WO2018014686A1 - 一种无人机图传方法、装置、系统和计算机存储介质 - Google Patents

一种无人机图传方法、装置、系统和计算机存储介质 Download PDF

Info

Publication number
WO2018014686A1
WO2018014686A1 PCT/CN2017/089050 CN2017089050W WO2018014686A1 WO 2018014686 A1 WO2018014686 A1 WO 2018014686A1 CN 2017089050 W CN2017089050 W CN 2017089050W WO 2018014686 A1 WO2018014686 A1 WO 2018014686A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
host
data information
information
frequency
Prior art date
Application number
PCT/CN2017/089050
Other languages
English (en)
French (fr)
Inventor
王乐
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018014686A1 publication Critical patent/WO2018014686A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of image transmission technologies, and in particular, to a method, device, system and computer storage medium for a drone image transmission.
  • the existing UAV image transmission system mainly uses Wireless Fidelity (WiFi) technology.
  • WiFi Wireless Fidelity
  • some mainstream products of UAVs are based on WiFi implementation of UAV graphics.
  • the scheme of implementing the drone image transmission by using WiFi technology is relatively simple, and the implementation process is roughly as follows: setting a wireless access point (AP, Access Point) on the drone, the cloud station collects the video image, and the video is captured. After the image is encoded and compressed, the image information is sent to the handheld controller as the host through the User Datagram Protocol (UDP) or the Transmission Control Protocol (TCP), and the handheld controller receives the received signal again. The image information performs decoding viewing.
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • WiFi is mainly aimed at low-speed mobile channels.
  • the channel estimation cannot keep up in the mobile state.
  • WiFi has basically only convolutional codes to 802.11n; the performance is relatively poor, therefore,
  • the drone map transmission system using the WiFi transmission scheme may have a problem that the effective transmission distance is too short, which greatly limits the relative distance between the drone and the remote controller, for example, according to the manufacturer's specification, some products
  • the transmission distance is 1.2Km, and the transmission distance of other products is only 1Km. For many users, it is obvious that this distance is not enough. Therefore, for UAV manufacturers, how to improve the effective transmission distance of the UAV image transmission system is an urgent problem to be solved;
  • the current transmission rate of UAV graphics transmission using WiFi technology is also an important issue.
  • the transmission rate of existing products is around 2Mbps. Although it can meet the 480P image transmission, it is more HD graphics. Pass, there will be phenomena such as catastrophic.
  • embodiments of the present invention are directed to a method, an apparatus, a system, and a computer storage medium for unmanned aerial vehicles to solve the problems of transmission distance, transmission rate, and stability of the existing UAV image transmission system. problem.
  • An embodiment of the present invention provides a method for transmitting a drone, the method comprising:
  • the data information is transmitted on the Physical Downlink Shared Channel (PDSCH) of the Long Term Evolution (LTE) based on the adjusted MCS value.
  • PDSCH Physical Downlink Shared Channel
  • LTE Long Term Evolution
  • the data information includes at least one of the following information: control information, Business information.
  • the method further includes:
  • the host retransmits the control information.
  • the transmitting the data information on the PDSCH of the LTE includes:
  • the physical layer of the host receives the data information bit stream transmitted by the PDSCH of the LTE after being processed by the modem (the modem), and sends the received data information bit stream to the protocol stack layer, where the protocol stack layer performs After decryption, segmentation, and decapsulation, the driver layer transmits the received data information to the processor of the host and displays the image corresponding to the data information.
  • the hardware processing comprises at least one of the following: encoding, decoding, modulating, demodulating processes.
  • the embodiment of the invention further provides a method for transmitting a drone, the method comprising:
  • the data information includes at least one of the following information: control information, service information.
  • the method further includes:
  • the drone When the service information transmitted by the drone has a transmission error, the drone retransmits the service information.
  • the transmitting the data information on the PDSCH of the LTE includes:
  • the data information bit stream of the physical layer is subjected to hardware processing in the Modem chip, and the data information bit stream is transmitted to the physical layer of the host through the PDSCH of the LTE.
  • the hardware processing comprises at least one of the following: encoding, decoding, modulating, demodulating processes.
  • the embodiment of the present invention further provides a UAV image transmitting device, the device comprising: a first synchronization detecting unit, a first preprocessing unit, and a first data transmission unit; wherein
  • the first synchronization detecting unit is configured to detect whether the UAV is synchronized in the time domain and the frequency domain;
  • the first pre-processing unit is configured to enter an active state, adjust an MCS value, and adjust the adjusted MCS value when the first synchronization detecting unit detects synchronization with the drone in the time domain and the frequency domain. Notifying the drone; further configured to send the currently detected frequency point to the drone, determine an alternate frequency point in the support frequency of the drone, and send the determined candidate frequency point to The drone;
  • the first data transmission unit is configured to transmit data information on the PDSCH of the LTE with the candidate frequency point based on the adjusted MCS value.
  • the data information includes at least one of the following information: control information, service information;
  • the first data transmission unit is further configured to retransmit the control information when the received control information is inconsistent with the transmitted control information.
  • the first data transmission unit includes: a modem chip unit and a first processing unit; wherein
  • the modem chip unit is configured to perform hardware processing on the data information bit stream, and then transmit the data to the physical layer of the host through the PDSCH of the LTE;
  • the first processing unit is configured to send the received data information bit stream to the protocol stack layer, decrypted by the protocol stack layer, segmentally combined, decapsulated, and then transmitted to the driver layer, where the driver layer receives
  • the obtained data information is sub-packaged and transmitted to the processor of the host, and displays an image corresponding to the data information.
  • the embodiment of the invention further provides a UAV image transmitting device, the device comprising: a second synchronization detecting unit, a second pre-processing unit and a second data transmission unit; wherein
  • the second synchronization detecting unit is configured to detect whether the host is synchronized in the time domain and the frequency domain;
  • the second pre-processing unit is configured to: when the second synchronization detecting unit detects synchronization with the host in the time domain and the frequency domain, enter an active state, and receive the adjusted MCS value of the host; Determining a support frequency of the drone according to the received frequency point, and transmitting the determined support frequency to the host;
  • the second data transmission unit is configured to receive an alternate frequency point determined by the host, and transmit data information on the PDSCH of the LTE according to the adjusted frequency point based on the adjusted MCS value.
  • the data information includes at least one of the following information: control information, service information;
  • the second data transmission unit is further configured to retransmit the service information when a transmission error occurs in the transmitted service information.
  • the second data transmission unit includes: a second processing unit and a modem chip unit; wherein
  • the second processing unit is configured to transmit the data packet group to be transmitted collected by the driver layer of the drone to the protocol stack layer, and encrypt, segment, and encapsulate the data information by the protocol stack layer. Passed to the physical layer;
  • the modem chip unit is configured to perform hardware processing on the data information bit stream of the physical layer, and then transmit the data information bit stream to the physical layer of the host through the PDSCH of the LTE.
  • the embodiment of the invention further provides an unmanned aerial vehicle image transmission system, the system comprising: a host and a Man-machine; among them,
  • the host is configured to synchronize with the drone in the time domain and the frequency domain, and when the synchronization is detected, enter an active state, adjust the MCS value, and notify the drone of the adjusted MCS value; Determining an alternate frequency point in a support frequency of the drone, and transmitting the determined candidate frequency point to the drone; based on the adjusted MCS value, the candidate frequency point Transmitting data information on the PDSCH of the LTE;
  • the UAV is configured to synchronize with the host in the time domain and the frequency domain, and when the synchronization is detected, enter an active state, receive the adjusted MCS value, and are further configured to determine the support frequency, and the determined support
  • the frequency is sent to the host, and the candidate frequency point determined by the host is received; and based on the adjusted MCS value, the data information is transmitted on the PDSCH of the LTE with the candidate frequency point.
  • the system further includes: a modem chip configured to perform hardware processing on the data information bit stream before the host and the drone transmit data information on the PDSCH of the LTE, where the hardware processing includes At least one of the following processes: encoding, decoding, modulation, demodulation.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the unmanned aerial vehicle image applied to the host according to the embodiment of the present invention. Pass method.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the unmanned application of the unmanned aerial vehicle according to the embodiment of the present invention.
  • Machine map transmission method is used to execute the unmanned application of the unmanned aerial vehicle according to the embodiment of the present invention.
  • the host detects whether the UAV is synchronized in the time domain and the frequency domain; when detecting the time domain and the frequency domain with the UAV When synchronizing, enter the working state, adjust the MCS value, and notify the drone of the adjusted MCS value; send the currently detected frequency point to the drone, and determine in the support frequency of the drone Alternating frequency points and transmitting the determined alternative frequency points to the drone; based on the adjustment
  • the subsequent MCS value is used to transmit data information on the PDSCH of the LTE at the candidate frequency point.
  • the PDSCH channel of LTE is used to complete the transmission of physical channel information between the host and the drone, which not only can effectively support the transmission rate requirement of the UAV system, but also improve the transmission distance and drawing of the UAV image transmission system.
  • Quality and anti-interference performance realize interface communication transmission between physical layer and high-level, make image transmission more real-time and high reliability, improve the use and experience of drone, and achieve stable and high-performance image transmission. .
  • the embodiment of the present invention is applied to the Modem chip of the LTE to complete the transmission of images and instructions between the host and the UAV, so that the LTE-based UAV image transmission system of the embodiment of the present invention is greatly simplified. Reduced implementation complexity and cost, while also enabling the reuse of functional modules by both the host and the drone.
  • FIG. 1 is a schematic diagram of a processing flow of a PDSCH transmitting end in the prior art
  • FIG. 2 is a schematic diagram of a processing flow of a PDSCH receiving end in the prior art
  • FIG. 3 is a schematic flow chart of a method for transmitting a picture of a drone according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a synchronization process between a host and a drone according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a subframe of a UAV image transmission system according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for transmitting a picture of a drone according to a second embodiment of the present invention
  • FIG. 7 is a schematic diagram of data interaction and software and hardware data interaction of a software three-layer structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of information interaction between a host, a slave, and a drone according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a structure of a drone image transmitting apparatus according to a third embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a structure of a drone image transmitting apparatus according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a structure of a UAV image transmission system according to Embodiment 5 of the present invention.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP The 3rd Generation Partnership Project
  • MIMO Multi-Input & Multi-Output
  • the LTE system supports multiple bandwidth allocations: 1.4 MHz. 3MHz, 5MHz, 10MHz, 15MHz and 20MHz, etc., while also supporting the global mainstream 2G/3G frequency band and some new frequency bands, the spectrum allocation is more flexible, and the system capacity and coverage are also significantly improved.
  • the LTE system has the following advantages:
  • the LTE system adopts OFDM technology, which not only improves the system bandwidth usage rate, but also enhances the anti-interference and anti-fading capabilities;
  • the LTE system adopts MIMO technology, which can increase the data transmission rate and performance by increasing the number of antennas;
  • LTE system supports multiple bandwidth allocation, which can increase the bandwidth to 20MHz and support the modulation scheme of quadrature amplitude modulation (64QAM), which makes LTE have higher transmission speed.
  • 64QAM quadrature amplitude modulation
  • a complete LTE system has a total of nine physical channels, which respectively carry different dedicated information, wherein according to the information of each physical channel and each physical channel of the LTE, the information shown in Table 1 can be generated.
  • the function of each channel is shown in Table 1:
  • PUCCH, PUSCH, and PRACH are channels of an uplink subframe, and the remaining channels are channels of a downlink subframe, and the uplink and downlink channels respectively carry information in different types of subframes.
  • FIG. 1 shows the processing flow of the PDSCH sender. As shown in Figure 1, it mainly includes CRC, Turbo coding, rate matching, interleaving, modulation, layer mapping, precoding, resource mapping, IFFT (plus CP), and digital. The process of up-conversion, DAC, TX transmission, etc., is a prior art for each of the above-mentioned processes, and will not be repeated here;
  • FIG. 2 is a schematic diagram of the processing flow of the PDSCH receiving end, as shown in FIG.
  • the processing flow of the terminal is basically the reverse process of the processing flow of the sender, and will not be described here.
  • the current UAV image transmission system needs to return HD camera information in real time. Since the cameras mounted on the UAV are basically HD cameras, and at the same time of image transmission, some file transfer tasks must be completed. Therefore, the requirements for transmission traffic are high, and the requirements of the general UAV manufacturer are in the range of 2 Mbps to 20 Mbps;
  • the distance of image transmission is relatively high.
  • the transmission distance of the most popular UAV manufacturers in the future can be 5Km. It can be seen that the most widely used WiFi image transmission technology will be gradually eliminated.
  • the endurance capability of the UAV system is a bottleneck. Therefore, on the basis of satisfying the system function, the UAV image transmission equipment should be made as efficient and simple as possible to reduce the realization cost and power consumption, and the volume of the module. .
  • the embodiment of the present invention combines the advantages of the LTE system, the characteristics of the channel PDSCH in the LTE, and the actual requirements of the UAV picture transmission system, and selects the LTE technology to implement the UAV and the host of the UAV system. Between the image transmission and command transmission, the LTE-based UAV image transmission can stably and reliably meet the transmission requirements of the large data volume of the UAV system.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the implementation process of the UAV map transmission method is described in detail by taking the host side (receiving the drone command and service information) as an example.
  • the implementation process of the UAV image transmission method in the embodiment of the present invention includes the following steps:
  • Step 301 Detect whether the drone is synchronized in the time domain and the frequency domain.
  • the host when the host detects the S subframe information of the drone and matches the UAV_Id, Unmanned Aerial Vehicle_Identity, the host sends the S subframe information, and the process of switching through multiple states, the final host Synchronization with the drone in the time domain and frequency domain.
  • Figure 4 shows the synchronization process of the host and the drone, as shown in Figure 4, the host and the unmanned After the machine is powered on, the machine enters the search state, and the drone sends the S subframe information to the host.
  • the host adjusts the TPU, and after the host completes the TPU adjustment, it enters the pre-synchronization state; when the host is in the pre-synchronization state, the host sends out The S subframe information is sent to the search state of the drone, and the drone enters the synchronization state of the drone when the search state detects the S subframe information; at this time, the drone sends the synchronous sub-subframe information to the The pre-synchronization state of the host.
  • the host When the host detects that the drone is in the synchronous state in the pre-synchronization state, the host enters the synchronous state and sends the S subframe information to the synchronization state of the drone; when the drone is in the synchronous state
  • the drone When the host is detected to be in the synchronous state, the drone enters the work state, and the drone sends the S subframe information to the host after the work state; when the host detects the drone in the synchronous state, it is also synchronized. In this state, the host enters the work state at this time. In this way, both the host and the drone enter the work state, which realizes the synchronization of the time domain and the frequency domain, and can start information transmission.
  • the error reaches the threshold, it will enter the lost gait state, then it needs to re-search and continue the synchronization process at the new frequency.
  • the sub-frame structure of the UAV image transmission system is as shown in FIG. 5, and the sub-frame structure includes a total of ten sub-frames, which are: 8 D sub-frames and 2 S sub-frames; wherein, S The subframes U and D include a synchronization signal (PSCH), a reference signal (RS), and control parameters of the PDSCH bearer, image control commands, and the like, and the D subframe only carries the service information. That is to say, when the host and the drone enter the work state, the drone starts to transmit the service information to the host through the D subframe. During the transmission process, the host and the drone transmit the control command and related control through the S subframe. parameter.
  • PSCH synchronization signal
  • RS reference signal
  • the requirements of the UAV system for speed, real-time and high-reliability transmission can be effectively supported.
  • the system implementation is greatly simplified, the implementation complexity is reduced, and the development cycle can be shortened. Cost, at the same time, can stably and efficiently meet the interaction between drone image transmission and command information.
  • Step 302 When it is detected that the UAV is synchronized in the time domain and the frequency domain, enter an operational state, adjust an MCS value, and notify the UAV of the adjusted MCS value.
  • the MCS value is initially at a lower value, only The rate of 1 Mbps can be reached.
  • the host controls the MCS value and adaptively adjusts the MCS value. After the MCS value is adjusted to a reasonable value, the host will adjust the value.
  • the new MCS value is notified to the drone. After the drone detects the new MCS value, it will feed back the detection information to the host, and then both parties will take effect of the new MCS value at the effective time agreed in advance.
  • the rate can be increased to 20Mbps in time.
  • the host will reduce the MCS value to a reasonable value through the above MCS adaptive process to adapt to the current channel quality.
  • the adaptive adjustment of the MCS value is adjusted according to the current channel quality. Specifically, when the channel quality is low, the MCS value is lowered to ensure low error of information transmission, and when the channel quality is high, the MCS is improved. Value to achieve a higher transfer rate.
  • Step 303 Send the currently detected frequency point to the drone, determine an alternate frequency point in the support frequency of the drone, and send the determined candidate frequency point to the drone.
  • the host performs inter-frequency measurement.
  • a frequency point with the best channel quality is selected as the candidate frequency point.
  • the transmission quality is guaranteed by frequency hopping.
  • a new frequency value will appear, and the host will notify the drone of the new frequency value.
  • the drone detects the new frequency point value, it feeds back the detection information to the host, and then the two parties cut the frequency point at the effective time agreed in advance.
  • the effective frequency point is a supporting frequency point suitable for the channel quality transmission of the drone.
  • CQI channel quality indicator
  • a CQI can represent a so-called one or more values of a channel measurement standard for a given channel. Usually, a high value CQI indicates that a channel has good quality and vice versa. Among them, CQI is specified by the communication protocol and can be determined according to the actual application and experience value of the user.
  • Step 304 Based on the adjusted MCS value, the candidate frequency point is in the PDSCH of the LTE. Transfer data information.
  • data information is transmitted on the PDSCH of the LTE, including:
  • the physical layer of the host receives the data information bit stream transmitted by the PDSCH of the LTE after being processed by the modem chip, and sends the received data information bit stream to the protocol stack layer, where the protocol stack layer decrypts and divides The segment is combined and decapsulated and then transmitted to the driver layer.
  • the driver layer packetizes the received data information and transmits the data to the processor of the host, and displays an image corresponding to the data information.
  • the hardware processing includes at least one of the following processes: encoding, decoding, modulating, and demodulating processes; and the data information includes at least one of: control information, service information.
  • the host when the control information received by the host is inconsistent with the sent control information, the host retransmits the control information.
  • the reliability of the control information transmission can be ensured by the handshake mechanism. If the control information received by the host is inconsistent with the sent control information, the host retransmits the last sent content.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the implementation process of the LTE-based UAV map transmission method is described in detail by taking the UAV side (sending command and service information) as an example.
  • the implementation process of the unmanned image transmission method in the embodiment of the present invention includes the following steps:
  • Step 601 Detect whether the host is synchronized in the time domain and the frequency domain.
  • the host when the host detects the S subframe information of the drone and matches the UAV identity code, the host sends the S subframe information, and through the process of multiple state switching, the final host and the drone are implemented at the time. Domain and frequency domain synchronization.
  • the host and the drone enter the search state after power-on, and the drone sends the S-subframe information to the host.
  • the host adjusts the TPU, and after the host completes the TPU adjustment,
  • the host In the pre-synchronization state, when the host is in the pre-synchronization state, the host sends the S-subframe information to the search state of the UAV, and the UAV enters the synchronization state of the UAV when the S-frame information is detected in the search state;
  • the drone sends the synchronous sub-subframe information to the pre-synchronization state of the host.
  • the host detects that the drone is in the synchronous state in the pre-synchronization state, the host enters the synchronous state and sends the S subframe information to the host.
  • the synchronization state of the drone when the drone detects that the host is also in the synchronous state in the synchronous state, the drone enters the work state, and the drone sends the S subframe information to the host after the work state;
  • the sync state detects that the drone is also in the synchronous state, the host enters the work state at this time. In this way, both the host and the drone enter the work state, which realizes the synchronization of the time domain and the frequency domain, and can start information transmission.
  • the error reaches the threshold, it will enter the lost gait state, then it needs to re-search and continue the synchronization process at the new frequency.
  • the sub-frame structure of the UAV image transmission system is as shown in FIG. 5, and the sub-frame structure includes a total of ten sub-frames, which are: 8 D sub-frames and 2 S sub-frames; wherein, S Subframes U and D contain PSCH, RS, and control parameters, image control commands, etc. carried by the PDSCH, while D subframes only carry service information. That is to say, when the host and the drone enter the work state, the drone starts to transmit the service information to the host through the D subframe. During the transmission process, the host and the drone transmit the control command and related control through the S subframe. parameter. In this way, the requirements of the UAV system for speed, real-time and high-reliability transmission can be effectively supported. Compared with the LTE system, the system implementation is greatly simplified, the implementation complexity is reduced, and the development cycle can be shortened. Cost, at the same time, can stably and efficiently meet the interaction between drone image transmission and command information.
  • Step 602 When it is detected that the drone is synchronized with the host in the time domain and the frequency domain, enter an active state, and receive the adjusted MCS value of the host.
  • Step 603 Determine a support frequency point of the drone according to the received frequency point, and send the determined support frequency point to the host.
  • Step 604 Receive an alternative frequency point determined by the host, and transmit data information on the PDSCH of the LTE according to the adjusted frequency point based on the adjusted MCS value.
  • data information is transmitted on the PDSCH of the LTE, including:
  • the data information bit stream of the physical layer is subjected to hardware processing in the Modem chip, and the data information bit stream is transmitted to the physical layer of the host through the PDSCH of the LTE.
  • the hardware processing includes at least one of: encoding, decoding, modulating, and demodulating processes; and the data information includes at least one of the following information: control information, service information.
  • the drone retransmits the service information.
  • the hybrid automatic repeat reQuest (HARQ) retransmission mechanism can be used to avoid loss of service information and ensure the reliability of service information transmission. If new transmission data is transmitted during transmission, The host will send the feedback information to the drone to notify the drone to retransmit. Due to the adoption of the HARQ mechanism, the decoding success rate of the retransmission is guaranteed to be higher.
  • HARQ hybrid automatic repeat reQuest
  • FIG. 7 is a schematic diagram of data interaction and software and hardware data interaction of a software three-layer structure according to an embodiment of the present invention. As shown in FIG. 7 , the design idea of the embodiment of the present invention is performed according to an LTE protocol and a communication process, where the hardware part is based on LTE.
  • the Modem chip is divided into three layers: the driver layer, the protocol stack layer and the physical layer. The specific implementation functions of each layer are as follows:
  • the driver layer is responsible for interfacing with the host and the drone, collecting image information and control information sent by the host and the drone, and grouping all the information and transmitting it to the protocol stack layer;
  • the protocol stack layer is responsible for obtaining the data stream from the driver layer, encrypting and segmenting the data stream, and then encapsulating the information to the physical layer;
  • the physical layer is responsible for taking data streams from the shared memory with the protocol stack layer for data transmission.
  • the video image information is taken as an example to describe the unmanned image transmission method.
  • the video image information is collected by the drone camera, and the collected video image information is transmitted to the protocol stack in the driver layer group.
  • Layer the video image information is encrypted and segmented by the protocol stack layer, and then the encrypted segmented information is encapsulated and then transmitted to the physical layer;
  • the video layer information bit stream of the physical layer is encoded and modulated in the Modem chip.
  • the video image information bit stream is transmitted to the physical layer of the receiving end through the PDSCH of the LTE, and then the information is further processed by the protocol stack layer and the driving layer of the receiving end.
  • FIG. 8 is a schematic diagram of information interaction between the host, the slave, and the drone according to the embodiment of the present invention.
  • the control can be implemented between the host and the drone.
  • the interaction of the information can also receive the information transmitted by the drone; for the slave, only the information transmitted by the drone can be received, but the command information cannot be sent to the drone. Therefore, the slave only needs to After receiving the sub-frame, the decoding function is completed, and the corresponding sending function does not need to be completed.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • an embodiment of the present invention further provides a UAV image transmitting device.
  • the device includes a first synchronization detecting unit 901, a first pre-processing unit 902, and a first data transmission unit 903. ;among them,
  • the first synchronization detecting unit 901 is configured to detect whether the UAV is synchronized in the time domain and the frequency domain;
  • the first pre-processing unit 902 is configured to: when the first synchronization detecting unit 901 detects synchronization with the UAV in the time domain and the frequency domain, enter an active state, adjust an MCS value, and adjust the adjusted Notifying the drone; the MCS value is further configured to send the currently detected frequency point to the drone, determine an alternate frequency point in the support frequency of the drone, and determine the selected frequency point Sent to the drone;
  • the first data transmission unit 903 is configured to transmit data information on the PDSCH of the LTE with the candidate frequency point based on the adjusted MCS value.
  • the data information includes at least one of the following information: control information, service information.
  • the first data transmission unit 903 is further configured to retransmit the control information when the received control information is inconsistent with the transmitted control information.
  • the first data transmission unit 903 includes the following two subunits: a modem chip unit and a first processing unit;
  • the modem chip unit is configured to perform hardware processing on the data information bit stream, and then transmit the data to the physical layer of the host through the PDSCH of the LTE;
  • the first processing unit is configured to send the received data information bit stream to the protocol stack layer, decrypted by the protocol stack layer, segmentally combined, decapsulated, and then transmitted to the driver layer, where the driver layer receives
  • the obtained data information is sub-packaged and transmitted to the processor of the host, and displays an image corresponding to the data information.
  • the hardware processing includes at least one of the following processes: encoding, decoding, modulating, and demodulating processes.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • an embodiment of the present invention further provides a UAV image transmitting device.
  • the device includes a second synchronization detecting unit 1001, a second pre-processing unit 1002, and a second data transmission unit 1003. ;among them,
  • the second synchronization detecting unit 1001 is configured to detect whether the host is in the time domain and the frequency domain. step;
  • the second pre-processing unit 1002 is configured to, when the second synchronization detecting unit 1001 detects synchronization with the host in the time domain and the frequency domain, enter an active state, and receive the adjusted MCS value of the host;
  • the method is configured to determine a support frequency of the drone according to the received frequency point, and send the determined support frequency to the host;
  • the second data transmission unit 1003 is configured to receive an alternate frequency point determined by the host, and transmit data information on the PDSCH of the LTE according to the adjusted frequency point based on the adjusted MCS value.
  • the data information includes at least one of the following information: control information, service information.
  • the second data transmission unit 1003 is further configured to retransmit the service information when a transmission error occurs in the transmitted service information.
  • the second data transmission unit 1003 includes the following two subunits: a second processing unit and a Modem chip unit;
  • the second processing unit is configured to transmit the data packet group to be transmitted collected by the driver layer of the drone to the protocol stack layer, and encrypt, segment, and encapsulate the data information by the protocol stack layer. Passed to the physical layer;
  • the modem chip unit is configured to perform hardware processing on the data information bit stream of the physical layer, and then transmit the data information bit stream to the physical layer of the host through the PDSCH of the LTE.
  • the hardware processing includes at least one of the following processes: encoding, decoding, modulating, and demodulating processes.
  • the first synchronization detecting unit 901, the first pre-processing unit 902, the first data transmission unit 903, the second synchronization detecting unit 1001, the second pre-processing unit 1002, and the second data transmission unit 1003 may each be configured by Central Processing Unit (CPU), Micro Processor Unit (MPU), Digital Signal Processor (DSP), or Field Programmable Gate Array (FPGA) on the LTE Modem chip. Field Programmable Gate Array) and other implementations.
  • CPU Central Processing Unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • an embodiment of the present invention further provides a UAV image transmission system, as shown in FIG. 11, the system includes: a host and a drone; wherein
  • the host is configured to synchronize with the drone in the time domain and the frequency domain, and when the synchronization is detected, enter an active state, adjust the MCS value, and notify the drone of the adjusted MCS value; Determining an alternate frequency point in a support frequency of the drone, and transmitting the determined candidate frequency point to the drone; based on the adjusted MCS value, the candidate frequency point Transmitting data information on the PDSCH of the LTE;
  • the UAV is configured to synchronize with the host in the time domain and the frequency domain, and when the synchronization is detected, enter an active state, receive the adjusted MCS value, and are further configured to determine the support frequency, and the determined support
  • the frequency is sent to the host, and the candidate frequency point determined by the host is received; and based on the adjusted MCS value, the data information is transmitted on the PDSCH of the LTE with the candidate frequency point.
  • the system further includes: a modem chip configured to perform hardware processing on the data information bit stream before the host and the drone transmit data information on the PDSCH of the LTE, wherein the hardware processing includes at least the following processing One: encoding, decoding, modulation, demodulation process.
  • the embodiment of the invention detects whether the host and the drone are synchronized in the time domain and the frequency domain; when detecting that the host and the drone are synchronized in the time domain and the frequency domain, enter the working state, adjust the MCS value, and adjust the Notifying the drone by the MCS value; transmitting the currently detected frequency point to the drone, determining an alternative frequency point in the support frequency of the drone, and transmitting the determined candidate frequency point to
  • the UAV transmits data information on the PDSCH of the LTE with the candidate frequency point based on the adjusted MCS value.
  • the PDSCH channel of LTE is used to complete the transmission of physical channel information between the host and the drone, which not only can effectively support the transmission rate requirement of the UAV system, but also improve the transmission distance and drawing of the UAV image transmission system.
  • Quality and anti-interference performance realize interface communication transmission between physical layer and high-level, make image transmission more real-time and high reliability, improve the use and experience of drone, and achieve stable and high-performance image transmission. .
  • the embodiment of the present invention is applied to the Modem chip of the LTE to complete the transmission of images and instructions between the host and the UAV, so that the LTE-based UAV image transmission system of the embodiment of the present invention is greatly simplified. Reduced implementation complexity and cost, while also enabling the reuse of functional modules by both the host and the drone.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the unmanned aerial vehicle image applied to the host according to the embodiment of the present invention. Pass method.
  • the computer executable instruction when executed by the processor, performing: detecting whether the UAV is synchronized in the time domain and the frequency domain; and when detecting that the UAV is synchronized in the time domain and the frequency domain, entering the work State, adjust the MCS value, and notify the drone of the adjusted MCS value; send the currently detected frequency point to the drone, and determine the alternative frequency point in the support frequency of the drone, And determining the determined candidate frequency point to the UAV; and transmitting, according to the adjusted MCS value, the data information on the PDSCH of the LTE at the candidate frequency point.
  • control information is retransmitted when the received control information is inconsistent with the transmitted control information.
  • the physical layer when the computer executable instruction is executed by the processor, the physical layer receives the data information bit stream transmitted by the PDSCH of the LTE after performing hardware processing by the modem chip; and sends the received data information bit stream.
  • the protocol stack layer is decrypted, segmented, and decapsulated by the protocol stack layer and then transmitted to the driver layer.
  • the driver layer subdivides the received data information and transmits the data to the host processor, and displays the The image corresponding to the data information.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the unmanned application of the unmanned aerial vehicle according to the embodiment of the present invention.
  • Machine map transmission method is used to execute the unmanned application of the unmanned aerial vehicle according to the embodiment of the present invention.
  • the computer executable instruction when executed by the processor, performing: detecting whether the host is synchronized in the time domain and the frequency domain; when detecting that the host is synchronized in the time domain and the frequency domain, entering the work And receiving, by the host, the adjusted MCS value; determining a support frequency of the drone according to the received frequency point, and transmitting the determined support frequency to the host; receiving the candidate frequency determined by the host, Data information is transmitted on the PDSCH of the LTE at the candidate frequency point based on the adjusted MCS value.
  • the data packet group to be transmitted collected by the driver layer is transmitted to the protocol stack layer, and the data information is performed by the protocol stack layer. After being encrypted, segmented, and encapsulated, it is transmitted to the physical layer. After the data information bit stream of the physical layer is processed in the Modem chip for hardware processing, the data information bit stream is transmitted to the physical layer of the host through the PDSCH of the LTE.
  • embodiments of the present invention can be provided as a method, apparatus, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing
  • the apparatus is readable in a computer readable memory in a particular manner such that instructions stored in the computer readable memory produce an article of manufacture comprising instruction means implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the technical solution of the embodiment of the present invention uses the PDSCH channel of the LTE to complete the transmission of the physical channel information between the host and the drone, which not only can effectively support the transmission rate requirement of the UAV system, but also improve the UAV image transmission system.
  • the transmission distance, image quality and anti-interference performance enable the interface communication between the physical layer and the upper layer to make the image transmission more real-time and high reliability, improve the use and experience of the drone, thus achieving stability and high The effect of transferring images for performance.

Abstract

本发明实施例公开了一种无人机图传方法,包括:检测与无人机是否在时域和频域同步;当检测到与所述无人机在时域和频域同步时,进入工作态,调整调制与编码策略(MCS)值,并将调整后的MCS值通知所述无人机;将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的物理下行共享信道(PDSCH)上传输数据信息。本发明实施例同时还公开了一种无人机图传装置、系统和计算机存储介质。

Description

一种无人机图传方法、装置、系统和计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610571108.5、申请日为2016年07月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及图像传输技术领域,尤其涉及一种无人机图传方法、装置、系统和计算机存储介质。
背景技术
随着社会的发展和科技的进步,人们逐渐发现了一种利用无人机实现图像传输的方法或系统,简称无人机图传方法或无人机图传系统。现有的无人机图传系统主要采用的是无线保真(WiFi,Wireless Fidelity)技术,比如:无人机的一些主流产品都是基于WiFi实现的无人机图传。
采用WiFi技术实现无人机图传的方案相对来说比较简单,其实现过程大致为:在无人机上设置一个无线接入点(AP,Access Point),云台采集完视频图像,并对视频图像进行编码压缩后,通过用户数据报协议(UDP,User Datagram Protocol)或传输控制协议(TCP,Transmission Control Protocol),将图像信息发送给作为主机的手持控制器,手持控制器再对收到的图像信息执行解码观看。然而,上述使用WiFi技术实现的无人机图传系统存在以下两方面问题:
首先,WiFi主要针对的是低速移动信道,移动状态下信道估计跟不上,WiFi一直到802.11n基本上都只有卷积码;性能相对来说也较差,因此, 使用WiFi传输方案的无人机图传系统会存在有效传输距离太短的问题,这就大大局限了无人机与遥控器之间的相对距离,例如,根据厂家的说明书指标,有的产品的传输距离为1.2Km,还有的产品的传输距离只有1Km。对于很多用户来说,很显然这个距离是不足够的,因此,对于无人机生产厂家来说,如何提高无人机图传系统的有效传输距离,是迫切需要解决的一个问题;
其次,目前使用WiFi技术进行无人机图传的传输速率也是一个重要问题,根据厂家的说明书指标,现有产品的传输速率在2Mbps左右,虽然能满足480P的图传,但对于更高清的图传,就会出现卡顿等现象。
发明内容
有鉴于此,本发明实施例期望提供一种无人机图传方法、装置、系统和计算机存储介质,以解决现有无人机图传系统在传输距离、传输速率与稳定性等方面存在的问题。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供一种无人机图传方法,所述方法包括:
检测与无人机是否在时域和频域同步;
当检测到与所述无人机在时域和频域同步时,进入工作态,调整调制与编码策略(MCS,Modulation and Coding Scheme)值,并将调整后的MCS值通知所述无人机;
将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;
基于所述调整后的MCS值,以所述备选频点在长期演进(LTE,Long Term Evolution)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)上传输数据信息。
在一实施例中,所述数据信息包括以下信息的至少之一:控制信息、 业务信息。
在一实施例中,所述方法还包括:
当所述主机收到的控制信息与发送的控制信息不一致时,所述主机重传所述控制信息。
在一实施例中,所述在LTE的PDSCH上传输数据信息,包括:
所述主机的物理层接收经调制解调器(Modem)芯片进行硬件处理后,通过LTE的PDSCH传输的数据信息比特流;将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
在一实施例中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
本发明实施例还提供了一种无人机图传方法,所述方法包括:
检测与主机是否在时域和频域同步;
当检测到与所述主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值;
根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;
接收所述主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
在一实施例中,所述数据信息包括以下信息的至少之一:控制信息、业务信息。
在一实施例中,所述方法还包括:
当所述无人机传输的所述业务信息出现传输错误时,所述无人机重传所述业务信息。
在一实施例中,所述在LTE的PDSCH上传输数据信息,包括:
将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;将所述物理层的数据信息比特流在Modem芯片中进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
在一实施例中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
本发明实施例还提供了一种无人机图传装置,所述装置包括:第一同步检测单元、第一预处理单元和第一数据传输单元;其中,
所述第一同步检测单元,配置为检测与无人机是否在时域和频域同步;
所述第一预处理单元,配置为当所述第一同步检测单元检测到与所述无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;
所述第一数据传输单元,配置为基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
在一实施例中,所述数据信息包括以下信息的至少之一:控制信息、业务信息;
所述第一数据传输单元,还配置为当接收到的控制信息与发送的控制信息不一致时,重传所述控制信息。
在一实施例中,所述第一数据传输单元,包括:Modem芯片单元和第一处理单元;其中,
所述Modem芯片单元,配置为将数据信息比特流进行硬件处理后,通过LTE的PDSCH传输给主机的物理层;
所述第一处理单元,配置为将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
本发明实施例还提供了一种无人机图传装置,所述装置包括:第二同步检测单元、第二预处理单元和第二数据传输单元;其中,
所述第二同步检测单元,配置为检测与主机是否在时域和频域同步;
所述第二预处理单元,配置为当所述第二同步检测单元检测到与所述主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值;还配置为根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;
所述第二数据传输单元,配置为接收主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
在一实施例中,所述数据信息包括以下信息的至少之一:控制信息、业务信息;
所述第二数据传输单元,还配置为当传输的所述业务信息出现传输错误时,重传所述业务信息。
在一实施例中,所述第二数据传输单元,包括:第二处理单元和Modem芯片单元;其中,
所述第二处理单元,配置为将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;
所述Modem芯片单元,配置为将所述物理层的数据信息比特流进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
本发明实施例还提供一种无人机图传系统,所述系统包括:主机和无 人机;其中,
所述主机,配置为与所述无人机在时域和频域同步,在检测到同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为在所述无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息;
所述无人机,配置为与所述主机在时域和频域同步,在检测到同步时,进入工作态,接收调整后的MCS值;还配置为确定支持频点,并将确定的支持频点发送给所述主机,接收所述主机确定的备选频点;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
在一实施例中,所述系统还包括:Modem芯片,配置为所述主机和无人机在LTE的PDSCH上传输数据信息之前,对数据信息比特流进行硬件处理,其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于主机的无人机图传方法。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于无人机的无人机图传方法。
本发明实施例所提供的无人机图传方法、装置、系统和计算机存储介质,主机检测与无人机是否在时域和频域同步;当检测到与无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整 后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。如此,使用LTE的PDSCH信道来完成主机和无人机之间物理信道信息的传输,不仅能有效的支持无人机系统的传输速率要求,还能提高无人机图传系统的传输距离、画质和抗干扰性能,实现物理层与高层之间的接口通信传输,使图像传输更具实时性和高可靠性,提升对无人机的使用和体验,从而达到稳定、高性能传输图像的效果。
此外,将本发明实施例应用在LTE的Modem芯片上,完成主机与无人机之间图像和指令的传输,使得本发明实施例基于LTE的无人机图传系统有很大程度的简化,降低了实现复杂度和成本,同时还能够实现主机和无人机两个终端对于功能模块的复用。
附图说明
图1为现有技术中PDSCH发送端的处理流程示意图;
图2为现有技术中PDSCH接收端的处理流程示意图;
图3为本发明实施例一的无人机图传方法的流程示意图;
图4为本发明实施例主机和无人机同步过程示意图;
图5为本发明实施例无人机图传系统子帧结构示意图;
图6为本发明实施例二的无人机图传方法的流程示意图;
图7为本发明实施例软件三层结构的数据交互以及软硬件数据交互示意图;
图8为本发明实施例主机、从机和无人机之间信息交互示意图;
图9为本发明实施例三的无人机图传装置的组成结构示意图;
图10为本发明实施例四的无人机图传装置的组成结构示意图;
图11为本发明实施例五的无人机图传系统的组成结构示意图。
具体实施方式
LTE现在可谓是家喻户晓,它是由第三代合作伙伴计划(3GPP,The 3rd Generation Partnership Project)组织制定的通用移动通信系统(UMTS,Universal Mobile Telecommunications System)技术标准的长期演进,于2004年12月在3GPP多伦多会议上正式立项并启动。其中,LTE系统引入了正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)和多输入多输出(MIMO,Multi-Input&Multi-Output)等关键技术,且LTE系统支持多种带宽分配:1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz等,同时还支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。
根据LTE系统采用的关键技术可知,LTE系统具有以下优点:
(1)LTE系统采用OFDM技术,不仅提高了系统带宽使用率,还增强了抗干扰和抗衰落能力;
(2)LTE系统采用MIMO技术,可通过增加天线的数量来提高数据传输速率与性能;
(3)LTE系统支持多种带宽分配,即可将带宽提升到20MHz,且支持正交振幅调制(64QAM)的调制方式,使得LTE具有更高的传输速度。
需要说明的是,一个完整的LTE系统共有9个物理信道,它们分别承载不同的专用信息,其中,根据LTE的各物理信道与各物理信道所对应承载的信息,即可生成表1所示的各信道功能,如表1所示:
Figure PCTCN2017089050-appb-000001
Figure PCTCN2017089050-appb-000002
表1
在表1中,PUCCH、PUSCH、PRACH是上行子帧的信道,其余的信道为下行子帧的信道,且上下行信道分别在不同类型的子帧中承载信息。
这里需要特别强调的是,LTE中的PDSCH,主要用于传输下行业务信息,不仅支持OFDM信号的产生,还支持最大20MHZ的带宽,以及最大64QAM的调制阶数。其中,图1给出了PDSCH发送端的处理流程示意图,如图1所示,主要包括CRC、Turbo编码、速率匹配、交织、调制、层映射、预编码、资源映射、IFFT(加CP)、数字上变频、DAC、TX发送等过程,对于上述每个过程的具体实现属于现有技术,在此不再一一赘述;图2给出了PDSCH接收端的处理流程示意图,如图2所示,接收端的处理流程基本是发送端的处理流程的逆过程,这里不再赘述。
在实际应用中,对于无人机图传系统来说,主要需满足如下要求:
(1)完成主机和无人机之间的点对点数据传输,不需要基站设备的介入来完成接入以及资源分配的工作,只需完成主机和无人机的时频同步,即可进行数据传输;
(2)目前的无人机图传系统需要实时回传高清摄像信息,由于无人机上挂载的摄像头基本上都是高清摄像头,并且在图像传输的同时,还要完成一些文件传输的任务,因此,对于传输流量的要求较高,一般的无人机生产厂家对速率的要求在2Mbps~20Mbps范围内;
(3)主机给无人机发送的遥控、以及图传命令需满足实时性和高可靠性;
(4)图像传输的距离要求较高,未来主流的无人机厂家的产品最远可支持的传输距离为5Km,可见,目前采用最多的WiFi图传技术将逐渐被淘汰;
(5)无人机系统的续航能力是一个瓶颈,因此,在满足系统功能的基础上,应尽量使无人机图传设备更加高效、简洁,以降低实现成本与功耗,以及模块的体积。
经过上述分析,本发明实施例正是要结合LTE系统的优点、LTE中信道PDSCH的特点、以及无人机图传系统的实际需求,选用LTE技术来实现无人机系统的无人机和主机之间的图像传输和指令传输,基于LTE的无人机图传能够稳定、可靠地满足无人机系统大数据量的传输需求。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明。
实施例一:
本实施例是以主机侧(接收无人机命令和业务信息)为例来详细说明无人机图传方法的实现过程。
如图3所示,本发明实施例中无人机图传方法的实现流程,包括以下步骤:
步骤301:检测与无人机是否在时域和频域同步。
这里,当主机检测到无人机的S子帧信息,且匹配无人机身份标识码(Uav_Id,Unmanned Aerial Vehicle_Identity)后,主机发出S子帧信息,并通过多个状态切换的过程,最终主机和无人机实现在时域和频域同步。
图4给出了主机和无人机同步过程示意图,如图4所示,主机和无人 机在开机上电后进入搜索态,无人机给主机发送S子帧信息,此时主机对TPU进行调整,在主机完成TPU调整后,进入预同步态;在主机预同步态时,主机发出S子帧信息给无人机的搜索态,无人机在搜索态检测到S子帧信息时,进入无人机的同步态;此时,无人机将同步态的S子帧信息发给主机的预同步态,当主机在预同步态检测到无人机是在同步态时,主机将进入同步态,并发出S子帧信息给无人机的同步态;当无人机在同步态检测到主机也是在同步态时,此时无人机进入工作(work)态,且无人机在work态后给主机发送S子帧信息;当主机在同步态检测到无人机也是在同步态时,此时主机进入work态。这样,主机和无人机都进入work态,也就实现了时域和频域的同步,可以开始进行信息传输。然而,当误码达到门限值时,将进入失步态,则需要重新进行搜索,在新的频点继续完成同步过程。
其中,无人机图传系统的子帧结构如图5所示,该子帧结构共包含十个子帧,这十个子帧分别是:8个D子帧、2个S子帧;其中,S子帧U和D包含同步信号(PSCH)、参考信号(RS)、以及PDSCH承载的控制参数、图像控制命令等,而D子帧只承载业务信息。也就是说,当主机和无人机进入work态后,无人机开始通过D子帧传输业务信息给主机,在传输过程中,主机和无人机通过S子帧传输控制命令和相关的控制参数。这样,既能有效的支持无人机系统对于速率、实时性和高可靠传输的要求,与LTE系统相比,该系统实现有很大程度的简化,降低了实现复杂度,能够缩短开发周期、成本,同时还能稳定、高效的满足无人机图传与命令信息的交互。
步骤302:当检测到与所述无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机。
这里,在主机开始进入work态后,MCS值起初处于一个较低值,只 能达到1Mbps的速率,在一段时间内误码没有超过门限值时,主机会控制MCS值,并对MCS值进行自适应调整,当将MCS值调整到一个合理值后,主机会将调整后的新的MCS值通知给无人机,无人机检测到新的MCS值后,会将检测信息反馈给主机,然后双方在提前约定好的生效时刻点生效新的MCS值,这样,在短时间内可以将速率提升到20Mbps。
同理,当信道质量不好、且误码超过门限值时,主机会通过上述MCS自适应流程将MCS值降到一个合理值,以适应当前的信道质量。
总之,对MCS值进行自适应调整是根据当前的信道质量来进行调整的,具体来说,在信道质量低时,降低MCS值以保证信息传输的低误码,在信道质量高时,提高MCS值以实现较高的传输速率。
步骤303:将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机。
具体地,在主机和无人机进入work态时,主机会进行异频测量,当测量出当前各有效频点的值后,会选取当前信道质量最好的一个频点作为备选频点。当信道质量急剧下降、且误码超过切频门限值时,通过跳频来保证传输质量,此时会出现一个新的频点值,主机会将新的频点值通知给无人机,无人机检测到新的频点值后,将检测信息反馈给主机,然后双方在提前约定好的生效时刻点切到这一频点。其中,所述有效频点即为适合无人机信道质量传输的支持频点。
这里需要说明的是,信道质量的好坏可以以信道质量指示符(CQI,Channel Quality Indicator)为测量标准来衡量。CQI能够代表一个给定信道的信道测量标准所谓的一个值或多个值。通常,一个高值的CQI表示一个信道有好的质量,反之亦然。其中,CQI是由通信协议规定的,可根据用户实际应用和经验值确定。
步骤304:基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH 上传输数据信息。
本申请中在LTE的PDSCH上传输数据信息,包括:
所述主机的物理层接收经Modem芯片进行硬件处理后,通过LTE的PDSCH传输的数据信息比特流;将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程;所述数据信息至少包括之一:控制信息、业务信息。
本实施例中,当所述主机收到的控制信息与发送的控制信息不一致时,所述主机重传所述控制信息。
具体地,对于控制信息,可以通过握手机制来保证控制信息传输的可靠性,如果主机收到的控制信息与发送的控制信息不一致,则主机会重传上次发送的内容。
实施例二:
本实施例是以无人机侧(发送命令和业务信息)为例来详细说明基于LTE的无人机图传方法的实现过程。
如图6所示,本发明实施例中无人机图传方法的实现流程,包括以下步骤:
步骤601:检测与主机是否在时域和频域同步。
这里,当主机检测到无人机的S子帧信息,且匹配无人机身份标识码后,主机发出S子帧信息,并通过多个状态切换的过程,最终主机和无人机实现在时域和频域同步。
如图4所示,主机和无人机在开机上电后进入搜索态,无人机给主机发送S子帧信息,此时主机对TPU进行调整,在主机完成TPU调整后,进 入预同步态;在主机预同步态时,主机发出S子帧信息给无人机的搜索态,无人机在搜索态检测到S子帧信息时,进入无人机的同步态;此时,无人机将同步态的S子帧信息发给主机的预同步态,当主机在预同步态检测到无人机是在同步态时,主机将进入同步态,并发出S子帧信息给无人机的同步态;当无人机在同步态检测到主机也是在同步态时,此时无人机进入work态,且无人机在work态后给主机发送S子帧信息;当主机在同步态检测到无人机也是在同步态时,此时主机进入work态。这样,主机和无人机都进入work态,也就实现了时域和频域的同步,可以开始进行信息传输。然而,当误码达到门限值时,将进入失步态,则需要重新进行搜索,在新的频点继续完成同步过程。
其中,无人机图传系统的子帧结构如图5所示,该子帧结构共包含十个子帧,这十个子帧分别是:8个D子帧、2个S子帧;其中,S子帧U和D包含PSCH、RS、以及PDSCH承载的控制参数、图像控制命令等,而D子帧只承载业务信息。也就是说,当主机和无人机进入work态后,无人机开始通过D子帧传输业务信息给主机,在传输过程中,主机和无人机通过S子帧传输控制命令和相关的控制参数。这样,既能有效的支持无人机系统对于速率、实时性和高可靠传输的要求,与LTE系统相比,该系统实现有很大程度的简化,降低了实现复杂度,能够缩短开发周期、成本,同时还能稳定、高效的满足无人机图传与命令信息的交互。
步骤602:当检测到所述无人机与主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值。
步骤603:根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机。
步骤604:接收主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
本申请中在LTE的PDSCH上传输数据信息,包括:
将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;将所述物理层的数据信息比特流在Modem芯片中进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程;所述数据信息包括以下信息的至少之一:控制信息、业务信息。
这里,当所述无人机传输的所述业务信息出现传输错误时,所述无人机重传所述业务信息。
对于业务信息,可以通过混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)重传机制来避免业务信息的丢失,保证业务信息传输的可靠性,如果新传数据在传输过程中发生传输错误时,主机会将反馈信息发送给无人机,通知无人机重传,由于采用了HARQ机制,保证了重传的解码成功率更高。
下面对本发明实施例的无人机图传方法的具体实现过程做进一步地说明。
图7为本发明实施例软件三层结构的数据交互以及软硬件数据交互示意图,如图7所示,本发明实施例的设计思路是按照LTE协议与通信流程进行,其中,硬件部分是基于LTE的Modem芯片,软件部分分为三层:驱动层、协议栈层和物理层,其中,每层的具体实现功能如下:
驱动层,负责与主机和无人机接口,采集主机和无人机发送的图像信息和控制信息,并将所有信息组包,并传给协议栈层;
协议栈层,负责从驱动层获取数据流,对数据流进行数据加密、分段后,将信息封装传给物理层;
物理层,负责从与协议栈层的共享内存中取出数据流,实现数据传输 功能。
在图7中,以视频图像信息为例来说明无人机图传方法,在发送端,通过无人机摄像头采集视频图像信息,将采集到的视频图像信息在驱动层组包传给协议栈层,由协议栈层对视频图像信息进行加密、分段后,再将加密分段后的信息封装,然后传给物理层;将物理层的视频图像信息比特流在Modem芯片中进行编码、调制等处理后,通过LTE的PDSCH传输视频图像信息比特流给接收端的物理层,然后通过接收端的协议栈层、驱动层完成信息的进一步处理。
这里,在接收端执行的是与发送端处理流程的逆过程,这里不做一一介绍,最终将分包好的视频图像信息传给接收端的处理器,并在遥控器的显示屏上显示所述数据信息对应的视频图像。
这里,考虑到数据传输的有效性,以及当需传输的数据量非常大时,主机承担负荷较重等因素,可以在本发明实施例中增加支持从机的功能,相当于有多个地面终端可以接收无人机的图传信息,图8为本发明实施例主机、从机和无人机之间信息交互示意图,如图8所示,对于主机,既可以与无人机之间实现控制信息的交互,也可以接收无人机发送的图传信息;对于从机,只能接收无人机发送的图传信息,但不能给无人机发送任何指令信息,因此,从机只需要在接收到子帧后完成解码功能,不需要完成相应的发送功能。
实施例三:
为实现上述方法,本发明实施例还提供了一种无人机图传装置,如图9所示,该装置包括第一同步检测单元901、第一预处理单元902和第一数据传输单元903;其中,
所述第一同步检测单元901,配置为检测与无人机是否在时域和频域同步;
所述第一预处理单元902,配置为当所述第一同步检测单元901检测到与所述无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;
所述第一数据传输单元903,配置为基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息。
这里,所述第一数据传输单元903,还配置为当接收到的控制信息与发送的控制信息不一致时,重传所述控制信息。
所述第一数据传输单元903,包括以下两个子单元:Modem芯片单元和第一处理单元;其中,
所述Modem芯片单元,配置为将数据信息比特流进行硬件处理后,通过LTE的PDSCH传输给主机的物理层;
所述第一处理单元,配置为将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
实施例四:
为实现上述方法,本发明实施例还提供了一种无人机图传装置,如图10所示,该装置包括第二同步检测单元1001、第二预处理单元1002和第二数据传输单元1003;其中,
所述第二同步检测单元1001,配置为检测与主机是否在时域和频域同 步;
所述第二预处理单元1002,配置为当所述第二同步检测单元1001检测到与所述主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值;还配置为根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;
所述第二数据传输单元1003,配置为接收主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息。
这里,所述第二数据传输单元1003,还配置为当传输的所述业务信息出现传输错误时,重传所述业务信息。
所述第二数据传输单元1003,包括以下两个子单元:第二处理单元和Modem芯片单元;其中,
所述第二处理单元,配置为将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;
所述Modem芯片单元,配置为将所述物理层的数据信息比特流进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
在实际应用中,所述第一同步检测单元901、第一预处理单元902、第一数据传输单元903、第二同步检测单元1001、第二预处理单元1002、第二数据传输单元1003均可由位于LTE的Modem芯片上的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Micro Processor Unit)、数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等实现。
实施例五:
为实现上述方法,本发明实施例还提供了一种无人机图传系统,如图11所示,该系统包括:主机和无人机;其中,
所述主机,配置为与所述无人机在时域和频域同步,在检测到同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为在所述无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息;
所述无人机,配置为与所述主机在时域和频域同步,在检测到同步时,进入工作态,接收调整后的MCS值;还配置为确定支持频点,并将确定的支持频点发送给所述主机,接收所述主机确定的备选频点;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
这里,所述系统还包括:Modem芯片,配置为所述主机和无人机在LTE的PDSCH上传输数据信息之前,对数据信息比特流进行硬件处理,其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
本发明实施例检测主机与无人机是否在时域和频域同步;当检测到所述主机与无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。如此,使用LTE的PDSCH信道来完成主机和无人机之间物理信道信息的传输,不仅能有效的支持无人机系统的传输速率要求,还能提高无人机图传系统的传输距离、画质和抗干扰性能,实现物理层与高层之间的接口通信传输,使图像传输更具实时性和高可靠性,提升对无人机的使用和体验,从而达到稳定、高性能传输图像的效果。
此外,将本发明实施例应用在LTE的Modem芯片上,完成主机与无人机之间图像和指令的传输,使得本发明实施例基于LTE的无人机图传系统有很大程度的简化,降低了实现复杂度和成本,同时还能够实现主机和无人机两个终端对于功能模块的复用。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于主机的无人机图传方法。
具体的,该计算机可执行指令被处理器运行时,执行:检测与无人机是否在时域和频域同步;当检测到与所述无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
作为一种实施方式,该计算机可执行指令被处理器运行时,执行:当接收到的控制信息与发送的控制信息不一致时,重传所述控制信息。
作为一种实施方式,该计算机可执行指令被处理器运行时,执行:物理层接收经Modem芯片进行硬件处理后,通过LTE的PDSCH传输的数据信息比特流;将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的应用于无人机的无人机图传方法。
具体的,该计算机可执行指令被处理器运行时,执行:检测与主机是否在时域和频域同步;当检测到与所述主机在时域和频域同步时,进入工 作态,接收所述主机调整后的MCS值;根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;接收所述主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
作为一种实施方式,该计算机可执行指令被处理器运行时,执行:当传输的所述业务信息出现传输错误时,重传所述业务信息。
作为一种实施方式,该计算机可执行指令被处理器运行时,执行:将驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;将所述物理层的数据信息比特流在Modem芯片中进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案采用LTE的PDSCH信道来完成主机和无人机之间物理信道信息的传输,不仅能有效的支持无人机系统的传输速率要求,还能提高无人机图传系统的传输距离、画质和抗干扰性能,实现物理层与高层之间的接口通信传输,使图像传输更具实时性和高可靠性,提升对无人机的使用和体验,从而达到稳定、高性能传输图像的效果。

Claims (20)

  1. 一种无人机图传方法,所述方法包括:
    检测与无人机是否在时域和频域同步;
    当检测到与所述无人机在时域和频域同步时,进入工作态,调整调制与编码策略MCS值,并将调整后的MCS值通知所述无人机;
    将当前检测到的频点发送给所述无人机,在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;
    基于所述调整后的MCS值,以所述备选频点在LTE的物理下行共享信道PDSCH上传输数据信息。
  2. 根据权利要求1所述的方法,其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    当所述主机收到的控制信息与发送的控制信息不一致时,所述主机重传所述控制信息。
  4. 根据权利要求1至3任一项所述的方法,其中,所述在LTE的PDSCH上传输数据信息,包括:
    所述主机的物理层接收经调制解调器Modem芯片进行硬件处理后,通过LTE的PDSCH传输的数据信息比特流;将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
  5. 根据权利要求4所述的方法,其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
  6. 一种无人机图传方法,所述方法包括:
    检测与主机是否在时域和频域同步;
    当检测到与所述主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值;
    根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;
    接收所述主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
  7. 根据权利要求6所述的方法,其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    当所述无人机传输的所述业务信息出现传输错误时,所述无人机重传所述业务信息。
  9. 根据权利要求6至8任一项所述的方法,其中,所述在LTE的PDSCH上传输数据信息,包括:
    将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;将所述物理层的数据信息比特流在Modem芯片中进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
  10. 根据权利要求9所述的方法,其中,所述硬件处理包括以下处理的至少之一:编码、解码、调制、解调过程。
  11. 一种无人机图传装置,所述装置包括:第一同步检测单元、第一预处理单元和第一数据传输单元;其中,
    所述第一同步检测单元,配置为检测与无人机是否在时域和频域同步;
    所述第一预处理单元,配置为当所述第一同步检测单元检测到与所述无人机在时域和频域同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为将当前检测到的频点发送给所述无人机, 在无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;
    所述第一数据传输单元,配置为基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
  12. 根据权利要求11所述的装置,其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息;
    所述第一数据传输单元,还配置为当接收到的控制信息与发送的控制信息不一致时,重传所述控制信息。
  13. 根据权利要求11或12所述的装置,其中,所述第一数据传输单元,包括:Modem芯片单元和第一处理单元;其中,
    所述Modem芯片单元,配置为将数据信息比特流进行硬件处理后,通过LTE的PDSCH传输给主机的物理层;
    所述第一处理单元,配置为将收到的数据信息比特流发送给协议栈层,由所述协议栈层进行解密、分段组合、解封装后传给驱动层,所述驱动层对收到的数据信息进行分包后传给主机的处理器,并显示所述数据信息对应的图像。
  14. 一种无人机图传装置,所述装置包括:第二同步检测单元、第二预处理单元和第二数据传输单元;其中,
    所述第二同步检测单元,配置为检测与主机是否在时域和频域同步;
    所述第二预处理单元,配置为当所述第二同步检测单元检测到与所述主机在时域和频域同步时,进入工作态,接收所述主机调整后的MCS值;还配置为根据接收的频点确定无人机的支持频点,并将确定的支持频点发送给所述主机;
    所述第二数据传输单元,配置为接收主机确定的备选频点,基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
  15. 根据权利要求14所述的装置,其中,所述数据信息包括以下信息的至少之一:控制信息、业务信息;
    所述第二数据传输单元,还配置为当传输的所述业务信息出现传输错误时,重传所述业务信息。
  16. 根据权利要求14或15所述的装置,其中,所述第二数据传输单元,包括:第二处理单元和Modem芯片单元;其中,
    所述第二处理单元,配置为将无人机的驱动层采集到的需传输的数据信息组包传给协议栈层,由所述协议栈层对所述数据信息进行加密、分段、封装后传给物理层;
    所述Modem芯片单元,配置为将所述物理层的数据信息比特流进行硬件处理后,通过LTE的PDSCH传输所述数据信息比特流给主机的物理层。
  17. 一种基于LTE的无人机图传系统,所述系统包括:主机和无人机;其中,
    所述主机,配置为与所述无人机在时域和频域同步,在检测到同步时,进入工作态,调整MCS值,并将调整后的MCS值通知所述无人机;还配置为在所述无人机的支持频点中确定备选频点,并将确定的备选频点发送给所述无人机;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息;
    所述无人机,配置为与所述主机在时域和频域同步,在检测到同步时,进入工作态,接收调整后的MCS值;还配置为确定支持频点,并将确定的支持频点发送给所述主机,接收所述主机确定的备选频点;基于所述调整后的MCS值,以所述备选频点在LTE的PDSCH上传输数据信息。
  18. 根据权利要求17所述的系统,其中,所述系统还包括:Modem芯片,配置为所述主机和无人机在LTE的PDSCH上传输数据信息之前,对数据信息比特流进行硬件处理,其中,所述硬件处理包括以下处理的至少 之一:编码、解码、调制、解调过程。
  19. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至5任一项所述的无人机图传方法。
  20. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求6至10任一项所述的无人机图传方法。
PCT/CN2017/089050 2016-07-18 2017-06-19 一种无人机图传方法、装置、系统和计算机存储介质 WO2018014686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610571108.5 2016-07-18
CN201610571108.5A CN107634816B (zh) 2016-07-18 2016-07-18 一种基于长期演进的无人机图传方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2018014686A1 true WO2018014686A1 (zh) 2018-01-25

Family

ID=60991886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089050 WO2018014686A1 (zh) 2016-07-18 2017-06-19 一种无人机图传方法、装置、系统和计算机存储介质

Country Status (2)

Country Link
CN (1) CN107634816B (zh)
WO (1) WO2018014686A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583466A (zh) * 2019-09-27 2021-03-30 深圳市中兴微电子技术有限公司 调制与编码策略值的控制方法及装置、存储介质
CN112929141A (zh) * 2021-01-20 2021-06-08 南京中新赛克科技有限责任公司 一种基于图传信号匹配的无人机检测识别方法和系统
CN113572540A (zh) * 2021-06-28 2021-10-29 中国电子科技集团公司第三十八研究所 一种基于相关域检测的无人机图传信号识别方法及系统
CN114326820A (zh) * 2022-02-09 2022-04-12 西安羚控电子科技有限公司 一种无人机飞行监控方法及系统
CN115242898A (zh) * 2022-06-06 2022-10-25 浪潮通信技术有限公司 协议栈与物理层进程间的通信方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390748B (zh) 2018-02-09 2021-07-09 深圳市道通智能航空技术股份有限公司 数据传输方法、装置及系统
CN111327556B (zh) * 2018-12-14 2022-03-25 深圳市中兴微电子技术有限公司 一种同步方法和装置、同步系统、计算机可读存储介质
CN109861744A (zh) * 2019-03-20 2019-06-07 京信通信系统(中国)有限公司 数据回传方法、装置、终端、无人机和可读存储介质
TWI699990B (zh) * 2019-04-02 2020-07-21 俊華電子企業股份有限公司 輕量的遙控通訊協定之訊號傳輸方法
CN115426437A (zh) * 2022-08-19 2022-12-02 深圳市道通智能航空技术股份有限公司 一种图传控制方法、装置、系统、调制解调器及飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490842A (zh) * 2013-09-26 2014-01-01 深圳市大疆创新科技有限公司 数据传输系统及方法
CN104317288A (zh) * 2014-10-22 2015-01-28 陕西亿美万泰科技有限公司 一种警用多用途侦测用无人机系统
CN104333411A (zh) * 2014-11-26 2015-02-04 成都中远信电子科技有限公司 一种用于无人机遥测、遥控和数传系统
CN204952261U (zh) * 2015-08-04 2016-01-13 深圳市凯木金科技有限公司 遥控航拍飞机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724016B (zh) * 2012-06-05 2017-02-08 青岛艾特网络发展有限公司 调制编码方案的自适应调整方法及装置
CN104518842B (zh) * 2013-09-27 2018-06-22 普天信息技术研究院有限公司 一种自适应调整调制编码方式的方法
CN105577324B (zh) * 2015-12-22 2018-11-27 京信通信系统(中国)有限公司 通信链路自适应调整方法和系统
CN105636042B (zh) * 2016-01-25 2019-07-09 南京佰联信息技术有限公司 移动通信设备的控制方法和装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490842A (zh) * 2013-09-26 2014-01-01 深圳市大疆创新科技有限公司 数据传输系统及方法
CN104317288A (zh) * 2014-10-22 2015-01-28 陕西亿美万泰科技有限公司 一种警用多用途侦测用无人机系统
CN104333411A (zh) * 2014-11-26 2015-02-04 成都中远信电子科技有限公司 一种用于无人机遥测、遥控和数传系统
CN204952261U (zh) * 2015-08-04 2016-01-13 深圳市凯木金科技有限公司 遥控航拍飞机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583466A (zh) * 2019-09-27 2021-03-30 深圳市中兴微电子技术有限公司 调制与编码策略值的控制方法及装置、存储介质
CN112929141A (zh) * 2021-01-20 2021-06-08 南京中新赛克科技有限责任公司 一种基于图传信号匹配的无人机检测识别方法和系统
CN112929141B (zh) * 2021-01-20 2024-04-05 南京中新赛克科技有限责任公司 一种基于图传信号匹配的无人机检测识别方法和系统
CN113572540A (zh) * 2021-06-28 2021-10-29 中国电子科技集团公司第三十八研究所 一种基于相关域检测的无人机图传信号识别方法及系统
CN113572540B (zh) * 2021-06-28 2023-04-18 中国电子科技集团公司第三十八研究所 一种基于相关域检测的无人机图传信号识别方法及系统
CN114326820A (zh) * 2022-02-09 2022-04-12 西安羚控电子科技有限公司 一种无人机飞行监控方法及系统
CN115242898A (zh) * 2022-06-06 2022-10-25 浪潮通信技术有限公司 协议栈与物理层进程间的通信方法及装置
CN115242898B (zh) * 2022-06-06 2024-04-19 浪潮通信技术有限公司 协议栈与物理层进程间的通信方法及装置

Also Published As

Publication number Publication date
CN107634816B (zh) 2021-05-11
CN107634816A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2018014686A1 (zh) 一种无人机图传方法、装置、系统和计算机存储介质
US10992424B2 (en) Method and device for determining resource selection window on basis of information related to sidelink HARQ feedback in wireless communication system
KR102428379B1 (ko) Nr v2x에서 복수의 자원을 스케줄링하는 방법 및 장치
US20210400639A1 (en) Method and device for allocating resources in nr v2x
KR102397950B1 (ko) Nr v2x에서 전송 블록 사이즈를 결정하는 방법 및 장치
JP7195416B2 (ja) Nr v2xにおけるサイドリンクharqフィードバックを送信する方法及び装置
US11483100B2 (en) Method and apparatus for performing sidelink communication based on data link in NR V2X
US20230069396A1 (en) Method and device for determining feedback resource in nr v2x
US20210235396A1 (en) Method and apparatus for controlling transmission power on basis of information related to sidelink harq feedback in wireless communication system
US11671203B2 (en) Method and device for determining HARQ feedback option in NR V2X
JP7407961B2 (ja) Nr v2xにおけるサイドリンクcgリソースに基づいてサイドリンク通信を行う方法及び装置
JP7379685B2 (ja) Nr v2xにおけるharqフィードバックを基地局へ報告する方法及び装置
KR20220030266A (ko) Nr v2x에서 psfch 자원을 기준으로 사이드링크 통신을 수행하기 위한 시간 영역을 결정하는 방법 및 장치
US11469861B2 (en) Method and apparatus for performing retransmission in NR V2X
JP2024500996A (ja) Nr v2xにおけるデフォルトdrx設定に基づいてsl drx動作を実行する方法及び装置
US20220330281A1 (en) Method and device for performing harq feedback in nr v2x
US20220183092A1 (en) Method and device for performing pc5 rrc connection-based harq feedback in nr v2x
US20220141815A1 (en) Method and apparatus for performing position-based sidelink communication in wireless communication system
KR102555357B1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
KR102542004B1 (ko) Nr v2x에서 사이드링크 자원을 할당하는 방법 및 장치
KR20230042382A (ko) Nr v2x에서 자원을 결정하는 방법 및 장치
JP2022541206A (ja) Nr v2xにおいて優先順位を決定する方法及び装置
US20210391954A1 (en) Method and apparatus for adjusting threshold for determining harq feedback in nr v2x
KR102616117B1 (ko) Nr v2x에서 단말-간 조정 메시지를 송수신하는 방법 및 장치
US20230164803A1 (en) Method and apparatus for performing sidelink transmission on basis of pucch processing time in nr v2x

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830321

Country of ref document: EP

Kind code of ref document: A1