WO2018014224A1 - 一种功率耦合测试装置 - Google Patents

一种功率耦合测试装置 Download PDF

Info

Publication number
WO2018014224A1
WO2018014224A1 PCT/CN2016/090527 CN2016090527W WO2018014224A1 WO 2018014224 A1 WO2018014224 A1 WO 2018014224A1 CN 2016090527 W CN2016090527 W CN 2016090527W WO 2018014224 A1 WO2018014224 A1 WO 2018014224A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna elements
coupling
feeding mechanism
power
Prior art date
Application number
PCT/CN2016/090527
Other languages
English (en)
French (fr)
Inventor
潘鑫
王克猛
席灯炎
刘杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/090527 priority Critical patent/WO2018014224A1/zh
Priority to CN201680056685.9A priority patent/CN108352604A/zh
Publication of WO2018014224A1 publication Critical patent/WO2018014224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present invention relates to the field of coupling testing, and in particular to a power coupling testing device.
  • the power coupling test device is often used to perform power coupling test on the assembled terminal device.
  • the schematic diagram of the common power coupling test device is shown in FIG. 1 , including the shielding box 01 , the carrier 02 and the coupling plate 03 .
  • the stage 02 is located inside the shielding box 01, and the shielding box 01 can function to shield external interference and reduce internal reflection.
  • the terminal device 04 to be tested is disposed on the carrier 02, and the coupling plate 03 is externally connected to the power meter (not shown) by a wired connection, and the coupling plate 03 is a power coupling test device.
  • the core component that plays a key role in energy transfer can absorb and transmit the radiated power of the terminal device 04 to be tested to the power meter, thereby achieving the effect of detecting the coupled power.
  • the position change of the terminal device to be tested may cause a large change in the test result, which may easily lead to the risk of misdetection of the power coupling test device and reduce The test accuracy of the power coupling test device.
  • the invention provides a power coupling test device, which can reduce the influence of the position change of the terminal device to be tested on the test result, reduce the probability of misdetection of the power coupling test device, and improve the test accuracy of the power coupling test device.
  • a power coupling test apparatus comprising a power meter and a carrier, the carrier being provided with a bearing surface for carrying the terminal device, characterized in that it further comprises at least one radio frequency for receiving the terminal device a coupled antenna of signals, each of the coupled antennas comprising at least one vibrator mechanism and at least one feed mechanism, and each of the vibrator mechanisms is correspondingly coupled to one of the feed mechanisms, wherein:
  • Each of the vibrator mechanisms includes two antenna elements, one end of the feeding mechanism corresponding to the vibrator mechanism is respectively connected to one ends of two antenna vibrators, and the feeding mechanism corresponding to the vibrator mechanism The other end of the a power meter signal connection, wherein the power feeding mechanism is configured to transmit a radio frequency signal received by the coupling antenna where the power feeding mechanism is located to the power meter;
  • the two antenna elements in each of the vibrator mechanisms are flat and symmetrical to each other, and the angle between the two antenna elements on the same side is 180°, and each of the antenna elements includes one a medial side, two inner side edges of the two antenna elements are oppositely disposed and form a gap, and each of the inner side edges is an exponential curve at least a portion of an end away from the feeding mechanism; An end of the antenna element connected to the feeding mechanism to a direction in which the two antenna elements are away from one end of the feeding mechanism, a gap between the two inner side edges of the two antenna elements gradually increases.
  • the function of the exponential curve satisfies the following formula:
  • x is a length of each of the antenna elements in a direction along an end of the two antenna elements connected to the feeding mechanism to an end of the two antenna elements away from the feeding mechanism;
  • the y(x) is an inner side of each of the antenna elements is perpendicular to an end of the two antenna elements connected to the feed mechanism to the two antenna elements away from the feed mechanism The distance between the direction of one end and the axis of symmetry of the two antenna elements;
  • the d is a minimum value of a gap between two inner side edges of the two antenna elements
  • the K is a constant and 0.03 ⁇ K ⁇ 0.1.
  • each of the coupled antennas further includes a waveguide board disposed in one-to-one correspondence with each of the antenna elements a side of each of the antenna elements away from the inner side of the antenna element and a corresponding one of the waveguide plates, and each of the waveguide plates is perpendicular to the corresponding antenna element, along two antennas The distance between the end of the vibrator and the feeding mechanism to the other end of the two antenna elements gradually increases the distance between the two waveguide plates.
  • the feeding mechanism is a coaxial line, and in each of the two antenna elements of each of the vibrator mechanisms The outer conductor of the coaxial line is electrically connected to one antenna element, and the inner layer conductor of the coaxial line is electrically connected to another antenna element.
  • each of the antenna elements is formed on a printed circuit board.
  • the power feeding mechanism is a transmission line formed on a printed circuit board.
  • each of the coupled antennas includes two of the vibrator mechanisms, the axes of symmetry of the two vibrator mechanisms coincide, and of the two vibrator mechanisms, The antenna element in one vibrator is perpendicular to the antenna element in the other vibrator.
  • the preset coupling frequency band of each of the coupled antennas is 400 MHz-6 GHz.
  • the coupling antennas are two and disposed on a side of the loading platform away from the bearing surface, and in each of the coupling antennas, the two One end of the antenna element connected to the feeding mechanism to a direction in which the two antenna elements are away from one end of the feeding mechanism is perpendicular to the carrying surface, and each of the feeding mechanisms is located in the feeding mechanism The coupled antenna is located away from one end of the bearing surface.
  • the method further includes: a support frame disposed on the stage and configured to mount each of the 7 coupled antennas, wherein the support frame is configured to mount a coupling antenna The portion is adjustable in a direction along one end of the two antenna elements connected to the feeding mechanism to the other end of the two antenna elements, and the portion of the support frame for mounting the coupling antenna is perpendicular to the two The position of the antenna element connected to the feeding mechanism to the plane of the other end of the two antenna elements is adjustable.
  • a coupling antenna is used instead of the coupling plate used in the prior art, and the coupling antenna includes at least one oscillator mechanism, and two antenna elements in each oscillator mechanism are flat and symmetrical. It is provided that at least a part of the inner side of the two vibrators relative to the gap is an exponential curve, and therefore, each antenna element forms a double-ridge waveguide structure, so that the coupled antenna is coupled to the coupling plate used in the prior art. The wider, the influence of the position change of the terminal device to be tested on the test result is reduced, thereby reducing the probability of misdetection of the power coupling test device and improving the test accuracy of the power coupling test device.
  • FIG. 1 is a schematic structural view of a power coupling test device using a coupling plate in the background art
  • FIG. 2 is a schematic structural diagram of a power coupling test apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective structural view of a coupling antenna according to an embodiment of the present invention.
  • FIG. 3b is another schematic structural diagram of a coupled antenna according to an embodiment of the present invention.
  • FIG. 3c is a schematic structural view of the coupled antenna shown in FIG. 3a in a direction perpendicular to the mouth surface of the antenna;
  • FIG. 4 is a schematic plan view showing a structure of a coupling antenna according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another perspective structure of a coupled antenna according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another perspective structure of a coupled antenna according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a support frame according to an embodiment of the present invention.
  • Figure 8a is a diagram of the energy distribution of the face of the coupled antenna at a frequency of 700 MHz;
  • Figure 8b is a diagram of the energy distribution of the face of the coupled antenna at a frequency of 3 GHz;
  • Figure 8c is a diagram of the energy distribution of the face of the coupled antenna at 8 GHz;
  • FIG. 9 is a diagram showing a test result of coupling energy fluctuation at an antenna mouth position of a coupled antenna
  • FIG. 10 is a comparison diagram of coupled energy distribution test results using a coupled antenna and a power coupling test device using a coupling plate;
  • Figure 11a is a diagram showing the results of the A-channel coupling process capability test of the coupled antenna 2.4G WIFI;
  • Figure 11b is a diagram showing the results of the B-channel coupling process capability test of the coupled antenna 2.4G WIFI;
  • Figure 11c is a diagram showing the results of the A-channel coupling process capability test of the coupled antenna 5G WIFI;
  • Figure 11d is a graph showing the results of the B-channel coupling process capability test of the coupled antenna 5G WIFI.
  • FIG. 2 is a schematic structural diagram of a power coupling test apparatus according to an embodiment of the present invention.
  • the power coupling test apparatus includes a power meter (not shown in FIG. 2) and a stage 10 for carrying a terminal device.
  • the stage 10 can be implemented as shown in FIG. 2.
  • the structure shown in the present invention includes a carrier board 11 on which a bearing surface 111 for carrying the terminal device is disposed.
  • the carrier board 11 is provided with a clamp for testing.
  • the fixture 12 of the terminal device further includes a bottom plate 14 for supporting the carrier plate 11 and two support plates 13, and the carrier plate 11, the support plate 13 and the bottom plate 14 are enclosed in a frame structure;
  • the power coupling test device provided by the embodiment of the present invention further includes at least one coupling antenna 20 for receiving a radio frequency signal of the terminal device carried on the carrier 10.
  • the coupling antenna 20 can be a figure. Two or more of the two shown in 2;
  • FIG. 3a is a schematic perspective structural view of a coupled antenna according to an embodiment of the present invention
  • FIG. 3b is another schematic structural view of a coupled antenna according to an embodiment of the present invention, where each coupled antenna includes at least A vibrator mechanism 21, in particular, the vibrator mechanism 21 may also be two or more; see FIG. 4,
  • FIG. 4 is a schematic diagram of a planar structure of a coupling antenna according to an embodiment of the present invention, and the coupling antenna 20 further includes at least one The number of the feeding mechanism 22, the vibrator mechanism 21 and the feeding mechanism 22 are equal, and each vibrator mechanism 21 is connected to a feeding mechanism 22;
  • each of the vibrator mechanisms 21 includes two antenna elements, such as the first antenna element 211 and the second antenna element 212 shown in FIG. 4, and one end of the power feeding mechanism 22 corresponding to the vibrator mechanism 21.
  • the other end of the feeding mechanism 22 connected to one end of the two antenna elements and the vibrator mechanism 21 is connected to a power meter (not shown in the power meter diagram 4), and the feeding mechanism 22 is used to connect the power feeding mechanism 22
  • the RF signal received by the coupled antenna 20 is transmitted to a power meter; in a specific implementation, each of the oscillator mechanisms 21 further includes a short circuit board 213 shown in FIG. 4;
  • each of the antenna elements in each of the vibrator mechanisms 21 is symmetrical to each other, and each of the antenna elements includes an inner side.
  • the first antenna element 211 and The second antenna element 212 is symmetric along the x-axis shown in FIG. 4, the first antenna element 211 includes a first inner side 2111, and the second antenna element 212 includes a second inner side 2121, a first inner side 2111 and a
  • the inner side edges 2121 are oppositely disposed and form a gap, and at least a portion of the first inner side 2111 and the second inner side 2121 away from the end of the feeding mechanism 22 are exponential curves, as shown in FIG.
  • each A portion of the inner side facing away from one end of the feed structure is an exponential curve, and a portion of the inner side adjacent to one end of the feed structure is a straight line; see FIG. 3c, FIG. 3c is a view of the coupled antenna shown in FIG. 3a perpendicular to A schematic diagram of the structure in the direction of the antenna surface, the angle between the surfaces of the two antenna elements on the same side is 180°, that is, the angle A and the angle B shown in FIG. 3c are both 180°;
  • a coupling antenna is used instead of the coupling plate used in the prior art, and the coupling antenna includes at least one oscillator mechanism, and each antenna element in each oscillator mechanism is a symmetrically arranged flat plate.
  • the structure, at least a part of the inner side of the two vibrators relative to the gap is an exponential curve, and each vibrator mechanism forms a double-ridge waveguide structure.
  • the antenna of the terminal device When the power coupling test is performed on the terminal device, the antenna of the terminal device emits a radio frequency signal, and the vibrator The mechanism forms a radio frequency receiving circuit, and the radio frequency signal sent by the antenna of the terminal device is matched and received and partially coupled with the radio frequency signal, and the feeding structure receives the radio frequency signal coupled to the antenna vibrator by the connection with the antenna vibrator, and outputs the radio frequency signal to the power meter. Since the coupled antenna adopts a double-ridge waveguide structure, the coupling band of the double-ridge waveguide structure is wider than that of the coupling plate used in the prior art, and the coupling efficiency is high, which reduces the position change of the terminal device to be tested. The influence reduces the probability of misdetection of the power coupling test device and improves the test accuracy of the power coupling test device.
  • the exponential curve function of each inner side satisfies the following formula:
  • x is the length of each antenna element in a direction along one end of the two antenna elements connected to the feeding mechanism to the other end of the two antenna elements;
  • y(x) is the inner side of each antenna element in a direction perpendicular to the end of the two antenna elements connected to the feed mechanism to the other end of the two antenna elements and two The distance between the axes of symmetry of the antenna elements;
  • d is the minimum value of the gap between the two inner sides of the two antenna elements
  • K is a constant and 0.03 ⁇ K ⁇ 0.1.
  • the joint power distribution of the coupled antenna can be improved. Uniformity, when performing power coupling test, can reduce the fluctuation of coupling energy, further reduce the influence of the position change of the terminal device to be tested on the test result, thereby further improving the test accuracy of the power coupling test device.
  • each coupled antenna further includes a waveguide plate disposed in one-to-one correspondence with each antenna element, such as the first antenna element shown in FIGS. 3a and 3b. 211 corresponding to the first waveguide plate 24 and the second waveguide plate 23 corresponding to the second antenna element 212, the antenna element and the waveguide plate cooperate to form the horn antenna structure, which can further widen the frequency band of the coupling antenna and increase The directionality of the coupled antenna;
  • each waveguide plate is connected to a side of the corresponding antenna element facing away from the inner side, and each waveguide plate is perpendicular to the corresponding antenna element, and is connected to the feeding mechanism along the two antenna elements. From one end to the other end of the two antenna elements, the distance between the two waveguide plates is gradually increased, and the two waveguide plates can be supported by the connecting plate 25 shown in FIG. 3a.
  • the connecting rod 27 shown in 3b is supported; in the specific implementation, the antenna element and the waveguide plate are both made of a conductive material, such as a metal material.
  • the feeding mechanism 22 is a coaxial line, and the outer conductor of the coaxial line is electrically connected and coaxial with the first antenna element 211.
  • the inner conductor of the wire is electrically connected to the second antenna element 212.
  • FIG. 6 is another structure of the coupling antenna provided in the embodiment, wherein each coupling antenna in the structure is formed on a printed circuit board, such as shown in FIG.
  • the printed circuit board 27, the antenna element 21 is formed on the surface of the printed circuit board, and the printed circuit board 27 and the antenna element 21 cooperate to form a printed circuit board antenna.
  • the use of the above printed circuit board antenna structure can reduce the fabrication cost of the coupled antenna.
  • the feeding mechanism is a transmission line formed on the printed circuit board, which can further reduce the manufacturing cost of the coupling antenna.
  • the antenna element and the transmission line in the above printed circuit board antenna may be made of a copper material to improve the conductive efficiency thereof, and the portion of the printed circuit board that does not include the antenna element and the transmission line is made of an insulating material.
  • each of the coupled antennas includes two vibrator mechanisms, the axes of symmetry of the two vibrator mechanisms coincide, and of the two vibrator mechanisms, the antenna vibrators in one vibrator mechanism are perpendicular to the antenna vibrators in the other vibrator mechanism.
  • FIG. 5 and FIG. 6 are schematic structural diagrams of two antennas when the coupled antenna includes two vibrator mechanisms, and the coupled antenna 20 in FIG. 5 includes two vibrator mechanisms 21 , and each vibrator The antenna elements in the mechanism are each provided with a waveguide plate; the coupling antenna shown in Fig. 6 is formed by splicing four printed circuit boards.
  • each coupled antenna includes two vibrator mechanisms
  • the structure of the coupled antenna including two vibrator mechanisms is equivalent to a combination of two coupled antennas including only one vibrator mechanism, which can further widen the coupling frequency band of the coupled antenna.
  • the preset coupling frequency band of each coupled antenna is 400 MHz-6 GHz, and can cover the frequency bands used by the main antenna, WIFI, GPS, and diversity antenna of the terminal device.
  • the two coupling antennas 20 are disposed on one side of the stage 10 away from the bearing surface 111.
  • two antenna elements 21 and the feeding are provided in each coupling antenna 20, two antenna elements 21 and the feeding are provided.
  • One end of the mechanism 22 is connected to the two antenna elements 21.
  • the direction of one end of the principle feeding mechanism 22 is perpendicular to the bearing surface 111, that is, the x-axis direction shown in FIG. 4 is perpendicular to the bearing surface 111, and in each of the coupling antennas 20
  • the feeding mechanism 22 is located at one end of the coupling antenna where the feeding mechanism 22 is located away from the bearing surface 111;
  • the power coupling accuracy of the power coupling test device can be further improved by using two coupled antennas.
  • the two coupled antennas are connected to the power meter through the power splitter to synthesize the two RF signals received by the two coupled antennas. All the way to the power meter.
  • the power coupling test device provided by the embodiment of the present invention further includes a support frame 15 disposed on the stage 10 and used for mounting the coupling antenna 20 , and is used in each support frame 15 .
  • the portion where the coupling antenna 20 is mounted is positionally adjustable in the direction from the end where the two antenna elements 21 are connected to the power feeding mechanism 22 to the other end of the two antenna elements 21, and the coupling antenna is mounted in each of the support frames 15.
  • the portion of 20 is positionally adjustable in a plane perpendicular to the direction in which the two antenna elements 21 are connected to the feed mechanism 22 to the other end of the two antenna elements 21; thus, the coupling antenna 20 mounted on the support frame 15 is
  • the relative position between the terminal devices to be tested carried on the stage 10 is adjustable to adjust the position of the suitable coupling antenna 20 according to the terminal device to be tested.
  • FIG. 7 is a schematic structural diagram of the support frame 10 according to the embodiment.
  • the support frame 15 includes a first support plate 151 and Two second support plates 152 are disposed in parallel and opposite to each other, and are respectively movably connected to the first support plate 151.
  • the first support plate 15 is provided with a first slot 1511, and the first slot 1511
  • the extending direction of the two coupling antennas is disposed along the mounting direction of the two coupling antennas.
  • Each of the second supporting plates 152 is provided with a second slot 1521 and a third slot 1522.
  • the extending direction of the second slot 1521 is parallel to the plane of the bottom plate 14 and Vertically extending from the extending direction of the first slot 1511, the extending direction of the third slot 1522 is perpendicular to the plane of the bottom plate 14;
  • the second slot 1521 on each second support plate 152 is mounted to the bottom plate 14 by screws, and the screw can slide in the second slot 1521 to move the second support plate 152 in the x direction shown in FIG. 7;
  • the first support plate 151 is coupled to the third slot 1522 of the two second support plates 152 by screws, and the screws are slidable in the third slot 1522 such that the first support plate 151 is along the z shown in FIG. Direction movement
  • Each side of the coupling antenna 20 facing away from the stage is screwed to the first slot 1511 of the first support plate 151, and the screw is slidable within the first slot 1511 so that the coupling antenna is as shown in FIG. Moving in the y direction;
  • the support frame 15 of the above structure can make the relative position between the coupling antenna 20 mounted on the support frame 15 and the terminal device to be tested carried on the carrier 10 in three directions: x, y, and z in the space. Adjust to adjust the position of the appropriate coupling antenna according to the terminal device to be tested.
  • support frame provided by this embodiment is not limited to the support frame of the above structure.
  • the coupled antenna used in the power coupling test apparatus is tested.
  • the Agilent power meter was used to test the energy distribution of the above-mentioned coupled antennas, and the energy distribution in the region of 100 mm or more from the mouth of the antenna was measured in the range of 1000 mm ⁇ 1000 mm.
  • the test results were tested at 700 MHz, 3 GHz and 8 GHz.
  • the energy distribution of the point, the test results are shown in Figure 8a - Figure 8c, Figure 8a is the energy distribution diagram of the coupled antenna at the 700MHz frequency point, Figure 8b is the distribution of the surface energy of the coupled antenna at the 3GHz frequency, Figure 8c It is the interface energy distribution diagram of the coupled antenna at 8 GHz; from Figure 8a, the energy of the coupled antenna at 700 MHz is evenly distributed in the 600 mm ⁇ 600 mm area.
  • Figure 8b shows that the coupled antenna is at the 3G frequency.
  • the energy in the range of 550mm ⁇ 400mm is evenly distributed in the mouth area; from Fig. 8c, it can be seen that the energy of the 8G frequency is evenly distributed in the area of 400mm ⁇ 400mm; as can be seen from Fig. 8a-8c, with the frequency
  • the increase in energy, the energy stable distribution area of the coupling antenna surface gradually shrinks, but it meets the product bandwidth required for testing at this stage.
  • the displacement of the terminal equipment in the three directions of X, Y and Z in the space and the changes of the two vector angles of Theta & Phi test the fluctuation caused by the coupling energy.
  • H the horizontal offset of the antenna to be tested relative to the center position of the speaker projection surface
  • H the antenna to be tested
  • the sweep field is 5mm & 5°
  • the step is 0.5mm & 1°
  • 100 sets of sampling scans are performed.
  • 9 is a graph showing the results of the coupling energy fluctuation test at the antenna mouth position of the coupled antenna. It can be seen from FIG. 9 that the maximum fluctuation of energy in the 2.4G and 5GWIFI operating bands is 10 dB, but in the prior art.
  • the maximum fluctuation of the coupling plate in the power coupling test device is generally 20 dB, and the fluctuation of the coupled antenna provided by the embodiment of the present invention is significantly improved.
  • FIG. 10 is a comparison diagram of the coupled energy distribution test results using the coupled antenna and the power coupling test device using the coupling plate. It can be seen from the test result graph that the offset size in the abscissa is Increasingly, the energy distribution curve of the power coupling test device using the above coupled antenna changes smoothly and has no jagged curve, which proves that the positional change of the terminal device is compared with the power coupling test device using the large coupling plate.
  • the coupling energy of the power coupling test device of the antenna has less influence, and as can be seen from FIG. 10, the coupling energy distribution of the power coupling test device using the large coupling plate is relatively stable in the interval of the offset size of 1 mm-29 mm, using the above Coupling antenna power coupling test device coupling energy distribution at the offset 11mm-39mm range of the stable, so both have the same test range.
  • the above-mentioned power coupling test device is used to verify the actual product small batch CPK (Processing Capability Index) at the production site.
  • CPK Process Capability Index
  • a total of 283 terminal devices are tested to meet the sampling requirements of the number of CPK verification machines greater than 200.
  • FIG. 11a is a graph and diagram of the A-channel coupling process capability test result of 2.4G WIFI.
  • 11b is the 2.4G WIFI B-way coupling process capability test result chart
  • FIG. 11c is the 5G WIFI A-way coupling process capability test result chart
  • FIG. 11d is the 5G WIFI B-way coupling process capability test result chart, which is shown in FIG. 11a- 11d can be seen that the CPK is obviously improved in the verification, and the power coupling test device provided in this embodiment can improve the stability of the power test.
  • the coupled antenna provided in this embodiment may be in the form of linear polarization, orthogonal polarization, circular polarization, and elliptical polarization.
  • a type such as a microstrip antenna, a waveguide antenna, or a planar Vivaldi antenna may be used.
  • the coupling antenna realizes the uniform distribution of energy in the near-field surface by changing the shape of the radiator, the radiation mode and the phase distribution, so as to improve the test accuracy of the power coupling test device.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种功率耦合测试装置,包括功率计和载台,还包括至少一个用于接收终端设备的射频信号的耦合天线,每个耦合天线包括至少一个振子机构和至少一个馈电机构,每个振子机构包括两个天线振子,与振子机构对应的馈电机构的一端分别与两个天线振子的一端连接,与振子机构对应的馈电机构的另一端与功率计信号连接,每个振子机构中的两个天线振子均为平板结构且互相对称,每个天线振子包括一个内侧边,两个天线振子的两个内侧边相对设置并形成间隙,每个内侧边在远离馈电机构的一端的至少一部分为指数曲线。该功率耦合测试装置降低了待测终端设备的位置变化对测试结果的影响,提高了功率耦合测试装置的测试准确性。

Description

一种功率耦合测试装置 技术领域
本发明涉及耦合测试领域,特别涉及一种功率耦合测试装置。
背景技术
在例如手机、平板电脑、笔记版电脑等使用无线通信技术的终端设备的生产过程中,为保证终端设备的无线通信质量,须在产品组装完成后对其进行功率耦合测试,以检测产品的无线性能。
目前常采用功率耦合测试装置对组装完成的终端设备进行功率耦合测试,常见的功率耦合测试装置的结构示意图如图1所示,包括屏蔽箱01、载台02和耦合板03。载台02位于屏蔽箱01的内部,屏蔽箱01可起到屏蔽外界干扰与减少内部反射的作用。在该功率耦合测试装置的测试过程中,待测试的终端设备04设置于载台02上,耦合板03通过有线连接方式外接功率计(图中未示出),耦合板03为功率耦合测试装置起到能量传递的关键作用的核心部件,可将待测的终端设备04的辐射功率吸收并传递给功率计,从而达到探测耦合功率的效果。
在实际测试过程中,由于耦合板的频带窄且能量场形分布不均匀,待测终端设备的位置变化会使测试结果产生较大的变化,从而易导致功率耦合测试装置产生误测风险,降低了功率耦合测试装置的测试准确性。
因此,随着终端设备产品的快速发展和对测试精度要求的不断提升,提高功率耦合测试装置的测试准确性已成为本领域技术人员亟待解决的技术问题。
发明内容
本发明提供了一种功率耦合测试装置,可降低待测终端设备的位置变化对测试结果的影响,减少功率耦合测试装置产生误测的概率,提高了功率耦合测试装置的测试准确性。
第一方面,提供一种功率耦合测试装置,包括功率计和载台,所述载台设有用于承载终端设备的承载面,其特征在于,还包括至少一个用于接收所述终端设备的射频信号的耦合天线,每个所述耦合天线包括至少一个振子机构和至少一个馈电机构,且每个所述振子机构与一个所述馈电机构对应连接,其中:
每个所述振子机构包括两个天线振子,与所述振子机构对应的所述馈电机构的一端分别与两个所述天线振子的一端连接,与所述振子机构对应的所述馈电机构的另一端与所述 功率计信号连接,所述馈电机构用于将与所述馈电机构所在的耦合天线接收的射频信号传送至所述功率计;
每个所述振子机构中的所述两个天线振子均为平板结构且互相对称,所述两个天线振子位于同一侧的表面之间的夹角为180°,每个所述天线振子包括一个内侧边,所述两个天线振子的两个所述内侧边相对设置并形成间隙,每个所述内侧边在远离所述馈电机构的一端的至少一部分为指数曲线;沿两个天线振子与所述馈电机构连接的一端到两个天线振子远离所述馈电机构的一端的方向上,所述两个天线振子的两个所述内侧边之间的间隙逐渐增大。
结合上述第一方面,在第一方面的第一种可能的实现方式中,所述指数曲线的函数满足下列公式:
y(x)=(d/2)ekx
其中,所述x为每个所述天线振子在沿所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向上的长度;
所述y(x)为每个所述天线振子的内侧边在垂直于沿所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向上与所述两个天线振子的对称轴之间的距离;
所述d为所述两个天线振子的两个所述内侧边之间的间隙的最小值;
所述K为常数,且0.03≤K≤0.1。
结合上述第一方面、第一方面的第一种可能的实现方式,在第二种可能的实现方式中,每个所述耦合天线还包括与每个所述天线振子一一对应设置的波导板,每个所述天线振子远离所述天线振子的所述内侧边的一侧与对应的所述波导板连接,且每个所述波导板与对应的所述天线振子垂直,沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向上,两个波导板之间的距离逐渐增大。
结合上述第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述馈电机构为同轴线,且在每个所述振子机构的两个所述天线振子中,所述同轴线的外层导电体与一个天线振子电连接、所述同轴线的内层导电体与另一个天线振子电连接。
结合上述第一方面、第一方面的第一种可能的实现方式,在第四种可能的实现方式中,每个所述天线振子形成于印刷电路板上。
结合上述第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述馈电机构为形成于印刷电路板的传输线。
结合上述第一方面,在第六种可能的实现方式中,每个所述耦合天线包括两个所述振子机构,所述两个振子机构的对称轴线重合,且所述两个振子机构中,一个振子机构中的天线振子与另一个振子机构中的天线振子垂直。
结合上述第一方面,在第七种可能的实现方式中,每个所述耦合天线的预设耦合频段为400MHz-6GHz。
结合上述第一方面,在第八种可能的实现方式中,所述耦合天线为两个且设置于所述载台远离所述承载面的一侧,每个所述耦合天线中,所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向与所述承载面垂直,且每个所述馈电机构位于所述馈电机构所在的所述耦合天线远离所述承载面的一端。
结合上述第一方面,在第九种可能的实现方式中,还包括设置与所述载台上、并用于安装每个所述7耦合天线的支撑架,所述支撑架中用于安装耦合天线的部分在沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向位置可调,且所述支撑架中用于安装耦合天线的部分在垂直于沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向的平面上位置可调。
根据第一方面提供的功率耦合测试装置中,采用耦合天线代替现有技术中使用的耦合板,且耦合天线包括至少一个振子机构,每个振子机构中的两个天线振子为平板状结构且对称设置,两个振子相对形成间隙的内侧边的至少一部分为指数曲线,因此,每个天线振子形成一个双脊波导结构,使该耦合天线相对于现有技术中使用的耦合板而言耦合频带较宽,降低了待测终端设备的位置变化对测试结果的影响,从而减少了功率耦合测试装置产生误测的概率,提高了功率耦合测试装置的测试准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是背景技术中采用耦合板的功率耦合测试装置的结构示意图;
图2是本发明实施例提供的功率耦合测试装置的结构示意图;
图3a是本发明实施例提供的耦合天线的立体结构示意图;
图3b是本发明实施例提供的耦合天线的另一种立体结构示意图;
图3c为图3a中所示的耦合天线在垂直于天线口面方向上的结构示意图;
图4是本发明实施例提供的耦合天线的平面结构示意图;
图5是本发明实施例提供的耦合天线的另一种立体结构示意图;
图6是本发明实施例提供的耦合天线的另一种立体结构示意图;
图7是本发明实施例提供的支撑架的结构示意图;
图8a是耦合天线在700MHz频点的口面能量分布图;
图8b是耦合天线在3GHz频点的口面能量分布图;
图8c是耦合天线在8GHz频点的口面能量分布图;
图9是耦合天线的天线口面位置处的耦合能量波动测试结果图;
图10是采用耦合天线和采用耦合板的功率耦合测试装置的耦合能量分布测试结果比较图;
图11a是耦合天线2.4G WIFI的A路耦合过程能力测试结果图;
图11b是耦合天线2.4G WIFI的B路耦合过程能力测试结果图;
图11c是耦合天线5G WIFI的A路耦合过程能力测试结果图;
图11d是耦合天线5G WIFI的B路耦合过程能力测试结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图2,图2为本发明实施例提供的功率耦合测试装置的结构示意图。
如图2所示,本发明实施例提供的功率耦合测试装置,包括功率计(图2中未示出)和用于承载终端设备的载台10,具体实施中,载台10可采用图2中所示的结构,包括承载板11,承载板11上设有用于承载终端设备的承载面111,另外,为使终端设备在测试过程中放置稳定,承载板11上设有用于夹持待测试终端设备的夹具12,还包括用于支撑承载板11的底板14和两个支撑板13,承载板11、支撑板13和底板14围成框架结构;
本发明实施例提供的功率耦合测试装置还包括用于接收承载于载台10上的终端设备的射频信号的至少一个耦合天线20,具体实施中,参见图2所示,耦合天线20可为图2中所示的两个或可为多个;
参见图3a和图3b所示,图3a为本发明实施例提供的耦合天线的立体结构示意图,图3b为本发明实施例提供的耦合天线的另一种立体结构示意图,每个耦合天线包括至少一个振子机构21,具体实施中,振子机构21也可为两个或多个;参见图4所示,图4为本发明实施例提供的耦合天线的平面结构示意图,耦合天线20还包括至少一个馈电机构22,振子机构21和馈电机构22的数量相等,且每个振子机构21对应连接一个馈电机构22;
继续参见图4所示,每个振子机构21均包括两个天线振子,例如图4中所示的第一天线振子211和第二天线振子212,与振子机构21对应的馈电机构22的一端与两个天线振子的一端连接、与振子机构21对应的馈电机构22的另一端与功率计连接(功率计图4中未示出),馈电机构22用于将与馈电机构22所在的耦合天线20接收的射频信号传送至 功率计;具体实施中,每个振子机构21还包括图4中所示的短路板213;
继续参见图4所示,每个振子机构21中的每个天线振子均为平板结构互相对称,每个天线振子均包括一个内侧边,具体如图4中所示,第一天线振子211和第二天线振子212沿图4中所示的x轴对称,第一天线振子211包括第一内侧边2111,第二天线振子212包括第二内侧边2121,第一内侧边2111和第二内侧边2121相对设置并形成间隙,第一内侧边2111和第二内侧边2121背离馈电机构22的一端的至少一部分为指数曲线,参见图4所示,具体实施中,每个内侧边背离馈电结构的一端的一部分为指数曲线,而内侧边靠近馈电结构的一端的一部分为直线;参见图3c所示,图3c为图3a中所示的耦合天线在垂直于天线口面方向上的结构示意图,两个天线振子位于同一侧的表面之间的夹角为180°,即图3c中所示的角A和角B均为180°;
且继续参见图4所示,沿两个天线振子与馈电机构22连接的一端到两个天线振子远离馈电机构22的一端的方向上,即沿图4中所示的x轴所指方向上,第一天线振子211的第一内侧边2111和第二天线振子212的第二内侧边2121之间的间隙逐渐增大。
本发明实施例提供的功率耦合测试装置中,采用耦合天线代替现有技术中使用的耦合板,且耦合天线包括至少一个振子机构,每个振子机构中的每个天线振子为对称设置的平板状结构,两个振子相对形成间隙的内侧边的至少一部分为指数曲线,则每个振子机构形成一个双脊波导结构,在对终端设备进行功率耦合测试时,终端设备的天线发出射频信号,振子机构形成射频接收电路,对终端设备的天线发出的射频信号进行匹配接收并部分耦合出射频信号,馈电结构由与天线振子的连接处接收天线振子耦合到的射频信号,并输出到功率计。由于该耦合天线采用双脊波导结构,相对于现有技术中使用的耦合板而言,双脊波导结构耦合频带较宽,耦合效率较高,降低了待测终端设备的位置变化对测试结果的影响,从而减少了功率耦合测试装置产生误测的概率,提高了功率耦合测试装置的测试准确性。
一种具体实施方式中,每个内侧边的指数曲线函数满足下列公式:
y(x)=(d/2)ekx
其中,参见图2所示,x为每个天线振子在沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向上的长度;
继续参见图2所示,y(x)为每个天线振子的内侧边在垂直于沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向上与两个天线振子的对称轴之间的距离;
d为两个天线振子的两个内侧边之间的间隙的最小值;
K为常数,且0.03≤K≤0.1。
天线振子的内侧边在采用上述指数曲线函数时,可提高耦合天线的口面功率分布的均 匀度,在进行功率耦合测试时,可降低耦合能量的波动,进一步降低待测终端设备的位置变化对测试结果的影响,从而进一步提高了功率耦合测试装置的测试准确性。
一种具体实施方式中,参见图3a和图3b所示,每个耦合天线还包括与每个天线振子一一对应设置的波导板,例如图3a和图3b中所示的与第一天线振子211对应设置的第一波导板24、与第二天线振子212对应设置的第二波导板23,则天线振子与波导板配合使该耦合天线构成喇叭天线结构,可进一步拓宽耦合天线的频带且增加耦合天线的方向性;
继续参见图3a和图3b所示,每个波导板与对应的天线振子背离内侧边的一侧连接、且每个波导板与对应的天线振子垂直,沿两个天线振子与馈电机构连接的一端到两个天线振子的另一端的方向上,两个波导板之间的距离逐渐增大,两个波导板之间可采用图3a中所示的连接板25进行支撑,也可采用图3b中所示的连接杆27进行支撑;具体实施中,天线振子和波导板均采用导电材料制成,例如金属材料。
一种具体实施方式中,参见图4所示,在耦合天线采用上述结构时,馈电机构22为同轴线,且同轴线的外层导电体与第一天线振子211电连接、同轴线的内层导电体与第二天线振子212电连接。
一种具体实施方式中,参见图6所示,图6为本实施例提供的另一种结构的耦合天线,该结构中的每个耦合天线形成于印刷电路板上,例如图6中所示的印刷电路板27,天线振子21形成于印刷电路板的表层,则印刷电路板27和天线振子21配合形成印刷电路板天线。
采用上述印刷电路板天线结构可降低耦合天线的制作成本。
一种具体实施方式中,在耦合天线包括印刷电路板且每个天线振子形成于印刷电路板的表层时,馈电机构为形成于印刷电路板的传输线,可进一步降低耦合天线的制作成本。具体实施中,上述印刷电路板天线中的天线振子和传输线可采用铜材料制成,以提高其导电效率,而印刷电路板中未包括天线振子和传输线的部分采用绝缘材料制成。
一种具体实施方式中,每个耦合天线包括两个振子机构,两个振子机构的对称轴线重合、且两个振子机构中,一个振子机构中的天线振子与另一个振子机构中的天线振子垂直。具体参见图5和图6所示,图5和图6为耦合天线包括两个振子机构时的两种天线的结构示意图,图5中的耦合天线20包括两个振子机构21,且每个振子机构中的天线振子均对应设有一个波导板;图6中所示的耦合天线采用四个印刷电路板拼接而成。
上述结构的耦合天线中,每个耦合天线包括两个振子机构,包括两个振子机构的耦合天线的结构相当于两个只包括一个振子机构的耦合天线的组合,可进一步拓宽耦合天线的耦合频段。
一种具体实施方式中,每个耦合天线的预设耦合频段为400MHz-6GHz,可覆盖终端设备的主天线、WIFI、GPS以及分集天线使用的频段。
一种具体实施方式中,参见图2所示,耦合天线20为两个,且设置于载台10中远离承载面111的一侧,每个耦合天线20中,两个天线振子21与馈电机构22连接的一端到两个天线振子21原理馈电机构22的一端的方向与承载面111垂直,即图4中所示的x轴方向与承载面111垂直,且每个耦合天线20中的馈电机构22位于该馈电机构22所在的耦合天线远离承载面111的一端;
采用两个耦合天线可进一步提高功率耦合测试装置的功率耦合准确性;具体实施中,两个耦合天线需通过功分器与功率计连接,以将两个耦合天线接收到的两路射频信号合成一路传输到功率计。
一种具体实施方式中,参见图1所示,本发明实施例提供的功率耦合测试装置还包括设置于载台10上、并用于安装耦合天线20的支撑架15,每个支撑架15中用于安装耦合天线20的部分在沿两个天线振子21与馈电机构22连接的一端到两个天线振子21的另一端的方向上位置可调,且每个支撑架15中用于安装耦合天线20的部分在垂直于两个天线振子21与馈电机构22连接的一端到两个天线振子21的另一端的方向的平面上位置可调;从而使安装于支撑架15上的耦合天线20与载台10上承载的待测终端设备之间的相对位置可调,以根据待测的终端设备调整合适的耦合天线20的位置。
具体实施中,该支撑架15可采用多个滑动机构组合实现,具体参见图7所示,图7为本实施例提供的支撑架10的结构示意图,该支撑架15包括第一支撑板151和两个第二支撑板152,两个第二支撑板153平行且相对设置,并分别与第一支撑板151活动连接,第一支撑板15上设有第一开槽1511,第一开槽1511的延伸方向沿两个耦合天线的安装方向设置,每个第二支撑板152上设有第二开槽1521和第三开槽1522,第二开槽1521的延伸方向平行于底板14所在平面且与第一开槽1511的延伸方向垂直,第三开槽1522的延伸方向垂直于底板14所在平面;
每个第二支撑板152上的第二开槽1521通过螺钉安装于底板14,螺钉可在第二开槽1521内滑动,以使第二支撑板152沿图7中所示的x方向移动;
第一支撑板151通过螺钉与两个第二支撑板152上的第三开槽1522连接,螺钉可在第三开槽1522内滑动,以使第一支撑板151沿图7中所示的z方向移动;
每个耦合天线20背离载台的一侧通过螺钉安装于第一支撑板151上的第一开槽1511,螺钉可在第一开槽1511内滑动,以使耦合天线沿图7中所示的y方向移动;
因此,采用上述结构的支撑架15可使安装于支撑架15上的耦合天线20与载台10上承载的待测终端设备之间的相对位置在空间内x、y、z三个方向上可调,以根据待测的终端设备调整合适的耦合天线的位置。
应当说明的是,本实施例提供的支撑架并不以上述结构的支撑架为限。
为进一步说明本发明实施例提供的功率耦合测试装置的功率耦合稳定性,对上述功率 耦合测试装置中采用的耦合天线进行测试,具体地,该耦合天线采用图3a或图3b中所示结构,即包括一个耦合机构的喇叭天线结构,且每个天线振子的内侧边的指数曲线部分符合上述函数公式y(x)=(d/2)ekx
采用Agilent功率计对上述耦合天线进行口面能量分布测试,并取在距离天线口面位置100mm以上处、1000mm×1000mm范围的区域内的能量分布状态为测试结果,分别测试700MHz、3GHz和8GHz频点的能量分布,测试结果参见图8a-图8c所示,图8a是耦合天线在700MHz频点的口面能量分布图、图8b是耦合天线在3GHz频点的口面能量分布图、图8c是耦合天线在8GHz频点的口面能量分布图;由图8a可得出耦合天线在700MHz频点的能量均匀分布在600mm×600mm的区域内,由图8b可得出耦合天线在3G频点口面区域550mm×400mm范围内能量呈均匀状态分布;由图8c可得出8G频点口面能量则均匀的分布在400mm×400mm区域内;由图8a-图8c可看出,随着频率的增高,耦合天线口面的能量稳定分布区域逐渐缩小,但符合现阶段所需要测试的产品带宽。
同时,为了进一步验证待测终端位置对测试耦合能量的影响,对待测终端设备在空间内X、Y、Z三个方向上的位移以及Theta&Phi两个矢量角的变化对耦合能量造成的波动进行测试,具体地,分别针对会引起耦合能量变化的关键参数Z(喇叭口面到待测天线的距离)、H(待测天线相对喇叭投影面中心位置的水平偏移量)、H(待测天线相对喇叭投影面中心位置的垂直偏移量)&θ(待测天线相对喇叭口面的角度)进行测试,扫参域为5mm&5°,step为0.5mm&1°,并进行100组取样扫描,测试结果参见图9所示,图9是耦合天线的天线口面位置处的耦合能量波动测试结果图,由图9可得出,能量在2.4G和5GWIFI工作频带内最大波动为10dB,而现有技术中的功率耦合测试装置中的耦合板的最大波动一般为20dB,本发明实施例提供的耦合天线的波动有明显改善。
为更进一步说明本发明实施例提供的功率耦合测试装置的功率耦合稳定性,对采用上述耦合天线的功率耦合测试装置进行功率耦合测试,并和采用大耦合板的功率耦合测试装机进行对比,对比结果参见图10所示,图10是采用耦合天线和采用耦合板的功率耦合测试装置的耦合能量分布测试结果比较图,从测试结果图中可以看出,随着横坐标中的偏移尺寸的增大,采用上述耦合天线的功率耦合测试装置的能量分布曲线变化较为平滑且无锯齿状曲线出现,则证明与采用大耦合板的功率耦合测试装置相比,终端设备的位置变化对采用上述耦合天线的功率耦合测试装置的耦合能量的影响更小,且由图10可看出,采用大耦合板的功率耦合测试装置的耦合能量分布在偏移尺寸为1mm-29mm区间内较为稳定,采用上述耦合天线的功率耦合测试装置的耦合能量分布在偏移尺寸为11mm-39mm区间内较为稳定,因此两者拥有同样的测试范围。
同时,在生产现场对上述功率耦合测试装置进行实际产品小批量CPK(制程能力指数)验证,该测试中共测试终端设备283台,满足CPK验证机数量大于200的采样需求。
该CPK验证测试中,分别测试每个终端设备的2.4G和5G WIFI性能,测试结果参见图11a-图11d所示,其中,图11a是2.4G WIFI的A路耦合过程能力测试结果图、图11b是2.4G WIFI的B路耦合过程能力测试结果图、图11c是5G WIFI的A路耦合过程能力测试结果图、图11d是5G WIFI的B路耦合过程能力测试结果图,由图11a-图11d可看出,CPK在验证中提升明显,本实施例提供的功率耦合测试装置可提高功率测试稳定性。
应该说明的是,本实施例中提供的耦合天线可采用线极化、正交极化、圆极化、椭圆极化形式,此外,还可采用微带天线、波导天线、平面Vivaldi天线等类型的耦合天线,通过改变辐射体形状及辐射方式、相位分布等方法,来实现近场口面能量均匀分布,以达到提高功率耦合测试装置的测试准确性的目的。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种功率耦合测试装置,包括功率计和载台,所述载台设有用于承载终端设备的承载面,其特征在于,还包括至少一个用于接收所述终端设备的射频信号的耦合天线,每个所述耦合天线包括至少一个振子机构和至少一个馈电机构,且每个所述振子机构与一个所述馈电机构对应连接,其中:
    每个所述振子机构包括两个天线振子,与所述振子机构对应的所述馈电机构的一端分别与两个所述天线振子的一端连接,与所述振子机构对应的所述馈电机构的另一端与所述功率计信号连接,所述馈电机构用于将与所述馈电机构所在的耦合天线接收的射频信号传送至所述功率计;
    每个所述振子机构中的所述两个天线振子均为平板结构且互相对称,所述两个天线振子位于同一侧的表面之间的夹角为180°,每个所述天线振子包括一个内侧边,所述两个天线振子的两个所述内侧边相对设置并形成间隙,每个所述内侧边在远离所述馈电机构的一端的至少一部分为指数曲线;沿两个天线振子与所述馈电机构连接的一端到两个天线振子远离所述馈电机构的一端的方向上,所述两个天线振子的两个所述内侧边之间的间隙逐渐增大。
  2. 根据权利要求1所述的功率耦合测试装置,其特征在于,所述指数曲线的函数满足下列公式:
    y(x)=(d/2)ekx
    其中,所述x为每个所述天线振子在沿所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向上的长度;
    所述y(x)为每个所述天线振子的内侧边在垂直于沿所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向上与所述两个天线振子的对称轴之间的距离;
    所述d为所述两个天线振子的两个所述内侧边之间的间隙的最小值;
    所述K为常数,且0.03≤K≤0.1。
  3. 根据权利要求1或2所述的功率耦合测试装置,其特征在于,每个所述耦合天线还包括与每个所述天线振子一一对应设置的波导板,每个所述天线振子远离所述天线振子的所述内侧边的一侧与对应的所述波导板连接,且每个所述波导板与对应的所述天线振子垂直,沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向上,两个波导板之间的距离逐渐增大。
  4. 根据权利要求3所述的功率耦合测试装置,其特征在于,所述馈电机构为同轴线,且在每个所述振子机构的两个所述天线振子中,所述同轴线的外层导电体与一个天线振子 电连接、所述同轴线的内层导电体与另一个天线振子电连接。
  5. 根据权利要求1或2所述的功率耦合测试装置,其特征在于,每个所述天线振子形成于印刷电路板上。
  6. 根据权利要求5所述的功率耦合测试装置,其特征在于,所述馈电机构为形成于印刷电路板的传输线。
  7. 根据权利要求1所述的功率耦合测试装置,其特征在于,每个所述耦合天线包括两个所述振子机构,所述两个振子机构的对称轴线重合,且所述两个振子机构中,一个振子机构中的天线振子与另一个振子机构中的天线振子垂直。
  8. 根据权利要求1所述的功率耦合测试装置,其特征在于,每个所述耦合天线的预设耦合频段为400MHz-6GHz。
  9. 根据权利要求1所述的功率耦合测试装置,其特征在于,所述耦合天线为两个且设置于所述载台远离所述承载面的一侧,每个所述耦合天线中,所述两个天线振子与所述馈电机构连接的一端到所述两个天线振子远离所述馈电机构的一端的方向与所述承载面垂直,且每个所述馈电机构位于所述馈电机构所在的所述耦合天线远离所述承载面的一端。
  10. 根据权利要求1所述的功率耦合测试装置,其特征在于,还包括设置与所述载台上、并用于安装每个所述7耦合天线的支撑架,所述支撑架中用于安装耦合天线的部分在沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向位置可调,且所述支撑架中用于安装耦合天线的部分在垂直于沿两个天线振子与所述馈电机构连接的一端到两个天线振子的另一端的方向的平面上位置可调。
PCT/CN2016/090527 2016-07-19 2016-07-19 一种功率耦合测试装置 WO2018014224A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/090527 WO2018014224A1 (zh) 2016-07-19 2016-07-19 一种功率耦合测试装置
CN201680056685.9A CN108352604A (zh) 2016-07-19 2016-07-19 一种功率耦合测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090527 WO2018014224A1 (zh) 2016-07-19 2016-07-19 一种功率耦合测试装置

Publications (1)

Publication Number Publication Date
WO2018014224A1 true WO2018014224A1 (zh) 2018-01-25

Family

ID=60991809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090527 WO2018014224A1 (zh) 2016-07-19 2016-07-19 一种功率耦合测试装置

Country Status (2)

Country Link
CN (1) CN108352604A (zh)
WO (1) WO2018014224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180881A (zh) * 2020-02-12 2020-05-19 Tcl移动通信科技(宁波)有限公司 共天线装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112561B (zh) * 2019-06-06 2024-01-02 昆山瀚德通信科技有限公司 一种单极化天线
CN111505393A (zh) * 2019-12-18 2020-08-07 瑞声科技(新加坡)有限公司 用于对天线振子性能一致性检测的检测工装

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110697A1 (en) * 2003-11-20 2005-05-26 Chang-Jung Lee Dipole antenna
CN102970084A (zh) * 2012-11-15 2013-03-13 惠州Tcl移动通信有限公司 用于3g移动通讯终端的测试系统及相应的天线耦合器
CN103067549A (zh) * 2012-10-08 2013-04-24 共青城赛龙通信技术有限责任公司 一种手机组装射频和电流测试夹具
CN103682599A (zh) * 2013-12-13 2014-03-26 华为终端有限公司 一种耦合天线以及整机测试系统
CN103684627A (zh) * 2012-09-21 2014-03-26 联想(北京)有限公司 一种手机天线测试方法及系统
CN104993243A (zh) * 2015-07-08 2015-10-21 电子科技大学 超宽带喇叭天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110697A1 (en) * 2003-11-20 2005-05-26 Chang-Jung Lee Dipole antenna
CN103684627A (zh) * 2012-09-21 2014-03-26 联想(北京)有限公司 一种手机天线测试方法及系统
CN103067549A (zh) * 2012-10-08 2013-04-24 共青城赛龙通信技术有限责任公司 一种手机组装射频和电流测试夹具
CN102970084A (zh) * 2012-11-15 2013-03-13 惠州Tcl移动通信有限公司 用于3g移动通讯终端的测试系统及相应的天线耦合器
CN103682599A (zh) * 2013-12-13 2014-03-26 华为终端有限公司 一种耦合天线以及整机测试系统
CN104993243A (zh) * 2015-07-08 2015-10-21 电子科技大学 超宽带喇叭天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180881A (zh) * 2020-02-12 2020-05-19 Tcl移动通信科技(宁波)有限公司 共天线装置
CN111180881B (zh) * 2020-02-12 2022-06-10 Tcl移动通信科技(宁波)有限公司 共天线装置

Also Published As

Publication number Publication date
CN108352604A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US10381747B2 (en) Multiple polarized antenna
US10276943B2 (en) Antenna device including patch array antenna and conductive metal member
US8269676B2 (en) Dual-band antenna and portable wireless communication device employing the same
US11069979B2 (en) Vertically polarized omnidirectional antenna and dual-polarization omnidirectional antenna thereof
WO2019062445A1 (zh) 多极化辐射振子及天线
KR101983552B1 (ko) 안테나 빔 향상용 전자파 렌즈, 이를 구비한 안테나 장치 및 전자 장치
CN103682592A (zh) 双频耦合馈入天线以及使用该天线的可调式波束模组
JP2008028734A (ja) 表面実装型アンテナ及びそれを搭載した通信機器
TWI552438B (zh) 提升天線隔離度之射頻裝置及無線通訊裝置
US8009103B2 (en) Triple-band antenna
WO2018014224A1 (zh) 一种功率耦合测试装置
JP2011155630A (ja) アンテナモジュール
US10992051B2 (en) Antenna and electronic device
US20080024369A1 (en) Chip Antenna
JPWO2007052425A1 (ja) アンテナ装置
US7786941B2 (en) Antenna module
TWI450446B (zh) 一種天線結構
TW201941497A (zh) 即時收發訊裝置
CN114069260B (zh) 天线系统及包含其的电子设备
KR20120033234A (ko) 디스플레이 장치
KR100563116B1 (ko) 유전체 기판을 이용한 수직 편파 무지향성 안테나와 수평편파 무지향성 안테나
US20190157766A1 (en) Broadband Cavity-Backed Slot Antenna
US11552716B2 (en) Antenna measurement system with disc-shaped reflection surface
JP7308312B2 (ja) 実時間送受信装置
WO2024007996A1 (zh) 天线单元及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909154

Country of ref document: EP

Kind code of ref document: A1