WO2018014604A1 - 一种冷热电联产灌注桩装置及其施工方法 - Google Patents

一种冷热电联产灌注桩装置及其施工方法 Download PDF

Info

Publication number
WO2018014604A1
WO2018014604A1 PCT/CN2017/080611 CN2017080611W WO2018014604A1 WO 2018014604 A1 WO2018014604 A1 WO 2018014604A1 CN 2017080611 W CN2017080611 W CN 2017080611W WO 2018014604 A1 WO2018014604 A1 WO 2018014604A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
power generation
heat
heat transfer
transfer tube
Prior art date
Application number
PCT/CN2017/080611
Other languages
English (en)
French (fr)
Inventor
孔纲强
孟珍珠
刘汉龙
周航
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Publication of WO2018014604A1 publication Critical patent/WO2018014604A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • German invention patent "Concrete pile foundation for absorbing geothermal energy, contains corrugated sleeve pipe (DE202004014113 U1)", which is applied for and authorized by Ing. Armin Amann, corresponding Other countries have patent license numbers: AT7887 U1.
  • Document 16 International method PCT patents "A method and system for installing geothermal heat exchangers, energy piles, concrete piles, and piles using a sonic drill and a removable or retrievable drill bit" (PCT/) applied by Raymond J. Roussy. CA2009/000180)", the corresponding national phase patent grant numbers are: CA2716209A1, CA2716209C, CA2827026A1, CA2827026C, CN102016218A, EP2247816A1, EP2247816A4, US8118115, US20090214299.
  • Document 21 Chinese invention patents applied and authorized by Gong Zhiyong “Methods and devices for transferring underground thermal energy using oil casings (Patent No.: CN201010101312.3)”.
  • thermoelectric power generation technology In 1999, DiSalvo pointed out that based on semiconductor low-temperature thermoelectric power generation technology, it is possible to realize thermoelectric conversion between subtle temperature differences (Ref. 22).
  • Document 23 An ultra-deep high temperature (1200-1800 ° C) is disclosed.
  • a technical method for generating electricity from a temperature difference between a deep intermediate temperature (250 to 600 ° C); a method for converting deep geothermal energy into electric energy based on an underground rock tunnel structure is disclosed in the literature 24;
  • a technical method based on ground-source heat pump technology to transmit deep geothermal energy to the surface, and to make the heat transfer tube and the temperature difference in the air (that is, the deep geothermal energy provides a heat source and the natural air provides a cold source) to generate electricity.
  • Semiconductor temperature difference power generation can be used not only in the case of large relative temperature difference, but also in the case of relatively small temperature difference.
  • the semiconductor temperature difference power generation chip technology effectively breaks the limitation of relative temperature difference on power generation, and greatly expands the conversion of thermal energy into The types and channels of electrical energy also make it possible to convert shallow geothermal energy directly into electrical energy.
  • a technical method for providing a heat source by using solar energy and providing a cold source for providing differential temperature power generation by using shallow geothermal energy is disclosed; these technical methods play a good demonstration role for utilizing shallow geothermal energy for temperature difference power generation.
  • a shallow geothermal energy and heat transfer tube can be developed simultaneously.
  • the technical solution between the temperature difference between the power generation and the heat energy transmitted through the heat transfer tube to supply the upper air-conditioning heating or the cold energy supply to the upper air-conditioning refrigeration cogeneration pile is particularly important.
  • OBJECT OF THE INVENTION To overcome the above shortcomings and shortcomings, solve the problem that (1) conventional energy pile technology can only achieve heat energy transfer, and the total amount of heat energy transfer is limited by regional and time factors, and (2) conventional deep geothermal temperature difference power generation to heat source temperature The absolute value is high (general requirements > 80 ° C), the development difficulty is relatively large and the development cost is high. (3) The conventional shallow geothermal temperature difference power generation scheme has high drilling tunnel construction cost, occupied land area or large underground space. And without the problem of direct power generation by using the temperature difference between the soil itself and the medium, a cold-heated co-production pile-in-situ pile device and a construction method thereof are proposed, which are arranged outside the heat transfer tube that is tied to the cast-in-place pile steel cage.
  • the present invention provides a cogeneration pile device for cold and heat cogeneration, the device comprising: a pouring pile, a heat transfer tube embedded in the pouring pile, a heat exchange device, and a pile side semiconductor temperature difference power generation
  • the system and the pile end semiconductor temperature difference power generation system wherein the heat exchange device communicates with the heat exchange tube through a valve and a water pump to form an air conditioning system circuit, and the liquid flow rate in the heat transfer tube is controlled by the water pump and the valve, and the liquid in the heat transfer tube is first and the soil body
  • the middle and shallow geothermal energy realizes heat exchange, and then adjusts the indoor air temperature of the building through the upper heat exchange device;
  • the pile side semiconductor temperature difference power generation system realizes thermoelectric conversion by using the temperature difference between the liquid in the heat transfer tube and the soil on the pile side, and The obtained electric energy is connected to the DC/DC converter and the storage battery to provide power supply for the surface electric equipment;
  • the pile end semiconductor thermoelectric power generation system utilizes the temperature difference between the liquid in
  • the semiconductor thermoelectric power generation piece is pasted on the lower end surface of the carrier plate through the thermal conductive silica gel, and a heat conduction protection layer is disposed outside the semiconductor temperature difference power generation piece, and the electric energy obtained by the semiconductor temperature difference power generation piece is connected to the DC by connecting the wire to the DC.
  • the /DC converter and battery provide power for the surface electrical equipment.
  • the pouring pile is a mud retaining pile or a full casing bored pile; the pile length, the pile diameter, the concrete label and the size of the steel cage are designed according to the support upper load requirement.
  • the length of the cast-in-place pile is 20-60 m, the pile diameter is 0.6-1.2 m, and the pile spacing is 1.8-6.0 m.
  • the heat transfer tube is a polyethylene tube having an outer diameter of 25 to 60 mm and a wall thickness of 5 to 8 mm, and the length needs to be determined according to the length of the cast pile and the arrangement of the heat transfer tube, preferably, the length 40 to 300 m; the heat transfer tube is tied to the side wall of the cast-in-situ steel cage; the heat transfer tube is in the form of a single U-shaped, double U-shaped, W-shaped or spiral type or a combination of several types.
  • the water pump is located at the surface of the earth, and the power thereof is 0.55-1.2 kW; the valve is an electric two-way valve; and the heat exchange device is a fan coil in the air-conditioning device.
  • the thermal conductive silica gel has a thermal conductivity of 0.6-1.5 W/(m ⁇ K), has high bonding performance and superior thermal conductivity, and is non-solidified and non-conductive;
  • the thermal conductive protective layer is Stainless steel iron or silica-based composite material to prevent semiconductor temperature difference power generation chips from being damaged during concrete pouring and vibrating;
  • the DC/DC converter is located on the ground surface as a step-up DC/DC converter;
  • the battery is located on the surface It is one of a lead storage battery or a lithium ion battery or a lithium ion polymer battery or a nickel cadmium battery; the wire is embedded in the thermal silica gel.
  • the invention further provides a construction method of a cogeneration pile device for cold, heat and power, comprising the following steps:
  • the heat transfer tube is selected, and the semiconductor thermoelectric power generation piece is pasted on the outer side of the heat transfer tube by using the thermal conductive silica gel, and the wire connecting the semiconductor thermoelectric power generation piece is buried in the thermal conductive silica gel and led out to the ground.
  • the heat transfer tube containing the semiconductor thermoelectric power generation piece is bundled on the side wall of the cast-in-situ steel cage;
  • the wire connecting the semiconductor thermoelectric power generation piece is embedded in the thermal conductive silica gel, and the heat transfer tube along the side wall of the steel cage is led out to the ground, and is located at the surface.
  • the DC/DC converter, the battery and the electrical equipment are connected in sequence;
  • cast-in-place pile According to the upper load, design and determine the pile diameter, pile length, pile foundation layout, pile spacing and steel cage size and form of the cast-in-place pile; comprehensive consideration of pile length, pile spacing and shallow geothermal energy Reserves, upper air conditioning system and energy demand for electrical equipment, design of heat transfer tube buried pipe form; production of cast-in-situ steel cage with heat transfer tube, pile side semiconductor thermoelectric power generation system and pile end semiconductor thermoelectric power generation system; Holes or mud retaining walls are drilled to build the pile hole to the design depth, the cast-in-place pile steel cage is laid down, concrete is poured, and the pile construction is completed;
  • the semiconductor thermoelectric power generation chip is buried outside the heat transfer tube of 10 to 15 m, and the buried tube of the heat transfer tube is in a single U shape, a double U shape, a W shape or a spiral shape. Any combination of one or several.
  • the cogeneration pile of the present invention has the following technical advantages:
  • the bearing plate set at the bottom end of the steel cage can improve the reinforcement effect of the bottom of the pouring pile to improve the bearing capacity of the pile end at the same time as providing the thermoelectric conversion function;
  • FIG. 1 is a schematic view showing the arrangement structure of a combined heat and power cogeneration pile in the present invention
  • FIG. 2 is a schematic view showing a form of embedding a heat transfer tube in a combined heat and power cogeneration pile in the present invention, wherein (a) is a single U shape, (b) is a double U shape, and (c) is a W shape, (d) Spiral type;
  • Figure 3 is a schematic cross-sectional view showing the AA cross section of the heat transfer tube embedded in the steel cage in the present invention, wherein (a) is a single U shape, (b) is a double U shape, (c) is a W shape, and (d) is a spiral type;
  • FIG. 5 is a schematic cross-sectional view showing the arrangement of a pile side temperature difference power generation system in a combined heat and power cogeneration pile in the present invention
  • Figure 6 is a perspective view showing the arrangement of a pile end temperature difference power generation system in a combined heat and power cogeneration pile in the present invention
  • Figure 7 is a perspective view of a semiconductor thermoelectric power generation chip in a combined heat and power cogeneration pile in the present invention.
  • Figure 8 is a schematic cross-sectional view of a semiconductor thermoelectric power generation sheet in a combined heat and power cogeneration pile in the present invention.
  • 1 is a pouring pile
  • 2 is a steel cage
  • 3 is a heat transfer tube
  • 4 is a DC/DC converter
  • 5 is a battery
  • 6 is a wire
  • 7 is a power device
  • 8 is a water pump
  • 9 is a valve
  • 11 is a pile-side semiconductor thermoelectric power generation system
  • 12 is a pile-end semiconductor temperature difference power generation system
  • 13 is a main rib
  • 14 is a stirrup
  • 15 is a semiconductor thermoelectric power generation chip
  • 16 is a P-type semiconductor
  • 17 is an N-type semiconductor.
  • 18 is a metal sheet
  • 19 is a heat conducting plate
  • 20 is a hot end
  • 21 is a cold end
  • 22 is a heat conducting protective layer
  • 23 is a carrier plate
  • 24 is a heat pipe
  • 25 is a heat conductive silica gel.
  • the invention provides a cold and heat electric co-production pouring pile device, as shown in Fig. 1, the device comprises: a pouring pile, a heat transfer tube buried in the pouring pile, a heat exchange device, a pile side semiconductor thermoelectric power generation system and a pile
  • the terminal semiconductor temperature difference power generation system wherein the heat exchange device communicates with the heat exchange tube through the valve and the water pump to form an air conditioning system circuit, and the liquid flow rate in the heat transfer tube is controlled by the water pump and the valve, and the liquid in the heat transfer tube is firstly combined with the shallow ground heat energy in the soil body.
  • the heat exchange is realized, and then the indoor air temperature of the building is adjusted by the upper heat exchange device; the pile side semiconductor temperature difference power generation system realizes the thermoelectric conversion by using the temperature difference between the liquid in the heat transfer tube and the soil on the pile side, and connects the obtained electric energy to the DC/DC.
  • the converter and the battery provide power supply for the surface electrical equipment; the pile-end semiconductor temperature difference power generation system uses the temperature difference between the liquid in the heat transfer tube and the soil at the pile end to realize the thermoelectric conversion, and the electric energy obtained by the semiconductor temperature difference is connected to the DC/DC by the wire.
  • the converter and battery provide power for the surface electrical equipment, as shown in Figures 4-6.
  • the pile side semiconductor thermoelectric power generation system comprises a semiconductor thermoelectric power generation sheet, a thermal conductive silica gel, a thermal conductive protective layer, a DC/DC converter, a battery and a wire, and the semiconductor thermoelectric power generation piece is pasted on the outer side of the heat transfer tube by a thermal conductive silica gel, and the semiconductor thermoelectric power generation sheet is outside.
  • a thermal protective layer is provided, and the electrical energy obtained by the semiconductor thermoelectric power supply supplies power to the surface electrical equipment by connecting the wires to the DC/DC converter and the battery.
  • the pile end semiconductor thermoelectric power generation system comprises a semiconductor thermoelectric power generation sheet, a thermal conductive silica gel, a carrier plate, a thermal conductive protection layer, a DC/DC converter, a battery and a wire, and the carrier plate is tied or welded to the bottom of the cast-in-situ steel cage, and the end face of the support plate A heat dissipating tube is disposed on the lower end surface, and a semiconductor thermoelectric power generation sheet is arranged.
  • the semiconductor thermoelectric power generation sheet is pasted on the lower end surface of the carrier plate through the thermal conductive silica gel, and a thermal conductive protection layer is disposed outside the semiconductor thermoelectric power generation sheet, and the electric energy obtained by the semiconductor thermoelectric power generation piece is connected to the DC/DC through the electric wire.
  • the converter and battery provide power for the surface electrical equipment.
  • the semiconductor thermoelectric power generation chip described above is a semiconductor thermoelectric power generation chip commonly used in the prior art, and the structure is as shown in FIGS. 7-8, and includes a hot end, a cold end, a P-type semiconductor, an N-type semiconductor, a metal piece, and a heat conducting plate.
  • the heat transfer tube 3 containing the semiconductor thermoelectric power generation piece 15 is bundled on the side wall of the cast-in-situ steel cage 2;
  • the semiconductor thermoelectric power generation chip 15 is mainly buried outside the heat transfer tube 3 of 10 to 15 m or less.
  • the thermal conductive silica gel 25 has a thermal conductivity of 0.6 to 1.5 W/(m ⁇ K), and has high bonding performance, superior thermal conductivity, and non-solidification and non-conductivity; preferably, the thermal conductive layer 22 is Stainless steel iron or silica-based composite material to prevent semiconductor thermoelectric power generation sheet 15 from being damaged during concrete pouring and vibrating; preferably DC/DC converter 4, located on the surface, is a step-up DC/DC converter (4); The ground battery 5, located at the surface, is one of a lead storage battery or a lithium ion battery or a lithium ion polymer battery or a nickel cadmium battery; preferably, the wire 6 is embedded in the thermal conductive silica gel 25.
  • the pile end semiconductor temperature difference power generation system 12 the bottom end of the steel cage 2 is tied or welded, and the load-bearing plate 23 with the reserved hole is the same as the diameter of the cast-in-place steel cage 2, and the heat-dissipating tube 24 is arranged on the upper end surface of the load-bearing plate 23, and is tied with
  • the heat transfer tubes 3 on the side walls of the cast-in-place steel cage 2 communicate with each other to form a circulation path;
  • the semiconductor thermoelectric power generation sheet 15 is bonded to the lower end surface of the carrier plate 23 by a thermal conductive silica gel 25, and a thermal conductive protective layer 22 is disposed outside the semiconductor thermoelectric power generation sheet 15 to connect the semiconductor
  • the wire 6 of the thermoelectric power generation piece 15 is embedded in the thermal conductive silica gel 25, and is taken out along the heat transfer tube 3 on the side wall of the reinforcing cage 2, and connected to the DC/DC converter 4, the battery 5, and the electric device 7 at the surface;
  • carrier plate 23 It is a circular rigid plate having a thickness of 8 to 12 mm (10 mm in this embodiment) and a diameter of 0.5 to 1.1 m (0.75 mm in this embodiment), which is consistent with the diameter of the cast-in-place pile cage 2, and is provided on the carrier plate 23 ⁇ 6 reserved holes for the main rib 13 of the reinforcing cage 2 of the pouring pile 1 to pass through, and the supporting plate 23 at the lower end of the pouring pile 1 is tying or welded to the main rib 13 passing through the small round hole; preferably, the heat pipe 24 is gathered
  • the ethylene tube has an outer diameter of 25 to 60 mm, a wall thickness of 5 to 8 mm, a length of 1 to 2 m (in this embodiment, an outer diameter of 30 mm, a wall thickness of 5 mm, and a length of 1.2 m), and is wound around the carrier plate 23.
  • the end faces are connected to the heat transfer tubes 3.
  • the heat transfer tube 3 with the pile side semiconductor thermoelectric power generation system 11 and the pile end semiconductor thermoelectric power generation system 12 is bundled on the side wall of the steel cage 2, and the pile hole is drilled by the full casing drilling or mud wall to the design depth.
  • the steel cage 2 is lowered, the concrete is poured, and the construction of the pouring pile 1 is completed.
  • the cooling, heating and power supply system is connected; the heat transfer tube 3 is connected with the water pump 8 and the heat exchange device 10 to form a shallow geothermal air conditioning system to provide cooling or heating for the upper building, and the wire 6 and the DC/DC converter 4 , the battery 5 and the electrical equipment 7 are connected to form a shallow geothermal energy temperature difference power generation system to provide power for the upper electrical equipment (such as lighting LED lights); according to the total amount of shallow geothermal energy reserves and electricity and refrigeration of the upper building Or the demand for heating, you can choose only the air conditioning system (cooling or heating), only the thermoelectric system (power supply), or part of the supply of air conditioning system part of the temperature difference power generation system; the final realization of the construction of the cogeneration pile 1 application.
  • the water pump 8 in the air conditioning system is located at the surface and has a power of 0.55 to 1.2 kW (1.0 kW in the present embodiment); preferably the valve 9 in the air conditioning system is an electric two-way valve; preferably in the air conditioning system
  • the heat device 10 is a fan coil in an air conditioner.
  • the cogeneration pile of the present invention can also be used.
  • the temperature difference between the liquid and the soil in the heat pipe or the heat pipe realizes the demand for power supply to the upper building by the temperature difference power generation; at the same time, the shallow ground heat energy can select only the air conditioning system (cooling or heating) and only the temperature difference according to the requirements of the upper building environment.
  • the system (power supply) or part of the supply air conditioning system partially supplies the temperature difference power generation system to realize the on-demand and timely use of energy, and improve energy utilization efficiency.
  • the carrier plate disposed at the bottom end of the steel cage can provide the thermoelectric conversion function, and can also improve the reinforcement effect of the bottom of the cast pile to a certain extent, thereby improving the bearing capacity of the pile end.
  • the thermoelectric power generation system uses the waste heat in the heat transfer tube to perform the thermoelectric conversion in the summer, the heat of the liquid in the partial heat transfer tube is consumed, which not only can improve the heat dissipation efficiency, but also can reduce the shallow ground heat consumption per unit time and improve the buried pipe in the unit space.
  • the amount is beneficial to maintain the thermal stability of the soil.
  • the device not only effectively realizes the composite utilization of the cast-in-place pile in mechanics, heat and electricity, but also realizes the multi-objective and effective utilization of shallow geothermal energy on demand and in error. Improve energy efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Sustainable Energy (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Road Paving Structures (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

一种冷热电联产灌注桩装置,包括灌注桩(1)、埋设于灌注桩(1)内的传热管(3)、换热设备(10)、桩侧和桩端半导体温差发电系统。换热设备(10)与换热管(3)连通,构成空调系统回路用于调节建筑物室内空气温度;桩侧半导体温差发电系统(11)利用传热管(3)内液体与桩侧土体之间的温差实现热电转化,并将获得的电能连接DC/DC转化器(4)和蓄电池(5)为地表用电设备(7)提供电力供应;桩端半导体温差发电系统(12)利用传热管(3)内液体与桩端土体之间的温差实现热电转化,利用导线(6)将半导体温差发电获得的电能连接DC/DC转化器(4)和蓄电池(5)为地表用电设备(7)提供电力供应。该系统不仅有效的实现了灌注桩(1)在力学、热学和电学三方面的复合利用,并且实现了浅层地热能源按需、错时的多目标有效利用,提高能源利用效率。

Description

一种冷热电联产灌注桩装置及其施工方法 技术领域
本发明涉及一种浅层地热能源利用技术,主要适用于桩基础等技术领域,尤其是涉及一种冷热电联产灌注桩装置及其施工方法。
背景技术
浅层地热能,又名浅层地温能,属于低品位可再生清洁能源,是当前技术经济条件下最具备开发利用价值的地球内部的热能资源之一。目前浅层地热能开发与利用中,主要是直接利用浅层土壤常年恒温的特点,利用热泵循环来达到对地面建筑冬天供暖或者夏天制冷的作用。地源热泵技术,属于浅层地热能直接利用的最常用形式之一,该技术利用地下的土壤、地表水、地下水等温度相对稳定的特性,通过以大地为储能体进行热量交换的可再生能源的空调系统;该技术方案可以替代传统锅炉或市政管网等传统的供暖方式和空调系统,达到节能减排的目的。地下埋设传热管,是地源热泵技术的施工难点和投资重点;且地下传热管埋设需要占用较大的土地面积和地下空间,造成其初期埋设等施工成本高,从而影响其大量推广应用。将地源热泵技术中的地下传热管埋设施工与传统建筑桩基础施工相结合,可以有效解决专门埋管的施工步骤和地下传热管占用地下空间问题,从而大大节省工程造价;基于这种地下埋管形式形成的带有地下传热管的桩基结构称为能量桩(或称能源桩、能源热交换桩)。能量桩技术是近年来有效利用浅层地热能的最典型技术方案之一;结合具体桩基结构形式的不同,产生了不同的浅层地热能热传递利用的能量桩类型(文献1~16)。
文献1:Jürgen Vogel和Hermann Josef Wilhelm申请的德国发明专利“Energy pile for geothermal energy purpose i.e.combined heating and cooling systems,has collector tube comprising section that includes another section that transitions and runs helically around former section of collector tube(DE102012013337 A1)”。
文献2:Tiroler
Figure PCTCN2017080611-appb-000001
Metallwerke Aktiengesellschaft和Armin Ing.Amann申请并授权的欧洲和德国发明专利“Energy pile(EP1486741 B1,DE50305842D1)”。
文献3:Ing.Armin Amann申请并授权的德国发明专利“Concrete pile foundation for absorbing geothermal energy,contains corrugated sleeve pipe(DE202004014113 U1)”,相应 的其他国家专利授权号还有:AT7887 U1。
文献4:Alain Desmeules申请并授权的PCT专利“Pile with integral geothermal conduit loop retaining means(PCT/CA2010/001500)”,相应的国家阶段专利授权号为:CA2683256 A1,EP2491183 A4,US8262322 B2,US20110091288 A1,WO2011047461 A1。
文献5:李志毅,张全胜,张慧东,柳建国和马凛申请并授权的中国发明专利“旋进式壁后注浆地源热能转换预制桩装置及其埋入地层的方法,(专利号:CN201210054121.5),授权公告日2014年11月26日”。
文献6:孔纲强,黄旭,丁选明,刘汉龙和彭怀风申请并授权的中国发明专利“一种六边形预制能量桩及其制作方法,(专利号:CN201310442139.7),授权公告日2015年8月19日”。
文献7:孔纲强,黄旭,丁选明,刘汉龙和彭怀风申请并授权的中国发明专利“一种预制能量桩的施工方法,(专利号:CN201310441978.7),授权公告日2015年9月23日”。
文献8:黄吉永,郑荣跃和黄楠申请并授权的中国发明专利“一种基于植桩过程的地源热泵管埋置方法,(专利号:CN201310033136.8),授权公告日2015年9月23日”。
文献9:蒋刚,路宏伟,王彬彬和刘伟庆申请并授权的中国发明专利“带有地源热泵双螺旋管状换热器的预制钢筋混凝土管桩,(专利号:CN201410572810.4),授权公告日2016年1月20日”。
文献10:Beton Son B.V.申请并授权的欧洲发明专利“Geothermal pile having a cavity through which a fluid can flow”,相应的国家阶段专利授权号为:EP1243875 B1,NL1017655 C2,DE60200183 T2。
在文献1~9中,公开了在预制桩中间、侧壁甚至预制桩体内埋设不同形式地下传热管的制作方法或施工方法。在文献10中,公开了一种封闭预制桩底端并在预制桩体空腔内布置开放式地下传热管的施工方法。
文献11:方肇洪和刘俊红申请并授权的中国发明专利“桩埋螺旋管式地源热泵装置及其地热换热器的传热模型,(专利号:CN200810159583.7),授权公告日2011年1月26日”。
文献12:张以韬,郑宗跃和李伟等申请并授权的中国发明专利“地源热泵竖直螺旋式埋管施工方法,(专利号:CN201210494997.1),授权公告日2014年8月13日”。
文献13:孔纲强,彭怀风,吴宏伟和丁选明申请并授权的中国发明专利“一种地源 热泵灌注桩钢筋笼内埋管的施工方法,(专利号:CN201310302155.6),授权公告日2015年3月11日”。
文献14:刘汉龙,丁选明,孔纲强,吴宏伟和陈育民申请并授权的中国发明专利“一种PCC能量桩及其制作方法,(专利号:CN201210298385.5),授权公告日2014年11月19日”。
文献15:李平,丁选明,高洪梅和郑长杰申请并授权的中国发明专利“一种地热能采集桩基及施工方法,(专利号:CN201210476105.5),授权公告日2015年4月8日”。
在文献11~13中,公开了在现场灌注桩中的钢筋笼上绑扎埋设螺旋型地下传热管或者钢管内埋设传热管的施工方法。在文献14~15中,公开了封闭现浇灌注桩底部、在桩体空腔内充填传热液体并布置开放式或地下传热管的施工方法。
文献16:Raymond J.Roussy申请并授权的国际PCT专利“A method and system for installing geothermal heat exchangers,energy piles,concrete piles,micro piles,and anchors using a sonic drill and a removable or retrievable drill bit(PCT/CA2009/000180)”,相应的国家阶段专利授权号为:CA2716209A1,CA2716209C,CA2827026A1,CA2827026C,CN102016218A,EP2247816A1,EP2247816A4,US8118115,US20090214299。
在文献16中,公开了一种基于新型钻机的地下传热管的埋设方法。
综上可知,基于不同桩基础施工工艺,可以获得相应的不同制作方法或者施工方法的能量桩技术;但是,无论哪种形式的能量桩技术,都是基于直接热传递原理对浅层地热能的直接利用,没有进行能量形式的转化。
地热能不仅可以通过热泵技术直接利用其热能,而且可以进行发电加以利用。传统的地热发电原理与火力发电类似,以中高温(>80℃)层地下热水和蒸汽为动力源,首先把地下热能转换为机械能,再把机械能转换为电能。在文献17~18中,公开了一种基于热水井的开采深层地热能进行发电的设施和方法;在文献19~22中,分别公开了一种基于深层的钻孔、地下矿井、采油层套管或地下岩石隧道结构,将深层地热能转化为电能的方法;这种发电方式存在如下几个缺点:(1)一般要求热源温度大于>80℃,换言之,这些技术方法对于浅层地热能(一般<25℃)无法适用;(2)能量形态转换次数相对较多,导致能量利用率降低;(3)地下深层热源开发难度相对较大、开发成本高且开发成本随开采深度近乎呈非线性增长。
文献17:Schnatzmeyer,Mark A.和Clark E.Robison申请并授权的美国发明专利 ″Method and apparatus for generating electric power downhole.″U.S.Patent No.6,150,601.21Nov.2000。
文献18:Jeffryes,Benjamin Peter申请并授权的美国发明专利″Method and apparatus for downhole thermoelectric power generation.″U.S.Patent No.7,770,645.10Aug.2010。
文献19:Shulman,Gary申请并授权的美国发明专利″Method for recovering thermal energy contained in subterranean hot rock.″U.S.Patent No.5,515,679.14May 1996。
文献20:DuBois,John R申请并授权的美国发明专利″Geothermal power generation system and method for adapting to mine shafts.″U.S.Patent No.7,984,613.26Jul.2011。
文献21:龚智勇申请并授权的中国发明专利“利用油层套管传导地下热能再利用的方法及装置,(专利号:CN201010101312.3)”。
1999年,DiSalvo指出基于半导体低温温差发电技术,可以实现细微温差之间的热电转换(文献22),利用半导体温差发电技术,在文献23中公开了一种利用超深层高温(1200~1800℃)与深层中温(250~600℃)之间的温差进行发电的技术方法;在文献24中公开了一种基于地下岩石隧道结构,将深层地热能转化为电能的方法;在文献25中公开了一种基于地源热泵技术将深层地热能传递到地表,让传热管与空气中的温差(即深层地热能提供热源、自然空气提供冷源)进行发电的技术方法。
文献22:DiSalvo,F J.发表的学术论文″Thermoelectric cooling and power generation.″Science,285.5428(1999):703-706。
文献23:Levoy,Larry申请并授权的美国发明专利″Direct thermal-electric conversion for geothermal energy recovery.″U.S.Patent No.4,047,093.6Sep.1977。
文献24:陈国庆,杨洋,赵聪和李天斌申请的中国发明专利“一种高地温隧道降温散热及热能转化装置,(专利申请号:CN201510663196.7)”。
文献25:Liu,Liping发表的学术论文″Feasibility of large-scale power plants based on thermoelectric effects.″New Journal ofPhysics 16.12(2014):123019。
半导体温差发电不仅可以在相对温差值较大情况下运用,而且可以在相对温差值较小的情况下运用;半导体温差发电片技术有效突破了相对温差值对发电的限制,大大拓宽了热能转换为电能的种类与渠道,也让浅层地热能直接转化为电能成为可能。在文献26~27中,公开了一种利用太阳能提供热源、利用浅层地热能提供冷源进行温差发电的技术方法;这些技术方法为利用浅层地热能进行温差发电起到了很好的示范作用;然而, 文献26~27中浅层地热能的利用方式是先将浅层地热能通过传热管传递到传热管中的液体里,通过传热管中液体的流动将热能带到地表,然后利用传热管中液体与地表介质(太阳能或空气)温度之间的温差进行发电;这种方式存在如下几点不足:(1)需要预先在地层中钻孔、埋设传热管,存在占用土地面积和地下空间较大、初期埋设施工成本高等问题;(2)浅层地热能先传递到传热管中液体里、然后传热管中液体与地表不同温度的其他物体进行温差发电,能量传递次数增多也会导致能量利用率降低;(3)浅层地热能并未通过土体直接进行能量转化。
文献26:Mount,Robert申请并授权的美国发明专利″System for transferring heat in a thermoelectric generator system.″U.S.Patent ApplicationNo.10/871,544.2005。
文献27:Simka,Pavel申请并授权的美国发明专利″System for collecting and delivering solar and geothermal heat energy with thermoelectric generator.″U.S.Patent No.8,286,441.16Oct.2012。
因此,针对目前利用浅层地热能进行温差发电技术中存在的不足与缺陷,结合能量桩技术中桩埋管形式节省造价的技术优势,开发一种可以同时利用浅层地热能与传热管之间的温差进行发电、通过传热管传送的热能供给上部空调供暖或者冷能供给上部空调制冷的冷热电联产桩的技术方案,显得尤为重要。
发明内容
发明目的:为了克服上述不足和缺陷,解决(1)常规能量桩技术中仅能实现热能传递、且热能传递总量受区域和时段因素限制的问题,(2)常规深层地热温差发电对热源温度绝对值要求高(一般要求>80℃)、开发难度相对较大且开发成本高的问题,(3)常规浅层地热温差发电方案中钻孔埋管施工成本高、占用土地面积或地下空间大、且没有利用土体本身与媒介之间的温差进行直接发电的问题,提出一种冷热电联产灌注桩装置及其施工方法,通过在绑扎于灌注桩钢筋笼上的传热管外侧布置桩侧半导体温差发电系统、位于灌注桩桩端的传热管下方布置桩端半导体温差发电系统,位于灌注桩体内的传热管与位于地表的水泵、换热设备连接构成浅层地热能空调系统,位于灌注桩体内的传热管与桩侧半导体温差发电系统、桩端半导体温差发电系统、导线、与位于地表的DC/DC转化器、蓄电池和用电设备连接构成浅层地热能温差发电系统;最终实现冷热电联产灌注桩装置的应用。
技术方案:为了实现上述目的,本发明提供一种冷热电联产灌注桩装置,该装置包括:灌注桩、埋设于所述灌注桩内的传热管、换热设备、桩侧半导体温差发电系统和桩端半导体温差发电系统,其中,所述换热设备通过阀门和水泵与换热管连通,构成空调系统回路,通过水泵和阀门控制传热管内液体流速,传热管内液体首先与土体中浅层地热能实现热交换,然后通过上部换热设备调节建筑物室内空气温度;所述桩侧半导体温差发电系统利用传热管内液体与桩侧土体之间的温差实现热电转化,并将获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应;所述的桩端半导体温差发电系统利用传热管内液体与桩端土体之间的温差实现热电转化,利用导线将半导体温差发电获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
所述桩侧半导体温差发电系统包括半导体温差发电片、导热硅胶、导热防护层、DC/DC转化器、蓄电池和导线,所述半导体温差发电片通过导热硅胶粘贴在传热管外侧,半导体温差发电片外侧设置导热防护层,半导体温差发电获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
所述桩端半导体温差发电系统包括半导体温差发电片、导热硅胶、承载板、导热防护层、DC/DC转化器、蓄电池和导线,承载板与灌注桩钢筋笼的底部绑扎或焊接连接,承载板上端面布置散热管、下端面布置半导体温差发电片,半导体温差发电片通过导热硅胶粘贴在承载板下端面,半导体温差发电片外侧设置导热防护层,半导体温差发电片获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
上述的半导体温差发电片包括热端、冷端、P型半导体、N型半导体、金属片和导热板。
优选地,所述的灌注桩,为泥浆护壁钻孔灌注桩或全套管钻孔灌注桩;其桩长、桩径、混凝土标号以及钢筋笼尺寸,根据支撑上部荷载要求进行设计。在一个优选的实施方式中,所述的灌注桩桩长为20~60m,桩径为0.6~1.2m,桩间距为1.8~6.0m。
优选地,所述的传热管为聚乙烯管,其外径为25~60mm,壁厚为5~8mm,长度根据灌注桩桩长和传热管埋管布置形式需要确定,优选地,长度为40~300m;传热管绑扎在灌注桩钢筋笼侧壁;传热管埋管形式为单U形、双U形、W形或螺旋型中的任意一种或者几种组合形式。
优选地,所述的水泵位于地表,其功率为0.55~1.2kw;所述的阀门为电动二通阀门;所述的换热设备为空调设备中的风机盘管。
所述的导热硅胶的导热系数为0.6~1.5W/(m·K),具有高粘结性能和超强的导热效果,不会固体化、不会导电的特性;所述的导热防护层为不锈钢铁皮或硅胶基复合材料,防止半导体温差发电片在混凝土浇筑、振捣过程中损坏;所述的DC/DC转化器位于地表,为升压型DC/DC转化器;所述的蓄电池位于地表,为铅蓄电池或锂离子蓄电池或锂离子聚合物蓄电池或镍镉蓄电池中的一种;所述的导线埋设在导热硅胶内。
所述的承载板为圆形刚板,其厚度为8~12mm、直径为0.5~1.1m,与灌注桩钢筋笼直径一致,承载板上设置4~6个预留孔,供灌注桩的钢筋笼主筋穿越,位于灌注桩低端的承载板与穿越其小圆孔的主筋绑扎或焊接连接;所述的散热管为聚乙烯管,其外径为25~60mm、壁厚为5~8mm、长度为1~2m,盘绕在承载板上端面,并与传热管连通。
本发明进一步提出了一种冷热电联产灌注桩装置的施工方法,包括以下步骤:
(1)桩侧半导体温差发电系统制作:根据设计要求选择传热管,在传热管外侧利用导热硅胶粘贴半导体温差发电片,连接半导体温差发电片的导线埋设在导热硅胶内,并引出地面,与位于地表的DC/DC转化器、蓄电池和用电设备依次连接;将含有半导体温差发电片的传热管绑扎在灌注桩钢筋笼的侧壁;
(2)桩端半导体温差发电系统制作:制作直径与灌注桩钢筋笼直径一致的承载板,并与灌注桩钢筋笼底端绑扎或焊接连接,钢筋笼主筋穿越承载板的预留孔;优选地承载板厚度为8~12mm,钢筋笼主筋穿越承载板长度为10~30cm;在承载板上端面布置散热管,并与绑扎在钢筋笼侧壁的传热管连通,构成循环通路;在承载板下端面用导热硅胶粘贴半导体温差发电片,半导体温差发电片外侧设置导热保护层,连接半导体温差发电片的导线埋设在导热硅胶内,沿着钢筋笼侧壁的传热管引出地面,与位于地表的DC/DC转化器、蓄电池和用电设备依次连接;
(3)灌注桩施工:根据上部荷载量,设计并确定灌注桩的桩径、桩长、桩基布置形式、桩间距以及钢筋笼尺寸与形式;综合考虑桩长、桩间距、浅层地热能储量、上部空调系统与用电设备能源需求量,设计传热管埋管形式;制作带传热管、桩侧半导体温差发电系统和桩端半导体温差发电系统的灌注桩钢筋笼;采用全套管钻孔或泥浆护壁钻孔施工桩孔至设计深度,下放灌注桩钢筋笼,灌注混凝土,完成灌注桩施工;
(4)制冷、供暖和供电系统连接:将传热管与水泵、换热设备连接构成浅层地热能空调系统为上部建筑物提供制冷或供暖,将导线与DC/DC转化器、蓄电池及用电设备连接构成浅层地热能温差发电系统为上部用电设备提供电力(如照明LED灯用电); 根据浅层地热能的总量储备和上部建筑物用电、制冷或供暖的需求情况,可以选择仅浅层地热能空调系统(制冷或供暖)、仅浅层地热能温差发电系统(供电)、或者部分供应空调系统部分供应温差发电系统;最终实现冷热电联产灌注桩装置的施工与应用。
优选地,步骤(1)中,所述半导体温差发电片埋设在10~15m以下传热管的外侧,传热管的埋管形式为单U形、双U形、W形或螺旋形中的任意一种或几种的组合形式。
有益效果:与现有灌注桩埋管形式的能量桩技术相比,本发明的冷热电联产灌注桩存在如下技术优势:
(1)除了提供支撑上部荷载的承载特性、有效利用浅层地热能给上部建筑提供制冷或供暖能源(夏季提供冷源、冬季提供热源)之外,还可以利用传热管或散热管内液体与土体之间的温差,实现温差发电供给上部建筑用电需求;
(2)浅层地热能可以根据上部建筑环境需求,选择仅空调系统(制冷或供暖)、仅温差发电系统(供电)、或者部分供应空调系统部分供应温差发电系统,实现能源的按需、错时有效利用,提高能源利用效率;
(3)设置在钢筋笼底端的承载板,在提供热电转换功能的同时,还可以一定程度上提高灌注桩底部的加筋效果,从而提高灌注桩的桩端承载力;
(4)温差发电系统夏季在利用传热管中的废热进行热电转换时,消耗掉部分传热管内液体的热量,不仅可以提高散热效率,而且可以减少单位时间浅层地热消耗量,提高单位空间内埋管量,有利于维持土体的热稳定。
本发明的优点和效果还将在具体实施方式中进一步描述。
附图说明
图1为本发明中冷热电联产灌注桩装置布置结构示意图;
图2为本发明中冷热电联产灌注桩装置中传热管埋设形式示意图,其中,(a)为单U形,(b)为双U形,(c)为W形,(d)为螺旋型;
图3为本发明中传热管在钢筋笼上埋设形式中A-A截面示意图,其中,(a)为单U形,(b)为双U形,(c)为W形,(d)为螺旋型;
图4为本发明中冷热电联产灌注桩装置中桩侧温差发电系统布置剖面图;
图5为本发明中冷热电联产灌注桩装置中桩侧温差发电系统布置横截面示意图;
图6为本发明中冷热电联产灌注桩装置中桩端温差发电系统布置立体图;
图7为本发明中冷热电联产灌注桩装置中半导体温差发电片立体图;
图8为本发明中冷热电联产灌注桩装置中半导体温差发电片横截面示意图;
图中:1为灌注桩,2为钢筋笼,3为传热管,4为DC/DC转换器,5为蓄电池,6为导线,7为用电设备,8为水泵,9为阀门,10为换热设备,11为桩侧半导体温差发电系统,12为桩端半导体温差发电系统,13为主筋,14为箍筋,15为半导体温差发电片,16为P型半导体,17为N型半导体,18为金属片,19为导热板,20为热端,21为冷端,22为导热防护层,23为承载板,24为散热管,25为导热硅胶。
具体实施方式
以下结合附图详细叙述本发明专利的具体实施方式,本发明专利的保护范围并不仅仅局限于本实施方式的描述。
本发明提出了一种冷热电联产灌注桩装置,如图1所示,该装置包括:灌注桩、埋设于灌注桩内的传热管、换热设备、桩侧半导体温差发电系统和桩端半导体温差发电系统,其中,换热设备通过阀门和水泵与换热管连通,构成空调系统回路,通过水泵和阀门控制传热管内液体流速,传热管内液体首先与土体中浅层地热能实现热交换,然后通过上部换热设备调节建筑物室内空气温度;桩侧半导体温差发电系统利用传热管内液体与桩侧土体之间的温差实现热电转化,并将获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应;桩端半导体温差发电系统利用传热管内液体与桩端土体之间的温差实现热电转化,利用导线将半导体温差发电获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应,如图4~6所示。
其中,桩侧半导体温差发电系统包括半导体温差发电片、导热硅胶、导热防护层、DC/DC转化器、蓄电池和导线,半导体温差发电片通过导热硅胶粘贴在传热管外侧,半导体温差发电片外侧设置导热防护层,半导体温差发电获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
桩端半导体温差发电系统包括半导体温差发电片、导热硅胶、承载板、导热防护层、DC/DC转化器、蓄电池和导线,承载板与灌注桩钢筋笼的底部绑扎或焊接连接,承载板上端面布置散热管、下端面布置半导体温差发电片,半导体温差发电片通过导热硅胶粘贴在承载板下端面,半导体温差发电片外侧设置导热防护层,半导体温差发电片获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
上述的半导体温差发电片均为现有技术中常用的半导体温差发电片,结构如图7~8所示,包括热端、冷端、P型半导体、N型半导体、金属片和导热板。
下面详细介绍本发明热电联产灌注桩装置的施工方法。
首先,综合考虑灌注桩1桩长、桩间距、浅层地热能储量、上部空调系统与用电设备7能源需求量,设计传热管3埋管形式;优选地所述的灌注桩1,可以为泥浆护壁钻孔灌注桩1,也可以为全套管钻孔灌注桩1;其桩长、桩径、混凝土标号以及钢筋笼尺寸,根据支撑上部荷载要求进行设计,灌注桩1桩长为20~60m,桩径为0.6~1.2m,桩间距为1.8~6.0m(本实施例为桩长为30m,桩径为0.8m,桩间距为2.4m)。优选地所述的传热管(3),为聚乙烯管(又称PE管),其外径为25~60mm,壁厚为5~8mm(本实施例为外径30mm,壁厚为5mm),长度根据灌注桩1桩长和传热管3埋管布置形式需要确定,为40~300m(本实施例为90m);传热管3绑扎在灌注桩钢筋笼2侧壁;传热管3埋管形式可以为单U形、双U形、W形或螺旋型中的一种或者几种组合形式(如图2和图3所示,本实施例为W形)。
接着,制作桩侧半导体温差发电系统11和桩端半导体温差发电系统12。桩侧半导体温差发电系统11,根据设计要求选择传热管3,在设计位置的传热管3外侧利用导热硅胶25粘贴半导体温差发电片15,连接半导体温差发电片15的导线6埋设在导热硅胶25内,并引出地面,与位于地表的DC/DC转化器4、蓄电池5和用电设备7连接;将含有半导体温差发电片15的传热管3绑扎在灌注桩钢筋笼2的侧壁;优选地半导体温差发电片15主要埋设在10~15m以下传热管3外侧。优选地导热硅胶25,其导热系数为0.6~1.5W/(m·K),具有高粘结性能、超强的导热效果和不固体化、不导电的特性;优选地导热防护层22,为不锈钢铁皮或硅胶基复合材料,防止半导体温差发电片15在混凝土浇筑、振捣过程中损坏;优选地DC/DC转化器4,位于地表,为升压型DC/DC转化器(4);优选地蓄电池5,位于地表,为铅蓄电池或锂离子蓄电池或锂离子聚合物蓄电池或镍镉蓄电池中的一种;优选地导线6,埋设在导热硅胶25内。桩端半导体温差发电系统12,钢筋笼2底端绑扎或焊接连接与灌注桩钢筋笼2直径一致的带有预留孔的承载板23,在承载板23上端面布置散热管24,并与绑扎在灌注桩钢筋笼2侧壁的传热管3连通,构成循环通路;在承载板23下端面用导热硅胶25粘贴半导体温差发电片15,半导体温差发电片15外侧设置导热保护层22,连接半导体温差发电片15的导线6埋设在导热硅胶25内,沿着钢筋笼2侧壁的传热管3引出地面,与位于地表的DC/DC转化器4、蓄电池5和用电设备7连接;优选地承载板23厚度为8~12mm(本实施例为10mm),钢筋笼2主筋13穿越承载板23长度为10~30cm,本实施例为20cm。优选地承载板23 为圆形刚板,其厚度为8~12mm(本实施例为10mm)、直径为0.5~1.1m(本实施例为0.75mm),与灌注桩钢筋笼2直径一致,承载板23上设置4~6个预留孔,供灌注桩1的钢筋笼2主筋13穿越,位于灌注桩1低端的承载板23与穿越其小圆孔的主筋13绑扎或焊接连接;优选地散热管24为聚乙烯管,其外径为25~60mm、壁厚为5~8mm、长度为1~2m(本实施例为外径为30mm、壁厚为5mm、长度为1.2m),盘绕在承载板23上端面,并于传热管3连通。
然后,将带有桩侧半导体温差发电系统11和桩端半导体温差发电系统12的传热管3绑扎在钢筋笼2侧壁,采用全套管钻孔或泥浆护壁钻孔施工桩孔至设计深度,下放钢筋笼2,灌注混凝土,完成灌注桩1施工。
最后,连接制冷、供暖和供电系统;将传热管3与水泵8、换热设备10连接构成浅层地热能空调系统为上部建筑物提供制冷或供暖,将导线6与DC/DC转化器4、蓄电池5及用电设备7连接构成浅层地热能温差发电系统为上部用电设备提供电力(如照明LED灯用电);根据浅层地热能的总量储备和上部建筑物用电、制冷或供暖的需求情况,可以选择仅空调系统(制冷或供暖)、仅温差发电系统(供电)、或者部分供应空调系统部分供应温差发电系统;最终实现冷热电联产灌注桩1装置的施工与应用。优选地空调系统中的水泵8,位于地表,其功率为0.55~1.2kw(本实施例为1.0kw);优选地空调系统中的阀门9,为电动二通阀门;优选地空调系统中的换热设备10,为空调设备中的风机盘管。
本发明的冷热电联产灌注桩除了提供支撑上部荷载的承载特性、有效利用浅层地热能给上部建筑提供制冷或供暖能源(夏季提供冷源、冬季提供热源)之外,还可以利用传热管或散热管内液体与土体之间的温差,实现温差发电供给上部建筑用电需求;同时,浅层地热能可以根据上部建筑环境需求,选择仅空调系统(制冷或供暖)、仅温差发电系统(供电)、或者部分供应空调系统部分供应温差发电系统,实现能源的按需、错时有效利用,提高能源利用效率。另一方面,设置在钢筋笼底端的承载板,在提供热电转换功能的同时,还可以一定程度上提高灌注桩底部的加筋效果,从而提高灌注桩的桩端承载力。温差发电系统夏季在利用传热管中的废热进行热电转换时,消耗掉部分传热管内液体的热量,不仅可以提高散热效率,而且可以减少单位时间浅层地热消耗量,提高单位空间内埋管量,有利于维持土体的热稳定。该装置不仅有效的实现了灌注桩在力学、热学和电学三方面的复合利用,并且实现了浅层地热能源按需、错时的多目标有效利用, 提高能源利用效率。

Claims (10)

  1. 一种冷热电联产灌注桩装置,其特征在于,该系统包括:灌注桩、埋设于所述灌注桩内的传热管、换热设备、桩侧半导体温差发电系统和桩端半导体温差发电系统,其中,所述换热设备通过阀门和水泵与换热管连通,构成空调系统回路,通过水泵和阀门控制传热管内液体流速,传热管内液体首先与土体中浅层地热能实现热交换,然后通过上部换热设备调节建筑物室内空气温度;所述桩侧半导体温差发电系统利用传热管内液体与桩侧土体之间的温差实现热电转化,并将获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应;所述的桩端半导体温差发电系统利用传热管内液体与桩端土体之间的温差实现热电转化,利用导线将半导体温差发电获得的电能连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
  2. 根据权利要求1所述的冷热电联产灌注桩装置,其特征在于,所述桩侧半导体温差发电系统包括半导体温差发电片、导热硅胶、导热防护层、DC/DC转化器、蓄电池和导线,所述半导体温差发电片通过导热硅胶粘贴在传热管外侧,半导体温差发电片外侧设置导热防护层,半导体温差发电片获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
  3. 根据权利要求1所述的冷热电联产灌注桩装置,其特征在于,所述桩端半导体温差发电系统包括半导体温差发电片、导热硅胶、承载板、导热防护层、DC/DC转化器、蓄电池和导线,承载板与灌注桩钢筋笼的底部绑扎或焊接连接,承载板上端面布置散热管、下端面布置半导体温差发电片,半导体温差发电片通过导热硅胶粘贴在承载板下端面,半导体温差发电片外侧设置导热防护层,半导体温差发电片获得的电能通过将导线连接DC/DC转化器和蓄电池为地表用电设备提供电力供应。
  4. 根据权利要求1所述的冷热电联产灌注桩装置,其特征在于,所述的灌注桩,为泥浆护壁钻孔灌注桩或全套管钻孔灌注桩;其桩长、桩径、混凝土标号以及钢筋笼尺寸,根据支撑上部荷载要求进行设计。
  5. 根据权利要求1所述的冷热电联产灌注桩装置,其特征在于,所述的传热管为聚乙烯管,其外径为25~60mm,壁厚为5~8mm,长度根据灌注桩桩长和传热管埋管布置形式需要确定;传热管绑扎在灌注桩钢筋笼侧壁;传热管埋管形式为单U形、双U形、W形或螺旋型中的任意一种或者几种组合形式。
  6. 根据权利要求1所述的冷热电联产灌注桩装置,其特征在于,所述的水泵位于地表,其功率为0.55~1.2kw;所述的阀门为电动二通阀门;所述的换热设备为空调设备 中的风机盘管。
  7. 根据权利要求2或3所述的冷热电联产灌注桩装置,其特征在于,所述的导热硅胶的导热系数为0.6~1.5W/(m·K),具有高粘结性能和超强的导热效果,不会固体化、不会导电的特性;所述的导热防护层为不锈钢铁皮或硅胶基复合材料,防止半导体温差发电片在混凝土浇筑、振捣过程中损坏;所述的DC/DC转化器位于地表,为升压型DC/DC转化器;所述的蓄电池位于地表,为铅蓄电池或锂离子蓄电池或锂离子聚合物蓄电池或镍镉蓄电池中的一种;所述的导线埋设在导热硅胶内。
  8. 根据权利要求3所述的冷热电联产灌注桩装置,其特征在于,所述的承载板为圆形刚板,其厚度为8~12mm、直径为0.5~1.1m,与灌注桩钢筋笼直径一致,承载板上设置4~6个预留孔,供灌注桩的钢筋笼主筋穿越,位于灌注桩低端的承载板与穿越其小圆孔的主筋绑扎或焊接连接;所述的散热管为聚乙烯管,其外径为25~60mm、壁厚为5~8mm、长度为1~2m,盘绕在承载板上端面,并与传热管连通。
  9. 一种冷热电联产灌注桩装置的施工方法,其特征在于,包括以下步骤:
    (1)桩侧半导体温差发电系统制作:根据设计要求选择传热管,在传热管外侧利用导热硅胶粘贴半导体温差发电片,连接半导体温差发电片的导线埋设在导热硅胶内,并引出地面,与位于地表的DC/DC转化器、蓄电池和用电设备依次连接;将含有半导体温差发电片的传热管绑扎在灌注桩钢筋笼的侧壁;
    (2)桩端半导体温差发电系统制作:制作直径与灌注桩钢筋笼直径一致的承载板,并与灌注桩钢筋笼底端绑扎或焊接连接,钢筋笼主筋穿越承载板的预留孔;在承载板上端面布置散热管,并与绑扎在钢筋笼侧壁的传热管连通,构成循环通路;在承载板下端面用导热硅胶粘贴半导体温差发电片,半导体温差发电片外侧设置导热保护层,连接半导体温差发电片的导线埋设在导热硅胶内,沿着钢筋笼侧壁的传热管引出地面,与位于地表的DC/DC转化器、蓄电池和用电设备依次连接;
    (3)灌注桩施工:根据上部荷载量,设计并确定灌注桩的桩径、桩长、桩基布置形式、桩间距以及钢筋笼尺寸与形式;综合考虑桩长、桩间距、浅层地热能储量、上部空调系统与用电设备能源需求量,设计传热管埋管形式;制作带传热管、桩侧半导体温差发电系统和桩端半导体温差发电系统的灌注桩钢筋笼;采用全套管钻孔或泥浆护壁钻孔施工桩孔至设计深度,下放灌注桩钢筋笼,灌注混凝土,完成灌注桩施工;
    (4)制冷、供暖和供电系统连接:将传热管与水泵、换热设备连接构成浅层地热 能空调系统为上部建筑物提供制冷或供暖,将导线与DC/DC转化器、蓄电池及用电设备连接构成浅层地热能温差发电系统为上部用电设备提供电力;根据浅层地热能的总量储备和上部建筑物用电、制冷或供暖的需求情况,可以选择仅浅层地热能空调系统、仅浅层地热能温差发电系统、或者部分供应空调系统部分供应温差发电系统;最终实现冷热电联产灌注桩装置的施工与应用。
  10. 根据权利要求9所述的方法,其特征在于,步骤(1)中,所述半导体温差发电片埋设在10~15m以下传热管的外侧,传热管的埋管形式为单U形、双U形、W形或螺旋形中的任意一种或几种的组合形式。
PCT/CN2017/080611 2016-07-18 2017-04-14 一种冷热电联产灌注桩装置及其施工方法 WO2018014604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610566287.3A CN106225268B (zh) 2016-07-18 2016-07-18 一种冷热电联产灌注桩装置及其施工方法
CN2016105662873 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014604A1 true WO2018014604A1 (zh) 2018-01-25

Family

ID=57530955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080611 WO2018014604A1 (zh) 2016-07-18 2017-04-14 一种冷热电联产灌注桩装置及其施工方法

Country Status (2)

Country Link
CN (1) CN106225268B (zh)
WO (1) WO2018014604A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108797568A (zh) * 2018-06-27 2018-11-13 中铁二局集团有限公司 一种钢筋笼的支撑部件及其使用方法
CN110138276A (zh) * 2019-04-30 2019-08-16 罗运山 大气温差发电装置
CN113281407A (zh) * 2021-04-30 2021-08-20 中国一冶集团有限公司 一种提高钻孔灌注桩密实度的装置及方法
CN116516923A (zh) * 2023-06-21 2023-08-01 兰州理工大学 一种用于土遗址地基处理的结构及其使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225268B (zh) * 2016-07-18 2018-02-06 河海大学 一种冷热电联产灌注桩装置及其施工方法
CN108063567B (zh) * 2018-01-04 2023-09-26 南京航空航天大学 微小高度差预冷却温差发电系统及发电方法
CN108534380A (zh) * 2018-06-15 2018-09-14 西安科技大学 一种基于温差发电装置的煤田火区热能提取与利用系统
CN115247428A (zh) * 2021-04-28 2022-10-28 重庆大学 一种适用于季节性冻土地区的预制能量桩及其施工方法
CN113623895B (zh) * 2021-07-01 2022-11-01 华电电力科学研究院有限公司 一种用于数据中心冷却的冷热电联产系统及其控制方法
CN115451618B (zh) * 2022-09-06 2024-05-14 河海大学 一种地源热泵的热量控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047093A (en) * 1975-09-17 1977-09-06 Larry Levoy Direct thermal-electric conversion for geothermal energy recovery
JPS6035182A (ja) * 1983-08-05 1985-02-22 Nippon Steel Corp 地熱発電方法及びその装置
WO2012140324A1 (en) * 2011-04-14 2012-10-18 Runtech Systems Oy Apparatus for implementing a ground source heat system and method for exploiting the same
CN103383018A (zh) * 2013-07-18 2013-11-06 河海大学 一种地源热泵灌注桩钢筋笼内埋管的施工方法
CN106225268A (zh) * 2016-07-18 2016-12-14 河海大学 一种冷热电联产灌注桩装置及其施工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608659A (ja) * 1983-06-27 1985-01-17 Akua Reinetsu Kenkyusho:Kk コンクリ−ト杭を利用した空調熱源の供給装置
CN101832673B (zh) * 2010-01-27 2012-05-23 龚智勇 利用油层套管传导地下热能再利用的方法及装置
CN201854223U (zh) * 2010-10-27 2011-06-01 广州市碧日能源科技有限公司 太阳能光热半导体温差发电热水系统
CN202395697U (zh) * 2011-12-05 2012-08-22 陕西科林能源发展股份有限公司 一种利用地热的发电系统
CN202395699U (zh) * 2011-12-08 2012-08-22 陕西科林能源发展股份有限公司 一种利用地热资源的发电系统
CN102587365B (zh) * 2012-03-02 2014-11-26 中国京冶工程技术有限公司 旋进式壁后注浆地源热能转换预制桩装置埋入地层的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047093A (en) * 1975-09-17 1977-09-06 Larry Levoy Direct thermal-electric conversion for geothermal energy recovery
JPS6035182A (ja) * 1983-08-05 1985-02-22 Nippon Steel Corp 地熱発電方法及びその装置
WO2012140324A1 (en) * 2011-04-14 2012-10-18 Runtech Systems Oy Apparatus for implementing a ground source heat system and method for exploiting the same
CN103383018A (zh) * 2013-07-18 2013-11-06 河海大学 一种地源热泵灌注桩钢筋笼内埋管的施工方法
CN106225268A (zh) * 2016-07-18 2016-12-14 河海大学 一种冷热电联产灌注桩装置及其施工方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108797568A (zh) * 2018-06-27 2018-11-13 中铁二局集团有限公司 一种钢筋笼的支撑部件及其使用方法
CN110138276A (zh) * 2019-04-30 2019-08-16 罗运山 大气温差发电装置
CN113281407A (zh) * 2021-04-30 2021-08-20 中国一冶集团有限公司 一种提高钻孔灌注桩密实度的装置及方法
CN113281407B (zh) * 2021-04-30 2024-01-12 中国一冶集团有限公司 一种提高钻孔灌注桩密实度的装置及方法
CN116516923A (zh) * 2023-06-21 2023-08-01 兰州理工大学 一种用于土遗址地基处理的结构及其使用方法
CN116516923B (zh) * 2023-06-21 2024-01-26 兰州理工大学 一种用于土遗址地基处理的结构及其使用方法

Also Published As

Publication number Publication date
CN106225268B (zh) 2018-02-06
CN106225268A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018014604A1 (zh) 一种冷热电联产灌注桩装置及其施工方法
WO2018014607A1 (zh) 一种冷热电联产地下连续墙装置及其施工方法
WO2018014609A1 (zh) 一种冷热电联产高压旋喷插芯组合桩系统及其施工方法
WO2018014608A1 (zh) 一种提高浅层地热能利用效率的新型钢管能量桩及其制作方法
WO2018014606A1 (zh) 一种冷热电联产pcc桩装置及其制作方法
WO2018014605A1 (zh) 一种冷热电联产预应力管桩装置及其制作方法
JP5693219B2 (ja) 地熱エネルギーシステムおよび作動方法
CA2692466C (en) Geothermal energy system and method of operation
CA2584770A1 (en) Coaxial borehole energy exchange system for storing and extracting underground cold
CN101182711A (zh) 浅层地热能转换锚杆
EP3118558B1 (en) Ground heat accumulator
CN111664601B (zh) 一种深层地热井结构及废弃地热井的改造方法
CN111074906B (zh) 一种结合基坑支护结构和建筑结构的采暖系统及其施工方法
CN210624982U (zh) 地热井微热管换热系统
KR101126026B1 (ko) 지중열 복원이 가능한 지중열 교환기 및 이를 이용한 지중열 교환 시스템
CN201407768Y (zh) 利用人防工程做冷源或热源的地源热泵
CN102692150B (zh) 利用地埋管换热的季节性蓄热系统
CN202614052U (zh) 利用地埋管换热的季节性蓄热系统
KR20080092726A (ko) 지열냉난방용 지중열교환기 및 그 시공방법.
CN221611626U (zh) 一种冷、热联供的新型地源热泵地埋管系统
CN208108548U (zh) 一种基于桩基埋管的地下强化换热系统
CN118442713A (zh) 一种深浅结合的单井地下换热器
CN110486962A (zh) 地热井微热管换热装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830242

Country of ref document: EP

Kind code of ref document: A1