WO2020220879A1 - 多天线无线设备mimo测试装置 - Google Patents

多天线无线设备mimo测试装置 Download PDF

Info

Publication number
WO2020220879A1
WO2020220879A1 PCT/CN2020/081388 CN2020081388W WO2020220879A1 WO 2020220879 A1 WO2020220879 A1 WO 2020220879A1 CN 2020081388 W CN2020081388 W CN 2020081388W WO 2020220879 A1 WO2020220879 A1 WO 2020220879A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
coupling
test
probe
wireless device
Prior art date
Application number
PCT/CN2020/081388
Other languages
English (en)
French (fr)
Inventor
漆一宏
于伟
Original Assignee
深圳市通用测试系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市通用测试系统有限公司 filed Critical 深圳市通用测试系统有限公司
Publication of WO2020220879A1 publication Critical patent/WO2020220879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the present invention relates to the technical field of wireless equipment performance, in particular to a multi-antenna wireless equipment MIMO test device.
  • multi-antenna technology is one of the main means to improve channel capacity, especially in 4G, 5G communication technology, WiFi, Internet of Things, etc.
  • multi-antenna MIMO Multiple Input and Multiple Output
  • MIMO measurement and evaluation of antenna equipment plays a vital role in network quality, Internet interference, base station layout, and autonomous driving.
  • 3GPP and the domestic standard CCSA promulgated a series of standards to regulate the MIMO test methods and devices of antenna equipment. Because they all use far-field testing or central field testing, the test systems are generally large and expensive.
  • MIMO throughput testing there are two methods for MIMO throughput testing, radiation two-step method (RTS) and multi-probe method (MPAC).
  • RTS radiation two-step method
  • MPAC multi-probe method
  • the multi-probe method is tested by surrounding multiple antennas around the device under test to form a channel model for MIMO throughput testing, but the system calibration and operation are more complicated, resulting in a higher accuracy of the multi-probe method for the individual hardware environment and operating techniques.
  • the radiation two-step method uses the terminal’s reporting function to measure the radiation pattern of the device under test (DUT) in the darkroom, and then loads the pattern information into the channel simulator to simulate the wireless channel that contains the antenna characteristics of the DUT Then, the downlink signal output by the base station simulator is first convolved with the wireless channel loaded with the directional pattern information of the DUT, and then transmitted through the measurement antenna, and finally the performance test of the receiver is performed, but whether it is the multi-probe method or the radiation two
  • the footwork needs to be performed under far-field conditions, the test distance is greater than 2D 2 / ⁇ , the test system cost is high, and it needs to be solved urgently.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of the present invention is to provide a multi-antenna wireless device MIMO test device, which can improve the working efficiency of the test, and improve the accuracy of the test, and is simple and easy to implement.
  • an embodiment of the present invention provides a multi-antenna wireless device MIMO test device, which includes: an anechoic chamber, the inner wall of the anechoic chamber is provided with a absorbing material; a plurality of coupling probes, the plurality of coupling probes are movable
  • the ground is set in the dark room to simultaneously or separately perform energy coupling transmission to the antenna within the preset near-field radiation range of the current probe position, wherein the probe top of each coupled probe is within 5 cm of the feeder
  • the maximum size of the metal in all cross-sections is less than or equal to 5 cm to obtain the multiple-input multiple-output MIMO throughput rate of the multi-antenna wireless device.
  • the multi-antenna wireless device air interface test device of the embodiment of the present invention simultaneously tests each antenna of the wireless device through multiple coupling probes, thereby realizing the purpose of testing the radiation distance of multiple antennas in the near field at the same time or separately, and not only can be used for antennas
  • the virtual wire can be realized by a single near-field coupling method, and MIMO throughput testing can be performed on multiple antennas at the same time, thereby effectively improving the efficiency of the test, and effectively improving the accuracy of the test, which is simple and easy to implement.
  • the air interface testing apparatus for multi-antenna wireless equipment may also have the following additional technical features:
  • the position and direction of each coupling probe of the plurality of coupling probes satisfy a preset channel isolation degree.
  • test meter connected to the plurality of coupling probes, and the test meter includes a channel simulator to use the channel simulator to combine channels
  • the model and the antenna pattern information of the multi-antenna wireless device obtain the throughput test signal, and obtain the MIMO throughput.
  • the preset near-field radiation range is obtained according to the following formula:
  • D is the maximum physical size of the multi-antenna wireless device
  • R is the radius of the near-field radiation range
  • is the wavelength
  • the maximum size of the metal in all cross sections within 5 cm from the probe tip of each coupling probe toward the feeder is smaller than the maximum physical size of the multi-antenna wireless device.
  • the maximum size of the metal in all the cross-sections within 5 cm from the top of the probe of each coupled probe to the feeder is smaller than the maximum physical size of the corresponding antenna.
  • the coupling probe is a broadband probe with a preset bandwidth.
  • it further includes: a placement assembly for placing the multi-antenna wireless device; a vertical position adjustment member, the vertical position adjustment member is connected to the placement assembly to adjust The vertical height of the placement component.
  • it further includes: a plurality of moving components, each of the plurality of moving components is respectively connected to each of the plurality of coupling probes to change the corresponding coupling The position of the probe.
  • it further includes: a first control assembly connected to the vertical position adjusting member and the placing assembly to control the vertical position adjusting member Perform corresponding actions with the placement component to make the multi-antenna wireless device reach a target position; a second control component, the second control component is respectively connected with each of the mobile components, according to the multi-antenna wireless device
  • the target position adjusts the position and direction of each coupling probe of the plurality of coupling probes.
  • Figure 1 is a schematic diagram of a multipath environment from a base station to a terminal in the related art
  • Figure 2 is a schematic diagram of MPAC in the related art implementing a multipath channel model through multi-antenna configuration
  • Figure 3 is a schematic diagram of the principle of the radiation two-step method in related technologies
  • Figure 4 is a schematic diagram of the propagation environment inside the darkroom in the related art
  • Figure 5 is a schematic diagram of adding a matrix module in the related technology
  • Figure 6 is a schematic block diagram of a virtual wire in the related art
  • FIG. 7 is a schematic structural diagram of a MIMO test apparatus for a multi-antenna wireless device according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a coupling probe according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a multi-antenna wireless device in the related art.
  • FIG. 10 is a schematic diagram of the principle of a MIMO test apparatus for a multi-antenna wireless device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of directions of a multi-antenna wireless device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a direction of a multi-antenna wireless device according to another embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of a MIMO test apparatus for a multi-antenna wireless device according to a specific embodiment of the present invention.
  • phased array antenna protocol test device proposed according to the embodiment of the present invention, let us briefly describe the shortcomings of the existing far-field test technology.
  • MIMO throughput testing there are two methods for MIMO throughput testing, including the radiated two-step method (RTS) and the multi-probe method (MPAC).
  • RTS radiated two-step method
  • MPAC multi-probe method
  • the OTA (Over The Air) test solution for MIMO terminals provides a method and test system for evaluating and testing the performance of MIMO terminals in a controlled environment.
  • OTA testing of MIMO terminals is not only a basis for mobile operators to test the performance of mobile terminals and issue terminal network access licenses, but also a technical means for terminal manufacturers in the process of R&D and quality control.
  • OTA testing is also currently recognized by the international standards organization 3GPP (3rd Generation Partnership Project) and the domestic standards organization CCSA (China Communications Standards Association, China Communications Standards Association) to assess the true wireless performance of MIMO wireless terminals. .
  • MIMO Multiple Probe Anechoic Chamber method
  • RTS Random Two Stage method
  • footwork the most critical indicator for evaluating downlink MIMO performance.
  • MIMO uses diversity technology to increase the communication rate, and the electromagnetic wave space propagation environment (ie, channel model) is an important factor that determines its throughput rate.
  • Figure 1 shows a multipath environment where a wireless MIMO terminal is located. It includes the direct-view path from the base station to the terminal, the transmission path of each building, the Doppler effect, and so on.
  • MIMOOTA testing needs to simulate a prescribed channel model, and then test its throughput rate under the model.
  • the MPAC method uses multiple antennas (for example, 16) surrounding the DUT and a channel simulator to realize MIMO channel simulation. It is an intuitive method, but the system cost is very high and system calibration is complicated, as shown in Figure 2. Shown.
  • the radiation two-step method first obtains the receiving antenna pattern of the DUT, and the second step generates the throughput test signal by combining the obtained receiving pattern with the channel model, and then the throughput
  • the rate test signal is fed into the corresponding receiver through radiation, and then the throughput rate test is performed.
  • a key technology is to load the inverse matrix to establish a "virtual wire" technology link. The details are as follows: After the two-step radiation method obtains the antenna pattern, it combines the antenna pattern with the channel model in the meter to obtain a multi-channel throughput test signal. Each channel's throughput test signal needs to be separately isolated and input to the corresponding receiver.
  • a "virtual wire” technology is used in many places. Specifically, as shown in Figure 4, the multi-antenna DUT is placed in a shielded room, where the number of test antennas M is equal to the number of DUT antennas, then electromagnetic waves are emitted from N test antennas to N receiving antennas. The points will form a stable propagation matrix, which is recorded as the propagation matrix P, where P is an N ⁇ N matrix.
  • a radio frequency matrix module is added to the front end of the test antenna.
  • both MPAC and RTS need to be performed under far-field conditions, that is, the test distance is greater than 2D 2 / ⁇ , and D is the maximum physical size of the DUT.
  • Fig. 7 is a schematic structural diagram of a MIMO test apparatus for a multi-antenna wireless device according to an embodiment of the present invention.
  • the multi-antenna wireless device MIMO testing device 10 includes: a darkroom 100 and a plurality of coupling probes (shown as coupling probe 201, coupling probe 202, coupling probe 203, and coupling probe 204 in the figure).
  • the inner wall of the darkroom 100 is provided with a wave absorbing material 101.
  • a plurality of coupled probes can be movably arranged in the darkroom 100, which are used to simultaneously or independently perform energy coupling transmission to the antenna within the preset near-field radiation range of the current probe position, wherein the probe top of each coupled probe is directed to the feeder
  • the maximum size of the metal in all cross sections within 5 cm is less than or equal to 5 cm to obtain the multiple-input multiple-output MIMO throughput rate of the multi-antenna wireless device.
  • each of the multiple coupling probes can be set in a one-to-one correspondence with the multiple antennas of the multi-antenna wireless device 20 within the preset near-field radiation distance, and the multiple to be measured
  • the antenna wireless device 20 performs energy coupling transmission to obtain the multiple input multiple output MIMO throughput of the multiple antenna wireless device 20.
  • the test device 10 of the embodiment of the present invention can implement virtual wires by using a separate near-field coupling method for the antenna, and can simultaneously or separately perform throughput testing on the antenna within the near-field radiation distance, which not only improves the working efficiency of the test, but also effectively improves The accuracy of the test.
  • the testing device of the embodiment of the present invention can perform wireless performance testing on coupled MIMO wireless devices, thereby enabling overall performance evaluation of MIMO wireless devices (such as DUTs working on MIMO multiple bit streams), and MIMO wireless The performance of each individual RF channel of the equipment (such as the consistency of the transmit power of each individual channel, and the radiation sensitivity of each individual channel).
  • the embodiment of the present invention can realize one-to-one corresponding coupling transmission, and also realizes the "virtual wire” technology applied in the standard radiation two-step method.
  • the difference is that the embodiment of the present invention
  • the "virtual wire” is realized by the coupling method, and the “virtual wire” is realized by the two-step radiation method by calculation. Therefore, after the virtual wire is realized, the embodiment of the present invention can perform throughput testing.
  • the part of the coupling probe within 5 cm from the top of the radiation toward the feeder line satisfies: the maximum metal dimension of all cross-sections is less than or equal to 5 cm.
  • a coupling probe is composed of three parts: medium, metal and feeder line.
  • the feeder line is used to feed radio frequency signals.
  • the top of the coupling probe is the radiating tip.
  • any cross section meets the following conditions :
  • the maximum size of the metal in the cross section within 5 cm from the top to the feeder is less than 5 cm.
  • any probe in Figure 8 can be configured in a similar manner, and it is not limited to this structure.
  • Antenna design as long as the maximum size of the metal in the cross-section is less than 5cm, so as to simultaneously or separately perform energy coupling transmission to the antenna within the near-field radiation distance of the current probe location.
  • the figure is a complete schematic diagram of a 4-antenna wireless terminal to simulate the multi-antenna wireless device 20 to be tested.
  • a PIFA is placed on each of the four corners of a 140 ⁇ 70mm PCB board.
  • Antenna, and the four antennas are connected to the same ground, the antenna works at 3.5GHz.
  • the above-mentioned multi-antenna wireless device 20 is placed in a shielded darkroom 100, the darkroom 100 has a wave absorbing material 101, and a plurality of coupling probes are placed inside the darkroom 100.
  • the function of the probe is that each probe is aligned with an antenna on the multi-antenna wireless device 20 for energy coupling transmission.
  • the coupling probes are all located within the near-field radiation distance of the multi-antenna wireless device 20, and the position of the coupling antenna can be adjusted The sum direction makes each coupled antenna and the corresponding DUT antenna form a one-to-one corresponding coupling transmission.
  • the use of separate coupling methods through different antennas not only reduces the cost of the test system, but also effectively reduces the test time and improves the test efficiency.
  • the embodiment of the present invention can realize the rapid production line test of the multi-antenna wireless terminal, the test work efficiency is higher, the test accuracy and precision can be effectively guaranteed, and the test requirements can be effectively met.
  • the position and direction of each coupling probe of the plurality of coupling probes satisfy a preset channel isolation degree. .
  • the antennas are named as shown in the figure.
  • the antennas of the multi-antenna wireless device 20 can be named antennas under test 1, 2, 3, and 4; the coupling probes can be named coupling probes 5, 6, 7, 8.
  • the positions of all coupling probes so that the physical position of the coupling probe is in the near field of the multi-antenna wireless device 20 and close to the corresponding antenna position, such as antenna 1 under test and coupling antenna 5 corresponding; antenna under test 2 and coupling antenna 6 are corresponding;
  • the test antenna 3 corresponds to the coupled antenna 7;
  • the tested antenna 4 corresponds to the coupled antenna 8.
  • the coupling energy between the corresponding antennas is required to be greater than the coupling energy between the non-corresponding antennas.
  • Fix the DUT take the position adjustment of the coupling antenna 5 as an example: adjust the position of the coupling antenna 5 so that only the coupling antenna 5 transmits, and the coupling energy on the antenna under test 1 is greater than that of all other antennas under test. Energy; in the same way, adjust the position of the No. 6 coupling antenna so that only the No. 6 coupling antenna emits, and the coupling energy on the No. 2 tested antenna is greater than that of all other tested antennas; adjust the position of the No. 7 coupling antenna so that only There is No. 7 coupling antenna for transmission, and the coupling energy on No. 3 tested antenna is greater than the energy coupled to all other tested antennas; adjust the position of No. 8 coupling antenna so that only No. 8 coupling antenna emits, on No. 4 tested antenna The coupling energy is greater than the energy coupled to all other antennas under test.
  • corresponding channels and non-corresponding channels can be as follows:
  • No. 1 corresponds to No. 5, No. 2 corresponds to No. 6, No. 3 corresponds to No. 7, and No. 4 corresponds to No. 8. It is defined that No. 1 corresponds to No. 5 as the corresponding channel, and 1-6, 1-7, and 1-8 are non-corresponding channels.
  • the channel gain is represented by G, and the corresponding channel isolation is defined as (3 isolation in total):
  • 1_7 G 1_5 -G 1_7 ,
  • y is the isolation of the channel corresponding to x with respect to the non-corresponding channel of y;
  • G i is the gain of the i channel (dB format).
  • 2_5 G 2_6 -G 2_5 ,
  • 3_5 G 3_7 -G 3_5 ,
  • 3_6 G 3_7 -G 3_6 ,
  • 3_8 G 3_7 -G 3_8 ,
  • 4_5 G 4_8 -G 4_5 ,
  • 4_6 G 4_8 -G 4_6 ,
  • 4_7 G 4_8 -G 4_7 ,
  • the position, direction, etc. of the detection antenna can be adjusted manually or automatically through the control component according to the information of the multi-antenna wireless device 20 under test, so that the isolation information of each corresponding channel can be improved.
  • the isolation of the corresponding channels needs to meet certain conditions to ensure the test accuracy. For example, when the isolation of all corresponding channels is greater than 5dB, the test accuracy of the MIMO throughput rate The impact of is less than 1dB (estimated value). When all corresponding channel isolations are greater than 10dB, the impact on MIMO throughput test accuracy is less than 0.2dB (estimated value).
  • the isolation of the corresponding channel will increase accordingly.
  • the antenna of the DUT may be interfered by the probe itself, causing its radiation characteristics to change ( This can be referred to as loading the DUT).
  • the directional diagram of the DUT antenna 1 is compared with and without probe loading at 5mm.
  • the dotted line is with probe loading, and the solid line is without probe loading.
  • the directional pattern of the antenna 1 of the DUT is compared with and without probe loading at 15 mm, where the dashed line is with probe loading, and the solid line is without probe loading.
  • the coupled probe antenna will not contact the radiation unit of the DUT.
  • the testing device 10 of the embodiment of the present invention further includes: a testing instrument 300.
  • the test meter 300 is connected to a plurality of coupled probes, and the test meter 300 includes a channel simulator to use the channel simulator to combine the channel model and the antenna pattern information of the multi-antenna wireless device 20 to obtain a throughput test signal and obtain a MIMO throughput.
  • the antenna pattern information of the multi-antenna wireless device 20 (which can be preset, simulated, or obtained by testing), and then use the channel simulator to combine the channel model and the antenna pattern information of the DUT to obtain the throughput test signal, and compensate After setting the corresponding channel gain, feed the throughput test signal to the coupled probe to test the throughput performance of the DUT.
  • test process can be as follows:
  • Step S1 Obtain the antenna pattern information of the DUT (can be preset or simulated);
  • Step S2 Use the channel simulator to combine the channel model and the antenna pattern information of the DUT to obtain the throughput test signal. After the corresponding channel gain is compensated for each channel, the throughput test signal is fed to the probe antenna to test the tested antenna. The throughput performance of the test piece.
  • the preset near-field radiation range can be obtained according to the following formula:
  • D is the maximum physical size of the multi-antenna wireless device
  • is the wavelength
  • R is the radius of the near-field radiation range, that is, R is the near-field radiation distance
  • is the wavelength
  • the embodiment of the present invention implements the near-field radiation test on the DUT, which is essentially different from the far-field test in the related technology.
  • the near-field radiation test is described in detail below:
  • the antenna distance between the coupling probe and the multi-antenna wireless device 20 of the embodiment of the present invention is smaller than the far field, and is in near field coupling.
  • the distance The location of the tested antenna R is defined as:
  • ⁇ R ⁇ 2 ⁇ belongs to the transition zone (transition zone);
  • 2 ⁇ R belongs to the radiation far-field region.
  • the distance between the coupling probe and the antenna of the DUT is smaller than the far-field condition, and it is in the near-field response zone.
  • the distance from the location of the tested antenna R is defined as:
  • the distance between the coupling probe and the antenna of the DUT is smaller than the far-field condition, and it is in the radiation near-field area.
  • the test device 10 of the embodiment of the present invention can not only correspond to one antenna under test for each coupling probe, so as to quickly obtain the information of each antenna of the multi-antenna wireless device 20, and even perform tests at the same time, but also compare with the related technology, It can have a smaller test path loss.
  • Each antenna under test has a coupled antenna close to and corresponding, which belongs to near-field coupling. The path loss is much smaller than the test system in all solutions in the related technology, so the test dynamics are large.
  • the maximum size of the metal in all the cross sections within 5 cm from the probe tip of each coupled probe to the feeder is smaller than the maximum physical size of the multi-antenna wireless device, and/or each The maximum size of the metal in all the cross sections within 5 cm from the top of the probe to the feeder of the coupled probe is smaller than the maximum physical size of the corresponding antenna.
  • the antenna aperture of the coupling probe size (excluding the feeder line) is smaller than the maximum physical size of the multi-antenna wireless device 20, and/or the coupling probe size (excluding the feeder line) is smaller than the antenna aperture of the multi-antenna wireless device 20.
  • Antenna The maximum physical size of the antenna under test on the wireless device 20. So as to ensure the accuracy of the test.
  • the coupling probe is a broadband probe with a preset bandwidth.
  • a probe covering all sub6G frequency bands can be used.
  • the mobile phone when the mobile phone is used as the DUT, at least 4 coupled probes are located at the 4 corners of the DUT, and the coupled probes can be broadband probes, so when the test frequency is changed, no It is necessary to switch other antennas to realize simultaneous testing of the transceiver performance of multiple antennas, which greatly improves the working efficiency of the test and reduces the test time.
  • the preset bandwidth can be set by those skilled in the art according to actual conditions.
  • the testing device 10 of the embodiment of the present invention further includes: a placement component.
  • the placement component is used to place the multi-antenna wireless device 20.
  • a placement component such as a placement platform provided with a fixture, can be provided in the darkroom 100, so that the multi-antenna wireless device 20 is placed on the placement component, which facilitates testing of the multi-antenna wireless device 20.
  • the placement component can also adjust the horizontal posture of the wireless setting 20, such as controlling the wireless setting 20 to change the posture clockwise to meet test requirements.
  • the testing device 10 of the embodiment of the present invention further includes: a plurality of moving components. Wherein, each moving component of the multiple moving components is respectively connected to each coupling probe of the multiple coupling probes to change the position of the corresponding coupling probe.
  • the mobile component can be a mobile station provided with a roller to adjust the position of the coupling probe arbitrarily to realize the corresponding setting of the antenna of the DUT.
  • the testing device 10 of the embodiment of the present invention further includes: a vertical position adjusting member.
  • the vertical position adjusting member is connected with the placing component to adjust the vertical height of the placing component.
  • a vertical position adjustment member is provided at the bottom end of the suggestion.
  • two brackets are arranged at a relative interval.
  • Each bracket may include two hinged rods. The lower end of each rod is rotationally matched with the bottom end of the darkroom and the upper end is placed The platform moves and cooperates, so that the placement position of the multi-antenna wireless device 20 can be adjusted according to the test requirements by adjusting the vertical height of the placement component relative to the bottom end of the darkroom.
  • the multi-antenna wireless device 20 is installed in the front of the darkroom 100. center.
  • the placement component and the placement component can be movably set by the vertical position adjustment member, which facilitates the horizontal and/or vertical position adjustment of the antenna wireless device 20 and improves the flexibility of the device. And applicability.
  • the testing device 10 of the embodiment of the present invention further includes: a first control component.
  • the first control component is connected with the vertical position adjusting component and the placing component to control the vertical position adjusting component and the placing component to perform corresponding actions, so that the multi-antenna wireless device 20 reaches the target position.
  • the above-mentioned vertical position adjustment member and placement assembly can be controlled manually or automatically through a preset program.
  • the multi-antenna wireless device 20 is automatically raised and rotated to the test position required for the test according to the test requirements, that is, the target position. , To meet the testing needs.
  • the testing device 10 of the embodiment of the present invention further includes: a second control component.
  • the second control component is respectively connected with each mobile component to adjust the position and direction of each coupling probe of the multiple coupling probes according to the target position of the multi-antenna wireless device 20.
  • the test device 10 of the embodiment of the present invention can manually adjust the position of the coupling probe and the multi-antenna wireless device 20, or can automatically adjust the position of the control component to improve the intelligence and maneuverability of the test device.
  • the DUT is placed on the placement component, and the coupling probe is placed on the moving component.
  • Each coupling probe is connected to a moving component and can be moved independently.
  • the placement component can be raised and lowered to realize the one-to-one correspondence between the coupling probe and the antenna. Setting is more flexible, simple and easy to implement.
  • the operator can place the DUT on the placement assembly and fix it, then move the DUT to the center of the darkroom 100 by manually adjusting or controlling the assembly and controlling the placement assembly and the vertical position adjustment member, and then manually adjust or control it.
  • the component controls the moving component to move the coupling probe to the corresponding position of each antenna of the DUT to perform near-field coupling antenna testing within the near-field radiation distance.
  • each coupled probe corresponds to one antenna under test
  • the information of each antenna under test can be quickly obtained, so that the information of multiple antennas under test can be obtained all at once.
  • the test speed is much faster than the related technology, and it has a smaller test path loss.
  • Each tested antenna has a coupled antenna close to the corresponding, which belongs to near-field coupling, and its path loss is much smaller than all test systems in related technologies. , So the test dynamics are large.
  • each antenna of the wireless device is simultaneously or independently tested through multiple coupling probes, which not only effectively meets the test requirements, but also achieves the purpose of simultaneous multi-antenna testing.
  • the antenna adopt a separate near-field coupling method, that is, each different antenna adopts a separate coupling method to realize a virtual wire, and multiple antennas can be tested at the same time, and the distance between the coupled probe and the DUT antenna belongs to the near-field radiation distance. It is smaller than the far-field distance and is in near-field coupling, thereby effectively improving the work efficiency of the test, and effectively improving the accuracy of the test, which is simple and easy to implement.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种多天线无线设备MIMO测试装置,包括:暗室,暗室的内壁上设置有吸波材料;多个耦合探头,多个耦合探头可活动地设置于暗室内,用于同时或单独对当前探头所处位置的预设的近场辐射范围内天线进行能量耦合传输,其中,每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于或等于5厘米,以获取多天线无线设备的多输入多输出MIMO吞吐率。根据本发明实施例的测试装置,可以对天线采用单独近场耦合的方式实现虚拟导线,并且可以同时或单独在近场辐射距离内对天线进行吞吐率测试,不但提高测试的工作效率,而且有效提高测试的准确性。

Description

多天线无线设备MIMO测试装置
相关申请的交叉引用
本申请要求深圳市通用测试系统有限公司于2019年4月29日提交的、发明名称为“多天线无线设备MIMO测试装置”的、中国专利申请号“201910354541.7”的优先权。
技术领域
本发明涉及无线设备性能技术领域,特别涉及一种多天线无线设备MIMO测试装置。
背景技术
目前,多天线技术是提高信道容量的主要手段之一,尤其是在4G、5G的通信技术、WiFi、物联网等都使用多天线的MIMO(Multiple Input and Multiple Output,多输入多输出)技术以增加通信速率。
天线设备的MIMO测量和评估对网络质量、互联网干扰、基站布局、自动驾驶等均有着至关重要的作用。但是,目前国际标准3GPP和国内标准CCSA颁布的一系列标准来规范天线设备的MIMO的测试方法和装置,由于都使用远场测试或者中枢场测试,导致测试系统普遍较大,而且造价高。
具体地,MIMO吞吐率测试有两种方法,辐射两步法(RTS)和多探头法(MPAC)。其中,多探头法通过在被测设备周围环绕多个天线形成MIMO吞吐率测试的信道模型进行测试,但系统校准和操作较为复杂,导致多探头法测试精度对硬件个体环境以及操作手法有较高要求;辐射两步法先在暗室利用终端的上报功能测出待测件(DUT)的辐射方向图,然后将方向图信息加载到信道仿真器中,模拟出包含待测机天线特性的无线信道,接着基站仿真器输出的下行信号先和加载了待测件的方向图信息的无线信道进行卷积,通过测量天线发射出来,最后进行接收机的性能测试,但是无论是多探头法还是辐射两步法都是需要在远场条件下进行,测试距离大于2D 2/λ,测试系统成本高,亟待解决。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的目的在于提出一种多天线无线设备MIMO测试装置,该测试装置可以提高测试的工作效率,并且提高测试的准确性,简单易实现。
为达到上述目的,本发明实施例提出了一种多天线无线设备MIMO测试装置,包括: 暗室,所述暗室的内壁上设置有吸波材料;多个耦合探头,所述多个耦合探头可活动地设置于所述暗室内,用于同时或单独对当前探头所处位置的预设的近场辐射范围内天线进行能量耦合传输,其中,所述每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于或等于5厘米,以获取所述多天线无线设备的多输入多输出MIMO吞吐率。
本发明实施例的多天线无线设备空口测试装置,通过多个耦合探头对无线设备的每个天线同时进行测试,从而实现多天线同时或单独在近场辐射距离测试的目的,不但可以对天线采用单独近场耦合的方式实现虚拟导线,并且可以同时对多个天线进行MIMO吞吐率测试,进而有效提高测试的工作效率,而且有效提高测试的准确性,简单易实现。
另外,根据本发明上述实施例的多天线无线设备空口测试装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述多个耦合探头的每个耦合探头的位置和方向满足预设的通道隔离度。
进一步地,在本发明的一个实施例中,还包括:测试仪表,所述测试仪表与所述多个耦合探头相连,且所述测试仪表包括信道模拟器,以使用所述信道模拟器结合信道模型和所述多天线无线设备的天线方向图信息得到吞吐率测试信号,得到所述MIMO吞吐率。
可选地,在本发明的一个实施例中,所述预设的近场辐射范围根据以下公式得到:
Figure PCTCN2020081388-appb-000001
或者
Figure PCTCN2020081388-appb-000002
其中,D为所述多天线无线设备的最大物理尺寸,R为所述近场辐射范围的半径,λ为波长。
可选地,在本发明的一个实施例中,所述每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于所述多天线无线设备的最大物理尺寸。
可选地,在本发明的一个实施例中,所述每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于对应的天线的最大物理尺寸。
其中,在本发明的一个实施例中,所述多天线无线设备为移动终端时,耦合探头为预设带宽的宽带探头。
进一步地,在本发明的一个实施例中,还包括:放置组件,用于放置所述多天线无线设备;竖直位置调整件,所述竖直位置调整件与所述放置组件相连,以调整所述放置组件的竖直高度。
进一步地,在本发明的一个实施例中,还包括:多个移动组件,所述多个移动组件的每个移动组件分别与所述多个耦合探头的每个耦合探头相连,以改变对应耦合探头的位置。
进一步地,在本发明的一个实施例中,还包括:第一控制组件,所述第一控制组件与 所述竖直位置调整件和所述放置组件相连,以控制所述竖直位置调整件和所述放置组件执行相应动作,使得所述多天线无线设备达到目标位置;第二控制组件,所述第二控制组件分别与所述每个移动组件相连,以根据所述多天线无线设备的所述目标位置调整所述多个耦合探头的每个耦合探头的位置和方向。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为相关技术中的从基站到终端的多径环境示意图;
图2为相关技术中的MPAC通过多天线配置实现多径信道模型的示意图;
图3为相关技术中的辐射两步法的原理示意图;
图4为相关技术中的暗室内部传播环境示意图;
图5为相关技术中的加入矩阵模块的示意图;
图6为相关技术中的虚拟导线示意框图;
图7为根据本发明实施例的多天线无线设备MIMO测试装置的结构示意图;
图8为根据本发明一个实施例的耦合探头的结构示意图;
图9为相关技术的多天线无线设备的结构示意图;
图10为根据本发明一个实施例的多天线无线设备MIMO测试装置的原理示意图;
图11为根据本发明一个实施例的多天线无线设备的方向示意图;
图12为根据本发明另一个实施例的多天线无线设备的方向示意图;
图13为根据本发明一个具体实施例的多天线无线设备MIMO测试装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面在描述根据本发明实施例提出的相控阵天线协议测试装置之前,先来简单描述一下现有远场测试技术的缺陷。
现有技术中,MIMO吞吐率测试有两种方法,包括辐射两步法(RTS)和多探头法 (MPAC)。需要说明的是,MIMO终端的无线性能取决于多个因素:终端本身接收机灵敏度、噪声、发射机功率、天线相关性、天线和接收机发射机匹配、基带处理、无线传播环境等。MIMO终端的OTA(Over The Air,空中下载技术)测试方案,提供了一种在受控环境下评估、测试MIMO终端性能的方法和测试系统。MIMO终端的OTA测试,既是移动运营商检验移动终端性能、发放终端入网许可证的依据,也是终端厂商在研发、质量控制过程中的技术手段。OTA测试也是目前国际标准组织3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)和国内标准组织CCSA(China Communications Standards Association,中国通信标准化协会)公认的能够评估MIMO无线终端真实无线性能的测试手段。
具体地,针对MIMO无线终端的接收性能(即下行MIMO性能),3GPP提供了两种标准的OTA测试方案:MPAC(Multiple Probe Anechoic Chamber method,多探头法)和RTS(Radiated Two Stage method,辐射两步法)。且评估下行MIMO性能的最关键指标是吞吐率。MIMO利用分集技术提高通信速率,其中电磁波空间传播环境(即信道模型)是决定其吞吐率的重要因素。如图1所示,图1展示了一个无线MIMO终端所处的多径环境。其中包含了从基站到终端的直视路径,各个建筑物发射路径以及多普勒效应等等。
具体地,MIMOOTA测试需要模拟出规定的信道模型,然后在模型下测试其吞吐率的大小。MPAC方法采用多个环绕在被测件周围的天线(例如16个)和信道模拟器一起,实现MIMO信道的模拟,是一种直观的方法,但是系统造价非常高、系统校准复杂,如图2所示。
另外,结合图3至图6所示,辐射两步法第一步获取被测件接收天线方向图,第二步通过获取到的接收方向图与信道模型结合生成吞吐率测试信号,然后将吞吐率测试信号通过辐射的方式馈入到相应的接收机,进而进行吞吐率测试。其中,辐射两步法中,一个关键技术是加载逆矩阵,建立“虚拟导线”技术链接。具体如下:辐射两步法在获取到天线方向图之后,会将天线方向图与信道模型在仪表中结合运算得到多路吞吐率测试信号。每一路的吞吐率测试信号都需要单独的隔离的输入到相应的接收机中。这里,一种“虚拟导线”的技术在多个地方被采用。具体地,如图4所示,将多天线被测件放在屏蔽室中,其中测试天线个数M等于被测件天线个数N,那么电磁波从N个测试天线发出到N个接收天线馈点会形成一个稳定的传播矩阵,这里记录为传播矩阵P,其中P是一个N×N的矩阵。
具体地,在测试天线前端加入一个射频矩阵模块,如图5所示,设置射频矩阵模块V的值等于传播矩阵P的逆。即P=V -1,则N个测试端口的信号(T 1,T 2,…,T N),与N个接收机端口的接收信号(R 1,R 2,…,R N)满足关系
(R 1,R 2,…,R N) T=P*V*(T 1,T 2,…,T N) T=(T 1,T 2,…,T N) T
( ) T表示矩阵转置。
上诉公式表明,在这样的设置下,可以实现将测试端口的信号直接导入接收机端口,类似于传导线接入的方式,区别在于:被测件始终处于整机状态,没有任何侵入式的导线连接,测试得到的性能就是其真实工作性能。这样的工作方式也称为“虚拟导线”技术,如下图,N个虚拟导线连接了测试端口和接收机端口。需要说明的是,图4、5和6中,当N=2就成为了图3的实现模式。
然而,目前,无论是MPAC还是RTS都是需要在远场条件下进行,即测试距离大于2D 2/λ,D是被测件的最大物理尺寸。
下面参照附图描述根据本发明实施例提出的多天线无线设备MIMO测试装置。
图7为根据本发明实施例的多天线无线设备MIMO测试装置的结构示意图。
如图7所示,该多天线无线设备MIMO测试装置10包括:暗室100和多个耦合探头(如图中耦合探头201、耦合探头202、耦合探头203和耦合探头204所示)。
其中,暗室100的内壁上设置有吸波材料101。多个耦合探头可活动地设置于暗室100内,用于同时或单独对当前探头所处位置的预设的近场辐射范围内天线进行能量耦合传输,其中,每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于或等于5厘米,以获取多天线无线设备的多输入多输出MIMO吞吐率。可以理解的是,通过可活动设置使得多个耦合探头的每个耦合探头可以一一对应设置于多天线无线设备20的多个天线设置在预设的近场辐射距离内,同时对待测的多天线无线设备20进行能量耦合传输,以获取多天线无线设备20的多输入多输出MIMO吞吐率。本发明实施例的测试装置10可以对天线采用单独近场耦合的方式实现虚拟导线,并且可以同时或单独在近场辐射距离内对天线进行吞吐率测试,不但提高测试的工作效率,而且有效提高测试的准确性。
具体地,本发明实施例的测试装置可以对耦合式MIMO无线设备进行无线性能测试,从而能够实现MIMO无线设备的整体性能评估(如工作在MIMO多路码流的被测件),以及MIMO无线设备的每一个单独的射频通路性能(如每一条单独的通路的发射功率一致性,每一条单独通路的接受辐射灵敏度)。
需要说明的是,相比较于相关技术中,本发明实施例可以实现一一对应的耦合传输,也实现了标准辐射两步法中应用到的“虚拟导线”技术,区别是,本发明实施例通过耦合方法实现“虚拟导线”,辐射两步法是通过计算的方式实现“虚拟导线”,因此在实现虚拟导线之后,本发明实施例即可以进行吞吐率测试。
具体地,如图8所示,可以理解的是,耦合探头自辐射顶部往馈线方向5cm内的部分满足:所有横截面的金属最大尺寸小于等于5cm。例如,耦合探头由三部分组成:介质、金属和馈线,馈线用于馈入射频信号,其中,耦合探头顶部为辐射顶端,如耦合探头顶部 向馈线5cm的范围内,任意横截面都满足以下条件:顶部往馈线5厘米内所有的横截面内金属最大尺寸小于5cm,本领域技术人员应当理解的是,对于图8中任何探头都可以通过类似的方式进行配置,并不仅限于这一种结构的天线设计,只要横截面内金属最大尺寸小于5cm即可,从而同时或单独对当前探头所处位置的近场辐射距离内天线进行能量耦合传输。
举例而言,如图9所示,图中是一个完整的4天线无线终端示意图,以模拟待测的多天线无线设备20,在一块140×70mm的PCB板的四个角上各放一个PIFA天线,且四个天线接在同一个地面上,天线工作在3.5GHz。
其中,在本发明的实施例中,将上述多天线无线设备20放置在一个屏蔽暗室100内,暗室100内有吸波材料101,暗室100内部放置多个耦合探头。探头的作用是,每一个探头对准多天线无线设备20上一个天线进行能量耦合传输,需要说明的是,耦合探头均位于多天线无线设备20的近场辐射距离内,且可以调整耦合天线位置和方向使得每个耦合天线和对应的被测件天线形成一一对应的耦合传输,通过各个不同的天线采用单独耦合方式,不但可以降低测试系统成本,而且有效减少测试时间,提升测试效率。
和相关技术中的远场测试相比,本发明实施例可以实现多天线无线终端快速产线测试,测试的工作效率较高,且可以有效保证测试的准确性和精确度,有效满足测试需求。
进一步地,在本发明的一个实施例中,多个耦合探头的每个耦合探头的位置和方向满足预设的通道隔离度。。
具体地,如图10所示,天线命名如图,多天线无线设备20的天线可以命名被测天线1、2、3、4;耦合探头可以命名耦合探头5、6、7、8。
首先,调整所有耦合探头的位置,使耦合探头物理位置位于多天线无线设备20近场且靠近相应天线位置,如被测天线1和耦合天线5对应;被测天线2和耦合天线6对应;被测天线3和耦合天线7对应;被测天线4和耦合天线8对应。其中,且要求对应天线之间的耦合能量大于非对应天线之间的耦合能量,具体表述如下:
固定被测件,以耦合天线5的位置调节为例说明:调节5号耦合天线位置,使仅有5号耦合天线发射,在1号被测天线上耦合能量大于其他所有被测天线耦合到的能量;同样的,调节6号耦合天线位置,使仅有6号耦合天线发射,在2号被测天线上耦合能量大于其他所有被测天线耦合到的能量;调节7号耦合天线位置,使仅有7号耦合天线发射,在3号被测天线上耦合能量大于其他所有被测天线耦合到的能量;调节8号耦合天线位置,使仅有8号耦合天线发射,在4号被测天线上耦合能量大于其他所有被测天线耦合到的能量。
需要说明的是,定义对应通道和非对应通道可以如下:
1号对应5号,2号对应6号,3号对应7号,4号对应8号,定义1号对应5号为对应通道,1-6、1-7、1-8为非对应通道,通道增益用G表示,则定义对应通道隔离度为(共计3个隔离度):
Iso 1_5|1_6=G 1_5-G 1_6
Iso 1_5|1_7=G 1_5-G 1_7
Iso 1_5|1_8=G 1_5-G 1_8
其中,Iso x|y是x对应通道相对于y非对应通道的隔离度;G i是i通道增益(dB格式)。
同理可以得到2-6对应通道隔离度:
Iso 2_6|2_5=G 2_6-G 2_5
Iso 2_6|2_7=G 2_6-G 2_7
Iso 2_6|2_8=G 2_6-G 2_8
同理可以得到3-7对应通道隔离度:
Iso 3_7|3_5=G 3_7-G 3_5
Iso 3_7|3_6=G 3_7-G 3_6
Iso 3_7|3_8=G 3_7-G 3_8
同理可以得到4-8对应通道隔离度:
Iso 4_8|4_5=G 4_8-G 4_5
Iso 4_8|4_6=G 4_8-G 4_6
Iso 4_8|4_7=G 4_8-G 4_7
依据被测件即多天线无线设备20的信息可以手动或通过控制组件自动调整探测天线的位置、方向等等,从而可以提升各个对应通道隔离度信息。
需要说明的是,在发明的实施例中,需要对应通道的隔离度均满足一定条件,才能保证测试精度,比如,在所有的对应通道隔离度都大于5dB的情况下,对MIMO吞吐率测试精度的影响就小于1dB(估计值),在所有的对应通道隔离度都大于10dB的情况下,对MIMO吞吐率测试精度的影响就小于0.2dB(估计值)。
理论上,当耦合探头靠近被测件时对应通道隔离度会相应的提升。一般地,在测试过程中,期望得到的隔离度越大越好,但是,实际上,还需要考虑另一个条件:一般地,对 于被测件而言,在测试性能的时候,需要尽可能少的对被测件本身造成干扰,以图3而言,当探测探头5与被测件天线1的距离变化时,被测件天线可能会受到探测探头对自身的干扰,使其辐射特征发生变化(这里可以称为对被测件造成加载)。
下面以一个具体实施例进行详细说明。
如图11所示,被测件天线1的方向图,在5mm有无探头加载对比,其中,虚线为有探头加载,实线为无探头加载。进一步地,如图12所示,被测件天线1的方向图,在15mm有无探头加载对比,其中,虚线为有探头加载,实线为无探头加载。
综上,可以得出,在15mm出有探测探头,对被测件的天线本身基本没影响(辐射方向图基本没变化),而且在15mm处也满足所有对应通道隔离度大于10dB,因此可以进行精确的MIMO吞吐率测试。
然而,即使是在5mm加载耦合探头,对被测件造成的影响也只是测试精度的影响,但是对被测件造成加载对吞吐率测试造成的影响不好评估。因此,一般地,在本发明的实施例中,耦合探头天线不会接触被测件的辐射单元。
确定耦合探头和被测件的相对位置之后进行吞吐率测试,这一步骤针对一款产品(或者是类似产品)只需要做一次,那么就可以找到耦合探头符合测试天线的位置。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:测试仪表300。测试仪表300与多个耦合探头相连,且测试仪表300包括信道模拟器,以使用信道模拟器结合信道模型和多天线无线设备20的天线方向图信息得到吞吐率测试信号,得到MIMO吞吐率。
例如,获取多天线无线设备20的天线方向图信息(可以是预设、仿真、或者是测试得到),从而使用信道模拟器结合信道模型和被测件天线方向图信息得到吞吐率测试信号,补偿了相对应的通道增益之后,向耦合探头馈入吞吐率测试信号,测试被测件吞吐率性能。
具体地,以一个4×4的MIMO吞吐率测试为例,测试过程可以如下:
步骤S1:获取被测件的天线方向图信息(可以是预设、仿真);
步骤S2:使用信道模拟器结合信道模型和被测件的天线方向图信息得到吞吐率测试信号,对各路补偿了相对应的通道增益之后,向探测天线馈入吞吐率测试信号,从而测试被测件的吞吐率性能。
可选地,在本发明的一个实施例中,预设的近场辐射范围可以根据以下公式得到:
Figure PCTCN2020081388-appb-000003
或者
Figure PCTCN2020081388-appb-000004
其中,D为多天线无线设备的最大物理尺寸,λ表示波长,R为所述近场辐射范围的半径,即R为近场辐射距离,λ为波长。
在本发明的实施例中,本发明实施例对被测件实现近场辐射测试,与相关技术中的远场测试具有本质区别,下面对近场辐射测试进行详细描述:
举例而言,本发明实施例的耦合探头和多天线无线设备20的天线距离小于远场,处于近场耦合,具体地,针对电小尺寸的被测天线(物理尺寸小于波长的一半),距离被测天线R所在位置的定义为:
Figure PCTCN2020081388-appb-000005
属于反应近场区(reactive near field),其中,λ表示波长;
Figure PCTCN2020081388-appb-000006
属于辐射近场区(radiative near-field);
λ<R≤2λ属于传输近场区(transition zone);
2λ<R属于辐射远场区。
针对这类被测件,耦合探头和被测件天线距离小于远场条件,处于反应近场区
针对电大尺寸的被测天线(物理尺寸大于等于波长的一半),距离被测天线R所在位置的定义为,
Figure PCTCN2020081388-appb-000007
属于辐射近场区,其中D是被测天线的尺寸;
Figure PCTCN2020081388-appb-000008
属于菲涅尔区;
Figure PCTCN2020081388-appb-000009
属于辐射远场区
针对这类被测件,耦合探头和被测件天线距离小于远场条件,处于辐射近场区。
综上可知,本发明实施例的测试装置10不但可以每一个耦合探头对应一个被测天线,从而快速得到多天线无线设备20的各个天线信息,甚至同时进行测试,而且相比较与相关技术中,可以拥有更小的测试路损,每一个被测天线都有一个耦合天线靠近且对应,属于近场耦合,其路损远远小于相关技术中的所有方案中的测试系统,因此测试动态大。
可选地,在本发明的一个实施例中,每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于多天线无线设备的最大物理尺寸,和/或,每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于对应的天线的最大物理尺寸。
可以理解的是,在本发明的实施例中,耦合探头尺寸(不含馈线)天线口径小于多天线无线设备20的最大物理尺寸,和/或,耦合探头尺寸(不含馈线)天线口径小于多天线无线设备20上其对应的被测天线的最大物理尺寸。从而保证测试的准确性。
其中,在本发明的一个实施例中,多天线无线设备为移动终端时,耦合探头为预设带宽的宽带探头,如可以使用一个覆盖sub6G所有频段的探头。
举例而言,针对sub 6G中,手机作为被测件时,至少有4个耦合探头分别位于被测件的4个角处,而该耦合探头可以为宽带探头,那么在变化测试频率时,不需要切换其他天 线,可以实现多个天线的收发性能同时测试,大大提升测试的工作效率,减小测试时间。其中,预设带宽可以由本领域技术人员根据实际情况进行设置。
进一步地,在本发明的一个实施例中,如图13所示,本发明实施例的测试装置10还包括:放置组件。其中,放置组件用于放置多天线无线设备20。
可以理解的是,在暗室100中可以设置放置组件如设置有夹具的放置台,从而将多天线无线设备20放置于放置组件上,便于对多天线无线设备20进行测试。另外,放置组件也可以对无线设置20的水平位姿进行调整,如控制无线设置20顺时针改变位姿,以满足测试需求。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:多个移动组件。其中,多个移动组件的每个移动组件分别与多个耦合探头的每个耦合探头相连,以改变对应耦合探头的位置。
可以理解的是,移动组件可以为设置有滚轮的移动台,以任意调节耦合探头的位置,实现与被测件的天线的对应设置。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:竖直位置调整件。其中,竖直位置调整件与放置组件相连,以调整放置组件的竖直高度。
可以理解的是,在暗示底端设置竖直位置调整件,如相对间隔设置两个支架,每个支架可以包括铰接的两个杆体,每个杆体的下端与暗室底端转动配合且上端与放置台移动配合,从而可通过调整放置组件相对暗室底端的竖直高度,调节多天线无线设备20的放置位姿,以根据测试需求进行调节,如将多天线无线设备20设置于于暗室100的正中心。
在本发明的实施例中,可以通过竖直位置调整件对放置组件和放置组件进行可活动设置,便于对天线无线设备20进行水平方向和/或竖直方向的位置调整,提高装置的灵活性和应用性。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:第一控制组件。其中,第一控制组件与竖直位置调整件和放置组件相连,以控制竖直位置调整件和放置组件执行相应动作,使得多天线无线设备20达到目标位置。
可以理解的是,上述竖直位置调整件和放置组件可以人为控制也可以通过预设程序自动控制,如根据测试需求自动将多天线无线设备20上升并旋转至测试需要的测试位置,即目标位置,以满足测试需求。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置10还包括:第二控制组件。其中,第二控制组件分别与每个移动组件相连,以根据多天线无线设备20的目标位置调整多个耦合探头的每个耦合探头的位置和方向。
可以理解的是,本发明实施例的测试装置10可以通过手动调整耦合探头和多天线无线 设备20的位置,也可以通过控制组件自动进行调整,提高测试装置的智能化和可操控性。具体地,被测件放置在放置组件上,耦合探头放置在移动组件上,每一个耦合探头和一个移动组件相连,且可以单独移动,放置组件可以升降,进而实现耦合探头与天线的一一对应设置,更加灵活,简单易实现。
例如,操作人员可以将被测件放置于放置组件固定后,通过手动调节或控制组件控制放置组件和竖直位置调整件将被测件移至暗室100的正中央位置,随后通过手动调节或控制组件控制移动组件移动耦合探头以与被测件的每个天线的对应位置,以在近场辐射距离内进行近场耦合天线测试。
综上,在本发明的实施例中,不但测试方案快,且每一个耦合探头对应一个被测天线,可以快速得到被测件各个天线信息,使得多个被测天线的信息可以一次性全部得到,测试速度比相关技术快很多,相比较拥有更小的测试路损,每一个被测天线都有一个耦合天线靠近对应,属于近场耦合,其路损远远小于相关技术中的所有测试系统,因此测试动态大。
根据本发明实施例的多天线无线设备MIMO测试装置,通过多个耦合探头对无线设备的每个天线同时或单独进行吞吐率测试,不但有效满足测试需求,而且可以实现多天线同时测试的目的,不但可以对天线采用单独近场耦合的方式,即各个不同的天线采用单独耦合方式实现虚拟导线,并且可以同时对多个天线进行测试,以及耦合探头和被测件天线距离属于近场辐射距离,其小于远场距离,处于近场耦合,进而有效提高测试的工作效率,而且有效提高测试的准确性,简单易实现。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多天线无线设备MIMO测试装置,其特征在于,包括:
    暗室,所述暗室的内壁上设置有吸波材料;
    多个耦合探头,所述多个耦合探头可活动地设置于所述暗室内,用于同时或单独对当前探头所处位置的预设的近场辐射范围内天线进行能量耦合传输,其中,每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于或等于5厘米,以获取所述多天线无线设备的多输入多输出MIMO吞吐率。
  2. 根据权利要求1所述的装置,其特征在于,所述多个耦合探头的每个耦合探头的位置和方向满足预设的通道隔离度。
  3. 根据权利要求1所述的装置,其特征在于,还包括:
    测试仪表,所述测试仪表与所述多个耦合探头相连,且所述测试仪表包括信道模拟器,以使用所述信道模拟器结合信道模型和所述多天线无线设备的天线方向图信息得到吞吐率测试信号,得到所述MIMO吞吐率。
  4. 根据权利要求1所述的装置,其特征在于,所述预设的近场辐射范围根据以下公式得到:
    Figure PCTCN2020081388-appb-100001
    或者
    Figure PCTCN2020081388-appb-100002
    其中,D为所述多天线无线设备的最大物理尺寸,R为所述近场辐射范围的半径,λ为波长。
  5. 根据权利要求1所述的装置,其特征在于,所述每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸内小于所述多天线无线设备的最大物理尺寸。
  6. 根据权利要求1或5所述的装置,其特征在于,所述每个耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于对应的天线的最大物理尺寸。
  7. 根据权利要求1所述的装置,其特征在于,所述多天线无线设备为移动终端时,耦合探头为预设带宽的宽带探头。
  8. 根据权利要求1所述的装置,其特征在于,还包括:
    放置组件,用于放置所述多天线无线设备;
    竖直位置调整件,所述竖直位置调整件与所述放置组件相连,以调整所述放置组件的竖直高度。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    多个移动组件,所述多个移动组件的每个移动组件分别与所述多个耦合探头的每个耦 合探头相连,以改变对应耦合探头的位置。
  10. 根据权利要求9所述的装置,其特征在于,还包括:
    第一控制组件,所述第一控制组件与所述竖直位置调整件和所述放置组件相连,以控制所述竖直位置调整件和所述放置组件执行相应动作,使得所述多天线无线设备达到目标位置;
    第二控制组件,所述第二控制组件分别与所述每个移动组件相连,以根据所述多天线无线设备的所述目标位置调整所述多个耦合探头的每个耦合探头的位置和方向。
PCT/CN2020/081388 2019-04-29 2020-03-26 多天线无线设备mimo测试装置 WO2020220879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910354541.7A CN111865371B (zh) 2019-04-29 2019-04-29 多天线无线设备mimo测试装置
CN201910354541.7 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220879A1 true WO2020220879A1 (zh) 2020-11-05

Family

ID=72965512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081388 WO2020220879A1 (zh) 2019-04-29 2020-03-26 多天线无线设备mimo测试装置

Country Status (2)

Country Link
CN (1) CN111865371B (zh)
WO (1) WO2020220879A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798874A (zh) * 2020-12-23 2021-05-14 北京无线电计量测试研究所 一种电场辐射敏感度改进测试方法和系统
CN114726411A (zh) * 2020-12-22 2022-07-08 中国移动通信集团终端有限公司 3d mimo ota暗室探头系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834830A (zh) * 2021-02-05 2021-05-25 中国人民解放军海军航空大学航空作战勤务学院 一种天线近场耦合测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
US20180062971A1 (en) * 2016-09-01 2018-03-01 Keysight Technologies, Inc. Systems and methods for radio channel emmulation of a multiple input multiple output (mimo) wireless link
CN108966264A (zh) * 2017-05-22 2018-12-07 是德科技股份有限公司 对大规模多入多出无线系统执行空中测试的系统和方法
CN209676497U (zh) * 2019-04-29 2019-11-22 深圳市通用测试系统有限公司 相控阵天线协议测试装置
CN210090568U (zh) * 2019-04-29 2020-02-18 深圳市通用测试系统有限公司 多天线无线设备空口测试装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917577B (zh) * 2015-06-11 2018-01-16 陈奕铭 Mimo无线终端性能的暗室多探头测试系统
US9742508B1 (en) * 2016-02-26 2017-08-22 Keysight Technologies, Inc. Systems and methods for calibrating multiple input, multiple output (MIMO) test systems and for using the calibrated MIMO test systems to test mobile devices
US10033473B1 (en) * 2017-01-23 2018-07-24 Keysight Technologies, Inc. Systems and methods for performing multiple input, multiple output (MIMO) over-the-air testing
US10209284B2 (en) * 2017-06-29 2019-02-19 Keysight Technologies, Inc. Advanced antenna performance testing
EP3462190B1 (en) * 2017-09-29 2022-06-29 Rohde & Schwarz GmbH & Co. KG Measurement system and method for performing test measurements
US10110326B1 (en) * 2017-09-30 2018-10-23 Keysight Technologies, Inc. Multi-probe anechoic chamber (MPAC) over-the-air (OTA) test system having a radio channel (RC) emulator that has a dynamically-variable channel model, and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
US20180062971A1 (en) * 2016-09-01 2018-03-01 Keysight Technologies, Inc. Systems and methods for radio channel emmulation of a multiple input multiple output (mimo) wireless link
CN108966264A (zh) * 2017-05-22 2018-12-07 是德科技股份有限公司 对大规模多入多出无线系统执行空中测试的系统和方法
CN209676497U (zh) * 2019-04-29 2019-11-22 深圳市通用测试系统有限公司 相控阵天线协议测试装置
CN210090568U (zh) * 2019-04-29 2020-02-18 深圳市通用测试系统有限公司 多天线无线设备空口测试装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on test methods; (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.810, vol. RAN WG4, no. V16.2.0, 31 March 2019 (2019-03-31), pages 1 - 157, XP051723315 *
SUMA G. PANNALA: "Feasibility and Challenges of Over-The-Air Testing for 5G Millimeter Wave Devices", 2018 IEEE 5G WORLD FORUM (5GWF), 11 July 2018 (2018-07-11), Silicon Valley, CA, USA, pages 304 - 310, XP033432755, DOI: 10.1109/5GWF.2018.8516965 *
YIHONG QI; GUANG YANG; LIE LIU; JUN FAN; ANTONIO ORLANDI; HONGWEI KONG; WEI YU; ZHIPING YANG: "5G Over-the-Air Measurement Challenges: Overview", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, vol. 59, no. 6, 31 May 2017 (2017-05-31), pages 1661 - 1670, XP011658993, ISSN: 0018-9375, DOI: 10.1109/TEMC.2017.2707471 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726411A (zh) * 2020-12-22 2022-07-08 中国移动通信集团终端有限公司 3d mimo ota暗室探头系统
CN114726411B (zh) * 2020-12-22 2023-12-26 中国移动通信集团终端有限公司 3d mimo ota暗室探头系统
CN112798874A (zh) * 2020-12-23 2021-05-14 北京无线电计量测试研究所 一种电场辐射敏感度改进测试方法和系统
CN112798874B (zh) * 2020-12-23 2022-07-08 北京无线电计量测试研究所 一种电场辐射敏感度改进测试方法和系统

Also Published As

Publication number Publication date
CN111865371B (zh) 2021-11-09
CN111865371A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Fan et al. Over-the-air radiated testing of millimeter-wave beam-steerable devices in a cost-effective measurement setup
WO2020220879A1 (zh) 多天线无线设备mimo测试装置
EP2721424B1 (en) Improved method and apparatus for measuring the performance of antennas, mobile phones and other wireless terminals
US11668740B2 (en) Over the air calibration and testing of beamforming-based multi-antenna devices in anechoic and non-anechoic environments
US7224941B2 (en) System and method for multi-path simulation
US20050059355A1 (en) System and method for multi-path simulation
Jing et al. Two-stage over the air (OTA) test method for MIMO device performance evaluation
US10684318B1 (en) System and method for testing analog beamforming device
Kyösti et al. MIMO OTA test concept with experimental and simulated verification
JP6464151B2 (ja) 無線試験信号を用いて無線周波数無線信号送受信機を試験するためのシステム及び方法
WO2020108239A1 (zh) 无线终端的无线性能测试方法及系统
KR20150129752A (ko) 무선 테스트 신호를 이용하여 무선주파수 무선 신호 송수신기를 테스트하는 시스템 및 방법
KR20150132121A (ko) 무선 테스트 신호를 이용하여 무선 주파수 무선 신호 트랜시버를 테스트하는 시스템 및 방법
JP2019521596A (ja) 適切なインプリシットビームフォーミング動作に関して無線周波数(rf)データパケット信号送受信機を試験するための方法
KR20160018573A (ko) 무선 테스트 신호를 이용한 무선 주파수 무선 신호 트랜시버용 시스템 및 방법
TWI647460B (zh) 無線通信裝置空中傳輸量測系統
CN111865448B (zh) 相控阵天线测试方法及计算机可读存储介质
Rumney et al. Testing 5G: evolution or revolution?
Zhang et al. Achieving wireless cable testing of high-order MIMO devices with a novel closed-form calibration method
CN111953430A (zh) 相控阵天线系统级测试系统及测试方法
CN110514907B (zh) 无线通信装置空中传输量测系统
CN114124250B (zh) 一种毫米波终端设备的射频一致性测试系统
CN111953429A (zh) 相控阵天线测试系统及测试方法
CN111865447A (zh) 相控阵天线测试系统及测试方法
KR20160016865A (ko) 무선 테스트 신호를 이용한 무선 주파수 무선 신호 트랜시버용 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798653

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20798653

Country of ref document: EP

Kind code of ref document: A1