WO2018016807A1 - 상향링크 전송을 위한 방법 및 기기 - Google Patents

상향링크 전송을 위한 방법 및 기기 Download PDF

Info

Publication number
WO2018016807A1
WO2018016807A1 PCT/KR2017/007587 KR2017007587W WO2018016807A1 WO 2018016807 A1 WO2018016807 A1 WO 2018016807A1 KR 2017007587 W KR2017007587 W KR 2017007587W WO 2018016807 A1 WO2018016807 A1 WO 2018016807A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
transmission
sync subframe
uplink
subframe
Prior art date
Application number
PCT/KR2017/007587
Other languages
English (en)
French (fr)
Inventor
안준기
김기준
김재형
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/318,124 priority Critical patent/US10827447B2/en
Priority to EP17831280.7A priority patent/EP3490314B1/en
Priority to CN201780044442.8A priority patent/CN109479250B/zh
Publication of WO2018016807A1 publication Critical patent/WO2018016807A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for uplink transmission and a device using the same in a wireless communication system.
  • next generation wireless communication systems are required to support various user environments and larger communication capacities.
  • Major issues that are being considered in next-generation systems include massive machine type communications (MTC), which provides a variety of services anytime, anywhere by connecting multiple devices, and URLLC (Ultra-Reliable and Low-Latency Communications) considering reliability and latency-sensitive services admit.
  • MTC massive machine type communications
  • URLLC Ultra-Reliable and Low-Latency Communications
  • a specific device may attempt to connect in a larger coverage than that of the base station. Since this device can operate without receiving transmission timing control, uplink transmission can cause serious interference to other devices.
  • the present invention provides a method for uplink transmission and a device using the same in a wireless communication system.
  • a method for uplink transmission in a wireless communication system includes determining, by a wireless device, an uplink transmission group based on a difference between a downlink reception timing and an uplink transmission timing, wherein the wireless device transmits a first uplink transmission Transmitting an uplink signal in a non-sync subframe or a sync subframe if belonging to a group; transmitting an uplink signal in only the non-sync subframe when the wireless device belongs to a second uplink transmission group It includes.
  • the sync subframe includes a plurality of first Orthogonal Frequency Division Multiplexing (OFDM) symbols, and the non-sync subframe includes a plurality of second OFDM symbols, wherein a cyclic prefix (CP) of the second OFDM symbol is a first The length is longer than the CP of the OFDM symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a device for uplink transmission in a wireless communication system includes a transceiver for transmitting and receiving wireless signals and a processor coupled to the transceiver.
  • the processor determines an uplink transmission group based on a difference between a downlink reception timing and an uplink transmission timing.
  • the processor transmits an uplink signal in a non-sync subframe or a sync subframe. If belonging to the second uplink transmission group, the uplink signal is transmitted only in the non-sync subframe.
  • the sync subframe includes a plurality of first Orthogonal Frequency Division Multiplexing (OFDM) symbols, and the non-sync subframe includes a plurality of second OFDM symbols, wherein a cyclic prefix (CP) of the second OFDM symbol is a first The length is longer than the CP of the OFDM symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 shows a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 3 shows a UL transmission according to embodiments of the present invention.
  • 5 shows UL transmission according to another embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • FIG. 1 shows a wireless communication system to which an embodiment of the present invention is applied.
  • a plurality of transmission / reception points (TRP) 101, 102, 103 are arranged.
  • the wireless device 110 receives a data transmission / reception service from at least one of the plurality of TRPs 101, 102, and 103.
  • the wireless device 110 may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), and a personal digital assistant (PDA). , Wireless modem, handheld device, or other terms.
  • the wireless device 110 may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • TRP provides data transmission / reception services for wireless devices in its coverage.
  • the plurality of TRPs may be connected to the same base station or different base stations.
  • the TRP may be the base station itself or may be a remote base station such as a relay. Or, the TRP may be a sector / beam operated by a base station.
  • the TRP may be a cell operated by a base station. Many TRPs are densely packed while covering a small area, increasing overall data transmission and reception efficiency.
  • LTE long term evolution
  • LTE-A LTE term-advanced
  • TS Technical Specification
  • the subframe is a time unit in which the downlink channel and the uplink channel are scheduled.
  • the subframe includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols, and a time when one subframe is transmitted is called one transmission time interval (TTI).
  • OFDM Orthogonal Frequency Division Multiplexing
  • TTI transmission time interval
  • One subframe may include 14 OFDM symbols, but this is only an example.
  • the OFDM symbol is merely for representing one symbol period in the time domain, and is not limited to the multiple access scheme or the name.
  • the OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • the subframe includes 4 OFDM symbols, but this is only an example.
  • One OFDM symbol includes an FFT window obtained by performing a cyclic prefix (CP) and fast Fourier transform (FFT).
  • CP cyclic prefix
  • FFT fast Fourier transform
  • the UL (uplink) transmission timing of a wireless device connected to each TRP is controlled to be received within a CP from a TRP reception point of view. Even if there is no special timing control, TRP coverage can be designed to be received within CP only with UL transmission timing based on DL (downlink) reception timing, so that the UL transmissions of different radios can be operated without interfering with each other. .
  • a wireless device may need to try to connect at greater coverage than basic TRP coverage or operate without timing control.
  • the maximum reception time difference between wireless devices belonging to group 1 from a TRP perspective is called Pd_max1, and the maximum reception time difference between wireless devices belonging to group 2 is referred to as Pd_max2.
  • Pd_max1 The maximum reception time difference between wireless devices belonging to group 1 from a TRP perspective
  • Pd_max2 the maximum reception time difference between wireless devices belonging to group 2
  • the corresponding UL signal may act as a large interference because the orthogonality with the signal transmitted by other wireless devices is broken.
  • hatched portions of group 2 transmissions indicate interference in the received signal of group 1.
  • the wireless device may determine the UL transmission group according to its own timing alignment command (TAC).
  • TAC timing alignment command
  • the wireless device may determine the UL transmission group based on the difference between the DL reception timing and the UL transmission timing. If the difference between the DL reception timing and the UL transmission timing is greater than a specific value, it may be said to belong to group 2 that may escape the CP.
  • the specific value may be the same as a CP of a sync frame described later. Alternatively, the specific value may be given by the base station.
  • the base station may inform the information about the UL transmission group to which the wireless device belongs.
  • the base station may inform whether the wireless device belongs to group 1 or group 2.
  • FIG. 3 shows a UL transmission according to embodiments of the present invention.
  • the subframe is divided into a synchronized subframe having a first CP length and an unsynchronized subframe having a second CP length.
  • the second CP length is longer than the first CP length, which is called an extended cyclic prefix (ECP).
  • ECP extended cyclic prefix
  • a wireless device belonging to group 1 transmits a UL signal in either the sync subframe or the non-sync subframe, but the wireless device belonging to group 2 transmits the UL signal only in the non-sync subframe.
  • a wireless device belonging to group 1 may also attempt transmission only in a non-sync subframe for a transmission having a large uncertainty in reception timing according to a transmission type.
  • subframe n-1 is a sync subframe
  • subframe n is a non-sync subframe
  • subframe n + 1 is a sync subframe. If the first part of the sync subframe n + 1 subsequent to the non-sync subframe n overlaps with the last part of the sync frame n, and the overlapping part exceeds the first CP of the sync subframe n + 1, it may act as an interference. . In order to prevent this, the first OFDM symbol of the sync subframe n + 1 may be empty without using for UL transmission.
  • the operation may be restricted in the non-sync subframe n as follows.
  • Method 1-1 In the non-sync subframe, at least one last OFDM symbol is not used for UL transmission. In the non-sync subframe that precedes the sync subframe, interference in the sync subframe can be avoided by not expecting UL transmission in at least one last OFDM symbol. Alternatively, UL transmission may not be expected in at least one last OFDM symbol in all non-sync subframes. Sets the transmission timing prior to transmission in the sync subframe for transmission in the non-sync subframe, and expects UL transmission in at least one first OFDM symbol in all non-sync subframes or in the non-sync subframe immediately after the sync subframe. By not doing so, a similar effect can be obtained.
  • Method 1-3 In the non-sync subframe, a portion of the last OFDM symbol is not used for UL transmission, and a CP corresponding to an unused portion is not used for transmission. In the method 1-2, the portion of the last OFDM symbol is not used for transmission, but all CPs are used for UL transmission, and thus the characteristics of the CP are lost. In the last OFDM symbol of the non-sync subframe, the portion that can cross the CP of the subsequent sync frame is not used for the UL transmission, and the CP corresponding to the unused portion is not used for the UL transmission, thereby avoiding interference on the sync subframe. Can be.
  • the CP and the portion of the last OFDM symbol in the non-sync subframe are not used for UL transmission.
  • the method 1-3 by removing a portion of the CP of the OFDM symbol from the transmission or using a small transmission power, the level of change in the transmission power of the device within one OFDM symbol is large, there may be a difficulty in implementing radio frequency (RF) . Therefore, the complexity of implementation can be reduced by not using the entire CP and the portion beyond the sync subframe of the last OFDM symbol for the UL transmission.
  • the length of the unused portion of the last OFDM symbol may be longer than the CP length of the sync subframe.
  • the length of the unused portion of the last OFDM symbol may be equal to the maximum reception delay of the device minus the CP length of the sync subframe.
  • the length of the unused portion of the last OFDM symbol may be equal to the maximum reception delay length.
  • the length of the non-sync subframe is shorter than the length of the sync subframe, and a guard time can be defined between the non-sync subframe and the subsequent sync subframe.
  • the guard time may be defined based on or equal to the difference between the CP length of the non-sync subframe and the CP length of the sync subframe.
  • 5 shows UL transmission according to another embodiment of the present invention.
  • the radio belonging to group 2 does not transmit the first part and the last part including the CP in all OFDM symbols.
  • a wireless device having a large uncertainty in reception timing may use only a portion of an OFDM symbol for UL transmission in all OFDM symbols as in the schemes 1-4.
  • the length of the last unused portion of each OFDM symbol may be longer than the CP length.
  • the length of the last unused portion of each OFDM symbol may be equal to the maximum reception delay of the device minus the CP length.
  • the length of the last unused portion of each OFDM symbol may be equal to the maximum reception delay length.
  • a wireless device attempting initial access to a specific TRP or attempting to switch access (ie, handover) from a source TRP to a target TRP may use a non-sync subframe for uplink transmission as shown in the embodiment of FIG. 3.
  • the wireless device may use a shortened OFDM symbol during uplink transmission.
  • a wireless device operating before or without TAC may use a non-sync subframe for uplink transmission as shown in the embodiment of FIG. 3.
  • the wireless device may use a shortened OFDM symbol during uplink transmission.
  • FIG. 6 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the memory 52 is connected to the processor 51 and stores various instructions executed by the processor 51.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 51. When the above-described embodiment is implemented as software instructions, the instructions may be stored in the memory 52 and executed by the processor 51 to perform the above-described operations.
  • Base station 60 includes a processor 61, a memory 62, and a transceiver 63.
  • the memory 62 is connected to the processor 61 and stores various instructions executed by the processor 61.
  • the transceiver 63 is connected to the processor 61 to transmit and / or receive a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the TRP may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 상향링크 전송을 위한 방법 및 기기가 제공된다. 상기 기기는 하향링크 수신 타이밍과 상향링크 전송 타이밍의 차이를 기반으로 상향링크 전송 그룹을 결정하고, 결정된 상향링크 전송 그룹에 따라 상향링크 신호를 전송한다.

Description

상향링크 전송을 위한 방법 및 기기
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 전송을 위한 방법 및 이를 이용한 기기에 관한 것이다.
차세대 무선통신 시스템은 다양한 사용자 환경과 더 큰 통신 용량을 지원할 것을 요구받고 있다. 다수의 기기를 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(machine type communications), 신뢰성과 레이턴시에 민감한 서비스를 고려한 URLLC(Ultra-Reliable and Low-Latency Communications) 등이 차세대 시스템에서 고려되고 있는 대표적인 이슈들이다.
데이터 전송 효율을 높이기 위해 좁은 영역에 다수의 기지국을 배치하는 것이 고려되고 있다. 또한, 다양한 애플리케이션을 지원해야 함에 따라, 특정 기기는 기지국의 커버리지 보다 넓은 커버리지에서 접속을 시도할 수 있다. 이 기기는 전송 타이밍 컨트롤을 받지 않는 상태로 동작할 수 있으므로, 상향링크 전송은 타 기기에 심각한 간섭으로 작용할 수 있다.
본 발명은 무선 통신 시스템에서 상향링크 전송을 위한 방법 및 이를 이용한 기기를 제공한다.
일 양태에서, 무선 통신 시스템에서 상향링크 전송을 위한 방법은 무선기기가 하향링크 수신 타이밍과 상향링크 전송 타이밍의 차이를 기반으로 상향링크 전송 그룹을 결정하는 단계, 상기 무선기기가 제1 상향링크 전송 그룹에 속하면, 비싱크 서브프레임 또는 싱크 서브프레임에서 상향링크 신호를 전송하는 단계, 상기 무선기기가 제2 상향링크 전송 그룹에 속하면, 상기 비싱크 서브프레임만에서 상향링크 신호를 전송하는 단계를 포함한다. 상기 싱크 서프프레임은 복수의 제1 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 상기 비싱크 서브프레임은 복수의 제2 OFDM 심벌을 포함하되, 제2 OFDM 심벌의 CP(cyclic prefix)는 제1 OFDM 심벌의 CP 보다 길이가 길다.
다른 양태에서, 무선 통신 시스템에서 상향링크 전송을 위한 기기는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 하향링크 수신 타이밍과 상향링크 전송 타이밍의 차이를 기반으로 상향링크 전송 그룹을 결정하고, 제1 상향링크 전송 그룹에 속하면, 비싱크 서브프레임 또는 싱크 서브프레임에서 상향링크 신호를 전송하고, 제2 상향링크 전송 그룹에 속하면, 상기 비싱크 서브프레임만에서 상향링크 신호를 전송한다. 상기 싱크 서프프레임은 복수의 제1 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 상기 비싱크 서브프레임은 복수의 제2 OFDM 심벌을 포함하되, 제2 OFDM 심벌의 CP(cyclic prefix)는 제1 OFDM 심벌의 CP 보다 길이가 길다.
다양한 상향링크 전송 타이밍을 갖는 무선기기들간에 상향링크 전송으로 인한 간섭을 줄일 수 있다.
도 1은 본 발명의 실시예가 적용되는 무선통신 시스템을 보여준다.
도 2는 상향링크 전송 타이밍의 일 예를 보여준다.
도 3은 본 발명의 실시예들에 따른 UL 전송을 보여준다.
도 4는 본 발명의 다른 실시예에 따른 UL 전송을 보여준다.
도 5는 본 발명의 또 다른 실시예에 따른 UL 전송을 보여준다.
도 6은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
도 1은 본 발명의 실시예가 적용되는 무선통신 시스템을 보여준다.
복수의 TRP(transmission/reception point)(101, 102, 103)이 배치된다. 무선기기(wireless device)(110)는 복수의 TRP(101, 102, 103) 중 적어도 어느 하나로부터 데이터 전송/수신 서비스를 제공받는다.
무선기기(110)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기(110)는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
TRP는 자신의 커버리지 내 무선기기에 대한 데이터 송신/수신 서비스를 제공한다. 복수의 TRP는 동일한 기지국 또는 서로 다른 기지국에 연결될 수 있다. TRP는 기지국 자체일 수도 있고, 또는 릴레이와 같은 원격 기지국일 수도 있다. 또는, TRP는 기지국에 의해 운영되는 섹터/빔일 수도 있다. TRP는 기지국에 의해 운영되는 셀일 수도 있다. 작은 영역을 커버하면서 많은 TRP가 밀집하여 배치되어 전체적인 데이터 송수신 효율을 높일 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification)을 기반으로 하는 3GPP LTE(long term evolution)/LTE-A(long term evolution-advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
서브프레임은 하향링크 채널과 상향링크 채널이 스케줄링되는 시간 단위이다. 서브프레임은 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 하나의 서브프레임이 전송되는 시간을 1 TTI(transmission time interval) 이라 한다. 하나의 서브프레임이 14 OFDM 심벌을 포함할 수 있으나, 이는 예시에 불과하다. OFDM 심벌은 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
도 2는 상향링크 전송 타이밍의 일 예를 보여준다.
서브프레임은 4 OFDM 심벌을 포함하나, 이는 예시에 불과하다. 1 OFDM 심벌은 CP(cyclic prefix)와 FFT(fast Fourier transform) 수행으로 얻어지는 FFT 윈도우를 포함한다.
각 TRP에 접속 중인 무선기기의 UL(uplink) 전송 타이밍은 TRP 수신 관점에서 CP 이내로 수신되도록 컨트롤되고 있다. 특별한 타이밍 컨트롤이 없더라도 DL(downlink) 수신 타이밍을 기초로 한 UL 전송 타이밍만으로도 CP 이내로 수신되도록 TRP 커버리지를 설계함으로써 서로 다른 무선기기들의 UL 전송이 서로 간섭을 미치지 않고 직교 특성을 유지하도록 운영할 수 있다.
무선기기가 기본적인 TRP 커버리지보다 더 넓은 커버리지에서 접속을 시도하거나 타이밍 컨트롤을 받지 않은 상태로 동작해야 할 경우가 있다. CP 이내로 수신되는 무선기기들을 그룹 1, CP를 벗어날 가능성이 있는 무선기기들을 그룹 2라고 하자. TRP 관점에서 그룹 1에 속한 무선기기들 간의 최대 수신 시간 차이를 Pd_max1 라 하고, 그룹 2에 속한 무선기기들 간의 최대 수신 시간 차이를 Pd_max2라고 하자. 그룹 2에 속한 무선기기에 의한 UL 전송 신호의 수신 타이밍이 CP를 벗어날 경우 해당 UL 신호는 다른 무선기기들이 전송한 신호와의 직교성이 깨져서 큰 간섭으로 작용할 수 있다. 도 1에서, 그룹 2 전송의 빗금 친 부분은 그룹 1의 수신 신호에 간섭으로 작용하는 것을 나타낸다.
무선기기는 자신의 TAC(timing alignment command)에 따라 UL 전송 그룹을 결정할 수 있다. 무선기기는 DL 수신 타이밍과 UL 전송 타이밍의 차이를 기반으로 UL 전송 그룹을 결정할 수 있다. DL 수신 타이밍과 UL 전송 타이밍의 차이가 특정값 보다 크면 CP를 벗어날 수 있는 그룹 2에 속한다고 할 수 있다. 상기 특정값은 후술하는 싱크 프레임의 CP와 같을 수 있다. 또는, 상기 특정값은 기지국에 의해 주어질 수 있다.
기지국은 무선기기가 속하는 UL 전송 그룹에 관한 정보를 알려줄 수 있다. 기지국은 무선기기가 그룹 1에 속할지 또는 그룹 2에 속할지를 알려줄 수 있다.
도 3은 본 발명의 실시예들에 따른 UL 전송을 보여준다.
서브프레임은 제1 CP 길이를 갖는 싱크(synchronized) 서브프레임과 제2 CP 길이를 갖는 비싱크(asynchronized) 서브프레임으로 나뉜다. 제2 CP 길이는 제1 CP 길이보다 더 길며, 이를 ECP(extended cyclic prefix)라 한다.
그룹 1에 속한 무선기기는 싱크 서브프레임과 비싱크 서브프레임 중 어느에서도 UL 신호를 전송하지만, 그룹 2에 속한 무선기기는 비싱크 서브프레임에서만 UL 신호를 전송한다. 그룹 1에 속하는 무선기기도 전송 종류에 따라서 수신 타이밍의 불확실성이 큰 전송에 대해서는 비싱크 서브프레임에서만 전송을 시도할 수 있다.
서브프레임 n-1이 싱크 서브프레임, 서브프레임 n이 비싱크 서브프레임, 서브프레임 n+1이 싱크 서브프레임이라고 하자. 비싱크 서브프레임 n에 후속하는 싱크 서브프레임 n+1의 첫부분과 싱크 프레임 n의 마지막 부분이 중복되고, 그 중복되는 부분이 싱크 서브프레임 n+1의 첫번째 CP를 넘어서면 간섭으로 작용할 수 있다. 이를 방지하기 위해, 싱크 서브프레임 n+1의 첫번째 OFDM 심벌은 UL 전송에 사용하지 않고 비워둘 수 있다.
비싱크 서브프레임 n에서의 전송에 싱크 서브프레임에서의 전송에 비하여 앞선 전송 타이밍을 적용하고 비싱크 서브프레임 이전의 싱크 서브프레임 n-1의 마지막 OFDM 심벌은 UL 전송에 사용하지 않고 비워둘 수 있다.
또는 다음과 같이 비싱크 서브프레임 n에서의 동작에 제한을 가할 수 있다.
(방식 1-1) 비싱크 서브프레임에서는 적어도 하나의 마지막 OFDM 심벌을 UL 전송에 사용하지 않는다. 싱크 서브프레임에 선행하는 비싱크 서브프레임에서는 적어도 하나의 마지막 OFDM 심벌에서 UL 전송을 기대하지 않음으로써, 싱크 서브프레임에서의 간섭을 피할 수 있다. 또는 모든 비싱크 서브프레임에서는 적어도 하나의 마지막 OFDM 심벌에서 UL 전송을 기대하지 않을 수 있다. 비싱크 서브프레임에서의 전송에 싱크 서브프레임에서의 전송에 비하여 앞선 전송 타이밍을 설정하고, 모든 비싱크 서브프레임 또는 싱크 서브프레임 직후의 비싱크 서브프레임에서는 적어도 하나의 첫번째 OFDM 심벌에서 UL 전송을 기대하지 않음으로써 유사한 효과를 얻을 수 있다.
(방식 1-2) 비싱크 서브프레임에서는 마지막 OFDM 심벌의 마지막 부분을 UL 전송에 사용하지 않는다. 후속하는 싱크 서브프레임의 CP를 넘어가는 비싱크 서브프레임의 마지막 부분은 UL 전송에 사용하지 않음으로써, 싱크 서브프레임에 대한 간섭을 피할 수 있다. SC-FDMA 전송의 경우는 마지막 OFDM 심벌의 DFT 프리코딩 입력의 마지막 변조 심벌을 비움으로써 유사한 효과를 얻을 수 있다.
(방식 1-3) 비싱크 서브프레임에서는 마지막 OFDM 심벌의 부분을 UL 전송에 사용하지 않고, 미사용되는 부분에 대응하는 CP도 전송에 사용하지 않는다. 방식 1-2에서는 마지막 OFDM 심벌의 부분을 전송에 사용하지 않지만, 모든 CP는 UL 전송에 사용함으로써 CP의 특성을 잃게 되어 온전한 직교 전송을 보장할 수 없다. 비싱크 서브프레임의 마지막 OFDM 심벌에서 후속하는 싱크 프레임의 CP를 넘어갈 수 있는 부분을 UL 전송에 사용하지 않고, 미사용 부분에 대응하는 CP도 UL 전송에 사용하지 않음으로써 싱크 서브프레임에 대한 간섭을 피할 수 있다. SC-FDMA 전송의 경우는 마지막 OFDM 심볼벌의 DFT 프리코딩 입력의 마지막 변조 심벌들을 비우고 다시 IFFT한 시간 영역 신호의 cyclic copy를 CP로서 사용함으로써 유사한 효과를 얻을 수 있다.
(방식 1-4) 비싱크 서브프레임에서의 마지막 OFDM 심벌의 CP 및 부분을 UL 전송에 사용하지 않는다. 방식 1-3에서, OFDM 심벌의 CP의 일부분을 전송에서 제외하거나 작은 전송 파워를 사용함으로써, 한 OFDM 심벌 내에서 기기의 전송 파워 변화 수준이 크게 되어 RF(radio frequency) 구현에 어려움이 있을 수 있다. 따라서, 마지막 OFDM 심벌의 CP 전체와 싱크 서브프레임을 넘어가는 부분을 UL 전송에 사용하지 않음으로써 구현 복잡도를 줄일 수 있다. 특징적으로 마지막 OFDM 심벌의 미사용 부분의 길이는 싱크 서프프레임의 CP 길이보다 더 길수 있다. 마지막 OFDM 심벌의 미사용 부분의 길이는 기기의 최대 수신 지연에서 싱크 서프프레임의 CP 길이를 뺀 것과 같을 수 있다. 마지막 OFDM 심벌의 미사용 부분의 길이는 최대 수신 지연 길이와 같을 수 있다.
도 4는 본 발명의 다른 실시예에 따른 UL 전송을 보여준다.
비싱크 서브프레임의 길이를 싱크 서브프레임의 길이보다 짧게 하고, 비싱크 서프레임과 후속하는 싱크 서브프레임 사이에 가드 시간이 정의될 수 있다. 가드 시간은 비싱크 서브프레임의 CP 길이와 싱크 서브프레임의 CP 길이의 차이와 같거나 이 차이를 기반으로 정의될 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 UL 전송을 보여준다.
그룹 2에 속한 무선기기는 모든 OFDM 심벌에서 CP를 포함한 앞 일부분과 마지막 일부분을 전송하지 않는다. 수신 타이밍의 불확실성이 큰 무선기기는 모든 OFDM 심벌에서 상기 방식 1-4에서와 같이 OFDM 심벌의 일부분만을 UL 전송에 사용할 수 있다. 각 OFDM 심벌의 마지막 미사용 부분의 길이는 CP 길이보다 더 길 수 있다. 각 OFDM 심벌의 마지막 미사용 부분의 길이는 기기의 최대 수신 지연에서 CP 길이를 뺀 값과 같을 수 있다. 각 OFDM 심벌의 마지막 미사용 부분의 길이는 최대 수신 지연 길이와 같을 수 있다.
특정 TRP로의 최초 접속을 시도하거나, 소스 TRP에서 타겟 TRP로의 접속 전환(즉, 핸드오버)을 시도하는 무선기기는 도 3의 실시예와 같이 비싱크 서브프레임은 상향링크 전송에 사용할 수 있다. 또는, 상기 무선기기는 도 5의 실시예와 같이, 상향링크 전송 시 단축된 OFDM 심벌을 사용할 수 있다.
TAC를 받기 전이거나 TAC 없이 동작하는 무선기기는 도 3의 실시예와 같이 비싱크 서브프레임은 상향링크 전송에 사용할 수 있다. 또는, 상기 무선기기는 도 5의 실시예와 같이, 상향링크 전송 시 단축된 OFDM 심벌을 사용할 수 있다.
도 6은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(50)는 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(transceiver, 53)를 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(51)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(52)에 저장되고, 프로세서(51)에 의해 실행되어 전술한 동작이 수행될 수 있다.
기지국(60)은 프로세서(61), 메모리(62) 및 송수신기(63)를 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에 의해 실행되는 다양한 명령어를 저장한다. 송수신기(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 TRP의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 무선 통신 시스템에서 상향링크 전송을 위한 방법에 있어서,
    무선기기가 하향링크 수신 타이밍과 상향링크 전송 타이밍의 차이를 기반으로 상향링크 전송 그룹을 결정하는 단계;
    상기 무선기기가 제1 상향링크 전송 그룹에 속하면, 비싱크 서브프레임 또는 싱크 서브프레임에서 상향링크 신호를 전송하는 단계;
    상기 무선기기가 제2 상향링크 전송 그룹에 속하면, 상기 비싱크 서브프레임만에서 상향링크 신호를 전송하는 단계를 포함하되,
    상기 싱크 서프프레임은 복수의 제1 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 상기 비싱크 서브프레임은 복수의 제2 OFDM 심벌을 포함하되, 제2 OFDM 심벌의 CP(cyclic prefix)는 제1 OFDM 심벌의 CP 보다 길이가 긴 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 하향링크 수신 타이밍과 상기 상향링크 전송 타이밍의 차이가 상기 제1 OFDM 심벌의 CP 보다 크면, 상기 무선기기는 상기 제2 상향링크 전송 그룹에 속하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌 중 후속하는 싱크 서브프레임의 첫번째 제1 OFDM 심벌의 CP를 넘어가는 초과 부분은 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 초과 부분에 대응하는 상기 마지막 제2 OFDM 심벌의 CP도 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 방법.
  5. 제 3 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌의 CP는 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌은 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 상향링크 전송을 위한 기기에 있어서,
    무선 신호를 송신 및 수신하는 송수신기와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    하향링크 수신 타이밍과 상향링크 전송 타이밍의 차이를 기반으로 상향링크 전송 그룹을 결정하고;
    제1 상향링크 전송 그룹에 속하면, 비싱크 서브프레임 또는 싱크 서브프레임에서 상향링크 신호를 전송하고;
    제2 상향링크 전송 그룹에 속하면, 상기 비싱크 서브프레임만에서 상향링크 신호를 전송하되,
    상기 싱크 서프프레임은 복수의 제1 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 상기 비싱크 서브프레임은 복수의 제2 OFDM 심벌을 포함하되, 제2 OFDM 심벌의 CP(cyclic prefix)는 제1 OFDM 심벌의 CP 보다 길이가 긴 것을 특징으로 하는 기기.
  8. 제 7 항에 있어서,
    상기 하향링크 수신 타이밍과 상기 상향링크 전송 타이밍의 차이가 상기 제1 OFDM 심벌의 CP 보다 크면, 상기 기기는 상기 제2 상향링크 전송 그룹에 속하는 것을 특징으로 하는 기기.
  9. 제 7 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌 중 후속하는 싱크 서브프레임의 첫번째 제1 OFDM 심벌의 CP를 넘어가는 초과 부분은 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 기기.
  10. 제 9 항에 있어서,
    상기 초과 부분에 대응하는 상기 마지막 제2 OFDM 심벌의 CP도 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 기기.
  11. 제 9 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌의 CP는 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 기기.
  12. 제 7 항에 있어서,
    상기 비싱크 서브프레임의 마지막 제2 OFDM 심벌은 상기 상향링크 신호의 전송에 사용되지 않는 것을 특징으로 하는 기기.
PCT/KR2017/007587 2016-07-22 2017-07-14 상향링크 전송을 위한 방법 및 기기 WO2018016807A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/318,124 US10827447B2 (en) 2016-07-22 2017-07-14 Method and device for transmitting uplink
EP17831280.7A EP3490314B1 (en) 2016-07-22 2017-07-14 Method and device for transmitting uplink
CN201780044442.8A CN109479250B (zh) 2016-07-22 2017-07-14 发送上行链路的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662365387P 2016-07-22 2016-07-22
US62/365,387 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016807A1 true WO2018016807A1 (ko) 2018-01-25

Family

ID=60992244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007587 WO2018016807A1 (ko) 2016-07-22 2017-07-14 상향링크 전송을 위한 방법 및 기기

Country Status (4)

Country Link
US (1) US10827447B2 (ko)
EP (1) EP3490314B1 (ko)
CN (1) CN109479250B (ko)
WO (1) WO2018016807A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583562B (zh) * 2019-09-30 2022-08-26 华为技术有限公司 数据传输的方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265904A1 (en) * 2009-04-21 2010-10-21 Industrial Technology Research Institute Method, apparatus and computer program product for interference avoidance in uplink coordinated multi-point reception
KR20130045169A (ko) * 2011-10-24 2013-05-03 주식회사 팬택 다중 요소 반송파 시스템에서 상향링크 동기의 수행장치 및 방법
US20150011215A1 (en) * 2011-12-26 2015-01-08 Sharp Kabushiki Kaisha Terminal apparatus, base-station apparatus, communication system, method for controlling transmission of terminal apparatus, method for controlling transmission of base-station apparatus, integrated circuit installed in terminal apparatus, and integrated circuit installed in base-staiton apparatus
US20160100425A1 (en) * 2012-04-17 2016-04-07 Ofinno Technologies, Llc Wireless Device Preamble Transmission Timing
US20160149743A1 (en) * 2014-11-20 2016-05-26 Futurewei Technologies, Inc. System and Method for Setting Cyclic Prefix Length

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072171A1 (ja) 2007-12-03 2009-06-11 Fujitsu Limited Ofdm通信方法及びofdm通信装置
EP2244515A1 (en) 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
EP2735204A1 (en) 2011-07-21 2014-05-28 BlackBerry Limited Dynamic cyclic prefix mode for uplink radio resource management
CN103517398B (zh) 2012-06-20 2017-04-26 华为技术有限公司 终端到终端的通信方法及终端
KR20150043345A (ko) * 2012-08-05 2015-04-22 엘지전자 주식회사 무선 통신 시스템에서 소형 셀을 위한 순환 전치 구성 방법 및 이를 위한 장치
CN108029129B (zh) * 2015-09-18 2021-11-23 夏普株式会社 终端装置、基站装置以及通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265904A1 (en) * 2009-04-21 2010-10-21 Industrial Technology Research Institute Method, apparatus and computer program product for interference avoidance in uplink coordinated multi-point reception
KR20130045169A (ko) * 2011-10-24 2013-05-03 주식회사 팬택 다중 요소 반송파 시스템에서 상향링크 동기의 수행장치 및 방법
US20150011215A1 (en) * 2011-12-26 2015-01-08 Sharp Kabushiki Kaisha Terminal apparatus, base-station apparatus, communication system, method for controlling transmission of terminal apparatus, method for controlling transmission of base-station apparatus, integrated circuit installed in terminal apparatus, and integrated circuit installed in base-staiton apparatus
US20160100425A1 (en) * 2012-04-17 2016-04-07 Ofinno Technologies, Llc Wireless Device Preamble Transmission Timing
US20160149743A1 (en) * 2014-11-20 2016-05-26 Futurewei Technologies, Inc. System and Method for Setting Cyclic Prefix Length

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490314A4 *

Also Published As

Publication number Publication date
CN109479250B (zh) 2021-04-09
EP3490314A4 (en) 2020-03-11
CN109479250A (zh) 2019-03-15
EP3490314A1 (en) 2019-05-29
EP3490314B1 (en) 2020-12-16
US10827447B2 (en) 2020-11-03
US20190306816A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
AU2021215138B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
WO2017039374A1 (en) Method and apparatus for performing random access procedure in nb-iot carrier in wireless communication system
EP3611984A1 (en) Resource indication method and communication device
WO2015156604A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 데이터 전송 방법 및 장치
WO2013125887A1 (ko) 전송 방법 및 전송 장치
WO2017026832A1 (ko) 비면허 대역에서 데이터 전송 방법 및 기기
US11528728B2 (en) Information transmission method and device
CN106576371A (zh) 用于在未经授权的频带中发送数据的方法和装置
CN111431689A (zh) 装置到装置用户设备在无线通信系统中发送信号的方法和设备
CN112469127B (zh) 一种通信方法、终端及网络设备
US11051300B2 (en) Method and apparatus for transmitting control channel information in an OFDM system
EP3319284B1 (en) Synchronization signal transmission method in communication system, and synchronization method and device
WO2019022314A1 (ko) 단말 및 기지국 간의 rach 절차 수행 방법 및 이를 위한 기지국 및 단말
WO2017164663A1 (ko) 탐색 신호 전송 방법 및 장치
WO2011055870A1 (ko) 중계기, 기지국의 동작방법 및 장치
JP2023081964A (ja) 方法、送信デバイス、及び受信デバイス
US20180367200A1 (en) Network Node and a Wireless Communication Device for Random Access in Beam-Based Systems
WO2018016807A1 (ko) 상향링크 전송을 위한 방법 및 기기
WO2016122055A1 (en) Method and apparatus for performing random access procedure in wireless communication system
CN110505636A (zh) 一种用于中继通信的同步控制方法
WO2017222316A1 (ko) 제어채널을 모니터링하는 방법 및 기기
CN107800522B (zh) 一种无线通信中的方法和装置
KR20160110328A (ko) 상향링크 자원을 이용한 릴레이 동작 방법 및 장치
KR20130082062A (ko) 동기 채널 송신 방법 및 장치, 그리고 동기 채널 수신 방법 및 장치
WO2016126108A1 (en) Method and apparatus for performing synchronization for carrier without synchronization signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017831280

Country of ref document: EP

Effective date: 20190222