WO2018014328A1 - 一种光分插复用器及其控制方法、收发机 - Google Patents

一种光分插复用器及其控制方法、收发机 Download PDF

Info

Publication number
WO2018014328A1
WO2018014328A1 PCT/CN2016/090994 CN2016090994W WO2018014328A1 WO 2018014328 A1 WO2018014328 A1 WO 2018014328A1 CN 2016090994 W CN2016090994 W CN 2016090994W WO 2018014328 A1 WO2018014328 A1 WO 2018014328A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaf
port
light wave
wavelength
wave
Prior art date
Application number
PCT/CN2016/090994
Other languages
English (en)
French (fr)
Inventor
汪敬
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680079941.6A priority Critical patent/CN108496315B/zh
Priority to PCT/CN2016/090994 priority patent/WO2018014328A1/zh
Priority to EP16909255.8A priority patent/EP3480980B1/en
Publication of WO2018014328A1 publication Critical patent/WO2018014328A1/zh
Priority to US16/251,463 priority patent/US10484122B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a tunable optical add/drop multiplexer and a control method thereof, and a transceiver using the optical add/drop multiplexer.
  • Optical Add/Drop Multiplexer is a very important filter component in optical networks. It plays an important role in the development of high-speed, large-capacity and transparency in communication networks. effect. Silicon optical technology is the most popular optoelectronic integration technology in the past decade. It can make full use of the existing Complementary Metal Oxide Semiconductor (CMOS) process line and low-cost silicon materials.
  • CMOS Complementary Metal Oxide Semiconductor
  • a wide variety of optoelectronic functional devices For example, an optical add/drop multiplexer implemented using a silicon-based microring scheme, or an optical add/drop multiplexer implemented using a silicon-based arrayed waveguide grating, but the bandwidth of the optical add/drop multiplexer in the above method is not tunable .
  • Embodiments of the present invention provide an optical add/drop multiplexer, a control method of an optical add/drop multiplexer, and a transceiver using the optical add/drop multiplexer, which are used to change channel bandwidth and improve system flexibility. To adapt to the various business needs of the system.
  • an embodiment of the present invention provides an optical add/drop multiplexer, including: a plurality of tunable optical add/drop multiplexers (T-OADM), each T- The OADM also includes an input port, an output port, a download port, and an upload port. A plurality of T-OADMs are sequentially connected, and an output port of the previous T-OADM is connected to an input port of the next T-OADM.
  • Each of the T-OADMs includes a second wavelength control unit and two raster auxiliary filters GAF; the second wavelength control unit is coupled to the second GAF.
  • the first GAF includes an input port, an output port, a download port, and an upload port;
  • the second GAF includes an input port, an output port, a download port, and an upload port.
  • the download port of the first GAF is connected to the input port of the second GAF, and the upload port of the first GAF is connected to the output port of the second GAF.
  • the specific working process of the optical add/drop multiplexer is as follows: a plurality of wavelengths of light waves from a line, the plurality of light waves entering the optical add/drop multiplexer from an input port, the first T-OADM
  • An input port of a GAF receives light waves of a plurality of wavelengths, the light waves of the plurality of wavelengths including a first light wave.
  • the first GAF transmits the first optical wave to an input port of the second GAF through a download port of the first GAF.
  • the second wavelength control unit changes the lower wave spectrum of the second GAF according to the first amplitude of the wavelength drift to obtain a first light wave response.
  • the download port of the second GAF outputs a first target light wave of the first target bandwidth, where the target bandwidth is an overlapping spectral line width of the first light wave and the first light wave response.
  • two lower waves are performed by setting two GAFs, the first lower wave of the first GAF is obtained, the first light wave is obtained, and the second lower wave of the second GAF is obtained by changing the lower wave spectrum of the second GAF.
  • the first light wave response is obtained such that the first light wave and the first light wave response have overlapping spectral lines, and finally the bandwidth of the light wave output by the second GAF changes. Changing the bandwidth of the channel can greatly increase the flexibility of the system and adapt to the various business needs of the system.
  • the second GAF transmits the second optical wave to the upload port of the first GAF through an output port, where the second optical wave is a residual optical wave of the first optical wave except the first target optical wave. .
  • the output port of the first GAF outputs the second light wave.
  • part of the light wave that is not down-wave can be returned to the first GAF and output through the output port of the first GAF.
  • the bandwidth tuning in the process of the upper wave is opposite to the process of the down wave, and the principle is the same.
  • the uploading port of the second GAF receives a fourth optical wave, the fourth optical wave is the same as the first optical wave, and the second GAF transmits the fourth optical wave from the output port to the upload port of the first GAF, the first wavelength control unit
  • the upload spectrum of the first GAF is changed according to the first amplitude of the wavelength shift to obtain a fourth lightwave response.
  • the output port of the first GAF outputs a second target light wave of the first target bandwidth, where the first target bandwidth is an overlapping spectral line width of the fourth light wave and the fourth light wave response.
  • the bandwidth of the uplink process is tuned according to the requirements of the service, and the flexibility of the system is greatly improved.
  • the T-OADM further includes a first wavelength control unit, where the first wavelength control unit is connected to the first GAF.
  • the first wavelength control unit and the second wavelength control unit The element changes the lower wave spectrum of the corresponding GAF according to the second amplitude of the wavelength shift, thereby adjusting the center wavelength of the pass band, and the first GAF and the second GAF have the same passband center wavelength.
  • Tuning the center wavelength of the lower wave the same wavelength as the passband center wavelength is transmitted to the input port of the second GAF via the download port of the first GAF, and is output from the download port of the second GAF.
  • the center wavelength of the upper wave is tuned: the same wavelength as the passband center wavelength is transmitted to the upload port of the first GAF via the output port of the second GAF, and is output from the output port of the first GAF.
  • the passband center wavelength of the GAF is controlled by the wavelength control unit, so that the center wavelengths of the pass bands of the two GAFs are the same, and the light waves having the same wavelength as the center wavelengths of the two GAF passbands are downloaded from the second GAF.
  • the output, or, in the process of the upper wave, is output from the output port of the first GAF, and the tuning of the center wavelength is achieved, which improves the flexibility of the system.
  • the optical add/drop multiplexer provided in the embodiment of the present invention can also tune the center wavelength of the optical wave and then tune the bandwidth.
  • the T-OADM includes a first wavelength control unit coupled to the first GAF. First, the first wavelength control unit first tunes the passband wavelength of the first GAF, and the first wavelength control unit changes the download spectrum of the first GAF according to the second amplitude of the wavelength shift. The first GAF transmits the fifth optical wave to the input port of the second GAF through the download port, and the light wave of the multiple wavelengths includes a fifth optical wave.
  • the bandwidth is retuned, and the second wavelength control unit changes the lower wave spectrum of the second GAF according to the third amplitude of the wavelength drift, and the third amplitude is different from the second amplitude to obtain a fifth light wave response.
  • the download port of the second GAF outputs a third target light wave of the second target bandwidth, where the second target bandwidth is an overlapping spectral line width of the fifth light wave and the fifth light wave response.
  • the first GAF includes a first grating-assisted directional coupler; the first grating-assisted directional coupler includes two Bragg grating waveguides, and the first end of the first Bragg grating waveguide is the GAF An input port, the second end of the first Bragg grating waveguide is an output port of the first GAF; the first end of the second Bragg grating waveguide is a download port of the first GAF, and the second end of the second Bragg grating waveguide The end is the upload port of the first GAF.
  • the first GAF includes a first multimode interference coupler and a second multimode interference coupler, and the first multimode interference coupler and the second multimode interference coupler are connected by two Bragg grating waveguides; a first port of the multi-mode interference coupler is an input port of the first GAF, a second port of the first multimode interference coupler is a download port of the first GAF, and a second multimode interference coupler One port is the input of the first GAF And a second port of the second multimode interference coupler is an upload port of the first GAF.
  • the second GAF includes a third multimode interference coupler and a fourth multimode interference coupler, and the third multimode interference coupler and the fourth multimode interference coupler pass two a Bragg grating connection;
  • the first port of the third multimode interference coupler is an input port of the second GAF, and the second port of the third multimode interference coupler is a download port of the second GAF;
  • the fourth The first port of the multimode interference coupler is an output port of the second GAF, and the second port of the fourth multimode interference coupler is an upload port of the second GAF.
  • the second GAF includes a second grating-assisted directional coupler; the second grating-assisted directional coupler includes two Bragg grating waveguides, and the first end of the third Bragg grating waveguide is an input port of the GAF, the third Prague The second end of the grating waveguide is an output port of the second GAF, the first end of the fourth Bragg grating waveguide is a download port of the second GAF, and the second end of the fourth Bragg grating waveguide is the second GAF Upload port.
  • an embodiment of the present invention provides a control method of an optical add/drop multiplexer, where the control method is applied to an optical add/drop multiplexer provided by the first aspect, where the optical add/drop multiplexer includes multiple a dimming add/drop multiplexer T-OADM, the plurality of T-OADMs being sequentially connected, each of the T-OADMs comprising two wavelength control units and two raster auxiliary filters GAF; a first wavelength control unit and a first GAF The second wavelength control unit is connected to the second GAF; the download port of the first GAF is connected to the input port of the second GAF, and the upload port of the first GAF is connected to the output port of the second GAF.
  • the control method includes:
  • the input port of the first GAF of the first T-OADM receives light waves of a plurality of wavelengths, the light waves of the plurality of wavelengths including the first light wave.
  • the first GAF transmits the first optical wave to the input port of the second GAF through the download port.
  • the second wavelength control unit changes the lower wave spectrum of the second GAF according to the target amplitude of the wavelength drift to obtain a first light wave response.
  • the download port of the second GAF outputs the first target light wave of the first target bandwidth, where the first target bandwidth is a spectral line width of the overlapping of the first light wave and the first light wave response.
  • the method further includes: transmitting, by the second GAF, the second light wave to the uploading of the first GAF through the output port a port, the second light wave being a residual light wave of the first light wave except the first target light wave.
  • the output port of the first GAF outputs the second light wave.
  • the download port of the second GAF outputs a target of the target bandwidth.
  • the method may be specifically: the upload port of the second GAF receives the fourth light wave, and the fourth light wave is the same as the first light wave.
  • the second GAF transmits the fourth light wave from the output port to the upload port of the first GAF.
  • the first wavelength control unit changes the upload spectrum of the first GAF according to the target amplitude of the wavelength drift to obtain a fourth light wave response.
  • the output port of the first GAF outputs a second target light wave of the first target bandwidth, where the first target bandwidth is a width of an overlapping wavelength region of the fourth light wave and the fourth light wave response.
  • the center wavelengths of the upper and lower waves can also be tuned.
  • the method further includes: the first wavelength control unit and the second wavelength control unit both change the lower wave spectrum of the corresponding GAF according to the second amplitude of the wavelength drift, wherein the first GAF and the second GAF have the same passband center wavelength .
  • the center wavelength is tuned: the same wavelength as the passband center wavelength is transmitted to the input port of the second GAF via the download port of the first GAF, and is output from the download port of the second GAF.
  • the center wavelength is tuned: the same wavelength as the passband center wavelength is transmitted to the upload port of the first GAF via the output port of the second GAF, and is output from the output port of the first GAF.
  • the center wavelength can be tuned first, and the bandwidth is tuned.
  • the light wave of the plurality of wavelengths includes a fifth light wave
  • the first wavelength control unit changes the lower wave spectrum of the first GAF according to the second amplitude of the wavelength drift.
  • the first GAF transmits the fifth optical wave to the input port of the second GAF through the download port.
  • the second wavelength control unit changes a lower wave spectrum of the second GAF according to a third amplitude of the wavelength drift, and the third amplitude is different from the second amplitude to obtain a fifth light wave response.
  • the download port of the second GAF outputs a third target light wave of the second target bandwidth, where the second target bandwidth is an overlapping spectral line width of the fifth light wave and the fifth light wave response.
  • an embodiment of the present invention provides a transceiver, including: at least one laser, at least one modulator, at least one detector, and an optical add/drop multiplexer according to the above first aspect; the laser is connected to the modulator, The modulator is coupled to an upload port of the tunable optical add/drop multiplexer unit; the detector is coupled to a download port of the optical add/drop multiplexer.
  • FIG. 1 is a structural diagram of an optical network according to an embodiment of the present invention.
  • 2a is a schematic diagram of a lower wave principle of an optical add/drop multiplexer according to an embodiment of the present invention
  • 2b is a schematic diagram of an upper wave principle of an optical add/drop multiplexer according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a lower wave of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a principle of bandwidth tuning by a tunable optical add/drop multiplexer unit according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an internal optical structure of an embodiment of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an internal optical structure of another embodiment of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an internal optical structure of another embodiment of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an internal optical structure of another embodiment of a tunable optical add/drop multiplexer unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an up-and-down wave of a series of optical waves for implementing a fixed bandwidth in an optical add/drop multiplexer according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of an up-and-down wave of a series of optical waves for implementing an optical bandwidth in an optical add/drop multiplexer according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a transceiver according to an embodiment of the present invention.
  • the embodiment of the present invention provides an optical add/drop multiplexer (Optical Add/Drop Multiplexer, OADM) which is a wavelength-division multiplexing (WDM) optical network.
  • OADM optical Add/Drop Multiplexer
  • WDM wavelength-division multiplexing
  • FIG. 1 is a schematic diagram of an optical network 100 architecture, which is a WDM all-optical network connected by an optical add-drop multiplexer 110 and an optical cross-connect (OXC) device 120.
  • the architecture diagram, the optical add/drop multiplexer 110 allows different wavelength signals of different optical networks to be inserted and multiplexed at different locations.
  • the OXC device 120 allows different networks to be dynamically combined, allocates wavelength resources on demand, and implements a wider range of network mutuals. even.
  • the optical uplink and the downlink can be performed between the two optical cross-connect nodes or the optical switching nodes as needed, and the OXC device 120 sends the information that needs to be downloaded at the node to the access network without directly processing the information processed by the local node by the optical channel. Passing through this node can greatly improve the efficiency of the node processing information.
  • the present invention is only described by way of an example of the optical network 100 applied by the optical add/drop multiplexer, and is not limited to the network to which the optical add/drop multiplexer is applied, and the specific network application scenario is the present invention. Not limited.
  • FIG. 2a and FIG. 2b are schematic diagrams of the principle of the OADM provided in the embodiment of the present invention.
  • 2a is a schematic diagram of the lower wave principle of the OADM
  • FIG. 2b is a schematic diagram of the upper wave principle of the OADM.
  • the OADM node can be represented by a four-port model, which is an input port, an output port, a download port, and an upload port.
  • the OADM includes a plurality of Tunable Optical Add/Drop Multiplexers (T-OADMs), and each T-OADM also includes an input port, an output port, a download port, and an upload port 240.
  • T-OADMs Tunable Optical Add/Drop Multiplexers
  • a plurality of T-OADMs are sequentially connected, and an output port of the previous T-OADM is connected to an input port of the next T-OADM.
  • the functions of the OADM include at least the following: a wavelength channel required for the downlink, multiplexing the uplink wavelength channel, and bandwidth tuning of the downlink wavelength channel and the uplink wavelength channel.
  • the specific working process of the OADM is as follows: the WDM signal from the line includes multiple wavelengths of light waves, and the plurality of light waves enter the OADM from an input port, and selectively from a plurality of wavelengths of light waves according to service requirements.
  • the download port (drop) outputs the desired wavelength channel, and can tune the bandwidth of the wavelength channel, thereby increasing the flexibility of the system, and correspondingly inputting the desired wavelength channel from the upload port (add).
  • Other wavelength channels that are not related to the local can be output from the output port of the OADM through the OADM and after multiplexing with the uplink wavelength channel.
  • FIG. 2a and FIG. 2b are exemplified by three T-OADMs, and are not limited to the description. In practical applications, the number of T-OADMs specifically included in the OADM is not limited.
  • the optical add/drop multiplexer includes a plurality of T-OADMs connected in sequence. Therefore, in the embodiment of the present invention, the first T-OADM is specifically described.
  • the first T-OADM is one of a plurality of T-OADMs included in the OADM. Please refer to FIG. 3, which is a schematic structural view of the T-OADM.
  • An embodiment of the T-OADM in the implementation of the present invention includes:
  • Each T-OADM includes two wavelength control units and two Grating-assisted filter (GAF) units.
  • the first wavelength control unit 310 is connected to the first GAF 330, and the second wavelength control unit 320 is connected to the second GAF 340.
  • Each wavelength control unit is used to independently control the passband center wavelength of the GAF to which it is connected.
  • the first GAF 330 includes an input port, an output port, a download port, and an upload port.
  • the second GAF 340 includes an input port, an output port, a download port, and an upload port.
  • the download port of the first GAF 330 is connected to the input port of the second GAF, and the upload port of the first GAF 330 is connected to the output port of the second GAF 340, so the input port of the entire T-OADM is the input port of the first GAF 330.
  • the output port of the entire T-OADM is the output port of the first GAF 330
  • the upload port of the entire T-OADM is the upload port of the second GAF 340
  • the download port of the entire T-OADM is the download port of the second GAF 340.
  • the input port of the first GAF 330 receives light waves of a plurality of wavelengths.
  • a series of eight wavelengths of light waves entering the T-OADM are taken as an example.
  • the center wavelengths of the eight light waves are: ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , respectively.
  • ⁇ 1 - ⁇ 8 represent the wavelengths of the respective signals with the same interval ⁇ .
  • the light wave of the first lower wave is the first light wave
  • the spectrum of the first light wave is determined by the optical design parameters of the first GAF, such as the period of the grating, the duty ratio, the contour, and the like. If the center wavelength of the first down-wave signal is ⁇ 4 , then ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 , the light waves of the 7 wavelengths are directly from the input port of the first GAF 330 Transfer to the output port.
  • the first light wave will enter the second GAF 340 from the input port of the second GAF 340 and a second down wave occurs.
  • the spectrum of the lower wave is determined by the optical design parameters of the second GAF, such as the period of the grating, duty cycle, contour, and the like.
  • FIG. 4 is a schematic diagram of the lower wave.
  • the wavelength control unit performs thermo-optical tuning or electro-optical tuning of the GAF by applying a voltage to the silicon waveguide.
  • the second wavelength control unit 320 changes the lower wave spectrum of the second GAF 340 according to the first amplitude of the wavelength drift, and the light wave response of the unit is the first light wave response.
  • the first wavelength control unit 320 controls the voltage to be constant, and the passband center wavelength of the first GAF does not change.
  • the second wavelength control unit 320 controls the voltage change, for example, increases the voltage, and changes the passband center wavelength of the second GAF 340 by increasing the voltage.
  • the first light wave response can be understood as a spectrum obtained by shifting the first light wave spectrum by a lateral shift, and the spectral shape of the first light wave after the wavelength drift does not change, but the center wavelength is changed. It should be noted that the first amplitude is smaller than the bandwidth of the first optical wave, so that the first optical wave and the first optical wave response may have overlapping spectral lines.
  • the download port of the second GAF 340 outputs a first target light wave of the first target bandwidth, and the first target bandwidth is an overlapping spectral line width of the first light wave and the first light wave response.
  • the bandwidth of the light wave output by the second GAF 340 changes.
  • ⁇ 4 is 1550 nm
  • the wavelength before the first light wave is unchanged is in the range of 1545 nm to 1554 nm
  • the bandwidth before the change is 9 nm.
  • the first amplitude is 1 nm
  • the wavelength of the first light wave response ranges from 1546 nm to 1555 nm.
  • the overlapping wavelength of the first light wave and the first light wave response ranges from 1546 nm to 1554 nm
  • the first target bandwidth is 8 nm, that is, the bandwidth is changed from 9 nm to 8 nm.
  • two lower waves are performed by setting two GAFs, the first lower wave of the first GAF 330 is obtained, the first light wave is obtained, and the second lower wave of the second GAF 340 is obtained by changing the lower wave spectrum of the second GAF 340.
  • the first light wave response is obtained such that the first light wave and the first light wave response have overlapping spectral lines, and finally the bandwidth of the light wave output by the second GAF 340 changes. Changing the bandwidth of the channel can greatly increase the flexibility of the system and adapt to the various business needs of the system.
  • the second GAF 340 transmits the second light wave to the upload port of the first GAF 330 through the output port, and the second light wave is the remaining light wave of the first light wave except the first target light wave. Please understand with reference to FIG. 5 that the wavelength of the second light wave ranges from 1545 nm to 1546 nm.
  • the output port of the first GAF330 outputs the second Light waves.
  • the upload port of the second GAF 340 receives the fourth light wave, the fourth light wave is the same as the first light wave, and the fourth light wave is a light wave having a center wavelength of 1550 nm.
  • the second GAF 340 transmits the fourth light wave from the output port to the upload port of the first GAF 330; the first wavelength control unit 310 changes the upload spectrum of the first GAF 330 according to the first amplitude of the wavelength drift to obtain a fourth light wave response.
  • the output port of the first GAF 330 outputs a second target light wave of the first target bandwidth, and the first target bandwidth is an overlapping spectral line width of the fourth light wave and the fourth light wave response.
  • the second target light wave, the residual light wave of the first target light wave, and ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 are multiplexed and output from the output port.
  • FIG. 6 to FIG. 9 are respectively schematic diagrams of four optical structures inside the T-OADM.
  • the internal optical structure of the T-OADM will be specifically described below.
  • the first GAF 330 includes a first grating-assisted directional coupler 3301; the first grating-assisted directional coupler 3301 includes two Bragg grating waveguides, and the first end of the first Bragg grating waveguide 3302 is an input port of the first GAF, the first Bragg grating The second end of the waveguide 3302 is the output port of the first GAF 330; the first end of the second Bragg grating waveguide 3303 is the download port of the first GAF 330, and the second end of the second Bragg grating waveguide 3303 is the upload port of the first GAF 330.
  • the grating-assisted directional coupler utilizes the reflective properties of the grating to couple light at the reflected wavelength of the forward propagation into adjacent waveguides and propagate in opposite directions.
  • light waves of a plurality of wavelengths enter the first Bragg grating waveguide 3302 from the first port of the first Bragg grating waveguide 3302 (the input port of the first GAF), and the reflection of the forward propagation is utilized by the reflection characteristic of the grating.
  • a wavelength (for example, a light wave having a center wavelength of ⁇ 4 ) is coupled to the second Bragg grating waveguide 3303 , and the light wave having a center wavelength of ⁇ 4 is output from the first end of the second Bragg grating waveguide 3303, that is, from the first GAF330 download port output.
  • the second GAF 340 includes a third multimode interference coupler 3401 and a fourth multimode interference coupler 3402, and the third multimode interference coupler 3401 and the fourth multimode interference coupler 3402 are connected by two Bragg grating waveguides;
  • the first port of the mode interference coupler 3401 is the input of the second GAF 340 Port, the second port of the third multimode interference coupler 3401 is the download port of the second GAF 340;
  • the first port of the fourth multimode interference coupler 3402 is the output port of the second GAF 340, and the fourth multimode interference coupler 3402
  • the second port is the upload port of the second GAF 340.
  • the download port of the first GAF 330 is connected to the input port of the second GAF 340, and the output port of the second GAF 340 is connected to the upload port of the first GAF 330.
  • the third multimode interference coupler 3401 divides the input light (for example, a light wave having a center wavelength of ⁇ 4 ) into two beams of the same power, respectively, into the two Bragg grating waveguides.
  • the light at the reflected wavelength (eg, the first light wave response) propagates in the opposite direction, re-entering the third multimode interference coupler 3401, and the first target light wave is output at the second port (the port at the lower left).
  • Light waves of other wavelengths (remaining light waves other than the first target light wave in the first light wave) pass through the Bragg grating waveguide and are output from the first port (the upper right port) in the fourth multimode interference coupler 3402.
  • the first GAF 330 includes a first multimode interference coupler 3304 and a second multimode interference coupler 3305.
  • the first multimode interference coupler 3304 and the second multimode interference coupler 3305 are connected by two Bragg grating waveguides;
  • the first port of the mode interference coupler 3304 is the input port of the first GAF 330, the second port of the first multimode interference coupler 3304 is the download port of the first GAF 330;
  • the first port of the second multimode interference coupler 3305 is The output port of the first GAF 330;
  • the second port of the second multimode interference coupler 3305 is the upload port of the first GAF 330.
  • the second GAF 340 includes a third multimode interference coupler 3401 and a fourth multimode interference coupler 3402, and the third multimode interference coupler 3401 and the fourth multimode interference coupler 3402 are connected by two Bragg grating waveguides;
  • the first port of the mode interference coupler 3401 is the input port of the second GAF 340, the second port of the third multimode interference coupler 3401 is the download port of the second GAF 340;
  • the first port of the fourth multimode interference coupler 3402 is The output port of the second GAF 340, the second port of the fourth multimode interference coupler 3402 is the upload port of the second GAF 340.
  • the download port of the first GAF 330 is connected to the input port of the second GAF 340, and the output port of the second GAF 340 is connected to the upload port of the first GAF 330.
  • the working principle of the first multimode interference coupler 3304, the second multimode interference coupler 3305, the third multimode interference coupler 3401, and the fourth multimode interference coupler 3402 in this structure please refer to the corresponding figure of FIG.
  • the three multimode interference coupler 3401 and the fourth multimode interference coupler 3402 understand, not here Narration.
  • the first GAF 330 includes a first multimode interference coupler 3304 and a second multimode interference coupler 3305.
  • the first multimode interference coupler 3304 and the second multimode interference coupler 3305 are connected by two Bragg grating waveguides;
  • the first port of the mode interference coupler 3304 is the input port of the first GAF 330, the second port of the first multimode interference coupler 3304 is the download port of the first GAF 330;
  • the first port of the second multimode interference coupler 3305 is The output port of the first GAF 330;
  • the second port of the second multimode interference coupler 3305 is the upload port of the first GAF 330.
  • the second GAF 340 includes a second grating-assisted directional coupler 3403; the second grating-assisted directional coupler 3403 includes two Bragg grating waveguides, the first end of the third Bragg grating waveguide 3404 is an input port of the GAF, and the third Bragg grating waveguide 3404
  • the second end of the fourth Bragg grating 3405 is the download port of the second GAF 340, and the second end of the fourth Bragg grating waveguide 3405 is the upload port of the second GAF 340.
  • the download port of the first GAF 330 is connected to the input port of the second GAF 340, and the output port of the second GAF 340 is connected to the upload port of the first GAF 330.
  • the working principle of the first multimode interference coupler 3304, the second multimode interference coupler 3305 and the second grating auxiliary directional coupler 3403 in the present structure please refer to the third multimode interference coupler in the corresponding structure of FIG.
  • the 3401, the fourth multimode interference coupler 3402 and the first grating assisted directional coupler are understood, and are not described herein.
  • the first GAF 330 includes a first grating-assisted directional coupler 3301; the first grating-assisted directional coupler 3301 includes two Bragg grating waveguides, the first end of the first Bragg grating waveguide 3302 is an input port of the GAF, and the first Bragg grating waveguide 3302 The second end of the second Bragg grating is the download port of the first GAF 330, and the second end of the second Bragg grating is the upload port of the first GAF 330.
  • the second GAF 340 includes a second grating-assisted directional coupler 3403; the second grating-assisted directional coupler 3403 includes two Bragg grating waveguides, the first end of the third Bragg grating waveguide 3404 is an input port of the GAF, and the third Bragg grating waveguide 3404 The second end is the output port of the second GAF 340; the first end of the fourth Bragg grating waveguide 3405 is the download port of the second GAF 340, and the fourth The second end of the Bragg grating waveguide 3405 is an upload port of the second GAF 340.
  • first grating-assisted directional coupler 3301 and the second grating-assisted directional coupler 3403 in the present structure is understood in conjunction with the first grating-assisted directional coupler 3301 in the corresponding structure of FIG. 6, and details are not described herein.
  • the download port of the first GAF 330 is connected to the input port of the second GAF 340, and the output port of the second GAF 340 is connected to the upload port of the first GAF 330.
  • the optical add/drop multiplexer provided in the embodiment of the present invention can also tune the center wavelength of the optical wave.
  • the first wavelength control unit 310 changes the center wavelength of the pass band of the first GAF 330 according to the second amplitude of the wavelength drift. It can be understood that the shape of the download spectrum of the first GAF 330 does not change, but the center wavelength changes. For example, from ⁇ 4 to ⁇ 5 .
  • the process of the lower wave is as follows: the first wavelength of the first lower wave of the first GAF 330 is ⁇ 5 , and the second wavelength control unit 320 also changes the download spectrum of the second GAF according to the second amplitude of the wavelength drift, thereby adjusting the pass band of the second GAF 340 .
  • the center wavelength thereby changing the center wavelength of the second GAF passband to ⁇ 5 , and transmitting the light wave having the center wavelength ⁇ 5 from the download port of the first GAF 330 to the input port of the second GAF 340, the wavelength of the center wavelength ⁇ 5
  • the second GAF 340 is entered from the input port of the second GAF 340.
  • the passband center wavelengths of the first GAF 330 and the second GAF 340 are the same, that is, the center wavelength of the first GAF 330 and the center wavelength of the second GAF 340 are both ⁇ 5 , and the light wave having the center wavelength of ⁇ 5 is downloaded from the second GAF 340. Output.
  • the process of the upper wave is as follows: the light wave having the same wavelength as the center of the pass band is transmitted to the upload port of the first GAF 330 via the output port of the second GAF 340, and is output from the output port of the first GAF 330.
  • the passband center wavelength of the GAF is controlled by the wavelength control unit, so that the center wavelengths of the pass bands of the two GAFs are the same, and the light waves having the same wavelength as the center wavelengths of the two GAF passbands are downloaded from the second GAF 340.
  • the output, or, in the process of the upper wave, is output from the output port of the first GAF 330, and the tuning of the center wavelength is achieved, which improves the flexibility of the system.
  • the optical add/drop multiplexer provided in the embodiment of the present invention can also tune the center wavelength of the optical wave and then tune the bandwidth.
  • the first wavelength control unit 310 changes the download spectrum of the first GAF 330 in accordance with the second amplitude of the wavelength shift. For example, the first wavelength control unit 310 changes the center wavelength of the pass band of the first GAF 330 from ⁇ 4 to ⁇ 5 .
  • the first GAF 330 transmits a fifth light wave (for example, a light wave having a center wavelength of ⁇ 5 ) to an input port of the second GAF 340 through a download port.
  • a fifth light wave for example, a light wave having a center wavelength of ⁇ 5
  • the second wavelength control unit 320 changes the lower wave spectrum of the second GAF 340 according to the third amplitude of the wavelength drift, and the third amplitude is different from the second amplitude to obtain a fifth light wave response.
  • the third amplitude can be understood as the sum of the second amplitude and the incremental amplitude
  • the second wavelength control unit 320 controls the passband center wavelength of the second GAF 340 to change to ⁇ 5 , and then the spectrum whose center wavelength is ⁇ 5 .
  • the horizontal offset, the offset is the incremental amplitude, and the fifth wavelength response is obtained.
  • the third amplitude may be tuned once, or the second amplitude may be tuned first, and then tuned.
  • the increment range and the specific implementation manner are not limited in the present invention.
  • the download port of the second GAF 340 outputs a third target light wave of the second target bandwidth, and the second target bandwidth is an overlapping spectral line width of the fifth light wave and the fifth light wave response.
  • FIG. 10 is a schematic diagram of an optical add/drop multiplexer provided by the embodiment corresponding to FIG. 3 and FIG. 9 for implementing a series of optical waves of a fixed bandwidth.
  • FIG. 11 is FIG.
  • the optical add/drop multiplexer provided in the embodiment corresponding to FIG. 9 is a schematic diagram of the upper and lower waves of a series of optical waves that realize flexible bandwidth. Since the T-OADM corresponding to FIG. 9 has a simple structure, the T-OADM in FIG. 10 is described by taking the structure in FIG. 9 as an example, but is not limited to the structure in FIG. 9 in terms of simple implementation and cost saving.
  • the optical add/drop multiplexer provided in the embodiment of the present invention performs center wavelength and bandwidth tuning on the upper wave and the lower wave. The specific process is understood by referring to FIG. 3 to FIG. 5, and the process of bandwidth tuning and center wavelength tuning has been completed above. A detailed description will be given here, and will not be described here.
  • optical add/drop multiplexer is specifically described above, and the control method of the optical add/drop multiplexer is described below, and the control method is applied to the optical component in the embodiment corresponding to FIG. 3 to FIG. 9 described above.
  • the multiplexer is inserted, and the structure of the optical add/drop multiplexer is not described here.
  • Control methods include:
  • the input port of the first GAF of the first T-OADM receives light waves of a plurality of wavelengths, and the light waves of the plurality of wavelengths include the first light wave.
  • the first GAF transmits the first light wave to the input port of the second GAF through the download port.
  • the second wavelength control unit changes the lower wave spectrum of the second GAF according to the target amplitude of the wavelength drift to obtain a first light wave response.
  • the download port of the second GAF outputs a first target light wave of the first target bandwidth, and the first target bandwidth is a spectral line width of the overlap of the first light wave and the first light wave response.
  • the method further includes:
  • the second GAF transmits the second light wave to the upload port of the first GAF through the output port, and the second light wave is the remaining light wave of the first light wave except the first target light wave.
  • the output port of the first GAF outputs a second light wave.
  • the method further includes: tuning the bandwidth of the uplink optical wave, specifically:
  • the upload port of the second GAF receives the fourth light wave, and the fourth light wave is the same as the first light wave.
  • the second GAF transmits the fourth light wave from the output port to the upload port of the first GAF.
  • the first wavelength control unit changes the upper wave spectrum of the first GAF according to the target amplitude of the wavelength drift to obtain a fourth light wave response.
  • the output port of the first GAF outputs a second target light wave of the first target bandwidth, and the first target bandwidth is a width of an overlapping wavelength region of the fourth light wave and the fourth light wave response.
  • the center wavelength of the upper or lower wave is tuned, and the method further includes:
  • the first wavelength control unit and the second wavelength control unit both change the lower wave spectrum of the corresponding GAF according to the second amplitude of the wavelength drift, and the passband center wavelengths of the first GAF and the second GAF are the same;
  • the light wave having the same wavelength as the center of the pass band is transmitted to the input port of the second GAF via the download port of the first GAF, and is output from the download port of the second GAF.
  • the light wave having the same wavelength as the center of the passband is transmitted to the upload port of the first GAF via the output port of the second GAF, and is output from the output port of the first GAF.
  • the embodiment of the present invention further provides another embodiment of the method for controlling the optical add/drop multiplexer.
  • the embodiment may first adjust the wavelength and then adjust the bandwidth.
  • the embodiment specifically includes:
  • the first wavelength control unit changes the lower wave spectrum of the first GAF according to the second amplitude of the wavelength shift.
  • the first GAF transmits the fifth light wave to the input port of the second GAF through the download port.
  • the second wavelength control unit changes the download spectrum of the second GAF according to the third amplitude of the wavelength drift, and the third amplitude is different from the second amplitude to obtain a fifth light wave response.
  • the download port of the second GAF outputs a third target light wave of the second target bandwidth, and the second target bandwidth is an overlapping spectral line width of the fifth light wave and the fifth light wave response.
  • an embodiment of the present invention further provides a transceiver.
  • One embodiment of the transceiver includes:
  • the structure of each T-OADM 124 is the same, and the structure of one T-OADM 124 is taken as an example for description.
  • the laser 121 is connected to the modulator 122, and the modulator 122 is connected to the upload port of the T-OADM 124 of the corresponding wavelength.
  • the light waves of different bandwidths generated by the modulator 122 can be multiplexed into one channel through the corresponding bandwidth T-OADM124.
  • the detector 123 is connected to the download port of the T-OADM 124. Light waves of multiple wavelengths can be demultiplexed by the corresponding bandwidth T-OADM 124 and finally received by the detector 123.
  • the transceiver in the embodiment of the present invention uses the T-OADM with adjustable bandwidth as the multiplexer and demultiplexer of the transceiver.
  • the multiplexing and demultiplexing of the bandwidth tunable multi-channel transceiver is realized, the system flexibility is improved, and the system can be applied to the dynamic network.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place, or It can also be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种光分插复用器,包括:多个可调光分插复用器T-OADM,每个T-OADM包括第二波长控制单元和两个光栅辅助滤波器GAF;第二波长控制单元与第二GAF连接;第一GAF的下载端口与第二GAF的输入端口连接,第一GAF的上传端口与第二GAF的输出端口连接;第一GAF的输入端口接收多个波长的光波,第一GAF通过第一GAF的下载端口将第一光波传输至第二GAF的输入端口;第二波长控制单元按照波长漂移的第一幅度改变第二GAF的下波光谱,得到第一光波响应;第二GAF的下载端口输出第一目标带宽的第一目标光波。本发明实施例还提供了一种光分插复用器的控制方法、收发机。

Description

一种光分插复用器及其控制方法、收发机 技术领域
本发明涉及光通信领域,尤其涉及一种可调谐的光分插复用器及其控制方法、采用该光分插复用器的收发机。
背景技术
光分插复用器(Optical Add/Drop Multiplexer,缩写:OADM)是目前光网络中很重要的一种滤波器件,在通信网络向高速度、大容量、透明性方向发展中起着极其重要的作用。硅光技术是近十年来最受业界关注的光电集成技术,它可以充分利用现有的微电子互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,缩写:CMOS)工艺线和低成本的硅材料,实现丰富多样的光电功能器件。例如,利用硅基微环方案实现的光分插复用器,或者,利用硅基阵列波导光栅实现的光分插复用器,但是,上述方法中的光分插复用器的带宽不可调谐。
越来越多的新型通信业务使人们对网络带宽的需求日益增加。与传统业务相比,新型业务往往具有更高的动态特性和不可预测性,因此要求传送网的物理层具有更高的灵活性。通常方法中的光分插复用器的带宽不可调谐,已经不能满足系统灵活性的需求。
发明内容
本发明实施例提供了一种光分插复用器、光分插复用器的控制方法,及采用该光分插复用器的收发机,用于改变信道的带宽,提高系统的灵活性,以适应系统多种业务需求。
第一方面,本发明实施例提供了一种光分插复用器,包括:多个可调光分插复用器(Tunable Optical Add/Drop Multiplexer,缩写:T-OADM),每个T-OADM也包括输入端口,输出端口,下载端口和上传端口。多个T-OADM依次连接,上一个T-OADM的输出端口与下一个T-OADM的输入端口连接。每个该T-OADM包括第二波长控制单元和两个光栅辅助滤波器GAF;第二波长控制单元与第二GAF连接。该第一GAF包括输入端口、输出端口、下载端口和上传端口;该第二GAF包括输入端口、输出端口、下载端口和上传端口。 其中,该第一GAF的下载端口与该第二GAF的输入端口连接,该第一GAF的上传端口与第二GAF的输出端口连接。该光分插复用器具体的工作过程如下:从线路来的多个波长的光波,该多个光波从输入端口(input)进入该光分插复用器,第一T-OADM的该第一GAF的输入端口接收多个波长的光波,该多个波长的光波包括第一光波。该第一GAF通过该第一GAF的下载端口将该第一光波传输至该第二GAF的输入端口。该第二波长控制单元按照波长漂移的第一幅度改变该第二GAF的下波光谱,得到第一光波响应。该第二GAF的下载端口输出第一目标带宽的第一目标光波,该目标带宽为该第一光波与该第一光波响应的重叠谱线宽度。
本发明实施例中,通过设置两个GAF,进行两次下波,第一GAF第一次下波,得到第一光波,第二GAF第二次下波,通过改变第二GAF的下波光谱,得到第一光波响应,从而使第一光波和第一光波响应具有重叠谱线,最终第二GAF输出的光波的带宽改变。改变信道的带宽可以极大的提高系统的灵活性,适应系统多种业务需求。
在一种可能的实现方式中,该第二GAF通过输出端口将该第二光波传输至该第一GAF的上传端口,该第二光波为该第一光波中除了该第一目标光波的剩余光波。该第一GAF的输出端口输出该第二光波。
本发明实施例中,未被下波的部分光波可以回到第一GAF,并通过第一GAF的输出端口输出。
在一种可能的实现方式中,对于上波的过程中的带宽调谐与下波的过程相反,原理相同。该第二GAF的上传端口接收第四光波,该第四光波与第一光波相同,该第二GAF将该第四光波从输出端口传输至该第一GAF的上传端口,该第一波长控制单元按照波长漂移的第一幅度改变该第一GAF的上传光谱,得到第四光波响应。该第一GAF的输出端口输出该第一目标带宽的第二目标光波,该第一目标带宽为该第四光波与该第四光波响应的重叠谱线宽度。本发明实施例中,根据业务的需求,对上波过程的带宽进行调谐,极大的提高的系统的灵活性。
在一种可能的实现方式中,该T-OADM还包括第一波长控制单元,该第一波长控制单元与该第一GAF连接。该第一波长控制单元和第二波长控制单 元均按照波长漂移的第二幅度改变各自对应的GAF的下波光谱,从而调节通带的中心波长,该第一GAF和该第二GAF的通带中心波长相同。对下波的中心波长进行调谐:与该通带中心波长相同的光波经该第一GAF的下载端口传输至该第二GAF的输入端口,并从该第二GAF的下载端口输出。或者,对上波的中心波长进行调谐:与该通带中心波长相同的光波经该第二GAF的输出端口传输至该第一GAF的上传端口,并从该第一GAF的输出端口输出。
本发明实施例中,通过波长控制单元对GAF的通带中心波长进行控制,从而使两个GAF的通带中心波长相同,与两个GAF通带中心波长相同的光波从第二GAF的下载端口输出,或者,在上波的过程中,从第一GAF的输出端口输出,达到了对中心波长的调谐,提高了系统的灵活性。
在一种可能的实现方式中,本发明实施例中的提供的光分插复用器还可以对光波的中心波长进行调谐,再调谐带宽。该T-OADM包括第一波长控制单元,该第一波长控制单元与该第一GAF连接。首先,第一波长控制单元先调谐第一GAF的通带波长,该第一波长控制单元按照波长漂移的第二幅度改变第一GAF的下载光谱。该第一GAF通过该下载端口将该第五光波传输至该第二GAF的输入端口,该多个波长的光波包括第五光波。然后,再调谐带宽,该第二波长控制单元按照波长漂移的第三幅度改变第二GAF的下波光谱,该第三幅度与该第二幅度不同,得到第五光波响应。该第二GAF的下载端口输出第二目标带宽的第三目标光波,该第二目标带宽为该第五光波与该第五光波响应的重叠谱线宽度。
在一种可能的实现方式中,该第一GAF包括第一光栅辅助定向耦合器;该第一光栅辅助定向耦合器包括两根布拉格光栅波导,第一布拉格光栅波导的第一端为该GAF的输入端口,该第一布拉格光栅波导的第二端为该第一GAF的输出端口;该第二布拉格光栅波导的第一端为该第一GAF的下载端口,该第二布拉格光栅波导的第二端为该第一GAF的上传端口。或者,该第一GAF包括第一多模干涉耦合器和第二多模干涉耦合器,该第一多模干涉耦合器和该第二多模干涉耦合器通过两根布拉格光栅波导连接;该第一多模干涉耦合器的第一端口为该第一GAF的输入端口,该第一多模干涉耦合器的第二端口为该第一GAF的下载端口,该第二多模干涉耦合器的第一端口为该第一GAF的输 出端口,该第二多模干涉耦合器的第二端口为该第一GAF的上传端口。
在一种可能的实现方式中,该第二GAF包括第三多模干涉耦合器和第四多模干涉耦合器,该第三多模干涉耦合器和该第四多模干涉耦合器通过两根布拉格光栅波导连接;该第三多模干涉耦合器的第一端口为该第二GAF的输入端口,该第三多模干涉耦合器的第二端口为该第二GAF的下载端口;该第四多模干涉耦合器的第一端口为该第二GAF的输出端口,该第四多模干涉耦合器的第二端口为该第二GAF的上传端口。或者,该第二GAF包括第二光栅辅助定向耦合器;该第二光栅辅助定向耦合器包括两根布拉格光栅波导,第三布拉格光栅波导的第一端为该GAF的输入端口,该第三布拉格光栅波导的第二端为该第二GAF的输出端口,该第四布拉格光栅波导的第一端为该第二GAF的下载端口,该第四布拉格光栅波导的第二端为该第二GAF的上传端口。
第二方面,本发明实施例提供了一种光分插复用器的控制方法,该控制方法应用于第一方面提供的光分插复用器,该光分插复用器包括多个可调光分插复用器T-OADM,该多个T-OADM依次连接,每个该T-OADM包括两个波长控制单元和两个光栅辅助滤波器GAF;第一波长控制单元与第一GAF连接,第二波长控制单元与第二GAF连接;该第一GAF的下载端口与该第二GAF的输入端口连接,该第一GAF的上传端口与第二GAF的输出端口连接。
该控制方法包括:
第一T-OADM的该第一GAF的输入端口接收多个波长的光波,该多个波长的光波包括第一光波。该第一GAF通过该下载端口将该第一光波传输至该第二GAF的输入端口。该第二波长控制单元按照波长漂移的目标幅度改变该第二GAF的下波光谱,得到第一光波响应。该第二GAF的下载端口输出第一目标带宽的该第一目标光波,该第一目标带宽为该第一光波与该第一光波响应的重叠的谱线宽度。
在一种可能的实现方式中,该第二GAF的下载端口输出目标带宽的目标光波之后,该方法还具体包括:该第二GAF通过输出端口将该第二光波传输至该第一GAF的上传端口,该第二光波为第一光波中除了该第一目标光波的剩余光波。该第一GAF的输出端口输出该第二光波。
在一种可能的实现方式中,该第二GAF的下载端口输出目标带宽的目标 光波之后,该方法具体可以为:该第二GAF的上传端口接收第四光波,该第四光波与第一光波相同。该第二GAF将该第四光波从输出端口传输至该第一GAF的上传端口。该第一波长控制单元按照波长漂移的目标幅度改变该第一GAF的上传光谱,得到第四光波响应。该第一GAF的输出端口输出该第一目标带宽的第二目标光波,该第一目标带宽为该第四光波与该第四光波响应的重叠波长区域的宽度。
在一种可能的实现方式中,还可以上波和下波的中心波长进行调谐。该方法还包括:该第一波长控制单元和第二波长控制单元均按照波长漂移的第二幅度改变各自对应的GAF的下波光谱,该第一GAF和该第二GAF的通带中心波长相同。下波的过程中,对中心波长的调谐:与该通带中心波长相同的光波经该第一GAF的下载端口传输至该第二GAF的输入端口,并从该第二GAF的下载端口输出。或者,上波过程中,对中心波长的调谐:与该通带中心波长相同的光波经该第二GAF的输出端口传输至该第一GAF的上传端口,并从该第一GAF的输出端口输出。
在一种可能的实现方式中,可以先调谐中心波长,在调谐带宽。具体的可以为:该多个波长的光波包括第五光波,该第一波长控制单元按照波长漂移的第二幅度改变该第一GAF的下波光谱。该第一GAF通过该下载端口将该第五光波传输至该第二GAF的输入端口。该第二波长控制单元按照波长漂移的第三幅度改变该第二GAF的下波光谱,该第三幅度与该第二幅度不同,得到第五光波响应。该第二GAF的下载端口输出第二目标带宽的第三目标光波,该第二目标带宽为该第五光波与该第五光波响应的重叠谱线宽度。
第三方面,本发明实施例提供了一种收发机,包括:至少一个激光器、至少一个调制器、至少一个探测器和如上述第一方面的光分插复用器;激光器与调制器连接,该调制器与可调光分插复用器单元的上传端口连接;该探测器与该光分插复用器的下载端口连接。
附图说明
图1为本发明实施例中光网络的架构图;
图2a为本发明实施例中光分插复用器的下波原理示意图;
图2b为本发明实施例中光分插复用器的上波原理示意图;
图3为本发明实施例中可调光分插复用器单元的一个实施例的结构示意图;
图4为本发明实施例中可调光分插复用器单元下波的示意图;
图5为本发明实施例中可调光分插复用器单元进行带宽调谐的原理示意图;
图6为本发明实施例中可调光分插复用器单元的一个实施例的内部光学结构示意图;
图7为本发明实施例中可调光分插复用器单元的另一个实施例的内部光学结构示意图;
图8为本发明实施例中可调光分插复用器单元的另一个实施例的内部光学结构示意图;
图9为本发明实施例中可调光分插复用器单元的另一个实施例的内部光学结构示意图;
图10为本发明实施例中光分插复用器对实现固定带宽的一系列光波的上下波的示意图;
图11为本发明实施例中光分插复用器对实现灵活带宽的一系列光波的上下波的示意图;
图12为本发明实施例中收发机的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列 出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了一种光分插复用器,光分插复用器(Optical Add/Drop Multiplexer,缩写:OADM)是波分复用(wavelength-division multiplexing,缩写:WDM)光网络的关键网元之一。WDM是在一芯光纤中同时传输多个波长的光信号的技术。其基本原理是在发送端将不同波长的光信号复用,并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号解复用,并做进一步处理,恢复出原信号后送入不同的终端。
为了方便理解,请参阅图1所示,图1为光网络100架构图,为采用光分插复用器110和光交叉连接(optical cross-connect,缩写:OXC)设备120连接的WDM全光网络架构图,光分插复用器110允许不同光网络的不同波长信号在不同的地点分插复用,OXC设备120允许不同网络可以动态组合,按需分配波长资源,实现更大范围的网络互连。光上下路可以按需要在两个光交叉连接节点或光交换节点之间随时进行,OXC设备120将需要在节点下载的信息送入接入网,而不需要本节点处理的信息直接由光信道从本节点通过,从而可以大大提高节点处理信息的效率。需要说明的是,本发明只是以光分插复用器应用的光网络100举例子进行说明,而并非对光分插复用器所应用的网络进行限定性说明,具体的网络应用场景本发明不限定。
请参阅图2a和图2b所示,图2a和图2b为本发明实施例中提供的OADM原理示意图。图2a为OADM的下波原理示意图,图2b为OADM的上波原理示意图。OADM节点可以用四端口模型来表示,该四个端口分别为输入端口,输出端口,下载端口和上传端口。OADM包括多个可调光分插复用器(Tunable Optical Add/Drop Multiplexer,缩写:T-OADM),每个T-OADM也包括输入端口,输出端口,下载端口和上传端口240。多个T-OADM依次连接,上一个T-OADM的输出端口与下一个T-OADM的输入端口连接。该OADM的功能至少包括以下几种:下路需要的波长信道,复用上路波长信道,对下路波长信道和上路波长信道进行带宽调谐。OADM具体的工作过程如下:从线路来的WDM信号包括多个波长的光波,该多个光波从输入端口(input)进入OADM,根据业务需求,从多个波长的光波中,有选择性的从 下载端口(drop)输出所需的波长信道,并且可以对该波长信道的带宽进行调谐,从而提高系统的灵活性,相应的从上传端口(add)输入所需的波长信道。而其他与本地无关的波长信道可以通过OADM,和上路波长信道复用在一起后,从OADM的输出端口(output)输出。需要说明的是,图2a和图2b是以三个T-OADM进行举例说明,而非限定性说明。在实际应用中,对于OADM具体包括的T-OADM的数量不做限定。
下面对一种光分插复用器进行具体说明,由于该光分插复用器包括多个依次连接的T-OADM,因此,本发明实施例中,对第一T-OADM进行具体说明,第一T-OADM是OADM所包括的多个T-OADM中的一个。请参阅图3所示,图3为T-OADM的结构示意图。本发明实施中的T-OADM的一个实施例包括:
每个T-OADM包括两个波长控制单元和两个光栅辅助滤波器(Grating-assisted filter,缩写:GAF)单元。其中,第一波长控制单元310与第一GAF330连接,第二波长控制单元320与第二GAF340连接。每个波长控制单元用于独立控制与之连接的GAF的通带中心波长。
其中,第一GAF330包括输入端口、输出端口、下载端口和上传端口。第二GAF340包括输入端口、输出端口、下载端口和上传端口。
第一GAF330的下载端口与第二GAF的输入端口连接,第一GAF330的上传端口与第二GAF340的输出端口连接,所以整个T-OADM的输入端口是第一GAF330的输入端口。整个T-OADM的输出端口是第一GAF330的输出端口,整个T-OADM的上传端口则是第二GAF340的上传端口,整个T-OADM的下载端口则是第二GAF340的下载端口。
请结合图3进行理解,第一GAF330的输入端口接收多个波长的光波。例如,以一列8个波长的光波进入该T-OADM为例进行说明,该8个光波的中心波长分别为:λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8。λ18代表各个信号的波长,具有相同间隔Δλ。多个波长的光波通过第一GAF的输入端口后会首先进入第一GAF330,会发生第一次下波。第一次下波的光波为第一光波,第一光波的光谱由第一GAF的光学设计参数决定,比如光栅的周期,占空比,轮廓等。若第一次下波信号的中心波长为λ4,那么λ1,λ2,λ3,λ5,λ6,λ7,λ8,这7个 波长的光波从第一GAF330的输入端口直接传输到输出端口。
第一光波将由第二GAF340的输入端口进入第二GAF340,并发生第二次下波。下波的光谱由第二GAF的光学设计参数决定,比如光栅的周期,占空比,轮廓等。
下面以下波过程为例进行说明,请结合图4进行理解,图4为下波的示意图。波长控制单元通过对硅波导施加电压,从而对GAF进行热光调谐或电光调谐。第二波长控制单元320按照波长漂移的第一幅度改变第二GAF340的下波光谱,该单元的光波响应为第一光波响应。可以理解的是,第一波长控制单元320控制电压不变,第一GAF的通带中心波长不改变。而第二波长控制单元320控制电压改变,例如,提高电压,通过提高电压改变了第二GAF340的通带中心波长。第一光波响应可以理解为第一光波光谱移动一个横向偏移量得到的光谱,经过波长漂移后的第一光波的光谱形状没有改变,只是中心波长发生了改变。需要说明的,第一幅度小于第一光波的带宽,以使得第一光波和该第一光波响应可以具有重叠谱线。
第二GAF340的下载端口输出第一目标带宽的第一目标光波,第一目标带宽为第一光波与第一光波响应的重叠谱线宽度。最终第二GAF340输出的光波的带宽改变。例如,请结合图5进行理解。λ4为1550nm,第一光波未改变之前的波长的范围为1545nm~1554nm,未改变之前的带宽为9nm。第一幅度为1nm,那么,第一光波响应的波长的范围为1546nm~1555nm。第一光波和第一光波响应的重叠的波长范围为1546nm~1554nm,第一目标带宽为8nm,也就是说带宽从9nm改变到8nm。
本发明实施例中,通过设置两个GAF,进行两次下波,第一GAF330第一次下波,得到第一光波,第二GAF340第二次下波,通过改变第二GAF340的下波光谱,得到第一光波响应,从而使第一光波和第一光波响应具有重叠谱线,最终第二GAF340输出的光波的带宽改变。改变信道的带宽可以极大的提高系统的灵活性,适应系统多种业务需求。
第二GAF340通过输出端口将第二光波传输至第一GAF330的上传端口,第二光波为第一光波中除了第一目标光波的剩余光波。请结合图5进行理解,第二光波的波长范围在1545nm~1546nm。第一GAF330的输出端口输出第二 光波。
上面对下波的具体过程做了具体的描述,上波的过程与下波的过程相反。下面对上波过程进行简要的描述。第二GAF340的上传端口接收第四光波,第四光波与第一光波相同,第四光波为中心波长为1550nm的光波。
第二GAF340将第四光波从输出端口传输至第一GAF330的上传端口;第一波长控制单元310按照波长漂移的第一幅度改变第一GAF330的上传光谱,得到第四光波响应。
第一GAF330的输出端口输出第一目标带宽的第二目标光波,第一目标带宽为第四光波与第四光波响应的重叠谱线宽度。
可以理解的是,第二目标光波,第一目标光波的剩余光波,还有λ1,λ2,λ3,λ5,λ6,λ7,λ8复用后,从输出端口输出。
可选的,请参阅图6至图9,图6至图9分别为T-OADM内部的4种光学结构示意图。下面对T-OADM内部光学结构进行具体说明。
可选的,第一种结构,请参阅图6所示。第一GAF330包括第一光栅辅助定向耦合器3301;第一光栅辅助定向耦合器3301包括两根布拉格光栅波导,第一布拉格光栅波导3302的第一端为第一GAF的输入端口,第一布拉格光栅波导3302的第二端为第一GAF330的输出端口;第二布拉格光栅波导3303的第一端为第一GAF330的下载端口,第二布拉格光栅波导3303的第二端为第一GAF330的上传端口。
该光栅辅助定向耦合器利用光栅的反射特性使正向传播的反射波长处的光耦合到相邻波导中,并沿相反方向传播。
可以理解的是,多个波长的光波从该第一布拉格光栅波导3302的第一端口(第一GAF的输入端口)进入到第一布拉格光栅波导3302,利用光栅的反射特性使正向传播的反射波长处的(例如,中心波长为λ4的光波)耦合到第二布拉格光栅波导3303中,该中心波长为λ4的光波从第二布拉格光栅波导3303的第一端输出,也就是从第一GAF330的下载端口输出。
第二GAF340包括第三多模干涉耦合器3401和第四多模干涉耦合器3402,第三多模干涉耦合器3401和第四多模干涉耦合器3402通过两根布拉格光栅波导连接;第三多模干涉耦合器3401的第一端口为第二GAF340的输入 端口,第三多模干涉耦合器3401的第二端口为第二GAF340的下载端口;第四多模干涉耦合器3402的第一端口为第二GAF340的输出端口,第四多模干涉耦合器3402的第二端口为第二GAF340的上传端口。
第一GAF330的下载端口与第二GAF340的输入端口连接,第二GAF340的输出端口与第一GAF330的上传端口连接。
第三多模干涉耦合器3401将输入光(例如,中心波长为λ4的光波)分成两束相同功率的光,分别进入两根布拉格光栅波导。反射波长处的光(例如,第一光波响应)会沿相反方向传播,重新进入第三多模干涉耦合器3401,则第一目标光波在第二端口(左下方的端口)输出。其他波长的光波(在第一光波中除了第一目标光波的剩余光波)会通过布拉格光栅波导,并在第四多模干涉耦合器3402中从第一端口(右上方的端口)输出。
可选的,第二种结构,请参阅图7所示。第一GAF330包括第一多模干涉耦合器3304和第二多模干涉耦合器3305,第一多模干涉耦合器3304和第二多模干涉耦合器3305通过两根布拉格光栅波导连接;第一多模干涉耦合器3304的第一端口为第一GAF330的输入端口,第一多模干涉耦合器3304的第二端口为第一GAF330的下载端口;第二多模干涉耦合器3305的第一端口为第一GAF330的输出端口;第二多模干涉耦合器3305的第二端口为第一GAF330的上传端口。
第二GAF340包括第三多模干涉耦合器3401和第四多模干涉耦合器3402,第三多模干涉耦合器3401和第四多模干涉耦合器3402通过两根布拉格光栅波导连接;第三多模干涉耦合器3401的第一端口为第二GAF340的输入端口,第三多模干涉耦合器3401的第二端口为第二GAF340的下载端口;第四多模干涉耦合器3402的第一端口为第二GAF340的输出端口,第四多模干涉耦合器3402的第二端口为第二GAF340的上传端口。
第一GAF330的下载端口与第二GAF340的输入端口连接,第二GAF340的输出端口与第一GAF330的上传端口连接。
本结构中的第一多模干涉耦合器3304、第二多模干涉耦合器3305、第三多模干涉耦合器3401、第四多模干涉耦合器3402的工作原理,请结合图6对应的第三多模干涉耦合器3401、第四多模干涉耦合器3402进行理解,此处不 赘述。
可选的,第三种结构,请参阅图8所示。第一GAF330包括第一多模干涉耦合器3304和第二多模干涉耦合器3305,第一多模干涉耦合器3304和第二多模干涉耦合器3305通过两根布拉格光栅波导连接;第一多模干涉耦合器3304的第一端口为第一GAF330的输入端口,第一多模干涉耦合器3304的第二端口为第一GAF330的下载端口;第二多模干涉耦合器3305的第一端口为第一GAF330的输出端口;第二多模干涉耦合器3305的第二端口为第一GAF330的上传端口。
第二GAF340包括第二光栅辅助定向耦合器3403;第二光栅辅助定向耦合器3403包括两根布拉格光栅波导,第三布拉格光栅波导3404的第一端为GAF的输入端口,第三布拉格光栅波导3404的第二端为第二GAF340的输出端口;第四布拉格光栅波导3405的第一端为第二GAF340的下载端口,第四布拉格光栅波导3405的第二端为第二GAF340的上传端口。
第一GAF330的下载端口与第二GAF340的输入端口连接,第二GAF340的输出端口与第一GAF330的上传端口连接。
本结构中的第一多模干涉耦合器3304、第二多模干涉耦合器3305和第二光栅辅助定向耦合器3403的工作原理,请结合图6对应的结构中的第三多模干涉耦合器3401、第四多模干涉耦合器3402和第一光栅辅助定向耦合器进行理解,此处不赘述。
优选的,第四种结构,请参阅图9所示。第一GAF330包括第一光栅辅助定向耦合器3301;第一光栅辅助定向耦合器3301包括两根布拉格光栅波导,第一布拉格光栅波导3302的第一端为GAF的输入端口,第一布拉格光栅波导3302的第二端为第一GAF330的输出端口;第二布拉格光栅波导的第一端为第一GAF330的下载端口,第二布拉格光栅波导的第二端为第一GAF330的上传端口。
第二GAF340包括第二光栅辅助定向耦合器3403;第二光栅辅助定向耦合器3403包括两根布拉格光栅波导,第三布拉格光栅波导3404的第一端为GAF的输入端口,第三布拉格光栅波导3404的第二端为第二GAF340的输出端口;第四布拉格光栅波导3405的第一端为第二GAF340的下载端口,第四 布拉格光栅波导3405的第二端为第二GAF340的上传端口。
本结构中的第一光栅辅助定向耦合器3301、第二光栅辅助定向耦合器3403的工作原理,请结合图6对应的结构中的第一光栅辅助定向耦合器3301进行理解,此处不赘述。
第一GAF330的下载端口与第二GAF340的输入端口连接,第二GAF340的输出端口与第一GAF330的上传端口连接。
可选的,本发明实施例中的提供的光分插复用器还可以对光波的中心波长进行调谐。具体的,第一波长控制单元310按照波长漂移的第二幅度改变第一GAF330通带的中心波长,可以理解的是,第一GAF330的下载光谱的形状没有改变,只是中心波长改变了。例如,由λ4变成λ5
下波的过程如下:第一GAF330第一次下波的中心波长为λ5,第二波长控制单元320也按照波长漂移的第二幅度改变第二GAF的下载光谱,从而调节第二GAF340通带的中心波长,从而将第二GAF通带的中心波长变为λ5,当中心波长为λ5的光波从第一GAF330的下载端口传输至第二GAF340的输入端口,中心波长为λ5的光波从第二GAF340的输入端口进入第二GAF340。第一GAF330和第二GAF340的通带中心波长相同,也就是说第一GAF330的中心波长和第二GAF340的中心波长均为λ5,则中心波长为λ5的光波从第二GAF340的下载端口输出。
上波的过程如下:与通带中心波长相同的光波经第二GAF340的输出端口传输至第一GAF330的上传端口,并从第一GAF330的输出端口输出。
本发明实施例中,通过波长控制单元对GAF的通带中心波长进行控制,从而使两个GAF的通带中心波长相同,与两个GAF通带中心波长相同的光波从第二GAF340的下载端口输出,或者,在上波的过程中,从第一GAF330的输出端口输出,达到了对中心波长的调谐,提高了系统的灵活性。
可选的,本发明实施例中的提供的光分插复用器还可以对光波的中心波长进行调谐,再调谐带宽。
以下波过程为例进行说明。第一波长控制单元310按照波长漂移的第二幅度改变第一GAF330的下载光谱。例如,第一波长控制单元310改变第一GAF330通带的中心波长由λ4变成λ5
第一GAF330通过下载端口将第五光波(例如,中心波长为λ5的光波)传输至第二GAF340的输入端口。
第二波长控制单元320按照波长漂移的第三幅度改变该第二GAF340的下波光谱,该第三幅度与第二幅度不同,得到第五光波响应。可以理解的是,第三幅度可以理解为第二幅度与增量幅度之和,第二波长控制单元320控制第二GAF340的通带中心波长改变为λ5,再将中心波长为λ5的光谱横向偏移,偏移量为增量幅度,得到第五波长响应,此处可以结合图3对应的实施例中的带宽调节进行理解,不赘述。需要说明的是,在实际应用中,第二波长控制单元320控制第二GAF340的通带中心波长的调谐过程中,可以对第三幅度进行一次性调谐,也可以先调谐第二幅度,再调谐增量幅度,具体的实现方式,本发明不限定。
第二GAF340的下载端口输出第二目标带宽的第三目标光波,第二目标带宽为第五光波与第五光波响应的重叠谱线宽度。
请参阅图10和图11所示,图10是通过图3、图9对应的实施例提供的光分插复用器对实现固定带宽的一系列光波的上下波的示意图,图11是图3、图9对应的实施例提供的光分插复用器对实现灵活带宽的一系列光波的上下波的示意图。由于图9对应的T-OADM结构简单,本着实现简单,节约成本的原则,图10中的T-OADM以图9中的结构为例进行说明,但并不只限定于图9中的结构。图6、图7和图8对应的T-OADM的结构同样可以实现。以3个不同波长的光波为例,整个链路如图10所示。本发明实施例中提供的光分插复用器对上波和下波进行中心波长和带宽调谐,具体的过程请参阅图3至图5进行理解,上面已经对带宽调谐和中心波长调谐的过程进行具体描述,此处不赘述。
上面对光分插复用器进行了具体的描述,下面对该光分插复用器的控制方法进行描述,该控制方法应用于上述图3至图9对应的实施例中的光分插复用器,对于光分插复用器的结构此处不赘述。
控制方法包括:
第一T-OADM的第一GAF的输入端口接收多个波长的光波,多个波长的光波包括第一光波。
第一GAF通过下载端口将第一光波传输至第二GAF的输入端口。
第二波长控制单元按照波长漂移的目标幅度改变第二GAF的下波光谱,得到第一光波响应。
第二GAF的下载端口输出第一目标带宽的第一目标光波,第一目标带宽为第一光波与第一光波响应的重叠的谱线宽度。
可选的,第二GAF的下载端口输出目标带宽的目标光波之后,方法还包括:
第二GAF通过输出端口将第二光波传输至第一GAF的上传端口,第二光波为第一光波中除了第一目标光波的剩余光波。
第一GAF的输出端口输出第二光波。
可选的,第二GAF的下载端口输出目标带宽的目标光波之后,方法还包括,对上路光波的带宽进行调谐,具体的:
第二GAF的上传端口接收第四光波,第四光波与第一光波相同。
第二GAF将第四光波从输出端口传输至第一GAF的上传端口。
第一波长控制单元按照波长漂移的目标幅度改变第一GAF的上波光谱,得到第四光波响应。
第一GAF的输出端口输出第一目标带宽的第二目标光波,第一目标带宽为第四光波与第四光波响应的重叠波长区域的宽度。
可选的,对上波或者下波的中心波长进行调谐,方法还具体包括:
第一波长控制单元和第二波长控制单元均按照波长漂移的第二幅度改变各自对应的GAF的下波光谱,第一GAF和第二GAF的通带中心波长相同;
与通带中心波长相同的光波经第一GAF的下载端口传输至第二GAF的输入端口,并从第二GAF的下载端口输出。
或者,
与通带中心波长相同的光波经第二GAF的输出端口传输至第一GAF的上载端口,并从第一GAF的输出端口输出。
可选的,本发明实施例还提供了一种光分插复用器的控制方法的另一个实施例,该实施例可以先调谐波长后,再调节带宽,该实施例具体包括:
第一波长控制单元按照波长漂移的第二幅度改变第一GAF的下波光谱。
第一GAF通过下载端口将第五光波传输至第二GAF的输入端口。
第二波长控制单元按照波长漂移的第三幅度改变第二GAF的下载光谱,第三幅度与第二幅度不同,得到第五光波响应。
第二GAF的下载端口输出第二目标带宽的第三目标光波,第二目标带宽为第五光波与第五光波响应的重叠谱线宽度。
请参阅图12所示,本发明实施例还提供了一种收发机,收发机的一个实施例包括:
至少一个激光器121、至少一个调制器122、至少一个探测器123和光分插复用器;图12中以3个T-OADM124的链路为例进行说明。每个T-OADM124的结构相同,以一个T-OADM124的结构为例进行说明。在发送端,激光器121与调制器122连接,调制器122与对应波长的T-OADM124的上传端口连接,调制器122产生的不同带宽的光波可以通过相应的带宽的T-OADM124复用到一个信道中。在接收端,探测器123与该T-OADM124的下载端口连接。多个波长的光波可以通过对应带宽的T-OADM124进行解复用,最终被探测器123接收。
本发明实施例中的收发机,利用带宽可调的T-OADM作为收发机的复用器和解复用器。实现了带宽可调谐的多路收发机的复用和解复用,提高了系统灵活性,系统可以适用动态网络。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的收发机,光分插复用器的控制方法的具体工作过程,可以参考前述光分插复用器实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种光分插复用器,其特征在于,包括:多个可调光分插复用器T-OADM,所述多个T-OADM依次连接,每个所述T-OADM包括第二波长控制单元和两个光栅辅助滤波器GAF;第二波长控制单元与第二GAF连接;
    所述第一GAF包括输入端口、输出端口、下载端口和上传端口;
    所述第二GAF包括输入端口、输出端口、下载端口和上传端口;
    其中,所述第一GAF的下载端口与所述第二GAF的输入端口连接,所述第一GAF的上传端口与第二GAF的输出端口连接;
    第一T-OADM的所述第一GAF的输入端口接收多个波长的光波,所述多个波长的光波包括第一光波;
    所述第一GAF通过所述第一GAF的下载端口将所述第一光波传输至所述第二GAF的输入端口;
    所述第二波长控制单元按照波长漂移的第一幅度改变所述第二GAF的下波光谱,得到第一光波响应;
    所述第二GAF的下载端口输出第一目标带宽的第一目标光波,所述目标带宽为所述第一光波与所述第一光波响应的重叠谱线宽度。
  2. 根据权利要求1所述的光分插复用器,其特征在于,
    所述第二GAF通过输出端口将所述第二光波传输至所述第一GAF的上传端口,所述第二光波为所述第一光波中除了所述第一目标光波的剩余光波;
    所述第一GAF的输出端口输出所述第二光波。
  3. 根据权利要求2所述的光分插复用器,其特征在于,所述第二GAF的上传端口接收第四光波,所述第四光波与第一光波相同;
    所述第二GAF将所述第四光波从输出端口传输至所述第一GAF的上传端口;
    所述第一波长控制单元按照波长漂移的第一幅度改变所述第一GAF的上传光谱,得到第四光波响应;
    所述第一GAF的输出端口输出所述第一目标带宽的第二目标光波,所述第一目标带宽为所述第四光波与所述第四光波响应的重叠谱线宽度。
  4. 根据权利要求1所述的光分插复用器,其特征在于,所述T-OADM还 包括第一波长控制单元,所述第一波长控制单元与所述第一GAF连接;
    所述第一波长控制单元和第二波长控制单元均按照波长漂移的第二幅度改变各自对应的GAF的下波光谱,从而调节通带的中心波长,所述第一GAF和所述第二GAF的通带中心波长相同;
    与所述通带中心波长相同的光波经所述第一GAF的下载端口传输至所述第二GAF的输入端口,并从所述第二GAF的下载端口输出。
    或者,
    与所述通带中心波长相同的光波经所述第二GAF的输出端口传输至所述第一GAF的上传端口,并从所述第一GAF的输出端口输出。
  5. 根据权利要求1所述的光分插复用器,其特征在于,所述T-OADM包括第一波长控制单元,所述第一波长控制单元与所述第一GAF连接;
    所述第一波长控制单元按照波长漂移的第二幅度改变第一GAF的下载光谱;
    所述第一GAF通过所述下载端口将所述第五光波传输至所述第二GAF的输入端口,所述多个波长的光波包括第五光波;
    所述第二波长控制单元按照波长漂移的第三幅度改变第二GAF的下波光谱,所述第三幅度与所述第二幅度不同,得到第五光波响应;
    所述第二GAF的下载端口输出第二目标带宽的第三目标光波,所述第二目标带宽为所述第五光波与所述第五光波响应的重叠谱线宽度。
  6. 根据权利要求1至5任一项所述的光分插复用器,其特征在于,所述第一GAF包括第一光栅辅助定向耦合器;所述第一光栅辅助定向耦合器包括两根布拉格光栅波导,第一布拉格光栅波导的第一端为所述GAF的输入端口,所述第一布拉格光栅波导的第二端为所述第一GAF的输出端口;所述第二布拉格光栅波导的第一端为所述第一GAF的下载端口,所述第二布拉格光栅波导的第二端为所述第一GAF的上传端口;
    或者,
    所述第一GAF包括第一多模干涉耦合器和第二多模干涉耦合器,所述第一多模干涉耦合器和所述第二多模干涉耦合器通过两根布拉格光栅波导连接;所述第一多模干涉耦合器的第一端口为所述第一GAF的输入端口,所述第一 多模干涉耦合器的第二端口为所述第一GAF的下载端口;所述第二多模干涉耦合器的第一端口为所述第一GAF的输出端口;所述第二多模干涉耦合器的第二端口为所述第一GAF的上传端口。
  7. 根据权利要求6所述的光分插复用器,其特征在于,所述第二GAF包括第三多模干涉耦合器和第四多模干涉耦合器,所述第三多模干涉耦合器和所述第四多模干涉耦合器通过两根布拉格光栅波导连接;所述第三多模干涉耦合器的第一端口为所述第二GAF的输入端口,所述第三多模干涉耦合器的第二端口为所述第二GAF的下载端口;所述第四多模干涉耦合器的第一端口为所述第二GAF的输出端口,所述第四多模干涉耦合器的第二端口为所述第二GAF的上传端口。
    或者,
    所述第二GAF包括第二光栅辅助定向耦合器;所述第二光栅辅助定向耦合器包括两根布拉格光栅波导,第三布拉格光栅波导的第一端为所述GAF的输入端口,所述第三布拉格光栅波导的第二端为所述第二GAF的输出端口;所述第四布拉格光栅波导的第一端为所述第二GAF的下载端口,所述第四布拉格光栅波导的第二端为所述第二GAF的上传端口。
  8. 一种光分插复用器的控制方法,其特征在于,所述控制方法应用于光分插复用器,所述光分插复用器包括多个可调光分插复用器T-OADM,所述多个T-OADM依次连接,每个所述T-OADM包括两个波长控制单元和两个光栅辅助滤波器GAF;第一波长控制单元与第一GAF连接,第二波长控制单元与第二GAF连接;所述第一GAF的下载端口与所述第二GAF的输入端口连接,所述第一GAF的上传端口与第二GAF的输出端口连接;
    所述控制方法包括:
    第一T-OADM的所述第一GAF的输入端口接收多个波长的光波,所述多个波长的光波包括第一光波;
    所述第一GAF通过所述下载端口将所述第一光波传输至所述第二GAF的输入端口;
    所述第二波长控制单元按照波长漂移的目标幅度改变所述第二GAF的下波光谱,得到第一光波响应;
    所述第二GAF的下载端口输出第一目标带宽的所述第一目标光波,所述第一目标带宽为所述第一光波与所述第一光波响应的重叠的谱线宽度。
  9. 根据权利要求8所述的控制方法,其特征在于,所述第二GAF的下载端口输出目标带宽的目标光波之后,所述方法还包括:
    所述第二GAF通过输出端口将所述第二光波传输至所述第一GAF的上传端口,所述第二光波为第一光波中除了所述第一目标光波的剩余光波;
    所述第一GAF的输出端口输出所述第二光波。
  10. 根据权利要求7或8所述的控制方法,其特征在于,所述第二GAF的下载端口输出目标带宽的目标光波之后,所述方法还包括:
    所述第二GAF的上传端口接收第四光波,所述第四光波与第一光波相同;
    所述第二GAF将所述第四光波从输出端口传输至所述第一GAF的上传端口;
    所述第一波长控制单元按照波长漂移的目标幅度改变所述第一GAF的上传光谱,得到第四光波响应;
    所述第一GAF的输出端口输出所述第一目标带宽的第二目标光波,所述第一目标带宽为所述第四光波与所述第四光波响应的重叠波长区域的宽度。
  11. 根据权利要求8所述的控制方法,其特征在于,所述方法还包括:
    所述第一波长控制单元和第二波长控制单元均按照波长漂移的第二幅度改变各自对应的GAF的下波光谱,所述第一GAF和所述第二GAF的通带中心波长相同;
    与所述通带中心波长相同的光波经所述第一GAF的下载端口传输至所述第二GAF的输入端口,并从所述第二GAF的下载端口输出。
    或者,
    与所述通带中心波长相同的光波经所述第二GAF的输出端口传输至所述第一GAF的上传端口,并从所述第一GAF的输出端口输出。
  12. 根据权利要求8所述的控制方法,其特征在于,所述多个波长的光波包括第五光波,所述方法还包括:
    所述第一波长控制单元按照波长漂移的第二幅度改变所述第一GAF的下波光谱;
    所述第一GAF通过所述下载端口将所述第五光波传输至所述第二GAF的输入端口;
    所述第二波长控制单元按照波长漂移的第三幅度改变所述第二GAF的下波光谱,所述第三幅度与所述第二幅度不同,得到第五光波响应;
    所述第二GAF的下载端口输出第二目标带宽的第三目标光波,所述第二目标带宽为所述第五光波与所述第五光波响应的重叠谱线宽度。
  13. 一种收发机,其特征在于,包括:
    至少一个激光器、至少一个调制器、至少一个探测器和如权利要求1至7任一项所述的光分插复用器;所述激光器与所述调制器连接,所述调制器与可调光分插复用器单元的上传端口连接;所述探测器与所述光分插复用器的下载端口连接。
PCT/CN2016/090994 2016-07-22 2016-07-22 一种光分插复用器及其控制方法、收发机 WO2018014328A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680079941.6A CN108496315B (zh) 2016-07-22 2016-07-22 一种光分插复用器及其控制方法、收发机
PCT/CN2016/090994 WO2018014328A1 (zh) 2016-07-22 2016-07-22 一种光分插复用器及其控制方法、收发机
EP16909255.8A EP3480980B1 (en) 2016-07-22 2016-07-22 Optical add/drop multiplexer, control method therefor, and transceiver
US16/251,463 US10484122B2 (en) 2016-07-22 2019-01-18 Optical add/drop multiplexer and control method thereof, and transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090994 WO2018014328A1 (zh) 2016-07-22 2016-07-22 一种光分插复用器及其控制方法、收发机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/251,463 Continuation US10484122B2 (en) 2016-07-22 2019-01-18 Optical add/drop multiplexer and control method thereof, and transceiver

Publications (1)

Publication Number Publication Date
WO2018014328A1 true WO2018014328A1 (zh) 2018-01-25

Family

ID=60992934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090994 WO2018014328A1 (zh) 2016-07-22 2016-07-22 一种光分插复用器及其控制方法、收发机

Country Status (4)

Country Link
US (1) US10484122B2 (zh)
EP (1) EP3480980B1 (zh)
CN (1) CN108496315B (zh)
WO (1) WO2018014328A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609727A (zh) * 2020-12-08 2022-06-10 军事科学院系统工程研究院网络信息研究所 基于级联滤波器的芯片集成可编程滤波方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403864A (zh) * 2002-10-10 2003-03-19 上海交通大学 动态可调光分插复用模块
US20050281558A1 (en) * 2004-06-18 2005-12-22 Nec Laboratories America, Inc. Flexible band tunable add/drop multiplexer and modular optical node architecture
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516534C2 (sv) 2000-06-05 2002-01-29 Ericsson Telefon Ab L M Bragg-gitterassisterad MMIMI-kopplare för reglerbar add/drop- multiplexering
US6792211B1 (en) * 2001-03-15 2004-09-14 Tera Fiberoptics Compact optical wavelength add/drop multiplexer
US7245792B2 (en) 2002-08-16 2007-07-17 Intel Corporation Silicon-based tunable single passband optical filter
US7437075B2 (en) * 2002-08-27 2008-10-14 Lucent Technologies Inc. Integrated reconfigurable optical add/drop multiplexer
US20040136717A1 (en) * 2002-09-03 2004-07-15 Xinxiong Zhang Non-blocking tunable filter with flexible bandwidth for reconfigurable optical networks
GB2415556B (en) * 2003-04-15 2007-01-31 Fujitsu Ltd Optical transmission device
CN1750446A (zh) * 2004-09-15 2006-03-22 北京大学 光分插复用器
CN1845484B (zh) 2005-04-08 2010-12-29 中国科学院半导体研究所 实现可重构光分插复用器的结构及其制造方法
JP2006330515A (ja) * 2005-05-27 2006-12-07 Fujitsu Ltd 音響光学型チューナブルフィルタ制御装置、および波長選択方法
US7248758B2 (en) * 2005-06-08 2007-07-24 Verizon Business Global Llc Hitless tunable filter
US8064769B2 (en) * 2005-06-30 2011-11-22 Mosaid Technologies Incorporated Method and system for hitless tunable optical processing
US8346088B2 (en) * 2005-11-29 2013-01-01 Federal State Institution “FederalAgency for Legal Protection of the Results of Intellectual Activity with Military, Special and Dual Purposes”at the Ministry of Justice of Russian Federation Controllable optical add/drop multiplexer
CN101013990B (zh) * 2006-11-24 2010-05-26 北京邮电大学 基于固定发送可调谐接收的光突发环网及其节点光路系统
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
TWI415411B (zh) 2011-01-20 2013-11-11 Univ Nat Central Single stage 1 × 5 grating auxiliary wavelength multiplex structure
JP5807338B2 (ja) * 2011-02-14 2015-11-10 富士通株式会社 光伝送装置および光フィルタ回路
US8532446B2 (en) * 2011-03-15 2013-09-10 Oracle International Corporation Scalable silicon photonic multiplexers and demultiplexers
JP5811631B2 (ja) * 2011-06-27 2015-11-11 富士通株式会社 重畳信号検出回路および光ノード装置
US9450697B2 (en) * 2011-12-02 2016-09-20 At&T Intellectual Property I, L.P. Apparatus and method for distributed compensation of narrow optical filtering effects in an optical network
JP2013197804A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 光チャネルモニタ
ITBO20130142A1 (it) * 2013-03-29 2014-09-30 Filippo Bastianini Interrogatore per sensori distribuiti a fibra ottica per effetto brillouin stimolato impiegante un laser brillouin ad anello sintonizzabile rapidamente
US9866315B2 (en) * 2015-04-24 2018-01-09 Lumentum Operations Llc Super-channel multiplexing and de-multiplexing using a phased array switching engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403864A (zh) * 2002-10-10 2003-03-19 上海交通大学 动态可调光分插复用模块
US20050281558A1 (en) * 2004-06-18 2005-12-22 Nec Laboratories America, Inc. Flexible band tunable add/drop multiplexer and modular optical node architecture
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法

Also Published As

Publication number Publication date
CN108496315A (zh) 2018-09-04
EP3480980A1 (en) 2019-05-08
EP3480980B1 (en) 2021-04-07
EP3480980A4 (en) 2019-08-07
US20190199463A1 (en) 2019-06-27
US10484122B2 (en) 2019-11-19
CN108496315B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2020220770A1 (zh) 一种光分插复用装置及其控制方法
US20170187483A1 (en) Low transit loss add-drop multiplexing node for all optical networking
US20050147348A1 (en) Hitless variable-reflective tunable optical filter
CN115061285A (zh) 光谱整形方法及装置
KR101747453B1 (ko) 파장 다중화 및 역다중화 기능이 통합된 배열 도파로 격자 라우터 장치
JP4668488B2 (ja) 波長選択性デバイスおよびスイッチおよびそれを使った方法
US20050068602A1 (en) Optical add-filtering switching device
US6571031B1 (en) Device for multiplexing/demultiplexing and method therewith
CN102841406B (zh) 一种光学交错滤波设备
WO2018014328A1 (zh) 一种光分插复用器及其控制方法、收发机
US6574391B2 (en) Apparatus and method for wavelength selective switching
US7330658B2 (en) Device and method for optical add/drop multiplexing
CA2343725C (en) Wdm transmitter and receiver
Jeong et al. Silicon photonics based 16λ-WDM demultiplexers for operating in C-band and O-band spectral regimes
KR100264950B1 (ko) 궤환잡음이 없는 파장다중방식(wdm) 통신용 파장가변광 추출/투과필터
JP7438472B2 (ja) 光モジュールおよび光通信システム
US20130077976A1 (en) Transmitter and method for optical transmission
JP6251206B2 (ja) 光送受信システム
WO2023223478A1 (ja) 光信号処理装置および光信号伝送システム
EP1447693A1 (en) Flexible Passband Filter
Biswas et al. Reconfigurable Optical Add/Drop Multiplexing-Demultiplexing in Arrayed Waveguide Grating with Fold Back Technique
JPH103012A (ja) 光波長分波素子
JP4598615B2 (ja) 光波長多重信号送受信装置
JP2004312630A (ja) アクセス系ネットワーク機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016909255

Country of ref document: EP

Effective date: 20190204