 600 further includes:
  • the network side device sends the pilot pattern configuration information indicated by the first downlink control information DCI to the terminal device, where the first DCI is used for scheduling the same time domain resource or the same frequency domain resource transmission with the pilot signal.
  • the DCI of the data, the pilot pattern configuration information is used to indicate the first pilot pattern.
  • the method 600 further includes:
  • S610 includes:
  • the network side device determines the first pilot pattern in the plurality of pilot patterns according to the moving speed estimated value information.
  • the network side device may determine the first pilot pattern according to the estimated moving speed reported by the terminal device.
  • the method 600 further includes:
  • the network side device receives the information of the first pilot pattern reported by the terminal device.
  • the network side device may determine the resource location of the pilot signal according to the received information of the first pilot pattern, thereby performing channel estimation based on the pilot signal.
  • the multiple pilot patterns include a zero pilot pattern, the zero pilot pattern Indicates that there is no time-frequency resource for transmitting the pilot signal.
  • the method 600 further includes:
  • the network side device sends indication information to the terminal device, where the indication information is used to indicate the multiple pilot patterns.
  • the first pilot pattern represents a resource unit RE for transmitting the pilot signal.
  • the network side device can determine the first pilot pattern in the plurality of pilot patterns according to the channel state or other transmission parameters, thereby flexibly adjusting the density of the pilot and The physical resources occupied.
  • FIG. 7 shows a schematic block diagram of a terminal device 700 in accordance with an embodiment of the present invention.
  • the terminal device 700 includes:
  • a determining module 710 configured to determine a first pilot pattern in the plurality of pilot patterns
  • the determining module 710 is further configured to determine, according to the first pilot pattern, a time-frequency resource for transmitting the pilot signal;
  • the transmitting module 720 is configured to send or receive the pilot signal on the time-frequency resource determined by the determining module.
  • the terminal device may determine the first pilot pattern in the multiple pilot patterns, and determine the time-frequency resource used for transmitting the pilot signal according to the first pilot pattern, and flexibly adjust the pilot.
  • the plurality of pilot patterns have different pilot resource densities, wherein the pilot resource density comprises a time domain resource density and/or a frequency domain resource density.
  • the determining module 710 is specifically configured to:
  • Determining the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the terminal device further includes:
  • a receiving module configured to receive pilot pattern configuration information that is sent by the network side device and is indicated by the first downlink control information DCI, where the first DCI is used to schedule the same time domain resource or the same frequency as the pilot signal DCI of data transmitted by domain resources;
  • the determining module 710 is specifically configured to:
  • the transmission module 720 is further configured to:
  • the moving speed estimation value information is reported to the network side device, where the moving speed estimated value information is used by the network side device to determine the pilot pattern configuration information.
  • the basic parameter set information includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in the predetermined time length, and the length of the signal prefix.
  • the transmission module 720 is further configured to:
  • the information of the first pilot pattern is reported to the network side device.
  • the plurality of pilot patterns include a zero pilot pattern, and the zero pilot pattern indicates that there is no time-frequency resource for transmitting the pilot signal.
  • the transmission module 720 is further configured to:
  • the pilot pattern indicates a resource unit RE for transmitting the pilot signal.
  • the terminal device 700 may perform the method 200 of transmitting a pilot signal according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the device 700 are respectively implemented to implement the respective methods described above.
  • the process for the sake of brevity, will not be described here.
  • the terminal device in the embodiment of the present invention may determine the first pilot pattern in the plurality of pilot patterns, and determine a time-frequency resource for transmitting the pilot signal according to the first pilot pattern, which can be flexibly adjusted. Frequency density and physical resources occupied.
  • a terminal device according to an embodiment of the present invention is described above with reference to FIG. 7, which is described below in conjunction with FIG. A network side device according to an embodiment of the present invention.
  • FIG. 8 shows a schematic block diagram of a network side device 800 in accordance with an embodiment of the present invention.
  • the network side device 800 includes:
  • a determining module 810 configured to determine a first pilot pattern in the plurality of pilot patterns
  • the determining module 810 is further configured to determine, according to the first pilot pattern, a time-frequency resource for transmitting the pilot signal;
  • the transmitting module 820 is configured to send or receive the pilot signal on the time-frequency resource.
  • the network side device in the embodiment of the present invention may determine a first pilot pattern in multiple pilot patterns, and determine a time-frequency resource for transmitting a pilot signal according to the first pilot pattern, and can flexibly adjust the pilot.
  • the plurality of pilot patterns have different pilot resource densities, wherein the pilot resource density comprises a time domain resource density and/or a frequency domain resource density.
  • the determining module 810 is specifically configured to:
  • Determining the first pilot pattern in the plurality of pilot patterns according to at least one of the following information:
  • Base parameter set information for transmitting the pilot signal or data transmitted by the same time domain resource or the same frequency domain resource as the pilot signal is
  • the transmission module 820 is further configured to:
  • the pilot pattern configuration information is used to indicate the first pilot pattern.
  • the transmission module 820 is further configured to:
  • the determining module 810 is configured to determine the first pilot pattern in the plurality of pilot patterns according to the moving speed estimated value information.
  • the transmission module 820 is further configured to:
  • the network side device receives the information of the first pilot pattern reported by the terminal device.
  • the multiple pilot patterns include a zero pilot pattern, the zero pilot The pattern represents no time-frequency resources for transmitting the pilot signals.
  • the transmission module 820 is further configured to:
  • the first pilot pattern represents a resource unit RE for transmitting the pilot signal.
  • the network side device 800 may perform the method 600 of transmitting pilot signals according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the network side device 800 respectively implement the foregoing The corresponding process of the method is not repeated here for the sake of brevity.
  • the network side device in the embodiment of the present invention may determine the first pilot pattern in the plurality of pilot patterns, and determine a time-frequency resource for transmitting the pilot signal according to the first pilot pattern, which can be flexibly adjusted.
  • FIG. 9 shows the structure of an apparatus for a terminal device according to still another embodiment of the present invention, comprising at least one processor 902 (for example, a CPU), at least one network interface 905 or other communication interface, a memory 906, and at least one communication bus. 903, used to implement connection communication between these devices.
  • the processor 902 is configured to execute executable modules, such as computer programs, stored in the memory 906.
  • the memory 906 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 905 (which may be wired or wireless).
  • the memory 906 stores the program 9061
  • the processor 902 executes the program 9061 for performing the method of transmitting the pilot signal on the terminal device side of the foregoing embodiment of the present invention.
  • the processor 902 executes the program 9061 for performing the method of transmitting the pilot signal on the terminal device side of the foregoing embodiment of the present invention.
  • FIG. 10 shows a structure of an apparatus for a network side device according to still another embodiment of the present invention, including at least one processor 1002 (for example, a CPU), at least one network interface 1005 or other communication interface, a memory 1006, and at least one communication.
  • a bus 1003 is used to implement connection communication between these devices.
  • the processor 1002 is configured to execute executable modules, such as computer programs, stored in the memory 1006.
  • the memory 1006 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 1005, which may be wired or wireless.
  • the memory 1006 stores a program 10061
  • the processor 1002 executes the program 10061 for performing the network side device transmitting the pilot signal of the foregoing embodiment of the present invention. Law, for the sake of brevity, I will not repeat it here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or made as a standalone product When used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出了一种传输导频信号的方法、终端设备和网络侧设备,包括:终端设备在多个导频图样中,确定第一导频图样;该终端设备根据该第一导频图样,确定用于传输该导频信号的时频资源;该终端设备在该时频资源上发送或接收该导频信号。本发明实施例的传输导频信号的方法、终端设备和网络侧设备,能够灵活得调整导频密度和物理资源,从而降低导频开销。

Description

传输导频信号的方法、终端设备和网络侧设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种传输导频信号的方法、终端设备和网络侧设备。
背景技术
在第五代移动通信技术(5G)系统中,终端设备要支持各种移动速度下的传输,具体包括高达350km/h的高速场景和普通的低速场景。当终端设备的移动速度不同时,其信道变化速率也不同。为了能够在信道的相干时间内跟踪信道的变化,用于信号测量或者信号解调的导频就需要相应密度,来保证信道估计的准确性。例如,高速移动时,需要较高的导频密度以跟踪信道变化;低速移动时,则可以采用较低的导频密度来降低开销。但目前存在的问题是:现有的技术方案不能灵活得调整导频密度和物理资源,从而会导致较高的导频开销。因此,亟需提出一种方法来解决该问题。
发明内容
本发明实施例提供了一种传输导频信号的方法、终端设备和网络侧设备,能够灵活得调整导频密度和物理资源,从而降低导频开销。
第一方面,提供了一种传输导频信号的方法,包括:
终端设备在多个导频图样(Pattern)中,确定第一导频图样;
该终端设备根据该第一导频图样,确定用于传输该导频信号的时频资源;
该终端设备在该时频资源上发送或接收该导频信号。
在本发明实施例中,终端设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
可选地,该导频信号具体可以包括:解调参考信号(Demodulation Reference Signal,DMRS)、小区专有参考信号(Cell-specific Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、位置参考信号(Positioning Reference Signal,PRS)、发现参考信 号(Discovery Reference Signal,DRS)或多播/组播单频网络参考信号(Multimedia Broadcast multicast service Single Frequency Network-Reference Signal,MBSFN-RS)等LTE中各个Rel版本定义的参考信号。可选地,该导频信号也可以是5G中新定义的参考信号。
在本发明实施例中,导频图样指示用于传输导频信号在一定时域资源区域中占用的资源单元(Resouce Element,RE)。
可选地,该多个导频图样可以是终端设备和网络侧设备预先预定好的,或者,也可以是网络侧设备指示给终端设备的。比如,网络侧设备可以通过高层信令,例如,无线资源控制(Radio Resource Control,RRC)信令,将多个导频图样指示给终端设备,对此不作限定。
可选地,在一些可能的实现方式中,在终端设备在多个导频图样中,确定第一导频图样之前,该方法还可以包括:
该终端设备接收该网络设备发送的指示信息,该指示信息用于指示该多个导频图样。
可选地,在一些可能的实现方式中,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
这里,时域资源密度为时域相邻的导频资源之间间隔的时域传输单元的数目;频域资源密度为频域相邻的导频资源之间间隔的频域传输单元数目。其中,时域传输单元为用于传输信号的时域物理资源的基本单位,可以是子帧、TTI、时隙、OFDM符号或者RE等。频域传输单元为用于传输信号的频域物理资源的基本单位,可以是子载波、PRB、子带等。
可选地,在一些可能的实现方式中,在终端设备在多个导频图样中,确定第一导频图样,包括:
该终端设备根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
网络侧设备发送的导频图样配置信息;
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
该终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
可选地,在一些可能的实现方式中,终端设备根据移动速度估计值与导频图样的对应关系,确定第一导频图样。其中,该对应关系可以是网络侧设备和终端设备预定好的,或者是由网络侧设备指示的。
可选地,在一些可能的实现方式中,终端设备根据与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式与导频图样的对应关系,确定第一导频图样。其中,该对应关系可以是网络侧设备和终端设备预定好的,或者是由网络侧设备指示的。
可选地,在一些可能的实现方式中,终端设备根据用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集与导频图样的对应关系,确定第一导频图样。其中,该对应关系可以是网络侧设备和终端设备预定好的,或者是由网络侧设备指示的。
可选地,在一些可能的实现方式中,该方法还包括:
该终端设备接收网络侧设备发送的通过第一下行控制信息DCI指示的导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI;
其中,终端设备在多个导频图样中,确定第一导频图样,包括:
该终端设备根据该第一DCI指示的该导频图样配置信息,在多个导频图样中确定该第一导频图样。
可选地,在一些可能的实现方式中,在该终端设备根据该第一DCI指示的该导频图样配置信息,在多个导频图样中确定第一导频图样之前,该方法还包括:
该终端设备将该移动速度估计值信息上报给该网络侧设备,其中,该移动速度估计值信息用于该网络侧设备确定该导频图样配置信息。
可选地,在一些可能的实现方式中,该基础参数集信息包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、预定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB 中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
可选地,在一些可能的实现方式中,在该终端设备在多个导频图样中,确定第一导频图样后,该方法还包括:
该终端设备将该第一导频图样的信息上报给网络侧设备。
终端设备可以通过上行控制信道将第一导频图样的信息上报给网络侧设备,使得网络侧设备能够确定出导频信号的资源位置,从而基于该导频信号进行信道估计。
可选地,在一些可能的实现方式中,该多个导频图样包括零导频图样,该零导频图样表示没有用于传输所述导频信号的时频资源。
例如,当终端设备的移动速度较慢时,该多个导频图样中可以包括零导频图样。比如,在4个导频图样中,导频图样2占用1个OFDM信号,导频图样3占用2个OFDM信号,导频图样4占用3个OFDM信号,而导频图样1占用0个OFDM信号,其中,导频图样1即为零导频图样。
换言之,该多个导频图样中至少包括一个导频资源未被使用的导频图样。“导频资源未被使用”即表示当前的传输时间单元中不需要传输导频信号。
第二方面,提供了一种传输导频信号的方法,包括:
网络侧设备在多个导频图样(Pattern)中,确定第一导频图样;
该网络侧设备根据该第一导频图样,确定用于传输该导频信号的时频资源;
该网络侧设备在该时频资源上发送或接收该导频信号。
在本发明实施例中,网络侧设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
可选地,该第一导频图样用于描述传输该导频信号在一定时域资源区域中占用的资源单元RE。
可选地,该多个导频图样可以是终端设备和网络侧设备预先预定好的,或者,也可以是网络侧设备指示给终端设备的。比如,网络侧设备可以通过 高层信令,例如,无线资源控制(Radio Resource Control,RRC)信令,将多个导频图样指示给终端设备,对此不作限定。
可选地,在一些可能的实现方式中,在网络侧设备在多个导频图样中,确定第一导频图样之前,该方法还可以包括:
该网络侧设备向终端设备发送指示信息,该指示信息用于指示该多个导频图样。
可选地,在一些可能的实现方式中,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
这里,时域资源密度为时域相邻的导频资源之间间隔的时域传输单元的数目;频域资源密度为频域相邻的导频资源之间间隔的频域传输单元数目。其中,时域传输单元为用于传输信号的时域物理资源的基本单位,可以是子帧、TTI、时隙、OFDM符号或者RE等。频域传输单元为用于传输信号的频域物理资源的基本单位,可以是子载波、PRB、子带等。
可选地,在一些可能的实现方式中,该网络侧设备在多个导频图样中,确定第一导频图样,包括:
该网络侧设备根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
可选地,在一些可能的实现方式中,该基础参数集信息包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、预定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符 号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
可选地,在一些可能的实现方式中,在该网络侧设备在多个导频图样中,确定第一导频图样之后,该方法还包括:
该网络侧设备向终端设备发送通过第一下行控制信息DCI指示的导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI,所述导频图样配置信息用于指示该第一导频图样。
可选地,在一些可能的实现方式中,该方法还包括:
该网络侧设备接收该终端设备发送的该移动速度估计值信息;
其中,该网络侧设备在多个导频图样中,确定第一导频图样,包括:
该网络侧设备根据该移动速度估计值信息,在该多个导频图样中,确定该第一导频图样。
可选地,在一些可能的实现方式中,该方法还包括:
该网络侧设备接收终端设备上报的该第一导频图样的信息。
网络侧设备根据接收到的第一导频图样的信息,确定出导频信号的资源位置,从而基于该导频信号进行信道估计。
可选地,在一些可能的实现方式中,该多个导频图样包括零导频图样,所述零导频图样表示没有用于传输所述导频信号的时域资源。
换言之,该多个导频图样中至少包括一个导频资源未被使用的导频图样。“导频资源未被使用”即表示当前的传输时间单元中不需要传输导频信号。
在本发明实施例中,导频图样指示用于传输导频信号的资源单元RE。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络侧设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备。该终端设备包括处理器、存储器和通 信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络侧设备。该网络侧设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种传输导频信号的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络侧设备执行上述第二方面,及其各种实现方式中的任一种传输导频信号的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一个应用场景的示意图。
图2是根据本发明实施例的传输导频信号的方法的示意性流程图。
图3是根据本发明实施例的传输导频信号的一个例子的示意图。
图4是根据本发明实施例的传输导频信号的另一个例子的示意图。
图5是根据本发明实施例的传输导频信号的再一个例子的示意图。
图6是根据本发明实施例的传输导频信号的方法的另一示意性流程图。
图7是根据本发明实施例的终端设备的示意性框图。
图8是根据本发明实施例的网络侧设备的示意性框图。
图9是根据本发明又一实施例提供的终端设备的结构图。
图10是根据本发明又一实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、等目前的通信系统,以及,尤其应用于未来的5G系统。
还应理解,本发明实施例中,网络侧设备也可以称为网络设备或基站等,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站设备等,本发明对此并不限定。
还应理解,在本发明实施例中,终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,终端设备可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
图1是一个场景示意图。应理解,为了便于理解,这里引入图1中的场景为例进行说明,但并不对本发明构成限制。图1中示出了终端设备11、终 端设备12、终端设备13和基站21。
如图1所示,终端设备11可以与基站21进行通信,终端设备12可以与基站21进行通信,终端设备13与基站21进行通信。或者,终端设备12也可以与终端设备11进行通信。或者,作为另一种情形,终端设备13与基站12进行通信。这里,终端设备与基站通信,或者终端设备与终端设备通信,均可以根据导频图样(pattern)确定出时频物理资源,从而在该时频物理资源上发送或接收导频信号。其中,导频图样用于描述导频信号在一定时域资源区域中占用的资源单元(Resouce Element,RE)。比如,导频信号在一个子帧的一个物理资源块(Physical Resource Block,PRB)的资源范围内占用的RE。其中,“导频信号”也可以简称为“导频”。
然而现有的传输导频技术中,导频图样的选择是完全基于网络侧设备决策的,终端设备无法进行导频图样的选择。此外,由于5G系统中需要支持终端设备的各种速度场景,而网络侧设备或终端设备并不能根据各种场景的变化,适应性得选择传输导频所需的时频资源,更不能灵活得调整导频的密度。因此,本专利的终端设备或网络侧设备试图根据当前的信道状态或其他传输参数的变化,灵活得调整导频的密度和占用的物理资源。
图2示出了根据本发明实施例的传输导频信号的方法200的示意性流程图。该方法200可以由终端设备执行,例如,该终端设备可以是图1中的终端设备11、终端设备12或终端设备13。如图2所示,该方法200包括:
S210,终端设备在多个导频图样中,确定第一导频图样;
具体而言,终端设备可以在多个导频图样中,选择该第一导频图样。
在本发明实施例中,导频图样指示用于传输该导频信号在一定时域资源区域中占用的资源单元RE。
可选地,该导频信号可以具体包括:解调参考信号(Demodulation Reference Signal,DMRS)、小区专有参考信号(Cell-specific Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、位置参考信号(Positioning Reference Signal,PRS)、发现参考信号(Discovery Reference Signal,DRS)或多播/组播单频网络参考信号(Multimedia Broadcast multicast service Single Frequency Network Reference Signal,MBSFN-RS)等LTE中各个Rel版本定义的参考信号。可选地,该导频信号也可以是5G中新定义的参考信号。
可选地,该多个导频图样可以是终端设备和网络侧设备预先预定好的,或者,也可以是网络侧设备指示给终端设备的。比如,网络侧设备可以通过高层信令,例如,无线资源控制(Radio Resource Control,RRC)信令,将多个导频图样指示给终端设备,对此不作限定。
可选地,该多个导频图样可以是终端设备或网络设备确定的导频图样子集,即终端设备或网络设备可以在约定好的导频图样集合中确定出该导频图样子集。
应理解,第一导频图样为适合终端设备使用的导频图样,引入“第一”只是为了描述方便,并不对本发明构成具体限定。
可选地,在S210之前,该方法还可以包括:
该终端设备接收该网络设备发送的指示信息,该指示信息用于指示该多个导频图样。
也就是说,终端设备可以接收网络设备通过指示信息发送的该多个导频图样。
S220,该终端设备根据该第一导频图样,确定用于传输该导频信号的时频资源;
具体而言,终端设备可以根据该第一导频图样,确定用于传输导频信号的时频物理资源。
S230,该终端设备在该时频资源上发送或接收该导频信号。
具体而言,终端设备在根据第一导频图样确定出时频物理资源后,可以在该时频物理资源上进行上行导频信号的发送,或者也可以在该时频物理资源上进行下行导频信号的接收。
在本发明实施例中,终端设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
可选地,在本发明实施例中,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
具体而言,时域资源密度为时域相邻的导频资源之间间隔的时域传输单元的数目;频域资源密度为频域相邻的导频资源之间间隔的频域传输单元数目。其中,时域传输单元为用于传输信号的时域物理资源的基本单位,可以是子帧、TTI、时隙、OFDM符号或者RE等。频域传输单元为用于传输信 号的频域物理资源的基本单位,可以是子载波、PRB、子带等。比如,不同的导频图样中导频资源在一个子帧中所占用的OFDM符号数目不同,或者,不同的导频图样中导频资源在一个无线帧中所占用的子帧数目不同。又比如,不同的导频图样中导频资源在一个PRB中所占用的子载波数目不同,或者,不同的导频图样中导频资源在一个子带中所占用的子载波数目不同,或者,不同的导频图样中导频资源在一个带宽中所占用的子载波数目不同。
这样,对于具有不同的导频资源密度的多个导频图样,终端设备可以根据自身的实际情况,选择合适的导频图样进行导频传输;或者,网络侧设备可以根据当前信道的实际变化情况,为终端设备选择合适的导频图样,从而达到灵活得调整导频的密度和占用的物理资源的目的。
可选地,作为一个实施例,S210可以包括:
该终端设备根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
网络侧设备发送的导频图样配置信息;
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
该终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
具体而言,终端设备可以将上述信息中的至少一个信息作为判断因素,在多个导频图样中选择出合适的导频图样,即第一导频图样。为了更清楚地理解终端设备如何能够根据上述至少一个信息,确定出第一导频图样,下面将对上述至少一个信息中的每个信息进行详细描述。
可选地,作为一个实施例,对于上述“网络侧设备发送的导频图样配置信息”:具体而言,终端设备可以接收网络侧设备发送的导频图样配置信息,该导频图样配置信息为指示第一导频图样的配置信息。换言之,网络侧设备可以为该终端设备选择合适的导频图样。其中,该导频图样配置信息可以是网络侧设备通过高层信令指示的,或者,也可以是网络侧设备通过物理层下行控制信息(Downlink Control Information,DCI)信令指示的。
可选地,作为一个实施例,该方法还包括:
该终端设备接收网络侧设备发送的通过第一下行控制信息DCI指示的 导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI;
其中,该终端设备在多个导频图样中,确定第一导频图样,包括:
该终端设备根据该第一DCI指示的该导频图样配置信息,在多个导频图样中确定该第一导频图样。
具体而言,终端设备可以接收网络侧设备发送的通过第一DCI指示的导频图样配置信息,从而根据该第一DCI指示的导频图样配置信息,在多个导频图样中选择出该第一导频图样。例如,网络侧设备在第一DCI中用2比特位指示终端设备所使用的导频图样。其中,第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI。导频图样配置信息为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的导频图样。
因此,终端设备能够根据该导频图样配置信息确定出第一导频图样,从而灵活得调整导频的密度和占用的物理资源。
可选地,作为一个实施例,对于上述“与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息”:具体而言,终端设备可以根据与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式,以及传输模式和导频图样的对应关系,选择第一导频图样。其中,“时域资源”可以是子帧、时隙、传输时间间隔(Transmission Time Interval,TTI)、OFDM符号、无线帧等传输时间单元,也可以是5G中新定义的传输时间单元。“频域资源”可以是子带、PRB、载波(Carrier)或带宽等。
需要说明的是,传输模式和导频图样的对应关系可以是网络侧设备和终端设备预先约定好的,或者,也可以由网络侧设备直接向终端设备发送指示信息,该指示信息用于指示不同的传输模式下对应的导频图样。例如,传输模式A和传输B对应导频图样1,传输模式C对应导频图样2。
比如,作为一个典型的应用,在高速场景时,终端设备使用开环多输入多输出(Multiple-Input Multiple-Output,MIMO)等稳健的传输模式,其中,开环传输模式对应导频图样1;在低速场景时,终端设备使用闭环MIMO等频谱效率较高的传输模式,其中,闭环传输模式对应导频图样2。
因此,终端设备可以根据与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息,以及传输模式与导频图样的对应关系,确 定出第一导频图样,从而灵活得调整导频的密度和占用的物理资源。
可选地,作为一个实施例,对于“终端设备的移动速度估计值信息”:具体而言,终端设备可以根据当前的移动速度估计值,以及移动速度值与导频图样的对应关系,选择第一导频图样。在具体实现中,终端设备可以基于发送过的导频信号或者数据信号对移动速度值进行估计,从而获取当前的移动速度估计值,然后再根据移动速度估计值的速度范围与导频图样的对应关系,选择出当前的移动速度估计值对应的第一导频图样。
需要说明的是,移动速度估计值和导频图样的对应关系可以是网络侧设备和终端设备预先约定好的,或者,也可以由网络侧设备直接向终端设备发送指示信息,该指示信息用于指示不同的移动速度估计值对应的导频图样。例如,移动速度范围和导频图样的对应关系可以如表1所示:
表1移动速度范围和导频图样的对应关系
移动速度 导频图样
0-3km 导频图样1
3-30km 导频图样2
30-120km 导频图样3
120-350km 导频图样4
350km以上 导频图样5
在表1中,当终端设备的移动速度估计值在0-3km范围内时,对应的导频图样为导频图样1;当终端设备的移动速度估计值在3-30km范围内时,对应的导频图样为导频图样2;当终端设备的移动速度估计值在30-120km范围内时,对应的导频图样为导频图样3;当终端设备的移动速度估计值在120-350km范围内时,对应的导频图样为导频图样4;当终端设备的移动速度估计值在350km以上时,对应的导频图样为导频图样5。
这样,终端设备可以实现在不同的移动速度场景下,根据移动速度估计值和导频图样的对应关系,选择出第一导频图样,从而灵活得调整导频的密度和占用的物理资源。
可选地,作为一个实施例,对于“用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息”:具体而言,终端设备可以根据用于传输该导频信号或与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集,以及该基础参数集与导频图样的 对应关系,或者该基础参数集中的参数与导频图样的对应关系,选择第一导频图样。其中,基础参数集是用于确定传输信号所用的时域传输单元和频域传输单元的至少一个基本参数。
需要说明的是,基础参数集或基础参数集中的参数和导频图样的对应关系,可以是网络侧设备和终端设备预先约定好的;或者,也可以由网络侧设备直接向终端设备发送指示信息,其中,该指示信息用于指示不同的基础参数集对应的导频图样,或该指示信息用于指示基础参数集中的参数对应的导频图样。
例如,当基础参数集的参数包括子载波间隔时,子载波间隔和导频图样的对应关系可以如表2所示:
表2子载波间隔和导频图样的对应关系
子载波间隔 导频图样
15kHz 导频图样1
30kHz 导频图样2
60kHz 导频图样3
120kHz 导频图样4
在表2中,子载波间隔为15kHZ时,所对应的导频图样为导频图样1;子载波间隔为30kHZ时,所对应的导频图样为导频图样2;子载波间隔为60kHZ时,所对应的导频图样为导频图样3;子载波间隔为120kHZ时,所对应的导频图样为导频图样4。
或者,又例如,当基础参数集的参数包括子载波间隔时,子载波间隔和导频图样的对应关系也可以如表3所示:
表3子载波间隔和导频图样的对应关系
Figure PCTCN2016092102-appb-000001
在表3中,子载波间隔为15kHZ时,所对应的导频图样子集包括导频图样1和导频图样2;子载波间隔为30kHZ时,所对应的导频图样子集包括导频图样3和导频图样4。
其中,表2和表3的区别在于:表2中的一个子载波间隔对应一个导频图样,表3中的一个子载波间隔可以对应多个导频图样。换言之,表3中的每个子载波间隔可以对应一个导频图样子集,该导频图样子集中包括多个导频图样。
这样,终端设备可以根据基础参数集或基础参数集中的参数与导频图样的对应关系,确定出第一导频图样,从而灵活得调整导频的密度和占用的物理资源。
应理解,上文仅以表1-表3的对应关系为例进行说明,实际并不限于此。
可选地,作为另一个实施例,该基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
综上所述,终端设备可以根据上述描述的至少一种信息,来确定第一导频图样。需要说明的是,上述至少一种信息中的部分信息可以结合使用。比如,网络侧设备发送的导频图样配置信息与终端设备的移动速度估计值信息等其他组合。下面将对导频图样配置信息与终端设备的移动速度估计值信息结合使用的实施例进行描述。
可选地,作为一个实施例,在该终端设备根据该第一DCI指示的该导频图样配置信息,在多个导频图样中确定第一导频图样之前,该方法200还包括:
该终端设备将该移动速度估计值信息上报给该网络侧设备,其中,该移动速度估计值信息用于该网络侧设备确定该导频图样配置信息。
具体而言,终端设备可以将自身的移动速度估计值上报给网络侧设备,以使得网络侧设备根据该移动速度估计指确定终端设备所用的导频图样。换 言之,网络侧设备可以根据终端设备的移动速度估计值,来确定该导频图样配置信息,并通过下行指令(例如第一DCI)指示该导频图样配置信息。这里,终端设备可以将移动速度估计值量化处理后,再上报给网络侧设备。
需要说明的是,网络侧设备可以知道终端设备的传输模式信息或者基础参数集信息,而对于终端设备的移动速度估计值,则需要终端设备给其上报。
可选地,作为一个实施例,在S210之后,该方法200还可以包括:
该终端设备将该第一导频图样的信息上报给网络侧设备。
具体而言,终端设备可以通过上行控制信道将第一导频图样的信息上报给网络侧设备,以便于网络侧设备根据该第一导频图样确定出导频信号的资源位置,从而使得网络侧设备基于该导频信号进行信道估计。
可选地,作为一个实施例,该多个导频图样包括零导频图样,该零导频图样表示没有用于传输该导频信号的时频资源。
具体而言,在本发明实施例中,多个导频图样中至少有一个导频图样对应的导频资源未被使用,即表示在当前的传输时间单元中不需要传输导频信号。例如,当终端设备的移动速度较慢时,该多个导频图样中可以包括零导频图样。比如,4个导频图样中,导频图样2占用1个OFDM信号,导频图样3占用2个OFDM信号,导频图样4占用3个OFDM信号,而导频图样1占用0个OFDM信号,其中,导频图样1即为零导频图样。
因此,本发明实施例的传输导频信号的方法,终端设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
为了便于本领域的技术人员理解本发明的技术方案,下面将结合DMRS导频信号和CSI-RS导频信号举例描述本发明的实施例。应理解,这并不对本发明构成限制。
例如,对于下行DMRS,如图3所示,具体包括以下步骤:
S301,终端设备30和网络侧设备31约定下行DMRS使用的多个导频图样。
终端设备30和网络侧设备31约定的导频图样分别为导频图样1、导频图样2、导频图样3和导频图样4,其中,导频图样1中没有任何导频RE,导频图样2-4中的导频信号分别占用1、2、3个OFDM符号,导频图样1不需要传输导频信号。
可选地,S302,网络侧设备31确定终端使用的导频图样。
网络侧设备31可以根据当前信道的变化情况,为终端设备30选择合适的DMRS导频图样。比如,当信道变化较快时,选择占用OFDM符号较多的导频图样,当信道变化较慢时,选择占用OFDM符号较少的导频图样。
S303,终端设备30确定使用的导频图样。
具体地,终端设备30可以在该多个导频图样中选择合适的导频图样。比如,结合终端设备30当前的移动速度值、与该下行DMRS信号在同一时域资源或同一频域资源传输的数据所用的传输模式、该下行DMRS信号的基础参数集、与该下行DMRS信号在同一时域资源或同一频域资源传输的数据所用的基础参数集等信息来确定该导频图样。
可选地,S304,网络侧设备31下发下行控制信令DCI。
可选地,网络侧设备31可以通过下行控制信令DCI调度终端设备30的下行数据传输。并且,该DCI中用2比特指示终端设备30所使用的DMRS导频图样。
S305,终端设备30确定下行DMRS所使用的物理资源。
终端设备30可以根据自己选择的导频图样,确定下行DMRS所使用的物理资源。可选地,当接收到该DCI时,终端设备30也可以根据该DCI指示的DMRS导频图样确定下行DMRS所使用的物理资源。
S306,终端设备30传输下行DMRS。
终端设备30在该物理资源上接收用于解调下行数据的下行DMRS,以便于根据该接收的下行DMRS进行下行信道估计,从而用于解调该下行数据的解调。其中,网络侧设备31向终端设备30传输的下行数据以及下行DMRS信号在同一子帧中。
因此,在本例中,终端设备30可以根据网络侧设备31指示的导频图样,确定出传输下行DMRS的物理资源,从而传输该下行DMRS。
又例如,对于上行DMRS,如图4所示,具体包括以下步骤:
S401,终端设备40和网络侧设备41约定上行DMRS的导频图样集合。
终端设备40和网络侧设备41可以约定好上行DMRS可以使用的导频图样集合,该导频图样集合中包括4个导频图样,该4个导频图样具有不同的导频资源密度。
S402,网络侧设备41确定终端设备40所用的导频图样子集。
网络侧设备41也可以在导频图样集合中,为终端设备40确定所用的导频图样子集,例如该导频图样子集包括导频图样2和导频图样4。其中,网络侧设备41可以根据信道的变化情况确定该导频图样子集。比如,当信道变化较快时,选择占用OFDM符号较多的导频图样,当信道变化较慢时,选择占用OFDM符号较少的导频图样。又比如,网络侧设备41可以根据之前的信道估计性能来调整该导频图样子集。
S403,网络侧设备41下发RRC信令。
网络侧设备41可以通过RRC信令,将确定的导频图样子集告知给终端设备40。在具体实现时,网络侧设备41可以通过标识值bitmap的方法,将约定的导频图样集合中当前可用的导频图样子集,指示给终端设备40,以便于终端设备40在导频图样子集中选择合适的导频图样。
S404,终端设备40确定使用的导频图样。
具体地,终端设备40可以自己在该导频图样子集中选择合适的导频图样。比如,终端设备40结合当前的移动速度值、与该上行DMRS信号在同一时域资源或同一频域资源传输的数据所用的传输模式、该上行DMRS信号的基础参数集、与该上行行DMRS信号在同一时域资源或同一频域资源传输的数据所用的基础参数集等信息来选择合适的导频图样。例如,终端设备40根据当前的移动速度估计值来选择导频图样,当移动速度估计值小于A时,选择导频图样2,当移动速度估计值大于或等于A时,选择导频图样4。
可选地,终端设备40根据接收到的RRC信令,在导频图样子集中选择合适的导频图样,其中,该RRC信令用于指示该导频图样子集。
S405,终端设备40确定上行DMRS所使用的物理资源。
终端设备40可以根据自己选择的导频图样,确定上行DMRS所用的物理资源,然后在该物理资源上传输上行DMRS,其中,该上行DMRS用于解调上行数据。
S406,终端设备40传输上行DMRS。
终端设备40在该物理资源上传输用于解调上行数据的上行DMRS。其中,网络侧设备41向终端设备40传输的下行数据以及下行DMRS信号在同一子帧中。
S407,终端设备40向网络侧设备41发送指示信息,该指示信息用于指 示上行DMRS的导频图样。
终端设备40将自己在导频图样子集中选择上行DMRS的导频图样,与上行数据一起反馈给网络侧设备41。
S408,网络侧设备41确定上行DMRS的物理资源的位置。
网络侧设备41根据终端设备40发送的指示信息,确定出上行DMRS的导频图样对应的物理资源对应的位置。
S409,网络侧设备41接收上行DMRS。
具体地,网络侧设备41根据确定的物理资源,在该物理资源上接收上行DMRS,然后基于该上行DMRS进行上行信道估计,并根据上行信道估计的结果进行上行数据的解调。
因此,在本例中,终端设备40可以在导频图样子集中确定出合适的导频图样,并根据该导频图样确定传输上行DMRS的物理资源,从而传输该上行DMRS。
又例如,对于CSI-RS,如图5所示,具体包括以下步骤:
S501,终端设备50和网络侧设备51约定好CSI-RS的导频图样集合。
例如,该导频图样集合中包括N个导频图样。可选地,可以在协议中定义好该导频图样集合。
S502,终端设备50确定传输CSI-RS的导频图样子集。
具体地,终端设备50可以根据当前所使用的基础参数集,在N个导频图样中确定出基础参数集对应的导频图样子集。比如,该导频图样子集中包括M各导频图样,该M小于或等于N。其中,基础参数集可以是网络侧设备51通过其他信令配置给终端设备50的。
可选地,S503,网络侧设备51也可以确定传输CSI-RS的导频图样子集。
S504,终端设备50在CSI-RS的导频图样子集中确定传输CSI-RS使用的导频图样。
终端设备50可以根据基础参数集与导频图样子集中的导频图样的对应关系,来确定传输CSI-RS所用的导频图样。其中,基础参数集与导频图样的对应关系可以由网络侧设备51和终端设备50预先约定好,比如,在协议中定义好该对应关系。
可选地,S505,网络侧设备51也可以确定传输CSI-RS使用的导频图样。
可选地,S506,网络侧设备51下发RRC信令。
网络侧设备51通过向终端设备50下发的RRC信令,指示终端设备50所使用的CSI-RS的导频图样。其中,该RRC信令包括log2(M)(上取整)个比特。
S507,终端设备50根据传输CSI-RS的导频图样,确定用于传输CSI-RS的物理资源。
终端设备50可以根据RRC信令指示的CSI-RS的导频图样,确定后续用于传输CSI-RS的物理资源。或者,终端设备50也可以根据自己选择的导频图样,确定后续用于传输CSI-RS的物理资源。
S508,终端设备50在物理资源上接收CSI-RS。
终端设备50根据确定的物理资源,在该物理资源上进行后续CSI-RS的接收,并基于接收到的CSI-RS进行下行CSI的测量。
因此,在本例中,终端设备50可以在导频图样子集中确定出合适的导频图样,并根据该导频图样确定传输CSI-RS的物理资源,从而接收该上行CSI-RS。
应理解,图3至图5中的示意图只是为了便于理解本发明的技术方案,并不对本发明构成限制。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
前文从终端设备描述了根据本发明实施例的传输导频信号的方法,下文将从网络侧设备描述根据本发明实施例的传输导频信号的方法。
图6示出了根据本发明实施例的传输导频信号的方法600的示意性流程图。该方法600由网络侧设备执行。例如,该网络侧设备可以是图1中的基站21。如图6所示,该方法600包括:
S610,网络侧设备在多个导频图样中,确定第一导频图样;
S620,该网络侧设备根据该第一导频图样,确定用于传输该导频信号的时频资源;
S630,该网络侧设备在该时频资源上发送或接收该导频信号。
在本发明实施例中,网络侧设备可以在多个导频图样中,确定第一导频图样,然后根据该第一导频图样,确定用于传输该导频信号的时频资源,并在该时频资源上发送或接收该导频信号,能够灵活得调整导频密度和物理资 源,从而降低导频开销。
为了简洁,对于网络侧设备与终端设备中一些类似的术语概念或执行动作,将不作具体赘述。
可选地,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
可选地,作为一个实施例,该网络侧设备在多个导频图样中,确定第一导频图样,包括:
该网络侧设备根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
可选地,作为一个实施例,在S610之后,该方法600还包括:
该网络侧设备向终端设备发送通过第一下行控制信息DCI指示的导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI,该导频图样配置信息用于指示该第一导频图样。
可选地,作为一个实施例,该方法600还包括:
该网络侧设备接收该终端设备发送的该移动速度估计值信息;
其中,S610包括:
该网络侧设备根据该移动速度估计值信息,在该多个导频图样中,确定该第一导频图样。
具体而言,网络侧设备可以根据终端设备上报的移动速度估计值,确定出该第一导频图样。
可选地,作为一个实施例,该方法600还包括:
该网络侧设备接收终端设备上报的该第一导频图样的信息。
具体而言,网络侧设备可以根据接收到的第一导频图样的信息,确定出导频信号的资源位置,从而基于该导频信号进行信道估计。
可选地,作为一个实施例,该多个导频图样包括零导频图样,该零导频图样 表示没有用于传输所述导频信号的时频资源。
可选地,作为一个实施例,该方法600还包括;
该网络侧设备向终端设备发送指示信息,该指示信息用于指示该多个导频图样。
可选地,该第一导频图样表示用于传输该导频信号的资源单元RE。
因此,本发明实施例的传输导频信号的方法,网络侧设备能够根据信道状态或其他传输参数,在多个导频图样中确定出第一导频图样,从而灵活得调整导频的密度和占用的物理资源。
上文详细描述了根据本发明实施例的传输导频信号的方法,下面将描述根据本发明实施例的终端设备和网络侧设备。
图7示出了根据本发明实施例的终端设备700的示意性框图。如图7所示,该终端设备700包括:
确定模块710,用于在多个导频图样中,确定第一导频图样;
该确定模块710还用于,根据该第一导频图样,确定用于传输该导频信号的时频资源;
传输模块720,用于在该确定模块确定的该时频资源上发送或接收该导频信号。
本发明实施例中,终端设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
可选地,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
可选地,作为一个实施例,该确定模块710具体用于:
根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
网络侧设备发送的导频图样配置信息;
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
该终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
可选地,作为一个实施例,该终端设备还包括:
接收模块,用于接收网络侧设备发送的通过第一下行控制信息DCI指示的导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI;
其中,该确定模块710具体用于:
根据该第一DCI指示的该导频图样配置信息,在多个导频图样中确定该第一导频图样。
可选地,作为一个实施例,该传输模块720还用于:
将该移动速度估计值信息上报给该网络侧设备,其中,该移动速度估计值信息用于该网络侧设备确定该导频图样配置信息。
可选地,作为一个实施例,该基础参数集信息包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、预定时间长度内包含的TTI的个数和信号前缀的长度。
可选地,作为一个实施例,该传输模块720还用于:
将该第一导频图样的信息上报给网络侧设备。
可选地,作为一个实施例,该多个导频图样包括零导频图样,该零导频图样表示没有用于传输所述导频信号的时频资源。
可选地,作为一个实施例,该传输模块720还用于:
接收该网络设备发送的指示信息,该指示信息用于指示该多个导频图样。
在本发明实施例中,导频图样指示用于传输该导频信号的资源单元RE。
根据本发明实施例的终端设备700可执行根据本发明实施例的传输导频信号的方法200,并且该装置700中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
上面结合图7描述了根据本发明实施例的终端设备,下文结合图8描述 了根据本发明实施例的网络侧设备。
图8示出了根据本发明实施例的网络侧设备800的示意性框图。如图8所示,该网络侧设备800包括:
确定模块810,用于在多个导频图样中,确定第一导频图样;
该确定模块810还用于,根据该第一导频图样,确定用于传输该导频信号的时频资源;
传输模块820,用于在该时频资源上发送或接收该导频信号。
本发明实施例的网络侧设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
可选地,该多个导频图样具有不同的导频资源密度,其中,该导频资源密度包括时域资源密度和/或频域资源密度。
可选地,作为一个实施例,该确定模块810具体用于:
根据以下信息中的至少一种信息,在该多个导频图样中,确定该第一导频图样:
与该导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
终端设备的移动速度估计值信息;
用于传输该导频信号或者与该导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
可选地,作为一个实施例,该传输模块820还用于:
向终端设备发送通过第一下行控制信息DCI指示的导频图样配置信息,其中,该第一DCI为用于调度与该导频信号在同一时域资源或同一频域资源传输的数据的DCI,该导频图样配置信息用于指示该第一导频图样。
可选地,作为一个实施例,该传输模块820还用于:
接收该终端设备发送的该移动速度估计值信息;
其中,该确定模块810用于,根据该移动速度估计值信息,在该多个导频图样中,确定该第一导频图样。
可选地,作为一个实施例,该传输模块820还用于:
该网络侧设备接收终端设备上报的该第一导频图样的信息。
可选地,作为一个实施例,该多个导频图样包括零导频图样,该零导频 图样表示没有用于传输所述导频信号的时频资源。
可选地,作为一个实施例,该传输模块820还用于:
向终端设备发送指示信息,该指示信息用于指示该多个导频图样。
可选地,该第一导频图样表示用于传输该导频信号的资源单元RE。
根据本发明实施例的网络侧设备800可执行根据本发明实施例的传输导频信号的方法600,并且该网络侧设备800中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的网络侧设备可以在多个导频图样中,确定第一导频图样,并根据该第一导频图样确定用于传输导频信号的时频资源,能够灵活得调整导频的密度和占用的物理资源。
图9示出了本发明的又一实施例提供的终端设备的装置的结构,包括至少一个处理器902(例如CPU),至少一个网络接口905或者其他通信接口,存储器906,和至少一个通信总线903,用于实现这些装置之间的连接通信。处理器902用于执行存储器906中存储的可执行模块,例如计算机程序。存储器906可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口905(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器906存储了程序9061,处理器902执行程序9061,用于执行前述本发明实施例的传输导频信号的终端设备侧的方法,为了简洁,这里不作赘述。
图10示出了本发明的又一实施例提供的网络侧设备的装置的结构,包括至少一个处理器1002(例如CPU),至少一个网络接口1005或者其他通信接口,存储器1006,和至少一个通信总线1003,用于实现这些装置之间的连接通信。处理器1002用于执行存储器1006中存储的可执行模块,例如计算机程序。存储器1006可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1005(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1006存储了程序10061,处理器1002执行程序10061,用于执行前述本发明实施例的传输导频信号的网络侧设备的方 法,为了简洁,这里不作赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种传输导频信号的方法,其特征在于,包括:
    终端设备在多个导频图样中,确定第一导频图样;
    所述终端设备根据所述第一导频图样,确定用于传输所述导频信号的时频资源;
    所述终端设备在所述时频资源上发送或接收所述导频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述多个导频图样具有不同的导频资源密度,其中,所述导频资源密度包括时域资源密度和/或频域资源密度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备在多个导频图样中,确定第一导频图样,包括:
    所述终端设备根据以下信息中的至少一种信息,在所述多个导频图样中,确定所述第一导频图样:
    网络侧设备发送的导频图样配置信息;
    与所述导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
    所述终端设备的移动速度估计值信息;
    用于传输所述导频信号或者与所述导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络侧设备发送的通过第一下行控制信息DCI指示的导频图样配置信息,其中,所述第一DCI为用于调度与所述导频信号在同一时域资源或同一频域资源传输的数据的DCI;
    其中,所述终端设备在多个导频图样中,确定第一导频图样,包括:
    所述终端设备根据所述第一DCI指示的所述导频图样配置信息,在多个导频图样中确定所述第一导频图样。
  5. 根据权利要求4所述的方法,其特征在于,在所述终端设备根据所述第一DCI指示的所述导频图样配置信息,在多个导频图样中确定第一导频图样之前,所述方法还包括:
    所述终端设备将所述移动速度估计值信息上报给所述网络侧设备,其 中,所述移动速度估计值信息用于所述网络侧设备确定所述导频图样配置信息。
  6. 根据权利要求3所述的方法,其特征在于,所述基础参数集信息包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、预定时间长度内包含的TTI的个数和信号前缀的长度。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述终端设备在多个导频图样中,确定第一导频图样后,所述方法还包括:
    所述终端设备将所述第一导频图样的信息上报给网络侧设备。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述多个导频图样包括零导频图样,所述零导频图样表示没有用于传输所述导频信号的时频资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,在所述终端设备在多个导频图样中,确定第一导频图样之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示所述多个导频图样。
  10. 一种传输导频信号的方法,其特征在于,包括:
    网络侧设备在多个导频图样中,确定第一导频图样;
    所述网络侧设备根据所述第一导频图样,确定用于传输所述导频信号的时频资源;
    所述网络侧设备在所述时频资源上发送或接收所述导频信号。
  11. 根据权利要求10所述的方法,其特征在于,所述多个导频图样具有不同的导频资源密度,其中,所述导频资源密度包括时域资源密度和/或频域资源密度。
  12. 根据权利要求10或11所述的方法,其特征在于,所述网络侧设备在多个导频图样中,确定第一导频图样,包括:
    所述网络侧设备根据以下信息中的至少一种信息,在所述多个导频图样中,确定所述第一导频图样:
    与所述导频信号在同一时域资源或同一频域资源传输的数据所用的传 输模式信息;
    终端设备的移动速度估计值信息;
    用于传输所述导频信号或者与所述导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,在所述网络侧设备在多个导频图样中,确定第一导频图样之后,所述方法还包括:
    所述网络侧设备向终端设备发送通过第一下行控制信息DCI指示的导频图样配置信息,其中,所述第一DCI为用于调度与所述导频信号在同一时域资源或同一频域资源传输的数据的DCI,所述导频图样配置信息用于指示所述第一导频图样。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述终端设备发送的所述移动速度估计值信息;
    其中,所述网络侧设备在多个导频图样中,确定第一导频图样,包括:
    所述网络侧设备根据所述移动速度估计值信息,在所述多个导频图样中,确定所述第一导频图样。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收终端设备上报的所述第一导频图样的信息。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述多个导频图样包括零导频图样,所述零导频图样表示没有用于传输所述导频信号的时域资源。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述方法还包括;
    所述网络侧设备向终端设备发送指示信息,所述指示信息用于指示所述多个导频图样。
  18. 一种终端设备,其特征在于,包括:
    确定模块,用于在多个导频图样中,确定第一导频图样;
    所述确定模块还用于,根据所述第一导频图样,确定用于传输所述导频信号的时频资源;
    传输模块,用于在所述确定模块确定的所述时频资源上发送或接收所述导频信号。
  19. 根据权利要求18所述的终端设备,其特征在于,所述多个导频图样具有不同的导频资源密度,其中,所述导频资源密度包括时域资源密度和/或频域资源密度。
  20. 根据权利要求18或19所述的终端设备,其特征在于,所述确定模块具体用于:
    根据以下信息中的至少一种信息,在所述多个导频图样中,确定所述第一导频图样:
    网络侧设备发送的导频图样配置信息;
    与所述导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
    所述终端设备的移动速度估计值信息;
    用于传输所述导频信号或者与所述导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
  21. 根据权利要求18至20中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收模块,用于接收网络侧设备发送的通过第一下行控制信息DCI指示的导频图样配置信息,其中,所述第一DCI为用于调度与所述导频信号在同一时域资源或同一频域资源传输的数据的DCI;
    其中,所述确定模块具体用于:
    根据所述第一DCI指示的所述导频图样配置信息,在多个导频图样中确定所述第一导频图样。
  22. 根据权利要求21所述的终端设备,其特征在于,所述传输模块还用于:
    将所述移动速度估计值信息上报给所述网络侧设备,其中,所述移动速度估计值信息用于所述网络侧设备确定所述导频图样配置信息。
  23. 根据权利要求20所述的终端设备,其特征在于,所述基础参数集信息包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、预定时间长度内包含的TTI的个数和信号前缀的长度。
  24. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述传输模块还用于:
    将所述第一导频图样的信息上报给网络侧设备。
  25. 根据权利要求18至24中任一项所述的终端设备,其特征在于,所述多个导频图样中包含零导频图样,所述零导频图样表示没有用于传输所述导频信号的时频资源。
  26. 根据权利要求18至25中任一项所述的终端设备,其特征在于,所述传输模块还用于:
    接收所述网络设备发送的指示信息,所述指示信息用于指示所述多个导频图样。
  27. 一种网络侧设备,其特征在于,包括:
    确定模块,用于在多个导频图样中,确定第一导频图样;
    所述确定模块还用于,根据所述第一导频图样,确定用于传输所述导频信号的时频资源;
    传输模块,用于在所述时频资源上发送或接收所述导频信号。
  28. 根据权利要求27所述的网络侧设备,其特征在于,所述多个导频图样具有不同的导频资源密度,其中,所述导频资源密度包括时域资源密度和/或频域资源密度。
  29. 根据权利要求27或28所述的网络侧设备,其特征在于,所述确定模块具体用于:
    根据以下信息中的至少一种信息,在所述多个导频图样中,确定所述第一导频图样:
    与所述导频信号在同一时域资源或同一频域资源传输的数据所用的传输模式信息;
    终端设备的移动速度估计值信息;
    用于传输所述导频信号或者与所述导频信号在同一时域资源或同一频域资源传输的数据的基础参数集信息。
  30. 根据权利要求27至29中任一项所述的网络侧设备,其特征在于,所述传输模块还用于:
    向终端设备发送通过第一下行控制信息DCI指示的导频图样配置信息,其中,所述第一DCI为用于调度与所述导频信号在同一时域资源或同一频域 资源传输的数据的DCI,所述导频图样配置信息用于指示所述第一导频图样。
  31. 根据权利要求29所述的网络侧设备,其特征在于,所述传输模块还用于:
    接收所述终端设备发送的所述移动速度估计值信息;
    其中,所述确定模块用于,根据所述移动速度估计值信息,在所述多个导频图样中,确定所述第一导频图样。
  32. 根据权利要求27至31中任一项所述的网络侧设备,其特征在于,所述传输模块还用于:
    所述网络侧设备接收终端设备上报的所述第一导频图样的信息。
  33. 根据权利要求27至32中任一项所述的网络侧设备,其特征在于,所述多个导频图样包括零导频图样,所述零导频图样表示没有用于传输所述导频信号的时域资源。
  34. 根据权利要求27至33中任一项所述的网络侧设备,其特征在于,所述传输模块还用于:
    向终端设备发送指示信息,所述指示信息用于指示所述多个导频图样。
PCT/CN2016/092102 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备 WO2018018510A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
MX2019001219A MX2019001219A (es) 2016-07-28 2016-07-28 Metodo de transmision de se?al piloto, equipo terminal y equipo de red.
ES16910091T ES2957545T3 (es) 2016-07-28 2016-07-28 Método piloto de transmisión de señal, equipo terminal y equipo de red
CN202011483594.8A CN112600658B (zh) 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备
CN201680088033.3A CN109565433B (zh) 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备
RU2019105091A RU2713430C1 (ru) 2016-07-28 2016-07-28 Способ передачи пилот-сигнала, терминальное устройство и сетевое устройство
SG11201900777XA SG11201900777XA (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
PCT/CN2016/092102 WO2018018510A1 (zh) 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备
AU2016416207A AU2016416207B2 (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
US16/309,208 US10791013B2 (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
JP2019504054A JP6995831B2 (ja) 2016-07-28 2016-07-28 パイロット信号伝送方法、端末装置とネットワーク側装置
KR1020197005339A KR20190034577A (ko) 2016-07-28 2016-07-28 파일럿 신호를 전송하는 방법, 단말 장비 및 네트워크 측 장비
EP16910091.4A EP3474482B1 (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
CA3032007A CA3032007A1 (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
BR112019001723-2A BR112019001723B1 (pt) 2016-07-28 2016-07-28 Métodos de transmissão de sinais piloto, dispositivo terminal e dispositivo do lado da rede
TW106123116A TWI735616B (zh) 2016-07-28 2017-07-11 傳輸導頻信號的方法、終端設備和網絡側設備
IL264480A IL264480B (en) 2016-07-28 2019-01-27 Run signal transmission method, terminal equipment and network equipment
PH12019500192A PH12019500192A1 (en) 2016-07-28 2019-01-28 Pilot signal transmission method, terminal equipment, and network equipment
ZA2019/01172A ZA201901172B (en) 2016-07-28 2019-02-25 Pilot signal transmission method, terminal equipment, and network equipment
US16/993,513 US11368345B2 (en) 2016-07-28 2020-08-14 Pilot signal transmission method, terminal equipment, and network equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092102 WO2018018510A1 (zh) 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/309,208 A-371-Of-International US10791013B2 (en) 2016-07-28 2016-07-28 Pilot signal transmission method, terminal equipment, and network equipment
US16/993,513 Continuation US11368345B2 (en) 2016-07-28 2020-08-14 Pilot signal transmission method, terminal equipment, and network equipment

Publications (1)

Publication Number Publication Date
WO2018018510A1 true WO2018018510A1 (zh) 2018-02-01

Family

ID=61016003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092102 WO2018018510A1 (zh) 2016-07-28 2016-07-28 传输导频信号的方法、终端设备和网络侧设备

Country Status (17)

Country Link
US (2) US10791013B2 (zh)
EP (1) EP3474482B1 (zh)
JP (1) JP6995831B2 (zh)
KR (1) KR20190034577A (zh)
CN (2) CN109565433B (zh)
AU (1) AU2016416207B2 (zh)
BR (1) BR112019001723B1 (zh)
CA (1) CA3032007A1 (zh)
ES (1) ES2957545T3 (zh)
IL (1) IL264480B (zh)
MX (1) MX2019001219A (zh)
PH (1) PH12019500192A1 (zh)
RU (1) RU2713430C1 (zh)
SG (1) SG11201900777XA (zh)
TW (1) TWI735616B (zh)
WO (1) WO2018018510A1 (zh)
ZA (1) ZA201901172B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207425A1 (en) * 2018-04-26 2019-10-31 Marvell World Trade Ltd. Pilots for wireless access in vehicular environments
EP3843345A4 (en) * 2018-08-20 2021-09-08 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND EQUIPMENT FOR CHANNEL ESTIMATION, DEVICE, BASE STATION AND STORAGE MEDIUM

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016416207B2 (en) * 2016-07-28 2021-07-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Pilot signal transmission method, terminal equipment, and network equipment
EP3569015A1 (en) * 2017-01-12 2019-11-20 Telefonaktiebolaget LM Ericsson (publ) A wireless communication device and a method therein for reporting signal quality measurements
EP3998753A1 (en) 2017-12-06 2022-05-18 Marvell Asia Pte, Ltd. Methods and apparatus for generation of physical layer protocol data units for vehicular environments
CN110574401B (zh) * 2019-07-30 2022-11-22 北京小米移动软件有限公司 信息配置方法及装置、信道估计方法及装置和发送设备
US11258565B2 (en) 2019-08-30 2022-02-22 Huawei Technologies Co., Ltd. Sparse reference signal-related signaling apparatus and methods
US11569961B2 (en) * 2019-08-30 2023-01-31 Huawei Technologies Co., Ltd. Reference signaling overhead reduction apparatus and methods
US11665711B2 (en) * 2019-10-04 2023-05-30 Qualcomm Incorporated Decoding physical multicast channel subframes according to different reference signal patterns
CN115695127A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 信号传输方法及装置
CN116016045A (zh) * 2021-10-22 2023-04-25 维沃移动通信有限公司 信道估计方法、装置、终端及网络侧设备
CN116648975A (zh) * 2021-12-24 2023-08-25 北京小米移动软件有限公司 一种确定导频的方法、装置及可读存储介质
CN114337968B (zh) * 2021-12-28 2023-06-06 湖南智领通信科技有限公司 基于实时测控数据的主动式导频调整方法及装置
WO2024060159A1 (zh) * 2022-09-22 2024-03-28 华为技术有限公司 一种通信方法、相关装置、可读存储介质以及芯片系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773976A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 Ofdm系统中自适应导频插入的方法
CN101390328A (zh) * 2006-02-21 2009-03-18 高通股份有限公司 用于支持ofdm和cdma方案的方法与装置
CN101394262A (zh) * 2007-09-18 2009-03-25 上海华为技术有限公司 正交频分复用系统中的导频传输方法和装置
WO2011025131A2 (en) * 2009-08-28 2011-03-03 Lg Electronics Inc. Method and apparatus for transmitting pilot in wireless communication system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527997A (ja) 2006-02-21 2009-07-30 クゥアルコム・インコーポレイテッド マルチアンテナ無線通信のための空間パイロット構造
JP2008035288A (ja) 2006-07-28 2008-02-14 Kyocera Corp 無線通信装置及び通信方法
US8537790B2 (en) 2008-03-10 2013-09-17 Motorola Mobility Llc Hierarchical pilot structure in wireless communication systems
CN102739382A (zh) * 2011-03-25 2012-10-17 北京新岸线无线技术有限公司 无线通信系统中解调导频的调整方法及系统
EP2836038A4 (en) 2012-04-20 2015-04-15 Huawei Tech Co Ltd METHOD FOR SENDING PILOT SIGNALS, METHOD FOR RECEIVING PILOT SIGNALS, USER DEVICE AND BASE STATION
CN103581090B (zh) * 2012-07-26 2016-12-28 华为技术有限公司 导频信号发送方法和装置
US10826663B2 (en) 2013-03-13 2020-11-03 Huawei Technologies Co., Ltd. System and method for determining a pilot signal
US20140286255A1 (en) 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
JP2016527758A (ja) 2013-06-17 2016-09-08 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンク制御情報送信方法、ユーザ機器、および基地局
CN104301067B (zh) * 2013-07-19 2018-09-21 华为技术有限公司 Dm-rs图样指示方法和装置
US9906299B2 (en) * 2014-03-08 2018-02-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Upstream frame configuration for ethernet passive optical network protocol over coax (EPoC) networks
US9337974B2 (en) * 2014-03-28 2016-05-10 Intel IP Corporation User equipment generation and signaling of feedback for supporting adaptive demodulation reference signal transmission
WO2015168940A1 (zh) 2014-05-09 2015-11-12 华为技术有限公司 解调参考信号配置方法、装置、基站及用户设备
CN107040345B (zh) * 2016-02-03 2020-12-18 华为技术有限公司 传输导频信号的方法和装置
AU2016416207B2 (en) * 2016-07-28 2021-07-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Pilot signal transmission method, terminal equipment, and network equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773976A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 Ofdm系统中自适应导频插入的方法
CN101390328A (zh) * 2006-02-21 2009-03-18 高通股份有限公司 用于支持ofdm和cdma方案的方法与装置
CN101394262A (zh) * 2007-09-18 2009-03-25 上海华为技术有限公司 正交频分复用系统中的导频传输方法和装置
WO2011025131A2 (en) * 2009-08-28 2011-03-03 Lg Electronics Inc. Method and apparatus for transmitting pilot in wireless communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207425A1 (en) * 2018-04-26 2019-10-31 Marvell World Trade Ltd. Pilots for wireless access in vehicular environments
EP3843345A4 (en) * 2018-08-20 2021-09-08 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND EQUIPMENT FOR CHANNEL ESTIMATION, DEVICE, BASE STATION AND STORAGE MEDIUM
US11848801B2 (en) 2018-08-20 2023-12-19 Beijing Xiaomi Mobile Software Co., Ltd. Channel estimation method and apparatus, device, base station, and storage medium

Also Published As

Publication number Publication date
AU2016416207B2 (en) 2021-07-29
AU2016416207A1 (en) 2019-03-14
US20200374171A1 (en) 2020-11-26
TWI735616B (zh) 2021-08-11
JP6995831B2 (ja) 2022-01-17
CN112600658A (zh) 2021-04-02
US10791013B2 (en) 2020-09-29
EP3474482A4 (en) 2019-06-19
PH12019500192A1 (en) 2019-10-14
ES2957545T3 (es) 2024-01-22
IL264480B (en) 2022-01-01
ZA201901172B (en) 2019-12-18
KR20190034577A (ko) 2019-04-02
MX2019001219A (es) 2019-06-03
CA3032007A1 (en) 2018-02-01
SG11201900777XA (en) 2019-02-27
BR112019001723B1 (pt) 2023-11-07
CN109565433B (zh) 2021-01-08
JP2019527968A (ja) 2019-10-03
BR112019001723A2 (pt) 2019-05-07
CN109565433A (zh) 2019-04-02
CN112600658B (zh) 2022-11-04
IL264480A (en) 2019-02-28
EP3474482B1 (en) 2023-08-30
US11368345B2 (en) 2022-06-21
TW201804837A (zh) 2018-02-01
US20190334749A1 (en) 2019-10-31
EP3474482A1 (en) 2019-04-24
RU2713430C1 (ru) 2020-02-05

Similar Documents

Publication Publication Date Title
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
US20140016574A1 (en) Method of transceiving for device to device communication
WO2018090327A1 (zh) 传输参考信号的方法和通信设备
TWI733818B (zh) 傳輸資料的方法和裝置
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2018010184A1 (zh) 基于无线网络的通信方法、终端设备和网络设备
AU2016389822B2 (en) Reference signal transmission method, apparatus, and system
CN111867038B (zh) 一种通信方法及装置
CN109863797A (zh) 传输数据的方法、终端设备和网络设备
WO2018045586A1 (zh) 导频信号的传输方法和设备
TWI757382B (zh) 傳輸信息的方法、網路設備和終端設備
US20220224481A1 (en) Method for obtaining configuration information of demodulation reference signal, configuration method, and apparatus
TWI759558B (zh) 用於傳輸信號的方法、網路設備和終端設備
CA3050335C (en) Signal transmission method and apparatus
WO2019015468A1 (zh) 数据传输方法、网络设备和终端设备
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
WO2018018633A1 (zh) 一种csi-rs传输方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032007

Country of ref document: CA

Ref document number: 2019504054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016910091

Country of ref document: EP

Effective date: 20190121

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001723

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197005339

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016416207

Country of ref document: AU

Date of ref document: 20160728

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019001723

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190128