WO2018018411A1 - 调压电路及电路调压方法 - Google Patents

调压电路及电路调压方法 Download PDF

Info

Publication number
WO2018018411A1
WO2018018411A1 PCT/CN2016/091705 CN2016091705W WO2018018411A1 WO 2018018411 A1 WO2018018411 A1 WO 2018018411A1 CN 2016091705 W CN2016091705 W CN 2016091705W WO 2018018411 A1 WO2018018411 A1 WO 2018018411A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
fluctuation
global
local
value
Prior art date
Application number
PCT/CN2016/091705
Other languages
English (en)
French (fr)
Inventor
唐样洋
王新入
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680060966.1A priority Critical patent/CN108139763B/zh
Priority to PCT/CN2016/091705 priority patent/WO2018018411A1/zh
Publication of WO2018018411A1 publication Critical patent/WO2018018411A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present invention relates to the field of integrated circuits, and in particular, to a voltage regulating circuit and a circuit voltage regulating method.
  • the uncertainty refers to the uncertainty caused by the changes of various factors that affect the normal operation of the integrated circuit, for example, the uncertainty caused by the temperature change, Uncertainty caused by aging of components inside the integrated circuit.
  • the uncertainty of integrated circuits often brings many drawbacks to integrated circuits.
  • the uncertainty of integrated circuits can cause fluctuations in the supply voltage of integrated circuits, which may cause errors in the integrated circuit during operation.
  • the switching unit when the power supply voltage in the integrated circuit is regulated, the switching unit can be used for voltage regulation.
  • a switching unit can be set inside the integrated circuit, and the switching unit can be integrated with the switch unit.
  • the load inside the circuit is connected in series. Therefore, when the integrated circuit receives the input supply voltage, the switch unit can be turned on or off to perform voltage division processing on the supply voltage, thereby achieving the purpose of adjusting the voltage.
  • the switch in the switching unit When the power supply voltage in the integrated circuit is adjusted by the switching unit, the switch in the switching unit is turned on or off as long as the fluctuation occurs in the integrated circuit, but the power is supplied due to the problem of the fluctuation range.
  • the voltage adjustment is not accurate enough and it is likely to reduce the reliability and accuracy of the regulated voltage.
  • the embodiment of the invention provides a voltage regulation circuit and a circuit voltage regulation method.
  • the technical solution is as follows:
  • a voltage regulating circuit including at least one load regulation and a monitoring module, at least one load, a fluctuation value generating module, at least one partial configuration module, a global adjustment and monitoring module, and a global configuration module, the at least one load adjustment and monitoring module, the at least one load, and the at least one partial configuration One-to-one correspondence of modules;
  • Each load adjustment and monitoring module of the at least one load regulation and monitoring module receives a supply voltage, and performs voltage division processing on the supply voltage to obtain at least one first voltage, each of the at least one first voltage The first voltage is output to the corresponding load and the fluctuation value generating module;
  • the global adjustment and monitoring module receives the supply voltage, performs a voltage division process on the supply voltage to obtain a second voltage, and outputs the second voltage to the fluctuation value generation module;
  • the fluctuation value generating module generates a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage, and outputs the voltage fluctuation value and the fluctuation range identifier to the at least one partial configuration module
  • the fluctuation range identifier includes a global fluctuation identifier or a local fluctuation identifier
  • each of the at least one local configuration module is obtained from a correspondence between the stored voltage fluctuation value and the local configuration signal based on the voltage fluctuation value.
  • Corresponding local configuration signal and outputting the local configuration signal to a corresponding load adjustment and monitoring module in the at least one load adjustment and monitoring module to pass the corresponding load adjustment and monitoring module to the corresponding load One voltage is adjusted;
  • the global configuration module acquires a corresponding global configuration signal from a correspondence between the stored voltage fluctuation value and the global configuration signal based on the voltage fluctuation value, and The global configuration signal is output to the global adjustment and monitoring module to adjust the second voltage by the global adjustment and monitoring module.
  • the fluctuation value generating module may generate a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage, and output the voltage fluctuation value and the fluctuation range identifier to at least one local configuration module and
  • the module is configured globally, so that at least one of the local configuration module and the global configuration module can adjust the voltage according to the fluctuation range identifier, thereby improving the reliability and accuracy of the voltage adjustment, and at the same time, due to the reliability and accuracy of the adjustment voltage, Increased efficiency in regulating voltage.
  • the load adjustment and monitoring module includes a first Switch unit and local voltage sensor;
  • the first switching unit receives the power supply voltage, and performs voltage division processing on the power supply voltage And outputting, by the first voltage, the first voltage to a corresponding load to supply power to the load;
  • the local voltage sensor acquires the first voltage and outputs the first voltage to the fluctuation value generating module.
  • the first input end of the first switch unit is connected to an external power supply, and the second input end of the first switch unit is connected to the first output end of the local configuration module, and the output end of the first switch unit and the corresponding load
  • the first end is connected to the collecting end of the local voltage sensor respectively; the input end of the local voltage sensor is connected to the second output end of the corresponding partial configuration module, and the output end of the local voltage sensor and the first input end of the fluctuation value generating module connection.
  • the first switching unit includes at least one first transistor
  • the local voltage sensor includes at least one inverter and at least one memory unit.
  • the first switching unit can acquire an equivalent resistance of the first transistor, and the equivalent resistor can divide the supply voltage The pressure is processed to obtain a first voltage.
  • the global adjustment and monitoring module includes a second switching unit and a global voltage sensor
  • the second switching unit receives the power supply voltage, and performs voltage division processing on the power supply voltage to obtain the second voltage
  • the global voltage sensor acquires the second voltage and outputs the second voltage to the fluctuation value generating module.
  • the first input end of the second switch unit is connected to an external power source, the second input end of the second switch unit is connected to the first input end of the global configuration module, and the output end of the second switch unit is connected to the global voltage sensor.
  • the collecting end is connected, the input end of the global voltage sensor is connected to the second output end of the global configuration module, the first output end of the global voltage sensor is connected to the protective ground, and the second output end of the global voltage sensor is connected with the fluctuation value generating module
  • the second input is connected.
  • the second switching unit includes at least one second transistor, the global voltage sensor including at least one inverter and at least one memory unit.
  • the second switching unit can obtain an equivalent resistance of the second transistor, and the equivalent resistor can divide the supply voltage The pressure is processed to obtain a second voltage.
  • the fluctuation value generating module includes at least one fluctuation value generating submodule, the at least one fluctuation value generating submodule, the at least one load One-to-one correspondence with the at least one partial configuration module;
  • the fluctuation value generation sub-module includes a first comparison unit, a second comparison unit, a fluctuation range determination unit, and a fluctuation difference value output unit;
  • the first comparing unit compares the first voltage with the first preset value to obtain a local voltage difference indicating a difference between the first voltage and the first preset value, and the local voltage is And outputting the difference to the fluctuation difference output unit, and comparing the local voltage difference value with a local fluctuation threshold, and outputting the local fluctuation identifier when the local voltage difference is greater than or equal to the local fluctuation threshold To the fluctuation range determining unit;
  • the second comparing unit compares the second voltage with the second preset value to obtain a global voltage difference value indicating a difference between the second voltage and the second preset value, and the global voltage is And outputting the difference to the fluctuation difference output unit, and comparing the global voltage difference value with a global fluctuation threshold, and outputting the global fluctuation identifier when the global voltage difference is greater than or equal to the global fluctuation threshold To the fluctuation range determining unit;
  • the fluctuation range determining unit When the fluctuation range determining unit receives the local fluctuation identifier and does not receive the global fluctuation identifier, determining the local fluctuation identifier as a fluctuation range identifier and outputting to the fluctuation difference output unit when When receiving the global fluctuation identifier, the fluctuation range determining unit determines the global fluctuation identifier as a fluctuation range identifier and outputs the fluctuation range identifier to the fluctuation difference value output unit;
  • the fluctuation difference output unit determines the local voltage difference as the voltage fluctuation value, and outputs the voltage fluctuation value to a corresponding local configuration module And the global configuration module;
  • the global voltage difference value is determined as the voltage fluctuation value, and the voltage fluctuation value is output to a corresponding local configuration module and the global configuration module.
  • the input end of the first comparison unit is connected to the second output end of the corresponding load adjustment and monitoring module, and the first output end of the first comparison unit is connected to the first input end of the fluctuation range determination unit, and the first comparison unit
  • the second output end is connected to the first input end of the fluctuation difference output unit;
  • the input end of the second comparison unit is connected to the second output end of the global adjustment and monitoring module, and the first output end of the second comparison unit and the fluctuation range
  • the second input end of the judging unit is connected, and the second output end of the second comparing unit is The second input end of the fluctuation difference output unit is connected; the output end of the fluctuation range determining unit and the third input end of the fluctuation difference output unit, the first input end of the global configuration module, and the first input end of the corresponding local configuration module Connected separately; the output of the fluctuation difference output unit is respectively connected to the second input end of the global configuration module and the second input end of the corresponding local configuration module.
  • the fluctuation value generating module includes at least one first comparison unit, a second comparison unit, a fluctuation range determination unit, and at least one fluctuation difference output.
  • Unit, the at least one first comparison unit, the at least one fluctuation difference output unit, the at least one load, and the at least one partial configuration module are in one-to-one correspondence;
  • Each of the at least one first comparison unit compares the first voltage input to the corresponding load with the first preset value to obtain an indication between the first voltage and the first preset value a local voltage difference of the difference, outputting the local voltage difference to a corresponding fluctuation difference output unit, and comparing the local voltage difference with a local fluctuation threshold, when the local voltage difference is greater than or And equal to the local fluctuation threshold, outputting the local fluctuation identifier to the fluctuation range determining unit, where the local fluctuation identifier includes a local fluctuation position marker;
  • the second comparing unit compares the second voltage with the second preset value to obtain a global voltage difference value indicating a difference between the second voltage and the second preset value, and the global voltage is And outputting the difference to the at least one fluctuation difference output unit, and comparing the global voltage difference value with a global fluctuation threshold value, and outputting the global value when the global voltage difference value is greater than or equal to the global fluctuation threshold value Volatility identification to the fluctuation range determination unit;
  • each local fluctuation identifier in the at least one local fluctuation identifier determines the local fluctuation identifier as a fluctuation range identifier And outputting to the fluctuation difference output unit corresponding to the local fluctuation position flag included in the local fluctuation identifier, and when the fluctuation range determination unit receives the global fluctuation identifier, determining the global fluctuation identifier as the fluctuation range identifier And outputting to the at least one fluctuation difference output unit;
  • each of the fluctuation difference output units When each of the at least one fluctuation difference value output unit receives the fluctuation range identifier and the fluctuation range is identified as the local fluctuation identifier, each of the fluctuation difference output units will The local voltage difference value is determined as the voltage fluctuation value, and each of the at least one fluctuation difference value output unit receives the fluctuation range identifier and the fluctuation range identifier is the global The wave difference value output unit determines the global voltage difference value as the voltage fluctuation value, and outputs the voltage fluctuation value to a corresponding local configuration mode Block and the global configuration module.
  • the fluctuation range determination unit may pass at least one local fluctuation.
  • the identification and a global fluctuation indicator make the judgment of the fluctuation range, thereby improving the accuracy of the fluctuation range judgment.
  • the local configuration module includes a first switch configuration unit and a local sensor a configuration unit;
  • the voltage fluctuation value includes a local voltage difference value or a global voltage difference value, and the local configuration signal includes a first switch configuration signal and a local sensor configuration signal;
  • the first switch configuration unit acquires from the local configuration signal based on the local voltage difference value The first switch configures a signal, and outputs the first switch configuration signal to a corresponding load adjustment and monitoring module;
  • the local sensor configuration unit acquires the local sensor configuration signal based on the local voltage difference value, and outputs the local sensor configuration signal to a corresponding load adjustment and monitoring module.
  • the first input end of the first switch configuration unit is connected to the first output end of the fluctuation value generating module, and the second input end of the first switch configuration unit is connected to the second output end of the fluctuation value generating module, the first switch configuration
  • the output end of the unit is connected to the second input end of the load adjustment and monitoring module;
  • the first input end of the local sensor configuration unit is connected to the first output end of the fluctuation value generating module, and the second input end of the local sensor configuration unit and the fluctuation value
  • the second input of the generating module is connected, and the output of the local sensor configuration unit is connected to the third input of the load regulation and monitoring module.
  • the global configuration module includes a second switch configuration unit and a global sensor configuration unit;
  • the second switch configuration unit acquires the second switch configuration signal based on the global voltage difference value, and Outputting the second switch configuration signal to the global adjustment and monitoring module;
  • the global sensor configuration unit acquires the global sensor configuration signal based on the global voltage difference value, and outputs the global sensor configuration signal to the global adjustment and monitoring module.
  • the first input end of the second switch configuration unit is connected to the first output end of the fluctuation value generating module, and the second output end of the second switch configuration unit is connected to the second output end of the fluctuation value generating module, and the second switch configuration
  • the output of the unit is connected to the second input of the global adjustment and monitoring module; global sensing
  • the first input end of the device configuration unit is connected to the first output end of the fluctuation value generating module, the second input end of the global sensor configuration unit is connected to the second input end of the fluctuation value generating module, and the output end of the global sensor configuration unit is global
  • the adjustment is connected to the third input of the monitoring module.
  • the voltage regulating circuit further includes a process angle monitor, a temperature sensor, and a volume pressure temperature PVT voltage monitor.
  • an embodiment of the present invention provides a circuit voltage regulation method, which is applied to the voltage regulation circuit according to the first aspect to the sixth possible implementation manner of the first aspect, wherein the method is include:
  • At least one first voltage is obtained by performing a voltage division process on each of the load regulation and monitoring modules of the at least one load regulation and monitoring module, and the at least one And outputting, by the global adjustment and monitoring module, the second voltage, Outputting the second voltage to the fluctuation value generating module;
  • the fluctuation value generating module Generating, by the fluctuation value generating module, a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage, and outputting the voltage fluctuation value and the fluctuation range identifier to the at least one partial configuration a module and the global configuration module, the fluctuation range identifier includes a global fluctuation identifier or a local fluctuation identifier, and the voltage fluctuation value includes a local voltage difference value or a global voltage difference value;
  • the fluctuation range is identified as a local fluctuation identifier, based on the voltage fluctuation value, through a correspondence between the stored voltage fluctuation value and the local configuration signal by each of the at least one local configuration module Obtaining a corresponding local configuration signal, and outputting the local configuration signal to a corresponding load adjustment and monitoring module in the at least one load adjustment and monitoring module to pass the corresponding load adjustment and monitoring module to the corresponding load
  • the first voltage is adjusted;
  • the corresponding global configuration signal is obtained from the correspondence between the stored voltage fluctuation value and the global configuration signal by the global configuration module based on the voltage fluctuation value, and The global configuration signal is output to the global adjustment and monitoring module to adjust the second voltage by the global adjustment and monitoring module.
  • the load adjustment and monitoring module includes a first switch unit and a local part for at least one load adjustment and monitoring module a voltage sensor;
  • the global adjustment and monitoring module includes a second switching unit and a global voltage sensor;
  • the fluctuation value generating module includes:
  • the fluctuation value generating module includes at least one fluctuation value generating submodule, the at least one fluctuation value generating submodule, the at least one load Adjusting and monitoring module, the at least one load and the at least one local configuration module are in one-to-one correspondence; for each fluctuation value generation sub-module in the at least one fluctuation value generation sub-module, the fluctuation value generation sub-module comprises a first comparison unit, a second comparison unit, a fluctuation range determination unit, and a fluctuation difference output unit;
  • the module and the global configuration module include:
  • the local fluctuation flag is determined as a fluctuation range identifier and output to the wave Moving value output unit;
  • the global fluctuation identifier When the global fluctuation identifier is received by the fluctuation range determining unit, the global fluctuation identifier is determined as a fluctuation range identifier and output to the fluctuation difference value output unit;
  • the fluctuation value generating module includes at least one first comparison unit, a second comparison unit, a fluctuation range determination unit, and at least one fluctuation difference output.
  • a unit, the at least one first comparison unit, the at least one load adjustment and monitoring module, the at least one fluctuation difference output unit, and the at least one load are in one-to-one correspondence;
  • the local configuration module and the global configuration module include:
  • the local fluctuation identifier is determined as each local fluctuation identifier in the at least one local fluctuation identifier as The fluctuation range is identified and output to the fluctuation difference output unit corresponding to the local fluctuation position mark included in the local fluctuation identifier;
  • the global fluctuation identifier When the global fluctuation identifier is received by the fluctuation range determining unit, the global fluctuation identifier is determined as a fluctuation range identifier and output to the at least one fluctuation difference value output unit;
  • a voltage fluctuation value is output to the at least one local configuration module and the global configuration module.
  • the determining, the local voltage difference, and the global voltage difference are based on the fluctuation range identifier And determining, by the each of the at least one fluctuation difference value output unit, the voltage fluctuation value, and outputting the voltage fluctuation value to the corresponding local configuration module and the global configuration module, including:
  • the local voltage difference value is output to the corresponding local configuration module and the global configuration module;
  • the global voltage difference value is output to the corresponding local configuration module and the global configuration module.
  • the local configuration is configured for each of the at least one local configuration module
  • the module includes a first switch configuration unit and a local sensor configuration unit;
  • the fluctuation range is identified as a local fluctuation identifier, based on the voltage fluctuation value, when passing through each of the at least one partial configuration module, from the stored voltage fluctuation value and the local configuration signal Obtaining a corresponding local configuration signal in the corresponding relationship, and outputting the local configuration signal to a corresponding load adjustment and monitoring module in the at least one load adjustment and monitoring module to pass the corresponding load adjustment and monitoring module Adjusting the first voltage of the corresponding load, including:
  • the first switch configuration unit acquires the first switch configuration signal from the correspondence between the voltage fluctuation value and the local configuration signal based on the voltage fluctuation value And outputting the first switch configuration signal to the corresponding first switch unit;
  • the local sensor configuration unit obtains a local sensor configuration signal from the correspondence between the voltage fluctuation value and the local configuration signal, and outputs the local sensor configuration signal to a corresponding local voltage sensor;
  • the number of connections of the at least one inverter and the at least one memory unit included in the local voltage sensor is controlled by the local voltage sensor based on the local sensor configuration signal.
  • the global configuration module includes a second switch configuration unit and a global sensor configuration unit;
  • the corresponding global configuration signal is obtained from the correspondence between the stored voltage fluctuation value and the global configuration signal by the global configuration module based on the voltage fluctuation value, and
  • the global configuration signal is output to the global adjustment and monitoring module to adjust the second voltage by the global adjustment and monitoring module, including:
  • the second switch configuration unit When the fluctuation range is identified as the global fluctuation identifier, obtaining, by the second switch configuration unit, a second switch from a correspondence between the voltage fluctuation value and a global configuration signal, based on the voltage fluctuation value Configuring a signal and outputting the second switch configuration signal to the second switch unit;
  • the global sensor configuration unit obtains a global sensor configuration signal from a correspondence relationship between the voltage fluctuation value and the global configuration signal, and Transmitting a global sensor configuration signal to the global voltage sensor;
  • the fluctuation value generating module may generate a voltage fluctuation value based on the first voltage and the second voltage.
  • the fluctuation range is identified, and the voltage fluctuation value and the fluctuation range identifier are output to at least one local configuration module and global configuration module.
  • the fluctuation range is identified as a local fluctuation identifier, it is determined that a local fluctuation occurs in the integrated circuit.
  • the local configuration module corresponding to the local fluctuation identifier may acquire a local configuration signal, and output the local configuration signal to a corresponding load adjustment.
  • the monitoring module wherein the first voltage of the corresponding load is adjusted by the corresponding load adjustment and monitoring module.
  • the global configuration module can obtain the global configuration signal, and output the global configuration signal to the global adjustment and monitoring module to globally adjust.
  • the second voltage is adjusted with the monitoring module.
  • the second voltage is a global voltage in the integrated circuit, and therefore, when local fluctuation occurs, the first voltage of the corresponding load can be adjusted, when a global
  • the second voltage can be adjusted, that is, different voltages can be adjusted according to different fluctuation ranges, thereby improving the reliability and accuracy of voltage regulation, and at the same time, due to the reliability and accuracy of the adjustment voltage.
  • Increasing, and thus increasing the efficiency of regulating the voltage is a global voltage in the integrated circuit, and therefore, when local fluctuation occurs, the first voltage of the corresponding load can be adjusted, when a global
  • the second voltage can be adjusted, that is, different voltages can be adjusted according to different fluctuation ranges, thereby improving the reliability and accuracy of voltage regulation, and at the same time, due to the reliability and accuracy of the adjustment voltage.
  • FIG. 1 is a schematic structural diagram of a first voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of a second voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural diagram of a local voltage sensor according to an embodiment of the present invention.
  • FIG. 3A is a schematic structural diagram of a third voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 3B is a schematic structural diagram of a global voltage sensor according to an embodiment of the present invention.
  • 4A is a schematic structural diagram of a fourth voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 4B is a schematic structural diagram of a fifth voltage regulating circuit according to an embodiment of the present invention.
  • 4C is a schematic structural diagram of a sixth voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a seventh voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an eighth voltage regulating circuit according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a circuit voltage regulation method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another circuit voltage regulation method according to an embodiment of the present invention.
  • a the first end of the load
  • b the second end of the load
  • 51 a first input of the global adjustment and monitoring module
  • 52 a second input of the global adjustment and monitoring module
  • 53 a third input of the global adjustment and monitoring module
  • 54 a first output of the global adjustment and monitoring module
  • 61 The first output of the global configuration module
  • 62 the second output of the global configuration module
  • 63 a first input end of the global configuration module, 64: a second input end of the global configuration module;
  • 16 first switching unit
  • 17 local voltage sensor
  • 161 a first input end of the first switch unit
  • 162 a second input end of the first switch unit
  • 1741 inverter group of voltage controlled oscillator
  • 1742 memory unit of voltage controlled oscillator
  • 1743 decoder of voltage controlled oscillator
  • 561 a first input end of the second switch unit
  • 562 a second input end of the second switch unit
  • 571 the acquisition terminal of the global voltage sensor
  • 572 the input terminal of the global voltage sensor
  • 573 a first output of the global voltage sensor
  • 574 a second output of the global voltage sensor
  • 575 a voltage controlled oscillator of the global voltage sensor
  • 5751 inverter group of voltage controlled oscillator
  • 5752 memory unit of voltage controlled oscillator
  • 5753 decoder of voltage controlled oscillator
  • 351 an input end of the first comparison unit
  • 352 a first output end of the first comparison unit
  • 361 an input end of the second comparison unit
  • 362 a first output end of the second comparison unit
  • 371 a first input end of the fluctuation range judging unit
  • 372 a second input end of the fluctuation range judging unit
  • 373 an output end of the fluctuation range judging unit
  • 381 a first input end of the fluctuation difference output unit
  • 382 a second input end of the fluctuation difference output unit
  • 383 a third input end of the fluctuation difference output unit
  • 384 an output end of the fluctuation difference output unit
  • 461 a first input of the local configuration sensor configuration unit
  • 462 a second input end of the local sensor configuration unit
  • 463 an output end of the local sensor configuration unit
  • 65 second switch configuration unit
  • 66 global sensor configuration unit
  • 651 a first input end of the second switch configuration unit
  • 652 a second output end of the second switch configuration unit
  • 653 an output end of the second switch configuration unit
  • 661 globally configuring a first input end of the sensor configuration unit, 662: a second input end of the global sensor configuration unit, 663: an output end of the global sensor configuration unit;
  • a 1 the first input of the inverter group in the local voltage sensor
  • b 1 the second input of the inverter group in the local voltage sensor
  • c 1 the acquisition end of the inverter group in the local voltage sensor
  • d 1 the output of the inverter group in the local voltage sensor
  • e 1 the first input of the memory cell in the local voltage sensor
  • f 1 the second input of the memory cell in the local voltage sensor
  • g 1 the local voltage sensor a first output of the memory cell
  • h 1 a second output of the memory cell in the local voltage sensor
  • i 1 an input of the decoder in the local voltage sensor
  • j 1 an output of the decoder in the local voltage sensor
  • a 2 the first input of the inverter group in the global voltage sensor
  • b 2 the second input of the inverter group in the global voltage sensor
  • c 2 the acquisition end of the inverter group in the global voltage sensor
  • d 2 the output of the inverter group in the global voltage sensor
  • e 2 the first input of the memory cell in the global voltage sensor
  • f 2 the second input of the memory cell in the global voltage sensor
  • g 2 the global voltage sensor a first output of the memory cell
  • h 2 a second output of the memory cell in the global voltage sensor
  • i 2 an input of the decoder in the global voltage sensor
  • j 2 an output of the decoder in the global voltage sensor
  • the voltage regulating circuit includes at least one load regulation and monitoring module 1, at least one load 2, a fluctuation value generating module 3, and at least one partial portion.
  • the configuration module 4, the global adjustment and monitoring module 5 and the global configuration module 6, the at least one load adjustment and monitoring module 1, the at least one load 2 and the at least one partial configuration module 4 are in one-to-one correspondence;
  • Each of the load regulation and monitoring modules 1 of the at least one load regulation and monitoring module 1 receives a supply voltage, and performs voltage division processing on the supply voltage to obtain at least one first voltage, each of the at least one first voltage The first voltage is output to the corresponding load 2 and the fluctuation value generating module 3; the global adjustment and monitoring module 5 receives the power supply voltage, performs voltage division processing on the power supply voltage to obtain a second voltage, and outputs the second voltage to the fluctuation value.
  • the fluctuation value generating module 3 generates a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage, and outputs the voltage fluctuation value and the fluctuation range identifier to the at least one local configuration module 4 and the global
  • the configuration module 6 includes the global fluctuation identifier or the local fluctuation identifier. When the fluctuation range is identified as the local fluctuation identifier, each local configuration module 4 of the at least one local configuration module 4 is based on the voltage fluctuation value.
  • the part configuration signal is output to the corresponding load adjustment and monitoring module 1 in the at least one load regulation and monitoring module 1 to adjust the first voltage of the corresponding load 2 through the corresponding load adjustment and monitoring module 1;
  • the global configuration module 6 obtains a corresponding global configuration signal from the correspondence between the stored voltage fluctuation value and the global configuration signal based on the voltage fluctuation value, and outputs the global configuration signal to the global adjustment and monitoring.
  • the second voltage is adjusted by the global adjustment and monitoring module 5.
  • At least one load adjustment and monitoring module in the load regulation and monitoring module 1 can perform voltage division processing on the supply voltage to obtain at least one first voltage when the power supply voltage provided by the external power supply V DD is turned on, and the Each of the at least one first voltage is output to the corresponding load 2 and the fluctuation value generating module 3; meanwhile, when the power supply voltage provided by the external power source V DD is turned on, the global adjustment and monitoring module 5 can also be The power supply voltage is subjected to a voltage division process to obtain a second voltage, and the second voltage is output to the fluctuation value generating module 3; when the fluctuation value generating module 3 receives the first voltage and the second voltage, the first voltage may be based on the first The voltage and the second voltage generate a voltage fluctuation value and a fluctuation range identifier, and output the voltage fluctuation value and the fluctuation range identifier to the at least one local configuration module 4 and the global configuration module 6.
  • the fluctuation range identifier includes a global fluctuation identifier or a local fluctuation identifier
  • the local configuration module 4 of the at least one partial configuration module 4 receives the voltage fluctuation value and the fluctuation range identifier
  • the fluctuation range identifier is
  • the corresponding local configuration signal may be obtained from the correspondence between the stored voltage fluctuation value and the local configuration signal based on the voltage fluctuation value, and the local configuration signal is output to the at least one load adjustment and monitoring module.
  • the corresponding load adjustment and monitoring module 1 is configured to adjust the first voltage of the corresponding load 2 by the corresponding load adjustment and monitoring module 1; when the global configuration module 6 receives the voltage fluctuation value and the fluctuation range identifier, and fluctuates
  • the range identifier is a global fluctuation identifier
  • the corresponding global configuration signal may be obtained from the correspondence between the stored voltage fluctuation value and the global configuration signal based on the voltage fluctuation value, and the global configuration signal is output to the global adjustment and monitoring.
  • the second power is passed through the global adjustment and monitoring module 5.
  • the adjustment can be performed to adjust the voltage according to the fluctuation range, so that the voltage regulation of the circuit is targeted, the reliability and accuracy of the voltage adjustment are improved, and the reliability and accuracy of the adjustment voltage are improved, thereby improving the adjustment.
  • the efficiency of the voltage can be performed to adjust the voltage according to the fluctuation range, so that the voltage regulation of the circuit is targeted, the reliability and accuracy of the voltage adjustment are improved, and the reliability and accuracy of the adjustment voltage are improved, thereby improving
  • the load control and monitoring module 1 is connected to the external power supply V DD , and the load adjustment and monitoring module 1 is The second input 12 is connected to the first output 41 of the corresponding partial configuration module 4, and the third input 13 of the load regulation and monitoring module 1 is connected to the second output 42 of the corresponding partial configuration module 4, the load
  • the first output 14 of the regulation and monitoring module is connected to the first end a of the corresponding load 2
  • the second output 15 of the load regulation and monitoring module 1 is connected to the first input 31 of the fluctuation value generation module 3, which
  • the second end b of the load is connected to the protective ground
  • the first input 51 of the global regulation and monitoring module 5 is connected to the external power supply V DD
  • the output end 61 is connected, the third input end 53 of the global adjustment and monitoring module 5 is connected to the second output end 62 of the global configuration module 6, and the first output end 54 of the global adjustment and monitoring module 5 is connected to the protective ground,
  • the load regulation and monitoring module for monitoring and adjusting the at least one load module 1 each of the first load regulation and monitoring module has an input terminal 11 is connected to an external power supply V DD, a first global regulation and monitoring module 5 The input terminal 51 is connected to an external power source V DD .
  • the load The regulation and monitoring module 1 can perform voltage division processing on the power supply voltage provided by the external power supply V DD to obtain a first voltage
  • the global adjustment and monitoring module 5 can also perform voltage division processing on the power supply voltage to obtain a second voltage.
  • the load adjustment and monitoring module 1 can output the first voltage to the corresponding load 2 and the fluctuation value generating module 3, and the global adjustment and monitoring module 5 can output the second voltage to the fluctuation value generating module 3. in.
  • the fluctuation value generating module 3 receives the first voltage and the second voltage, a voltage fluctuation value and a fluctuation range identifier may be generated based on the first voltage and the second voltage.
  • the fluctuation value generating module 3 can output the voltage fluctuation value and the fluctuation range identifier to the at least one partial configuration module 4 and the global configuration module 6.
  • the fluctuation range identifier includes a global fluctuation identifier or a local fluctuation identifier
  • the local configuration signal may be acquired based on the voltage fluctuation value.
  • the first output 41 of the local configuration module is connected to the second input 12 of the corresponding load adjustment and monitoring module 1, the second output 42 of the local configuration module and the third of the corresponding load adjustment and monitoring module 1 The input terminal 13 is connected. Therefore, the local configuration module 4 can output the local configuration signal to the corresponding load adjustment and monitoring module 1 to adjust the first voltage of the corresponding load 2 through the corresponding load adjustment and monitoring module 1. .
  • the global configuration module 6 receives the voltage fluctuation value and the fluctuation range identifier, and the fluctuation range When the perimeter identifier is a global fluctuation identifier, the global configuration signal can be obtained based on the voltage fluctuation value. And because the first output end 61 of the global configuration module 6 is connected to the second input end 52 of the global adjustment and monitoring module, the second output end 62 of the global configuration module is connected to the third input end 53 of the global adjustment and monitoring module, and The global configuration signal is output to the global adjustment and monitoring module 5 to regulate the second voltage by the global adjustment and monitoring module 5.
  • the local fluctuation flag is used to uniquely identify local voltage fluctuations occurring in the integrated circuit.
  • the global fluctuation flag is used to uniquely identify global voltage fluctuations that occur in the integrated circuit.
  • the at least one load adjustment and monitoring module when receiving the power supply voltage provided by the external power source V DD , since the at least one load adjustment and detection module has a one-to-one correspondence with the at least one load, the at least one load adjustment and monitoring module is connected to the external power source. After the voltage supply provided by V DD is subjected to voltage division processing, a first voltage respectively supplied to the at least one load is obtained, that is, the at least one load regulation and monitoring module divides the supply voltage supplied by the external power supply V DD After processing, at least one first voltage is obtained. When the first voltage of any one of the at least one load or the plurality of loads fluctuates and the amount of the fluctuating load is less than the total number of loads in the integrated circuit, it is determined that the integrated circuit has local fluctuations.
  • the voltage of the supply voltage provided by the V DD can be changed by adjusting the global adjustment and monitoring module, and the voltage input to each load is not required to be adjusted, thereby improving the voltage. Adjust the efficiency of the voltage.
  • the local configuration signal is used to configure a corresponding load adjustment and monitoring module for configuring the global adjustment and monitoring module.
  • At least one load may be included in the voltage regulating circuit, and the at least one load is in one-to-one correspondence with the at least one load adjustment and monitoring module 1 and the at least one local configuration module 4, Since the required voltage of each load in the at least one load 2 may be the same or different, the required voltage of each load in the at least one load is the first voltage input to the load, and therefore, when the pair is input to the at least one When the first voltage of any of the loads 2 is adjusted, the local configuration module corresponding to the load may input the local configuration signal to the corresponding load adjustment and monitoring module according to the requirement of the load 2 for the first voltage.
  • the load adjustment and monitoring module may adjust the resistance value of the equivalent resistance in the load adjustment and monitoring module according to the local configuration signal, so as to change the external power supply of the load adjustment and monitoring module.
  • supply voltage V DD is the ability to provide a partial pressure, thus changing the voltage input to the corresponding first load of The voltage value makes the voltage regulation specific, which improves the reliability and accuracy of voltage regulation.
  • the load may also be referred to as a load sub-domain.
  • the load may be the entire logic module in the integrated circuit, such as a processor core, or the entire SoC (System On Chip) unit.
  • the load can be divided into multiple load sub-domains, thereby facilitating accurate control of the load. Among them, the division of the load sub-domain does not have any impact on the behavior and function of the load, but only changes the power supply layout of the power plane of the load.
  • the specific load sub-domain division may be divided according to the specific situation of the actual integrated circuit layout, so as to achieve optimal power integrity (PI) and signal integrity (SI), which is not performed by the embodiment of the present invention. Specifically limited.
  • the load regulation and monitoring module 1 includes a first switching unit 16 and a local voltage sensor 17;
  • the first switching unit 16 receives the power supply voltage, performs voltage division processing on the power supply voltage to obtain the first voltage, and outputs the first voltage to the corresponding load 2 to supply power to the load 2; the local voltage sensor 17 The first voltage is collected, and the first voltage is output to the fluctuation value generating module 3.
  • the first input end 161 of the first switch unit 16 is connected to the external power supply V DD , and the second input end 162 of the first switch unit 16 is connected to the first output end 41 of the local configuration module 4 , the first switch unit
  • the output 163 of the 16 is connected to the first end a of the corresponding load 2 and the acquisition end 171 of the local voltage sensor 17 respectively; the input 172 of the local voltage sensor 17 is connected to the second output 42 of the corresponding partial configuration module 4
  • the output 173 of the local voltage sensor 17 is connected to the first input 31 of the ripple value generating module 3.
  • the first switching unit 16 may include at least one first transistor, and the at least one first transistor may be connected in parallel to form a plurality of parallel lines.
  • the single parallel circuit may be composed of a plurality of first transistors connected in series, or may be composed of a first transistor, which is not specifically limited in the embodiment of the present invention.
  • the local voltage sensor 17 can include at least one voltage controlled oscillator 174.
  • the voltage controlled oscillator 174 includes a reverse
  • the phase group 1741 and the memory unit 1742 of course, the local voltage sensor 17 may further include other components, such as the decoder 1743, which is not specifically described in this embodiment of the present invention. limited.
  • the inverter group 1741 may include at least one inverter, and may further include other components, which are not specifically limited in the embodiment of the present invention.
  • the local voltage sensor may include at least one voltage controlled oscillator 174, and each voltage controlled oscillator includes an inverter group 1741 and a memory unit 1742, that is, the local voltage sensor may include at least one reverse The phaser group 1741 and the at least one memory unit 1742. Also, since the inverter group 1741 includes at least one inverter, the local voltage sensor includes at least one inverter. For example, in the local voltage sensor shown in FIG. 2B, the description is made by taking a local voltage sensor including four voltage controlled oscillators 174 as an example.
  • the first input end a 1 of the first inverter group 1741 of the four inverter groups 1741 and the first input end e 1 of the corresponding first memory unit 1742 are respectively connected to the clock signal terminal CLK, which is respectively connected to the clock signal terminal CLK.
  • a second input b 1 of each of the four inverter groups 1741 is connected as an input 172 of the local voltage sensor to a second output 42 of the corresponding local configuration module to receive a corresponding local portion Configuring a local sensor configuration signal output by the module; the acquisition terminal c 1 of each of the four inverter groups 1741 as the acquisition terminal 171 of the local voltage sensor and the corresponding first switching unit 16 respectively
  • the output end 163 is connected to the first end a of the corresponding load 2 to collect the voltage to be monitored, that is, the first voltage; the output end of the last inverter group 1741 of the four inverter groups 1741 and the corresponding
  • the storage unit 1742 is connected, and the output terminal d 1 of each of the remaining inverter groups 1741 is connected to the first input end of the next inverter group 1741 and the second input terminal f 1 of the corresponding storage unit 1742; the four storages First of each of the storage units 1742 in unit 1742 The end of the g 1 connected to the first input terminal 1742
  • the first switching unit when receiving a supply voltage to a supply voltage provided by the external power supply V DD, to the at least one first switching unit in each of the first switching unit, the first switching unit to the external power supply V DD supplied After the voltage division process is performed, a first voltage is obtained, and the local voltage sensor 17 can collect the voltage to be monitored, that is, the first voltage, by the acquisition terminal c 1 of the at least one inverter group, and the first voltage is the local voltage sensor.
  • the supply voltage when receiving a supply voltage to a supply voltage provided by the external power supply V DD, to the at least one first switching unit in each of the first switching unit, the first switching unit to the external power supply V DD supplied After the voltage division process is performed, a first voltage is obtained, and the local voltage sensor 17 can collect the voltage to be monitored, that is, the first voltage, by the acquisition terminal c 1 of the at least one inverter group, and the first voltage is the local voltage sensor.
  • the supply voltage when receiving a supply voltage to a supply voltage provided by the
  • the first switching unit 16 may comprise at least one first transistor and the first input terminal of the first switching unit 161 is connected to the external power supply V DD, and therefore, the first switching unit 16 through the first input terminal 161 Receiving a supply voltage provided by the external power supply V DD , and dividing the supply voltage by the equivalent resistance of the at least one first transistor to obtain a first voltage, and outputting the first voltage to the corresponding end through the output end 163 Load 2 in.
  • the local voltage sensor 17 can collect the first voltage through the collecting end c 1 of the at least one inverter group 1741.
  • the local voltage sensor 17 can output through the decoder 1743.
  • the numerical value signal is encoded, and the encoded numerical signal is in the form of a digital signal of the voltage value of the first voltage, and the converted first voltage is output to the fluctuation value generating module 3 through the output terminal j 1 of the decoder 1743.
  • the decoder 1743 is configured to decode the voltage value of the first voltage, obtain an encoded value signal, and output the encoded value signal.
  • the first switching unit 16 can obtain an equivalent resistance of the first transistor, and the equivalent resistor can be externally connected to the power source V.
  • the supply voltage supplied by the DD is subjected to a voltage division process to obtain a first voltage.
  • the operation of the local voltage sensor 17 to digitally encode the first voltage to obtain the digital signal form of the voltage value of the first voltage may be referred to the related art, which is not specifically limited in the embodiment of the present invention.
  • the global adjustment and monitoring module 5 includes a second switching unit 56 and a global voltage sensor 57;
  • the second switching unit 56 receives the power supply voltage, and performs voltage division processing on the power supply voltage to obtain the second voltage.
  • the global voltage sensor 57 collects the second voltage and outputs the second voltage to the fluctuation value generating module 3.
  • the first input end 561 of the second switch unit 56 is connected to the external power supply V DD , and the second input end 562 of the second switch unit 56 is connected to the first input end 61 of the global configuration module 6 .
  • the second switch unit The output 563 of the 56 is connected to the acquisition terminal 571 of the global voltage sensor 57.
  • the input 572 of the global voltage sensor 57 is connected to the second output 62 of the global configuration module 6, and the first output 573 of the global voltage sensor 57 is protected.
  • the second output 574 of the global voltage sensor 57 is coupled to the second input 32 of the ripple value generating module 3.
  • the second switching unit 56 may include at least one second transistor, and each of the at least one second transistor is connected in parallel to form a plurality of parallel lines.
  • the single parallel circuit may be composed of a plurality of second transistors in series, or may be composed of a second transistor, which is not specifically limited in the embodiment of the present invention.
  • the global voltage sensor 57 may include at least one voltage controlled oscillator 575 for each voltage controlled oscillator 575 of the at least one voltage controlled oscillator 575.
  • the 575 may include an inverter group 5751 and a storage unit 5752.
  • the global voltage sensor 57 may further include other components, such as a decoder 5753, which is not specifically limited in the embodiment of the present invention.
  • the inverter group 5751 may include at least one inverter, and may further include other components, which are not specifically limited in the embodiment of the present invention.
  • the global voltage sensor comprises at least one voltage controlled oscillator 575, each voltage controlled oscillator comprising an inverter group 5751 and a memory unit 5752, that is, the global voltage sensor comprises at least one inverter group 5751 And at least one storage unit 5752. Also, since at least one inverter can be included in the inverter group 5751, the global voltage sensor includes at least one inverter. For example, in the global voltage sensor as described in FIG. 3B, four voltage controlled oscillators are taken as an example for description.
  • a first inverter group of the four inverters 5751 to 5751 of a first group of a 2 input terminal and a memory cell corresponding to a first input terminal 5752 e 2 are connected to the clock signal terminal CLK
  • the A second input b 2 of each of the at least one inverter group 1741 is connected as an input 572 of the global voltage sensor to a second output 62 of the global configuration module 6, the at least one inverter group
  • the acquisition terminal c 2 of each inverter group in 5751 is connected as the acquisition terminal 571 of the global voltage sensor to the output terminal 563 of the second switching unit 56 to collect the voltage to be monitored, that is, the second voltage
  • the output of the last inverter group in the phase group 5751 is connected to the second input terminal f 1 of the corresponding last memory cell 5752, and the output terminal d 2 and the next inverter of each of the remaining inverter groups 5751 a first input terminal 5751 of the group and the corresponding memory cell 5752
  • the second switching unit when receiving the power supply voltage provided by the external power source V DD , the second switching unit performs voltage division processing on the power supply voltage provided by the external power source V DD to obtain a second voltage, and the global voltage sensor can pass at least one inverter group 5751 of the acquired collection end c 2 voltage to be monitored, i.e. the second voltage, the second voltage is the voltage of the global supply voltage sensor.
  • the second switch unit 56 can pass through the first input end. 561 receiving external power supply voltage V DD supplied, and dividing the supply voltage by processing the equivalent resistance of the at least one second transistor, a second voltage obtained.
  • the global voltage sensor 57 can collect the second voltage through the collecting terminal c 2 of the at least one inverter group 5751, and can pass the decoder 5753 when the global voltage sensor 57 acquires the second voltage.
  • the encoded value signal is outputted, and the encoded value signal is in the form of a digital signal of the voltage value of the second voltage, and the converted second voltage is output to the fluctuation value generating module 3 through the output terminal j 2 of the decoder 5753.
  • the decoder 5753 is configured to decode the voltage value of the second voltage, obtain an encoded value signal, and output the encoded value signal.
  • the second switching unit 56 can obtain an equivalent resistance of the second transistor, and the equivalent resistor can be externally connected to the power source V. DD supply voltage provided by the dividing process, thereby obtaining the second voltage.
  • the operation of the global voltage sensor 57 to digitally encode the second voltage to obtain the digital signal form of the voltage value of the second voltage may be referred to the related art, which is not specifically limited in the embodiment of the present invention.
  • the first transistor and the second transistor according to the embodiment of the present invention may be an NMOS (N-Mental-Oxide-Semiconductor) tube or a PMOS (P-Mental-Oxide-Semiconductor, a P-type metal oxide semiconductor tube or a CMOS (Complementary Mental-Oxide-Semiconductor) tube, of course, may be other transistors or equivalent switches, such as power gating, the present invention The embodiment does not specifically limit this.
  • first transistor and the second transistor may be the same type of transistor or different types of transistors, which are not specifically limited in the embodiment of the present invention.
  • the local voltage sensor functions to monitor a specific voltage value of the first voltage.
  • the circuit is implemented by using a circuit as shown in FIG. 2B.
  • the voltage monitoring can be implemented by other circuits, which is not specifically limited in the embodiment of the present invention.
  • the global voltage sensor acts to monitor the specific voltage value of the second voltage.
  • the circuit is implemented by using a circuit as shown in FIG. 3B.
  • the voltage monitoring can be implemented by other circuits, which is not specifically limited in the embodiment of the present invention.
  • the fluctuation value generating module 3 includes at least one fluctuation value generating sub-module, and the at least one fluctuation value generating sub-module, the at least one load 2, and the at least one partial configuration module 4 are in one-to-one correspondence;
  • the fluctuation value generation sub-module includes: a first comparison unit 35, a second comparison unit 36, and a fluctuation range determination unit 37. And a fluctuation difference output unit 38;
  • the first comparing unit 35 compares the first voltage with the first preset value to obtain a local voltage difference indicating a difference between the first voltage and the first preset value, and outputs the local voltage difference to the fluctuation difference
  • the value output unit 38 compares the local voltage difference with the local fluctuation threshold, and when the local voltage difference is greater than or equal to the local fluctuation threshold, outputs the local fluctuation identifier to the fluctuation range determining unit 37; the second comparing unit Comparing the second voltage and the second preset value to obtain a global voltage difference value indicating a difference between the second voltage and the second preset value, and outputting the global voltage difference value to the fluctuation difference output
  • the unit 38 compares the global voltage difference with the global fluctuation threshold, and when the global voltage difference is greater than or equal to the global fluctuation threshold, outputs the global fluctuation identifier to the fluctuation range determining unit 37; when the fluctuation range is determined When the unit 37 receives the local fluctuation identifier and does not receive the global fluctuation identifier, the local fluctuation
  • the global configuration module 6 and the corresponding local configuration module 4 when the fluctuation range determining unit 37 receives the global fluctuation identifier, determine the global fluctuation identifier as the fluctuation range identifier and output to the fluctuation difference output unit 38, globally In the configuration module 6 and the corresponding partial configuration module 4; when the fluctuation range is identified as the local fluctuation identifier, the fluctuation difference output unit 38 determines the local voltage difference as the voltage fluctuation value, and the voltage fluctuation value Outputting to the corresponding local configuration module and the global configuration module; when the fluctuation range is identified as the global fluctuation identifier, determining the global voltage difference as the voltage fluctuation value, and outputting the voltage fluctuation value to the corresponding local configuration Module 4 and Global Configuration Module 6.
  • the input end 351 of the first comparison unit 35 is connected to the second output end 15 of the corresponding load adjustment and monitoring module 1, the first output end 352 of the first comparison unit 351 and the first input of the fluctuation range determination unit 37.
  • the terminal 371 is connected, the second output 353 of the first comparison unit 35 is connected to the first input 381 of the fluctuation difference output unit 38; the input 361 of the second comparison unit 36 is connected to the second output of the global adjustment and monitoring module 5
  • the terminal 55 is connected, the first output 362 of the second comparing unit 36 is connected to the second input 372 of the fluctuation range determining unit 37, and the second output 363 of the second comparing unit 36 and the second of the fluctuation difference output unit 38 are provided.
  • the input terminal 382 is connected; the output end 373 of the fluctuation range determining unit 37 and the third input end 383 of the fluctuation difference output unit 38, the first input end 63 of the global configuration module 6, and the first input end of the corresponding partial configuration module 4 43 are respectively connected; the output 384 of the fluctuation difference output unit 38 is connected to the second input 64 of the global configuration module 6 and the second input 44 of the corresponding partial configuration module 4, respectively.
  • the second output terminal 15 is connected, the first output terminal 352 of the first comparison unit 35 is connected to the first input terminal 371 of the fluctuation range determination unit 37, and the second output terminal 353 of the first comparison unit 35 and the fluctuation difference output unit 38 are connected.
  • the first input terminal 381 is connected. Therefore, the first comparison unit 35 can receive the first voltage outputted by the corresponding load adjustment and monitoring module 1, and compare the first voltage with the first preset value, thereby obtaining the indication A local voltage difference value of a difference between a voltage and the first preset value is output to the fluctuation difference output unit 38 through the second output terminal 353.
  • the local voltage difference is compared with the local fluctuation threshold.
  • the local voltage difference is greater than or equal to the local fluctuation threshold, it is determined that the integrated circuit currently has local fluctuation, and the local fluctuation flag is output through the first output 352.
  • the fluctuation range judging unit 37 To the fluctuation range judging unit 37.
  • the first output end 362 of the second comparison unit 36 is connected to the second input end 372 of the fluctuation range output unit 37.
  • the second output 363 of the second comparison unit 36 is coupled to the second input 382 of the fluctuation difference output unit 38. Therefore, when the global adjustment and monitoring module 5 outputs the second voltage to the second comparison unit 36 through the first output terminal 54, the second comparison unit 36 can receive the second voltage, compare the second voltage with the second The preset value obtains a global voltage difference value indicating a difference between the second voltage and the second preset value, and outputs the global voltage difference value to the fluctuation difference value output unit 38 through the first output terminal 363.
  • the global voltage difference is compared with the global fluctuation threshold.
  • the global voltage difference is greater than or equal to the global fluctuation threshold, it is determined that the integrated circuit currently has a global fluctuation, and the global fluctuation identifier is output through the first output terminal 362.
  • the fluctuation range judging unit 37 To the fluctuation range judging unit 37.
  • the output end 373 of the fluctuation range judging unit is connected to the third input end 383 of the fluctuation difference output unit 38, the first input end 63 of the global configuration module 6, and the first input end 43 of the corresponding partial configuration module 4;
  • the output 384 of the difference output unit 3 is connected to the second input 64 of the global configuration module 6 and the second input 44 of the corresponding partial configuration module 4, respectively. Therefore, when the fluctuation range determining unit 37 receives the local fluctuation flag through the first input terminal 371 and does not receive the global fluctuation flag, the local wave flag is determined as the fluctuation range flag and is output to the wave through the output terminal 373.
  • the fluctuation range determining unit 37 receives the global fluctuation identifier through the second input terminal 372, the global fluctuation identifier is determined as the fluctuation range identifier and is output to the fluctuation difference output unit 38 and the global configuration module 6 through the output terminal 373. And corresponding local configuration module 4; the fluctuation difference output unit 38 receives the fluctuation range identifier through the third input terminal 383, and receives the local power through the first input terminal 381 The differential value and the global voltage difference are received via the second input 382.
  • the local voltage difference is determined as the voltage fluctuation value
  • the fluctuation range is identified as the global fluctuation identifier
  • the global voltage difference is determined as the voltage fluctuation value
  • the voltage fluctuation value is output to the corresponding local configuration module 4 and global configuration module 6 through the output terminal 384.
  • the first preset value is a reference voltage of the first voltage, and is used for calculating a fluctuation amplitude of the first voltage, and the first preset value may be set in the first comparison unit 35 in advance, or may be The external component is input to the first comparison unit 35, which is not specifically limited in the embodiment of the present invention.
  • the second preset value is a reference voltage of the second voltage, which is used to calculate the fluctuation amplitude of the second voltage, and the second preset value may also be set in the second comparison unit 36 in advance, or may be externally
  • the components are input to the second comparison unit 36, and the embodiment of the present invention also does not specifically limit this.
  • the local fluctuation threshold is used to determine whether the integrated circuit currently has local fluctuations, and the local fluctuation threshold may be set in the first comparison unit 35 in advance, which is not specifically limited in the embodiment of the present invention.
  • the global fluctuation threshold is used to determine whether the integrated circuit currently has a global fluctuation, and the global fluctuation threshold may be set in the second comparison unit 36 in advance, which is not specifically limited in the embodiment of the present invention.
  • the local voltage sensor 17 numerically encodes the first voltage to obtain a digital signal form of the voltage value of the first voltage
  • the first preset value, the local fluctuation threshold, and the local voltage difference are also the same.
  • the global voltage sensor 57 numerically encodes the second voltage to obtain a digital signal form of the voltage value of the second voltage. Therefore, the second preset value, the global fluctuation threshold, and the global voltage difference are also digital signals. form.
  • the wave output module 3 may further include only one wave output sub-module, that is, the wave output module includes a first comparison unit 35 and a second comparison unit 36.
  • a fluctuation range judging unit 37 and a fluctuation difference value output unit 37 may be included in the wave output module 3 in the embodiment of the present invention.
  • the second output end 15 of the at least one load regulation and monitoring module is connected to the input end 351 of the first comparison unit, the first output end 352 of the first comparison unit 35 and the first input of the fluctuation range determination unit 37.
  • the terminal 373 is connected, the second output terminal 353 of the first comparison unit 35 is connected to the first input terminal 381 of the fluctuation difference output unit 38; the input terminal 361 of the second comparison unit 36 and the second of the global adjustment and monitoring module 5
  • the output terminal 55 is connected, the first output terminal 362 of the second comparison unit 36 is connected to the second input terminal 372 of the fluctuation range determining unit 37, and the second output of the second comparison unit 36 is connected.
  • the end 363 is connected to the second input end 382 of the fluctuation difference output unit 38; the output end 373 of the fluctuation range judging unit and the third input end 383 of the fluctuation difference output unit, the first input end 63 of the global configuration module 6 and The first input ends 43 of the at least one partial configuration module 4 are respectively connected; the output end 384 of the fluctuation difference output unit 38 and the second input end 64 of the global configuration module 6 and the second input end 44 of the at least one partial configuration module 4 respectively connection.
  • the second output 15 of the at least one load regulation and monitoring module 1 is connected to the input 351 of the first comparison unit, the first output 352 of the first comparison unit 35 and the first input of the fluctuation range determination unit 37
  • the terminal 373 is connected, and the second output end 353 of the first comparing unit 35 is connected to the first input end 381 of the fluctuation difference output unit 38. Therefore, the at least one load adjustment and detection can be in the voltage regulating circuit according to the corresponding load. a connection sequence, the first voltage corresponding to the at least one load is output to the first comparison unit 35 in each specified time interval, and the first comparison unit 35 can receive the first voltage in each specified time interval.
  • the local voltage difference is compared with a local fluctuation threshold. When the local voltage difference is greater than or equal to the local fluctuation threshold, it is determined that the integrated circuit currently has local fluctuations, and the local fluctuation identifier is output to the fluctuation through the first output terminal 352. Range determination unit 37.
  • the input end 361 of the second comparison unit 36 is connected to the second output end 55 of the global adjustment and monitoring module 5, and the first output end 362 of the second comparison unit 36 is connected to the second input end 372 of the fluctuation range determination unit 37.
  • the second output 363 of the second comparison unit 36 is coupled to the second input 382 of the fluctuation difference output unit 38. Therefore, the global adjustment and monitoring module 6 also outputs the second voltage to the second comparison unit 36 every designated time interval, the second comparison unit 36 can receive the second voltage, calculate the second voltage and the second pre- The global voltage difference between the values is set, and the global voltage difference is output to the fluctuation difference output unit 38 through the first output terminal 363.
  • the global voltage difference is compared with the global fluctuation threshold. When the global voltage difference is greater than or equal to the global fluctuation threshold, it is determined that the integrated circuit currently has a global fluctuation, and the global fluctuation identifier is output to the fluctuation through the first output 362. Range determination unit 37.
  • the output end 373 of the fluctuation range judging unit is connected to the third input end 383 of the fluctuation difference output unit 38, the first input end 63 of the global configuration module 6, and the first input end 43 of the at least one partial configuration module 4, respectively;
  • the output 384 of the difference output unit 3 is connected to the second input 64 of the global configuration module 6 and the second input 44 of the at least one local configuration module 4, respectively. Therefore, when the fluctuation range judging unit 37 receives the same at each specified time interval through the first input terminal 371 When the local fluctuation flag is not received and the global fluctuation flag is not received, the local fluctuation flag is determined as the fluctuation range identifier and output to the fluctuation difference output unit 38 and the corresponding local configuration module through the output terminal 373.
  • the fluctuation range determining unit 37 When the fluctuation range determining unit 37 receives the global fluctuation flag through the second input terminal 372 within each specified time interval, the global fluctuation flag is determined as the fluctuation range identifier and is output to the fluctuation difference output through the output terminal 373.
  • the unit 38 receives the fluctuation range identifier through the third input 383 in each specified time interval, receives the local voltage difference through the first input 381, and receives the second voltage input 382 through the second input terminal 382. The global voltage difference.
  • the local voltage difference is determined as the voltage fluctuation value
  • the fluctuation range is identified as the global fluctuation identifier
  • the global voltage difference is determined as the voltage fluctuation value
  • the voltage fluctuation value is output to the corresponding local configuration module 4 and global configuration module 6 through the output terminal 384 at each specified time interval.
  • the specified time interval may be set in advance, and the first voltage input to the first comparison unit 35 may be targeted by the specified time interval, so that when a local fluctuation occurs, the load that needs to be configured may be determined.
  • Monitoring module 1 improves the efficiency of circuit voltage regulation.
  • the fluctuation value generating module 3 may include at least one first comparing unit 35, a second comparing unit 36, a fluctuation range determining unit 37, and at least one fluctuation difference output unit 38, the at least one first Comparing unit, the at least one fluctuation difference output unit, the at least one load, and the at least one partial configuration module are in one-to-one correspondence;
  • Each of the at least one first comparison unit 35 compares the first voltage input into the corresponding load 2 with the first preset value to obtain a difference between the first voltage and the first preset value.
  • the local voltage difference value of the value is output to the corresponding fluctuation difference output unit 38, and the local voltage difference is compared with the local fluctuation threshold, when the local voltage difference is greater than or equal to the local fluctuation threshold And outputting the local fluctuation identifier to the fluctuation range determining unit 37, where the local fluctuation flag includes a local fluctuation position flag;
  • the second comparison unit 36 compares the second voltage with the second preset value to obtain the second voltage and the second a global voltage difference value of the difference between the preset values, the global voltage difference value is output to the at least one fluctuation difference value output unit 38, and the global voltage difference value is compared with the global fluctuation threshold value, when the global voltage difference is When the value is greater than or equal to the global fluctuation threshold, the global fluctuation identifier is output to the fluctuation range determining unit; and when the fluctu
  • the input end 351 of the first comparison unit 35 is connected to the second output end 15 of the corresponding load adjustment and monitoring module 1 for each of the first comparison units 35 of the at least one first comparison unit 35, first
  • the first output 352 of the comparison unit 351 is connected to the first input 371 of the fluctuation range determination unit 37
  • the second output 353 of the first comparison unit 35 is connected to the first input 381 of the corresponding fluctuation difference output unit 38.
  • the input end 361 of the second comparison unit 36 is connected to the second output end 55 of the global adjustment and monitoring module 5, and the first output end 362 of the second comparison unit 36 is connected to the second input end 372 of the fluctuation range determination unit 37.
  • the second output 363 of the second comparison unit 36 is coupled to the second input 382 of the at least one fluctuation difference output unit 38; the output 373 of the fluctuation range determination unit 37 and the third input of the at least one fluctuation difference output unit 38
  • the first input end 63 of the global configuration module 6 and the first input end 43 of the at least one local configuration module 4 are respectively connected; the output end 384 of the fluctuation difference output unit 38 and the second input of the global configuration module 6
  • At least a partial end 64 and a second input terminal 4 disposed in the module 44 are connected.
  • the voltage regulating circuit can include at least one first comparison unit 35, a second comparison unit 36, a fluctuation range determination unit 37, and at least one fluctuation difference value output unit 38, and for each of the at least one first comparison unit 35
  • the first comparison unit 35, the first output end 352 of the first comparison unit 351 is connected to the first input end 371 of the fluctuation range determination unit 37; the first output end 362 of the second comparison unit 36 and the first range of the fluctuation range determination unit 37
  • the two inputs 372 are connected.
  • the fluctuation range determining unit 37 may receive the at least one local fluctuation identifier and one global fluctuation identifier, and may obtain the local fluctuation when the fluctuation range determination unit receives the at least one local fluctuation identifier without receiving the global fluctuation identifier.
  • the identification is determined as the fluctuation range identification and is output through the output terminal 373 to the fluctuation difference output unit 38 corresponding to the local fluctuation position flag included in the local fluctuation flag.
  • the fluctuation range determining unit 37 receives the global fluctuation flag through the second input terminal 372, Determining the global fluctuation flag as a fluctuation range identifier and outputting to the at least one fluctuation difference value output unit 38 through the output terminal 373; for each of the at least one fluctuation difference value output unit 38, the fluctuation difference value
  • the output unit 38 can receive the fluctuation range identifier through the third input terminal 383, receive the local voltage difference value through the first input terminal 381, and receive the global voltage difference value through the second input terminal 382.
  • the local fluctuation position mark is used to mark the position where local fluctuation occurs, and the local fluctuation position mark, the load adjustment and monitoring module 1, the fluctuation difference output unit 38, and the local configuration module 4 are in one-to-one correspondence.
  • the fluctuation range determining unit may The determination of the fluctuation range is performed by at least one local fluctuation identifier and a global fluctuation identifier, thereby improving the accuracy of the fluctuation range judgment.
  • the local configuration module 4 includes a first switch configuration unit 45 and a local sensor configuration unit 46;
  • the voltage fluctuation value includes a local voltage difference value or a global voltage a difference, the local configuration signal comprising a first switch configuration signal and a local sensor configuration signal;
  • the first switch configuration unit 45 acquires the first switch configuration signal based on the local voltage difference value, and the first switch The configuration signal is output to the corresponding load adjustment and monitoring module 1;
  • the fluctuation range is identified as a local fluctuation flag and the voltage fluctuation value is the local voltage difference
  • the local sensor configuration unit 46 is based on the local voltage difference from the local portion
  • the local sensor configuration signal is obtained in the configuration signal, and the local sensor configuration signal is output to the corresponding load adjustment and monitoring module 1.
  • the first input end 451 of the first switch configuration unit 45 is connected to the first output end 33 of the fluctuation value generating module 3, and the second input end 452 of the first switch configuration unit 45 and the second output of the fluctuation value generating module 3
  • the terminal 34 is connected, the output 453 of the first switch configuration unit 45 is connected to the second input 12 of the load regulation and monitoring module 1; the first input 461 of the local sensor configuration unit 46 and the first output of the fluctuation value generating module 3
  • the terminal 33 is connected, the second input 462 of the local sensor configuration unit 46 is connected to the second input 34 of the fluctuation value generating module 3, the output 463 of the local sensor configuration unit 46 and the third input of the load regulation and monitoring module 1 13 connections.
  • the operation of the first switch configuration unit 45 to acquire the first switch configuration signal based on the local voltage difference may be: based on the local voltage difference, the voltage fluctuation value and the local configuration signal.
  • the local configuration signal corresponding to the local voltage difference is obtained, and the obtained local configuration signal is determined as the first switch configuration signal.
  • the partial voltage difference 110 corresponding to the partial relationship between the voltage fluctuation value and the local configuration signal as shown in Table 1 is obtained.
  • the configuration signal is 11, and the acquired local configuration signal 11 is determined as the first switch configuration signal.
  • the correspondence between the voltage fluctuation value and the local configuration signal may be stored in the first switch configuration unit 45 in advance.
  • the local sensor configuration unit 46 may obtain the local sensor configuration signal based on the local voltage difference.
  • the local voltage difference may be obtained from the correspondence between the voltage fluctuation value and the local configuration signal.
  • the local configuration signal corresponding to the voltage difference determines the acquired local configuration signal as a local sensor configuration signal.
  • the correspondence between the voltage fluctuation value and the local configuration signal may also be stored in the local sensor configuration unit 46 in advance.
  • each load adjustment and monitoring module 1 in at least one load regulation and monitoring module 1 includes a first switching unit 16 and a local voltage sensor 17, and the first switching unit
  • the second input end 162 of the 16 is connected to the output end 453 of the corresponding first switch configuration unit 45. Therefore, when the first switch configuration unit 45 can output the first switch configuration signal to the corresponding first switch unit 16,
  • the at least first transistor may be turned on or off based on the first switch configuration signal, thereby changing the resistance of the equivalent resistor to The first voltage is adjusted.
  • the first switch configuration signal may change a gate voltage of the at least one PMOS transistor to control whether the at least one PMOS transistor is turned on or off, thereby changing a resistance value of the equivalent resistance of the at least one PMOS transistor To adjust the first voltage.
  • the local voltage sensor 17 Since the input end 172 of the local voltage sensor 17 is connected to the output end 463 of the corresponding local sensor configuration unit 46, when the local sensor configuration unit 46 can output the local sensor configuration signal to the corresponding local voltage sensor 17,
  • the number of connections of the at least one inverter and the at least one memory unit may be adjusted based on the local sensor configuration signal, when the at least one inverter and the at least one The greater the number of connections of the memory cells, the greater the voltage monitoring accuracy of the local voltage sensor 17, and the lower the number of connections of the at least one inverter and the at least one memory cell, the voltage monitoring of the local voltage sensor 17
  • the smaller the accuracy the more accurate the voltage monitoring accuracy of the local voltage sensor is, and the accuracy of the voltage monitoring of the local voltage sensor is improved, so that the local voltage sensor can normally monitor the voltage in the case of process fluctuation. That is, the local voltage sensor can be normal In particular monitors the voltage value of the first voltage, which does not affect the accuracy of the monitoring.
  • the local voltage sensor 17 can adjust the number of connections of the at least one inverter and the at least one memory unit based on the local sensor configuration signal.
  • the related art is not specifically limited.
  • the global configuration module 6 includes a second switch configuration unit 65 and a global sensor configuration unit 66;
  • the second switch configuration unit 65 acquires the second switch configuration signal based on the global voltage difference value, and outputs the second switch configuration signal to the global adjustment and monitoring module 5
  • the global sensor configuration unit 66 acquires the global sensor configuration signal based on the global voltage difference value, and outputs the global sensor configuration signal to the global adjustment and monitoring module 5.
  • the first input end 651 of the second switch configuration unit 65 is connected to the first output end 33 of the fluctuation value generating module 3, the second output end 652 of the second switch configuration unit 65 and the second output of the fluctuation value generating module 3
  • the terminal 34 is connected, the output 653 of the second switch configuration unit 65 is connected to the second input 52 of the global adjustment and monitoring module 5; the first input 661 of the global sensor configuration unit 66 and the first output of the fluctuation value generating module 3
  • the terminal 33 is connected, the second input 662 of the global sensor configuration unit 66 is connected to the second input 34 of the fluctuation value generating module 3, the output 663 of the global sensor configuration unit 66 and the third input of the global adjustment and monitoring module 5 53 connections.
  • the second switch configuration unit 65 acquires the second switch according to the global voltage difference value.
  • the operation of the signal may be: based on the global voltage difference, obtaining a global configuration signal corresponding to the global voltage difference from the correspondence between the voltage fluctuation value and the global configuration signal, and determining the acquired global configuration signal as the second Switch configuration signal.
  • the correspondence between the voltage fluctuation value and the global configuration signal may be stored in the second switch configuration unit 65 in advance.
  • the global sensor configuration unit 66 obtains the global sensor configuration signal based on the global voltage difference.
  • the operation may be: obtaining a global value from the correspondence between the voltage fluctuation value and the global configuration signal based on the global voltage difference value.
  • the global configuration signal corresponding to the voltage difference determines the acquired global configuration signal as a global sensor configuration signal.
  • the correspondence between the voltage fluctuation value and the global configuration signal may also be stored in the global sensor configuration unit 66 in advance.
  • the second The switch configuration unit may output the second switch configuration signal to the second switch unit. Since the second switch configuration signal output by the at least one second switch configuration unit is the same signal, when the second switch unit receives the at least one second switch cooperation signal, the at least one second switch configuration may be based on the second switch configuration Any one of the signals of the second switch configuration signal turns on or off the at least one second transistor, thereby changing the resistance of the equivalent resistor to adjust the second voltage.
  • the second switch configuration signal can change a gate voltage of the at least one PMOS transistor to control the at least one The PMOS transistor is turned on or off, thereby changing the resistance of the equivalent resistance of the at least one PMOS transistor to adjust the second voltage.
  • any one of the at least one global sensor configuration unit can output the global sensor configuration signal to the global voltage sensor.
  • the global voltage sensor may be based on the at least one global sensor configuration a global sensor configuration signal of the signal, adjusting a number of connections of the at least one inverter and the at least one memory unit, the global voltage sensor when the number of connections of the at least one inverter and the at least one memory unit is greater. The greater the accuracy of voltage monitoring, When the number of connections of the at least one inverter and the at least one memory unit is smaller, the voltage monitoring accuracy of the global voltage sensor is smaller, thereby adjusting the voltage monitoring accuracy of the global voltage sensor, and improving the local voltage.
  • the accuracy of the voltage monitoring of the sensor enables the global voltage sensor to monitor the voltage normally in the event of process fluctuations, that is
  • the global voltage sensor is based on the global sensor configuration signal, and the operation of adjusting the number of connections of the at least one inverter and the at least one storage unit may be referred to the related art, which is not specifically limited in the embodiment of the present invention.
  • the voltage regulating circuit may further include a temperature sensor (mainly monitoring chip temperature fluctuation) and a voltage fluctuation sensor (mainly monitoring fluctuation of voltage in the chip), of course.
  • a temperature sensor mainly monitoring chip temperature fluctuation
  • a voltage fluctuation sensor mainly monitoring fluctuation of voltage in the chip
  • the configuration of the sensor may be the same, which is not specifically limited in the embodiment of the present invention.
  • the ripple value generation module may be based on the first voltage and the second voltage, generating a voltage fluctuation and the fluctuation range value identifier, and the The voltage fluctuation value and the fluctuation range identification are output to at least one of the local configuration module and the global configuration module.
  • the fluctuation range is identified as a local fluctuation identifier, it is determined that a local fluctuation occurs in the integrated circuit.
  • the local configuration module corresponding to the local fluctuation identifier may acquire the first switch configuration signal and the local sensor configuration signal to pass the first
  • the switch configuration signal causes the voltage regulating circuit to perform an operation of turning on or off the at least one first transistor of the corresponding first switching unit, changing an equivalent resistance of the at least one first transistor, thereby performing a first voltage on the corresponding load
  • the fluctuation range is identified as the global fluctuation identifier, it is determined that the integrated circuit internally generates a global fluctuation.
  • the global adjustment and monitoring module may acquire the second switch configuration signal and the global sensor configuration signal to adjust the signal through the second switch configuration.
  • the voltage circuit turns on or off the at least one second transistor of the second switching unit, changes an equivalent resistance of the at least one second transistor, thereby adjusting the second voltage, and simultaneously configuring the signal through the global sensor.
  • the number of connections of at least one of the global voltage sensors and the at least one memory unit is adjusted to adjust the voltage monitoring accuracy of the global voltage sensor.
  • the second voltage is a global voltage in the integrated circuit, and therefore, when local fluctuation occurs, the first voltage of the corresponding load can be adjusted, when a global
  • the second voltage can be adjusted, that is, different voltages can be adjusted according to different fluctuation ranges, so that the circuit voltage regulation is targeted, and the reliability and accuracy of the voltage adjustment are improved, due to the adjustment.
  • the reliability and accuracy of the voltage are increased, and the efficiency of regulating the voltage is also improved.
  • FIG. 7 is a flowchart of a circuit voltage regulation method according to an embodiment of the present invention. Referring to FIG. 7, the method includes the following steps.
  • Step 701 When the power supply voltage is turned on, at least one first voltage is obtained by performing a voltage division process on each of the load adjustment and monitoring modules in the at least one load adjustment and monitoring module, and the at least one first Each of the first voltages of the voltage is output to the corresponding load and the fluctuation value generating module, and the second voltage is obtained by dividing the power supply voltage by the global adjustment and monitoring module, and the second voltage is obtained. Output to the fluctuation value generation module.
  • Step 702 Generate, according to the first voltage and the second voltage, a voltage fluctuation value and a fluctuation range identifier by using the fluctuation value generating module, and output the voltage fluctuation value and the fluctuation range identifier to at least one local configuration module and the global
  • the configuration module includes the global fluctuation identifier or the local fluctuation identifier.
  • Step 703 When the fluctuation range is identified as a local fluctuation identifier, the correspondence between the stored voltage fluctuation value and the local configuration signal is used by each local configuration module in the at least one local configuration module based on the voltage fluctuation value. Obtaining a corresponding local configuration signal, and outputting the local configuration signal to a corresponding load adjustment and monitoring module in the at least one load adjustment and monitoring module to adjust a first voltage of the corresponding load through the corresponding load adjustment and monitoring module Make adjustments.
  • Step 704 When the fluctuation range is identified as a global fluctuation identifier, the corresponding global configuration signal is obtained from the correspondence between the stored voltage fluctuation value and the global configuration signal by the global configuration module based on the voltage fluctuation value, and The global configuration signal is output to the global adjustment and monitoring module to adjust the second voltage through the global adjustment and monitoring module.
  • the fluctuation value generating module may generate a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage when the power supply voltage is turned on, and the voltage fluctuation value and the fluctuation range
  • the identification output is to at least one local configuration module and global configuration module.
  • the fluctuation range is identified as a local fluctuation identifier, it is determined that a local fluctuation occurs in the integrated circuit.
  • the local configuration module corresponding to the local fluctuation identifier may acquire a local configuration signal, and input the local configuration signal. And output to the corresponding load adjustment and monitoring module to adjust the first voltage of the corresponding load through the corresponding load adjustment and monitoring module.
  • the global configuration module may acquire a global configuration signal based on the voltage fluctuation value, and output the global configuration signal to global adjustment and monitoring.
  • the second voltage is adjusted by a global adjustment and monitoring module.
  • the second voltage is a global voltage in the integrated circuit, and therefore, when local fluctuation occurs, the first voltage of the corresponding load can be adjusted, when a global
  • the second voltage can be adjusted, that is, different voltages can be adjusted according to different fluctuation ranges, so that the circuit voltage regulation is targeted, and the reliability and accuracy of the voltage regulation are improved, and The reliability and accuracy of the regulated voltage is increased, which in turn increases the efficiency of regulating the voltage.
  • the load adjustment and monitoring module includes a first switching unit and a local voltage sensor;
  • the global adjustment and monitoring module includes a second switching unit and a global voltage sensor;
  • the first voltage is collected by the local voltage sensor, and the first voltage is output to a fluctuation value generating module
  • the second voltage is collected by the global voltage sensor, and the second voltage is output to the fluctuation value generating module.
  • the fluctuation value generating module includes at least one fluctuation value generating submodule, the at least one fluctuation value generating submodule, the at least one load and the at least one local configuration module are in one-to-one correspondence; and the at least one fluctuation value generating sub- Each fluctuation value in the module generates a submodule, the fluctuation value generation submodule comprising a first comparison unit, a second comparison unit, a fluctuation range determination unit, and a fluctuation difference output unit;
  • the block and the global configuration module including:
  • the local fluctuation identifier is received by the fluctuation range determining unit and the global fluctuation identifier is not received, the local fluctuation identifier is determined as a fluctuation range identifier and output to the fluctuation difference value output unit;
  • the global fluctuation identifier When the global fluctuation identifier is received by the fluctuation range determining unit, the global fluctuation identifier is determined as a fluctuation range identifier and output to the fluctuation difference value output unit;
  • the voltage fluctuation value is determined by the fluctuation difference value output unit based on the fluctuation range identifier, the local voltage difference value, and the global voltage difference value, and the voltage fluctuation value is output to the corresponding local configuration module and the global configuration module.
  • the fluctuation value generating module includes at least one first comparison unit, a second comparison unit, a fluctuation range determination unit, and at least one fluctuation difference output unit, the at least one first comparison unit, the at least one fluctuation difference output Units are in one-to-one correspondence with the at least one load;
  • the local fluctuation identifier is determined as the fluctuation range identifier and output for each local fluctuation identifier in the at least one local fluctuation identifier.
  • a fluctuation difference output unit corresponding to the local fluctuation position mark included in the local fluctuation flag;
  • the global fluctuation identifier When the global fluctuation identifier is received by the fluctuation range determining unit, the global fluctuation identifier is determined as a fluctuation range identifier and output to the at least one fluctuation difference value output unit;
  • determining, according to the fluctuation range identifier, the local voltage difference value and the global voltage difference value, the voltage fluctuation value by each of the at least one fluctuation difference value output unit, the voltage fluctuation The value is output to the corresponding local configuration module and the global configuration module, including:
  • the local voltage difference value is determined as the voltage fluctuation value, and the local voltage difference value is output through each of the at least one fluctuation difference value output unit To the corresponding local configuration module and the global configuration module;
  • the global voltage difference value is determined as the voltage fluctuation value, and the global voltage difference value is output through each of the at least one fluctuation difference value output unit To the corresponding local configuration module and the global configuration module.
  • the local configuration module includes a first switch configuration unit and a local sensor configuration unit;
  • the local configuration signal is output to the corresponding load adjustment and monitoring module in the at least one load regulation and monitoring module to adjust the first voltage of the corresponding load through the corresponding load adjustment and monitoring module, include:
  • the first switch configuration unit obtains the first switch from the correspondence between the voltage fluctuation value and the local configuration signal based on the voltage fluctuation value. Setting a signal and outputting the first switch configuration signal to the corresponding first switch unit;
  • the local sensor configuration unit obtains a local sensor configuration signal from the correspondence between the voltage fluctuation value and the local configuration signal, and the local sensor is acquired
  • the configuration signal is output to the corresponding local voltage sensor
  • the number of connections of the at least one inverter group and the at least one memory unit included in the local voltage sensor is controlled by the local voltage sensor.
  • the global configuration module includes a second switch configuration unit and a global sensor configuration unit;
  • the corresponding global configuration signal is obtained from the correspondence between the stored voltage fluctuation value and the global configuration signal by the global configuration module, and the global configuration is configured based on the voltage fluctuation value.
  • the signal is output to the global adjustment and monitoring module to adjust the second voltage through the global adjustment and monitoring module, including:
  • the second switch configuration unit acquires the second switch configuration signal from the correspondence between the voltage fluctuation value and the global configuration signal, and the The second switch configuration signal is output to the second switch unit;
  • the global sensor configuration signal is obtained from the correspondence between the voltage fluctuation value and the global configuration signal by the global sensor configuration unit, and the global sensor configuration is configured based on the voltage fluctuation value.
  • the number of connections of the at least one inverter and the at least one memory unit included in the global voltage sensor is controlled by the global voltage sensor.
  • the optional embodiments of the present invention may be used in any combination to form an optional embodiment of the present invention.
  • FIG. 8 is a flowchart of a circuit voltage regulation method according to an embodiment of the present invention. Referring to FIG. 8 , the method is applied to the voltage regulation circuit provided in the foregoing embodiment, and the method includes the following steps.
  • Step 801 When the voltage regulating circuit is turned on, the at least one first voltage is obtained by performing voltage division processing on each of the load regulation and monitoring modules of the at least one load adjustment and monitoring module, and the at least one first voltage is obtained. Each of the first voltages of the first voltage is output to the corresponding load and the The fluctuation value generating module obtains the second voltage by dividing the power supply voltage by the global adjustment and monitoring module, and outputs the second voltage to the fluctuation value generating module.
  • the load regulation and monitoring module includes a first switching unit and a local voltage sensor due to each load monitoring sensor in the at least one load regulation and monitoring module. Therefore, the first voltage is obtained by dividing the power supply voltage provided by the external power supply by the load regulation and monitoring module, and the operation of outputting the first voltage to the corresponding load and fluctuation value generating module may be: a switching unit performs voltage division processing on the power supply voltage provided by the external power source to obtain the first voltage, outputs the first voltage to a corresponding load, collects the first voltage through the local voltage sensor, and obtains the first voltage Output to the fluctuation value generation module.
  • the first switching unit may include at least one first transistor, and each of the at least one first transistor is connected in parallel to form a plurality of parallel lines.
  • the single parallel circuit may be composed of a plurality of first transistors connected in series, or may be composed of a first transistor, which is not specifically limited in the embodiment of the present invention.
  • the equivalent resistor can divide the supply voltage supplied from the external power supply, and when the first transistor is turned off, an open channel is formed, and the power supply voltage is formed. The disconnected channel cannot be passed. Therefore, when the voltage regulating circuit receives the power supply voltage, and at least one of the first transistors in the first switching unit is turned on, the at least one first transistor corresponding to the turn-on may be formed.
  • the effective resistance, the equivalent resistance can share a part of the voltage, so as to achieve the purpose of voltage division processing of the supply voltage provided by the external power source, and obtain the second voltage.
  • the voltage regulating circuit obtains the second voltage by dividing the power supply voltage provided by the external power supply by the global adjustment and monitoring module, and outputting the second voltage to the fluctuation value generating module may be: The second voltage is divided by the second switching unit to obtain the second voltage; the second voltage is collected by the global voltage sensor, and the second voltage is output to the fluctuation value generating module.
  • the second switching unit may also include at least one second transistor, and each of the at least one second transistor is connected in parallel to form a plurality of parallel lines.
  • the single parallel circuit may be composed of a plurality of second transistors in series, or may be composed of a second transistor, which is not specifically limited in the embodiment of the present invention.
  • the equivalent resistance can share a part of the voltage, so as to achieve the purpose of voltage division processing on the supply voltage, and obtain a second voltage.
  • the voltage regulating circuit can numerically encode the first voltage by a local voltage sensor to obtain a digital signal form of the voltage value of the first voltage, and at the same time, the second voltage can be numerically encoded by the global voltage sensor to obtain a second signal.
  • the digital signal form of the voltage value of the voltage can be numerically encoded by the global voltage sensor to obtain a second signal.
  • the voltage regulating circuit can numerically encode the first voltage by a local voltage sensor to obtain a digital signal in the form of a voltage value of the first voltage, and numerically encode the second voltage by a global voltage sensor.
  • a local voltage sensor to obtain a digital signal in the form of a voltage value of the first voltage
  • the second voltage by a global voltage sensor.
  • first transistor and the second transistor in the embodiment of the present invention may be an NMOS transistor, a PMOS transistor, or a CMOS transistor, and may be other transistors or equivalent switches, for example, Power gating, in the embodiment of the present invention. This is not specifically limited.
  • first transistor and the second transistor may be the same type of transistor or different types of transistors, which are not specifically limited in the embodiment of the present invention.
  • At least one of the first switching units may be turned on or off.
  • the number is initially configured, and for each of the at least one local voltage sensor, the number of connections of the at least one inverter and the at least one memory cell of the local voltage sensor is initially configured.
  • the initial number of the at least one second transistor in the second switching unit may be initially configured, and the connection between the at least one inverter and the at least one memory unit of the global voltage sensor. The number is initially configured.
  • the voltage regulating circuit monitors at least one load, that is, the voltage regulating circuit monitors the process fluctuation of the at least one load, and after the initial configuration, the first switching unit is usually configured twice, That is, by changing the number of turns of the plurality of transistors connected in parallel in the first transistor in the first switching unit.
  • a small number of first transistors connected in parallel are generally selected, so that the voltage between the power supply voltage supplied by the external power source and the first voltage is increased.
  • the drop is large, and when the supply voltage provided by the external power source is constant, the first voltage corresponds to a larger one. Therefore, when the first voltage is large, the process fluctuation is more easily quantized and calibrated, which facilitates the detection of process fluctuations.
  • the specific number of the first transistors in the first switch unit can be determined according to the actual implementation, which is not specifically limited in the embodiment of the present invention.
  • the first switching unit has ten PMOS transistors connected in parallel, one or two of them are often turned on.
  • the implementation of the configuration of the first switching unit can be read by the local configuration unit to specify a predetermined value.
  • the specified preset value is the number of the first transistors in the first switch unit that are turned on or off, and the specified preset value may be stored in the storage unit, which is not specifically limited in the embodiment of the present invention.
  • the global monitoring unit also uses this method to initialize the second switching unit for process fluctuation monitoring.
  • Step 802 The voltage regulating circuit receives the first voltage and the second voltage by using the fluctuation value generating module, generates a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage, and generates the voltage fluctuation value and
  • the fluctuation range identifier is output to the at least one local configuration module and the global configuration module, and the fluctuation range identifier includes a global fluctuation identifier or a local fluctuation identifier.
  • the fluctuation value generation module includes at least one fluctuation value generation sub-module, and the at least one fluctuation value generation sub-module, the at least one load, and the at least one local configuration module are in one-to-one correspondence, and each fluctuation in the sub-module is generated for the at least one fluctuation value.
  • the fluctuation value generating submodule comprising a first comparing unit, a second comparing unit, a fluctuation range determining unit, and a fluctuation difference output unit, so that the voltage regulating circuit can receive the first through the first comparing unit And comparing the first voltage with the first preset value to obtain a local voltage difference indicating a difference between the first voltage and the first preset value, and outputting the local voltage difference value to the fluctuation difference output a unit, and comparing the local voltage difference with a local fluctuation threshold, and when the local voltage difference is greater than or equal to the local fluctuation threshold, outputting the local fluctuation identifier to the fluctuation range determining unit; and passing the second comparing unit Receiving the second voltage, comparing the second voltage and the second preset value to obtain an indication between the second voltage and the second preset value Global difference voltage difference, and the difference value is compared with the global global threshold fluctuation, when the difference is greater than or equal to the global voltage fluctuations in the global threshold, the output of the global global threshold
  • the local fluctuation identifier When the local fluctuation identifier is received by the fluctuation range determination unit and the global fluctuation identifier is not received, the local fluctuation identifier is determined as a fluctuation range identifier and output to the fluctuation difference value output unit; when the fluctuation range determination unit is passed Receiving the global fluctuation identifier, determining the global fluctuation identifier as a fluctuation range identifier and outputting to the fluctuation difference value output unit; receiving, by the fluctuation difference value output unit, the fluctuation range identifier, the local voltage difference value, and the The global voltage difference value is determined based on the fluctuation range identifier, the local voltage difference value, and the global voltage difference value, and the voltage fluctuation value is output to the corresponding local configuration module and the global configuration module.
  • the first preset value is a reference value of the first voltage, and is used to calculate a fluctuation amplitude of the first voltage, and the first preset value may be set in the first comparison unit in advance, or may be externally
  • the component is input to the first comparison unit, which is not specifically limited in the embodiment of the present invention.
  • the second preset value is a reference value of the second voltage, and is used for calculating a fluctuation amplitude of the second voltage, and the second preset value may also be set in the second comparison unit in advance, or may be external components.
  • the embodiment of the present invention also does not specifically limit the input to the second comparison unit.
  • the local fluctuation threshold is used to determine whether the integrated circuit currently has local fluctuations, and the local fluctuation threshold may be set in the first comparison unit in advance, which is not specifically limited in the embodiment of the present invention.
  • the global fluctuation threshold is used to determine whether the integrated circuit currently has a global fluctuation, and the global fluctuation threshold may also be set in the second comparison unit in advance, which is not specifically limited in the embodiment of the present invention.
  • the voltage regulating circuit numerically encodes the first voltage to the digital signal form of the voltage value of the first voltage by the local voltage sensor, the first preset value, the local fluctuation threshold, and the local voltage The difference is also in the form of a digital signal.
  • the voltage regulating circuit numerically encodes the second voltage by a global voltage sensor to obtain a digital signal form of the voltage value of the second voltage. Therefore, the second preset value, the global fluctuation threshold, and the global voltage difference are also numbers. The form of the signal.
  • the local comparison component when the local comparison component obtains the local voltage difference, the local voltage difference may be output to the fluctuation difference output unit, whether In the case where only the local fluctuation flag is output, the local voltage difference is output to the fluctuation difference output unit, which is not specifically limited in the embodiment of the present invention.
  • the second comparison unit can also output the global voltage difference value to the fluctuation difference output unit when the global voltage difference value is obtained, whether or not the global fluctuation flag is output, or can only output the global fluctuation flag.
  • the global voltage difference is output to the fluctuation difference output unit, which is not specifically limited in the embodiment of the present invention.
  • the fluctuation difference output unit is used by the fluctuation difference output unit
  • the local voltage difference value is determined as the voltage fluctuation value, and the local voltage difference value is output to the corresponding local configuration module and the global configuration module by the fluctuation difference output unit;
  • the fluctuation difference value output unit determines the global voltage difference value as the voltage fluctuation value, and outputs the global voltage difference value to the corresponding value through the fluctuation difference value output unit
  • the local configuration module and the global configuration module when the fluctuation range identifier, the local voltage difference value, and the global voltage difference value are received by the fluctuation difference output unit, and the fluctuation range is identified as a local range fluctuation identifier, the fluctuation difference output unit is used by the fluctuation difference output unit
  • the local voltage difference value is determined as the voltage fluctuation value, and the local voltage difference value is output to the corresponding local configuration module and the global configuration module by the fluctuation difference output unit
  • the fluctuation difference value output unit determines the global voltage difference value as the voltage fluctuation value, and outputs the global voltage difference value to the
  • the voltage regulating circuit may receive only one of the local voltage difference value or the global voltage difference value through the fluctuation difference output unit, the local voltage difference value to be received by the fluctuation difference output unit is Or the global voltage difference is determined as a voltage fluctuation value, and the voltage fluctuation value is output to the corresponding local configuration module and the global configuration module.
  • the fluctuation value generating module included in the voltage regulating circuit may include at least one first comparison unit, a second comparison unit, a fluctuation range determination unit, and at least one fluctuation difference output unit, and at least one first comparison unit, at least A fluctuation difference output unit has a one-to-one correspondence with at least one load.
  • the voltage regulating circuit may compare the first voltage input to the corresponding load with the first preset value by the first comparison unit to obtain the indication of the first voltage and a local voltage difference of the difference between the first preset voltages, outputting the local voltage difference value to the corresponding fluctuation difference output unit, and comparing the local voltage difference value with the local fluctuation threshold value, when the local voltage difference is When the value is greater than or equal to the local fluctuation threshold, the local fluctuation flag is output to the fluctuation range determining unit, and the local fluctuation flag includes the local fluctuation position flag.
  • the local fluctuation identifier is determined as the fluctuation range identifier and output for each local fluctuation identifier in the at least one local fluctuation identifier. And a fluctuation difference output unit corresponding to the local fluctuation position mark included in the local fluctuation flag.
  • the global fluctuation flag is received by the fluctuation range determining unit, the global fluctuation flag is determined as the fluctuation range identifier and output to the at least one fluctuation difference value output unit.
  • the voltage regulation circuit determines the voltage fluctuation by the fluctuation difference output unit based on the fluctuation range identification, the local voltage difference value, and the global voltage difference value. And outputting the voltage fluctuation value to the at least one local configuration module and the global configuration module.
  • the local fluctuation position mark is used to mark the position where the local fluctuation occurs, and the local fluctuation position mark, the load adjustment and monitoring module, the fluctuation difference output unit, and the local configuration module A correspondence.
  • the fluctuation range determination unit may pass at least one local part.
  • the fluctuation indicator and a global fluctuation indicator make the judgment of the fluctuation range, thereby improving the accuracy of the fluctuation range judgment.
  • Step 803 When the voltage regulating circuit receives the voltage fluctuation value and the fluctuation range identifier through each of the at least one partial configuration module, and the fluctuation range is identified as a local fluctuation identifier, based on the voltage fluctuation value, Obtaining a corresponding local configuration signal in a correspondence between the stored voltage fluctuation value and the local configuration signal, and outputting the local configuration signal to the corresponding load adjustment and monitoring module to correspond to the monitoring module pair through the corresponding load adjustment The first voltage of the load is adjusted.
  • the first switch configuration signal can change a gate voltage of the at least one PMOS transistor to control the at least one The PMOS transistor is turned on or off, thereby changing the resistance of the equivalent resistance of the at least one PMOS transistor to adjust the first voltage.
  • the local configuration module Since the local configuration module is configured for each of the at least one partial configuration module, the local configuration module includes a first switch configuration unit and a local sensor configuration unit. Therefore, when the voltage fluctuation value and the fluctuation range identifier are received by the local configuration module, and the fluctuation range is identified as a local fluctuation identifier, the correspondence between the voltage fluctuation value and the local configuration signal may be based on the voltage fluctuation value.
  • the first switch configuration signal is obtained, and the first switch configuration signal is output to the corresponding first switch unit; when the first switch configuration signal is received by the first switch unit, based on the first switch
  • the configuration signal controls the switch in the first switching unit to be turned on or off to adjust the first voltage of the corresponding load.
  • the local sensor configuration unit when the voltage fluctuation value and the fluctuation range identifier are received by the local sensor configuration unit and the fluctuation range is identified as a local fluctuation flag, the correspondence between the voltage fluctuation value and the local configuration signal is based on the voltage fluctuation value.
  • the local sensor configuration signal is obtained, and the local sensor configuration signal is output to the corresponding local voltage sensor; when the local sensor configuration signal is received by the local voltage sensor, the local sensor is controlled based on the local sensor configuration signal
  • the voltage sensor includes a number of connections of at least one inverter and at least one memory unit.
  • the voltage regulating circuit controls the number of connections of the at least one inverter and the at least one memory unit included in the local voltage sensor based on the local sensor configuration signal, thereby increasing the local voltage.
  • the accuracy of the voltage monitoring of the sensor enables the local voltage sensor to monitor the voltage normally in the event of process fluctuations, that is, the local voltage sensor can normally monitor the specific voltage value of the first voltage, thereby not affecting The accuracy of the monitoring.
  • the at least first transistor when the voltage regulating circuit receives the first switch matching signal through the first switching unit, the at least first transistor can be turned on or off based on the first switch configuration signal, thereby changing the equivalent resistance The resistance is adjusted to the first voltage.
  • the number of connections of the at least one inverter and the at least one memory unit may be adjusted based on the local sensor configuration signal, when the at least one reverse The greater the number of connections between the director and the at least one memory cell, the greater the voltage monitoring accuracy of the local voltage sensor, and the less the number of connections of the at least one inverter and the at least one memory cell, the local voltage The lower the accuracy of the voltage monitoring of the sensor, the higher the accuracy of the voltage monitoring of the local voltage sensor.
  • the local voltage sensor is based on the local sensor configuration signal, and the operation of adjusting the number of connections of the at least one inverter and the at least one storage unit may be referred to the related art, which is not specifically limited in the embodiment of the present invention.
  • Step 804 When the voltage regulation circuit receives the voltage fluctuation value and the fluctuation range identifier through the global configuration module, and the fluctuation range is identified as a global fluctuation identifier, based on the voltage fluctuation value, the stored voltage fluctuation value and the global configuration signal A corresponding global configuration signal is obtained in the correspondence between the two, and the global configuration signal is output to the global adjustment and monitoring module to adjust the second voltage by the global adjustment and monitoring module.
  • the global configuration module includes a second switch configuration unit and a global sensor configuration unit, when the voltage fluctuation value and the fluctuation range identifier are received by the global configuration module and the fluctuation range is identified as a global fluctuation identifier, the a voltage fluctuation value, in a correspondence relationship between the voltage fluctuation value and the global configuration signal, acquiring a second switch configuration signal, and outputting the second switch configuration signal to the second switch unit; when passing the second switch unit Receiving the second switch configuration signal, controlling the switch in the second switch unit to be turned on or off based on the second switch configuration signal to adjust the second voltage.
  • the correspondence between the voltage fluctuation value and the global configuration signal is based on the voltage fluctuation value.
  • the voltage regulating circuit controls the number of connections of the at least one inverter and the at least one memory unit included in the global voltage sensor based on the global sensor configuration signal, thereby improving the accuracy of voltage monitoring by the global voltage sensor, and further
  • the global voltage sensor can normally monitor the voltage in the event of process fluctuations, that is, the global voltage sensor can normally monitor the specific voltage value of the first voltage, thereby not affecting the accuracy of the monitoring.
  • the A second switch configuration signal of any one of the second switch configuration signals turns on or off the at least one second transistor, thereby changing the resistance of the equivalent resistor to adjust the second voltage.
  • the second switch configuration signal can change a gate voltage of the at least one PMOS transistor to control the at least one The PMOS transistor is turned on or off, thereby changing the resistance of the equivalent resistance of the at least one PMOS transistor to adjust the second voltage.
  • the global voltage sensor when the global voltage sensor receives the at least one global sensor configuration signal, the global voltage sensor can be based on the ???the global sensor configuration signal of the at least one global sensor configuration signal, adjusting the number of connections of the at least one inverter and the at least one storage unit, when the number of connections of the at least one inverter and the at least one storage unit is greater.
  • the voltage monitoring accuracy of the global voltage sensor is greater.
  • the voltage monitoring accuracy of the global voltage sensor is smaller, thereby increasing the global voltage. The accuracy of the sensor for voltage monitoring.
  • the operation of adjusting the number of connections of the at least one inverter and the at least one storage unit by the global voltage sensor based on the global sensor configuration signal may refer to related technologies, and the embodiment of the present invention does not do the same. Specifically limited.
  • the voltage regulating circuit may further include a temperature sensor and a voltage fluctuation sensor.
  • the above method for circuit voltage regulation by the load regulation and monitoring module and the global adjustment and monitoring module can be applied to the temperature sensor and the voltage fluctuation sensor as well. That is, in the voltage regulating circuit, a temperature configuration module corresponding to the temperature sensor and corresponding And a voltage fluctuation configuration module of the voltage fluctuation sensor, the temperature configuration module can receive the fluctuation range identifier and the temperature fluctuation difference, and obtain a temperature configuration signal based on the fluctuation range identifier and the temperature voltage fluctuation difference pair, and input the temperature configuration signal To the temperature sensor to configure the temperature sensor.
  • the voltage fluctuation configuration module can receive the fluctuation range identifier and the voltage fluctuation difference, and obtain a voltage fluctuation configuration signal based on the fluctuation range identifier and the voltage fluctuation difference, and input the voltage fluctuation configuration signal to the voltage fluctuation sensor to
  • the configuration of the voltage fluctuation sensor is not specifically limited in the embodiment of the present invention.
  • Temperature sensors and voltage fluctuation sensors are not affected by fluctuations in the process, or are minimally affected by process fluctuations.
  • the fluctuation value generating module may generate a voltage fluctuation value and a fluctuation range identifier based on the first voltage and the second voltage when the power supply voltage is turned on, and generate the voltage fluctuation value and the fluctuation
  • the range identifier is output to at least one local configuration module and global configuration module.
  • the local configuration module corresponding to the local fluctuation identifier may acquire the first switch configuration signal and the local sensor configuration signal to pass the first
  • the switch configuration signal causes the at least one first transistor of the first switching unit corresponding to the voltage regulating circuit to be turned on or off, and changes the equivalent resistance of the at least one first transistor to adjust the first voltage of the corresponding load
  • the local sensor configuration signal is used to adjust the number of connections of at least one of the corresponding partial voltage sensors and the at least one memory unit, thereby adjusting the voltage monitoring accuracy of the local voltage sensor.
  • the global adjustment and monitoring module may acquire the second switch configuration signal and the global sensor configuration signal to adjust the signal through the second switch configuration.
  • the voltage circuit turns on or off the at least one second transistor of the second switching unit, changes an equivalent resistance of the at least one second transistor, thereby adjusting the second voltage, and simultaneously configuring the signal through the global sensor.
  • the number of connections of at least one of the global voltage sensors and the at least one memory unit is adjusted to adjust the voltage monitoring accuracy of the global voltage sensor.
  • the second voltage is a global voltage in the integrated circuit, and therefore, when local fluctuation occurs, the first voltage of the corresponding load can be adjusted, when a global
  • the second voltage can be adjusted, that is, different voltages can be adjusted according to different fluctuation ranges, so that the circuit voltage regulation is targeted and improved.
  • the reliability and accuracy of voltage regulation, as well as the reliability and accuracy of the regulation voltage also increase the efficiency of regulating the voltage.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Power Sources (AREA)

Abstract

一种调压电路及电路调压方法,涉及集成电路领域,所述调压电路包括至少一个负载调节与监测模块(1)、至少一个负载(2)、波动值生成模块(3)、至少一个局部配置模块(4)、全局调节与监测模块(5)和全局配置模块(6),所述至少一个负载调节与监测模块(1)、所述至少一个负载(2)和所述至少一个局部配置模块(4)一一对应。该调压电路及电路调压方法通过对波动范围进行判断,并根据波动范围通过至少一个负载调节与监测模块(1)和全局调节与监测模块(5)对电压进行调节,使电路调压具有针对性,从而提高了电压调节的可靠性和准确性,也提高了调节电压的效率。

Description

调压电路及电路调压方法 技术领域
本发明涉及集成电路领域,特别涉及一种调压电路及电路调压方法。
背景技术
随着半导体工艺的发展,集成电路的应用范围越来越广。由于集成电路在使用时通常都带有不确定性,该不确定性是指影响集成电路正常工作的各种因素的变化所带来的不确定性,比如,温度变化带来的不确定性、集成电路内部元件老化带来的不确定性等。而且集成电路的不确定性经常会给集成电路带来诸多弊端,比如,集成电路的不确定性会导致集成电路内的供电电压产生波动,从而可能会导致集成电路在工作过程中出现错误,因此,为了保证集成电路能够在不确定性下正常工作,需要通过调压电路对集成电路内的供电电压的波动范围进行监测,并对该供电电压进行调节。
目前,对集成电路内的供电电压进行调压时,可以利用开关单元来调压,其中,利用开关单元进行调压时,可以在该集成电路内部设置开关单元,并将该开关单元与该集成电路内部的负载串联连接,因此,当集成电路接收到输入的供电电压时,该开关单元可以导通或关断,以对该供电电压进行分压处理,从而达到调节电压的目的。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
当通过开关单元对集成电路内的供电电压进行调节时,只要当集成电路中产生波动,就会对开关单元内的开关进行导通或关断,但是,由于波动范围大小的问题,对该供电电压的调节不够准确,很可能会降低调节电压的可靠性和准确性。
发明内容
为了提高电路调压的可靠性和准确性,本发明实施例提供了一种调压电路和电路调压方法。所述技术方案如下:
第一方面,提供了一种调压电路,所述调压电路包括至少一个负载调节与 监测模块、至少一个负载、波动值生成模块、至少一个局部配置模块、全局调节与监测模块和全局配置模块,所述至少一个负载调节与监测模块、所述至少一个负载和所述至少一个局部配置模块一一对应;
所述至少一个负载调节与监测模块中的每个负载调节与监测模块接收供电电压,对所述供电电压进行分压处理后得到至少一个第一电压,将所述至少一个第一电压中的每个第一电压输出至对应的负载和所述波动值生成模块;
所述全局调节与监测模块接收所述供电电压,对所述供电电压进行分压处理后得到第二电压,将所述第二电压输出至所述波动值生成模块;
所述波动值生成模块基于所述第一电压和所述第二电压,生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,所述波动范围标识包括全局波动标识或局部波动标识;
当所述波动范围标识为局部波动标识时,所述至少一个局部配置模块中的每个局部配置模块基于所述电压波动值,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应负载的第一电压进行调节;
当所述波动范围标识为全局波动标识时,所述全局配置模块基于所述电压波动值,从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将所述全局配置信号输出至所述全局调节与监测模块中,以通过所述全局调节与监测模块对所述第二电压进行调节。
需要说明的是,该波动值生成模块可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和全局配置模块,从而使至少一个局部配置模块和全局配置模块可以根据波动范围标识对电压进行调节,提高了电压调节的可靠性和准确性,同时由于调节电压的可靠性和准确性提高,进而也提高了调节电压的效率。
结合第一方面,在上述第一方面的第一种可能的实现方式中,对于所述至少一个负载调节与监测模块中的每个负载调节与监测模块,所述负载调节与监测模块包括第一开关单元和局部电压传感器;
所述第一开关单元接收所述供电电压,对所述供电电压进行分压处理后得 到所述第一电压,将所述第一电压输出至对应的负载,以对所述负载进行供电;
所述局部电压传感器采集所述第一电压,并将所述第一电压输出至所述波动值生成模块。
其中,该第一开关单元的第一输入端与外接电源连接,该第一开关单元的第二输入端与局部配置模块的第一输出端连接,第一开关单元的输出端与对应的负载的第一端和局部电压传感器的采集端分别连接;该局部电压传感器的输入端与对应的局部配置模块的第二输出端连接,该局部电压传感器的输出端与波动值生成模块的第一输入端连接。
结合第一方面,在上述第一方面的另一种可能的是实现方式中,所述第一开关单元中包括至少一个第一晶体管,所述局部电压传感器包括至少一个反相器和至少一个存储单元。
其中,对于至少一个第一晶体管中的每一个第一晶体管,当该第一晶体管导通时,该第一开关单元可以获取第一晶体管的等效电阻,该等效电阻可以对供电电压进行分压处理,从而得到第一电压。
结合第一方面,在上述第一方面的第二种可能的实现方式中,所述全局调节与监测模块包括第二开关单元和全局电压传感器;
所述第二开关单元接收所述供电电压,对所述供电电压进行分压处理后得到所述第二电压;
所述全局电压传感器采集所述第二电压,并将所述第二电压输出至所述波动值生成模块。
其中,该第二开关单元的第一输入端与外接电源连接,该第二开关单元的第二输入端与全局配置模块的第一输入端连接,第二开关单元的输出端与全局电压传感器的采集端连接,该全局电压传感器的输入端与全局配置模块的第二输出端连接,全局电压传感器的第一输出端与保护地连接,该全局电压传感器的第二输出端与波动值生成模块的第二输入端连接。
结合第一方面,在上述第一方面的另一种可能的是实现方式中,所述第二开关单元中包括至少一个第二晶体管,所述全局电压传感器包括至少一个反相器和至少一个存储单元。
其中,对于至少一个第二晶体管中的每一个第二晶体管,当该第二晶体管导通时,该第二开关单元可以获取第二晶体管的等效电阻,该等效电阻可以对供电电压进行分压处理,从而得到第二电压。
结合第一方面,在上述第一方面的第三种可能的实现方式中,所述波动值生成模块包括至少一个波动值生成子模块,所述至少一个波动值生成子模块、所述至少一个负载和所述至少一个局部配置模块一一对应;
对于所述至少一个波动值生成子模块中的每个波动值生成子模块,所述波动值生成子模块包括第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元;
所述第一比较单元比较所述第一电压和第一预设值,得到指示所述第一电压与所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至所述波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元;
所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和所述第二预设值之间的差值的全局电压差值,将所述全局电压差值输出至所述波动差值输出单元,并将所述全局电压差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出所述全局波动标识至所述波动范围判断单元;
当所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,将所述局部波动标识确定为波动范围标识并输出至所述波动差值输出单元,当所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述波动差值输出单元;
当所述波动范围标识为所述局部波动标识时,所述波动差值输出单元将所述局部电压差值确定为所述电压波动值,并将所述电压波动值输出至对应的局部配置模块和所述全局配置模块;
当所述波动范围标识为所述全局波动标识时,将所述全局电压差值确定为所述电压波动值,并将所述电压波动值输出至对应的局部配置模块和所述全局配置模块。
其中,该第一比较单元的输入端与对应的负载调节与监测模块的第二输出端连接,第一比较单元的第一输出端与波动范围判断单元的第一输入端连接,第一比较单元的第二输出端与波动差值输出单元的第一输入端连接;第二比较单元的输入端与全局调节与监测模块的第二输出端连接,第二比较单元的第一输出端与波动范围判断单元的第二输入端连接,第二比较单元的第二输出端与 波动差值输出单元的第二输入端连接;波动范围判断单元的输出端与波动差值输出单元的第三输入端、全局配置模块的第一输入端和对应的局部配置模块的第一输入端分别连接;波动差值输出单元的输出端与全局配置模块的第二输入端和对应的局部配置模块的第二输入端分别连接。
结合第一方面,在上述第一方面的第四种可能的实现方式中,所述波动值生成模块包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元,所述至少一个第一比较单元、所述至少一个波动差值输出单元、所述至少一个负载和所述至少一个局部配置模块一一对应;
所述至少一个第一比较单元中的每个第一比较单元比较输入到对应负载中的第一电压和第一预设值,得到指示所述第一电压和所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至对应的波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元,所述局部波动标识中包括局部波动位置标记;
所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和所述第二预设值之间的差值的全局电压差值,将所述全局电压差值输出至所述至少一个波动差值输出单元,并将所述全局电压差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出所述全局波动标识至所述波动范围判断单元;
当所述波动范围判断单元接收到至少一个局部波动标识且没有接收到所述全局波动标识时,所述至少一个局部波动标识中的每个局部波动标识将所述局部波动标识确定为波动范围标识并输出至所述局部波动标识包括的局部波动位置标记所对应的波动差值输出单元,当所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述至少一个波动差值输出单元;
当所述至少一个波动差值输出单元中的每个波动差值输出单元接收到所述波动范围标识且所述波动范围标识为所述局部波动标识时,所述每个波动差值输出单元将所述局部电压差值确定为所述电压波动值,当所述至少一个波动差值输出单元中的每个波动差值输出单元接收到所述波动范围标识且所述波动范围标识为所述全局波动标识时,所述每个波动差值输出单元将所述全局电压差值确定为所述电压波动值,并将所述电压波动值输出至对应的局部配置模 块和所述全局配置模块。
需要说明的是,当该波动值生成模块中包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元时,该波动范围判断单元可以通过至少一个局部波动标识和一个全局波动标识进行波动范围的判断,从而提高了波动范围判断的准确性。
结合第一方面,在上述第一方面的第五种可能的实现方式中,对于所述至少一个局部配置模块中的每个局部配置模块,所述局部配置模块包括第一开关配置单元和局部传感器配置单元;所述电压波动值包括局部电压差值或全局电压差值,所述局部配置信号包括第一开关配置信号和局部传感器配置信号;
当所述波动范围标识为所述局部波动标识且所述电压波动值为所述局部电压差值时,所述第一开关配置单元基于所述局部电压差值,从所述局部配置信号中获取所述第一开关配置信号,并将所述第一开关配置信号输出至对应的负载调节与监测模块;
所述局部传感器配置单元基于所述局部电压差值,获取所述局部传感器配置信号,并将所述局部传感器配置信号输出至对应的负载调节与监测模块。
其中,第一开关配置单元的第一输入端与波动值生成模块的第一输出端连接,第一开关配置单元的第二输入端与波动值生成模块的第二输出端连接,第一开关配置单元的输出端与负载调节与监测模块的第二输入端连接;局部传感器配置单元的第一输入端与波动值生成模块的第一输出端连接,局部传感器配置单元的第二输入端与波动值生成模块的第二输入端连接,局部传感器配置单元的输出端与负载调节与监测模块的第三输入端连接。
结合第一方面,在上述第一方面的第六种可能的实现方式中,所述全局配置模块包括第二开关配置单元和全局传感器配置单元;
当所述波动范围标识为所述全局波动标识且所述电压波动值为全局电压差值时,所述第二开关配置单元基于所述全局电压差值,获取所述第二开关配置信号,并将所述第二开关配置信号输出至所述全局调节与监测模块;
所述全局传感器配置单元基于所述全局电压差值,获取所述全局传感器配置信号,并将所述全局传感器配置信号输出至所述全局调节与监测模块。
其中,第二开关配置单元的第一输入端与波动值生成模块的第一输出端连接,第二开关配置单元的第二输出端与波动值生成模块的第二输出端连接,第二开关配置单元的输出端与全局调节与监测模块的第二输入端连接;全局传感 器配置单元的第一输入端与波动值生成模块的第一输出端连接,全局传感器配置单元的第二输入端与波动值生成模块的第二输入端连接,全局传感器配置单元的输出端与全局调节与监测模块的第三输入端连接。
结合第一方面,在上述第一方面的另一种可能的是实现方式中,所述调压电路还包括工艺角监测器、温度传感器和体积压力温度PVT电压监测器。
第二方面,本发明实施例提供了一种电路调压方法,应用于上述第一方面至第一方面的第六种可能的实现方式所述的调压电路中,其特征在于,所述方法包括:
当接通所述供电电压时,通过所述至少一个负载调节与监测模块中的每个负载调节与监测模块对所述供电电压进行分压处理后得到至少一个第一电压,将所述至少一个第一电压中的每个第一电压输出至对应的负载和所述波动值生成模块,并通过所述全局调节与监测模块对所述供电电压进行分压处理后得到所述第二电压,并将所述第二电压输出至所述波动值生成模块;
基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,所述波动范围标识包括全局波动标识或局部波动标识,所述电压波动值包括局部电压差值或全局电压差值;
当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述至少一个局部配置模块中每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应负载的第一电压进行调节;
当所述波动范围标识为全局波动标识时,基于所述电压波动值,通过所述全局配置模块从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将所述全局配置信号输出至所述全局调节与监测模块中,以通过所述全局调节与监测模块对所述第二电压进行调节。
结合第二方面,在上述第二方面的第一种可能的实现方式中,对至少一个负载调节与监测模块中的每个负载监测摸,所述负载调节与监测模块包括第一开关单元和局部电压传感器;所述全局调节与监测模块包括第二开关单元和全局电压传感器;
所述通过所述至少一个负载调节与监测模块中的每个负载调节与监测模块对所述供电电压进行分压处理后得到至少一个第一电压,将所述至少一个第一电压中的每个第一电压输出至对应的负载和所述波动值生成模块,并通过所述全局调节与监测模块对所述供电电压进行分压处理后得到所述第二电压,并将所述第二电压输出至所述波动值生成模块,包括:
通过所述第一开关单元对所述供电电压进行分压处理,得到所述第一电压,将所述第一电压输出至对应的负载,并通过所述第二开关单元对所述供电电压进行分压处理,得到所述第二电压;
通过所述局部电压传感器采集所述第一电压,并将所述第一电压输出至所述波动值生成模块,通过所述全局电压传感器采集所述第二电压,并将所述第二电压输出至所述波动值生成模块。
结合第二方面,在上述第二方面的第二种可能的实现方式中,所述波动值生成模块包括至少一个波动值生成子模块,所述至少一个波动值生成子模块、所述至少一个负载调节与监测模块、所述至少一个负载和所述至少一个局部配置模块一一对应;对于所述至少一个波动值生成子模块中的每个波动值生成子模块,所述波动值生成子模块包括第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元;
所述基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至对应的局部配置模块和所述全局配置模块,包括:
通过所述第一比较单元比较所述第一电压和第一预设值,得到指示所述第一电压和所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至所述波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元,
通过所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和所述第二预设值之间的差值的全局电压差值,并将所述全局差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出将所述全局波动标识至所述波动范围判断单元;
当通过所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,将所述局部波动标识确定为波动范围标识并输出至所述波 动差值输出单元;
当通过所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述波动差值输出单元;
基于所述波动范围标识、所述局部电压差值和所述全局电压差值,通过所述波动差值输出单元确定所述电压波动值,将所述电压波动值输出至对应的局部配置模块和所述全局配置模块。
结合第二方面,在上述第二方面的第三种可能的实现方式中,所述波动值生成模块包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元,所述至少一个第一比较单元、所述至少一个负载调节与监测模块、所述至少一个波动差值输出单元和所述至少一个负载一一对应;
所述基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,包括:
通过所述至少一个第一比较单元中的每个第一比较单元比较输入到对应负载的第一电压和第一预设值,得到指示所述第一电压和所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至对应的波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元,所述局部波动标识中包括局部波动位置标记;
通过所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和第二预设值之间的差值的全局电压差值,将所述全局电压差值输出至所述至少一个波动差值输出单元,并将所述全局差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出将所述全局波动标识至所述波动范围判断单元;
当通过所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,对于所述至少一个局部波动标识中的每个局部波动标识,将所述局部波动标识确定为波动范围标识并输出至所述局部波动标识包括的局部波动位置标记所对应的波动差值输出单元;
当通过所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述至少一个波动差值输出单元;
基于所述波动范围标识、所述局部电压差值和所述全局电压差值,通过所述至少一个波动差值输出单元中的每个波动差值输出单元确定所述电压波动值,将所述电压波动值输出至所述至少一个局部配置模块和所述全局配置模块。
结合第二方面的第二种可能的实现方式,在上述第二方面的第四种可能的实现方式中,所述基于所述波动范围标识、所述局部电压差值和所述全局电压差值,通过所述至少一个波动差值输出单元中的每个波动差值输出单元确定所述电压波动值,将所述电压波动值输出至对应的局部配置模块和所述全局配置模块,包括:
当所述波动范围标识为局部范围波动标识时,将所述局部电压差值确定为所述电压波动值,通过所述至少一个波动差值输出单元中的每个波动差值输出单元将所述局部电压差值输出至对应的局部配置模块和所述全局配置模块;
当所述波动范围标识为全局范围波动标识时,将所述全局电压差值确定为所述电压波动值,通过所述至少一个波动差值输出单元中的每个波动差值输出单元将所述全局电压差值输出至对应的局部配置模块和所述全局配置模块。
结合第二方面至第二方面的第四种可能的实现方式,在上述第二方面的第五种可能的实现方式中,对于至少一个局部配置模块中的每个局部配置模块,所述局部配置模块包括第一开关配置单元和局部传感器配置单元;
所述当所述波动范围标识为局部波动标识时,基于所述电压波动值,当通过所述至少一个局部配置模块中的每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应的负载的第一电压进行调节,包括:
当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述第一开关配置单元从所述电压波动值与局部配置信号之间的对应关系中,获取第一开关配置信号,并将所述第一开关配置信号输出至对应的第一开关单元中;
基于所述第一开关配置信号,通过所述第一开关单元控制所述第一开关单元中的开关进行导通或关断,以对对应负载的第一电压进行调节;
当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述 局部传感器配置单元从所述电压波动值与局部配置信号之间的对应关系中,获取局部传感器配置信号,并将所述局部传感器配置信号输出至对应的局部电压传感器中;
基于所述局部传感器配置信号,通过所述局部电压传感器控制所述局部电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
结合第二方面至第二方面的第四种可能的实现方式,在上述第二方面的第六种可能的实现方式中,所述全局配置模块包括第二开关配置单元和全局传感器配置单元;
当所述波动范围标识为全局波动标识时,基于所述电压波动值,通过所述全局配置模块从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将所述全局配置信号输出至所述全局调节与监测模块中,以通过所述全局调节与监测模块对所述第二电压进行调节,包括:
当所述波动范围标识为所述全局波动标识时,基于所述电压波动值,通过所述第二开关配置单元从所述电压波动值与全局配置信号之间的对应关系中,获取第二开关配置信号,并将所述第二开关配置信号输出至所述第二开关单元中;
基于所述第二开关配置信号,通过所述第二开关单元控制所述第二开关单元中的开关进行导通或关断,以对所述第二电压进行调节;
当所述波动范围标识为全局波动标识时,基于所述电压波动值,通过所述全局传感器配置单元从电压波动值与全局配置信号之间的对应关系中,获取全局传感器配置信号,并将所述全局传感器配置信号输出至所述全局电压传感器中;
基于所述全局传感器配置信号,通过所述全局电压传感器控制所述全局电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
本发明实施例提供的技术方案的有益效果是:在本发明实施例中,由于当接通供电电压时,该波动值生成模块可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和全局配置模块。当该波动范围标识为局部波动标识时,确定该集成电路内部产生了局部波动,此时,局部波动标识对应的局部配置模块可以获取局部配置信号,并将该局部配置信号输出至对应的负载调节与监测模块中,以通过对应的负载调节与监测模块对对应负载的第一电压进行调节。当 波动范围标识为全局波动标识时,确定该集成电路内部产生了全局波动,此时,全局配置模块可以获取全局配置信号,并将该全局配置信号输出至全局调节与监测模块中,以通过全局调节与监测模块对该第二电压进行调节。由于第一电压是输入至该集成电路内部各个负载的电压,第二电压是该集成电路内的全局电压,因此,当产生局部波动时,可以对对应负载的第一电压进行调节,当产生全局波动时,可以对第二电压进行调节,也即是,可以根据不同的波动范围,对不同的电压进行调节,提高了电压调节的可靠性和准确性,同时由于调节电压的可靠性和准确性提高,进而也提高了调节电压的效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的第一种调压电路的结构示意图。
图2A是本发明实施例提供的第二种调压电路的结构示意图。
图2B是本发明实施例提供的一种局部电压传感器的结构示意图。
图3A是本发明实施例提供的第三种调压电路的结构示意图。
图3B是本发明实施例提供的一种全局电压传感器的结构示意图。
图4A是本发明实施例提供的第四种调压电路的结构示意图。
图4B是本发明实施例提供的第五种调压电路的结构示意图。
图4C是本发明实施例提供的第六种调压电路的结构示意图。
图5是本发明实施例提供的第七种调压电路的结构示意图。
图6是本发明实施例提供的第八种调压电路的结构示意图。
图7是本发明实施例提供的一种电路调压方法的流程图。
图8是本发明实施例提供的另一种电路调压方法的流程图。
附图标记:
1:负载调节与监测模块,2:负载,3:波动值生成模块,4:局部配置模块,5:全局调节与监测模块,6:全局配置模块,VDD:外接电源;
11:负载调节与监测模块的第一输入端,12:负载调节与监测模块的第二输入端,
13:负载调节与监测模块的第三输入端,14:负载调节与监测模块的第一输出端,
15:负载调节与监测模块的第二输出端;
a:负载的第一端,b:负载的第二端;
31:局部输出模块的第一输入端,32:局部输出模块的第二输入端,
33:局部输出模块的第一输出端,34:局部输出模块的第二输出端;
41:局部配置模块的第一输出端,42:局部配置模块的第二输出端,
43:局部配置模块的第一输入端,44:局部配置模块的第二输入端;
51:全局调节与监测模块的第一输入端,52:全局调节与监测模块的第二输入端,
53:全局调节与监测模块的第三输入端,54:全局调节与监测模块的第一输出端,
55:全局调节与监测模块的第二输出端;
61:全局配置模块的第一输出端,62:全局配置模块的第二输出端,
63:全局配置模块的第一输入端,64:全局配置模块的第二输入端;
16:第一开关单元,17:局部电压传感器;
161:第一开关单元的第一输入端,162:第一开关单元的第二输入端,
163:第一开关单元的输出端;
171:局部电压传感器的采集端,172:局部电压传感器的输入端,
173:局部电压传感器的输出端,174:局部电压传感器的压控振荡器;
1741:压控振荡器的反相器组,1742:压控振荡器的存储单元,1743:压控振荡器的解码器;
56:第二开关单元,57:全局电压传感器;
561:第二开关单元的第一输入端,562:第二开关单元的第二输入端,
563:第二开关单元的输出端;
571:全局电压传感器的采集端,572:全局电压传感器的输入端,
573:全局电压传感器的第一输出端,574:全局电压传感器的第二输出端,575:全局电压传感器的压控振荡器;
5751:压控振荡器的反相器组,5752:压控振荡器的存储单元,5753:压控振荡器的解码器;
35:第一比较单元,36:第二比较单元,37:波动范围判断单元,38:波 动差值输出单元;
351:第一比较单元的输入端,352:第一比较单元的第一输出端,
353:第一比较单元的第二输出端;
361:第二比较单元的输入端,362:第二比较单元的第一输出端,
363:第二比较单元的第二输出端;
371:波动范围判断单元的第一输入端,372:波动范围判断单元的第二输入端,373:波动范围判断单元的输出端;
381:波动差值输出单元的第一输入端,382:波动差值输出单元的第二输入端,
383:波动差值输出单元的第三输入端,384:波动差值输出单元的输出端;
45:第一开关配置单元,46:局部传感器配置单元;
451:第一开关配置单元的第一输入端,452:第一开关配置单元的第二输入端,453:第一开关配置单元的输出端;
461:局部配置传感器配置单元的第一输入端,462:局部传感器配置单元的第二输入端,463:局部传感器配置单元的输出端;
65:第二开关配置单元,66:全局传感器配置单元;
651:第二开关配置单元的第一输入端,652:第二开关配置单元的第二输出端,653:第二开关配置单元的输出端;
661:全局配置传感器配置单元的第一输入端,662:全局传感器配置单元的第二输入端,663:全局传感器配置单元的输出端;
a1:局部电压传感器中反相器组的第一输入端,b1:局部电压传感器中反相器组的第二输入端,c1:局部电压传感器中反相器组的采集端,d1:局部电压传感器中反相器组的输出端,e1:局部电压传感器中存储单元的第一输入端,f1:局部电压传感器中存储单元的第二输入端,g1:局部电压传感器中存储单元的第一输出端,h1:局部电压传感器中存储单元的第二输出端,i1:局部电压传感器中解码器的输入端,j1:局部电压传感器中解码器的输出端;
a2:全局电压传感器中反相器组的第一输入端,b2:全局电压传感器中反相器组的第二输入端,c2:全局电压传感器中反相器组的采集端,d2:全局电压传感器中反相器组的输出端,e2:全局电压传感器中存储单元的第一输入端,f2:全局电压传感器中存储单元的第二输入端,g2:全局电压传感器中存储单元的第一输出端,h2:全局电压传感器中存储单元的第二输出端,i2:全局电 压传感器中解码器的输入端,j2:全局电压传感器中解码器的输出端;
CLK:时钟信号端。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种调压电路的结构示意图,参见图1,该调压电路包括至少一个负载调节与监测模块1、至少一个负载2、波动值生成模块3、至少一个局部配置模块4、全局调节与监测模块5和全局配置模块6,至少一个负载调节与监测模块1、至少一个负载2和至少一个局部配置模块4一一对应;
该至少一个负载调节与监测模块1中的每个负载调节与监测模块1接收供电电压,对该供电电压进行分压处理后得到至少一个第一电压,将该至少一个第一电压中的每个第一电压输出至对应的负载2和该波动值生成模块3;全局调节与监测模块5接收供电电压,对该供电电压进行分压处理后得到第二电压,将该第二电压输出至波动值生成模块3;波动值生成模块3基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块4和全局配置模块6,该波动范围标识包括全局波动标识或局部波动标识;当该波动范围标识为局部波动标识时,该至少一个局部配置模块4中的每个局部配置模块4基于该电压波动值,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将该局部配置信号输出至至少一个负载调节与监测模块1中对应的负载调节与监测模块1中,以通过对应的负载调节与监测模块1对对应负载2的第一电压进行调节;当波动范围标识为全局波动标识时,全局配置模块6基于该电压波动值,从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将该全局配置信号输出至全局调节与监测模块5中,以通过全局调节与监测模块5对该第二电压进行调节。
由于当接通外接电源VDD提供的供电电压时,至少一个负载调节与监测模块1中的每个负载调节与监测模块可以对该供电电压进行分压处理得到至少一个第一电压,并将该至少一个第一电压中的每个第一电压输出至对应的负载2和该波动值生成模块3;同时,当接通外接电源VDD提供的供电电压时,全局 调节与监测模块5同样可以对该供电电压进行分压处理后得到第二电压,并将该第二电压输出至波动值生成模块3;当该波动值生成模块3接收到第一电压和第二电压时,可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块4和全局配置模块6。由于该波动范围标识包括全局波动标识或局部波动标识,因此,当该至少一个局部配置模块4中的每一个局部配置模块4接收到该电压波动值和该波动范围标识,且该波动范围标识为局部波动标识时,可以基于该电压波动值,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将该局部配置信号输出至至少一个负载调节与监测模块中对应的负载调节与监测模块1中,以通过对应的负载调节与监测模块1对对应负载2的第一电压进行调节;当全局配置模块6接收到该电压波动值和波动范围标识,且波动范围标识为全局波动标识时,可以基于该电压波动值,从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将该全局配置信号输出至全局调节与监测模块5中,以通过全局调节与监测模块5对该第二电压进行调节,从而可以完成根据波动范围对电压进行调节,使电路调压具有针对性,提高了电压调节的可靠性和准确性,同时由于调节电压的可靠性和准确性提高,进而也提高了调节电压的效率。
其中,对于至少一个负载调节与监测模块1中的每个负载调节与监测模块1,该负载调节与监测模块1的第一输入端11与外接电源VDD连接,该负载调节与监测模块1的第二输入端12与对应的局部配置模块4的第一输出端41连接,该负载调节与监测模块1的第三输入端13与对应的局部配置模块4的第二输出端42连接,该负载调节与监测模块的第一输出端14与对应的负载2的第一端a连接,该负载调节与监测模块1的第二输出端15与波动值生成模块3的第一输入端31连接,该负载的第二端b与保护地连接;全局调节与监测模块5的第一输入端51与外接电源VDD连接,全局调节与监测模块5的第二输入端52与全局配置模块6的第一输出端61连接,全局调节与监测模块5的第三输入端53与全局配置模块6的第二输出端62连接,全局调节与监测模块5的第一输出端54与保护地连接,全局调节与监测模块5的第二输出端55与波动值生成模块3的第二输入端32连接;波动值生成模块的第一输出端33与至少一个局部配置模块4的第一输入端43和全局配置模块6的第一输入端63分别连接,波动值生成模块3的第二输出端34与至少一个局部配置模块4的第 二输入端44和全局配置模块6的第二输入端64分别连接。
由于对于至少一个负载调节与监测模块1中的每个负载调节与监测模块1,该负载调节与监测模块1的第一输入端11与外接电源VDD连接,全局调节与监测模块5的第一输入端51与外接电源VDD连接。因此,当该外接电源VDD向至少一个负载调节与监测模块1和全局调节与监测模块5进行供电时,对于至少一个负载调节与监测模块1中的每个负载调节与监测模块1,该负载调节与监测模块1可以对该外接电源VDD提供的供电电压进行分压处理,得到第一电压,同时该全局调节与监测模块5同样可以对该供电电压进行分压处理得到第二电压。
又由于该负载调节与监测模块1的第一输出端14与对应的负载2的第一端a连接,该负载调节与监测模块1的第二输出端15与波动值生成模块3的第一输入端31连接,全局调节与监测模块5的第二输出端55与波动值生成模块3的第二输入端32连接,全局调节与监测模块5的第一输出端54与保护地连接。因此,该负载调节与监测模块1可以将该第一电压输出至对应的负载2和波动值生成模块3中,同时该全局调节与监测模块5可以将该第二电压输出至波动值生成模块3中。当该波动值生成模块3接收到该第一电压和第二电压时,可以基于该第一电压和第二电压,生成电压波动值和波动范围标识。
由于该波动值生成模块3的第一输出端33与对应的局部配置模块4的第一输入端43和全局配置模块6的第一输入端63分别连接,波动值生成模块3的第二输出端34与对应的局部配置模块4的第二输入端44和全局配置模块6的第二输入端64分别连接。因此,该波动值生成模块3可以将该电压波动值和波动范围标识输出至至少一个局部配置模块4和全局配置模块6中。
由于该波动范围标识包括全局波动标识或局部波动标识,因此,对于至少一个局部配置模块4中的每个局部配置模块4,当局部配置模块4接收到该电压波动值和该波动范围标识,且该波动范围标识为局部波动标识时,可以基于该电压波动值,获取局部配置信号。并且由于局部配置模块的第一输出端41与对应的负载调节与监测模块1的第二输入端12连接,该局部配置模块的第二输出端42与对应的负载调节与监测模块1的第三输入端13连接,因此,该局部配置模块4可以将该局部配置信号输出至对应的负载调节与监测模块1中,以通过对应的负载调节与监测模块1对对应负载2的第一电压进行调节。
另外,当全局配置模块6接收到该电压波动值和波动范围标识,且波动范 围标识为全局波动标识时,可以基于该电压波动值,获取全局配置信号。并且由于全局配置模块6的第一输出端61与全局调节与监测模块的第二输入端52连接,全局配置模块的第二输出端62与全局调节与监测模块的第三输入端53连接,并将该全局配置信号输出至全局调节与监测模块5中,以通过全局调节与监测模块5对该第二电压进行调节。
需要说明的是,局部波动标识用于唯一标识该集成电路中发生局部电压波动。同理,全局波动标识用于唯一标识该集成电路中发生全局电压波动。
还需要说明的是,当接收到外接电源VDD提供的供电电压时,由于该至少一个负载调节与检测模块与至少一个负载一一对应,因此,该至少一个负载调节与监测模块对该外接电源VDD提供的供电电压进行分压处理后,得到分别提供给该至少一个负载的第一电压,也即是,该至少一个负载调节与监测模块对该外接电源VDD提供的供电电压进行分压处理后,得到至少一个第一电压。当该至少一个负载中的任意一个负载或多个负载的第一电压发生波动,且发生波动的负载数量小于集成电路中负载的总数量时,确定该集成电路发生了局部波动。当至少一个负载中的所有负载的第一电压均发生了波动,或者该外接电源VDD提供的供电电压发生了波动时,确定该集成电路中发生了全局波动,当然,实际应用中,还可以通过其他的方式来确定该集成电路发生了局部波动还是全局波动,本发明实施例对此不再进行一一赘述。
其中,当该集成电路中发生全局波动时,通过对全局调节与监测模块进行调压,从而可以改变VDD提供的供电电压的大小,无需对输入到每一个负载的电压进行调节,进而提高了调节电压的效率。
另外,该局部配置信号用于对对应的负载调节与监测模块进行配置,该全局配置信号用于对全局调节与监测模块进行配置。
还需要说明的是,在本发明实施例中,该调压电路中可以同时包括至少一个负载,且该至少一个负载与至少一个负载调节与监测模块1和至少一个局部配置模块4一一对应,由于该至少一个负载2中每个负载的需求电压可能相同也可能不同,该至少一个负载中每个负载的需求电压即为输入到该负载的第一电压,因此,当对输入到该至少一个负载2中的任一负载的第一电压进行调节时,该负载对应的局部配置模块可以根据该负载2对第一电压的需求,将局部配置信号输入至对应的负载调节与监测模块中,该负载调节与监测模块在接收到对应的局部配置信号时,可以根据该局部配置信号对该负载调节与监测模块 中的等效电阻的阻值进行调节,以改变该负载调节与监测模块对外接电源VDD提供的供电电压进行分压的能力,从而改变输入到对应负载中的第一电压的电压值,使电压调节具有针对性,进而提高对电压调节的可靠性和准确性。
另外,在本发明实施例中,对于至少一个负载中的每个负载,该负载可以还可以称为负载子域。通常来说,负载可以为集成电路中的整个逻辑模块,如处理器核等,也可以为整个SoC(System On Chip,片上系统)单元等。在本发明实施例中,可以将负载划分为多个负载子域,从而方便对负载进行精确控制。其中,负载子域的划分不会对负载的行为及功能造成任何影响,只是在对负载的电源布局平面(power plane)的供电布局进行改变。
需要说明的是,具体的负载子域划分可以根据实际集成电路版图的具体情况来划分,从而达到最优的电源完整性(PI)和信号完整性(SI),本发明实施例对此不做具体限定。
参见图2A,对于至少一个负载调节与监测模块1中的每个负载调节与监测模块1,负载调节与监测模块1包括第一开关单元16和局部电压传感器17;
该第一开关单元16接收该供电电压,对该供电电压进行分压处理后得到该第一电压,将该第一电压输出至对应的负载2,以对该负载2进行供电;局部电压传感器17采集该第一电压,并将该第一电压输出至波动值生成模块3。
其中,该第一开关单元16的第一输入端161与外接电源VDD连接,该第一开关单元16的第二输入端162与局部配置模块4的第一输出端41连接,第一开关单元16的输出端163与对应的负载2的第一端a和局部电压传感器17的采集端171分别连接;该局部电压传感器17的输入端172与对应的局部配置模块4的第二输出端42连接,该局部电压传感器17的输出端173与波动值生成模块3的第一输入端31连接。
需要说明的是,该第一开关单元16可以包括至少一个第一晶体管,且该至少一个第一晶体管可以通过并联的方式连接,形成多个并联线路。其中,单个并联线路可以由多个第一晶体管串联组成,也可以由一个第一晶体管组成,本发明实施例对此不做具体限定。
另外,参见图2B,该局部电压传感器17中可以包括至少一个压控振荡器174,对于该至少一个压控振荡器174中的每个压控振荡器174,该压控振荡器174包括一个反相器组1741和一个存储单元1742,当然,该局部电压传感器17中还可以包括其他元件,比如,解码器1743,本发明实施例对此不做具体 限定。
需要说明的是,该反相器组1741中可以包括至少一个反相器,当然还可以包括其他元件,本发明实施例对此不做具体限定。
其中,该局部电压传感器中可以包括至少一个压控振荡器174,而每个压控振荡器包括一个反相器组1741和一个存储单元1742,也即是,该局部电压传感器可以包括至少一个反相器组1741和至少一个存储单元1742。又由于反相器组1741包括至少一个反相器,因此,该局部电压传感器包括至少一个反相器。示例地,在如图2B所示的局部电压传感器中,以局部电压传感器包括四个压控振荡器174为例进行说明。该四个反相器组1741中的第一个反相器组1741的第一输入端a1和对应的第一个存储单元1742的第一输入端e1分别与时钟信号端CLK连接,该四个反相器组1741中的每一个反相器组的第二输入端b1作为该局部电压传感器的输入端172与对应的局部配置模块的第二输出端42连接,以接收对应的局部配置模块输出的局部传感器配置信号;该四个反相器组1741中的每一个反相器组1741的采集端c1作为该局部电压传感器的采集端171分别与对应的第一开关单元16的输出端163和对应的负载2的第一端a连接,以采集待监测的电压,即第一电压;该四个反相器组1741中的最后一个反相器组1741的输出端与对应的存储单元1742连接,其余每个反相器组1741的输出端d1与下一个反相器组1741的第一输入端和对应的存储单元1742的第二输入端f1连接;该四个存储单元1742中的每个存储单元1742的第一输出端g1与下一个存储单元1742的第一输入端连接,该每个存储单元1742的第二输出端h1与解码器1743的输入端i1连接,该解码器1743的输出端j1作为该局部电压传感器的输出端173与波动生成模块3的第一输入端31连接。
需要说明的是,当接收到外接电源VDD提供的供电电压时,对于该至少一个第一开关单元中的每个第一开关单元,该第一开关单元对该外接电源VDD提供的供电电压进行分压处理后,得到第一电压,该局部电压传感器17可以通过至少一个反相器组的采集端c1采集到待监测的电压,即第一电压,该第一电压为该局部电压传感器的供电电压。
由于该第一开关单元16可以包括至少一个第一晶体管,且该第一开关单元的第一输入端161与该外接电源VDD连接,因此,该第一开关单元16可以通过第一输入端161接收外接电源VDD提供的供电电压,并通过该至少一个第 一晶体管的等效电阻对该供电电压进行分压处理,从而得到第一电压,并将该第一电压通过输出端163输出至对应的负载2中。同时,该局部电压传感器17可以通过至少一个反相器组1741的采集端c1对该第一电压进行采集,当该局部电压传感器17采集到该第一电压时,可以通过该解码器1743输出编码数值信号,该编码数值信号为第一电压的电压值的数字信号形式,并将转换后的第一电压通过该解码器1743的输出端j1输出至波动值生成模块3中。
需要说明的是,该解码器1743用于对第一电压的电压值进行解码,得到编码数值信号,并输出该编码数值信号。
其中,对于至少一个第一晶体管中的每一个第一晶体管,当该第一晶体管导通时,该第一开关单元16可以获取第一晶体管的等效电阻,该等效电阻可以对外接电源VDD提供的供电电压进行分压处理,从而得到第一电压。
还需要说明的是,局部电压传感器17将该第一电压进行数值编码得到第一电压的电压值的数字信号形式的操作可以参考相关技术,本发明实施例对此不做具体限定。
参见图3A,全局调节与监测模块5包括第二开关单元56和全局电压传感器57;
第二开关单元56接收供电电压,对该供电电压进行分压处理后得到该第二电压;全局电压传感器57采集该第二电压,并将该第二电压输出至波动值生成模块3。
其中,该第二开关单元56的第一输入端561与外接电源VDD连接,该第二开关单元56的第二输入端562与全局配置模块6的第一输入端61连接,第二开关单元56的输出端563与全局电压传感器57的采集端571连接,该全局电压传感器57的输入端572与全局配置模块6的第二输出端62连接,全局电压传感器57的第一输出端573与保护地连接,该全局电压传感器57的第二输出端574与波动值生成模块3的第二输入端32连接。
需要说明的是,该第二开关单元56中可以包括至少一个第二晶体管,且该至少一个第二晶体管中的每个第二晶体管通过并联的方式连接,形成多个并联线路。其中,单个并联线路可以由多个第二晶体管串联组成,也可以由一个第二晶体管组成,本发明实施例对此不做具体限定。
另外,参见图3B该全局电压传感器57中可以包括至少一个压控振荡器575,对于该至少一个压控振荡器575中的每个压控振荡器575,该压控振荡器 575中可以包括一个反相器组5751和一个存储单元5752,当然,该全局电压传感器57还可以包括其他元件,比如,解码器5753,本发明实施例对此不做具体限定。
需要说明的是,该反相器组5751中可以包括至少一个反相器,当然还可以包括其他元件,本发明实施例对此不做具体限定。
其中,该全局电压传感器包括至少一个压控振荡器575,每个压控振荡器包括一个反相器组5751和一个存储单元5752,也即是,该全局电压传感器包括至少一个反相器组5751和至少一个存储单元5752。又由于该反相器组5751中可以包括至少一个反相器,因此,该全局电压传感器包括至少一个反相器。示例地,在如图3B所述的全局电压传感器中,以四个压控震荡器为例进行说明。该四个反相器组5751中的第一个反相器组5751的第一输入端a2和对应的第一个存储单元5752的第一输入端e2分别与时钟信号端CLK连接,该至少一个反相器组1741中的每一个反相器组的第二输入端b2作为全局电压传感器的输入端572与全局配置模块6的第二输出端62连接,该至少一个反相器组5751中的每一个反相器组的采集端c2作为全局电压传感器的采集端571与第二开关单元56的输出端563连接,以采集待监测的电压,即第二电压;该四个反相器组5751中最后一个反相器组的输出端与对应的最后一个存储单元5752的第二输入端f1连接,其余每一个反相器组5751的输出端d2与下一个反相器组5751的第一输入端和对应的存储单元5752的第二输入端f1连接,该四个存储单元5752中的每个存储单元5752的第一输出端g2与下一级存储单元5752的第一输入端连接,该存储单元5752的第二输出端h2与解码器5753的输入端i1连接,该解码器5753的输出端j2作为全局电压传感器的输出端与波动值生成模块3的第二输入端32连接。
需要说明的是,当接收到外接电源VDD提供的供电电压时,该第二开关单元对该外接电源VDD提供的供电电压进行分压处理后,得到第二电压,该全局电压传感器可以通过至少一个反相器组5751的采集端c2采集到待监测的电压,即第二电压,该第二电压即为该全局电压传感器的供电电压。
其中,由于该第二开关单元56的第一输入端561与外接电源VDD连接,且该第二开关单元56包括至少一个第二晶体管,因此,该第二开关单元56可以通过第一输入端561接收外接电源VDD提供的供电电压,并通过至少一个第二晶体管的等效电阻对该供电电压进行分压处理,得到第二电压。同时,该全 局电压传感器57可以通过至少一个反相器组5751的该采集端c2对该第二电压进行采集,并当全局电压传感器57采集到该第二电压时,可以通过该解码器5753输出编码数值信号,该编码数值信号为第二电压的电压值的数字信号形式,并将转换后的第二电压通过该解码器5753的输出端j2输出至波动值生成模块3中。
还需要说明的是,该解码器5753用于对第二电压的电压值进行解码,得到编码数值信号,并输出该编码数值信号。
其中,对于至少一个第二晶体管中的每一个第二晶体管,当该第二晶体管导通时,该第二开关单元56可以获取第二晶体管的等效电阻,该等效电阻可以对外接电源VDD提供的供电电压进行分压处理,从而得到第二电压。
还需要说明的是,全局电压传感器57将该第二电压进行数值编码得到第二电压的电压值的数字信号形式的操作可以参考相关技术,本发明实施例对此不做具体限定。
需要说明的是,本发明实施例所涉及的第一晶体管和第二晶体管可以为NMOS(N-Mental-Oxide-Semiconductor,N型金属氧化物半导体)管、PMOS(P-Mental-Oxide-Semiconductor,P型金属氧化物半导体)管或者CMOS(Complementary Mental-Oxide-Semiconductor,互补型金属氧化物半导体)管,当然也可以为其他晶体管或等效开关,比如,电源门控(Power gating),本发明实施例对此不做具体限定。
另外,该第一晶体管和第二晶体管可以是相同类型的晶体管也可以是不同类型的晶体管,本发明实施例同样对此不做具体限定。
还需要说明的是,在本发明实施例中,局部电压传感器的作用为监测第一电压的具体电压值。通常采用如图2B所示的电路来实现,当然,也可以通过其他电路来实现电压的监测,本发明实施例对此不做具体限定。同理,全局电压传感器的作用为监测第二电压的具体电压值。通常采用如图3B所示的电路来实现,当然,也可以通过其他电路来实现电压的监测,本发明实施例对此同样不做具体限定。
参见图4A,波动值生成模块3包括至少一个波动值生成子模块,该至少一个波动值生成子模块、至少一个负载2和至少一个局部配置模块4一一对应;
对于该至少一个波动值生成子模块中的每个波动值生成子模块,该波动值生成子模块包括:第一比较单元35、第二比较单元36、波动范围判断单元37 和波动差值输出单元38;
第一比较单元35比较该第一电压和第一预设值,得到指示该第一电压与该第一预设值之间的差值的局部电压差值,将局部电压差值输出至波动差值输出单元38,并将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,输出该局部波动标识至波动范围判断单元37;第二比较单元36比较该第二电压和第二预设值,得到指示该第二电压和该第二预设值之间的差值的全局电压差值,将该全局电压差值输出至该波动差值输出单元38,并将该全局电压差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,输出该全局波动标识至该波动范围判断单元37;当该波动范围判断单元37接收到该局部波动标识且没有接收到该全局波动标识时,将该局部波动标识确定为波动范围标识并输出至该波动差值输出单元38、全局配置模块6和对应的局部配置模块4,当该波动范围判断单元37接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至该波动差值输出单元38、全局配置模块6和对应的局部配置模块4中;当该波动范围标识为该局部波动标识时,该波动差值输出单元38将该局部电压差值确定为该电压波动值,并将该电压波动值输出至对应的局部配置模块和该全局配置模块;当该波动范围标识为该全局波动标识时,将该全局电压差值确定为该电压波动值,并将该电压波动值输出至对应的局部配置模块4和全局配置模块6。
其中,该第一比较单元35的输入端351与对应的负载调节与监测模块1的第二输出端15连接,第一比较单元351的第一输出端352与波动范围判断单元37的第一输入端371连接,第一比较单元35的第二输出端353与波动差值输出单元38的第一输入端381连接;第二比较单元36的输入端361与全局调节与监测模块5的第二输出端55连接,第二比较单元36的第一输出端362与波动范围判断单元37的第二输入端372连接,第二比较单元36的第二输出端363与波动差值输出单元38的第二输入端382连接;波动范围判断单元37的输出端373与波动差值输出单元38的第三输入端383、全局配置模块6的第一输入端63和对应的局部配置模块4的第一输入端43分别连接;波动差值输出单元38的输出端384与全局配置模块6的第二输入端64和对应的局部配置模块4的第二输入端44分别连接。
由于该第一比较单元35的输入端351与对应的负载调节与监测模块1的 第二输出端15连接,第一比较单元35的第一输出端352与波动范围判断单元37的第一输入端371连接,第一比较单元35的第二输出端353与波动差值输出单元38的第一输入端381连接,因此,该第一比较单元35可以接收对应的负载调节与监测模块1输出的第一电压,并比较该第一电压与第一预设值,从而得到指示该第一电压和该第一预设值之间的差值的局部电压差值,将该局部电压差值通过第二输出端353输出至波动差值输出单元38。
同时,将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,确定该集成电路当前发生局部波动,通过第一输出端352将局部波动标识输出至波动范围判断单元37。
又由于第二比较单元36的输入端361与全局调节与监测模块5的第一输出端54连接,第二比较单元36的第一输出端362与波动范围输出单元37的第二输入端372连接,第二比较单元36的第二输出端363与波动差值输出单元38的第二输入端382连接。因此,当该全局调节与监测模块5通过第一输出端54将第二电压输出至该第二比较单元36时,该第二比较单元36可以接收该第二电压,比较第二电压与第二预设值,得到指示该第二电压与第二预设值之间的差值的全局电压差值,并将该全局电压差值通过第一输出端363输出至波动差值输出单元38。
同时,将该全局电压差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,确定集成电路当前发生全局波动,并将全局波动标识通过第一输出端362输出至波动范围判断单元37。
由于波动范围判断单元的输出端373与波动差值输出单元38的第三输入端383、全局配置模块6的第一输入端63和对应的局部配置模块4的第一输入端43分别连接;波动差值输出单元3的输出端384与全局配置模块6的第二输入端64和对应的局部配置模块4的第二输入端44分别连接。因此,当该波动范围判断单元37通过第一输入端371接收到该局部波动标识且没有接收到该全局波动标识时,将该局部波动标识确定为波动范围标识并通过输出端373输出至该波动差值输出单元38、全局配置模块6和对应的局部配置模块4。
当该波动范围判断单元37通过第二输入端372接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并通过输出端373输出至该波动差值输出单元38、全局配置模块6和对应的局部配置模块4;该波动差值输出单元38通过第三输入端383接收该波动范围标识,通过第一输入端381接收该局部电 压差值以及通过第二输入端382接收该全局电压差值。
当该波动范围标识为该局部波动标识时,将该局部电压差值确定为该电压波动值,当该波动范围标识为该全局波动标识时,将该全局电压差值确定为该电压波动值,并将该电压波动值通过输出端384输出至对应的局部配置模块4和全局配置模块6。
需要说明的是,第一预设值为第一电压的参考电压,用于计算第一电压的波动幅度,且该第一预设值可以事先设置在该第一比较单元35中,也可以由外部元件输入到该第一比较单元35中,本发明实施例对此不做具体限定。
同理,第二预设值为第二电压的参考电压,用于计算第二电压的波动幅度,且该第二预设值同样可以事先设置在该第二比较单元36中,也可以由外部元件输入到该第二比较单元36中,本发明实施例对此同样不做具体限定。
还需要说明的是,局部波动阈值用于判断集成电路当前是否发生局部波动,且该局部波动阈值可以事先设置在第一比较单元35中,本发明实施例对此不做具体限定。
同理,全局波动阈值用于判断集成电路当前是否发生全局波动,且该全局波动阈值同样可以事先设置在第二比较单元36中,本发明实施例对此不做具体限定。
还需要说明的是,由于该局部电压传感器17将该第一电压进行数值编码得到了第一电压的电压值的数字信号形式,因此,第一预设值、局部波动阈值和局部电压差值同样为数字信号的形式。同理,该全局电压传感器57将该第二电压进行数值编码得到了第二电压的电压值的数字信号形式,因此,第二预设值、全局波动阈值和全局电压差值同样为数字信号的形式。
另外,在本发明实施例中,参见图4B,该波动输出模块3还可以只包括一个波动输出子模块,也即是,该波动输出模块包括一个第一比较单元35、一个第二比较单元36、一个波动范围判断单元37和一个波动差值输出单元37。
其中,该至少一个负载调节与监测模块的第二输出端15与第一比较单元的输入端351连接,该第一比较单元35的第一输出端352与该波动范围判断单元37的第一输入端373连接,第一比较单元35的第二输出端353与该波动差值输出单元38的第一输入端381连接;第二比较单元36的输入端361与全局调节与监测模块5的第二输出端55连接,第二比较单元36的第一输出端362与波动范围判断单元37的第二输入端372连接,第二比较单元36的第二输出 端363与波动差值输出单元38的第二输入端382连接;该波动范围判断单元的输出端373与波动差值输出单元的第三输入端383、全局配置模块6的第一输入端63和至少一个局部配置模块4的第一输入端43分别连接;波动差值输出单元38的输出端384与全局配置模块6的第二输入端64和至少一个局部配置模块4的第二输入端44分别连接。
由于该至少一个负载调节与监测模块1的第二输出端15与第一比较单元的输入端351连接,该第一比较单元35的第一输出端352与该波动范围判断单元37的第一输入端373连接,第一比较单元35的第二输出端353与该波动差值输出单元38的第一输入端381连接,因此,该至少一个负载调节与检测可以按照对应负载在该调压电路中的连接顺序,将该至少一个负载对应的第一电压在每一指定时间间隔内输出至该第一比较单元35中,该第一比较单元35可以在每一指定时间间隔内接收该第一电压,计算第一电压与第一预设值之间的局部电压差值,并将该局部电压差值通过第二输出端353输出至波动差值输出单元38。将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,确定集成电路当前发生局部波动,并将局部波动标识通过第一输出端352输出至波动范围判断单元37。
同时,第二比较单元36的输入端361与全局调节与监测模块5的第二输出端55连接,第二比较单元36的第一输出端362与波动范围判断单元37的第二输入端372连接,第二比较单元36的第二输出端363与波动差值输出单元38的第二输入端382连接。因此,该全局调节与监测模块6同样在每一指定时间间隔内将第二电压输出至第二比较单元36,该第二比较单元36可以接收该第二电压,计算第二电压与第二预设值之间的全局电压差值,并将该全局电压差值通过第一输出端363输出至波动差值输出单元38。将该全局电压差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,确定集成电路当前发生全局波动,并将全局波动标识通过第一输出端362输出至波动范围判断单元37。
由于波动范围判断单元的输出端373与波动差值输出单元38的第三输入端383、全局配置模块6的第一输入端63和至少一个局部配置模块4的第一输入端43分别连接;波动差值输出单元3的输出端384与全局配置模块6的第二输入端64和至少一个局部配置模块4的第二输入端44分别连接。因此,当该波动范围判断单元37通过第一输入端371在每一指定时间间隔内接收到该 局部波动标识且没有接收到该全局波动标识时,将该局部波动标识确定为波动范围标识并通过输出端373输出至该波动差值输出单元38和对应的局部配置模块中。
当该波动范围判断单元37通过第二输入端372在每一指定时间间隔内接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并通过输出端373输出至该波动差值输出单元38;该波动差值输出单元38通过第三输入端383在每一指定时间间隔内接收该波动范围标识,通过第一输入端381接收该局部电压差值以及通过第二输入端接382收该全局电压差值。
当该波动范围标识为该局部波动标识时,将该局部电压差值确定为该电压波动值,当该波动范围标识为该全局波动标识时,将该全局电压差值确定为该电压波动值,并将该电压波动值通过输出端384在每一指定时间间隔内输出至对应的局部配置模块4和全局配置模块6。
需要说明的是,该指定时间间隔可以事先设置,通过该指定时间间隔可以使输入至第一比较单元35的第一电压具有针对性,从而可以在发生局部波动时,确定需要进行配置的负载与监测模块1,提高电路调压的效率。
可选地,参见图4C,该波动值生成模块3可以包括至少一个第一比较单元35、第二比较单元36、波动范围判断单元37和至少一个波动差值输出单元38,该至少一个第一比较单元、该至少一个波动差值输出单元、该至少一个负载和该至少一个局部配置模块一一对应;
至少一个第一比较单元35中的每个第一比较单元35比较输入到对应负载2中的第一电压和第一预设值,得到指示该第一电压和第一预设值之间的差值的局部电压差值,将局部电压差值输出至对应的波动差值输出单元38,并将局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,输出该局部波动标识至波动范围判断单元37,该局部波动标识中包括局部波动位置标记;第二比较单元36比较该第二电压和第二预设值,得到指示该第二电压与第二预设值之间的差值的全局电压差值,将该全局电压差值输出至至少一个波动差值输出单元38,并将该全局电压差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,输出该全局波动标识至该波动范围判断单元;当波动范围判断单元37接收到至少一个局部波动标识且没有接收到全局波动标识时,至少一个局部波动标识中的每个局部波动标识将该局部波动标识确定为波动范围标识并输出至该局部波动标识包括的 局部波动位置标记所对应的波动差值输出单元38,当波动范围判断单元38接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至至少一个波动差值输出单元38;当至少一个波动差值输出单元38中的每个波动差值输出单元38接收到该波动范围标识且该波动范围标识为局部波动标识时,波动差值输出单元38将局部电压差值确定为该电压波动值,当该至少一个波动差值输出单元中的每个波动差值输出单元接收到该波动范围标识且该波动范围标识为全局波动标识时,每个波动差值输出单元38将该全局电压差值确定为电压波动值,并将该电压波动值输出至对应的局部配置模块4和全局配置模块5。
其中,对于该至少一个第一比较单元35中的每个第一比较单元35,该第一比较单元35的输入端351与对应的负载调节与监测模块1的第二输出端15连接,第一比较单元351的第一输出端352与波动范围判断单元37的第一输入端371连接,第一比较单元35的第二输出端353与对应的波动差值输出单元38的第一输入端381连接;第二比较单元36的输入端361与全局调节与监测模块5的第二输出端55连接,第二比较单元36的第一输出端362与波动范围判断单元37的第二输入端372连接,第二比较单元36的第二输出端363与至少一个波动差值输出单元38的第二输入端382连接;波动范围判断单元37的输出端373与至少一个波动差值输出单元38的第三输入端383、全局配置模块6的第一输入端63和至少一个局部配置模块4的第一输入端43分别连接;波动差值输出单元38的输出端384与全局配置模块6的第二输入端64和至少一个局部配置模块4的第二输入端44分别连接。
由于该调压电路可以包括至少一个第一比较单元35、第二比较单元36、波动范围判断单元37和至少一个波动差值输出单元38,且对于该至少一个第一比较单元35中的每一个第一比较单元35,第一比较单元351的第一输出端352与波动范围判断单元37的第一输入端371连接;第二比较单元36的第一输出端362与波动范围判断单元37的第二输入端372连接。因此,该波动范围判断单元37可以接收到至少一个局部波动标识和一个全局波动标识,并当该波动范围判断单元接收到至少一个局部波动标识而没有接收到全局波动标识时,可以将该局部波动标识确定为波动范围标识并通过输出端373输出至该局部波动标识包括的局部波动位置标记对应的波动差值输出单元38。
当该波动范围判断单元37通过第二输入端372接收到该全局波动标识时, 将该全局波动标识确定为波动范围标识并通过输出端373输出至至少一个波动差值输出单元38;对于至少一个该波动差值输出单元38中的每个波动差值输出单元,该波动差值输出单元38可以通过第三输入端383接收该波动范围标识,通过第一输入端381接收该局部电压差值以及通过第二输入端接382收该全局电压差值。
需要说明的是,局部波动位置标记用于标记发生局部波动的位置,且该局部波动位置标记、负载调节与监测模块1、波动差值输出单元38和局部配置模块4一一对应。
还需要说明的是,当该波动值生成模块中包括至少一个第一比较单元35、第二比较单元36、波动范围判断单元37和至少一个波动差值输出单元38时,该波动范围判断单元可以通过至少一个局部波动标识和一个全局波动标识进行波动范围的判断,从而提高了波动范围判断的准确性。
参见图5,对于至少一个局部配置模块4中的每个局部配置模块4,局部配置模块4包括第一开关配置单元45和局部传感器配置单元46;该电压波动值包括局部电压差值或全局电压差值,该局部配置信号包括第一开关配置信号和局部传感器配置信号;
当该波动范围标识为该局部波动标识且该电压波动值为局部电压差值时,该第一开关配置单元45基于该局部电压差值,获取该第一开关配置信号,并将该第一开关配置信号输出至对应的负载调节与监测模块1;当该波动范围标识为局部波动标识且该电压波动值为该局部电压差值时,局部传感器配置单元46基于该局部电压差值,从该局部配置信号中获取局部传感器配置信号,并将该局部传感器配置信号输出至对应的负载调节与监测模块1。
其中,第一开关配置单元45的第一输入端451与波动值生成模块3的第一输出端33连接,第一开关配置单元45的第二输入端452与波动值生成模块3的第二输出端34连接,第一开关配置单元45的输出端453与负载调节与监测模块1的第二输入端12连接;局部传感器配置单元46的第一输入端461与波动值生成模块3的第一输出端33连接,局部传感器配置单元46的第二输入端462与波动值生成模块3的第二输入端34连接,局部传感器配置单元46的输出端463与负载调节与监测模块1的第三输入端13连接。
另外,该第一开关配置单元45基于该局部电压差值,获取该第一开关配置信号的操作可以为:基于该局部电压差值,从电压波动值与局部配置信号之 间的对应关系中,获取局部电压差值对应的局部配置信号,将获取的局部配置信号确定为第一开关配置信号。
比如,当该第一开关配置单元45获取到的局部电压差值为110时,从如表1所示的电压波动值与局部配置信号之间的对应关系中,获取局部电压差值110对应局部配置信号为11,将获取的局部配置信号11确定为第一开关配置信号。
表1
电压波动值 局部配置信号
100 01
101 10
110 11
...... ......
需要说明的是,在本发明实施例中,仅以上述表1所示的电压波动值与局部配置信号之间的对应关系为例进行说明,上述表1并不对本发明实施例构成限定。
需要说明的是,该电压波动值与局部配置信号之间的对应关系可以事先存储在该第一开关配置单元45中。
同理,该局部传感器配置单元46基于该局部电压差值,获取局部传感器配置信号的操作可以为:基于该局部电压差值,从电压波动值与局部配置信号之间的对应关系中,获取局部电压差值对应的局部配置信号,将获取的局部配置信号确定为局部传感器配置信号。
需要说明的是,该电压波动值与局部配置信号之间的对应关系同样可以事先存储在该局部传感器配置单元46中。
参见图6,由于对于至少一个负载调节与监测模块1中的每个负载调节与监测模块1,该负载调节与监测模块1包括第一开关单元16和局部电压传感器17,且该第一开关单元16的第二输入端162与对应的第一开关配置单元45的输出端453连接,因此,当该第一开关配置单元45可以将该第一开关配置信号输出至对应的第一开关单元16中,当该第一开关单元16接收到该第一开关配置信号时,可以基于该第一开关配置信号对至少第一晶体管进行导通或关断的操作,从而改变等效电阻的阻值,以对第一电压进行调节。
比如,当该第一晶体管为PMOS管,且当该第一开关单元接收到该第一开 关配置信号时,该第一开关配置信号可以改变该至少一个PMOS管的栅极电压,控制该至少一个PMOS管的导通或者关断,从而改变该至少一个PMOS管的等效电阻的阻值,以对第一电压进行调节。
又由于该局部电压传感器17的输入端172与对应的局部传感器配置单元46的输出端463连接,因此,当该局部传感器配置单元46可以将局部传感器配置信号输出至对应的局部电压传感器17中,当该局部电压传感器17接收到该局部传感器配置信号时,可以基于该局部传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数,当该至少一个反向器和该至少一个存储单元的连接个数越多时,该局部电压传感器17的电压监测准确度越大,当该至少一个反相器和至少一个存储单元的连接个数越少时,该局部电压传感器17的电压监测准确度越小,从而对该局部电压传感器的电压监测准确度进行调节,提高了局部电压传感器进行电压监测的准确度,进而使得局部电压传感器在发生工艺波动的情况下,能够正常的监测电压,也即是,该局部电压传感器可以正常的监测第一电压的具体电压值,从而不影响监测的准确性。
需要说明的是,局部电压传感器17基于该局部传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数的操作可以参考相关技术,本发明实施例对此不做具体限定。
参见图5,全局配置模块6包括第二开关配置单元65和全局传感器配置单元66;
当该电压波动值为全局电压差值时,第二开关配置单元65基于该全局电压差值,获取该第二开关配置信号,并将该第二开关配置信号输出至该全局调节与监测模块5;该全局传感器配置单元66基于该全局电压差值,获取该全局传感器配置信号,并将该全局传感器配置信号输出至全局调节与监测模块5。
其中,第二开关配置单元65的第一输入端651与波动值生成模块3的第一输出端33连接,第二开关配置单元65的第二输出端652与波动值生成模块3的第二输出端34连接,第二开关配置单元65的输出端653与全局调节与监测模块5的第二输入端52连接;全局传感器配置单元66的第一输入端661与波动值生成模块3的第一输出端33连接,全局传感器配置单元66的第二输入端662与波动值生成模块3的第二输入端34连接,全局传感器配置单元66的输出端663与全局调节与监测模块5的第三输入端53连接。
另外,该第二开关配置单元65基于该全局电压差值,获取该第二开关配 置信号的操作可以为:基于该全局电压差值,从电压波动值与全局配置信号之间的对应关系中,获取全局电压差值对应的全局配置信号,将获取的全局配置信号确定为第二开关配置信号。
需要说明的是,该电压波动值与全局配置信号之间的对应关系可以事先存储在该第二开关配置单元65中。
同理,该全局传感器配置单元66基于该全局电压差值,获取全局传感器配置信号的操作可以为:基于该全局电压差值,从电压波动值与全局配置信号之间的对应关系中,获取全局电压差值对应的全局配置信号,将获取的全局配置信号确定为全局传感器配置信号。
需要说明的是,该电压波动值与全局配置信号之间的对应关系同样可以事先存储在该全局传感器配置单元66中。
参见图6,由于全局调节与监测模块5包括第二开关单元和全局电压传感器,且该第二开关单元的第二输入端与至少一个第二开关配置单元的输出端连接,因此,该第二开关配置单元可以将该第二开关配置信号输出至第二开关单元中。由于该至少一个第二开关配置单元输出的第二开关配置信号为相同的信号,因此,当该第二开关单元接收到该至少一个第二开关配合信号时,可以基于该至少一个第二开关配置信号中的任一个第二开关配置信号对至少一个第二晶体管进行导通或关断的操作,从而改变等效电阻的阻值,以对第二电压进行调节。
比如,当该第二晶体管为PMOS管,且当该第二开关单元接收到该第二开关配置信号时,该第二开关配置信号可以改变该至少一个PMOS管的栅极电压,控制该至少一个PMOS管的导通或者关断,从而改变该至少一个PMOS管的等效电阻的阻值,以对第二电压进行调节。
又由于该全局电压传感器的输入端与至少一个全局传感器配置单元的输出端连接,因此,该至少一个全局传感器配置单元中的任一个全局传感器配置单元可以将全局传感器配置信号输出至全局电压传感器中,当该全局电压传感器接收到该至少一个全局传感器配置信号时,由于该至少一个全局传感器配置单元输出的全局传感器配置信号为相同的信号,因此,该全局电压传感器可以基于该至少一个全局传感器配置信号中的任一个全局传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数,当该至少一个反向器和该至少一个存储单元的连接个数越多时,该全局电压传感器的电压监测准确度越大, 当该至少一个反相器和至少一个存储单元的连接个数越少时,该全局电压传感器的电压监测准确度越小,从而对该全局电压传感器的电压监测准确度进行调节,提高了局部电压传感器进行电压监测的准确度,进而使得全局电压传感器在发生工艺波动的情况下,能够正常的监测电压,也即是,该全局电压传感器可以正常的监测第二电压的具体电压值,从而不影响监测的准确性。
需要说明的是,全局电压传感器基于该全局传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数的操作可以参考相关技术,本发明实施例对此同样不做具体限定。
还需要说明的是,在本发明实施例中,该调压电路还可以包括温度传感器(Temperature sensor,主要监测芯片温度波动)和电压波动传感器(Voltage sensor,主要监测芯片内电压的波动),当然还可以包括其他元件,本发明实施例对此不做具体限定。
另外,在本发明实施例中,对温度传感器以及电压波动传感器进行配置时,同样可以为上述传感器的配置方式,本发明实施例对此不做具体限定。
在本发明实施例中,由于当接通外接电源VDD提供的供电电压时,该波动值生成模块可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和全局配置模块。当该波动范围标识为局部波动标识时,确定该集成电路内部产生了局部波动,此时,局部波动标识对应的局部配置模块可以获取第一开关配置信号和局部传感器配置信号,以通过该第一开关配置信号使调压电路对对应的第一开关单元的至少一个第一晶体管进行导通或关断的操作,改变该至少一个第一晶体管的等效电阻,从而对对应负载的第一电压进行调节,同时,通过该局部传感器配置信号调节该对应的局部电压传感器中至少一个反相器和至少一个存储单元的连接个数,从而对该局部电压传感器的电压监测准确度进行调节。当波动范围标识为全局波动标识时,确定该集成电路内部产生了全局波动,此时,全局调节与监测模块可以获取第二开关配置信号和全局传感器配置信号,以通过第二开关配置信号使调压电路对第二开关单元的至少一个第二晶体管进行导通或关断的操作,改变该至少一个第二晶体管的等效电阻,从而对该第二电压进行调节,同时,通过全局传感器配置信号调节该全局电压传感器中至少一个反相器和至少一个存储单元的连接个数,从而对该全局电压传感器的电压监测准确度进行调整。由于第一电压是输入至该集成电路内部各个负载的 电压,第二电压是该集成电路内的全局电压,因此,当产生局部波动时,可以对对应负载的第一电压进行调节,当产生全局波动时,可以对第二电压进行调节,也即是,可以根据不同的波动范围,对不同的电压进行调节,使电路调压具有针对性,提高了电压调节的可靠性和准确性,由于调节电压的可靠性和准确性提高,也提高了调节电压的效率。
图7是本发明实施例提供的一种电路调压方法的流程图,参见图7,该方法包括如下步骤。
步骤701:当接通该供电电压时,通过该至少一个负载调节与监测模块中的每个负载调节与监测模块对该供电电压进行分压处理后得到至少一个第一电压,将该至少一个第一电压中的每个第一电压输出至对应的负载和该波动值生成模块,并通过该全局调节与监测模块对该供电电压进行分压处理后得到该第二电压,并将该第二电压输出至波动值生成模块。
步骤702:基于该第一电压和该第二电压,通过该波动值生成模块生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和该全局配置模块,该波动范围标识包括全局波动标识或局部波动标识。
步骤703:当该波动范围标识为局部波动标识时,基于该电压波动值,通过该至少一个局部配置模块中的每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将该局部配置信号输出至该至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过对应的负载调节与监测模块对对应负载的第一电压进行调节。
步骤704:当该波动范围标识为全局波动标识时,基于该电压波动值,通过该全局配置模块从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将该全局配置信号输出至该全局调节与监测模块中,以通过该全局调节与监测模块对该第二电压进行调节。
在本发明实施例中,由于当接通供电电压时,波动值生成模块可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和全局配置模块。当该波动范围标识为局部波动标识时,确定该集成电路内部产生了局部波动,此时,局部波动标识对应的局部配置模块可以获取局部配置信号,并将该局部配置信号输 出至对应的负载调节与监测模块中,以通过对应的负载调节与监测模块对对应负载的第一电压进行调节。当波动范围标识为全局波动标识时,确定该集成电路内部产生了全局波动,此时,全局配置模块可以基于该电压波动值,获取全局配置信号,并将该全局配置信号输出至全局调节与监测模块中,以通过全局调节与监测模块对该第二电压进行调节。由于第一电压是输入至该集成电路内部各个负载的电压,第二电压是该集成电路内的全局电压,因此,当产生局部波动时,可以对对应负载的第一电压进行调节,当产生全局波动时,可以对第二电压进行调节,也即是,可以根据不同的波动范围,对不同的电压进行调节,使电路调压具有针对性,提高了电压调节的可靠性和准确性,同时由于调节电压的可靠性和准确性提高,进而也提高了调节电压的效率。
可选地,对至少一个负载调节与监测模块中的每个负载监测摸,该负载调节与监测模块包括第一开关单元和局部电压传感器;该全局调节与监测模块包括第二开关单元和全局电压传感器;
通过该至少一个负载调节与监测模块中的每个负载调节与监测模块对该供电电压进行分压处理后得到至少一个第一电压,将该至少一个第一电压中的每一个第一电压输出至对应的负载和该波动值生成模块,并通过该全局调节与监测模块对该供电电压进行分压处理后得到该第二电压,并将该第二电压输出至该波动值生成模块,包括:
通过该第一开关单元对该供电电压进行分压处理,得到该第一电压,将该第一电压输出至对应的负载,并通过该第二开关单元对该供电电压进行分压处理,得到该第二电压;
通过该局部电压传感器采集该第一电压,并将该第一电压输出至波动值生成模块,通过该全局电压传感器采集该第二电压,并将该第二电压输出至该波动值生成模块。
可选地,该波动值生成模块包括至少一个波动值生成子模块,该至少一个波动值生成子模块、该至少一个负载和该至少一个局部配置模块一一对应;对于该至少一个波动值生成子模块中的每个波动值生成子模块,该波动值生成子模块包括第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元;
基于该第一电压和该第二电压,通过该波动值生成模块生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至对应的局部配置模 块和该全局配置模块,包括:
通过该第一比较单元比较该第一电压和第一预设值,得到指示该第一电压和第一预设值之间的差值的局部电压差值,将该局部电压差值输出至该波动差值输出单元,并将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,输出该局部波动标识至该波动范围判断单元,
通过该第二比较单元比较该第二电压和第二预设值,得到指示该第二电压和第二预设值之间的差值的全局电压差值,并将该全局差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,输出该全局波动标识至该波动范围判断单元;
当通过该波动范围判断单元接收到该局部波动标识且没有接收到该全局波动标识时,将该局部波动标识确定为波动范围标识并输出至该波动差值输出单元;
当通过该波动范围判断单元接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至该波动差值输出单元;
基于该波动范围标识、该局部电压差值和该全局电压差值,通过该波动差值输出单元确定该电压波动值,将该电压波动值输出至对应的局部配置模块和该全局配置模块。
可选地,该波动值生成模块包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元,该至少一个第一比较单元、该至少一个波动差值输出单元和该至少一个负载一一对应;
基于该第一电压和该第二电压,通过该波动值生成模块生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至该至少一个局部配置模块和该全局配置模块,包括:
通过该至少一个第一比较单元中的每个第一比较单元比较输入到对应负载的第一电压和第一预设值,得到指示该第一电压和该第一预设值之间的差值的局部电压差值,将该局部电压差值输出至对应的波动差值输出单元,并将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,输出该局部波动标识至该波动范围判断单元,该局部波动标识中包括局部波动位置标记;
通过该第二比较单元比较该第二电压和第二预设值,得到指示该第二电压 和第二预设值之间的的差值的全局电压差值,将该全局电压差值输出至该至少一个波动差值输出单元,并将该全局差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,输出该全局波动标识至该波动范围判断单元;
当通过该波动范围判断单元接收到该局部波动标识且没有接收到该全局波动标识时,对于该至少一个局部波动标识中的每个局部波动标识,将该局部波动标识确定为波动范围标识并输出至该局部波动标识包括的局部波动位置标记所对应的波动差值输出单元;
当通过该波动范围判断单元接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至该至少一个波动差值输出单元;
基于该波动范围标识、该局部电压差值和该全局电压差值,通过该至少一个波动差值输出单元中的每个波动差值输出单元确定该电压波动值,将该电压波动值输出至该至少一个局部配置模块和该全局配置模块。
可选地,基于该波动范围标识、该局部电压差值和该全局电压差值,通过该至少一个波动差值输出单元中的每个波动差值输出单元确定该电压波动值,将该电压波动值输出至对应的局部配置模块和该全局配置模块,包括:
当该波动范围标识为局部范围波动标识时,将该局部电压差值确定为该电压波动值,通过该至少一个波动差值输出单元中的每个波动差值输出单元将该局部电压差值输出至对应的局部配置模块和该全局配置模块;
当该波动范围标识为全局范围波动标识时,将该全局电压差值确定为该电压波动值,通过该至少一个波动差值输出单元中的每个波动差值输出单元将该全局电压差值输出至对应的局部配置模块和该全局配置模块。
可选地,对于至少一个局部配置模块中的每个局部配置模块,该局部配置模块包括第一开关配置单元和局部传感器配置单元;
当该波动范围标识为局部波动标识时,基于该电压波动值,通过该至少一个局部配置模块中的每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将该局部配置信号输出至至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过对应的负载调节与监测模块对对应的负载的第一电压进行调节,包括:
当该波动范围标识为局部波动标识时,基于该电压波动值,通过该第一开关配置单元从电压波动值与局部配置信号之间的对应关系中,获取第一开关配 置信号,并将该第一开关配置信号输出至对应的第一开关单元中;
基于该第一开关配置信号,通过该第一开关单元控制该第一开关单元中的开关进行导通或关断,以对对应负载的第一电压进行调节;
当该波动范围标识为局部波动标识时,基于该电压波动值,通过该局部传感器配置单元从该电压波动值与局部配置信号之间的对应关系中,获取局部传感器配置信号,并将该局部传感器配置信号输出至对应的局部电压传感器中;
基于该局部传感器配置信号,通过该局部电压传感器控制该局部电压传感器包括的至少一个反相器组和至少一个存储单元的连接个数。
可选地,该全局配置模块包括第二开关配置单元和全局传感器配置单元;
当该波动范围标识为全局波动标识时,基于该电压波动值,通过该全局配置模块从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将该全局配置信号输出至该全局调节与监测模块中,以通过该全局调节与监测模块对该第二电压进行调节,包括:
当该波动范围标识为该全局波动标识时,基于该电压波动值,通过该第二开关配置单元从电压波动值与全局配置信号之间的对应关系中,获取第二开关配置信号,并将该第二开关配置信号输出至该第二开关单元中;
基于该第二开关配置信号,通过该第二开关单元控制该第二开关单元中的开关进行导通或关断,以对该第二电压进行调节;
当该波动范围标识为全局波动标识时,基于该电压波动值,通过该全局传感器配置单元从电压波动值与全局配置信号之间的对应关系中,获取全局传感器配置信号,并将该全局传感器配置信号输出至该全局电压传感器中;
基于该全局传感器配置信号,通过该全局电压传感器控制该全局电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
上述所有可选技术方案,均可按照任意结合形成本发明的可选实施例,本发明实施例对此不再一一赘述。
图8是本发明实施例提供的一种电路调压方法的流程图,参见图8,该方法应用于上述实施例提供的调压电路中,该方法包括如下步骤。
步骤801:当调压电路接通供电电压时,通过该至少一个负载调节与监测模块中的每个负载调节与监测模块对该供电电压进行分压处理后得到至少一个第一电压,将该至少一个第一电压中的每个第一电压输出至对应的负载和该 波动值生成模块,并通过该全局调节与监测模块对该供电电压进行分压处理后得到该第二电压,并将该第二电压输出至该波动值生成模块。
由于对至少一个负载调节与监测模块中的每个负载监测摸,该负载调节与监测模块包括第一开关单元和局部电压传感器。因此,通过该负载调节与监测模块对该外接电源提供的供电电压进行分压处理后得到第一电压,将该第一电压输出至对应的负载和波动值生成模块的操作可以为:通过该第一开关单元对该外接电源提供的供电电压进行分压处理,得到该第一电压,将该第一电压输出至对应的负载,通过该局部电压传感器采集该第一电压,并将该第一电压输出至波动值生成模块。
需要说明的是,该第一开关单元可以包括至少一个第一晶体管,且该至少一个第一晶体管中的每个晶体管通过并联的方式连接,形成多个并联线路。其中,单个并联线路可以由多个第一晶体管串联组成,也可以由一个第一晶体管组成,本发明实施例对此不做具体限定。
其中,由于当晶体管导通时会形成等效电阻,该等效电阻可以对外接电源提供的供电电压进行分压,而当该第一晶体管关断时,将形成一个断开的通道,供电电压无法经过该断开的通道,因此,当调压电路接收到该供电电压,且该第一开关单元中至少一个第一晶体管导通时,可以形成该导通的至少一个第一晶体管对应的等效电阻,该等效电阻可以分担一部分的电压,从而达到对该外接电源提供的供电电压进行分压处理的目的,得到第二电压。
同理,由于该全局调节与监测模块包括第二开关单元和全局电压传感器。因此,该调压电路通过该全局调节与监测模块对该外接电源提供的供电电压进行分压处理后得到该第二电压,并将该第二电压输出至该波动值生成模块的操作可以为:通过该第二开关单元对该供电电压进行分压处理,得到该第二电压;通过该全局电压传感器采集该第二电压,并将该第二电压输出至该波动值生成模块。
需要说明的是,该第二开关单元同样可以包括至少一个第二晶体管,且该至少一个第二晶体管中的每个晶体管通过并联的方式连接,形成多个并联线路。其中,单个并联线路可以由多个第二晶体管串联组成,也可以由一个第二晶体管组成,本发明实施例对此同样不做具体限定。
其中,当调压电路接收到该外接电源提供的供电电压,且该第二开关单元中至少一个第二晶体管导通时,可以形成该导通的至少一个第二晶体管对应的 等效电阻,该等效电阻可以分担一部分的电压,从而达到对该供电电压进行分压处理的目的,得到第二电压。
另外,该调压电路可以通过局部电压传感器将该第一电压进行数值编码得到第一电压的电压值的数字信号形式,同时,还可以通过全局电压传感器将该第二电压进行数值编码得到第二电压的电压值的数字信号形式。
还需要说明的是,调压电路可以通过局部电压传感器将该第一电压进行数值编码得到第一电压的电压值的数字信号形式的操作,以及通过全局电压传感器将该第二电压进行数值编码得到第二电压的电压值的数字信号形式的操作可以参考相关技术,本发明实施例对此不做具体限定。
需要说明的是,本发明实施例所涉及的第一晶体管和第二晶体管可以为NMOS管、PMOS管或者CMOS管,当然也可以为其他晶体管或等效开关,比如,Power gating,本发明实施例对此不做具体限定。
另外,该第一晶体管和第二晶体管可以是相同类型的晶体管也可以是不同类型的晶体管,本发明实施例同样对此不做具体限定。
进一步地,在第一次使用该调压电路时,对于该至少一个第一开关单元中每个第一开关单元,可以对该第一开关单元中至少一个第一晶体管的导通或关断个数进行初始配置,且对于至少一个局部电压传感器中的每个局部电压传感器,对该局部电压传感器中的至少一个反相器和至少一个存储单元的连接个数进行初始配置。同理,还可以对该第二开关单元中至少一个第二晶体管的导通或关断个数进行初始配置,且对该全局电压传感器中的至少一个反相器和至少一个存储单元的连接个数进行初始配置。
需要说明的是,在该调压电路对至少一个负载进行监测,也即是调压电路监测至少一个负载的工艺波动,且在初始配置之后,通常会对第一开关单元进行二次配置,也即是,通过改变第一开关单元中第一晶体管中所并联的多个晶体管所导通的个数。
其中,在对该第一开关单元进行配置过程中,为方便进行监测,通常会选择导通少量所并联的第一晶体管个数,从而使得外接电源提供的供电电压到第一电压之间的压降较大,当外接电源提供的供电电压一定时,该第一电压相对应也较大。因此,当第一电压较大时,工艺波动则越容易被量化和标定,方便工艺波动的检测。其中,第一开关单元中第一晶体管的具体导通个数可以根据实际实现情况所定,本发明实施例对此不做具体限定。
比如,当第一开关单元有十个PMOS晶体管进行并联时,往往会选择导通其中的一个或者两个。
另外,在对第一电压进行监测时,对第一开关单元配置的实现可以由局部配置单元读取指定预设值。该指定预设值为第一开关单元中各第一晶体管的导通或关断的个数,且指定预设值可以存储于存储单元中,本发明实施例对此不做具体限定。
同理,全局监测单元也采用此方法对第二开关单元进行初始化配置来进行工艺波动监测。
步骤802:调压电路通过该波动值生成模块接收该第一电压和该第二电压,基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和该全局配置模块,该波动范围标识包括全局波动标识或局部波动标识。
由于波动值生成模块包括至少一个波动值生成子模块,且至少一个波动值生成子模块、至少一个负载和至少一个局部配置模块一一对应,对于该至少一个波动值生成子模块中的每个波动值生成子模块,该波动值生成子模块包括第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元,因此,该调压电路可以通过该第一比较单元接收该第一电压,比较该第一电压和第一预设值,得到指示该第一电压和第一预设值之间的差值的局部电压差值,将该局部电压差值输出至该波动差值输出单元,并将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,将该局部波动标识输出至该波动范围判断单元;通过该第二比较单元接收该第二电压,比较该第二电压和第二预设值,得到指示该第二电压和第二预设值之间的差值的全局电压差值,并将该全局差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,将该全局波动标识输出至该波动范围判断单元。
当通过该波动范围判断单元接收到该局部波动标识且没有接收到该全局波动标识时,将该局部波动标识确定为波动范围标识并输出至该波动差值输出单元;当通过该波动范围判断单元接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至该波动差值输出单元;当通过该波动差值输出单元接收到该波动范围标识、该局部电压差值和该全局电压差值时,基于该波动范围标识、该局部电压差值和该全局电压差值,确定该电压波动值,将该电压波动值输出至对应的局部配置模块和该全局配置模块。
需要说明的是,第一预设值为第一电压的参考值,用于计算第一电压的波动幅度,且该第一预设值可以事先设置在该第一比较单元中,也可以由外部元件输入到该第一比较单元中,本发明实施例对此不做具体限定。
同理,第二预设值为第二电压的参考值,用于计算第二电压的波动幅度,且该第二预设值同样可以事先设置在该第二比较单元中,也可以由外部元件输入到该第二比较单元中,本发明实施例对此同样不做具体限定。
还需要说明的是,局部波动阈值用于判断集成电路当前是否发生局部波动,且该局部波动阈值可以事先设置在第一比较单元中,本发明实施例对此不做具体限定。
同理,全局波动阈值用于判断集成电路当前是否发生全局波动,且该全局波动阈值同样可以事先设置在第二比较单元中,本发明实施例对此不做具体限定。
还需要说明的是,由于该调压电路通过局部电压传感器将该第一电压进行数值编码的到第一电压的电压值的数字信号形式,因此,第一预设值、局部波动阈值和局部电压差值同样为数字信号的形式。同理,该调压电路通过全局电压传感器将该第二电压进行数值编码得到第二电压的电压值的数字信号形式,因此,第二预设值、全局波动阈值和全局电压差值同样为数字信号的形式。
需要说明的是,在本发明实施例中,该第一比较单元在得到局部电压差值时,无论是否输出局部波动标识,都可以将该局部电压差值输出至波动差值输出单元,还可以在只有输出局部波动标识的情况下,将该局部电压差值输出至波动差值输出单元,本发明实施例对此不做具体限定。
同理,该第二比较单元同样可以在得到全局电压差值时,无论是否输出全局波动标识,都可以将该全局电压差值输出至波动差值输出单元,还可以在只有输出全局波动标识的情况下,将该全局电压差值输出至波动差值输出单元,本发明实施例对此同样不做具体限定。
其中,当通过该波动差值输出单元接收到该波动范围标识、该局部电压差值和该全局电压差值,且该波动范围标识为局部范围波动标识时,通过该波动差值输出单元将该局部电压差值确定为该电压波动值,通过该波动差值输出单元将该局部电压差值输出至对应的局部配置模块和该全局配置模块;当该波动范围标识为全局范围波动标识时,通过该波动差值输出单元将该全局电压差值确定为该电压波动值,通过该波动差值输出单元将该全局电压差值输出至对应 的局部配置模块和该全局配置模块。
需要说明的是,由于调压电路通过该波动差值输出单元可能只接收到局部电压差值或者全局电压差值中的一个,因此,通过该波动差值输出单元将接收到的局部电压差值或全局电压差值确定为电压波动值,并将该电压波动值输出至对应的局部配置模块和全局配置模块。
可选地,由于调压电路包括的波动值生成模块可以包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元,且至少一个第一比较单元、至少一个波动差值输出单元和至少一个负载一一对应。因此,对于至少一个第一比较单元中的每个第一比较单元,调压电路可以通过第一比较单元比较输入到对应负载的第一电压和第一预设值,得到指示该第一电压和第一预设电压之间的差值的局部电压差值,将局部电压差值输出至对应的波动差值输出单元,并将该局部电压差值与局部波动阈值进行比较,当该局部电压差值大于或等于该局部波动阈值时,将该局部波动标识输出至波动范围判断单元,该局部波动标识中包括局部波动位置标记。
同时,通过该第二比较单元比较该第二电压和第二预设值,得到指示该第二电压和第二预设值之间的差值的全局电压差值,将该全局电压差值输出至该至少一个波动差值输出单元,并将该全局差值与全局波动阈值进行比较,当该全局电压差值大于或等于该全局波动阈值时,将该全局波动标识输出至该波动范围判断单元。
当通过该波动范围判断单元接收到该局部波动标识且没有接收到该全局波动标识时,对于该至少一个局部波动标识中的每个局部波动标识,将该局部波动标识确定为波动范围标识并输出至该局部波动标识包括的局部波动位置标记所对应的波动差值输出单元。当通过该波动范围判断单元接收到该全局波动标识时,将该全局波动标识确定为波动范围标识并输出至该至少一个波动差值输出单元。
另外,对于该至少一个波动差值输出单元中的每个波动差值输出单元,调压电路基于该波动范围标识、局部电压差值和全局电压差值,通过波动差值输出单元确定该电压波动值,将该电压波动值输出至该至少一个局部配置模块和该全局配置模块。
需要说明的是,局部波动位置标记用于标记发生局部波动的位置,且该局部波动位置标记、负载调节与监测模块、波动差值输出单元和局部配置模块一 一对应。
还需要说明的是,当该波动值生成模块中包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元时,该波动范围判断单元可以通过至少一个局部波动标识和一个全局波动标识进行波动范围的判断,从而提高了波动范围判断的准确性。
步骤803:当调压电路通过该至少一个局部配置模块中的每一个局部配置模块接收到该电压波动值和该波动范围标识且该波动范围标识为局部波动标识时,基于该电压波动值,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将该局部配置信号输出至对应的负载调节与监测模块中,以通过对应的负载调节与监测模块对对应负载的第一电压进行调节。
比如,当该第一晶体管为PMOS管,且当该第一开关单元接收到该第一开关配置信号时,该第一开关配置信号可以改变该至少一个PMOS管的栅极电压,控制该至少一个PMOS管的导通或者关断,从而改变该至少一个PMOS管的等效电阻的阻值,以对第一电压进行调节。
由于对于至少一个局部配置模块中的每个局部配置模块,该局部配置模块包括第一开关配置单元和局部传感器配置单元。因此,该当通过该局部配置模块接收到该电压波动值和该波动范围标识,且该波动范围标识为局部波动标识时,可以基于该电压波动值,从电压波动值与局部配置信号之间的对应关系中,获取第一开关配置信号,并将该第一开关配置信号输出至对应的第一开关单元中;当通过该第一开关单元接收到该第一开关配置信号时,基于该第一开关配置信号,控制该第一开关单元中的开关进行导通或关断,以对对应负载的第一电压进行调节。
同时,当通过该局部传感器配置单元接收到该电压波动值和该波动范围标识且该波动范围标识为局部波动标识时,基于该电压波动值,从该电压波动值与局部配置信号之间的对应关系中,获取局部传感器配置信号,并将该局部传感器配置信号输出至对应的局部电压传感器中;当通过该局部电压传感器接收到该局部传感器配置信号时,基于该局部传感器配置信号,控制该局部电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
需要说明的是,调压电路基于该局部传感器配置信号,控制该局部电压传感器包括的至少一个反相器和至少一个存储单元的连接个数,提高了局部电压 传感器进行电压监测的准确度,进而使得局部电压传感器在发生工艺波动的情况下,能够正常的监测电压,也即是,该局部电压传感器可以正常的监测第一电压的具体电压值,从而不影响监测的准确性。
其中,由于当调压电路通过该第一开关单元接收到该第一开关配合信号时,可以基于该第一开关配置信号对至少第一晶体管进行导通或关断的操作,从而改变等效电阻的阻值,以对第一电压进行调节。
同理,当调压电路通过该局部电压传感器接收到该局部传感器配置信号时,可以基于该局部传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数,当该至少一个反向器和该至少一个存储单元的连接个数越多时,该局部电压传感器的电压监测准确度越大,当该至少一个反相器和至少一个存储单元的连接个数越少时,该局部电压传感器的电压监测准确度越小,从而提高了该局部电压传感器进行电压监测的准确度。
需要说明的是,局部电压传感器基于该局部传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数的操作可以参考相关技术,本发明实施例对此不做具体限定。
步骤804:当调压电路通过该全局配置模块接收到该电压波动值和该波动范围标识且该波动范围标识为全局波动标识时,基于该电压波动值,从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将该全局配置信号输出至该全局调节与监测模块中,以通过该全局调节与监测模块对该第二电压进行调节。
由于该全局配置模块包括第二开关配置单元和全局传感器配置单元,因此,当通过该全局配置模块接收到该电压波动值和该波动范围标识且该波动范围标识为全局波动标识时,可以基于该电压波动值,从电压波动值与全局配置信号之间的对应关系中,获取第二开关配置信号,并将该第二开关配置信号输出至该第二开关单元中;当通过该第二开关单元接收到该第二开关配置信号时,基于该第二开关配置信号,控制该第二开关单元中的开关进行导通或关断,以对该第二电压进行调节。
同时,当通过该全局传感器配置单元接收到该电压波动值和该波动范围标识且该波动范围标识为全局波动标识时,基于该电压波动值,从电压波动值与全局配置信号之间的对应关系中,获取全局传感器配置信号,并将该全局传感器配置信号输出至该全局电压传感器中;当通过该全局电压传感器接收到该全 局传感器配置信号时,基于该全局传感器配置信号,控制该全局电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
需要说明的是,调压电路基于该全局传感器配置信号,控制该全局电压传感器包括的至少一个反相器和至少一个存储单元的连接个数,提高了全局电压传感器进行电压监测的准确度,进而使得全局电压传感器在发生工艺波动的情况下,能够正常的监测电压,也即是,该全局电压传感器可以正常的监测第一电压的具体电压值,从而不影响监测的准确性。
由于该调压电路通过该至少一个第二开关配置单元输出的第二开关配置信号为相同的信号,因此,当该第二开关单元接收到该至少一个第二开关配合信号时,可以基于该至少一个第二开关配置信号中的任一个第二开关配置信号对至少一个第二晶体管进行导通或关断的操作,从而改变等效电阻的阻值,以对第二电压进行调节。
比如,当该第二晶体管为PMOS管,且当该第二开关单元接收到该第二开关配置信号时,该第二开关配置信号可以改变该至少一个PMOS管的栅极电压,控制该至少一个PMOS管的导通或者关断,从而改变该至少一个PMOS管的等效电阻的阻值,以对第二电压进行调节。
同理,由于该调压电路通过至少一个全局配置单元输出的全局传感器配置信号为相同的信号,因此,当该全局电压传感器接收到该至少一个全局传感器配置信号时,该全局电压传感器可以基于该至少一个全局传感器配置信号中的任一个全局传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数,当该至少一个反向器和该至少一个存储单元的连接个数越多时,该全局电压传感器的电压监测准确度越大,当该至少一个反相器和至少一个存储单元的连接个数越少时,该全局电压传感器的电压监测准确度越小,从而提高该全局电压传感器进行电压监测的准确度。
需要说明的是,调压电路通过全局电压传感器基于该全局传感器配置信号,调节至少一个反相器和至少一个存储单元的连接个数的操作可以参考相关技术,本发明实施例对此同样不做具体限定。
还需要说明的是,由于在本发明实施例中,该调压电路还可以包括温度传感器和电压波动传感器。上述对通过负载调节与监测模块和全局调节与监测模块进行电路调压的方法同样可以应用到该温度传感器和电压波动传感器中。也即是,在该调压电路中同样可以包括对应于温度传感器的温度配置模块和对应 于电压波动传感器的电压波动配置模块,该温度配置模块可以接收波动范围标识和温度波动差值,并基于该波动范围标识和温度电压波动差值对获取温度配置信号,并将该温度配置信号输入至温度传感器,以对该温度传感器进行配置。同理,该电压波动配置模块可以接收波动范围标识和电压波动差值,并基于该波动范围标识和电压波动差值获取电压波动配置信号,并将该电压波动配置信号输入至电压波动传感器,以对该电压波动传感器进行配置,本发明实施例对此不做具体限定。
另外,将上述对通过负载调节与监测模块和全局调节与监测模块进行电路调压的方法应用到该温度传感器和电压波动传感器中后,当该集成电路中发生工艺之外的波动时,可以使温度传感器和电压波动传感器不会受到该工艺波动的影响,或者说受到工艺波动的影响最小。
在本发明实施例中,由于当接通供电电压时,该波动值生成模块可以基于该第一电压和该第二电压,生成电压波动值和波动范围标识,并将该电压波动值和该波动范围标识输出至至少一个局部配置模块和全局配置模块。当该波动范围标识为局部波动标识时,确定该集成电路内部产生了局部波动,此时,局部波动标识对应的局部配置模块可以获取第一开关配置信号和局部传感器配置信号,以通过该第一开关配置信号使调压电路对应的第一开关单元的至少一个第一晶体管进行导通或关断的操作,改变该至少一个第一晶体管的等效电阻,从而对对应负载的第一电压进行调节,同时,通过该局部传感器配置信号调节该对应的局部电压传感器中至少一个反相器和至少一个存储单元的连接个数,从而对该局部电压传感器的电压监测准确度进行调节。当波动范围标识为全局波动标识时,确定该集成电路内部产生了全局波动,此时,全局调节与监测模块可以获取第二开关配置信号和全局传感器配置信号,以通过第二开关配置信号使调压电路对第二开关单元的至少一个第二晶体管进行导通或关断的操作,改变该至少一个第二晶体管的等效电阻,从而对该第二电压进行调节,同时,通过全局传感器配置信号调节该全局电压传感器中至少一个反相器和至少一个存储单元的连接个数,从而对该全局电压传感器的电压监测准确度进行调节。由于第一电压是输入至该集成电路内部各个负载的电压,第二电压是该集成电路内的全局电压,因此,当产生局部波动时,可以对对应负载的第一电压进行调节,当产生全局波动时,可以对第二电压进行调节,也即是,可以根据不同的波动范围,对不同的电压进行调节,使电路调压具有针对性,提高了 电压调节的可靠性和准确性,由于调节电压的可靠性和准确性提高,也提高了调节电压的效率。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种调压电路,其特征在于,所述调压电路包括至少一个负载调节与监测模块、至少一个负载、波动值生成模块、至少一个局部配置模块、全局调节与监测模块和全局配置模块,所述至少一个负载调节与监测模块、所述至少一个负载和所述至少一个局部配置模块一一对应;
    所述至少一个负载调节与监测模块中的每个负载调节与监测模块接收供电电压,并生成与所述供电电压成比例的至少一个第一电压,将所述至少一个第一电压中的每个第一电压输出至对应的负载和所述波动值生成模块;
    所述全局调节与监测模块接收所述供电电压,对所述供电电压进行分压处理后得到第二电压,将所述第二电压输出至所述波动值生成模块;
    所述波动值生成模块基于所述第一电压和所述第二电压,生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,所述波动范围标识包括全局波动标识或局部波动标识;
    当所述波动范围标识为局部波动标识时,所述至少一个局部配置模块中的每个局部配置模块基于所述电压波动值,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应负载的第一电压进行调节;
    当所述波动范围标识为全局波动标识时,所述全局配置模块基于所述电压波动值,从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将所述全局配置信号输出至所述全局调节与监测模块中,以通过所述全局调节与监测模块对所述第二电压进行调节。
  2. 如权利要求1所述的调压电路,其特征在于,对于所述至少一个负载调节与监测模块中的每个负载调节与监测模块,所述负载调节与监测模块包括第一开关单元和局部电压传感器;
    所述第一开关单元接收所述供电电压,对所述供电电压进行分压处理后得到所述第一电压,将所述第一电压输出至对应的负载,以对所述负载进行供电;
    所述局部电压传感器采集所述第一电压,并将所述第一电压输出至所述波 动值生成模块。
  3. 如权利要求1所述的调压电路,其特征在于,所述全局调节与监测模块包括第二开关单元和全局电压传感器;
    所述第二开关单元接收所述供电电压,对所述供电电压进行分压处理后得到所述第二电压;
    所述全局电压传感器采集所述第二电压,并将所述第二电压输出至所述波动值生成模块。
  4. 如权利要求1所述的调压电路,其特征在于,所述波动值生成模块包括至少一个波动值生成子模块,所述至少一个波动值生成子模块、所述至少一个负载调节与监测模块、所述至少一个负载和所述至少一个局部配置模块一一对应;
    对于所述至少一个波动值生成子模块中的每个波动值生成子模块,所述波动值生成子模块包括:第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元;
    所述第一比较单元比较所述第一电压和第一预设值,得到指示所述第一电压与所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至所述波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元;
    所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和所述第二预设值之间的差值的全局电压差值,将所述全局电压差值输出至所述波动差值输出单元,并将所述全局电压差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出所述全局波动标识至所述波动范围判断单元;
    当所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,将所述局部波动标识确定为波动范围标识并输出至所述波动差值输出单元,当所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述波动差值输出单元;
    当所述波动范围标识为所述局部波动标识时,所述波动差值输出单元将所 述局部电压差值确定为所述电压波动值,并将所述电压波动值输出至对应的局部配置模块和所述全局配置模块;
    当所述波动范围标识为所述全局波动标识时,所述波动差值输出单元将所述全局电压差值确定为所述电压波动值,并将所述电压波动值输出至对应的局部配置模块和所述全局配置模块。
  5. 如权利要求1所述的调压电路,其特征在于,对于所述至少一个局部配置模块中的每个局部配置模块,所述局部配置模块包括第一开关配置单元和局部传感器配置单元;所述电压波动值包括局部电压差值或全局电压差值,所述局部配置信号包括第一开关配置信号和局部传感器配置信号;
    当所述波动范围标识为所述局部波动标识且所述电压波动值为所述局部电压差值时,所述第一开关配置单元基于所述局部电压差值,从所述局部配置信号中获取所述第一开关配置信号,并将所述第一开关配置信号输出至对应的负载调节与监测模块;
    所述局部传感器配置单元基于所述局部电压差值,获取所述局部传感器配置信号,并将所述局部传感器配置信号输出至对应的负载调节与监测模块。
  6. 如权利要求1所述的调压电路,其特征在于,所述全局配置模块包括第二开关配置单元和全局传感器配置单元;
    当所述波动范围标识为所述全局波动标识且所述电压波动值为全局电压差值时,所述第二开关配置单元基于所述全局电压差值,获取所述第二开关配置信号,并将所述第二开关配置信号输出至所述全局调节与监测模块;
    所述全局传感器配置单元基于所述全局电压差值,获取所述全局传感器配置信号,并将所述全局传感器配置信号输出至所述全局调节与监测模块。
  7. 一种电路调压方法,应用于上述权利要求1-6任一权利要求所述的调压电路中,其特征在于,所述方法包括:
    当接通所述供电电压时,通过所述至少一个负载调节与监测模块中的每个负载调节与监测模块对所述供电电压进行分压处理后得到至少一个第一电压,将所述至少一个第一电压中的每个第一电压输出至对应的负载和所述波动值生成模块,并通过所述全局调节与监测模块对所述供电电压进行分压处理后得到 所述第二电压,并将所述第二电压输出至所述波动值生成模块;
    基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,所述波动范围标识包括全局波动标识或局部波动标识;
    当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述至少一个局部配置模块中的每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应负载的第一电压进行调节;
    当所述波动范围标识为全局波动标识时,基于所述电压波动值,通过所述全局配置模块从存储的电压波动值与全局配置信号之间的对应关系中获取对应的全局配置信号,并将所述全局配置信号输出至所述全局调节与监测模块中,以通过所述全局调节与监测模块对所述第二电压进行调节。
  8. 如权利要求7所述的方法,其特征在于,对至少一个负载调节与监测模块中的每个负载监测摸,所述负载调节与监测模块包括第一开关单元和局部电压传感器;所述全局调节与监测模块包括第二开关单元和全局电压传感器;
    所述通过所述至少一个负载调节与监测模块中的每个负载调节与监测模块对所述供电电压进行分压处理后得到至少一个第一电压,将所述至少一个第一电压中的每一个第一电压输出至对应的负载和所述波动值生成模块,并通过所述全局调节与监测模块对所述供电电压进行分压处理后得到所述第二电压,并将所述第二电压输出至所述波动值生成模块,包括:
    通过所述第一开关单元对所述供电电压进行分压处理,得到所述第一电压,将所述第一电压输出至对应的负载,并通过所述第二开关单元对所述供电电压进行分压处理,得到所述第二电压;
    通过所述局部电压传感器采集所述第一电压,并将所述第一电压输出至所述波动值生成模块,通过所述全局电压传感器采集所述第二电压,并将所述第二电压输出至所述波动值生成模块。
  9. 如权利要求7所述的方法,其特征在于,所述波动值生成模块包括至少 一个波动值生成子模块,所述至少一个波动值生成子模块、所述至少一个负载调节与监测模块、所述至少一个负载和所述至少一个局部配置模块一一对应;对于所述至少一个波动值生成子模块中的每个波动值生成子模块,所述波动值生成子模块包括第一比较单元、第二比较单元、波动范围判断单元和波动差值输出单元;
    所述基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至对应的局部配置模块和所述全局配置模块,包括:
    通过所述第一比较单元比较所述第一电压和第一预设值,得到指示所述第一电压和所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至所述波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元;
    通过所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二电压和所述第二预设值之间的差值的全局电压差值,并将所述全局差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出所述全局波动标识至所述波动范围判断单元;
    当通过所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,将所述局部波动标识确定为波动范围标识并输出至所述波动差值输出单元;
    当通过所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述波动差值输出单元;
    基于所述波动范围标识、所述局部电压差值和所述全局电压差值,通过所述波动差值输出单元确定所述电压波动值,将所述电压波动值输出至对应的局部配置模块和所述全局配置模块。
  10. 如权利要求7所述的方法,其特征在于,所述波动值生成模块包括至少一个第一比较单元、第二比较单元、波动范围判断单元和至少一个波动差值输出单元,所述至少一个第一比较单元、所述至少一个负载调节与监测模块、所述至少一个波动差值输出单元和所述至少一个负载一一对应;
    所述基于所述第一电压和所述第二电压,通过所述波动值生成模块生成电 压波动值和波动范围标识,并将所述电压波动值和所述波动范围标识输出至所述至少一个局部配置模块和所述全局配置模块,包括:
    通过所述至少一个第一比较单元中的每个第一比较单元比较输入到对应负载的第一电压和第一预设值,得到指示所述第一电压和所述第一预设值之间的差值的局部电压差值,将所述局部电压差值输出至对应的波动差值输出单元,并将所述局部电压差值与局部波动阈值进行比较,当所述局部电压差值大于或等于所述局部波动阈值时,输出所述局部波动标识至所述波动范围判断单元,所述局部波动标识中包括局部波动位置标记;
    通过所述第二比较单元比较所述第二电压和第二预设值,得到指示所述第二与所述第二预设值之间的差值的全局电压差值,将所述全局电压差值输出至所述至少一个波动差值输出单元,并将所述全局差值与全局波动阈值进行比较,当所述全局电压差值大于或等于所述全局波动阈值时,输出所述全局波动标识至所述波动范围判断单元;
    当通过所述波动范围判断单元接收到所述局部波动标识且没有接收到所述全局波动标识时,对于所述至少一个局部波动标识中的每个局部波动标识,将所述局部波动标识确定为波动范围标识并输出至所述局部波动标识包括的局部波动位置标记所对应的波动差值输出单元;
    当通过所述波动范围判断单元接收到所述全局波动标识时,将所述全局波动标识确定为波动范围标识并输出至所述至少一个波动差值输出单元;
    基于所述波动范围标识、所述局部电压差值和所述全局电压差值,通过所述至少一个波动差值输出单元中的每个波动差值输出单元确定所述电压波动值,将所述电压波动值输出至所述至少一个局部配置模块和所述全局配置模块。
  11. 如权利要求7-10任一权利要求所述的方法,其特征在于,对于至少一个局部配置模块中的每个局部配置模块,所述局部配置模块包括第一开关配置单元和局部传感器配置单元;
    所述当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述至少一个局部配置模块中的每个局部配置模块,从存储的电压波动值与局部配置信号之间的对应关系中获取对应的局部配置信号,并将所述局部配置信号输出至所述至少一个负载调节与监测模块中对应的负载调节与监测模块中,以通过所述对应的负载调节与监测模块对对应的负载的第一电压进行调节,包 括:
    当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述第一开关配置单元从所述电压波动值与局部配置信号之间的对应关系中,获取第一开关配置信号,并将所述第一开关配置信号输出至对应的第一开关单元中;
    基于所述第一开关配置信号,通过所述第一开关单元控制所述第一开关单元中的开关进行导通或关断,以对对应负载的第一电压进行调节;
    当所述波动范围标识为局部波动标识时,基于所述电压波动值,通过所述局部传感器配置单元从所述电压波动值与局部配置信号之间的对应关系中,获取局部传感器配置信号,并将所述局部传感器配置信号输出至对应的局部电压传感器中;
    基于所述局部传感器配置信号,通过所述局部电压传感器控制所述局部电压传感器包括的至少一个反相器和至少一个存储单元的连接个数。
PCT/CN2016/091705 2016-07-26 2016-07-26 调压电路及电路调压方法 WO2018018411A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680060966.1A CN108139763B (zh) 2016-07-26 2016-07-26 调压电路及电路调压方法
PCT/CN2016/091705 WO2018018411A1 (zh) 2016-07-26 2016-07-26 调压电路及电路调压方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091705 WO2018018411A1 (zh) 2016-07-26 2016-07-26 调压电路及电路调压方法

Publications (1)

Publication Number Publication Date
WO2018018411A1 true WO2018018411A1 (zh) 2018-02-01

Family

ID=61015568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091705 WO2018018411A1 (zh) 2016-07-26 2016-07-26 调压电路及电路调压方法

Country Status (2)

Country Link
CN (1) CN108139763B (zh)
WO (1) WO2018018411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485503A (zh) * 2021-07-03 2021-10-08 南京博兰得电子科技有限公司 自动校准输出值的电源及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782453B (zh) * 2020-12-29 2021-11-26 广东高云半导体科技股份有限公司 一种电压传感器、芯片和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042930A (zh) * 2006-03-24 2007-09-26 富士通株式会社 电源单元的控制电路、电源单元及其控制方法
CN101145050A (zh) * 2007-07-30 2008-03-19 扬州大学 纳米加工专用程控电源系统
CN101697422A (zh) * 2009-10-23 2010-04-21 湖南大学 微网多微源逆变器环流及电压波动主从控制方法
CN102411395A (zh) * 2011-08-08 2012-04-11 东南大学 一种基于片上监测和电压预测的动态电压调节系统
US20130293276A1 (en) * 2012-05-01 2013-11-07 Marvell Israel (M.I.S.L) Ltd. Avs master slave
CN105027210A (zh) * 2013-03-15 2015-11-04 高通股份有限公司 电压调节器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042930A (zh) * 2006-03-24 2007-09-26 富士通株式会社 电源单元的控制电路、电源单元及其控制方法
CN101145050A (zh) * 2007-07-30 2008-03-19 扬州大学 纳米加工专用程控电源系统
CN101697422A (zh) * 2009-10-23 2010-04-21 湖南大学 微网多微源逆变器环流及电压波动主从控制方法
CN102411395A (zh) * 2011-08-08 2012-04-11 东南大学 一种基于片上监测和电压预测的动态电压调节系统
US20130293276A1 (en) * 2012-05-01 2013-11-07 Marvell Israel (M.I.S.L) Ltd. Avs master slave
CN105027210A (zh) * 2013-03-15 2015-11-04 高通股份有限公司 电压调节器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485503A (zh) * 2021-07-03 2021-10-08 南京博兰得电子科技有限公司 自动校准输出值的电源及方法

Also Published As

Publication number Publication date
CN108139763A (zh) 2018-06-08
CN108139763B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
US7084695B2 (en) Method and apparatus for low voltage temperature sensing
JP4406405B2 (ja) 温度感知システム
US8061895B2 (en) Semiconductor device
US8525549B1 (en) Physical unclonable function cell and array
US7205682B2 (en) Internal power supply circuit
US20110095811A1 (en) Substrate bias control circuit for system on chip
US10613566B2 (en) Real-time slope control apparatus for voltage regulator and operating method thereof
KR101771725B1 (ko) 볼티지 레귤레이터
CN107024294B (zh) 一种多通道芯片温度测量电路及方法
WO2017020851A1 (en) Apparatus and scheme for io-pin-less calibration or trimming of on-chip regulators
JP5186925B2 (ja) 半導体装置及びその製造方法
US20220350360A1 (en) Piecewise Correction of Errors Over Temperature without Using On-Chip Temperature Sensor/Comparators
WO2018018411A1 (zh) 调压电路及电路调压方法
CN110907807B (zh) 芯片电路功耗测量电路及方法、芯片
CN109686390B (zh) 差分电压发生器
US20060164116A1 (en) Internal reference voltage generation for integrated circuit testing
US10101761B2 (en) Semiconductor device
US20070236268A1 (en) Threshold personalization testmode
US10788518B2 (en) Detection circuit and switch module using the same
JP4838596B2 (ja) 定電流回路
WO2017166040A1 (zh) 调压电路及电路调压方法
TWI567372B (zh) 溫度偵測電路
KR101664346B1 (ko) 전압 스큐를 조정하는 비휘발성 메모리 장치 및 그의 제어 방법
KR20030032680A (ko) 반도체 메모리 장치의 고전압 검출 회로
Mansilla et al. Power solution for DDR memory in space applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909992

Country of ref document: EP

Kind code of ref document: A1