WO2018012411A1 - Open-type refrigerant compressor - Google Patents

Open-type refrigerant compressor Download PDF

Info

Publication number
WO2018012411A1
WO2018012411A1 PCT/JP2017/024878 JP2017024878W WO2018012411A1 WO 2018012411 A1 WO2018012411 A1 WO 2018012411A1 JP 2017024878 W JP2017024878 W JP 2017024878W WO 2018012411 A1 WO2018012411 A1 WO 2018012411A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigerant gas
housing
compression mechanism
supply passage
Prior art date
Application number
PCT/JP2017/024878
Other languages
French (fr)
Japanese (ja)
Inventor
創 佐藤
善彰 宮本
尚夫 水野
章浩 野口
後藤 孝
敏幸 鹿内
秀作 後藤
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP17827539.2A priority Critical patent/EP3418569B1/en
Publication of WO2018012411A1 publication Critical patent/WO2018012411A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0028Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form

Definitions

  • the present invention relates to an open-type refrigerant compressor that compresses refrigerant gas, and more particularly to an open-type refrigerant compressor that prevents wear of a seal member provided at a portion where a drive shaft protrudes from a housing.
  • a refrigerant compressor that compresses refrigerant gas in a car air conditioner or the like has a compression mechanism housed inside a housing formed of aluminum alloy or the like, and a drive shaft that drives the compression mechanism protrudes from one surface of the housing.
  • a pulley with an electromagnetic clutch provided at the protruding portion is driven by an engine or the like via a belt.
  • Such a refrigerant compressor is called an open type because a shaft hole for projecting a drive shaft is formed in the housing.
  • a structure in which a compression mechanism and a drive motor are built in a sealed pressure vessel is called a sealed type.
  • a lip seal (oil seal with a lip) is provided at a protruding portion of the drive shaft, that is, a shaft hole of the housing, to prevent the refrigerant gas inside the housing from leaking to the outside.
  • the lip seal is lubricated by the lubricating oil mixed with the refrigerant gas, but it is considered that the lip seal is insufficiently supplied during low load operation where the circulation amount of the refrigerant gas is reduced. In that case, there is a concern that the tip of the lip is worn, causing refrigerant gas and oil leakage.
  • a guide groove or a communication hole that leads to a lip seal and a bearing member in the vicinity of the lip seal is formed on the inner wall surface of the housing.
  • refrigerant compressors in which refrigerant gas and lubricating oil flowing through are supplied to the lip seal and the bearing member through these oil passages.
  • the present invention has been made to solve such a problem.
  • the seal member provided at the portion where the drive shaft protrudes from the housing can be reliably lubricated with the lubricating oil contained in the refrigerant gas, and the seal member
  • An object of the present invention is to provide an open type refrigerant compressor capable of preventing wear.
  • An open-type refrigerant compressor includes a housing, a suction port formed in the housing, a compression mechanism that is provided inside the housing and compresses refrigerant gas containing lubricating oil, and drives the compression mechanism A drive shaft, a seal member provided in a shaft hole projecting outward from the housing, and preventing leakage of the refrigerant gas from the inside of the housing to the outside, and the seal member from the inside of the housing
  • a refrigerant supply passage that leads to the refrigerant gas distribution portion, and a refrigerant gas distribution portion that distributes the refrigerant gas introduced into the housing from the suction port into the refrigerant supply passage side and the compression mechanism side, and the refrigerant gas
  • the distribution ratio of the refrigerant gas by the distribution unit is set so that the distribution amount to the refrigerant supply passage side is larger than the distribution amount to the compression mechanism side.
  • the refrigerant gas introduced into the housing from the suction port is distributed to the refrigerant supply passage side and the compression mechanism side by the refrigerant gas distribution unit.
  • the refrigerant gas distributed to the refrigerant supply passage side flows to the seal member, and the seal member is lubricated by the lubricating oil contained in the refrigerant gas.
  • the refrigerant gas distributed to the compression mechanism side is compressed by the compression mechanism to become a compressed refrigerant gas, and is discharged from a discharge port formed in the housing.
  • the distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is set so that the distribution amount to the refrigerant supply passage side is larger than the distribution amount to the compression mechanism side, so that a sufficient amount of refrigerant gas is applied to the seal member. Supplied. Therefore, the seal member can be preferentially lubricated with the lubricating oil contained in the refrigerant gas, and the lubrication state of the seal member can be improved to prevent wear.
  • the refrigerant gas supplied to the seal member then flows to the compression mechanism side, lubricates other mechanisms, and is then compressed by the compression mechanism to become a compressed refrigerant gas.
  • the distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is such that the entire amount of the refrigerant gas introduced into the housing from the suction port flows to the refrigerant supply passage side. May be set. As a result, since the entire amount of refrigerant gas sucked from the suction port first flows to the seal member, the supply amount of lubricating oil to the seal member becomes the maximum amount, thereby maximizing the lubrication state of the seal member. Can do.
  • the refrigerant gas distribution unit may be attached as a separate part inside the housing. If it carries out like this, the distribution amount of a refrigerant gas can be freely set by setting the shape of a refrigerant gas distribution part suitably.
  • At least a part of the refrigerant supply passage is formed by mounting the refrigerant gas distribution portion in a refrigerant supply groove formed on the inner surface of the housing. May be.
  • the shape of the refrigerant gas distribution part can be simplified as long as the shape of the refrigerant gas distribution part can cover the refrigerant supply groove formed in the inner surface of the housing.
  • the end portion of the refrigerant supply passage communicates with a seal space formed between the seal member and a bearing member disposed inside the seal member. May be.
  • the bearing member can be well lubricated and even if the amount of refrigerant supplied to the seal member becomes excessive Further, it is possible to prevent the refrigerant from being leaked to the outside due to excessive pressure of the refrigerant gas applied to the seal member.
  • a refrigerant discharge passage that guides the refrigerant gas from the seal member to the compression mechanism side may be provided.
  • the refrigerant gas and the lubricating oil supplied to the seal member are guided to the compression mechanism side by the refrigerant discharge passage, and a steady flow of the refrigerant gas and the lubricating oil is formed, thereby lubricating each part of the open type refrigerant compressor. Can be performed satisfactorily.
  • the seal member provided at the portion where the drive shaft protrudes from the housing can be reliably lubricated with the lubricating oil contained in the refrigerant gas, and the seal member is worn. Can be prevented.
  • FIG. 3 is a longitudinal sectional view in the vicinity of a sub-bearing along the line III-III in FIG. 1.
  • FIG. 1 is a partial longitudinal sectional view of an open scroll compressor (open refrigerant refrigerant compressor) showing an embodiment of the present invention.
  • the open type scroll compressor 1 according to the present embodiment is for a car air conditioner that is installed in an engine room of an automobile and driven by engine power to compress refrigerant gas, for example.
  • the present invention may be applied to an open-type compressor that is not limited to a living space air conditioner, a refrigeration system, a heat pump hot water supply system, or the like.
  • the open scroll compressor 1 includes a substantially cylindrical housing 2 made of aluminum alloy or the like.
  • the housing 2 includes a housing main body 2A that forms a main body, and a housing cover 2B that is fixed with bolts or the like so as to hermetically close an opening provided at one end of the housing main body 2A. The other end (not shown) of the housing body 2A is closed.
  • a scroll compression mechanism 4 compression mechanism and a drive shaft 5 are accommodated in the internal space S1 of the housing 2.
  • the outer peripheral surface of the housing 2 is provided with a suction port 3 through which refrigerant gas before being compressed is sucked, and a discharge port (not shown) through which refrigerant gas compressed by the scroll compression mechanism 4 is discharged. .
  • the drive shaft 5 is rotatably supported by the housing cover 2B via a main bearing 6 and a sub bearing 7 (bearing member).
  • a main bearing 6 for example, a single row deep groove ball bearing is used
  • the sub bearing 7, for example, a needle bearing is used.
  • One end of the drive shaft 5 protrudes outside through a shaft hole 8 formed in the housing cover 2B.
  • the sub bearing 7 is press-fitted into the shaft hole 8, and a lip seal 9 (seal member) is press-fitted on the outer side of the sub bearing 7.
  • the lip seal 9 includes a lip 9 a that is inclined toward the sub-bearing 7 and is lightly pressed against the outer peripheral surface of the drive shaft 5.
  • a pulley 12 is rotatably installed on the outer periphery of the front end of the housing cover 2B via a pulley bearing 11, and a belt (non-shown) is provided between the pulley 12 and a drive pulley provided in a drive source such as an engine (not shown). (Shown) is wound.
  • a clutch plate 13 fixed to the front end of the drive shaft 5 faces the outer end surface of the pulley 12 in close proximity, and the electromagnetic clutch 14 fixed to the housing cover 2B is excited so as to be positioned inside the pulley 12. Then, the clutch plate 13 is attracted to the pulley 12 side and frictionally engages with the outer end surface of the pulley 12, and the rotation of the pulley 12 is transmitted to the drive shaft 5 so that the drive shaft 5 rotates.
  • a crank pin 5 a that is eccentric by a predetermined dimension with respect to the central axis of the drive shaft 5 is integrally formed at the rear end of the drive shaft 5.
  • the crank pin 5 a is scrolled via a drive bush 16 and a drive bearing 17.
  • a boss 18 a formed on the rear surface of the orbiting scroll 18 of the compression mechanism 4 is fitted.
  • the scroll compression mechanism 4 has a known configuration in which the orbiting scroll 18 and a fixed scroll (not shown) are engaged with each other with a phase difference of 180 degrees.
  • the scroll 18 is driven to revolve with respect to the fixed scroll, and a pair of compression chambers (not shown) formed between the two scrolls gradually reduce its volume while moving from the outer peripheral position to the center position. .
  • the member 20 is a balancer weight.
  • the refrigerant gas contains lubricating oil (refrigerating machine oil) at a predetermined ratio, and the main bearing 6, sub bearing 7, lip seal 9, crank pin 5a, drive bush 16, drive bearing 17 by this lubricating oil mist.
  • the internal mechanisms such as the rotation prevention mechanism 19 and the scroll compression mechanism 4 are lubricated.
  • the lip seal 9 is a seal member that prevents leakage of refrigerant gas and lubricating oil from the inside of the housing 2 to the outside, and wear of the lip 9a is prevented by being lubricated by the oil contained in the refrigerant gas.
  • the tip of the lip 9a may be worn due to insufficient lubrication of the lip seal 9 during low load operation where the circulation amount of the refrigerant gas is reduced.
  • the open scroll compressor 1 preferentially uses the refrigerant gas sucked from the suction port 3 to the lip seal 9 side rather than the internal space S ⁇ b> 1 side of the housing 2. It is comprised so that it may flow.
  • the configuration is as follows.
  • a refrigerant introduction space S2 is formed inside the suction port 3.
  • This refrigerant introduction space S2 is a partition as shown in FIG. 2 at the bottom of the refrigerant passage hole 2Bb (conventional existing hole) drilled in the insertion flange 2Ba of the housing cover 2B inserted into the opening of the housing body 2A.
  • the room is defined as a room having a predetermined volume (about several cc) by being blocked by the plate 22 (refrigerant gas distributor).
  • the suction port 3 and the refrigerant introduction space S2 are positioned at the uppermost part of the housing 2, for example. Conventionally, since the partition plate 22 does not exist, the suction port 3 communicates with the internal space S1 as it is through the refrigerant passage hole 2Bb.
  • the partition plate 22 is attached to the inside of the housing 2 (2B) with two bolts 23 as separate parts.
  • the partition plate 22 has, for example, a shape obtained by bending a sheet metal material in a staircase shape, and as illustrated in FIGS. 1 and 2, in order from the center side of the housing 2, a first vertical surface 22a, a first horizontal surface 22b, A second vertical surface 22c and a second horizontal surface 22d are provided.
  • the second horizontal surface 22d is a surface formed by the bottom of the refrigerant introduction space S2, and bolt holes 22e are formed at both ends in the horizontal direction of the first vertical surface 22a.
  • refrigerant guiding grooves 25 are formed at equal intervals in the circumferential direction. These coolant guide grooves 25 are disposed at, for example, the 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock positions on the dial of the watch (see FIG. 3), and the tips of the refrigerant guide grooves 25 are the lip seal 9 and the sub-bearing 7. The rear end communicates with the internal space S1 of the housing 2. As shown in FIG.
  • the sub-bearing 7 includes an outer ring member 7a, an inner ring member 7b, a plurality of roller-shaped rolling members 7c disposed between the inner and outer ring members 7a and 7b, and the plurality of rolling elements. And a holder 7d for holding the members 7c at equal intervals.
  • An oil supply hole 7e is formed in the outer ring member 7a at a position aligned with the refrigerant guide groove 25.
  • the refrigerant guide groove 25 located at the 3 o'clock, 6 o'clock, and 9 o'clock positions extends in the radial direction from the axis of the drive shaft 5, and the internal space S ⁇ b> 1 of the housing 2.
  • a refrigerant discharge passage 27 communicating with the refrigerant is formed.
  • three refrigerant discharge passages 28 penetrating the insertion flange 2Ba of the housing cover 2B are formed in accordance with the positions of the three refrigerant discharge passages 27.
  • These refrigerant discharge passages 27 and 28 are passages that guide the refrigerant gas supplied to the lip seal 9 to the scroll compression mechanism 4 side, as will be described later.
  • a built-up portion 31 having a height of several millimeters is formed on the upper inner wall surface of the portion where the shaft hole 8 opens on the inner space S1 side when viewed from the inner side of the housing 2 (2B).
  • a refrigerant supply groove 32a extending in the vertical direction shown in FIG. 1 is formed at the center in the width direction of the built-up portion 31, and bolt holes 33 are formed on both sides thereof. It is not essential to form the built-up portion 31, and the built-up portion 31 may be omitted as long as the coolant supply groove 32 a can be formed.
  • a refrigerant supply groove 32b extending in the horizontal direction from the upper end of the refrigerant supply groove 32a toward the main bearing 6 is formed (see FIGS. 1 and 2).
  • the refrigerant supply groove 32b communicates with one refrigerant guide passage 29 formed in the same manner as the three refrigerant discharge passages 28, and the other end of the refrigerant guide passage 29 communicates with the refrigerant introduction space S2. Yes.
  • the first vertical surface 22 a of the partition plate 22 is applied to the built-up portion 31 and is fastened to the bolt hole 33 with two bolts 23.
  • the bottom of the refrigerant introduction space S2 is closed by the second horizontal surface 22d of the partition plate 22 as described above.
  • the refrigerant supply grooves 32a and 32b are respectively covered with the first vertical surface 22a and the first horizontal surface 22b of the partition plate 22, and the refrigerant supply grooves 32a and 32b are isolated from the internal space S1. It becomes.
  • the second horizontal surface 22d of the partition plate 22 is sandwiched between the outer peripheral surface of the main bearing 6 and the housing cover 2B.
  • two partition plates 22 are provided with the main bearing 6 as a boundary. It is also possible to divide each of them into an inner surface of the housing 2 individually.
  • the uppermost refrigerant guide groove 25 (at the 12 o'clock position shown in FIG. 3), the refrigerant supply groove 32a, the refrigerant supply groove 32b, and the refrigerant guide passage 29 are connected to the lip seal 9 from the refrigerant introduction space S2.
  • a connected refrigerant supply passage 35 is formed. Since the end portion of the coolant supply passage 35 is a coolant guide groove 25 formed on the inner peripheral surface of the shaft hole 8, it communicates with the seal space S 3 between the lip seal 9 and the sub bearing 7.
  • the partition plate 22 functions as a refrigerant gas distribution unit that distributes the refrigerant gas introduced into the refrigerant introduction space S2 from the suction port 3 to the refrigerant supply passage 35 side and the scroll compression mechanism 4 side.
  • the distribution ratio of the refrigerant gas by the partition plate 22 is set so that the distribution amount to the refrigerant supply passage 35 side is significantly larger than the distribution amount to the scroll compression mechanism 4 side. That is, the flow resistance of the refrigerant gas from the refrigerant introduction space S2 to the refrigerant supply passage 35 side is significantly smaller than the flow resistance of the refrigerant gas from the refrigerant introduction space S2 to the scroll compression mechanism 4 side.
  • the shape is defined.
  • the distribution ratio of the refrigerant gas is substantially equal to that of the refrigerant gas introduced into the refrigerant introduction space S2.
  • the whole amount is set to flow toward the refrigerant supply passage 35.
  • no sealing means is provided between the surfaces 22a to 22d of the partition plate 22 and the refrigerant introduction space S2 (housing cover 2B), and a gap exists between the two surfaces 22 and 2B.
  • the scroll compression mechanism 4 sucks the refrigerant gas, thereby generating a negative pressure in the internal space S1 of the housing 2, and this negative pressure.
  • the refrigerant gas is introduced from the suction port 3 into the refrigerant introduction space S2.
  • the introduced refrigerant gas is distributed to the refrigerant supply passage 35 side and the scroll compression mechanism 4 side (inside the internal space S1) by the partition plate 22, but in this embodiment, the refrigerant gas introduced into the refrigerant introduction space S2. Is set to be distributed to the refrigerant supply passage 35 side.
  • the refrigerant gas distributed from the refrigerant introduction space S2 to the refrigerant supply passage 35 side flows in from the refrigerant guide passage 29 which is the starting point of the refrigerant supply passage 35, and is connected to the refrigerant supply grooves 32a and 32b and the end of the refrigerant supply passage 35.
  • the refrigerant flows into the seal space S3 through the upper refrigerant guide groove 25 (the refrigerant guide groove 25 at the 12 o'clock position shown in FIG. 3), and the lip seal 9 is caused by the mist-like lubricating oil contained in the refrigerant gas.
  • the sub bearing 7 is lubricated. When the refrigerant gas passes through the upper refrigerant guide groove 25, the refrigerant gas also flows into the sub bearing 7 from the oil supply hole 7 e formed in the outer ring member 7 a of the sub bearing 7, and lubricates the sub bearing 7.
  • the refrigerant gas (lubricating oil) that has finished lubricating the sub-bearing 7 is the refrigerant guide groove 25 at the three o'clock, six o'clock, and nine o'clock positions shown in FIG. 3, and the three that extend from these three refrigerant guide grooves 25.
  • the refrigerant discharge passage 27 and the refrigerant discharge passage 28 matched therewith are discharged to the internal space S1 side, and merge with the refrigerant gas that has passed through the gap between the partition plates 22 from the refrigerant introduction space S2.
  • This refrigerant gas passes through the main bearing 6 and lubricates it, and then is supplied to the crank pin 5a, the drive bush 16, the drive bearing 17, the rotation prevention mechanism 19, the scroll compression mechanism 4, and the like to lubricate them. Thereafter, the refrigerant gas is sucked into the scroll compression mechanism 4 and compressed to become compressed refrigerant gas, which is discharged from a discharge port formed in the housing 2 and supplied to a demand section such as a condenser.
  • the distribution amount of the refrigerant gas flowing from the refrigerant introduction space S2 to the refrigerant supply passage 35 side by the partition plate 22 is changed to the distribution amount of the refrigerant gas from the refrigerant introduction space S2 to the scroll compression mechanism 4 side (internal space S1). Therefore, a sufficient amount of refrigerant gas can be supplied to the lip seal 9. Therefore, even during a low load operation where the circulation amount of the refrigerant gas is reduced, the lip seal 9 is preferentially lubricated by the lubricating oil contained in the refrigerant gas, and the lubrication state of the lip seal 9 is improved to improve the lip 9a. Wear can be prevented.
  • the distribution ratio of the refrigerant gas by the partition plate 22 is set so that substantially the entire amount of the refrigerant gas introduced into the refrigerant introduction space S2 flows toward the refrigerant supply passage 35, the refrigerant sucked from the suction port 3 Substantially all of the gas initially flows to the lip seal 9. For this reason, the supply amount of the lubricating oil to the lip seal 9 becomes the maximum amount, and the lubricating state of the lip seal 9 can be maximized to prevent the lip 9a from being worn.
  • the distribution amount of the refrigerant gas can be freely set by appropriately setting the shape of the partition plate 22.
  • the coolant introduction space S2 or the housing cover 2B (the built-up portion 31) is formed by making a hole in the second horizontal surface 22d of the partition plate 22 or bending (deforming) the partition plate 22 (22a to 22d).
  • the refrigerant gas distribution ratio can be easily changed by making a change such as widening the gap between the refrigerant gas and the like.
  • a part of the coolant supply passage 35 is formed by covering the coolant supply grooves 32 a and 32 b formed on the inner surface of the housing 2 with the first vertical surface 22 a and the first horizontal surface 22 b of the partition plate 22.
  • the shape of the partition plate 22 may be a flat shape that can cover the coolant supply grooves 32a and 32b, and thus the shape of the partition plate 22 can be simplified.
  • the partition plate 22 is formed of a sheet metal material, and the surfaces 22a to 22d are flattened to simplify the shape. Therefore, the manufacturing is easy.
  • the refrigerant discharge passages 27 and 28 for introducing the refrigerant gas from the lip seal 9 to the scroll compression mechanism 4 side, the refrigerant gas and lubricating oil supplied to the lip seal 9 are scroll-compressed by the refrigerant discharge passages 27 and 28.
  • each part of the open scroll compressor 1 can be lubricated satisfactorily.
  • the lip seal 9 provided in the portion (shaft hole 8) where the drive shaft 5 protrudes from the housing 2 is included in the refrigerant gas.
  • Lubricating oil can be reliably lubricated and wear of the lip seal 9 (lip 9a) can be prevented.
  • the present invention is not limited to the configuration of the above-described embodiment, and can be appropriately changed or improved. Embodiments with such changes and improvements are also included in the scope of the right of the present invention.
  • the basic internal structure of the open scroll compressor 1 and the positional relationship of components are not necessarily the same as those shown in the present embodiment.
  • the refrigerant introduction space S2 formed inside the suction port 3 closes the bottom of the refrigerant passage hole 2Bb formed in the insertion flange 2Ba of the housing cover 2B by the second horizontal surface 22d of the partition plate 22.
  • the refrigerant introduction space S2 may be configured only by the shape of the partition plate 22, for example.
  • other types of refrigerant compression mechanisms such as a rotary type, a vane type, and a swash plate type may be used.

Abstract

An open-type refrigerant compressor (1) equipped with: a housing (2); an intake port (3); a compression mechanism (4) that compresses a refrigerant gas containing lubricating oil in the interior of the housing (2); a drive shaft (5) for driving the compression mechanism; a seal member (9) that is provided in a shaft hole (8) through which the drive shaft (5) protrudes to the outside from the housing (2), and that prevents refrigerant gas from leaking to the outside from the interior of the housing (2); a refrigerant supply passage (35) connecting the interior of the housing (2) and the seal member (9); and a refrigerant gas distribution unit (22) that distributes refrigerant gas, which has been introduced into the interior of the housing (2)from the intake port (3), to the refrigerant supply passage (35) side and the compression mechanism (4) side. The refrigerant gas distribution ratio of the refrigerant gas distributed by the refrigerant gas distribution unit (22) is set such that the amount distributed to the refrigerant supply passage (35) side is greater than the amount distributed to the compression mechanism (4) side.

Description

開放型冷媒圧縮機Open type refrigerant compressor
 本発明は、冷媒ガスを圧縮する開放型冷媒圧縮機に係り、詳しくは駆動軸がハウジングから突出する部分に設けられるシール部材の摩耗を防止するようにした開放型冷媒圧縮機に関するものである。 The present invention relates to an open-type refrigerant compressor that compresses refrigerant gas, and more particularly to an open-type refrigerant compressor that prevents wear of a seal member provided at a portion where a drive shaft protrudes from a housing.
 カーエアコン等において冷媒ガスを圧縮する冷媒圧縮機(コンプレッサ)は、アルミ合金等で形成されたハウジングの内部に圧縮機構が収容され、この圧縮機構を駆動する駆動軸がハウジングの一面から突出し、その突出部に設けられた電磁クラッチ付のプーリーがベルトを介してエンジン等に駆動されるようになっている。このような冷媒圧縮機は、そのハウジングに駆動軸を突出させる軸穴が形成されていることから開放型と呼ばれる。これに対し、密閉された圧力容器の内部に圧縮機構と駆動モータとが内蔵されたものは密閉型と呼ばれる。 A refrigerant compressor (compressor) that compresses refrigerant gas in a car air conditioner or the like has a compression mechanism housed inside a housing formed of aluminum alloy or the like, and a drive shaft that drives the compression mechanism protrudes from one surface of the housing. A pulley with an electromagnetic clutch provided at the protruding portion is driven by an engine or the like via a belt. Such a refrigerant compressor is called an open type because a shaft hole for projecting a drive shaft is formed in the housing. On the other hand, a structure in which a compression mechanism and a drive motor are built in a sealed pressure vessel is called a sealed type.
 開放型の冷媒圧縮機において、駆動軸の突出部、即ちハウジングの軸穴にはリップシール(リップ付のオイルシール)が設けられ、ハウジング内部の冷媒ガスが外部に漏洩することが防止されている。このリップシールは、冷媒ガスに混合された潤滑油によって潤滑されるが、冷媒ガスの循環量が低下する低負荷運転時等にはリップシールへの給油が不足することが考えられる。その場合はリップ先端が摩耗し、冷媒ガスおよび油漏れの原因となる懸念がある。 In an open type refrigerant compressor, a lip seal (oil seal with a lip) is provided at a protruding portion of the drive shaft, that is, a shaft hole of the housing, to prevent the refrigerant gas inside the housing from leaking to the outside. . The lip seal is lubricated by the lubricating oil mixed with the refrigerant gas, but it is considered that the lip seal is insufficiently supplied during low load operation where the circulation amount of the refrigerant gas is reduced. In that case, there is a concern that the tip of the lip is worn, causing refrigerant gas and oil leakage.
 この懸念を解決するため、例えば特許文献1に開示されているように、ハウジングの内壁面に、リップシールおよびその近傍にある軸受部材に通じる案内溝や連通孔を形成し、運転中にハウジング内部を流れる冷媒ガスおよび潤滑油がこれらのオイル通路を経てリップシールおよび軸受部材に供給されるようにした開放型冷媒圧縮機がある。 In order to solve this concern, for example, as disclosed in Patent Document 1, a guide groove or a communication hole that leads to a lip seal and a bearing member in the vicinity of the lip seal is formed on the inner wall surface of the housing. There are open-type refrigerant compressors in which refrigerant gas and lubricating oil flowing through are supplied to the lip seal and the bearing member through these oil passages.
特開2005-23849号公報JP 2005-23849 A
 しかしながら、従来では上記のようにハウジング内部を流れる冷媒ガスおよび潤滑油がどの程度リップシールに供給されているのかが判明せず、例えば一時的な潤滑油の不足によりリップシールが摩耗する可能性が残されていた。 However, in the past, as described above, it is not clear how much refrigerant gas and lubricating oil flowing inside the housing are supplied to the lip seal. For example, the lip seal may be worn due to a temporary shortage of lubricating oil. It was left.
 本発明は、このような課題を解決するためになされたものであり、駆動軸がハウジングから突出する部分に設けられるシール部材を冷媒ガスに含まれる潤滑油によって確実に潤滑可能にし、シール部材の摩耗を防止することのできる開放型冷媒圧縮機を提供することを目的とする。 The present invention has been made to solve such a problem. The seal member provided at the portion where the drive shaft protrudes from the housing can be reliably lubricated with the lubricating oil contained in the refrigerant gas, and the seal member An object of the present invention is to provide an open type refrigerant compressor capable of preventing wear.
 本発明に係る開放型冷媒圧縮機は、ハウジングと、前記ハウジングに形成された吸入ポートと、前記ハウジングの内部に設けられ、潤滑油を含む冷媒ガスを圧縮する圧縮機構と、前記圧縮機構を駆動する駆動軸と、前記駆動軸が前記ハウジングから外部に突出する軸穴に設けられ、前記ハウジングの内部から外部への前記冷媒ガスの漏出を防止するシール部材と、前記ハウジングの内部から前記シール部材に繋がる冷媒供給通路と、前記吸入ポートから前記ハウジングの内部に導入された前記冷媒ガスを、前記冷媒供給通路側と前記圧縮機構側とに分配する冷媒ガス分配部と、を備え、前記冷媒ガス分配部による前記冷媒ガスの分配率は、前記冷媒供給通路側への分配量が前記圧縮機構側への分配量よりも多くなるように設定されている。 An open-type refrigerant compressor according to the present invention includes a housing, a suction port formed in the housing, a compression mechanism that is provided inside the housing and compresses refrigerant gas containing lubricating oil, and drives the compression mechanism A drive shaft, a seal member provided in a shaft hole projecting outward from the housing, and preventing leakage of the refrigerant gas from the inside of the housing to the outside, and the seal member from the inside of the housing A refrigerant supply passage that leads to the refrigerant gas distribution portion, and a refrigerant gas distribution portion that distributes the refrigerant gas introduced into the housing from the suction port into the refrigerant supply passage side and the compression mechanism side, and the refrigerant gas The distribution ratio of the refrigerant gas by the distribution unit is set so that the distribution amount to the refrigerant supply passage side is larger than the distribution amount to the compression mechanism side.
 上記構成の開放型冷媒圧縮機によれば、吸入ポートからハウジングの内部に導入された冷媒ガスが、冷媒ガス分配部によって冷媒供給通路側と圧縮機構側とに分配される。冷媒供給通路側に分配された冷媒ガスはシール部材に流れ、冷媒ガス中に含まれる潤滑油によってシール部材が潤滑される。一方、圧縮機構側に分配された冷媒ガスは圧縮機構により圧縮されて圧縮冷媒ガスとなり、ハウジングに形成された吐出ポートから吐出される。 According to the open type refrigerant compressor configured as described above, the refrigerant gas introduced into the housing from the suction port is distributed to the refrigerant supply passage side and the compression mechanism side by the refrigerant gas distribution unit. The refrigerant gas distributed to the refrigerant supply passage side flows to the seal member, and the seal member is lubricated by the lubricating oil contained in the refrigerant gas. On the other hand, the refrigerant gas distributed to the compression mechanism side is compressed by the compression mechanism to become a compressed refrigerant gas, and is discharged from a discharge port formed in the housing.
 冷媒ガス分配部による冷媒ガスの分配率は、冷媒供給通路側への分配量が圧縮機構側への分配量よりも多くなるように設定されているため、十分な量の冷媒ガスがシール部材に供給される。したがって、冷媒ガス中に含まれる潤滑油によりシール部材を優先的に潤滑し、シール部材の潤滑状態を向上させて摩耗を防止することができる。シール部材に供給された冷媒ガスは、次に圧縮機構側に流れ、他の機構等を潤滑した後、圧縮機構により圧縮されて圧縮冷媒ガスとなる。 The distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is set so that the distribution amount to the refrigerant supply passage side is larger than the distribution amount to the compression mechanism side, so that a sufficient amount of refrigerant gas is applied to the seal member. Supplied. Therefore, the seal member can be preferentially lubricated with the lubricating oil contained in the refrigerant gas, and the lubrication state of the seal member can be improved to prevent wear. The refrigerant gas supplied to the seal member then flows to the compression mechanism side, lubricates other mechanisms, and is then compressed by the compression mechanism to become a compressed refrigerant gas.
 上記構成の開放型冷媒圧縮機において、前記冷媒ガス分配部による前記冷媒ガスの分配率は、前記吸入ポートから前記ハウジングの内部に導入された前記冷媒ガスの全量が前記冷媒供給通路側に流れるように設定してもよい。これにより、吸入ポートから吸入された冷媒ガスの全量が最初にシール部材に流れるため、シール部材への潤滑油の供給量が最大量となり、これによってシール部材の潤滑状態を最大限に向上させることができる。 In the open-type refrigerant compressor configured as described above, the distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is such that the entire amount of the refrigerant gas introduced into the housing from the suction port flows to the refrigerant supply passage side. May be set. As a result, since the entire amount of refrigerant gas sucked from the suction port first flows to the seal member, the supply amount of lubricating oil to the seal member becomes the maximum amount, thereby maximizing the lubrication state of the seal member. Can do.
 上記構成の開放型冷媒圧縮機において、前記冷媒ガス分配部は、前記ハウジングの内部に別部品として取り付けられるようにしてもよい。こうすれば、冷媒ガス分配部の形状を適宜設定することにより、冷媒ガスの分配量を自在に設定することができる。 In the open-type refrigerant compressor having the above-described configuration, the refrigerant gas distribution unit may be attached as a separate part inside the housing. If it carries out like this, the distribution amount of a refrigerant gas can be freely set by setting the shape of a refrigerant gas distribution part suitably.
 上記構成の開放型冷媒圧縮機において、冷媒供給通路は、その少なくとも一部が、前記ハウジングの内面に形成された冷媒供給溝に前記冷媒ガス分配部が被装されることによって形成されるようにしてもよい。こうすれば、冷媒ガス分配部の形状はハウジングの内面に形成された冷媒供給溝を覆うことができる形状であれば良いため、冷媒ガス分配部の形状を簡素化することができる。 In the open-type refrigerant compressor configured as described above, at least a part of the refrigerant supply passage is formed by mounting the refrigerant gas distribution portion in a refrigerant supply groove formed on the inner surface of the housing. May be. In this case, the shape of the refrigerant gas distribution part can be simplified as long as the shape of the refrigerant gas distribution part can cover the refrigerant supply groove formed in the inner surface of the housing.
 上記構成の開放型冷媒圧縮機において、前記冷媒供給通路の末端部は、前記シール部材と、該シール部材の内側に配置されている軸受部材との間に形成されたシール空間に連通するようにしてもよい。こうすれば、シール空間に供給された冷媒ガスが軸受部材の隙間を通過して圧縮機構側に流れ出るため、軸受部材を良好に潤滑できるとともに、シール部材への冷媒供給量が過剰になっても、シール部材に加わる冷媒ガスの圧力が過大になって冷媒が外部に漏れることを防止することができる。 In the open-type refrigerant compressor having the above-described configuration, the end portion of the refrigerant supply passage communicates with a seal space formed between the seal member and a bearing member disposed inside the seal member. May be. In this way, since the refrigerant gas supplied to the seal space passes through the clearance of the bearing member and flows out to the compression mechanism side, the bearing member can be well lubricated and even if the amount of refrigerant supplied to the seal member becomes excessive Further, it is possible to prevent the refrigerant from being leaked to the outside due to excessive pressure of the refrigerant gas applied to the seal member.
 上記構成の開放型冷媒圧縮機において、前記シール部材から前記圧縮機構側に前記冷媒ガスを導く冷媒排出通路を設けてもよい。こうすれば、シール部材に供給された冷媒ガスおよび潤滑油を冷媒排出通路によって圧縮機構側へと導き、冷媒ガスおよび潤滑油の定常流を形成することで、開放型冷媒圧縮機の各部の潤滑を良好に行うことができる。 In the open-type refrigerant compressor having the above-described configuration, a refrigerant discharge passage that guides the refrigerant gas from the seal member to the compression mechanism side may be provided. In this way, the refrigerant gas and the lubricating oil supplied to the seal member are guided to the compression mechanism side by the refrigerant discharge passage, and a steady flow of the refrigerant gas and the lubricating oil is formed, thereby lubricating each part of the open type refrigerant compressor. Can be performed satisfactorily.
 以上のように、本発明に係る開放型冷媒圧縮機によれば、駆動軸がハウジングから突出する部分に設けられるシール部材を冷媒ガスに含まれる潤滑油によって確実に潤滑可能にし、シール部材の摩耗を防止することができる。 As described above, according to the open type refrigerant compressor of the present invention, the seal member provided at the portion where the drive shaft protrudes from the housing can be reliably lubricated with the lubricating oil contained in the refrigerant gas, and the seal member is worn. Can be prevented.
本発明の一実施形態を示す開放型圧縮機の部分縦断面図である。It is a partial longitudinal cross-sectional view of the open type compressor which shows one Embodiment of this invention. 図1のII矢視により冷媒ガス分配部を示す分解斜視図である。It is a disassembled perspective view which shows a refrigerant gas distribution part by the II arrow view of FIG. 図1のIII-III線に沿うサブ軸受付近の縦断面図である。FIG. 3 is a longitudinal sectional view in the vicinity of a sub-bearing along the line III-III in FIG. 1.
 以下、本発明の実施形態について、図1乃至図3を参照しながら説明する。
 図1は、本発明の一実施形態を示す開放型スクロール圧縮機(開放型冷媒圧縮機)の部分縦断面図である。本実施形態に係る開放型スクロール圧縮機1は、例えば自動車のエンジンルーム内に設置されてエンジン動力により駆動され、冷媒ガスを圧縮するように構成されたカーエアコン用のものであるが、これに限らず、居住空間空調用や、冷凍システム、ヒートポンプ式給湯システム等に用いられる開放型圧縮機に本発明を適用してもよい。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
FIG. 1 is a partial longitudinal sectional view of an open scroll compressor (open refrigerant refrigerant compressor) showing an embodiment of the present invention. The open type scroll compressor 1 according to the present embodiment is for a car air conditioner that is installed in an engine room of an automobile and driven by engine power to compress refrigerant gas, for example. The present invention may be applied to an open-type compressor that is not limited to a living space air conditioner, a refrigeration system, a heat pump hot water supply system, or the like.
 開放型スクロール圧縮機1は、アルミ合金等で形成された略円筒形状のハウジング2を備えている。ハウジング2は、本体をなすハウジング本体2Aと、ハウジング本体2Aの一端に設けられた開口部を気密的に閉塞するようにボルト等で固定されるハウジングカバー2Bとから構成されている。ハウジング本体2Aの図示しない他端は閉塞されている。 The open scroll compressor 1 includes a substantially cylindrical housing 2 made of aluminum alloy or the like. The housing 2 includes a housing main body 2A that forms a main body, and a housing cover 2B that is fixed with bolts or the like so as to hermetically close an opening provided at one end of the housing main body 2A. The other end (not shown) of the housing body 2A is closed.
 ハウジング2の内部空間S1にはスクロール圧縮機構4(圧縮機構)および駆動軸5が収容されている。ハウジング2の外周面には、圧縮される前の冷媒ガスが吸入される吸入ポート3と、スクロール圧縮機構4により圧縮された冷媒ガスが吐出される吐出ポート(非図示)とが設けられている。 A scroll compression mechanism 4 (compression mechanism) and a drive shaft 5 are accommodated in the internal space S1 of the housing 2. The outer peripheral surface of the housing 2 is provided with a suction port 3 through which refrigerant gas before being compressed is sucked, and a discharge port (not shown) through which refrigerant gas compressed by the scroll compression mechanism 4 is discharged. .
 駆動軸5は、ハウジングカバー2Bにメイン軸受6およびサブ軸受7(軸受部材)を介して回転自在に支持されている。メイン軸受6としては例えば単列深溝玉軸受が用いられ、サブ軸受7としては例えばニードル軸受が用いられている。駆動軸5の一端はハウジングカバー2Bに形成された軸穴8を通って外部に突出している。サブ軸受7は軸穴8の内部に圧入されており、サブ軸受7の外方側にリップシール9(シール部材)が圧入されている。リップシール9はサブ軸受7に向かって傾倒し、且つ駆動軸5の外周面に軽く圧接されるリップ9aを備えている。 The drive shaft 5 is rotatably supported by the housing cover 2B via a main bearing 6 and a sub bearing 7 (bearing member). As the main bearing 6, for example, a single row deep groove ball bearing is used, and as the sub bearing 7, for example, a needle bearing is used. One end of the drive shaft 5 protrudes outside through a shaft hole 8 formed in the housing cover 2B. The sub bearing 7 is press-fitted into the shaft hole 8, and a lip seal 9 (seal member) is press-fitted on the outer side of the sub bearing 7. The lip seal 9 includes a lip 9 a that is inclined toward the sub-bearing 7 and is lightly pressed against the outer peripheral surface of the drive shaft 5.
 ハウジングカバー2Bの先端外周部にはプーリー軸受11を介してプーリー12が回転自在に設置されており、このプーリー12と図示しないエンジン等の駆動源に設けられた駆動プーリーとの間にベルト(非図示)が巻装される。駆動軸5の先端部に固定されたクラッチ板13がプーリー12の外端面に近接して対向しており、プーリー12の内側に位置するようにハウジングカバー2Bに固定された電磁クラッチ14が励磁されると、クラッチ板13がプーリー12側に引き付けられてプーリー12の外端面と摩擦係合し、プーリー12の回転が駆動軸5に伝達されて駆動軸5が回転する。 A pulley 12 is rotatably installed on the outer periphery of the front end of the housing cover 2B via a pulley bearing 11, and a belt (non-shown) is provided between the pulley 12 and a drive pulley provided in a drive source such as an engine (not shown). (Shown) is wound. A clutch plate 13 fixed to the front end of the drive shaft 5 faces the outer end surface of the pulley 12 in close proximity, and the electromagnetic clutch 14 fixed to the housing cover 2B is excited so as to be positioned inside the pulley 12. Then, the clutch plate 13 is attracted to the pulley 12 side and frictionally engages with the outer end surface of the pulley 12, and the rotation of the pulley 12 is transmitted to the drive shaft 5 so that the drive shaft 5 rotates.
 駆動軸5の後端には、駆動軸5の中心軸線に対して所定寸法だけ偏心したクランクピン5aが一体に形成されており、このクランクピン5aはドライブブッシュ16およびドライブ軸受17を介してスクロール圧縮機構4の旋回スクロール18背面に形成されたボス18aに嵌合されている。
 スクロール圧縮機構4は、旋回スクロール18と図示しない固定スクロールとが180度位相をずらされて噛み合わせられた公知の構成のものであり、駆動軸5が回転すると、自転防止機構19の働きによって旋回スクロール18が固定スクロールに対して公転旋回運動するように駆動され、両方のスクロール間に形成された一対の圧縮室(非図示)が外周位置から中心位置へと移動しながらその容積を漸次減少させる。
 このため、吸入ポート3からハウジング2の内部空間S1に吸入された冷媒ガスがスクロール圧縮機構4に吸入・圧縮されて吐出ポートから吐出され、図示しない凝縮器等に供給される。部材20はバランサウェイトである。
A crank pin 5 a that is eccentric by a predetermined dimension with respect to the central axis of the drive shaft 5 is integrally formed at the rear end of the drive shaft 5. The crank pin 5 a is scrolled via a drive bush 16 and a drive bearing 17. A boss 18 a formed on the rear surface of the orbiting scroll 18 of the compression mechanism 4 is fitted.
The scroll compression mechanism 4 has a known configuration in which the orbiting scroll 18 and a fixed scroll (not shown) are engaged with each other with a phase difference of 180 degrees. The scroll 18 is driven to revolve with respect to the fixed scroll, and a pair of compression chambers (not shown) formed between the two scrolls gradually reduce its volume while moving from the outer peripheral position to the center position. .
Therefore, the refrigerant gas sucked into the internal space S1 of the housing 2 from the suction port 3 is sucked and compressed by the scroll compression mechanism 4, discharged from the discharge port, and supplied to a condenser or the like (not shown). The member 20 is a balancer weight.
 冷媒ガス中には潤滑油(冷凍機油)が所定の比率で含まれており、この潤滑油のミストによってメイン軸受6、サブ軸受7、リップシール9、クランクピン5a、ドライブブッシュ16、ドライブ軸受17、自転防止機構19、スクロール圧縮機構4等の各内部機構部が潤滑されるようになっている。リップシール9は、ハウジング2の内部から外部への冷媒ガスおよび潤滑油の漏出を防止するシール部材であり、冷媒ガス中に含まれるオイルに潤滑されることでリップ9aの摩耗を防止されているが、冷媒ガスの循環量が低下する低負荷運転時等にはリップシール9の給油が不足してリップ9a先端が摩耗する虞がある。 The refrigerant gas contains lubricating oil (refrigerating machine oil) at a predetermined ratio, and the main bearing 6, sub bearing 7, lip seal 9, crank pin 5a, drive bush 16, drive bearing 17 by this lubricating oil mist. The internal mechanisms such as the rotation prevention mechanism 19 and the scroll compression mechanism 4 are lubricated. The lip seal 9 is a seal member that prevents leakage of refrigerant gas and lubricating oil from the inside of the housing 2 to the outside, and wear of the lip 9a is prevented by being lubricated by the oil contained in the refrigerant gas. However, there is a possibility that the tip of the lip 9a may be worn due to insufficient lubrication of the lip seal 9 during low load operation where the circulation amount of the refrigerant gas is reduced.
 このようなリップシール9の摩耗を防止するために、この開放型スクロール圧縮機1は、吸入ポート3から吸入された冷媒ガスを、ハウジング2の内部空間S1側よりもリップシール9側に優先的に流すように構成されている。その構成は以下の通りである。 In order to prevent such wear of the lip seal 9, the open scroll compressor 1 preferentially uses the refrigerant gas sucked from the suction port 3 to the lip seal 9 side rather than the internal space S <b> 1 side of the housing 2. It is comprised so that it may flow. The configuration is as follows.
 吸入ポート3の内側には冷媒導入空間S2が形成されている。この冷媒導入空間S2は、ハウジング本体2Aの開口部に差し込まれるハウジングカバー2Bの差し込みフランジ2Baに穿設した冷媒通過孔2Bb(従来から既存の孔)の底部を、図2にも示すような仕切りプレート22(冷媒ガス分配部)で閉塞することによって所定の容積(数cc程度)を有する部屋として画成したものである。なお、吸入ポート3および冷媒導入空間S2は、例えばハウジング2の最上部に位置付けられている。従来は仕切りプレート22が存在しなかったため、吸入ポート3は冷媒通過孔2Bbを経てそのまま内部空間S1に連通していた。 A refrigerant introduction space S2 is formed inside the suction port 3. This refrigerant introduction space S2 is a partition as shown in FIG. 2 at the bottom of the refrigerant passage hole 2Bb (conventional existing hole) drilled in the insertion flange 2Ba of the housing cover 2B inserted into the opening of the housing body 2A. The room is defined as a room having a predetermined volume (about several cc) by being blocked by the plate 22 (refrigerant gas distributor). The suction port 3 and the refrigerant introduction space S2 are positioned at the uppermost part of the housing 2, for example. Conventionally, since the partition plate 22 does not exist, the suction port 3 communicates with the internal space S1 as it is through the refrigerant passage hole 2Bb.
 図2に示すように、仕切りプレート22は、ハウジング2(2B)の内部に別部品として2本のボルト23で取り付けられるものである。仕切りプレート22は、例えば板金材料を階段状に屈曲成形した形状であり、図1および図2に示すように、ハウジング2の中心側から順に、第1垂直面22aと、第1水平面22bと、第2垂直面22cと、第2水平面22dとを有している。第2水平面22dは冷媒導入空間S2の底部なす面であり、第1垂直面22aの水平方向両端部にはボルト穴22eが穿設されている。 As shown in FIG. 2, the partition plate 22 is attached to the inside of the housing 2 (2B) with two bolts 23 as separate parts. The partition plate 22 has, for example, a shape obtained by bending a sheet metal material in a staircase shape, and as illustrated in FIGS. 1 and 2, in order from the center side of the housing 2, a first vertical surface 22a, a first horizontal surface 22b, A second vertical surface 22c and a second horizontal surface 22d are provided. The second horizontal surface 22d is a surface formed by the bottom of the refrigerant introduction space S2, and bolt holes 22e are formed at both ends in the horizontal direction of the first vertical surface 22a.
 図1および図3に示すように、サブ軸受7が圧入される軸穴8の内周面には、その周方向に等間隔で例えば4つの冷媒誘導溝25が形成されている。これらの冷媒誘導溝25は、例えば時計の文字盤における12時、3時、6時、9時の位置(図3参照)にそれぞれ配置されており、それらの先端はリップシール9とサブ軸受7との間に形成されたシール空間S3に連通し、後端はハウジング2の内部空間S1に連通している。図3に示すように、サブ軸受7は、外輪部材7aと、内輪部材7bと、これら内外輪部材7a,7b間に配置された複数のコロ状の転動部材7cと、これら複数の転動部材7cを等間隔に保持する保持器7dとを有している。外輪部材7aには冷媒誘導溝25に整合する位置に給油孔7eが形成されている。 As shown in FIGS. 1 and 3, on the inner peripheral surface of the shaft hole 8 into which the sub bearing 7 is press-fitted, for example, four refrigerant guiding grooves 25 are formed at equal intervals in the circumferential direction. These coolant guide grooves 25 are disposed at, for example, the 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock positions on the dial of the watch (see FIG. 3), and the tips of the refrigerant guide grooves 25 are the lip seal 9 and the sub-bearing 7. The rear end communicates with the internal space S1 of the housing 2. As shown in FIG. 3, the sub-bearing 7 includes an outer ring member 7a, an inner ring member 7b, a plurality of roller-shaped rolling members 7c disposed between the inner and outer ring members 7a and 7b, and the plurality of rolling elements. And a holder 7d for holding the members 7c at equal intervals. An oil supply hole 7e is formed in the outer ring member 7a at a position aligned with the refrigerant guide groove 25.
 また、図1および図3に示すように、3時、6時、9時の位置にある冷媒誘導溝25からは、駆動軸5の軸心線から放射方向に延びてハウジング2の内部空間S1に連通する冷媒排出通路27が形成されている。さらに、これら3つの冷媒排出通路27の位置に合わせて、ハウジングカバー2Bの差し込みフランジ2Baを貫通する3つの冷媒排出通路28が形成されている。これらの冷媒排出通路27,28は、後述するようにリップシール9に供給された冷媒ガスをスクロール圧縮機構4側に導く通路である。 As shown in FIGS. 1 and 3, the refrigerant guide groove 25 located at the 3 o'clock, 6 o'clock, and 9 o'clock positions extends in the radial direction from the axis of the drive shaft 5, and the internal space S <b> 1 of the housing 2. A refrigerant discharge passage 27 communicating with the refrigerant is formed. Further, three refrigerant discharge passages 28 penetrating the insertion flange 2Ba of the housing cover 2B are formed in accordance with the positions of the three refrigerant discharge passages 27. These refrigerant discharge passages 27 and 28 are passages that guide the refrigerant gas supplied to the lip seal 9 to the scroll compression mechanism 4 side, as will be described later.
 図2に示すように、ハウジング2(2B)の内部側から見て、軸穴8が内部空間S1側に開口する部分の上部内壁面に数ミリの高さを有する肉盛部31が形成されており、この肉盛部31の幅方向中央部に、図1にも示す鉛直方向に延びる冷媒供給溝32aが形成され、その両側にボルト穴33が形成されている。肉盛部31を形成することは必須ではなく、冷媒供給溝32aを形成可能であれば肉盛部31を省いてもよい。また、この冷媒供給溝32aの上端部からメイン軸受6側に向かって水平方向に延びる冷媒供給溝32bが形成されている(図1、図2参照)。冷媒供給溝32bには、前述の3つの冷媒排出通路28と同様に形成された1つの冷媒誘導通路29が連通しており、この冷媒誘導通路29の他端は冷媒導入空間S2に連通している。 As shown in FIG. 2, a built-up portion 31 having a height of several millimeters is formed on the upper inner wall surface of the portion where the shaft hole 8 opens on the inner space S1 side when viewed from the inner side of the housing 2 (2B). In addition, a refrigerant supply groove 32a extending in the vertical direction shown in FIG. 1 is formed at the center in the width direction of the built-up portion 31, and bolt holes 33 are formed on both sides thereof. It is not essential to form the built-up portion 31, and the built-up portion 31 may be omitted as long as the coolant supply groove 32 a can be formed. Further, a refrigerant supply groove 32b extending in the horizontal direction from the upper end of the refrigerant supply groove 32a toward the main bearing 6 is formed (see FIGS. 1 and 2). The refrigerant supply groove 32b communicates with one refrigerant guide passage 29 formed in the same manner as the three refrigerant discharge passages 28, and the other end of the refrigerant guide passage 29 communicates with the refrigerant introduction space S2. Yes.
 仕切りプレート22は、その第1垂直面22aが肉盛部31に当てがわれて2本のボルト23でボルト穴33に締結される。これにより、前述の通り仕切りプレート22の第2水平面22dによって冷媒導入空間S2の底部が閉塞される。また、冷媒供給溝32aと32bとに、それぞれ仕切りプレート22の第1垂直面22aと第1水平面22bとが被装され、冷媒供給溝32a,32bがそれぞれ内部空間S1に対して隔絶された通路となる。なお、図1では仕切りプレート22の第2水平面22dがメイン軸受6の外周面とハウジングカバー2Bとの間に挟まれる態様となっているが、メイン軸受6を境にして仕切りプレート22を2つに分割し、その各々を個別にハウジング2の内面に固定するようにしてもよい。 The first vertical surface 22 a of the partition plate 22 is applied to the built-up portion 31 and is fastened to the bolt hole 33 with two bolts 23. As a result, the bottom of the refrigerant introduction space S2 is closed by the second horizontal surface 22d of the partition plate 22 as described above. The refrigerant supply grooves 32a and 32b are respectively covered with the first vertical surface 22a and the first horizontal surface 22b of the partition plate 22, and the refrigerant supply grooves 32a and 32b are isolated from the internal space S1. It becomes. In FIG. 1, the second horizontal surface 22d of the partition plate 22 is sandwiched between the outer peripheral surface of the main bearing 6 and the housing cover 2B. However, two partition plates 22 are provided with the main bearing 6 as a boundary. It is also possible to divide each of them into an inner surface of the housing 2 individually.
 最上部の冷媒誘導溝25(図3中に示す12時の位置のもの)と、冷媒供給溝32aと、冷媒供給溝32bと、冷媒誘導通路29とにより、冷媒導入空間S2からリップシール9に繋がる冷媒供給通路35が形成されている。この冷媒供給通路35の末端部は軸穴8の内周面に形成された冷媒誘導溝25であるため、リップシール9とサブ軸受7との間のシール空間S3に通じている。そして、仕切りプレート22は、吸入ポート3から冷媒導入空間S2に導入された冷媒ガスを、冷媒供給通路35側とスクロール圧縮機構4側とに分配する冷媒ガス分配部として機能する。 The uppermost refrigerant guide groove 25 (at the 12 o'clock position shown in FIG. 3), the refrigerant supply groove 32a, the refrigerant supply groove 32b, and the refrigerant guide passage 29 are connected to the lip seal 9 from the refrigerant introduction space S2. A connected refrigerant supply passage 35 is formed. Since the end portion of the coolant supply passage 35 is a coolant guide groove 25 formed on the inner peripheral surface of the shaft hole 8, it communicates with the seal space S 3 between the lip seal 9 and the sub bearing 7. The partition plate 22 functions as a refrigerant gas distribution unit that distributes the refrigerant gas introduced into the refrigerant introduction space S2 from the suction port 3 to the refrigerant supply passage 35 side and the scroll compression mechanism 4 side.
 本実施形態における仕切りプレート22による冷媒ガスの分配率は、冷媒供給通路35側への分配量の方がスクロール圧縮機構4側への分配量よりも格段に多くなるように設定されている。即ち、冷媒導入空間S2から冷媒供給通路35側への冷媒ガスの流動抵抗が、冷媒導入空間S2からスクロール圧縮機構4側への冷媒ガスの流動抵抗よりも大幅に小さくなるように仕切りプレート22の形状が定められている。 In the present embodiment, the distribution ratio of the refrigerant gas by the partition plate 22 is set so that the distribution amount to the refrigerant supply passage 35 side is significantly larger than the distribution amount to the scroll compression mechanism 4 side. That is, the flow resistance of the refrigerant gas from the refrigerant introduction space S2 to the refrigerant supply passage 35 side is significantly smaller than the flow resistance of the refrigerant gas from the refrigerant introduction space S2 to the scroll compression mechanism 4 side. The shape is defined.
 例えば、本実施形態では仕切りプレート22の第2水平面22dによって冷媒導入空間S2の底部が全面的に閉塞されているため、冷媒ガスの分配率は、冷媒導入空間S2に導入された冷媒ガスのほぼ全量が冷媒供給通路35側に流れるように設定されている。しかしながら実際には、仕切りプレート22の各面22a~22dと冷媒導入空間S2(ハウジングカバー2B)との間にシール手段が設けられておらず、両者22,2B間に隙間が存在するため、冷媒導入空間S2に流入する冷媒ガスのうちの若干量がこの隙間からスクロール圧縮機構4側(内部空間S1側)に漏出することになる。 For example, in the present embodiment, since the bottom of the refrigerant introduction space S2 is entirely closed by the second horizontal surface 22d of the partition plate 22, the distribution ratio of the refrigerant gas is substantially equal to that of the refrigerant gas introduced into the refrigerant introduction space S2. The whole amount is set to flow toward the refrigerant supply passage 35. However, in actuality, no sealing means is provided between the surfaces 22a to 22d of the partition plate 22 and the refrigerant introduction space S2 (housing cover 2B), and a gap exists between the two surfaces 22 and 2B. Some amount of the refrigerant gas flowing into the introduction space S2 leaks from the gap to the scroll compression mechanism 4 side (internal space S1 side).
 以上のように構成された開放型スクロール圧縮機1において、駆動軸5が回転すると、スクロール圧縮機構4が冷媒ガスを吸入することよってハウジング2の内部空間S1に負圧が発生し、この負圧によって吸入ポート3から冷媒導入空間S2に冷媒ガスが導入される。導入された冷媒ガスは、仕切りプレート22によって冷媒供給通路35側とスクロール圧縮機構4側(内部空間S1側)とに分配されるが、本実施形態では、冷媒導入空間S2に導入された冷媒ガスの略全量が冷媒供給通路35側に分配されるように設定されている。 In the open type scroll compressor 1 configured as described above, when the drive shaft 5 rotates, the scroll compression mechanism 4 sucks the refrigerant gas, thereby generating a negative pressure in the internal space S1 of the housing 2, and this negative pressure. As a result, the refrigerant gas is introduced from the suction port 3 into the refrigerant introduction space S2. The introduced refrigerant gas is distributed to the refrigerant supply passage 35 side and the scroll compression mechanism 4 side (inside the internal space S1) by the partition plate 22, but in this embodiment, the refrigerant gas introduced into the refrigerant introduction space S2. Is set to be distributed to the refrigerant supply passage 35 side.
 即ち、冷媒導入空間S2から冷媒供給通路35側に分配された冷媒ガスは、冷媒供給通路35の始点である冷媒誘導通路29から流入し、冷媒供給溝32a,32bと、冷媒供給通路35の末端部である上側の冷媒誘導溝25(図3に示す12時の位置にある冷媒誘導溝25)とを経てシール空間S3に流れ、この冷媒ガスに含まれるミスト状の潤滑油によってリップシール9とサブ軸受7とが潤滑される。冷媒ガスは上側の冷媒誘導溝25を通過する際にサブ軸受7の外輪部材7aに形成された給油孔7eからもサブ軸受7の内部に流入し、サブ軸受7を潤滑する。 That is, the refrigerant gas distributed from the refrigerant introduction space S2 to the refrigerant supply passage 35 side flows in from the refrigerant guide passage 29 which is the starting point of the refrigerant supply passage 35, and is connected to the refrigerant supply grooves 32a and 32b and the end of the refrigerant supply passage 35. The refrigerant flows into the seal space S3 through the upper refrigerant guide groove 25 (the refrigerant guide groove 25 at the 12 o'clock position shown in FIG. 3), and the lip seal 9 is caused by the mist-like lubricating oil contained in the refrigerant gas. The sub bearing 7 is lubricated. When the refrigerant gas passes through the upper refrigerant guide groove 25, the refrigerant gas also flows into the sub bearing 7 from the oil supply hole 7 e formed in the outer ring member 7 a of the sub bearing 7, and lubricates the sub bearing 7.
 サブ軸受7を潤滑し終えた冷媒ガス(潤滑油)は、図3に示す3時、6時、9時の位置にある冷媒誘導溝25と、これら3本の冷媒誘導溝25から延びる3本の冷媒排出通路27、およびこれらに整合する冷媒排出通路28を通って内部空間S1側に放出され、冷媒導入空間S2から仕切りプレート22の隙間を通過した冷媒ガスと合流する。この冷媒ガスは、メイン軸受6を通過してこれを潤滑した後、クランクピン5a、ドライブブッシュ16、ドライブ軸受17、自転防止機構19、スクロール圧縮機構4等に供給されてこれらを潤滑する。その後、冷媒ガスはスクロール圧縮機構4に吸入され、圧縮されて圧縮冷媒ガスとなり、ハウジング2に形成された吐出ポートから吐出されて凝縮器等の需要部に供給される。 The refrigerant gas (lubricating oil) that has finished lubricating the sub-bearing 7 is the refrigerant guide groove 25 at the three o'clock, six o'clock, and nine o'clock positions shown in FIG. 3, and the three that extend from these three refrigerant guide grooves 25. The refrigerant discharge passage 27 and the refrigerant discharge passage 28 matched therewith are discharged to the internal space S1 side, and merge with the refrigerant gas that has passed through the gap between the partition plates 22 from the refrigerant introduction space S2. This refrigerant gas passes through the main bearing 6 and lubricates it, and then is supplied to the crank pin 5a, the drive bush 16, the drive bearing 17, the rotation prevention mechanism 19, the scroll compression mechanism 4, and the like to lubricate them. Thereafter, the refrigerant gas is sucked into the scroll compression mechanism 4 and compressed to become compressed refrigerant gas, which is discharged from a discharge port formed in the housing 2 and supplied to a demand section such as a condenser.
 このように、仕切りプレート22によって、冷媒導入空間S2から冷媒供給通路35側へ流れる冷媒ガスの分配量が、冷媒導入空間S2からスクロール圧縮機構4側(内部空間S1)への冷媒ガスの分配量よりも多くなるように設定されているため、十分な量の冷媒ガスをリップシール9に供給することができる。したがって、冷媒ガスの循環量が低下する低負荷運転時等においても、冷媒ガス中に含まれる潤滑油によってリップシール9を優先的に潤滑し、リップシール9の潤滑状態を向上させてリップ9aの摩耗を防止することができる。 As described above, the distribution amount of the refrigerant gas flowing from the refrigerant introduction space S2 to the refrigerant supply passage 35 side by the partition plate 22 is changed to the distribution amount of the refrigerant gas from the refrigerant introduction space S2 to the scroll compression mechanism 4 side (internal space S1). Therefore, a sufficient amount of refrigerant gas can be supplied to the lip seal 9. Therefore, even during a low load operation where the circulation amount of the refrigerant gas is reduced, the lip seal 9 is preferentially lubricated by the lubricating oil contained in the refrigerant gas, and the lubrication state of the lip seal 9 is improved to improve the lip 9a. Wear can be prevented.
 本実施形態では、仕切りプレート22による冷媒ガスの分配率を、冷媒導入空間S2に導入された冷媒ガスの略全量が冷媒供給通路35側に流れるように設定したため、吸入ポート3から吸入された冷媒ガスの略全量が最初にリップシール9に流れる。このため、リップシール9への潤滑油の供給量が最大量となり、リップシール9の潤滑状態を最大限に向上させてリップ9aの摩耗を防止することができる。 In the present embodiment, since the distribution ratio of the refrigerant gas by the partition plate 22 is set so that substantially the entire amount of the refrigerant gas introduced into the refrigerant introduction space S2 flows toward the refrigerant supply passage 35, the refrigerant sucked from the suction port 3 Substantially all of the gas initially flows to the lip seal 9. For this reason, the supply amount of the lubricating oil to the lip seal 9 becomes the maximum amount, and the lubricating state of the lip seal 9 can be maximized to prevent the lip 9a from being worn.
 仕切りプレート22は、ハウジング2の内部に別部品として取り付けられるようになっているため、仕切りプレート22の形状を適宜設定することにより、冷媒ガスの分配量を自在に設定することができる。例えば、仕切りプレート22の第2水平面22d等に穴を穿設する、あるいは仕切りプレート22(22a~22d)を曲げる(変形させる)等して冷媒導入空間S2やハウジングカバー2B(肉盛部31)等との間の隙間を広くする、といった変更を施すことにより、上記の冷媒ガス分配率を容易に変更することができる。 Since the partition plate 22 is attached to the inside of the housing 2 as a separate part, the distribution amount of the refrigerant gas can be freely set by appropriately setting the shape of the partition plate 22. For example, the coolant introduction space S2 or the housing cover 2B (the built-up portion 31) is formed by making a hole in the second horizontal surface 22d of the partition plate 22 or bending (deforming) the partition plate 22 (22a to 22d). The refrigerant gas distribution ratio can be easily changed by making a change such as widening the gap between the refrigerant gas and the like.
 冷媒供給通路35は、その一部が、ハウジング2の内面に形成された冷媒供給溝32a,32bに仕切りプレート22の第1垂直面22aおよび第1水平面22bが被装されることによって形成されている。本構成によれば、仕切りプレート22の形状は冷媒供給溝32a,32bを覆うことができる平坦な形状であれば良いため、仕切りプレート22の形状を簡素化することができる。例えば、本実施形態では仕切りプレート22を板金材料で形成し、その各面22a~22dを平坦にして形状を簡素化しているため、製造が容易になっている。 A part of the coolant supply passage 35 is formed by covering the coolant supply grooves 32 a and 32 b formed on the inner surface of the housing 2 with the first vertical surface 22 a and the first horizontal surface 22 b of the partition plate 22. Yes. According to this configuration, the shape of the partition plate 22 may be a flat shape that can cover the coolant supply grooves 32a and 32b, and thus the shape of the partition plate 22 can be simplified. For example, in the present embodiment, the partition plate 22 is formed of a sheet metal material, and the surfaces 22a to 22d are flattened to simplify the shape. Therefore, the manufacturing is easy.
 冷媒供給通路35の末端部である冷媒誘導溝25は、リップシール9とサブ軸受7との間に形成されたシール空間S3に連通しているため、リップシール9に供給された冷媒ガスがサブ軸受7の隙間を通過してスクロール圧縮機構4側に流れ出る。このため、サブ軸受7を良好に潤滑するとともに、リップシール9への冷媒供給量が過剰になっても、リップシール9に加わる冷媒ガスの圧力が過大になって冷媒が外部に漏れることを防止することができる。 The refrigerant guide groove 25, which is the end portion of the refrigerant supply passage 35, communicates with a seal space S 3 formed between the lip seal 9 and the sub bearing 7, so that the refrigerant gas supplied to the lip seal 9 is sub It passes through the clearance of the bearing 7 and flows out to the scroll compression mechanism 4 side. Therefore, the sub-bearing 7 is well lubricated, and even if the amount of refrigerant supplied to the lip seal 9 becomes excessive, the refrigerant gas pressure applied to the lip seal 9 is prevented from excessively leaking to the outside. can do.
 また、リップシール9からスクロール圧縮機構4側に冷媒ガスを導く冷媒排出通路27,28を設けたことにより、リップシール9に供給された冷媒ガスおよび潤滑油を冷媒排出通路27,28によってスクロール圧縮機構4側へと導き、冷媒ガスおよび潤滑油の定常流を形成することで、開放型スクロール圧縮機1の各部の潤滑を良好に行うことができる。 Further, by providing the refrigerant discharge passages 27 and 28 for introducing the refrigerant gas from the lip seal 9 to the scroll compression mechanism 4 side, the refrigerant gas and lubricating oil supplied to the lip seal 9 are scroll-compressed by the refrigerant discharge passages 27 and 28. By guiding to the mechanism 4 side and forming a steady flow of refrigerant gas and lubricating oil, each part of the open scroll compressor 1 can be lubricated satisfactorily.
 以上に説明したように、本実施形態に係る開放型スクロール圧縮機1によれば、駆動軸5がハウジング2から突出する部分(軸穴8)に設けられるリップシール9を、冷媒ガスに含まれる潤滑油によって確実に潤滑可能にし、リップシール9(リップ9a)の摩耗を防止することができる。 As described above, according to the open-type scroll compressor 1 according to the present embodiment, the lip seal 9 provided in the portion (shaft hole 8) where the drive shaft 5 protrudes from the housing 2 is included in the refrigerant gas. Lubricating oil can be reliably lubricated and wear of the lip seal 9 (lip 9a) can be prevented.
 なお、本発明は上記実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。
 例えば、開放型スクロール圧縮機1の基本的な内部構造や部品の位置関係等については、必ずしも本実施形態に示すものと同一である必要はない。
 特に、上記実施形態では、吸入ポート3の内側に形成された冷媒導入空間S2が、ハウジングカバー2Bの差し込みフランジ2Baに穿設した冷媒通過孔2Bbの底部を仕切りプレート22の第2水平面22dによって閉塞することによって構成されているが、例えば仕切りプレート22の形状のみによって冷媒導入空間S2を構成するようにしてもよい。
 また、スクロール式の冷媒圧縮機構に代えて、ロータリー式、ベーン式、斜板式等、他の形式の冷媒圧縮機構にしてもよい。
It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and can be appropriately changed or improved. Embodiments with such changes and improvements are also included in the scope of the right of the present invention. And
For example, the basic internal structure of the open scroll compressor 1 and the positional relationship of components are not necessarily the same as those shown in the present embodiment.
In particular, in the above embodiment, the refrigerant introduction space S2 formed inside the suction port 3 closes the bottom of the refrigerant passage hole 2Bb formed in the insertion flange 2Ba of the housing cover 2B by the second horizontal surface 22d of the partition plate 22. However, the refrigerant introduction space S2 may be configured only by the shape of the partition plate 22, for example.
Further, instead of the scroll type refrigerant compression mechanism, other types of refrigerant compression mechanisms such as a rotary type, a vane type, and a swash plate type may be used.
1 開放型冷媒圧縮機
2 ハウジング
3 吸入ポート
4 スクロール圧縮機構(圧縮機構)
5 駆動軸
7 サブ軸受(軸受部材)
8 軸穴
9 リップシール(シール部材)
22 仕切りプレート(冷媒ガス分配部)
27,28 冷媒排出通路
32a,32b 冷媒供給溝
35 冷媒供給通路
S1 内部空間
S2 冷媒導入空間
S3 シール空間
DESCRIPTION OF SYMBOLS 1 Open type refrigerant compressor 2 Housing 3 Suction port 4 Scroll compression mechanism (compression mechanism)
5 Drive shaft 7 Sub bearing (bearing member)
8 Shaft hole 9 Lip seal (seal member)
22 Partition plate (refrigerant gas distribution part)
27, 28 Refrigerant discharge passages 32a, 32b Refrigerant supply groove 35 Refrigerant supply passage S1 Internal space S2 Refrigerant introduction space S3 Seal space

Claims (6)

  1.  ハウジングと、
     前記ハウジングに形成された吸入ポートと、
     前記ハウジングの内部に設けられ、潤滑油を含む冷媒ガスを圧縮する圧縮機構と、
     前記圧縮機構を駆動する駆動軸と、
     前記駆動軸が前記ハウジングから外部に突出する軸穴に設けられ、前記ハウジングの内部から外部への前記冷媒ガスの漏出を防止するシール部材と、
     前記ハウジングの内部から前記シール部材に繋がる冷媒供給通路と、
     前記吸入ポートから前記ハウジングの内部に導入された前記冷媒ガスを、前記冷媒供給通路側と前記圧縮機構側とに分配する冷媒ガス分配部と、
    を備え、
     前記冷媒ガス分配部による前記冷媒ガスの分配率は、前記冷媒供給通路側への分配量が前記圧縮機構側への分配量よりも多くなるように設定されている開放型冷媒圧縮機。
    A housing;
    A suction port formed in the housing;
    A compression mechanism provided inside the housing and compressing a refrigerant gas containing lubricating oil;
    A drive shaft for driving the compression mechanism;
    The drive shaft is provided in a shaft hole projecting outward from the housing, and a seal member for preventing leakage of the refrigerant gas from the inside of the housing to the outside;
    A refrigerant supply passage connected from the inside of the housing to the seal member;
    A refrigerant gas distribution unit that distributes the refrigerant gas introduced into the housing from the suction port into the refrigerant supply passage side and the compression mechanism side;
    With
    The distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is an open type refrigerant compressor in which the distribution amount to the refrigerant supply passage side is set to be larger than the distribution amount to the compression mechanism side.
  2.  前記冷媒ガス分配部による前記冷媒ガスの分配率は、前記吸入ポートから前記ハウジングの内部に導入された前記冷媒ガスの全量が前記冷媒供給通路側に流れるように設定されている請求項1に記載の開放型冷媒圧縮機。 The distribution ratio of the refrigerant gas by the refrigerant gas distribution unit is set so that the entire amount of the refrigerant gas introduced into the housing from the suction port flows to the refrigerant supply passage side. Open type refrigerant compressor.
  3.  前記冷媒ガス分配部は、前記ハウジングの内部に別部品として取り付けられる請求項1又は2に記載の開放型冷媒圧縮機。 The open-type refrigerant compressor according to claim 1 or 2, wherein the refrigerant gas distribution unit is attached as a separate part inside the housing.
  4.  冷媒供給通路は、その少なくとも一部が、前記ハウジングの内面に形成された冷媒供給溝に前記冷媒ガス分配部が被装されることによって形成されている請求項3に記載の開放型冷媒圧縮機。 The open-type refrigerant compressor according to claim 3, wherein at least a part of the refrigerant supply passage is formed by mounting the refrigerant gas distribution portion in a refrigerant supply groove formed on an inner surface of the housing. .
  5.  前記冷媒供給通路の末端部は、前記シール部材と、該シール部材の内側に配置されている軸受部材との間に形成されたシール空間に連通している請求項1から4のいずれかに記載の開放型冷媒圧縮機。 The end portion of the refrigerant supply passage communicates with a seal space formed between the seal member and a bearing member disposed inside the seal member. Open type refrigerant compressor.
  6.  前記シール部材から前記圧縮機構側に前記冷媒ガスを導く冷媒排出通路が設けられている請求項1から5のいずれかに記載の開放型冷媒圧縮機。 The open type refrigerant compressor according to any one of claims 1 to 5, further comprising a refrigerant discharge passage for guiding the refrigerant gas from the seal member to the compression mechanism side.
PCT/JP2017/024878 2016-07-11 2017-07-06 Open-type refrigerant compressor WO2018012411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17827539.2A EP3418569B1 (en) 2016-07-11 2017-07-06 Open-type refrigerant compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136771A JP6762785B2 (en) 2016-07-11 2016-07-11 Open refrigerant compressor
JP2016-136771 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012411A1 true WO2018012411A1 (en) 2018-01-18

Family

ID=60953108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024878 WO2018012411A1 (en) 2016-07-11 2017-07-06 Open-type refrigerant compressor

Country Status (3)

Country Link
EP (1) EP3418569B1 (en)
JP (1) JP6762785B2 (en)
WO (1) WO2018012411A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020633A (en) 2018-04-24 2020-12-01 安捷伦科技有限公司 Spectrophotometer calibration method and system
US11879464B1 (en) 2022-09-13 2024-01-23 Mahle International Gmbh Electric compressor having a swing link and integrated limit pin and swing link and integrated limit pin for use in an electric compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176543A (en) * 2002-11-22 2004-06-24 Sanden Corp Compressor
JP2014227956A (en) * 2013-05-24 2014-12-08 カルソニックカンセイ株式会社 Gas compressor
US20150337964A1 (en) * 2012-12-31 2015-11-26 Thermo King Corporation Device and method for extending the lifespan of a shaft seal for an open-drive compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538975A (en) * 1983-08-16 1985-09-03 Sanden Corporation Scroll type compressor with lubricating system
JPH0823351B2 (en) * 1987-09-12 1996-03-06 株式会社豊田自動織機製作所 Lubrication structure of shaft seal mechanism in vane compressor
JP3207308B2 (en) * 1993-12-16 2001-09-10 株式会社デンソー Scroll compressor
JPH0932745A (en) * 1995-07-17 1997-02-04 Matsushita Electric Ind Co Ltd Open type scroll compressor
JP5782296B2 (en) * 2011-05-13 2015-09-24 サンデンホールディングス株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176543A (en) * 2002-11-22 2004-06-24 Sanden Corp Compressor
US20150337964A1 (en) * 2012-12-31 2015-11-26 Thermo King Corporation Device and method for extending the lifespan of a shaft seal for an open-drive compressor
JP2014227956A (en) * 2013-05-24 2014-12-08 カルソニックカンセイ株式会社 Gas compressor

Also Published As

Publication number Publication date
EP3418569A4 (en) 2019-04-17
EP3418569B1 (en) 2020-03-25
JP2018009457A (en) 2018-01-18
EP3418569A1 (en) 2018-12-26
JP6762785B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
KR930008349B1 (en) Scroll compressor
US6439867B1 (en) Scroll compressor having a clearance for the oldham coupling
JP4104047B2 (en) Scroll compressor
WO2018012411A1 (en) Open-type refrigerant compressor
JPH07145785A (en) Trochoid type refrigerant compressor
US6179591B1 (en) Conical hub bearing for scroll machine
JP4681322B2 (en) Scroll compressor
JP6633305B2 (en) Scroll compressor
JP2004316537A (en) Fluid compressor
EP3318759A1 (en) Scroll compressor
CN213981182U (en) Movable scroll assembly and scroll compressor comprising same
JPH06346878A (en) Rotary compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
JP2718246B2 (en) Horizontal open compressor
JP3153200U (en) Piston type compressor
JPS6350696A (en) Rotary compressor
EP3450754A1 (en) Open type refrigerant compressor
JP3601067B2 (en) Hermetic compressor
JP4421359B2 (en) Gas compressor
WO2018030065A1 (en) Scroll-type fluid machine
WO2018030066A1 (en) Fluid machine
JP2552309Y2 (en) Scroll compressor
JP5285339B2 (en) Scroll compressor
JP3535675B2 (en) Fluid compressor
JPH0914163A (en) Scroll type compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017827539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017827539

Country of ref document: EP

Effective date: 20180918

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE