WO2018016212A1 - Torque fluctuation suppression device, torque converter, and motive force transmission device - Google Patents

Torque fluctuation suppression device, torque converter, and motive force transmission device Download PDF

Info

Publication number
WO2018016212A1
WO2018016212A1 PCT/JP2017/020880 JP2017020880W WO2018016212A1 WO 2018016212 A1 WO2018016212 A1 WO 2018016212A1 JP 2017020880 W JP2017020880 W JP 2017020880W WO 2018016212 A1 WO2018016212 A1 WO 2018016212A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifuge
rotating body
torque fluctuation
torque
cam
Prior art date
Application number
PCT/JP2017/020880
Other languages
French (fr)
Japanese (ja)
Inventor
富山 直樹
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Publication of WO2018016212A1 publication Critical patent/WO2018016212A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/167Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Definitions

  • the present invention relates to a torque fluctuation suppressing device, and more particularly to a torque fluctuation suppressing device for suppressing torque fluctuation of a rotating body to which torque is input.
  • the present invention also relates to a torque converter and a power transmission device including a torque fluctuation suppressing device.
  • a clutch device including a damper device and a torque converter are provided between an automobile engine and a transmission. Further, the torque converter is provided with a lockup device for mechanically transmitting torque at a predetermined rotational speed or more in order to reduce fuel consumption.
  • the lockup device generally has a clutch part and a damper having a plurality of torsion springs.
  • the clutch portion has a piston with a friction member that is pressed against the front cover by the action of hydraulic pressure. In the lock-up-on state, torque is transmitted from the front cover to the piston via the friction member, and further transmitted to the output side member via the plurality of torsion springs.
  • torque fluctuations can be suppressed by a damper having a plurality of torsion springs.
  • a dynamic damper device including an inertia member.
  • the dynamic damper device of Patent Document 1 is mounted on a plate that supports a torsion spring, a pair of inertia rings that are rotatable relative to the plate, and a plurality of coil springs provided between the plate and the inertia ring. And have.
  • An object of the present invention is to be able to suppress a peak of torque fluctuation in a relatively wide rotational speed range in an apparatus for suppressing torque fluctuation of a rotating member.
  • a torque fluctuation suppressing device is a device for suppressing torque fluctuation of a rotating body to which torque is input, and includes a mass body, a centrifuge, a cam mechanism, a movement restricting portion, It has.
  • the mass body is arranged side by side with the rotating body in the axial direction, is rotatable with the rotating body, and is disposed so as to be relatively rotatable with respect to the rotating body.
  • the centrifuge is supported by the rotating body and is arranged to be movable in the radial direction under centrifugal force.
  • the cam mechanism has a cam and a cam follower, and receives a centrifugal force acting on the centrifuge, and when a relative displacement in the rotational direction occurs between the rotating body and the mass body, the centrifugal force is reduced to a small relative displacement. Convert to a circumferential force in the direction
  • the cam is provided on one of the centrifuge and the mass body.
  • the cam follower is provided on the other of the centrifuge and the mass body and moves along the cam.
  • the movement restricting unit has an oil passage through which the viscous fluid can flow along with the movement of the centrifuge in the radial direction, and regulates the moving speed of the centrifuge inward in the radial direction.
  • the centrifuge receives a centrifugal force.
  • the cam mechanism converts the centrifugal force acting on the centrifuge into a circumferential force, which is applied between the rotating body and the mass body. It acts to reduce the relative displacement of. Torque fluctuation is suppressed by the operation of the cam mechanism.
  • the centrifugal force acting on the centrifuge is used as a force for suppressing the torque fluctuation
  • the characteristic for suppressing the torque fluctuation changes according to the rotational speed of the rotating body. Further, for example, the characteristics for suppressing torque fluctuation can be appropriately set depending on the shape of the cam and the like, and the peak of torque fluctuation in a wider rotational speed range can be suppressed.
  • the centrifuge moves in the radial direction, the viscous fluid passes through the oil passage of the movement restricting portion. Due to the resistance caused by the viscous fluid passing through the oil passage (especially the oil passage having a reduced cross-sectional area), the moving speed of the centrifuge decreases. Therefore, it is possible to suppress the hitting sound when the centrifuge falls to the inner peripheral side and collides with another member when the rotation is stopped.
  • the centrifuge is moved inward in the radial direction by the action of the cam mechanism. In this case as well, the movement of the centrifuge is restricted. The For this reason, the relative displacement between the rotating body and the mass body is restricted. That is, the movement restricting portion also functions as a stopper mechanism that restricts the relative rotation angle between the rotating body and the mass body.
  • the rotating body has a protrusion protruding outward in the radial direction on the outer periphery.
  • the protruding portion opens in the outer peripheral direction and has an opening having a predetermined depth on the inner peripheral side.
  • a centrifuge has a hole part in which a projection part is inserted, and a piston part inserted in an opening part.
  • the centrifuge can move in the radial direction along the protrusion.
  • an opening part functions as a cylinder by inserting a piston part in an opening part. Accordingly, the viscous fluid in the cylinder is moved by the movement of the piston portion of the centrifuge, and the moving speed of the centrifuge is regulated by the moving viscous fluid passing through the oil passage.
  • the oil passage is a gap around the piston portion inserted into the opening.
  • a fluid accommodating portion capable of accommodating a viscous fluid is formed by the opening of the rotating body and the hole of the centrifuge into which the protrusion of the rotating body is inserted.
  • the centrifuge is formed so as to extend in the rotational direction and has guide portions formed at both ends in the rotational direction.
  • the guide part is supported by the end surface of the circumferential direction of the projection part of a rotary body.
  • the cam is provided in the centrifuge and the cam follower is provided in the mass body.
  • the centrifuge guide portion is located on the opposite side of the contact point between the cam and the cam follower with the center of gravity of the centrifuge interposed therebetween. Abuts against the circumferential end face.
  • the guide portion of the centrifuge has at least a contact point between the cam and the cam follower with the center of gravity of the centrifuge interposed therebetween. It abuts against the end face of the protrusion at the opposite position. For this reason, in a centrifuge, it can suppress that a big rotational moment arises by using the end of a rotation direction as a fulcrum. Therefore, the centrifuge moves smoothly, and the configuration of the guide portion can be simplified.
  • the guide portion is a pair of rollers that are rotatably supported at both ends in the rotation direction of the centrifuge and roll on the circumferential end surface of the protrusion.
  • the movement of the centrifuge in the radial direction becomes smooth.
  • the guide portions are respectively arranged on the inner peripheral side and the outer peripheral side. It is necessary to provide a pair of rollers (two pairs in total).
  • the centrifuge since the rotational moment with one end in the rotational direction as a fulcrum is suppressed, even if the guide portion is configured by only a pair of rollers, The centrifuge can be moved smoothly.
  • the rotating body has a concave portion recessed on the inner peripheral side on the outer peripheral surface, and the centrifuge is accommodated in the concave portion.
  • the centrifuge has a hole that is recessed from the inner peripheral surface to the outer peripheral side, and the rotating body has a protrusion that is inserted into the hole of the centrifuge on the bottom surface of the recess.
  • a viscous fluid can be accommodated in the hole of the centrifuge, and the oil passage is a gap around the protrusion of the rotating body inserted into the hole.
  • the mass body includes a first inertia ring and a second inertia ring arranged to face each other with the rotating body interposed therebetween, and a pin that connects the first inertia ring and the second inertia ring so as not to be relatively rotatable.
  • the centrifuge is arranged between the first inertia ring and the second inertia ring in the axial direction on the outer peripheral portion of the rotating body and on the inner peripheral side of the pin.
  • the cam follower is a cylindrical roller having a hole through which a pin penetrates in the axial direction.
  • the cam is formed in the centrifuge and contacts the cam follower, and has a shape such that the circumferential force changes according to the relative displacement amount in the rotational direction between the rotating body and the mass body.
  • the cam follower is mounted using a pin that connects the first inertia ring and the second inertia ring. This simplifies the configuration of the cam mechanism.
  • the torque converter according to the present invention is disposed between the engine and the transmission.
  • the torque converter includes an input-side rotating body that receives torque from the engine, an output-side rotating body that outputs torque to the transmission, and a damper that is disposed between the input-side rotating body and the turbine. Any of the torque fluctuation suppression devices.
  • a power transmission device includes a flywheel, a clutch device, and any of the torque fluctuation suppression devices described above.
  • the flywheel includes a first inertial body that rotates about a rotation axis, a second inertial body that rotates about the rotation axis and is rotatable relative to the first inertial body, and a first inertial body and a second inertial body. And a damper disposed therebetween.
  • the clutch device is provided on the second inertial body of the flywheel.
  • the peak of torque fluctuation can be suppressed in a relatively wide rotational speed range in the apparatus for suppressing torque fluctuation of the rotating member. Further, according to the present invention, it is possible to suppress the hitting sound that the centrifuge collides with other members, and it is possible to realize the stopper mechanism with a simple configuration.
  • FIG. 2 is a partial front view of the output side rotating body and the torque fluctuation suppressing device of FIG. 1.
  • FIG. 3 is an arrow A view of FIG. 2.
  • the external appearance perspective view of the part shown by FIG. The figure for demonstrating the internal structure of a centrifuge.
  • the arrow B figure of FIG. The schematic diagram which shows the application example 1 of this invention.
  • the schematic diagram which shows the application example 3 of this invention The schematic diagram which shows the application example 4 of this invention.
  • the schematic diagram which shows the application example 5 of this invention The schematic diagram which shows the application example 6 of this invention.
  • the schematic diagram which shows the application example 7 of this invention The schematic diagram which shows the application example 8 of this invention.
  • FIG. 1 is a schematic diagram when the torque fluctuation suppressing device according to the first embodiment of the present invention is mounted on a lock-up device of a torque converter.
  • OO is the rotational axis of the torque converter.
  • the torque converter 1 includes a front cover 2, a torque converter main body 3, a lockup device 4, and an output hub 5. Torque is input to the front cover 2 from the engine.
  • the torque converter main body 3 includes an impeller 7 connected to the front cover 2, a turbine 8, and a stator (not shown).
  • the turbine 8 is connected to the output hub 5, and an input shaft (not shown) of the transmission can be engaged with the inner peripheral portion of the output hub 5 by a spline.
  • the lock-up device 4 has a clutch part, a piston that is operated by hydraulic pressure, and the like, and can take a lock-up on state and a lock-up off state.
  • the lock-up on state the torque input to the front cover 2 is transmitted to the output hub 5 via the lock-up device 4 without passing through the torque converter body 3.
  • the lock-up off state torque input to the front cover 2 is transmitted to the output hub 5 via the torque converter body 3.
  • the lockup device 4 includes an input side rotating body 11, an output side rotating body 12, a damper 13, and a torque fluctuation suppressing device 14.
  • the input side rotating body 11 includes a piston that is movable in the axial direction, and has a friction member 16 on the side surface on the front cover 2 side. When the friction member 16 is pressed against the front cover 2, torque is transmitted from the front cover 2 to the input side rotating body 11.
  • the output side rotator 12 is disposed so as to face the input side rotator 11 in the axial direction, and is rotatable relative to the input side rotator 11.
  • the output side rotating body 12 is connected to the output hub 5.
  • the damper 13 is disposed between the input side rotating body 11 and the output side rotating body 12.
  • the damper 13 has a plurality of torsion springs, and elastically connects the input side rotating body 11 and the output side rotating body 12 in the rotation direction.
  • the damper 13 transmits torque from the input-side rotator 11 to the output-side rotator 12, and absorbs and attenuates torque fluctuations.
  • FIG. 2 is a front view of the output side rotating body 12 and the torque fluctuation suppressing device 14. 2 shows a part of the output-side rotator 12 and the torque fluctuation suppressing device 14, but as a whole, the portions shown in FIG. 2 are provided at equiangular intervals at four locations in the circumferential direction.
  • ing. 3 is a view seen from the direction A in FIG. 2, and
  • FIG. 4 is an external perspective view of FIG. In FIG. 4, the inertia ring on one side (front side in FIG. 4) is removed and shown.
  • the torque fluctuation suppressing device 14 includes a first inertia ring 201 and a second inertia ring 202 that constitute the mass body 20, four centrifuges 21, and four cam mechanisms 22.
  • the first and second inertia rings 201 and 202 are plates each having a predetermined thickness formed in a continuous annular shape. As shown in FIG. 3, the output-side rotator 12 sandwiches the output-side rotator 12. Are arranged with a predetermined gap on both sides in the axial direction. That is, the output-side rotating body 12 and the first and second inertia rings 201 and 202 are arranged side by side in the axial direction.
  • the first and second inertia rings 201 and 202 have the same rotation axis as that of the output-side rotator 12, can rotate together with the output-side rotator 12, and can rotate relative to the output-side rotator 12. It is.
  • first and second inertia rings 201, 202 holes 201a, 202a penetrating in the axial direction are formed. And the 1st inertia ring 201 and the 2nd inertia ring 202 are being fixed by the rivet 24 which penetrates those holes 201a and 202a. Therefore, the first inertia ring 201 cannot move in the axial direction, the radial direction, and the rotation direction with respect to the second inertia ring 202.
  • the output-side rotator 12 is formed in a disc shape, and the inner peripheral portion is connected to the output hub 5 as described above.
  • the protrusion 121 has guide support portions 121a and 121b on both end faces in the circumferential direction, and further has an opening 121c with a predetermined width at the center in the circumferential direction.
  • the opening 121c is formed so as to open to the outer peripheral side and has a predetermined depth.
  • the centrifuge 21 has a first member 211 and a second member 212 whose longitudinal ends are connected by four screw members.
  • the first and second members 211 and 212 have the same shape.
  • the first and second members 211 and 212 sandwich the protrusion 121 of the output-side rotator 12 on the inner peripheral side of the rivet 24 between the axial directions of the first inertia ring 201 and the second inertia ring 202. Is arranged.
  • the centrifuge 21 rotates with the output-side rotator 12 and is movable in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 12.
  • the centrifuge 21 is formed to extend in the rotation direction.
  • the first member 211 and the second member 212 constituting the centrifuge 21 are, as shown by the hatched lines in FIG. 5, connected portions C1 to C4 formed by four screw members formed at both ends in the longitudinal direction. Except for the central portion C5 in the longitudinal direction, a gap is provided in the axial direction. This gap constitutes a hole into which the protruding portion 121 of the output side rotating body 12 is inserted.
  • the first member 211 and the second member 212 constituting the centrifuge 21 are composed of connecting portions C1 to C4 formed by four screw members formed at both ends in the longitudinal direction, and a central portion C5 in the longitudinal direction. , Are in close contact.
  • first guide roller 26a and second guide roller 26b In the gap between both ends of the first member 211 and the second member 212 (the gap in the axial direction of both members 211 and 212), one first guide roller 26a and second guide roller 26b (guide portion), Both ends of the protrusion 121 of the output side rotating body 12 are arranged.
  • the first and second guide rollers 26a and 26b are rotatably mounted via bushes 28 around pins 27 supported at both ends of the first and second members 211 and 212.
  • the outer peripheral surface of the first guide roller 26 a is in contact with one guide support portion (side surface) 121 a of the protrusion 121 and can roll
  • the outer peripheral surface of the second roller 26 b is the other guide support of the protrusion 121. It is possible to roll in contact with the portion (side surface) 121b.
  • the central portion of the centrifuge 21 is formed with a piston portion 21a (a region C5 where the first member 211 and the second member 212 shown in FIG. 5 are in close contact with each other) having a predetermined length from the upper end surface to the inner peripheral side. .
  • the piston portion 21a is formed such that the first member 211 and the second member 212 are in close contact with each other without a gap.
  • the piston portion 21a is inserted into the opening 121c of the projection 121 so as to be movable in the radial direction through a predetermined gap.
  • the hydraulic oil can be accumulated by the opening 121c of the protrusion 121 and the hole portion (the gap between the first member 211 and the second member 212) in which the protrusion 121 is inserted.
  • a fluid containing portion is formed.
  • the gap between the piston portion 21a and the fluid storage portion functions as an oil passage through which the working oil flows, that is, an orifice Or in which a cross-sectional area through which the working oil passes is narrowed.
  • the first and second members 211 and 212 of the centrifuge 21 are formed in an arc shape in which the outer peripheral surfaces 211a and 212a are recessed toward the inner peripheral side, and as will be described later, these outer peripheral surfaces 211a and 212a, 212 a functions as the cam 31.
  • the cam mechanism 22 includes a cylindrical roller 30 as a cam follower and cams 31 that are outer peripheral surfaces 211 a and 212 a of the first and second members 211 and 212.
  • the roller 30 is fitted on the outer periphery of the trunk portion of the rivet 24. That is, the roller 30 is supported by the rivet 24.
  • the roller 30 is preferably mounted so as to be rotatable with respect to the rivet 24, but may not be rotatable.
  • the cam 31 is an arc-shaped surface with which the roller 30 abuts.
  • rotational phase difference the relative displacement amount in the rotation direction between the output-side rotator 12 and the inertia ring 20 is referred to as “rotational phase difference”.
  • FIG. 2, FIG. 6, and FIG. The deviation between the center position of the centrifuge 21 and the cam 31 in the circumferential direction and the center position of the roller 30 is shown.
  • FIG. 6 shows a case where a rotational phase difference + ⁇ occurs on the + R side
  • FIG. 7 shows a case where a rotational phase difference ⁇ occurs on the ⁇ R side.
  • the first component force P1 is a force that moves the output side rotating body 12 to the left in FIG. 6 via the cam mechanism 22 and the centrifuge 21. That is, a force in the direction of reducing the rotational phase difference between the output side rotating body 12 and the inertia ring 20 acts on the output side rotating body 12. Moreover, the centrifuge 21 is moved to the inner peripheral side against the centrifugal force by the second component force P2.
  • FIG. 7 shows a case where a rotational phase difference ⁇ is generated between the output-side rotator 12 and the inertia ring 20, and the moving direction of the roller 30 of the cam mechanism 22, the reaction force P0, and the first component force P1.
  • the operation of the cam mechanism 22 is the same except that the direction of the second component force P2 is different from that in FIG.
  • the force that suppresses the above torque fluctuations changes depending on the centrifugal force, that is, the rotational speed of the output side rotating body 12, and also changes depending on the rotational phase difference and the shape of the cam 31. Therefore, by setting the shape of the cam 31 as appropriate, the characteristics of the torque fluctuation suppressing device 14 can be optimized according to engine specifications and the like.
  • the shape of the cam 31 can be made such that the first component force P1 changes linearly according to the rotational phase difference in the state where the same centrifugal force is acting.
  • the shape of the cam 31 can be a shape in which the first component force P1 changes nonlinearly according to the rotational phase difference.
  • FIG. 8 is a diagram illustrating an example of torque fluctuation suppression characteristics.
  • the horizontal axis represents the rotational speed, and the vertical axis represents the torque fluctuation (rotational speed fluctuation).
  • the characteristic Q1 is a case where a device for suppressing torque fluctuation is not provided
  • the characteristic Q2 is a case where a conventional dynamic damper device is provided
  • the characteristic Q3 is a case where the torque fluctuation suppressing device 14 of the present embodiment is provided. Show.
  • centrifuge 21 For example, as shown in FIG. 6, when a rotational phase difference is generated between the output-side rotator 12 and the inertia ring 20, the centrifuge 21 has a force P 0 from the inertia ring 20 at the contact C 1 with the roller 30. Works. With this force P0, the first guide roller 26a attached to the centrifuge 21 and one side surface 121a of the projection 121 come into contact with each other at the contact C2, and the second guide roller 26b and the other side surface 121b of the projection 121 are in contact with each other. Abuts at the contact C3. That is, as shown in FIG.
  • the centrifuge 21 located above the plurality of centrifuges 21 falls downward.
  • the moving speed of the centrifuge 21 is suppressed by the hydraulic oil passing through the orifice Or as described above, the striking when the inner peripheral surface of the piston portion 21a of the centrifuge 21 collides with the bottom surface of the opening 121c. The sound can be suppressed.
  • the rotational phase difference between the inertia ring 20 and the output-side rotator 12 is set to a predetermined value.
  • the angle can be regulated. That is, a stopper mechanism can be realized. Furthermore, even if a stopper mechanism due to the collision of the members is provided separately, the hitting sound at the time of the collision of the members can be suppressed.
  • FIG. 9 shows a part of the torque fluctuation suppressing device according to the second embodiment of the present invention, and corresponds to FIG. 2 of the first embodiment.
  • FIG. 10 is a view seen from the direction B in FIG.
  • FIG. 9 shows the inertia ring removed from one side (front side in FIG. 9).
  • the torque fluctuation suppressing device 140 of the second embodiment is basically the same as that of the first embodiment, but mainly the shape of the output-side rotator, the configuration for supporting the centrifuge, and the movement restricting portion. The configuration is different.
  • inertia rings 201 and 202 constituting the mass body 20 are the same as those in the first embodiment. That is, the first and second inertia rings 201 and 202 are plates each having a predetermined thickness formed in a continuous annular shape, and are disposed so as to sandwich the output-side rotating body 120 and the centrifuge 210.
  • first and second inertia rings 201, 202 are fixed by the rivet 24, and the first inertia ring 201 is axially and radially oriented with respect to the second inertia ring 202. And immovable in the rotational direction.
  • a recess 120a that opens to the outer peripheral side is formed on the outer peripheral surface of the output-side rotator 120.
  • a protrusion 120b that protrudes from the bottom surface of the recess 120a by a predetermined height on the outer peripheral side is formed at the center in the circumferential direction of the recess 120a.
  • the centrifuge 210 is disposed in the recess 120a of the output-side rotator 120, and can be moved in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 120.
  • the centrifuge 210 has grooves 210a and 210b at both ends in the circumferential direction.
  • the width of the grooves 210a and 210b is larger than the thickness of the output-side rotator 120, and the output-side rotator 120 is inserted into a part of the grooves 210a and 210b.
  • a hole 210c that is recessed toward the outer peripheral side is formed on the inner peripheral surface of the central portion in the circumferential direction (longitudinal direction) of the centrifuge 210.
  • the protrusion 120b of the output side rotating body 120 is inserted through a predetermined gap. That is, the hole 210c functions as a fluid storage unit capable of storing hydraulic oil, and the gap between the hole 210c and the protrusion 120b is an oil passage through which hydraulic oil flows, as in the first embodiment, that is, It functions as an orifice Or in which the cross-sectional area of the flow path through which the hydraulic oil passes is reduced.
  • the outer peripheral surface 210d of the centrifuge 210 is formed in an arc shape that is recessed toward the inner peripheral side, and functions as the cam 31 as in the first embodiment.
  • rollers 26a and 26b are disposed in the grooves 210a and 210b at both ends of the centrifuge 210, respectively.
  • the configuration of each roller 26a, 26b is the same as in the first embodiment.
  • Each of the rollers 26a and 26b can be brought into contact with the side surface of the recess 120a to roll.
  • the cam mechanism 220 is the same as that of the first embodiment, and includes a cylindrical roller 30 as a cam follower and a cam 31 formed on the outer peripheral surface 210d of the centrifuge 210. Further, the operation of the cam mechanism 220 is the same as that in the first embodiment.
  • torque fluctuation occurs, the rotational position between the output side rotating body 120 and the first and second inertia rings 201 and 202 is increased. A phase difference is generated, and torque fluctuation is suppressed by the action of the cam mechanism 220.
  • the configuration of the movement restricting unit that restricts the moving speed of the centrifuge 210 is basically the same as that of the first embodiment. Specifically, when a rotational phase difference occurs between the output-side rotating body 120 and the inertia rings 201 and 202, the centrifuge 210 moves radially inward by the operation of the cam mechanism 220. Due to the movement of the centrifuge 210, the hydraulic oil stored in the hole 210c is discharged through the orifice Or. At this time, the moving speed of the centrifuge 210 is suppressed by the resistance of the hydraulic oil passing through the orifice Or.
  • the inertia ring is constituted by a continuous annular member, but a plurality of divided inertia bodies may be arranged in the circumferential direction.
  • a holding member such as an annular holding ring on the outer peripheral side of the inertia body.
  • the guide roller is disposed as the guide portion, but another member that reduces friction such as a resin race or a sheet may be disposed.
  • the gap is used as the oil passage constituting the movement restricting portion, but other configurations may be adopted.
  • a hole penetrating in the radial direction may be formed in the piston portion 21a of the centrifuge 21.
  • FIG. 11 is a diagram schematically showing a torque converter, which includes an input-side rotating body 41, an output-side rotating body 42, and a damper provided between the rotating bodies 41 and 42. 43.
  • the input side rotating body 41 includes members such as a front cover, a drive plate, and a piston.
  • the output side rotating body 42 includes a driven plate and a turbine hub.
  • the damper 43 includes a plurality of torsion springs.
  • a centrifuge is provided in any of the rotating members that constitute the input-side rotator 41, and a cam mechanism 44 that operates using centrifugal force acting on the centrifuge is provided. It has been. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 12 is provided with a centrifuge in any of the rotating members constituting the output-side rotator 42, and is a cam mechanism that operates by utilizing the centrifugal force acting on the centrifuge. 44 is provided. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 13 has another damper 45 and an intermediate member 46 provided between the two dampers 43, 45 in addition to the configurations shown in FIGS. is doing.
  • the intermediate member 46 is relatively rotatable with the input side rotating body 41 and the output side rotating body 42, and causes the two dampers 43 and 45 to act in series.
  • the intermediate member 46 is provided with a centrifuge, and a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge is provided.
  • a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge is provided.
  • the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque converter shown in FIG. 14 has a float member 47.
  • the float member 47 is a member for supporting the torsion spring constituting the damper 43, and is formed, for example, in an annular shape so as to cover the outer periphery and at least one side surface of the plurality of torsion springs.
  • the float member 47 is relatively rotatable with the input-side rotator 41 and the output-side rotator 42, and rotates around the damper 43 by friction with the plurality of torsion springs of the damper 43. That is, the float member 47 also rotates.
  • the float member 47 is provided with a centrifuge 48, and a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge 48 is provided.
  • a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge 48 is provided.
  • the structure similar to the structure shown by the said each embodiment is applicable.
  • FIG. 15 is a schematic diagram of a power transmission device having a flywheel 50 having two inertia bodies 51 and 52 and a clutch device 54.
  • the flywheel 50 disposed between the engine and the clutch device 54 includes a first inertial body 51, a second inertial body 52 disposed so as to be rotatable relative to the first inertial body 51, and two inertial bodies. And a damper 53 disposed between 51 and 52.
  • the second inertia body 52 also includes a clutch cover that constitutes the clutch device 54.
  • a centrifuge is provided in any of the rotating members that constitute the second inertial body 52, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge is provided. ing.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • FIG. 16 is an example in which a centrifuge is provided in the first inertial body 51 in the same power transmission device as in FIG.
  • a cam mechanism 55 that operates using centrifugal force acting on the centrifuge is provided.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • the power transmission device shown in FIG. 17 includes another damper 56 and an intermediate member 57 provided between the two dampers 53, 56. Have.
  • the intermediate member 57 is rotatable relative to the first inertial body 51 and the second inertial body 52.
  • the intermediate member 57 is provided with a centrifuge 58, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge 58 is provided.
  • the cam mechanism 55 the same configuration as that shown in each of the above embodiments can be applied.
  • FIG. 18 is a schematic diagram of a power transmission device in which a clutch device is provided on one flywheel.
  • the first inertia body 61 in FIG. 18 includes one flywheel and a clutch cover of the clutch device 62.
  • a centrifuge is provided in any of the rotating members constituting the first inertial body 61, and a cam mechanism 64 that operates by utilizing a centrifugal force acting on the centrifuge is provided.
  • the cam mechanism 64 the structure similar to the structure shown by the said each embodiment is applicable.
  • FIG. 19 is an example in which a centrifuge 65 is provided on the output side of the clutch device 62 in the same power transmission device as FIG.
  • a cam mechanism 64 that operates by utilizing the centrifugal force acting on the centrifuge 65 is provided.
  • the structure similar to the structure shown by the said each embodiment is applicable.
  • the torque fluctuation suppressing device of the present invention may be disposed on any of the rotating members constituting the transmission, and further, the shaft (propeller shaft or drive) on the output side of the transmission (Shaft).
  • the torque fluctuation suppressing device of the present invention may be further applied to a conventionally known dynamic damper device or a power transmission device provided with a pendulum type damper device.

Abstract

The present invention suppresses a torque fluctuation peak across a comparatively wide rotation speed range in a device for suppressing the torque fluctuations of a rotating member. To this end, this device is equipped with a body of mass (20), a centrifugal element (21), a cam mechanism (22), and a movement restriction part. The body of mass (20) is capable of rotating relative to an output-side rotating body (12). The centrifugal element (21) is supported by the output-side rotating body (12), and is capable of moving in the radial direction. The cam mechanism (22) has a cam (31) and a roller (30), receives a centrifugal force acting on the centrifugal element (21), and when a rotational phase difference is produced between the output-side rotating body (12) and the body of mass (20), converts the centrifugal force into a circumferential-direction force in the direction which decreases relative displacement. The movement restriction part has an orifice (Or) capable of circulating a working fluid according to the movement of the centrifugal element (21) in the radial direction, and restricts the speed of the movement of the centrifugal element (21) toward the inside in the radial direction.

Description

トルク変動抑制装置、トルクコンバータ、及び動力伝達装置Torque fluctuation suppressing device, torque converter, and power transmission device
 本発明は、トルク変動抑制装置、特に、トルクが入力される回転体のトルク変動を抑制するためのトルク変動抑制装置に関する。また、本発明は、トルク変動抑制装置を備えたトルクコンバータ及び動力伝達装置に関する。 The present invention relates to a torque fluctuation suppressing device, and more particularly to a torque fluctuation suppressing device for suppressing torque fluctuation of a rotating body to which torque is input. The present invention also relates to a torque converter and a power transmission device including a torque fluctuation suppressing device.
 例えば、自動車のエンジンとトランスミッションとの間には、ダンパ装置を含むクラッチ装置やトルクコンバータが設けられている。また、トルクコンバータには、燃費低減のために、所定の回転数以上で機械的にトルクを伝達するためのロックアップ装置が設けられている。 For example, a clutch device including a damper device and a torque converter are provided between an automobile engine and a transmission. Further, the torque converter is provided with a lockup device for mechanically transmitting torque at a predetermined rotational speed or more in order to reduce fuel consumption.
 ロックアップ装置は、一般に、クラッチ部と、複数のトーションスプリングを有するダンパと、を有している。また、クラッチ部は、油圧の作用によってフロントカバーに押し付けられる摩擦部材付きのピストンを有している。そして、ロックアップオンの状態では、トルクは、フロントカバーから摩擦部材を介してピストンに伝達され、さらに複数のトーションスプリングを介して出力側の部材に伝達される。 The lockup device generally has a clutch part and a damper having a plurality of torsion springs. The clutch portion has a piston with a friction member that is pressed against the front cover by the action of hydraulic pressure. In the lock-up-on state, torque is transmitted from the front cover to the piston via the friction member, and further transmitted to the output side member via the plurality of torsion springs.
 このようなロックアップ装置では、複数のトーションスプリングを有するダンパによって、トルク変動(回転速度変動)が抑えられる。 In such a lock-up device, torque fluctuations (rotational speed fluctuations) can be suppressed by a damper having a plurality of torsion springs.
 また、特許文献1のロックアップ装置では、イナーシャ部材を含むダイナミックダンパ装置を設けることによって、トルク変動を抑えるようにしている。特許文献1のダイナミックダンパ装置は、トーションスプリングを支持するプレートに装着されており、このプレートと相対回転自在な1対のイナーシャリングと、プレートとイナーシャリングとの間に設けられた複数のコイルスプリングと、を有している。 Further, in the lock-up device of Patent Document 1, torque fluctuation is suppressed by providing a dynamic damper device including an inertia member. The dynamic damper device of Patent Document 1 is mounted on a plate that supports a torsion spring, a pair of inertia rings that are rotatable relative to the plate, and a plurality of coil springs provided between the plate and the inertia ring. And have.
特開2015-094424号公報Japanese Patent Laying-Open No. 2015-094424
 特許文献1を含む従来のダイナミックダンパ装置では、所定の回転数域のトルク変動のピークを抑えることができる。しかし、エンジンの仕様等が変わると、それに応じてトルク変動のピークが現れる回転数域が変わる。このため、エンジンの仕様等の変更に伴ってイナーシャリングの慣性量及びコイルスプリングのばね定数を変更する必要があり、対応が困難な場合がある。 In the conventional dynamic damper device including Patent Document 1, the peak of torque fluctuation in a predetermined rotation speed range can be suppressed. However, when the engine specifications change, the rotational speed range in which the peak of torque fluctuations changes accordingly. For this reason, it is necessary to change the inertial amount of inertia and the spring constant of the coil spring in accordance with changes in the engine specifications and the like, which may be difficult to cope with.
 本発明の課題は、回転部材のトルク変動を抑えるための装置において、比較的広い回転数域においてトルク変動のピークを抑えることができるようにすることにある。 An object of the present invention is to be able to suppress a peak of torque fluctuation in a relatively wide rotational speed range in an apparatus for suppressing torque fluctuation of a rotating member.
 (1)本発明に係るトルク変動抑制装置は、トルクが入力される回転体のトルク変動を抑制するための装置であって、質量体と、遠心子と、カム機構と、移動規制部と、を備えている。質量体は、回転体と軸方向に並べて配置され、回転体とともに回転可能であり、かつ回転体に対して相対回転自在に配置されている。遠心子は、回転体に支持され、遠心力を受けて径方向に移動自在に配置されている。カム機構は、カムとカムフォロアとを有し、遠心子に作用する遠心力を受けて、回転体と質量体との間に回転方向における相対変位が生じたときには、遠心力を、相対変位が小さくなる方向の円周方向力に変換する。カムは、遠心子及び質量体の一方に設けられている。カムフォロアは、遠心子及び質量体の他方に設けられカムに沿って移動する。移動規制部は、遠心子の径方向の移動に伴って粘性流体が流通可能な油路を有し、遠心子の径方向内側への移動速度を規制する。 (1) A torque fluctuation suppressing device according to the present invention is a device for suppressing torque fluctuation of a rotating body to which torque is input, and includes a mass body, a centrifuge, a cam mechanism, a movement restricting portion, It has. The mass body is arranged side by side with the rotating body in the axial direction, is rotatable with the rotating body, and is disposed so as to be relatively rotatable with respect to the rotating body. The centrifuge is supported by the rotating body and is arranged to be movable in the radial direction under centrifugal force. The cam mechanism has a cam and a cam follower, and receives a centrifugal force acting on the centrifuge, and when a relative displacement in the rotational direction occurs between the rotating body and the mass body, the centrifugal force is reduced to a small relative displacement. Convert to a circumferential force in the direction The cam is provided on one of the centrifuge and the mass body. The cam follower is provided on the other of the centrifuge and the mass body and moves along the cam. The movement restricting unit has an oil passage through which the viscous fluid can flow along with the movement of the centrifuge in the radial direction, and regulates the moving speed of the centrifuge inward in the radial direction.
 この装置では、回転体にトルクが入力されると、回転体及び質量体が回転する。回転体に入力されるトルクに変動がない場合は、回転体と質量体との間の回転方向における相対変位はなく、同期して回転する。一方、入力されるトルクに変動がある場合は、質量体は回転体に対して相対回転自在に配置されているために、トルク変動の程度によっては、両者の間に回転方向における相対変位(以下、この変位を「回転位相差」と表現する場合がある)が生じる。 In this device, when torque is input to the rotating body, the rotating body and the mass body rotate. When there is no change in the torque input to the rotating body, there is no relative displacement in the rotating direction between the rotating body and the mass body, and the rotor rotates synchronously. On the other hand, when there is a fluctuation in the input torque, the mass body is arranged so as to be relatively rotatable with respect to the rotating body. This displacement may be expressed as “rotational phase difference”).
 ここで、回転体及び質量体が回転すると、遠心子は遠心力を受ける。そして、回転体と質量体との間に相対変位が生じたときには、カム機構は遠心子に作用する遠心力を円周方向力に変換し、この円周方向力は回転体と質量体の間の相対変位を小さくするように作用する。このようなカム機構の作動によって、トルク変動が抑えられる。 Here, when the rotating body and the mass body rotate, the centrifuge receives a centrifugal force. When a relative displacement occurs between the rotating body and the mass body, the cam mechanism converts the centrifugal force acting on the centrifuge into a circumferential force, which is applied between the rotating body and the mass body. It acts to reduce the relative displacement of. Torque fluctuation is suppressed by the operation of the cam mechanism.
 ここでは、遠心子に作用する遠心力を、トルク変動を抑えるための力として利用しているので、回転体の回転数に応じてトルク変動を抑制する特性が変わることになる。また、例えばカムの形状等によって、トルク変動を抑制する特性を適切に設定することができ、より広い回転数域におけるトルク変動のピークを抑えることができる。 Here, since the centrifugal force acting on the centrifuge is used as a force for suppressing the torque fluctuation, the characteristic for suppressing the torque fluctuation changes according to the rotational speed of the rotating body. Further, for example, the characteristics for suppressing torque fluctuation can be appropriately set depending on the shape of the cam and the like, and the peak of torque fluctuation in a wider rotational speed range can be suppressed.
 また、ここでは、遠心子が径方向に移動する際に、粘性流体が移動規制部の油路を通過する。粘性流体が油路(特に断面積が絞られた油路)を通過することによる抵抗のために、遠心子の移動速度が低下する。したがって、回転の停止時等において遠心子が内周側に落下して他の部材に衝突する際の打音を抑えることができる。また、トルク変動が大きくなって回転体と質量体との間の相対変位が大きくなると、遠心子はカム機構の作用によって径方向内側へ移動させられるが、この場合も遠心子の移動が規制される。このため、回転体と質量体との相対変位が規制されることになる。すなわち、移動規制部は、回転体と質量体の相対回転角度を規制するストッパ機構としても機能する。 Also, here, when the centrifuge moves in the radial direction, the viscous fluid passes through the oil passage of the movement restricting portion. Due to the resistance caused by the viscous fluid passing through the oil passage (especially the oil passage having a reduced cross-sectional area), the moving speed of the centrifuge decreases. Therefore, it is possible to suppress the hitting sound when the centrifuge falls to the inner peripheral side and collides with another member when the rotation is stopped. In addition, when the torque fluctuation increases and the relative displacement between the rotating body and the mass body increases, the centrifuge is moved inward in the radial direction by the action of the cam mechanism. In this case as well, the movement of the centrifuge is restricted. The For this reason, the relative displacement between the rotating body and the mass body is restricted. That is, the movement restricting portion also functions as a stopper mechanism that restricts the relative rotation angle between the rotating body and the mass body.
 (2)好ましくは、回転体は、外周部に径方向外方に突出する突起部を有する。突起部は外周方向に開くとともに内周側に所定の深さの開口部を有する。そして、遠心子は、突起部が挿入される穴部と、開口部に挿入されるピストン部と、を有する。 (2) Preferably, the rotating body has a protrusion protruding outward in the radial direction on the outer periphery. The protruding portion opens in the outer peripheral direction and has an opening having a predetermined depth on the inner peripheral side. And a centrifuge has a hole part in which a projection part is inserted, and a piston part inserted in an opening part.
 ここでは、遠心子は突起部に沿って径方向に移動が可能である。また、ピストン部が開口部に挿入されることによって、開口部がシリンダとして機能する。したがって、遠心子のピストン部の移動によってシリンダ内の粘性流体が移動し、この移動する粘性流体が油路を通過することによって遠心子の移動速度が規制される。 Here, the centrifuge can move in the radial direction along the protrusion. Moreover, an opening part functions as a cylinder by inserting a piston part in an opening part. Accordingly, the viscous fluid in the cylinder is moved by the movement of the piston portion of the centrifuge, and the moving speed of the centrifuge is regulated by the moving viscous fluid passing through the oil passage.
 (3)好ましくは、油路は、開口部に挿入されたピストン部の周囲の隙間である。ここでは、簡単な構成によって作動油が通過する際に抵抗になる油路を構成することができる。 (3) Preferably, the oil passage is a gap around the piston portion inserted into the opening. Here, it is possible to configure an oil passage that becomes a resistance when the hydraulic oil passes by a simple configuration.
 (4)好ましくは、回転体の開口部と、回転体の突起部が挿入された遠心子の穴部と、によって粘性流体を収容可能な流体収容部が形成されている。 (4) Preferably, a fluid accommodating portion capable of accommodating a viscous fluid is formed by the opening of the rotating body and the hole of the centrifuge into which the protrusion of the rotating body is inserted.
 (5)好ましくは、遠心子は、回転方向に延びて形成されるとともに、回転方向の両端部に形成されたガイド部を有している。そして、ガイド部は回転体の突起部の円周方向の端面で支持されている。 (5) Preferably, the centrifuge is formed so as to extend in the rotational direction and has guide portions formed at both ends in the rotational direction. And the guide part is supported by the end surface of the circumferential direction of the projection part of a rotary body.
 (6)好ましくは、カムは遠心子に設けられ、カムフォロアは質量体に設けられている。そして、回転体と質量体との間に回転方向における相対変位が生じたときに、遠心子のガイド部は、遠心子の重心を挟んでカムとカムフォロアの接点と逆側の位置で突起部の円周方向の端面に当接する。 (6) Preferably, the cam is provided in the centrifuge and the cam follower is provided in the mass body. When the relative displacement in the rotational direction occurs between the rotating body and the mass body, the centrifuge guide portion is located on the opposite side of the contact point between the cam and the cam follower with the center of gravity of the centrifuge interposed therebetween. Abuts against the circumferential end face.
 ここでは、回転体と質量体との間に回転方向の相対変位が生じてカム機構が作動した場合に、遠心子のガイド部は、遠心子の重心を挟んで、カムとカムフォロアの接点と少なくとも逆側の位置で突起部の端面に当接する。このため、遠心子において、回転方向の一端を支点として大きな回転モーメントが生じるのを抑えることができる。したがって、遠心子がスムーズに移動することになり、ガイド部の構成を簡単にすることができる。 Here, when a relative displacement in the rotational direction occurs between the rotating body and the mass body and the cam mechanism is operated, the guide portion of the centrifuge has at least a contact point between the cam and the cam follower with the center of gravity of the centrifuge interposed therebetween. It abuts against the end face of the protrusion at the opposite position. For this reason, in a centrifuge, it can suppress that a big rotational moment arises by using the end of a rotation direction as a fulcrum. Therefore, the centrifuge moves smoothly, and the configuration of the guide portion can be simplified.
 (7)好ましくは、ガイド部は、遠心子の回転方向の両端部に回転自在に支持され、突起部の円周方向の端面を転動する1対のローラである。 (7) Preferably, the guide portion is a pair of rollers that are rotatably supported at both ends in the rotation direction of the centrifuge and roll on the circumferential end surface of the protrusion.
 この場合は遠心子の径方向の移動がスムーズになる。また、仮に、遠心子において、回転方向の一端を支点とした回転モーメントが生じるように構成した場合、遠心子をスムーズに移動させるためには、ガイド部を、たとえば内周側及び外周側にそれぞれ1対のローラ(合計2対のローラ)を設ける必要がある。 In this case, the movement of the centrifuge in the radial direction becomes smooth. Also, if the centrifuge is configured to generate a rotational moment with one end in the rotation direction as a fulcrum, in order to move the centrifuge smoothly, for example, the guide portions are respectively arranged on the inner peripheral side and the outer peripheral side. It is necessary to provide a pair of rollers (two pairs in total).
 しかし、本発明では、前述のように、遠心子において、回転方向の一端を支点とした回転モーメントが抑えられるように構成しているので、1対のローラのみによってガイド部を構成しても、遠心子をスムーズに移動させることができる。 However, in the present invention, as described above, in the centrifuge, since the rotational moment with one end in the rotational direction as a fulcrum is suppressed, even if the guide portion is configured by only a pair of rollers, The centrifuge can be moved smoothly.
 (8)好ましくは、回転体は外周面に内周側に窪む凹部を有し、遠心子は凹部に収容されている。 (8) Preferably, the rotating body has a concave portion recessed on the inner peripheral side on the outer peripheral surface, and the centrifuge is accommodated in the concave portion.
 (9)好ましくは、遠心子は、内周面から外周側に窪む穴部を有し、回転体は、凹部の底面に遠心子の穴部に挿入された突起部を有する。 (9) Preferably, the centrifuge has a hole that is recessed from the inner peripheral surface to the outer peripheral side, and the rotating body has a protrusion that is inserted into the hole of the centrifuge on the bottom surface of the recess.
 (10)好ましくは、遠心子の穴部には粘性流体を収容可能であり、油路は、穴部に挿入された回転体の突起部の周囲の隙間である。 (10) Preferably, a viscous fluid can be accommodated in the hole of the centrifuge, and the oil passage is a gap around the protrusion of the rotating body inserted into the hole.
 (11)好ましくは、質量体は、回転体を挟んで対向して配置された第1イナーシャリングと第2イナーシャリングと、第1イナーシャリングと第2イナーシャリングとを相対回転不能に連結するピンと、をさらに有している。また、好ましくは、遠心子は、回転体の外周部でかつピンの内周側において第1イナーシャリングと第2イナーシャリングとの軸方向間に配置されている。そして、カムフォロアは、内部にピンが軸方向に貫通する孔を有する円筒状のコロである。また、カムは、遠心子に形成されてカムフォロアに当接し、回転体と質量体との間の回転方向における相対変位量に応じて円周方向力が変化するような形状を有する。 (11) Preferably, the mass body includes a first inertia ring and a second inertia ring arranged to face each other with the rotating body interposed therebetween, and a pin that connects the first inertia ring and the second inertia ring so as not to be relatively rotatable. , Further. Preferably, the centrifuge is arranged between the first inertia ring and the second inertia ring in the axial direction on the outer peripheral portion of the rotating body and on the inner peripheral side of the pin. The cam follower is a cylindrical roller having a hole through which a pin penetrates in the axial direction. In addition, the cam is formed in the centrifuge and contacts the cam follower, and has a shape such that the circumferential force changes according to the relative displacement amount in the rotational direction between the rotating body and the mass body.
 ここでは、第1イナーシャリングと第2イナーシャリングとを連結するピンを利用して、カムフォロアを装着している。このため、カム機構の構成が簡単になる。 Here, the cam follower is mounted using a pin that connects the first inertia ring and the second inertia ring. This simplifies the configuration of the cam mechanism.
 (12)本発明に係るトルクコンバータは、エンジンとトランスミッションとの間に配置される。このトルクコンバータは、エンジンからのトルクが入力される入力側回転体と、トランスミッションにトルクを出力する出力側回転体と、入力側回転体とタービンとの間に配置されたダンパと、以上に記載のいずれかのトルク変動抑制装置と、を備えている。 (12) The torque converter according to the present invention is disposed between the engine and the transmission. The torque converter includes an input-side rotating body that receives torque from the engine, an output-side rotating body that outputs torque to the transmission, and a damper that is disposed between the input-side rotating body and the turbine. Any of the torque fluctuation suppression devices.
 (13)本発明に係る動力伝達装置は、フライホイールと、クラッチ装置と、以上に記載のいずれかのトルク変動抑制装置と、を備えている。フライホイールは、回転軸を中心に回転する第1慣性体と、回転軸を中心に回転し第1慣性体と相対回転自在な第2慣性体と、第1慣性体と第2慣性体との間に配置されたダンパと、を有する。クラッチ装置は、フライホイールの第2慣性体に設けられている。 (13) A power transmission device according to the present invention includes a flywheel, a clutch device, and any of the torque fluctuation suppression devices described above. The flywheel includes a first inertial body that rotates about a rotation axis, a second inertial body that rotates about the rotation axis and is rotatable relative to the first inertial body, and a first inertial body and a second inertial body. And a damper disposed therebetween. The clutch device is provided on the second inertial body of the flywheel.
 以上のような本発明では、回転部材のトルク変動を抑えるための装置において、比較的広い回転数域においてトルク変動のピークを抑えることができる。また、本発明では、遠心子が他の部材と衝突する打音を抑えることができ、また簡単な構成でストッパ機構を実現できる。 In the present invention as described above, the peak of torque fluctuation can be suppressed in a relatively wide rotational speed range in the apparatus for suppressing torque fluctuation of the rotating member. Further, according to the present invention, it is possible to suppress the hitting sound that the centrifuge collides with other members, and it is possible to realize the stopper mechanism with a simple configuration.
本発明の第1実施形態によるトルクコンバータの模式図。The schematic diagram of the torque converter by a 1st embodiment of the present invention. 図1の出力側回転体及びトルク変動抑制装置の正面部分図。FIG. 2 is a partial front view of the output side rotating body and the torque fluctuation suppressing device of FIG. 1. 図2の矢視A図。FIG. 3 is an arrow A view of FIG. 2. 図2に示された部分の外観斜視図。The external appearance perspective view of the part shown by FIG. 遠心子の内部構成を説明するための図。The figure for demonstrating the internal structure of a centrifuge. カム機構の作動を説明するための図。The figure for demonstrating the action | operation of a cam mechanism. カム機構の作動を説明するための図。The figure for demonstrating the action | operation of a cam mechanism. 回転数とトルク変動の関係を示す特性図。The characteristic view which shows the relationship between a rotation speed and a torque fluctuation. 本発明の第2実施形態の図2に対応する図。The figure corresponding to FIG. 2 of 2nd Embodiment of this invention. 図9の矢視B図。The arrow B figure of FIG. 本発明の適用例1を示す模式図。The schematic diagram which shows the application example 1 of this invention. 本発明の適用例2を示す模式図。The schematic diagram which shows the application example 2 of this invention. 本発明の適用例3を示す模式図。The schematic diagram which shows the application example 3 of this invention. 本発明の適用例4を示す模式図。The schematic diagram which shows the application example 4 of this invention. 本発明の適用例5を示す模式図。The schematic diagram which shows the application example 5 of this invention. 本発明の適用例6を示す模式図。The schematic diagram which shows the application example 6 of this invention. 本発明の適用例7を示す模式図。The schematic diagram which shows the application example 7 of this invention. 本発明の適用例8を示す模式図。The schematic diagram which shows the application example 8 of this invention. 本発明の適用例9を示す模式図。The schematic diagram which shows the application example 9 of this invention.
 -第1実施形態-
 図1は、本発明の第1実施形態によるトルク変動抑制装置をトルクコンバータのロックアップ装置に装着した場合の模式図である。図1において、O-Oがトルクコンバータの回転軸線である。
-First embodiment-
FIG. 1 is a schematic diagram when the torque fluctuation suppressing device according to the first embodiment of the present invention is mounted on a lock-up device of a torque converter. In FIG. 1, OO is the rotational axis of the torque converter.
 [全体構成]
 トルクコンバータ1は、フロントカバー2と、トルクコンバータ本体3と、ロックアップ装置4と、出力ハブ5と、を有している。フロントカバー2にはエンジンからトルクが入力される。トルクコンバータ本体3は、フロントカバー2に連結されたインペラ7と、タービン8と、ステータ(図示せず)と、を有している。タービン8は出力ハブ5に連結されており、出力ハブ5の内周部には、トランスミッションの入力軸(図示せず)がスプラインによって係合可能である。
[overall structure]
The torque converter 1 includes a front cover 2, a torque converter main body 3, a lockup device 4, and an output hub 5. Torque is input to the front cover 2 from the engine. The torque converter main body 3 includes an impeller 7 connected to the front cover 2, a turbine 8, and a stator (not shown). The turbine 8 is connected to the output hub 5, and an input shaft (not shown) of the transmission can be engaged with the inner peripheral portion of the output hub 5 by a spline.
 [ロックアップ装置4]
 ロックアップ装置4は、クラッチ部や、油圧によって作動するピストン等を有し、ロックアップオン状態と、ロックアップオフ状態と、を取り得る。ロックアップオン状態では、フロントカバー2に入力されたトルクは、トルクコンバータ本体3を介さずに、ロックアップ装置4を介して出力ハブ5に伝達される。一方、ロックアップオフ状態では、フロントカバー2に入力されたトルクは、トルクコンバータ本体3を介して出力ハブ5に伝達される。
[Lock-up device 4]
The lock-up device 4 has a clutch part, a piston that is operated by hydraulic pressure, and the like, and can take a lock-up on state and a lock-up off state. In the lock-up on state, the torque input to the front cover 2 is transmitted to the output hub 5 via the lock-up device 4 without passing through the torque converter body 3. On the other hand, in the lock-up off state, torque input to the front cover 2 is transmitted to the output hub 5 via the torque converter body 3.
 ロックアップ装置4は、入力側回転体11と、出力側回転体12と、ダンパ13と、トルク変動抑制装置14と、を有している。 The lockup device 4 includes an input side rotating body 11, an output side rotating body 12, a damper 13, and a torque fluctuation suppressing device 14.
 入力側回転体11は、軸方向に移動自在なピストンを含み、フロントカバー2側の側面に摩擦部材16を有している。この摩擦部材16がフロントカバー2に押し付けられることによって、フロントカバー2から入力側回転体11にトルクが伝達される。 The input side rotating body 11 includes a piston that is movable in the axial direction, and has a friction member 16 on the side surface on the front cover 2 side. When the friction member 16 is pressed against the front cover 2, torque is transmitted from the front cover 2 to the input side rotating body 11.
 出力側回転体12は、入力側回転体11と軸方向に対向して配置され、入力側回転体11と相対回転自在である。出力側回転体12は出力ハブ5に連結されている。 The output side rotator 12 is disposed so as to face the input side rotator 11 in the axial direction, and is rotatable relative to the input side rotator 11. The output side rotating body 12 is connected to the output hub 5.
 ダンパ13は、入力側回転体11と出力側回転体12との間に配置されている。ダンパ13は、複数のトーションスプリングを有しており、入力側回転体11と出力側回転体12とを回転方向に弾性的に連結している。このダンパ13によって、入力側回転体11から出力側回転体12にトルクが伝達されるとともに、トルク変動が吸収、減衰される。 The damper 13 is disposed between the input side rotating body 11 and the output side rotating body 12. The damper 13 has a plurality of torsion springs, and elastically connects the input side rotating body 11 and the output side rotating body 12 in the rotation direction. The damper 13 transmits torque from the input-side rotator 11 to the output-side rotator 12, and absorbs and attenuates torque fluctuations.
 [トルク変動抑制装置14]
 図2は、出力側回転体12及びトルク変動抑制装置14の正面図である。なお、図2では出力側回転体12及びトルク変動抑制装置14の一部を示しているが、全体としては、円周方向の4ヶ所に、図2に示した部分が等角度間隔で設けられている。また、図3は図2のA方向から視た図、図4は図2の外観斜視図である。なお、図4では、一方(図4において手前側)のイナーシャリングを取り外して示している。
[Torque fluctuation suppressing device 14]
FIG. 2 is a front view of the output side rotating body 12 and the torque fluctuation suppressing device 14. 2 shows a part of the output-side rotator 12 and the torque fluctuation suppressing device 14, but as a whole, the portions shown in FIG. 2 are provided at equiangular intervals at four locations in the circumferential direction. ing. 3 is a view seen from the direction A in FIG. 2, and FIG. 4 is an external perspective view of FIG. In FIG. 4, the inertia ring on one side (front side in FIG. 4) is removed and shown.
 トルク変動抑制装置14は、質量体20を構成する第1イナーシャリング201及び第2イナーシャリング202と、4個の遠心子21と、4個のカム機構22と、を有している。 The torque fluctuation suppressing device 14 includes a first inertia ring 201 and a second inertia ring 202 that constitute the mass body 20, four centrifuges 21, and four cam mechanisms 22.
  <第1及び第2イナーシャリング201,202>
第1及び第2イナーシャリング201,202は、それぞれ連続した円環状に形成された所定の厚みを有するプレートであり、図3に示すように、出力側回転体12を挟んで出力側回転体12の軸方向両側に所定の隙間をあけて配置されている。すなわち、出力側回転体12と第1及び第2イナーシャリング201,202とは、軸方向に並べて配置されている。第1及び第2イナーシャリング201,202は、出力側回転体12の回転軸と同じ回転軸を有し、出力側回転体12とともに回転可能で、かつ出力側回転体12に対して相対回転自在である。
<First and second inertia rings 201, 202>
The first and second inertia rings 201 and 202 are plates each having a predetermined thickness formed in a continuous annular shape. As shown in FIG. 3, the output-side rotator 12 sandwiches the output-side rotator 12. Are arranged with a predetermined gap on both sides in the axial direction. That is, the output-side rotating body 12 and the first and second inertia rings 201 and 202 are arranged side by side in the axial direction. The first and second inertia rings 201 and 202 have the same rotation axis as that of the output-side rotator 12, can rotate together with the output-side rotator 12, and can rotate relative to the output-side rotator 12. It is.
 第1及び第2イナーシャリング201,202には軸方向に貫通する孔201a,202aが形成されている。そして、第1イナーシャリング201と第2イナーシャリング202とは、それらの孔201a,202aを貫通するリベット24によって固定されている。したがって、第1イナーシャリング201は、第2イナーシャリング202に対して、軸方向、径方向、及び回転方向に移動不能である。 In the first and second inertia rings 201, 202, holes 201a, 202a penetrating in the axial direction are formed. And the 1st inertia ring 201 and the 2nd inertia ring 202 are being fixed by the rivet 24 which penetrates those holes 201a and 202a. Therefore, the first inertia ring 201 cannot move in the axial direction, the radial direction, and the rotation direction with respect to the second inertia ring 202.
  <出力側回転体12>
 出力側回転体12は、円板状に形成され、内周部が前述のように出力ハブ5に連結されている。出力側回転体12の外周部には、外周側にさらに突出し、円周方向に所定の幅を有する4つの突起部121が形成されている。突起部121は、円周方向の両端面にガイド支持部121a,121bを有し、さらに円周方向の中央部に所定の幅の開口部121cを有している。開口部121cは、外周側に開くように形成され、所定の深さを有している。
<Output-side rotator 12>
The output-side rotator 12 is formed in a disc shape, and the inner peripheral portion is connected to the output hub 5 as described above. On the outer peripheral portion of the output-side rotator 12, four protrusions 121 that further protrude on the outer peripheral side and have a predetermined width in the circumferential direction are formed. The protrusion 121 has guide support portions 121a and 121b on both end faces in the circumferential direction, and further has an opening 121c with a predetermined width at the center in the circumferential direction. The opening 121c is formed so as to open to the outer peripheral side and has a predetermined depth.
  <遠心子21、移動規制部>
 遠心子21は、4つのネジ部材によって長手方向の両端が連結された第1部材211及び第2部材212を有している。第1及び第2部材211,212は同じ形状である。第1及び第2部材211,212は、第1イナーシャリング201と第2イナーシャリング202との軸方向間において、リベット24の内周側で、かつ出力側回転体12の突起部121を挟むように配置されている。遠心子21は、出力側回転体12とともに回転し、出力側回転体12の回転による遠心力によって径方向に移動可能である。
<Centrifuge 21 and movement restriction unit>
The centrifuge 21 has a first member 211 and a second member 212 whose longitudinal ends are connected by four screw members. The first and second members 211 and 212 have the same shape. The first and second members 211 and 212 sandwich the protrusion 121 of the output-side rotator 12 on the inner peripheral side of the rivet 24 between the axial directions of the first inertia ring 201 and the second inertia ring 202. Is arranged. The centrifuge 21 rotates with the output-side rotator 12 and is movable in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 12.
 より詳細には、遠心子21は回転方向に延びて形成されている。遠心子21を構成する第1部材211と第2部材212とは、図5の破線のハッチングで示すように、長手方向の両端部に形成された4ヶ所のネジ部材による連結部C1~C4と、長手方向の中央部C5と、を除いて、軸方向に隙間を開けて配置されている。この隙間が、出力側回転体12の突起部121が挿入される穴部を構成している。言い換えれば、遠心子21を構成する第1部材211と第2部材212とは、長手方向の両端部に形成された4ヶ所のネジ部材による連結部C1~C4と、長手方向の中央部C5と、が密着している。 More specifically, the centrifuge 21 is formed to extend in the rotation direction. The first member 211 and the second member 212 constituting the centrifuge 21 are, as shown by the hatched lines in FIG. 5, connected portions C1 to C4 formed by four screw members formed at both ends in the longitudinal direction. Except for the central portion C5 in the longitudinal direction, a gap is provided in the axial direction. This gap constitutes a hole into which the protruding portion 121 of the output side rotating body 12 is inserted. In other words, the first member 211 and the second member 212 constituting the centrifuge 21 are composed of connecting portions C1 to C4 formed by four screw members formed at both ends in the longitudinal direction, and a central portion C5 in the longitudinal direction. , Are in close contact.
 第1部材211と第2部材212の両端部の隙間(両部材211,212の軸方向の隙間)には、それぞれ1個の第1ガイドローラ26a及び第2ガイドローラ26b(ガイド部)と、出力側回転体12の突起部121の両端部と、が配置されている。第1及び第2ガイドローラ26a,26bは、第1及び第2部材211,212の両端部に支持されたピン27の回りにブッシュ28を介して回転自在に装着されている。そして、第1ガイドローラ26aの外周面は突起部121の一方のガイド支持部(側面)121aに当接して転動可能であり、第2ローラ26bの外周面は突起部121の他方のガイド支持部(側面)121bに当接して転動可能である。 In the gap between both ends of the first member 211 and the second member 212 (the gap in the axial direction of both members 211 and 212), one first guide roller 26a and second guide roller 26b (guide portion), Both ends of the protrusion 121 of the output side rotating body 12 are arranged. The first and second guide rollers 26a and 26b are rotatably mounted via bushes 28 around pins 27 supported at both ends of the first and second members 211 and 212. The outer peripheral surface of the first guide roller 26 a is in contact with one guide support portion (side surface) 121 a of the protrusion 121 and can roll, and the outer peripheral surface of the second roller 26 b is the other guide support of the protrusion 121. It is possible to roll in contact with the portion (side surface) 121b.
 遠心子21の中央部は、上端面から内周側に所定の長さを有するピストン部21a(図5に示す第1部材211と第2部材212が互いに密着する領域C5)が形成されている。前述のように、ピストン部21aは、第1部材211と第2部材212とが隙間なく密着して形成されている。ピストン部21aは突起部121の開口部121cに所定の隙間を介して径方向に移動自在に挿入されている。 The central portion of the centrifuge 21 is formed with a piston portion 21a (a region C5 where the first member 211 and the second member 212 shown in FIG. 5 are in close contact with each other) having a predetermined length from the upper end surface to the inner peripheral side. . As described above, the piston portion 21a is formed such that the first member 211 and the second member 212 are in close contact with each other without a gap. The piston portion 21a is inserted into the opening 121c of the projection 121 so as to be movable in the radial direction through a predetermined gap.
 以上のような構成により、突起部121の開口部121cと、突起部121が挿入された穴部(第1部材211と第2部材212との隙間)と、によって、作動油を溜めることが可能な流体収容部が形成されている。そして、ピストン部21aとこの流体収容部との隙間が、作動油が流通する油路、すなわち作動油が通過する流路断面積が絞られたオリフィスOrとして機能する。遠心子21が径方向に移動する際には、流体収容部に収容された作動油がこのオリフィスOrを通過するので、遠心子21が移動する際の抵抗になる。このため、遠心子21の径方向に移動速度が低下することになる。すなわち、ピストン部21a、開口部121c、開口部121cを覆う遠心子21等の部材によって、遠心子21の径方向の移動速度を規制する移動規制部が構成されている。 With the configuration as described above, the hydraulic oil can be accumulated by the opening 121c of the protrusion 121 and the hole portion (the gap between the first member 211 and the second member 212) in which the protrusion 121 is inserted. A fluid containing portion is formed. The gap between the piston portion 21a and the fluid storage portion functions as an oil passage through which the working oil flows, that is, an orifice Or in which a cross-sectional area through which the working oil passes is narrowed. When the centrifuge 21 moves in the radial direction, the hydraulic oil accommodated in the fluid accommodating portion passes through the orifice Or, so that resistance when the centrifuge 21 moves is provided. For this reason, the moving speed decreases in the radial direction of the centrifuge 21. That is, the movement restricting portion that restricts the moving speed in the radial direction of the centrifuge 21 is configured by a member such as the centrifuge 21 that covers the piston portion 21a, the opening 121c, and the opening 121c.
 なお、遠心子21の第1及び第2部材211,212は、それぞれの外周面211a,212aが内周側に窪む円弧状に形成されており、後述するように、これらの外周面211a,212aがカム31として機能する。 The first and second members 211 and 212 of the centrifuge 21 are formed in an arc shape in which the outer peripheral surfaces 211a and 212a are recessed toward the inner peripheral side, and as will be described later, these outer peripheral surfaces 211a and 212a, 212 a functions as the cam 31.
  <カム機構22>
 カム機構22は、カムフォロアとしての円筒状のコロ30と、第1及び第2部材211,212の外周面211a,212aであるカム31と、から構成されている。コロ30は、リベット24の胴部の外周に嵌めこまれている。すなわち、コロ30はリベット24に支持されている。なお、コロ30は、リベット24に対して回転自在に装着されているのが好ましいが、回転不能であってもよい。カム31は、コロ30が当接する円弧状の面であり、出力側回転体12と第1及び第2イナーシャリング201,202とが所定の角度範囲で相対回転した際には、コロ30はこのカム31に沿って移動する。
<Cam mechanism 22>
The cam mechanism 22 includes a cylindrical roller 30 as a cam follower and cams 31 that are outer peripheral surfaces 211 a and 212 a of the first and second members 211 and 212. The roller 30 is fitted on the outer periphery of the trunk portion of the rivet 24. That is, the roller 30 is supported by the rivet 24. The roller 30 is preferably mounted so as to be rotatable with respect to the rivet 24, but may not be rotatable. The cam 31 is an arc-shaped surface with which the roller 30 abuts. When the output side rotating body 12 and the first and second inertia rings 201 and 202 are relatively rotated within a predetermined angular range, the roller 30 It moves along the cam 31.
 詳細は後述するが、コロ30とカム31との接触によって、出力側回転体12と第1及び第2イナーシャリング201,202との間に回転位相差が生じたときに、遠心子21に生じた遠心力は、回転位相差が小さくなるような円周方向の力に変換される。 As will be described in detail later, when a rotational phase difference is generated between the output-side rotating body 12 and the first and second inertia rings 201 and 202 due to contact between the roller 30 and the cam 31, it occurs in the centrifuge 21. The centrifugal force is converted into a circumferential force that reduces the rotational phase difference.
 [カム機構22の作動]
 図2、図6及び図7を用いて、カム機構22の作動(トルク変動の抑制)について説明する。なお、以下の説明では、第1及び第2イナーシャリング201,202を、単に「イナーシャリング20」と記す場合もある。
[Operation of cam mechanism 22]
The operation of the cam mechanism 22 (torque fluctuation suppression) will be described with reference to FIGS. In the following description, the first and second inertia rings 201 and 202 may be simply referred to as “inertia ring 20”.
 ロックアップオン時には、フロントカバー2に伝達されたトルクは、入力側回転体11及びダンパ13を介して出力側回転体12に伝達される。 When the lockup is on, the torque transmitted to the front cover 2 is transmitted to the output side rotator 12 via the input side rotator 11 and the damper 13.
 トルク伝達時にトルク変動がない場合は、図2に示すような状態で、出力側回転体12及びイナーシャリング20は回転する。この状態では、カム機構22のコロ30はカム31のもっとも内周側の位置(円周方向の中央位置)に当接し、出力側回転体12とイナーシャリング20との回転位相差は「0」である。 When there is no torque fluctuation during torque transmission, the output side rotating body 12 and the inertia ring 20 rotate in the state shown in FIG. In this state, the roller 30 of the cam mechanism 22 is in contact with the innermost position (the center position in the circumferential direction) of the cam 31, and the rotational phase difference between the output-side rotating body 12 and the inertia ring 20 is “0”. It is.
 前述のように、出力側回転体12とイナーシャリング20との間の回転方向の相対変位量を、「回転位相差」と称しているが、これらは、図2、図6及び図7では、遠心子21及びカム31の円周方向の中央位置と、コロ30の中心位置と、のずれを示すものである。 As described above, the relative displacement amount in the rotation direction between the output-side rotator 12 and the inertia ring 20 is referred to as “rotational phase difference”. In FIG. 2, FIG. 6, and FIG. The deviation between the center position of the centrifuge 21 and the cam 31 in the circumferential direction and the center position of the roller 30 is shown.
 ここで、トルクの伝達時にトルク変動が存在すると、図6及び図7に示すように、出力側回転体12とイナーシャリング20との間には、回転位相差±θが生じる。図6は+R側に回転位相差+θが生じた場合を示し、図7は-R側に回転位相差-θが生じた場合を示している。 Here, if torque fluctuation is present during torque transmission, a rotational phase difference ± θ is generated between the output-side rotating body 12 and the inertia ring 20 as shown in FIGS. FIG. 6 shows a case where a rotational phase difference + θ occurs on the + R side, and FIG. 7 shows a case where a rotational phase difference −θ occurs on the −R side.
 図6に示すように、出力側回転体12とイナーシャリング20との間に回転位相差+θが生じた場合は、カム機構22のコロ30は、カム31に沿って相対的に図6における左側に移動する。このとき、遠心子21には遠心力が作用しているので、遠心子21に形成されたカム31がコロ30から受ける反力は、図6のP0の方向及び大きさとなる。この反力P0によって、円周方向の第1分力P1と、遠心子21を内周側に向かって移動させる方向の第2分力P2と、が発生する。 As shown in FIG. 6, when a rotational phase difference + θ occurs between the output-side rotator 12 and the inertia ring 20, the roller 30 of the cam mechanism 22 moves along the cam 31 relatively to the left side in FIG. 6. Move to. At this time, since centrifugal force is acting on the centrifuge 21, the reaction force received from the roller 30 by the cam 31 formed on the centrifuge 21 is the direction and magnitude of P0 in FIG. The reaction force P0 generates a first component force P1 in the circumferential direction and a second component force P2 in a direction that moves the centrifuge 21 toward the inner periphery.
 そして、第1分力P1は、カム機構22及び遠心子21を介して出力側回転体12を図6における左方向に移動させる力となる。すなわち、出力側回転体12とイナーシャリング20との回転位相差を小さくする方向の力が、出力側回転体12に作用することになる。また、第2分力P2によって、遠心子21は、遠心力に抗して内周側に移動させられる。 The first component force P1 is a force that moves the output side rotating body 12 to the left in FIG. 6 via the cam mechanism 22 and the centrifuge 21. That is, a force in the direction of reducing the rotational phase difference between the output side rotating body 12 and the inertia ring 20 acts on the output side rotating body 12. Moreover, the centrifuge 21 is moved to the inner peripheral side against the centrifugal force by the second component force P2.
 図7は、出力側回転体12とイナーシャリング20との間に回転位相差-θが生じた場合を示しており、カム機構22のコロ30の移動方向、反力P0、第1分力P1、及び第2分力P2の方向が図6と異なるだけで、カム機構22の作動は同様である。 FIG. 7 shows a case where a rotational phase difference −θ is generated between the output-side rotator 12 and the inertia ring 20, and the moving direction of the roller 30 of the cam mechanism 22, the reaction force P0, and the first component force P1. The operation of the cam mechanism 22 is the same except that the direction of the second component force P2 is different from that in FIG.
 以上のように、トルク変動によって出力側回転体12とイナーシャリング20との間に回転位相差が生じると、遠心子21に作用する遠心力及びカム機構22の作用によって、出力側回転体12は、両者の回転位相差を小さくする方向の力(第1分力P1)を受ける。この力によって、トルク変動が抑制される。 As described above, when a rotational phase difference is generated between the output-side rotating body 12 and the inertia ring 20 due to torque fluctuation, the output-side rotating body 12 is caused by the centrifugal force acting on the centrifuge 21 and the action of the cam mechanism 22. , A force (first component force P1) in a direction to reduce the rotational phase difference between the two is received. This force suppresses torque fluctuations.
 以上のトルク変動を抑制する力は、遠心力、すなわち出力側回転体12の回転数によって変化するし、回転位相差及びカム31の形状によっても変化する。したがって、カム31の形状を適宜設定することによって、トルク変動抑制装置14の特性を、エンジン仕様等に応じた最適な特性にすることができる。 The force that suppresses the above torque fluctuations changes depending on the centrifugal force, that is, the rotational speed of the output side rotating body 12, and also changes depending on the rotational phase difference and the shape of the cam 31. Therefore, by setting the shape of the cam 31 as appropriate, the characteristics of the torque fluctuation suppressing device 14 can be optimized according to engine specifications and the like.
 例えば、カム31の形状は、同じ遠心力が作用している状態で、回転位相差に応じて第1分力P1が線形に変化するような形状にすることができる。また、カム31の形状は、回転位相差に応じて第1分力P1が非線形に変化する形状にすることができる。 For example, the shape of the cam 31 can be made such that the first component force P1 changes linearly according to the rotational phase difference in the state where the same centrifugal force is acting. In addition, the shape of the cam 31 can be a shape in which the first component force P1 changes nonlinearly according to the rotational phase difference.
 [特性の例]
 図8は、トルク変動抑制特性の一例を示す図である。横軸は回転数、縦軸はトルク変動(回転速度変動)である。特性Q1はトルク変動を抑制するための装置が設けられていない場合、特性Q2は従来のダイナミックダンパ装置が設けられた場合、特性Q3は本実施形態のトルク変動抑制装置14が設けられた場合を示している。
[Example of characteristics]
FIG. 8 is a diagram illustrating an example of torque fluctuation suppression characteristics. The horizontal axis represents the rotational speed, and the vertical axis represents the torque fluctuation (rotational speed fluctuation). The characteristic Q1 is a case where a device for suppressing torque fluctuation is not provided, the characteristic Q2 is a case where a conventional dynamic damper device is provided, and the characteristic Q3 is a case where the torque fluctuation suppressing device 14 of the present embodiment is provided. Show.
 この図8から明らかなように、従来のダイナミックダンパ装置が設けられた装置(特性Q2)では、特定の回転数域のみについてトルク変動を抑制することができる。一方、本実施形態(特性Q3)では、すべての回転数域においてトルク変動を抑制することができる。 As is apparent from FIG. 8, in the device (characteristic Q2) provided with the conventional dynamic damper device, torque fluctuation can be suppressed only in a specific rotational speed range. On the other hand, in the present embodiment (characteristic Q3), torque fluctuation can be suppressed in all the rotational speed ranges.
 [遠心子21の作動]
 たとえば、図6に示すように、出力側回転体12とイナーシャリング20との間に回転位相差が生じた場合、遠心子21には、コロ30との接点C1にイナーシャリング20からの力P0が作用する。この力P0によって、遠心子21に装着された第1ガイドローラ26aと突起部121の一方の側面121aとが接点C2において当接するとともに、第2ガイドローラ26bと突起部121の他方の側面121bとが接点C3において当接する。すなわち、図6に示すように、出力側回転体12とイナーシャリング20との間に+θの回転位相差が生じると、遠心子21の重心Gを挟んで、(接点C3にも力が作用するが)少なくともその両側の接点C1,C2に力が作用する。この場合、接点C2を支点として、遠心子21には、重心Gに作用する遠心力Wによる時計回りにモーメントが作用するとともに、接点C1には力P0による反時計回りのモーメントが作用する。このため、遠心子21に対して、一方側にのみ大きな回転モーメントが作用することはない。したがって、遠心子21が傾くのを抑えることができ、遠心子21を、2つのガイドローラ26a,26bのみで径方向にスムーズに移動させることができる。
[Operation of centrifuge 21]
For example, as shown in FIG. 6, when a rotational phase difference is generated between the output-side rotator 12 and the inertia ring 20, the centrifuge 21 has a force P 0 from the inertia ring 20 at the contact C 1 with the roller 30. Works. With this force P0, the first guide roller 26a attached to the centrifuge 21 and one side surface 121a of the projection 121 come into contact with each other at the contact C2, and the second guide roller 26b and the other side surface 121b of the projection 121 are in contact with each other. Abuts at the contact C3. That is, as shown in FIG. 6, when a rotational phase difference of + θ occurs between the output-side rotator 12 and the inertia ring 20, the force acts on the contact point C3 with the center of gravity G of the centrifuge 21 in between. A force acts on at least the contact points C1 and C2 on both sides thereof. In this case, with the contact C2 as a fulcrum, a moment acts clockwise on the centrifuge 21 due to the centrifugal force W acting on the center of gravity G, and a counterclockwise moment acts on the contact C1 due to the force P0. For this reason, a large rotational moment does not act on the centrifuge 21 only on one side. Therefore, the centrifuge 21 can be prevented from tilting, and the centrifuge 21 can be smoothly moved in the radial direction only by the two guide rollers 26a and 26b.
 [遠心子21の移動規制]
 以上のように、遠心子21は径方向に移動してトルク変動を抑制する。ここで、運転中は、出力側回転体12の開口部121c等によって形成された流体収容部には、作動油が溜まっている。このような状態で、遠心子21が径方向内側に移動すると、流体収容部に溜められていた作動油は、オリフィスOrを介して外部に排出される。作動油がオリフィスOrを通過する際には、抵抗を受けるので、遠心子21の移動速度が抑えられる。
[Movement restriction of centrifuge 21]
As described above, the centrifuge 21 moves in the radial direction and suppresses torque fluctuation. Here, during operation, hydraulic fluid is accumulated in the fluid storage portion formed by the opening 121c of the output side rotating body 12 and the like. In such a state, when the centrifuge 21 moves inward in the radial direction, the hydraulic oil stored in the fluid storage portion is discharged to the outside through the orifice Or. When the hydraulic oil passes through the orifice Or, resistance is applied, so that the moving speed of the centrifuge 21 can be suppressed.
 例えばエンジンが停止して出力側回転体12の回転が停止する際は、複数の遠心子21のうちの上方に位置する遠心子21は下方に落下する。このときに、前述のようにオリフィスOrを通過する作動油によって遠心子21の移動速度が抑えられるので、遠心子21のピストン部21aの内周面が開口部121cの底面に衝突する際の打音を抑えることができる。 For example, when the engine is stopped and the rotation of the output-side rotator 12 is stopped, the centrifuge 21 located above the plurality of centrifuges 21 falls downward. At this time, since the moving speed of the centrifuge 21 is suppressed by the hydraulic oil passing through the orifice Or as described above, the striking when the inner peripheral surface of the piston portion 21a of the centrifuge 21 collides with the bottom surface of the opening 121c. The sound can be suppressed.
 また、オリフィスOrの設定によっては、あるいはピストン部21aの内周側への長さと開口部121cの深さを適宜設定することによって、イナーシャリング20と出力側回転体12の回転位相差を、所定の角度に規制することができる。すなわち、ストッパ機構を実現できる。さらに、仮に、部材の衝突によるストッパ機構を別に設けたとしても、部材の衝突時の打音を抑えることができる。 Further, depending on the setting of the orifice Or, or by appropriately setting the length of the piston portion 21a toward the inner peripheral side and the depth of the opening 121c, the rotational phase difference between the inertia ring 20 and the output-side rotator 12 is set to a predetermined value. The angle can be regulated. That is, a stopper mechanism can be realized. Furthermore, even if a stopper mechanism due to the collision of the members is provided separately, the hitting sound at the time of the collision of the members can be suppressed.
 -第2実施形態-
 図9は本発明の第2実施形態によるトルク変動抑制装置の一部を示しており、第1実施形態の図2に相当する図である。また、図10は図9のB方向から視た図である。なお、図9は、一方(図9における手前)のイナーシャリングを取り外して示している。
-Second Embodiment-
FIG. 9 shows a part of the torque fluctuation suppressing device according to the second embodiment of the present invention, and corresponds to FIG. 2 of the first embodiment. FIG. 10 is a view seen from the direction B in FIG. FIG. 9 shows the inertia ring removed from one side (front side in FIG. 9).
 第2実施形態のトルク変動抑制装置140は、基本的には第1実施形態と同様であるが、主に、出力側回転体の形状、遠心子を支持するための構成、及び移動規制部の構成が異なっている。 The torque fluctuation suppressing device 140 of the second embodiment is basically the same as that of the first embodiment, but mainly the shape of the output-side rotator, the configuration for supporting the centrifuge, and the movement restricting portion. The configuration is different.
 図9及び図10に示すように、質量体20を構成するイナーシャリング201,202は第1実施形態と同様である。すなわち、第1及び第2イナーシャリング201,202は、それぞれ連続した円環状に形成された所定の厚みを有するプレートであり、出力側回転体120及び遠心子210を挟むように配置されている。 As shown in FIGS. 9 and 10, inertia rings 201 and 202 constituting the mass body 20 are the same as those in the first embodiment. That is, the first and second inertia rings 201 and 202 are plates each having a predetermined thickness formed in a continuous annular shape, and are disposed so as to sandwich the output-side rotating body 120 and the centrifuge 210.
 また、第1実施形態と同様に、第1及び第2イナーシャリング201,202は、リベット24によって固定され、第1イナーシャリング201は、第2イナーシャリング202に対して、軸方向、径方向、及び回転方向に移動不能である。 Similarly to the first embodiment, the first and second inertia rings 201, 202 are fixed by the rivet 24, and the first inertia ring 201 is axially and radially oriented with respect to the second inertia ring 202. And immovable in the rotational direction.
 出力側回転体120の外周面には、外周側に開く凹部120aが形成されている。また、凹部120aの円周方向の中央部には、凹部120aの底面から外周側の所定の高さだけ突出する突起部120bが形成されている。 A recess 120a that opens to the outer peripheral side is formed on the outer peripheral surface of the output-side rotator 120. In addition, a protrusion 120b that protrudes from the bottom surface of the recess 120a by a predetermined height on the outer peripheral side is formed at the center in the circumferential direction of the recess 120a.
 遠心子210は、出力側回転体120の凹部120aに配置されており、出力側回転体120の回転による遠心力によって径方向に移動可能である。遠心子210は、円周方向の両端に溝210a,210bを有している。溝210a,210bの幅は、出力側回転体120の厚みより大きく、溝210a,210bの一部に出力側回転体120が挿入されている。 The centrifuge 210 is disposed in the recess 120a of the output-side rotator 120, and can be moved in the radial direction by the centrifugal force generated by the rotation of the output-side rotator 120. The centrifuge 210 has grooves 210a and 210b at both ends in the circumferential direction. The width of the grooves 210a and 210b is larger than the thickness of the output-side rotator 120, and the output-side rotator 120 is inserted into a part of the grooves 210a and 210b.
 また、遠心子210の円周方向(長手方向)の中央部内周面には、外周側に窪む穴部210cが形成されている。この穴部210cは所定の隙間を介して、出力側回転体120の突起部120bが挿入されている。すなわち、穴部210cは作動油を溜めることが可能な流体収容部として機能し、穴部210cと突起部120bとの隙間は、第1実施形態と同様に、作動油が流通する油路、すなわち作動油が通過する流路断面積が絞られたオリフィスOrとして機能する。 Further, a hole 210c that is recessed toward the outer peripheral side is formed on the inner peripheral surface of the central portion in the circumferential direction (longitudinal direction) of the centrifuge 210. In the hole 210c, the protrusion 120b of the output side rotating body 120 is inserted through a predetermined gap. That is, the hole 210c functions as a fluid storage unit capable of storing hydraulic oil, and the gap between the hole 210c and the protrusion 120b is an oil passage through which hydraulic oil flows, as in the first embodiment, that is, It functions as an orifice Or in which the cross-sectional area of the flow path through which the hydraulic oil passes is reduced.
 なお、遠心子210の外周面210dは、第1実施形態と同様に、内周側に窪む円弧状に形成され、カム31として機能する。 The outer peripheral surface 210d of the centrifuge 210 is formed in an arc shape that is recessed toward the inner peripheral side, and functions as the cam 31 as in the first embodiment.
 遠心子210の両端の溝210a,210bには、それぞれ2個のローラ26a,26bが配置されている。各ローラ26a,26bの構成は第1実施形態と同様である。各ローラ26a,26bは、凹部120aの側面に当接して転動可能である。 Two rollers 26a and 26b are disposed in the grooves 210a and 210b at both ends of the centrifuge 210, respectively. The configuration of each roller 26a, 26b is the same as in the first embodiment. Each of the rollers 26a and 26b can be brought into contact with the side surface of the recess 120a to roll.
 カム機構220は、第1実施形態と同様であり、カムフォロアとしての円筒状のコロ30と、遠心子210の外周面210dに形成されたカム31と、から構成されている。また、カム機構220の動作についても、第1実施形態と同様であり、トルク変動が生じた場合には、出力側回転体120と第1及び第2イナーシャリング201,202との間に回転位相差が生じ、カム機構220の作用によってトルク変動が抑制される。 The cam mechanism 220 is the same as that of the first embodiment, and includes a cylindrical roller 30 as a cam follower and a cam 31 formed on the outer peripheral surface 210d of the centrifuge 210. Further, the operation of the cam mechanism 220 is the same as that in the first embodiment. When torque fluctuation occurs, the rotational position between the output side rotating body 120 and the first and second inertia rings 201 and 202 is increased. A phase difference is generated, and torque fluctuation is suppressed by the action of the cam mechanism 220.
 また、遠心子210の移動速度を規制する移動規制部の構成も、基本的には第1実施形態と同様である。具体的には、出力側回転体120とイナーシャリング201,202に回転位相差が生じると、カム機構220の作動によって遠心子210が径方向内側に移動する。この遠心子210の移動により、穴部210cに溜められた作動油がオリフィスOrを介して排出される。このときの、作動油がオリフィスOrを通過する抵抗によって、遠心子210の移動速度が抑えられる。 Also, the configuration of the movement restricting unit that restricts the moving speed of the centrifuge 210 is basically the same as that of the first embodiment. Specifically, when a rotational phase difference occurs between the output-side rotating body 120 and the inertia rings 201 and 202, the centrifuge 210 moves radially inward by the operation of the cam mechanism 220. Due to the movement of the centrifuge 210, the hydraulic oil stored in the hole 210c is discharged through the orifice Or. At this time, the moving speed of the centrifuge 210 is suppressed by the resistance of the hydraulic oil passing through the orifice Or.
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
[Other Embodiments]
The present invention is not limited to the above-described embodiments, and various changes or modifications can be made without departing from the scope of the present invention.
 (a)前記実施形態では、イナーシャリングを連続した円環状の部材で構成したが、分割された複数のイナーシャ体を円周方向に並べて配置してもよい。この場合は、複数のイナーシャ体を保持するために、イナーシャ体の外周側に、円環状の保持リング等の保持部材を設ける必要がある。 (A) In the above-described embodiment, the inertia ring is constituted by a continuous annular member, but a plurality of divided inertia bodies may be arranged in the circumferential direction. In this case, in order to hold a plurality of inertia bodies, it is necessary to provide a holding member such as an annular holding ring on the outer peripheral side of the inertia body.
 (b)前記実施形態では、ガイド部としてガイドローラを配置したが、樹脂レースやシート等の摩擦を低減する他の部材を配置してもよい。 (B) In the above-described embodiment, the guide roller is disposed as the guide portion, but another member that reduces friction such as a resin race or a sheet may be disposed.
(c)前記実施形態では、移動規制部を構成する油路として隙間を用いたが、他の構成を採用してもよい。例えば、第1実施形態では、遠心子21のピストン部21aに、径方向に貫通する孔を形成してもよい。 (C) In the above embodiment, the gap is used as the oil passage constituting the movement restricting portion, but other configurations may be adopted. For example, in the first embodiment, a hole penetrating in the radial direction may be formed in the piston portion 21a of the centrifuge 21.
 [適用例]
 以上のようなトルク変動抑制装置を、トルクコンバータや他の動力伝達装置に適用する場合、種々の配置が可能である。以下に、トルクコンバータや他の動力伝達装置の模式図を利用して、具体的な適用例について説明する。
[Application example]
When the torque fluctuation suppressing device as described above is applied to a torque converter or another power transmission device, various arrangements are possible. Below, a specific application example is demonstrated using the schematic diagram of a torque converter or another power transmission device.
 (1)図11は、トルクコンバータを模式的に示した図であり、トルクコンバータは、入力側回転体41と、出力側回転体42と、両回転体41,42の間に設けられたダンパ43と、を有している。入力側回転体41は、フロントカバー、ドライブプレート、ピストン等の部材を含む。出力側回転体42は、ドリブンプレート、タービンハブを含む。ダンパ43は複数のトーションスプリングを含む。 (1) FIG. 11 is a diagram schematically showing a torque converter, which includes an input-side rotating body 41, an output-side rotating body 42, and a damper provided between the rotating bodies 41 and 42. 43. The input side rotating body 41 includes members such as a front cover, a drive plate, and a piston. The output side rotating body 42 includes a driven plate and a turbine hub. The damper 43 includes a plurality of torsion springs.
 この図11に示した例では、入力側回転体41を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。 In the example shown in FIG. 11, a centrifuge is provided in any of the rotating members that constitute the input-side rotator 41, and a cam mechanism 44 that operates using centrifugal force acting on the centrifuge is provided. It has been. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
 (2)図12に示したトルクコンバータは、出力側回転体42を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。 (2) The torque converter shown in FIG. 12 is provided with a centrifuge in any of the rotating members constituting the output-side rotator 42, and is a cam mechanism that operates by utilizing the centrifugal force acting on the centrifuge. 44 is provided. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
 (3)図13に示したトルクコンバータは、図11及び図12に示した構成に加えて、別のダンパ45と、2つのダンパ43,45の間に設けられた中間部材46と、を有している。中間部材46は、入力側回転体41及び出力側回転体42と相対回転自在であり、2つのダンパ43,45を直列的に作用させる。 (3) The torque converter shown in FIG. 13 has another damper 45 and an intermediate member 46 provided between the two dampers 43, 45 in addition to the configurations shown in FIGS. is doing. The intermediate member 46 is relatively rotatable with the input side rotating body 41 and the output side rotating body 42, and causes the two dampers 43 and 45 to act in series.
 図13に示した例では、中間部材46に遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。 In the example shown in FIG. 13, the intermediate member 46 is provided with a centrifuge, and a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge is provided. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
 (4)図14に示したトルクコンバータは、フロート部材47を有している。フロート部材47は、ダンパ43を構成するトーションスプリングを支持するために部材であり、例えば、環状に形成されて、複数のトーションスプリングの外周及び少なくとも一方の側面を覆うように配置されている。また、フロート部材47は、入力側回転体41及び出力側回転体42と相対回転自在であり、かつダンパ43の複数のトーションスプリングとの摩擦によってダンパ43に連れ回る。すなわち、フロート部材47も回転する。 (4) The torque converter shown in FIG. 14 has a float member 47. The float member 47 is a member for supporting the torsion spring constituting the damper 43, and is formed, for example, in an annular shape so as to cover the outer periphery and at least one side surface of the plurality of torsion springs. The float member 47 is relatively rotatable with the input-side rotator 41 and the output-side rotator 42, and rotates around the damper 43 by friction with the plurality of torsion springs of the damper 43. That is, the float member 47 also rotates.
 この図14に示した例では、フロート部材47に遠心子48が設けられており、この遠心子48に作用する遠心力を利用して作動するカム機構44が設けられている。カム機構44については、前記各実施形態に示された構成と同様の構成を適用できる。 In the example shown in FIG. 14, the float member 47 is provided with a centrifuge 48, and a cam mechanism 44 that operates using a centrifugal force acting on the centrifuge 48 is provided. About the cam mechanism 44, the structure similar to the structure shown by the said each embodiment is applicable.
 (5)図15は、2つの慣性体51,52を有するフライホイール50と、クラッチ装置54と、を有する動力伝達装置の模式図である。すなわち、エンジンとクラッチ装置54との間に配置されたフライホイール50は、第1慣性体51と、第1慣性体51と相対回転自在に配置された第2慣性体52と、2つの慣性体51,52の間に配置されたダンパ53と、を有している。なお、第2慣性体52は、クラッチ装置54を構成するクラッチカバーも含む。 (5) FIG. 15 is a schematic diagram of a power transmission device having a flywheel 50 having two inertia bodies 51 and 52 and a clutch device 54. In other words, the flywheel 50 disposed between the engine and the clutch device 54 includes a first inertial body 51, a second inertial body 52 disposed so as to be rotatable relative to the first inertial body 51, and two inertial bodies. And a damper 53 disposed between 51 and 52. The second inertia body 52 also includes a clutch cover that constitutes the clutch device 54.
 図15に示した例では、第2慣性体52を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。 In the example shown in FIG. 15, a centrifuge is provided in any of the rotating members that constitute the second inertial body 52, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge is provided. ing. For the cam mechanism 55, the same configuration as that shown in each of the above embodiments can be applied.
 (6)図16は、図15と同様の動力伝達装置において、第1慣性体51に遠心子が設けられた例である。そして、この遠心子に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。 (6) FIG. 16 is an example in which a centrifuge is provided in the first inertial body 51 in the same power transmission device as in FIG. A cam mechanism 55 that operates using centrifugal force acting on the centrifuge is provided. For the cam mechanism 55, the same configuration as that shown in each of the above embodiments can be applied.
 (7)図17に示した動力伝達装置は、図15及び図16に示した構成に加えて、別のダンパ56と、2つのダンパ53,56の間に設けられた中間部材57と、を有している。中間部材57は、第1慣性体51及び第2慣性体52と相対回転自在である。 (7) In addition to the configuration shown in FIGS. 15 and 16, the power transmission device shown in FIG. 17 includes another damper 56 and an intermediate member 57 provided between the two dampers 53, 56. Have. The intermediate member 57 is rotatable relative to the first inertial body 51 and the second inertial body 52.
 図17に示した例では、中間部材57に遠心子58が設けられており、この遠心子58に作用する遠心力を利用して作動するカム機構55が設けられている。カム機構55については、前記各実施形態に示された構成と同様の構成を適用できる。 In the example shown in FIG. 17, the intermediate member 57 is provided with a centrifuge 58, and a cam mechanism 55 that operates using a centrifugal force acting on the centrifuge 58 is provided. For the cam mechanism 55, the same configuration as that shown in each of the above embodiments can be applied.
 (8)図18は、1つのフライホイールにクラッチ装置が設けられた動力伝達装置の模式図である。図18の第1慣性体61は、1つのフライホイールと、クラッチ装置62のクラッチカバーと、を含む。この例では、第1慣性体61を構成する回転部材のいずれかに遠心子が設けられており、この遠心子に作用する遠心力を利用して作動するカム機構64が設けられている。カム機構64については、前記各実施形態に示された構成と同様の構成を適用できる。 (8) FIG. 18 is a schematic diagram of a power transmission device in which a clutch device is provided on one flywheel. The first inertia body 61 in FIG. 18 includes one flywheel and a clutch cover of the clutch device 62. In this example, a centrifuge is provided in any of the rotating members constituting the first inertial body 61, and a cam mechanism 64 that operates by utilizing a centrifugal force acting on the centrifuge is provided. About the cam mechanism 64, the structure similar to the structure shown by the said each embodiment is applicable.
 (9)図19は、図18と同様の動力伝達装置において、クラッチ装置62の出力側に遠心子65が設けられた例である。そして、この遠心子65に作用する遠心力を利用して作動するカム機構64が設けられている。カム機構64については、前記各実施形態に示された構成と同様の構成を適用できる。 (9) FIG. 19 is an example in which a centrifuge 65 is provided on the output side of the clutch device 62 in the same power transmission device as FIG. A cam mechanism 64 that operates by utilizing the centrifugal force acting on the centrifuge 65 is provided. About the cam mechanism 64, the structure similar to the structure shown by the said each embodiment is applicable.
 (10)図面には示していないが、本発明のトルク変動抑制装置を、トランスミッションを構成する回転部材のいずれかに配置してもよいし、さらにはトランスミッションの出力側のシャフト(プロペラシャフト又はドライブシャフト)に配置してもよい。 (10) Although not shown in the drawings, the torque fluctuation suppressing device of the present invention may be disposed on any of the rotating members constituting the transmission, and further, the shaft (propeller shaft or drive) on the output side of the transmission (Shaft).
 (11)他の適用例として、従来から周知のダイナミックダンパ装置や、振り子式ダンパ装置が設けられた動力伝達装置に、本発明のトルク変動抑制装置をさらに適用してもよい。 (11) As another application example, the torque fluctuation suppressing device of the present invention may be further applied to a conventionally known dynamic damper device or a power transmission device provided with a pendulum type damper device.
1 トルクコンバータ
11 入力側回転体
12,120 出力側回転体
121 突起部
121c 開口部
14,140 トルク変動抑制装置
20,201,202 イナーシャリング(質量体)
21,210 遠心子
21a ピストン部
210c 遠心子の穴部
211 第1部材
212 第2部材
22,220 カム機構
26a,26b ガイドローラ(ガイド部)
30 コロ(カムフォロア)
31 カム
Or オリフィス(油路、隙間)
DESCRIPTION OF SYMBOLS 1 Torque converter 11 Input side rotary body 12,120 Output side rotary body 121 Protrusion part 121c Opening part 14,140 Torque fluctuation suppression apparatus 20,201,202 Inertia ring (mass body)
21, 210 Centrifuge 21a Piston portion 210c Centrifuge hole 211 First member 212 Second member 22, 220 Cam mechanism 26a, 26b Guide roller (guide portion)
30 Kolo (Cam Follower)
31 Cam Or Orifice (oil passage, gap)

Claims (13)

  1.  トルクが入力される回転体のトルク変動を抑制するためのトルク変動抑制装置であって、
     前記回転体と軸方向に並べて配置され、前記回転体とともに回転可能であり、かつ前記回転体に対して相対回転自在に配置された質量体と、
     前記回転体に支持され、遠心力を受けて径方向に移動自在に配置された遠心子と、
     前記遠心子及び前記質量体の一方に設けられたカムと、前記遠心子及び前記質量体の他方に設けられ前記カムに沿って移動するカムフォロアと、を有し、前記遠心子に作用する遠心力を受けて、前記回転体と前記質量体との間に回転方向における相対変位が生じたときには、前記遠心力を、前記相対変位が小さくなる方向の円周方向力に変換するカム機構と、
     前記遠心子の径方向の移動に伴って粘性流体が流通可能な油路を有し、前記遠心子の径方向内側への移動速度を規制する移動規制部と、
    を備えたトルク変動抑制装置。
    A torque fluctuation suppressing device for suppressing torque fluctuation of a rotating body to which torque is input,
    A mass body that is arranged side by side with the rotating body, is rotatable with the rotating body, and is relatively rotatable with respect to the rotating body;
    A centrifuge supported by the rotating body and arranged to be movable in the radial direction under centrifugal force,
    Centrifugal force acting on the centrifuge having a cam provided on one of the centrifuge and the mass body and a cam follower provided on the other of the centrifuge and the mass body and moving along the cam In response, when a relative displacement in the rotational direction occurs between the rotating body and the mass body, the cam mechanism converts the centrifugal force into a circumferential force in a direction in which the relative displacement is reduced.
    A movement restricting section that has an oil passage through which viscous fluid can flow along with the movement of the centrifuge in the radial direction and regulates the moving speed of the centrifuge inward in the radial direction;
    Torque fluctuation suppressing device comprising:
  2.  前記回転体は、外周部に径方向外方に突出する突起部を有し、前記突起部は外周方向に開くとともに内周側に所定の深さの開口部を有し、
     前記遠心子は、前記突起部が挿入される穴部と、前記開口部に挿入されるピストン部と、を有する、
    請求項1に記載のトルク変動抑制装置。
    The rotating body has a protruding portion that protrudes radially outward at an outer peripheral portion, the protruding portion opens in the outer peripheral direction and has an opening portion of a predetermined depth on the inner peripheral side,
    The centrifuge has a hole portion into which the protrusion is inserted and a piston portion to be inserted into the opening.
    The torque fluctuation suppressing device according to claim 1.
  3.  前記油路は、前記開口部に挿入された前記ピストン部の周囲の隙間である、請求項2に記載のトルク変動抑制装置。 The torque fluctuation suppressing device according to claim 2, wherein the oil passage is a gap around the piston portion inserted into the opening.
  4.  前記回転体の開口部と、前記回転体の突起部が挿入された前記遠心子の穴部と、によって粘性流体を収容可能な流体収容部が形成されている、
    請求項2又は3に記載のトルク変動抑制装置。
    A fluid accommodating portion capable of accommodating a viscous fluid is formed by the opening of the rotating body and the hole of the centrifuge into which the protrusion of the rotating body is inserted.
    The torque fluctuation suppressing device according to claim 2 or 3.
  5.  前記遠心子は、回転方向に延びて形成されるとともに、回転方向の両端部に形成されたガイド部を有し、
     前記ガイド部は前記回転体の突起部の円周方向の端面で支持されている、
    請求項2から4のいずれかに記載のトルク変動抑制装置。
    The centrifuge is formed to extend in the rotation direction, and has guide portions formed at both ends in the rotation direction.
    The guide portion is supported by a circumferential end surface of the protrusion of the rotating body,
    The torque fluctuation suppressing device according to any one of claims 2 to 4.
  6.  前記カムは前記遠心子に設けられ、
     前記カムフォロアは前記質量体に設けられ、
     前記回転体と前記質量体との間に回転方向における相対変位が生じたときに、前記遠心子のガイド部は、前記遠心子の重心を挟んで前記カムと前記カムフォロアの接点と逆側の位置で前記突起部の円周方向の端面に当接する、
    請求項5に記載のトルク変動抑制装置。
    The cam is provided on the centrifuge;
    The cam follower is provided on the mass body,
    When relative displacement in the rotational direction occurs between the rotating body and the mass body, the guide portion of the centrifuge is positioned opposite to the contact point of the cam and the cam follower across the center of gravity of the centrifuge. In contact with the circumferential end surface of the protrusion,
    The torque fluctuation suppressing device according to claim 5.
  7.  前記ガイド部は、前記遠心子の回転方向の両端部に回転自在に支持され、前記突起部の円周方向の端面を転動する1対のローラである、請求項6に記載のトルク変動抑制装置。 The torque variation suppression according to claim 6, wherein the guide portion is a pair of rollers that are rotatably supported at both ends of the centrifuge in the rotation direction and roll on a circumferential end surface of the protrusion. apparatus.
  8.  前記回転体は外周面に内周側に窪む凹部を有し、
     前記遠心子は前記凹部に収容されている、
    請求項1に記載のトルク変動抑制装置。
    The rotating body has a recess recessed on the inner peripheral side on the outer peripheral surface,
    The centrifuge is housed in the recess,
    The torque fluctuation suppressing device according to claim 1.
  9.  前記遠心子は、内周面から外周側に窪む穴部を有し、
     前記回転体は、前記凹部の底面に前記穴部に挿入された突起部を有する、
    請求項8に記載のトルク変動抑制装置。
    The centrifuge has a hole recessed from the inner peripheral surface to the outer peripheral side,
    The rotating body has a protrusion inserted into the hole on the bottom surface of the recess.
    The torque fluctuation suppressing device according to claim 8.
  10.  前記遠心子の穴部には粘性流体を収容可能であり、
     前記油路は、前記穴部に挿入された前記回転体の突起部の周囲の隙間である、
    請求項9に記載のトルク変動抑制装置。
    A viscous fluid can be accommodated in the hole of the centrifuge,
    The oil passage is a gap around the protrusion of the rotating body inserted into the hole.
    The torque fluctuation suppressing device according to claim 9.
  11.  前記質量体は、前記回転体を挟んで対向して配置された第1イナーシャリング及び第2イナーシャリングと、前記第1イナーシャリングと前記第2イナーシャリングとを相対回転不能に連結するピンと、を有し、
     前記遠心子は、前記回転体の外周部でかつ前記ピンの内周側において前記第1イナーシャリングと前記第2イナーシャリングとの軸方向間に配置されており、
     前記カムフォロアは、内部に前記ピンが軸方向に貫通する孔を有する円筒状のコロであり、
     前記カムは、前記遠心子に形成されて前記カムフォロアに当接し、前記回転体と前記質量体との間の回転方向における相対変位量に応じて前記円周方向力が変化するような形状を有する、
    請求項1から10のいずれかに記載のトルク変動抑制装置。
    The mass body includes a first inertia ring and a second inertia ring arranged to face each other with the rotating body interposed therebetween, and a pin that connects the first inertia ring and the second inertia ring so as not to be relatively rotatable. Have
    The centrifuge is arranged between the first inertia ring and the second inertia ring in the axial direction on the outer peripheral portion of the rotating body and on the inner peripheral side of the pin.
    The cam follower is a cylindrical roller having a hole through which the pin penetrates in the axial direction.
    The cam is formed on the centrifuge and abuts on the cam follower, and has a shape such that the circumferential force changes according to the relative displacement amount in the rotational direction between the rotating body and the mass body. ,
    The torque fluctuation suppressing device according to any one of claims 1 to 10.
  12.  エンジンとトランスミッションとの間に配置され、前記トランスミッションに連結されるタービンを有するトルクコンバータであって、
     前記エンジンからのトルクが入力される入力側回転体と、
     前記トランスミッションにトルクを出力する出力側回転体と、
     前記入力側回転体と前記タービンとの間に配置されたダンパと、
     請求項1から11のいずれかに記載のトルク変動抑制装置と、
    を備えたトルクコンバータ。
    A torque converter having a turbine disposed between the engine and the transmission and coupled to the transmission;
    An input-side rotating body to which torque from the engine is input;
    An output-side rotating body that outputs torque to the transmission;
    A damper disposed between the input-side rotor and the turbine;
    A torque fluctuation suppressing device according to any one of claims 1 to 11,
    Torque converter with
  13.  回転軸を中心に回転する第1慣性体と、前記回転軸を中心に回転し前記第1慣性体と相対回転自在な第2慣性体と、前記第1慣性体と前記第2慣性体との間に配置されたダンパと、を有するフライホイールと、
     前記フライホイールの前記第2慣性体に設けられたクラッチ装置と、
     請求項1から11のいずれかに記載のトルク変動抑制装置と、
    を備えた動力伝達装置。
    A first inertial body that rotates about a rotation axis; a second inertial body that rotates about the rotation axis and is rotatable relative to the first inertial body; and the first inertial body and the second inertial body. A flywheel having a damper disposed therebetween,
    A clutch device provided in the second inertial body of the flywheel;
    A torque fluctuation suppressing device according to any one of claims 1 to 11,
    Power transmission device with
PCT/JP2017/020880 2016-07-20 2017-06-05 Torque fluctuation suppression device, torque converter, and motive force transmission device WO2018016212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-142113 2016-07-20
JP2016142113A JP2018013153A (en) 2016-07-20 2016-07-20 Torque fluctuation suppression device, torque converter, and power transmission device

Publications (1)

Publication Number Publication Date
WO2018016212A1 true WO2018016212A1 (en) 2018-01-25

Family

ID=60992080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020880 WO2018016212A1 (en) 2016-07-20 2017-06-05 Torque fluctuation suppression device, torque converter, and motive force transmission device

Country Status (2)

Country Link
JP (1) JP2018013153A (en)
WO (1) WO2018016212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692284A (en) * 2019-03-13 2020-09-22 株式会社艾科赛迪 Torque ripple suppression device and torque converter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138421A (en) * 2018-02-14 2019-08-22 株式会社エクセディ Torque fluctuation suppression device, torque converter, and power transmission device
JP6764430B2 (en) * 2018-02-21 2020-09-30 株式会社エクセディ Torque fluctuation suppression device, torque converter, and power transmission device
JP6682572B2 (en) * 2018-05-23 2020-04-15 株式会社エクセディ Torque fluctuation suppression device
JP2019218957A (en) 2018-06-15 2019-12-26 株式会社エクセディ Torque variation suppression device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182628A (en) * 1997-09-12 1999-03-26 Exedy Corp Dynamic damper and flywheel assembly body
JP2011099490A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Torsional vibration damping device
JP2014516142A (en) * 2011-05-31 2014-07-07 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Vehicle drive system
JP2014145413A (en) * 2013-01-29 2014-08-14 Toyota Motor Corp Torsional vibration attenuating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182628A (en) * 1997-09-12 1999-03-26 Exedy Corp Dynamic damper and flywheel assembly body
JP2011099490A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Torsional vibration damping device
JP2014516142A (en) * 2011-05-31 2014-07-07 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Vehicle drive system
JP2014145413A (en) * 2013-01-29 2014-08-14 Toyota Motor Corp Torsional vibration attenuating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692284A (en) * 2019-03-13 2020-09-22 株式会社艾科赛迪 Torque ripple suppression device and torque converter
CN111692284B (en) * 2019-03-13 2023-06-30 株式会社艾科赛迪 Torque ripple suppression device and torque converter

Also Published As

Publication number Publication date
JP2018013153A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6534589B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
WO2018016212A1 (en) Torque fluctuation suppression device, torque converter, and motive force transmission device
JP6709765B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
WO2017029932A1 (en) Torque-fluctuation suppression device, torque converter, and power transmission device
WO2018016229A1 (en) Torque fluctuation suppression device, torque converter, and motive force transmission device
WO2018150777A1 (en) Torque fluctuation suppression device, torque converter, and power transmission device
JP6653538B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
WO2018150660A1 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP6712586B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP2019039456A (en) Torque fluctuation suppression device, torque converter, and power transmission device
JP2019039456A5 (en)
US10808797B2 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
JP2021071190A (en) Torque fluctuation inhibition device and power transmission device
JP2018132161A (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP2019124329A (en) Torque fluctuation suppression device, torque converter and power transmission device
JP6539180B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP2020133814A (en) Rotary device
JP7376291B2 (en) Torque fluctuation suppression device and power transmission device
JP6709764B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP6709767B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP6709770B2 (en) Torque fluctuation suppressing device and torque converter
JP6682572B2 (en) Torque fluctuation suppression device
JP2019138421A (en) Torque fluctuation suppression device, torque converter, and power transmission device
JP2022014863A (en) Rotating device and power transmission device
WO2018110085A1 (en) Damper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830732

Country of ref document: EP

Kind code of ref document: A1