WO2018014505A1 - 一种用于mimo测试系统的探头校准方案 - Google Patents

一种用于mimo测试系统的探头校准方案 Download PDF

Info

Publication number
WO2018014505A1
WO2018014505A1 PCT/CN2016/111863 CN2016111863W WO2018014505A1 WO 2018014505 A1 WO2018014505 A1 WO 2018014505A1 CN 2016111863 W CN2016111863 W CN 2016111863W WO 2018014505 A1 WO2018014505 A1 WO 2018014505A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
antenna
gain
calibration
mimo
Prior art date
Application number
PCT/CN2016/111863
Other languages
English (en)
French (fr)
Inventor
韩栋
Original Assignee
深圳市新益技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新益技术有限公司 filed Critical 深圳市新益技术有限公司
Publication of WO2018014505A1 publication Critical patent/WO2018014505A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly to a probe calibration scheme for a MIMO test system.
  • MIMO Multiple-Input Multiple-Output
  • MIMO Multiple-Input Multiple-Output
  • the core technology of communication refers to the use of multiple transmit and receive antennas at the transmitting end and the receiving end, respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving communication quality. It can make full use of space resources, realize multiple transmission and multiple reception through multiple antennas, and can increase the system channel capacity by multiple times without increasing spectrum resources and antenna transmission power, showing obvious advantages and being regarded as next generation mobile.
  • the core technology of communication is referred to the use of multiple transmit and receive antennas at the transmitting end and the receiving end, respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving communication quality. It can make full use of space resources, realize multiple transmission and multiple reception through multiple antennas, and can increase the system channel capacity by multiple times without increasing spectrum resources and antenna transmission power, showing obvious advantages and being regarded as next generation mobile.
  • the core technology of communication refers to the use of
  • the MIMO test system consists of multiple dual-polarized (H and V polarized) probes. Each probe has inconsistent signal transceiving capability. The mutual coupling between the dual-polarized probes causes the signal to pass from the probe antenna to be received by the mobile phone. Losses in this process, these factors will seriously affect the accuracy of the test results.
  • H and V polarized dual-polarized
  • the present invention provides a probe calibration scheme for a MIMO test system having a large system channel capacity, high communication quality, and accurate test results.
  • the present invention provides the following technical solutions:
  • a probe calibration scheme for a MIMO test system comprising: the proposed calibration method is based on a Fringe transmission formula of an antenna, and determining a loss of a system in a portion of the anechoic chamber by a two-antenna method, and The probe antenna is normalized and compensated; the method provided by this patent can perform normalized calibration of the amplitude of each path of the MIMO test system and loss compensation of each path; the probe antenna can be obtained in the MIMO system.
  • Gain G t ;
  • the probe normalization calibration and compensation principle is:
  • Equation 2 Taking the base 10 logarithm of both sides of the above formula, the result shown in Equation 2 is obtained:
  • c is the propagation speed of the electromagnetic wave in vacuum
  • f is the operating frequency of the signal
  • the received power of the standard horn antenna of the system calibration is P r
  • the transmission power of the system probe antenna is P t
  • R is the distance between the two antennas.
  • G r is the gain of the standard horn antenna
  • G t is the system probe antenna gain.
  • the loss compensation value of each path is determined as follows:
  • the real gain of the probe used by the system is G real at a certain frequency f, and the gain measured in the system is Gt, then the difference between the two is the compensation value of the system;
  • the system of each path of the MIMO OTA system Compensation can be obtained in the following ways:
  • the method for normalizing the amplitude of each of the paths is as follows:
  • the first probe measured by calibration has a gain measured by G t1 in the system
  • the second probe has a gain of G t2 in the system
  • the true gain of the first probe is G.
  • Real is the reference standard, normalizing the second probe; and so on, ultimately making each probe consistent in the system:
  • Offset 1 G real -G t1 (4)
  • Offset 2 G real -G t2 (5)
  • the present invention discloses a probe calibration scheme for a MIMO test system.
  • the present invention proposes that the calibration method starts from the Flint transmission formula of the antenna, and uses two antennas.
  • the method determines the loss of the signal in the system of the anechoic portion and normalizes the probe antenna.
  • This patent selects a probe in a multi-probe antenna measurement system The gain is used as a reference standard.
  • the network analyzer is used to send and receive signals. By analyzing and processing the data read by the network analyzer, the probe is compensated for different values for normalization; the system has large channel capacity, high communication quality, and testing. The result is accurate.
  • Figure 1 is a schematic view showing the structure of the present invention when calibrating H polarization.
  • Figure 2 is a schematic view showing the structure of the present invention when calibrating V polarization.
  • the embodiment of the invention discloses a probe calibration scheme for a MIMO test system with large system channel capacity, high communication quality and accurate test results.
  • FIG. 1 and FIG. 2 are schematic diagrams of a probe calibration scheme for a MIMO test system according to the present disclosure, which specifically includes:
  • the proposed calibration method is based on the Frings transmission formula of the antenna.
  • the two-antenna method is used to determine the loss of the system in the anechoic portion of the signal and to normalize the probe antenna.
  • the method provided in this patent can be used for MIMO.
  • Each path of the test system is subjected to normalized calibration of the amplitude and loss compensation for each path; the gain Gt of the probe antenna in the MIMO system can be obtained;
  • the probe normalization calibration and compensation principle is:
  • Equation 2 Taking the base 10 logarithm of both sides of the above formula, the result shown in Equation 2 is obtained:
  • c is the propagation speed of the electromagnetic wave in vacuum
  • f is the operating frequency of the signal
  • the receiving power of the standard horn antenna of the system calibration is Pr
  • the transmitting power of the system probe antenna is Pt
  • R is the distance between the two antennas
  • Gr is The gain of the standard horn antenna
  • Gt is the gain of the system probe antenna.
  • the invention discloses a probe calibration scheme for a MIMO test system.
  • the invention proposes that the calibration method starts from the Frings transmission formula of the antenna, and uses the two antenna method to determine the loss of the system in the anechoic portion of the signal, and Normally compensate the probe antenna.
  • This patent selects the gain of one probe as the reference standard in the multi-probe antenna measurement system, uses the network analyzer to send and receive signals, and analyzes the data read by the network analyzer to compensate the different values of the probe for normalization. It has the characteristics of large system channel capacity, high communication quality and accurate test results.
  • the loss compensation value of each path is determined as follows:
  • each path of the MIMO OTA system System compensation can be obtained by the following methods:
  • the first probe measured by calibration has a gain measured by G t1 in the system
  • the second probe has a gain of G t2 in the system
  • the true gain of the first probe is G.
  • Real is the reference standard, normalizing the second probe; and so on, ultimately making each probe consistent in the system:
  • Offset 1 G real -G t1 (4)
  • Offset 2 G real -G t2 (5)
  • Agilent's E5071 is selected as the calibration signal transceiver.
  • the calibrated standard speaker is the double-horn cone speaker SH-600, and the working frequency band is 0.6-6 GHz, which includes the working frequency band of the current mobile communication system;
  • the network analyzer's transmit port (Tx port) is connected to the probe antenna of the MIMO anechoic chamber for testing, and the receiving port is placed on the standard horn of the anechoic chamber holding rod;
  • the horn antenna is horizontally placed to the H-polarized probe of the test system to ensure that the polarization of the receiving antenna of the transmitting antenna is uniform, and the signal sent by the network analyzer is sent through the horn antenna, and is received by the system probe antenna and returned to the network for analysis.
  • Instrument, the corresponding S21 data is read by our software;
  • step 3 to read the S21 data of each H-polarized probe of the test system.
  • the V-polarized probes are calibrated. Rotate the horn antenna 90° to the V-polarized probe of the test system, and the method of reading data is consistent with the third step;
  • the data to be read is processed, and the data to be compensated for each path of the probe is obtained.
  • the value required to compensate the H probe path when the MIMO test system is calibrated is 50.81 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于MIMO测试系统的探头校准方案,本发明提出的是校准方法从天线的弗林斯传输公式出发,利用两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿。本专利在多探头天线测量系统中选择一个探头的增益作为参考标准,使用网络分析仪来收发信号,通过对网络分析仪读取的数据分析处理,对探头补偿不同的数值来进行归一化处理,具有系统信道容量大、通信质量高、测试结果准确的特点。

Description

一种用于MIMO测试系统的探头校准方案 技术领域
本发明涉及无线通信技术领域,更具体的说是涉及一种用于MIMO测试系统的探头校准方案。
背景技术
MIMO(Multiple-Input Multiple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
MIMO测试系统包含多个双极化(H、V两个极化)探头,每个探头对信号的收发能力不一致,双极化探头之间的互耦影响,信号从探头天线出来到被手机接收这个过程中的损耗,这些因素都会严重影响测试结果的准确性。然而在MIMO测试中严格要求,在MIMO的多路通道中的每一个探头在系统中发射的增益保持一致,迫切需要一种用于MIMO测试系统的校准方法。
因此,如何提供一种具有系统信道容量大、通信质量高、测试结果准确特点的用于MIMO测试系统的探头校准方案是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种具有系统信道容量大、通信质量高、测试结果准确特点的用于MIMO测试系统的探头校准方案。
为实现上述目的,本发明提供如下技术方案:
一种用于MIMO测试系统的探头校准方案,其特征在于,包括:提出的校准方法是从天线的弗林斯传输公式出发,通过两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿;本专利提供的方法, 可对MIMO测试系统的每一路都进行幅度的归一化校准,以及每条通路的损耗补偿;可以求出探头天线在MIMO系统里面的增益Gt
探头归一化校准及补偿原理为:
两个极化方向一致的天线,满足以下关系式:
Pr=(c/4πRf)2PtGtGr  (1)
对上式两边同时取以10为底的对数,得到式2所示结果:
Gt(dB)=20lg(4πRf/c)+10lg(Pr/Pt)-Gr(dB)  (2)
其中,c为电磁波在真空中的传播速度,f为信号的工作频率,系统校准的标准喇叭天线的接收功率为Pr,系统探头天线的发射功率为Pt、R为两天线之间距离,Gr为标准喇叭天线的增益,Gt为系统探头天线增益。
优选的,在上述一种用于MIMO测试系统的探头校准方案中,所述每条通路的损耗补偿值确定方法如下:
已知系统所用探头在某个频点f的真实增益为Greal,在系统中测得的增益为Gt,那么这两者的差值即为系统的补偿值;MIMO OTA系统每一条径的系统补偿都可以用以下方法得到:
offset=Greal-Gt  (3)。
优选的,在上述一种用于MIMO测试系统的探头校准方案中,所述每一路都进行幅度的归一化校准方法如下:
我们以校准测得的第一个探头为参考探头,第一个探头在系统测得的增益为Gt1,第二个探头在系统测得增益为Gt2,以第一个探头的真实增益Greal为参考标准,对第二个探头进行归一化处理;依次类推,最终使得每一个探头在系统中的增益都一致:
offset1=Greal-Gt1  (4)
offset2=Greal-Gt2  (5)
..........。
经由上述的技术方案可知,与现有技术相比,本发明公开了一种用于MIMO测试系统的探头校准方案,本发明提出的是校准方法从天线的弗林斯传输公式出发,利用两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿。本专利在多探头天线测量系统中选择一个探头 的增益作为参考标准,使用网络分析仪来收发信号,通过对网络分析仪读取的数据分析处理,对探头补偿不同的数值来进行归一化处理;具有系统信道容量大、通信质量高、测试结果准确的特点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明校准H极化时的结构示意图。
图2附图为本发明校准V极化时的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种具有系统信道容量大、通信质量高、测试结果准确特点的用于MIMO测试系统的探头校准方案。
请参阅附图1、附图2,为本发明公开的一种用于MIMO测试系统的探头校准方案,具体包括:
提出的校准方法是从天线的弗林斯传输公式出发,通过两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿;本专利提供的方法,可对MIMO测试系统的每一路都进行幅度的归一化校准,以及每条通路的损耗补偿;可以求出探头天线在MIMO系统里面的增益Gt;
探头归一化校准及补偿原理为:
两个极化方向一致的天线,满足以下关系式:
Pr=(c/4πRf)2PtGtGr  (1)
对上式两边同时取以10为底的对数,得到式2所示结果:
Gt(dB)=20lg(4πRf/c)+10lg(Pr/Pt)-Gr(dB)  (2)
其中,c为电磁波在真空中的传播速度,f为信号的工作频率,系统校准的标准喇叭天线的接收功率为Pr,系统探头天线的发射功率为Pt、R为两天线之间距离,Gr为标准喇叭天线的增益,Gt为系统探头天线增益。
本发明公开了一种用于MIMO测试系统的探头校准方案,本发明提出的是校准方法从天线的弗林斯传输公式出发,利用两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿。本专利在多探头天线测量系统中选择一个探头的增益作为参考标准,使用网络分析仪来收发信号,通过对网络分析仪读取的数据分析处理,对探头补偿不同的数值来进行归一化处理;具有系统信道容量大、通信质量高、测试结果准确的特点。
为了进一步优化上述技术方案,每条通路的损耗补偿值确定方法如下:
已知系统所用探头在某个频点f的真实增益为Greal,在系统中测得的增益为Gt,那么这两者的差值即为系统的补偿值;MIMO OTA系统每一条径的系统补偿都可以用以下方法得到:
offset=Greal-Gt  (3)
为了进一步优化上述技术方案,每一路都进行幅度的归一化校准方法如下:
我们以校准测得的第一个探头为参考探头,第一个探头在系统测得的增益为Gt1,第二个探头在系统测得增益为Gt2,以第一个探头的真实增益Greal为参考标准,对第二个探头进行归一化处理;依次类推,最终使得每一个探头在系统中的增益都一致:
offset1=Greal-Gt1  (4)
offset2=Greal-Gt2  (5)
..........。
为了进一步优化上述技术方案,本发明专利是基于以下技术方法实现的:
第一步,选择安捷伦的E5071作为校准信号收发仪,校准的标准喇叭为双脊角锥喇叭SH-600,工作频段为0.6-6GHz,包含了现阶段移动通信系统的工作频段;
第二步,将网络分析仪的发射端口(Tx端口)连接用于测试的MIMO电波暗室的探头天线,接收端口放置在电波暗室抱杆上的标准喇叭;
第三步,将喇叭天线水平放置对准测试系统的H极化探头,保证发射天线的接收天线的极化一致,网络分析仪发送的信号经过喇叭天线发送,由系统探头天线接收之后返回网络分析仪,由我们的软件读取相应的S21数据;
重复步骤三,将测试系统的每一个H极化探头的S21数据都读取出来,附图:喇叭转90°水平放置;
第四步,将系统所有的H极化探头测试完之后,再对V极化探头进行校准。将喇叭天线旋转90°对准测试系统的V极化探头,读取数据方法和第三步一致;
第五步,对读取的数据处理,求出每个探头所在通路需要补偿的数据。以系统的第一个H极化探头校准为例:假定校准的喇叭天线和探头天线间距是50mm,需要校准的工作频点是2.5G,网分读取的S12数据为-35dB,校准喇叭天线在f=2.5Ghz时候的增益为8dB,系统探头天线在f=2.5Ghz时增益为5dB;
Gt=20lg(4×π×0.05×25/3)-45-8=-45.81dB
offset=Greal-Gt=5-(-45.81)=50.81dB
综上可知,该MIMO测试系统校准时候需要给该H探头通路补偿的数值是50.81dB。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (3)

  1. 一种用于MIMO测试系统的探头校准方案,其特征在于,包括:提出的校准方法是从天线的弗林斯传输公式出发,通过两天线法来确定信号在电波暗室部分的系统的损耗,并对探头天线进行归一化补偿;本专利提供的方法,可对MIMO测试系统的每一路都进行幅度的归一化校准,以及每条通路的损耗补偿;可以求出探头天线在MIMO系统里面的增益Gt;
    探头归一化校准及补偿原理为:
    两个极化方向一致的天线,满足以下关系式:
    Pr=(c/4πRf)2PtGtGr  (1)
    对上式两边同时取以10为底的对数,得到式2所示结果:
    Gt(dB)=20lg(4πRf/c)+10lg(Pr/Pt)-Gr(dB)  (2)
    其中,c为电磁波在真空中的传播速度,f为信号的工作频率,系统校准的标准喇叭天线的接收功率为Pr,系统探头天线的发射功率为Pt、R为两天线之间距离,Gr为标准喇叭天线的增益,Gt为系统探头天线增益。
  2. 根据权利要求1所述的一种用于MIMO测试系统的探头校准方案,其特征在于,所述每条通路的损耗补偿值确定方法如下:
    已知系统所用探头在某个频点f的真实增益为Greal,在系统中测得的增益为Gt,那么这两者的差值即为系统的补偿值;MIMO OTA系统每一条径的系统补偿都可以用以下方法得到:
    offset=Greal-Gt  (3)。
  3. 根据权利要求1所述的一种用于MIMO测试系统的探头校准方案,其特征在于,所述每一路都进行幅度的归一化校准方法如下:
    我们以校准测得的第一个探头为参考探头,第一个探头在系统测得的增益为Gt1,第二个探头在系统测得增益为Gt2,以第一个探头的真实增益Greal为参考标准,对第二个探头进行归一化处理;依次类推,最终使得每一个探头在系统中的增益都一致:
    offset1=Greal-Gt1  (4)
    offset2=Greal-Gt2  (5)
    ..........。
PCT/CN2016/111863 2016-07-22 2016-12-24 一种用于mimo测试系统的探头校准方案 WO2018014505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610580021.4A CN106100760A (zh) 2016-07-22 2016-07-22 一种用于mimo测试系统的探头校准方案
CN201610580021.4 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018014505A1 true WO2018014505A1 (zh) 2018-01-25

Family

ID=57449513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111863 WO2018014505A1 (zh) 2016-07-22 2016-12-24 一种用于mimo测试系统的探头校准方案

Country Status (2)

Country Link
CN (1) CN106100760A (zh)
WO (1) WO2018014505A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725275A (zh) * 2018-12-26 2019-05-07 刘科宏 基于近场多探头天线测量系统的探头校准方法
CN115236415A (zh) * 2022-06-02 2022-10-25 中国计量科学研究院 天线增益获取方法、装置、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100760A (zh) * 2016-07-22 2016-11-09 深圳市新益技术有限公司 一种用于mimo测试系统的探头校准方案
CN108508393A (zh) * 2018-07-03 2018-09-07 上海益麦电磁技术有限公司 一种多探头天线测试系统探头校准系统和校准方法
CN110166144A (zh) * 2019-05-09 2019-08-23 武汉虹信通信技术有限责任公司 一种测试mimo天线的测试系统
EP3748374B8 (en) 2019-06-06 2023-02-15 Rohde & Schwarz GmbH & Co. KG System and method for calibrating radio frequency test chambers
CN110518990B (zh) * 2019-08-19 2021-10-22 深圳创维数字技术有限公司 多天线WiFi产品的校准方法、系统及计算机可读存储介质
CN116381467B (zh) * 2023-06-05 2023-09-01 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 双端口近场探头非对称补偿方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN104917577A (zh) * 2015-06-11 2015-09-16 陈奕铭 Mimo无线终端性能的暗室多探头测试系统
CN106100760A (zh) * 2016-07-22 2016-11-09 深圳市新益技术有限公司 一种用于mimo测试系统的探头校准方案

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830298B (zh) * 2012-07-27 2017-04-12 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN104917577A (zh) * 2015-06-11 2015-09-16 陈奕铭 Mimo无线终端性能的暗室多探头测试系统
CN106100760A (zh) * 2016-07-22 2016-11-09 深圳市新益技术有限公司 一种用于mimo测试系统的探头校准方案

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. SHAW, JOSEPH ET AL.: "RADIOMETRY AND THE FRIIS TRANSMISSION EQUATION", AMERICAN JOURNAL OF PHYSICS., vol. 81, no. 1, 7 January 2013 (2013-01-07), XP055454529 *
LUO, LIN: "la3bal tianlxian4 zenglyi4 de ce4liang2 yu3 xiulzheng4", NEW MEDIA RESEARCH, 28 October 2015 (2015-10-28), ISSN: 2096-0360 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725275A (zh) * 2018-12-26 2019-05-07 刘科宏 基于近场多探头天线测量系统的探头校准方法
CN109725275B (zh) * 2018-12-26 2022-08-30 刘科宏 基于近场多探头天线测量系统的探头校准方法
CN115236415A (zh) * 2022-06-02 2022-10-25 中国计量科学研究院 天线增益获取方法、装置、电子设备及存储介质
CN115236415B (zh) * 2022-06-02 2024-02-09 中国计量科学研究院 天线增益获取方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN106100760A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018014505A1 (zh) 一种用于mimo测试系统的探头校准方案
US10797808B2 (en) Method for testing wireless performance of MIMO wireless terminal
Shen et al. OTA measurement for IoT wireless device performance evaluation: Challenges and solutions
US9069037B2 (en) Methods for testing wireless electronic devices using automatic self-test mode
WO2020108239A1 (zh) 无线终端的无线性能测试方法及系统
JP7309847B2 (ja) アンテナアレイのリモート無線制御用の近接場アンテナ
US20150111507A1 (en) Millimeter wave conductive setup
WO2014190609A1 (zh) 一种移动终端的wifi ota测试方法及其测试系统
WO2020220879A1 (zh) 多天线无线设备mimo测试装置
Zhang et al. Achieving wireless cable testing of high-order MIMO devices with a novel closed-form calibration method
Lötbäck et al. Base station over-the-air testing in reverberation chamber
US11558131B2 (en) Method and apparatus for measuring wireless performance of receiver of wireless terminal
CN109728864B (zh) 基于天线测量系统的系统损耗测试方法
WO2012009868A1 (zh) 测试移动终端总全向灵敏度的方法和装置
CN113484549B (zh) 一种适用于ota测试的evm测量方法
Olano et al. WLAN MIMO throughput test in reverberation chamber
Quimby et al. Interlaboratory millimeter-wave channel sounder verification
CN101997642B (zh) 一种多天线系统中总辐射灵敏度的测试系统及方法
CN110557204A (zh) 一种无线通信系统间电磁干扰的测试装置及方法
CN212660165U (zh) 一种无线rssi测试装置
US20240097800A1 (en) In-device characterization of antenna coupling
CN102025425B (zh) 多天线系统中总辐射灵敏度的测试方法及系统
Patané et al. LTE MIMO throughput measurement method for characterization of multi-antenna terminal performance
CN116846490A (zh) Mimo设备的无线性能测量方法和系统
Aydin et al. The Effects of the Use of DRx Antenna Structure on the Rx Performance of Smartphones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16909432

Country of ref document: EP

Kind code of ref document: A1