WO2018012378A1 - Coil module - Google Patents

Coil module Download PDF

Info

Publication number
WO2018012378A1
WO2018012378A1 PCT/JP2017/024702 JP2017024702W WO2018012378A1 WO 2018012378 A1 WO2018012378 A1 WO 2018012378A1 JP 2017024702 W JP2017024702 W JP 2017024702W WO 2018012378 A1 WO2018012378 A1 WO 2018012378A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
substrate
antenna
resin member
booster
Prior art date
Application number
PCT/JP2017/024702
Other languages
French (fr)
Japanese (ja)
Inventor
啓人 米森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018012378A1 publication Critical patent/WO2018012378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof

Definitions

  • the present invention relates to a coil module, and more particularly to a module including a coil antenna.
  • ultra-small coil antennas are well known (for example, Patent Documents 1 to 3).
  • the coil antenna is used, for example, for transmission / reception of a signal having a frequency of HF (High Frequency) band of 3 to 30 MHz or higher.
  • HF High Frequency
  • Patent Documents 1 and 2 disclose an IC (Integrated Circuit) chip with a coil in which a coil antenna is formed on a rewiring layer of a semiconductor chip.
  • Patent Document 3 discloses a multilayer inductor element in which a coil antenna is formed on a ferrite multilayer substrate.
  • Patent Documents 1 to 3 all disclose that a coil antenna is formed on a small thin substrate, and it is difficult to obtain sufficient antenna performance (for example, communication distance).
  • antenna performance for example, communication distance.
  • increasing the thickness of the thin substrate and increasing the diameter of the coil antenna will improve the antenna performance.
  • the possibility of mechanical damage such as disconnection will increase, and the reliability of the coil antenna itself will increase. It will decline.
  • the present invention provides a coil module that can improve antenna performance while achieving both miniaturization and reliability.
  • a coil module includes a substrate having a coil antenna and a resin member that covers at least one main surface of the substrate, and the resin member includes the coil.
  • a booster coil is provided that is not directly connected to the antenna but is coupled via a magnetic field.
  • the antenna performance is improved by coupling the booster coil with the coil antenna via a magnetic field instead of increasing the size of the coil antenna. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs.
  • the coil diameter of the booster coil may be larger than the coil diameter of the coil antenna.
  • the antenna performance can be improved more reliably.
  • the resin member may be a member that is more flexible than the substrate.
  • the stress when stress is applied, the stress can be absorbed by deformation of the resin member to prevent the coil module from being damaged, and the reliability is improved.
  • the substrate may be a ceramic substrate or a semiconductor substrate
  • the resin member may be a thermoplastic resin member
  • the coil module can be easily manufactured using a material having good availability and workability.
  • the substrate is a ceramic substrate incorporating the coil antenna, and a connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate, and the resin member is formed of the ceramic substrate.
  • the surface electrode electrically connected to the connection terminal may be provided on the exposed surface of the resin package.
  • the coil antenna and the booster coil can be arranged in a stacked manner, a coil module as a chip antenna having a small footprint and excellent reliability and antenna characteristics can be obtained.
  • the substrate is formed by arranging a rewiring layer in which the coil antenna is formed on one main surface of a semiconductor substrate, and the resin member is a resin layer covering the other main surface of the semiconductor substrate, A surface electrode electrically connected to the coil antenna may be provided on an exposed surface of the redistribution layer that is not in contact with the semiconductor substrate.
  • the coil antenna and the booster coil can be stacked and arranged, so that an IC chip having an antenna having a small footprint and excellent reliability and characteristics can be obtained.
  • the surface electrode may be connected to the coil antenna via the IC chip, and the IC chip may have a power feeding circuit to the coil antenna.
  • a coil module as a highly convenient RF (high frequency) IC chip in which required functions are integrated is obtained.
  • the substrate is a ceramic substrate incorporating the coil antenna, and a connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate, and the other main surface of the ceramic substrate is provided on the other main surface.
  • a chip component is mounted and constitutes a composite component together with the ceramic substrate, and the resin member is a resin package for sealing the composite component, and is electrically connected to the connection terminal on the exposed surface of the resin package.
  • a surface electrode may be provided.
  • a chip component, a coil antenna, and a booster coil can be stacked and disposed, so that a module having a built-in antenna with a small footprint and excellent reliability and characteristics can be obtained.
  • the surface electrode may be connected to the coil antenna via a chip component, and the chip component may be an RFIC chip having a power feeding circuit to the coil antenna.
  • the substrate includes a redistribution layer on which the coil antenna is formed on one main surface of the semiconductor substrate, and the main surface of the redistribution layer that is not in contact with the semiconductor substrate is connected to the coil antenna.
  • An electrically connected connection terminal is provided, and the resin member is a resin package for sealing an IC chip composed of the semiconductor substrate and the rewiring layer, and the exposed surface of the resin package has the A surface electrode electrically connected to the connection terminal may be provided.
  • the coil antenna and the booster coil can be arranged in a stacked manner, a module having an antenna having a small footprint and excellent reliability and characteristics can be obtained.
  • the surface electrode may be connected to the coil antenna via the IC chip, and the IC chip may have a power feeding circuit to the coil antenna.
  • the coil conductor constituting the coil antenna and the coil conductor constituting the booster coil may be arranged in a loop around axes that are not parallel to each other in an overlapping region when viewed in the stacking direction.
  • the coil antenna and the booster coil are arranged in an overlapping region when viewed in the stacking direction (in other words, when the coil module is viewed in plan), and therefore the magnetic field between the coil antenna and the booster coil is reduced. Therefore, the effect of improving the antenna performance can be obtained.
  • the restriction on the arrangement is greatly eased.
  • a booster coil that is not directly connected to the coil antenna is provided, and the booster coil is coupled to the coil antenna via a magnetic field. .
  • a coil module capable of improving antenna performance while achieving both miniaturization and reliability can be obtained without increasing the concern of mechanical damage such as disconnection.
  • FIG. 1 is a side view showing an example of the configuration of the coil module according to the first embodiment.
  • FIG. 2 is a top view showing an example of the configuration of the coil module according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the first embodiment.
  • 4A is a diagram for explaining an example of a configuration of a booster coil and a capacitor according to Embodiment 1.
  • FIG. 4B is a diagram illustrating an example of the configuration of the booster coil and the capacitor according to Embodiment 1.
  • FIG. 4C is a diagram illustrating an example of a configuration of a booster coil and a capacitor according to Embodiment 1.
  • FIG. 5 is a side view showing an example of the method for manufacturing the coil module according to Embodiment 1.
  • FIG. 6 is a side view showing an example of the mounting structure of the coil module according to the first embodiment.
  • FIG. 7 is a side view showing an example of the configuration of the coil module according to the second embodiment.
  • FIG. 8 is a top view showing an example of the configuration of the coil module according to the second embodiment.
  • FIG. 9 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the second embodiment.
  • FIG. 10 is a side view illustrating an example of a method for manufacturing a coil module according to the second embodiment.
  • FIG. 11 is a side view showing an example of the configuration of the coil module according to the third embodiment.
  • FIG. 12 is a top view illustrating an example of the configuration of the coil module according to the third embodiment.
  • FIG. 13 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the third embodiment.
  • FIG. 14 is a side view showing an example of the configuration of the coil module according to the fourth embodiment.
  • FIG. 15 is a top view showing an example of the configuration of the coil module according to the fourth embodiment.
  • FIG. 16 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the fourth embodiment.
  • FIG. 17 is a side view showing an example of the configuration of the coil module according to the fifth embodiment.
  • FIG. 18 is a top view illustrating an example of the configuration of the coil module according to the fifth embodiment.
  • FIG. 19 is a perspective view showing an example of the structure of the coil module according to the fifth embodiment.
  • a coil module includes a substrate having a coil antenna (first coil) and a resin member that covers at least one main surface of the substrate, and the resin member includes the coil antenna. Is provided with a booster coil (second coil) that is not directly connected to each other but coupled via a magnetic field. In other words, the first coil and the second coil are provided separately.
  • the coil module can be realized as a device of various modes.
  • the coil module will be specifically described by using examples of a chip-type antenna, an RFIC chip, and an RF module.
  • FIG. 1 is a side view showing an example of the configuration of the coil module according to the first embodiment.
  • the coil module 100 includes a substrate 110 and a resin member 120 that seals the substrate 110 (that is, covers the entire substrate 110).
  • the substrate 110 is a ceramic multilayer substrate with a built-in coil antenna 111.
  • the substrate 110 is formed by laminating a plurality of ceramic base layers, and the coil antenna 111 is formed of a loop-shaped in-plane conductor disposed on the ceramic base layer.
  • a connection terminal 112 electrically connected to the coil antenna 111 is provided on one main surface (the lower surface in FIG. 1) of the substrate 110.
  • the resin member 120 is a resin package for sealing the substrate 110 and has a booster coil 121 inside.
  • the resin member 120 is formed by laminating a plurality of resin base layers, and the booster coil 121 is formed by a loop-shaped in-plane conductor disposed on the resin base layer.
  • the booster coil 121 is not directly connected to the coil antenna 111 but is coupled to the coil antenna 111 via a magnetic field.
  • a surface electrode 124 electrically connected to the connection terminal 112 of the substrate 110 is provided on the exposed surface (the lower surface in FIG. 1) of the resin member 120.
  • the connection terminal 112 and the surface electrode 124 are electrically connected through a via 123 that is an interlayer conductor provided in the resin member 120.
  • the coil module 100 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 124.
  • the resin member 120 may be a member that is more flexible than the substrate 110.
  • that the resin member 120 is more flexible than the substrate 110 is that the amount of strain generated in the resin member 120 when the same magnitude of stress is applied to the resin member 120 and the substrate 110 is greater than the amount of strain generated in the substrate 110. It means big.
  • FIG. 2 is a top view showing an example of the configuration of the coil module 100.
  • In-plane conductors constituting the coil antenna 111 and the booster coil 121 are provided in regions A1 and A2 shown in gray in FIG.
  • the coil diameter of the booster coil 121 may be larger than the coil diameter of the coil antenna 111. This means that at least the outer diameter of the booster coil 121 is larger than the outer diameter of the coil antenna 111.
  • the inner diameter of the booster coil 121 may be larger than the outer diameter of the coil antenna 111.
  • the line width of the booster coil is larger than the line width of the coil antenna.
  • FIG. 3 is a circuit diagram showing an example of an equivalent circuit of the coil module 100.
  • FIG. 3 shows an RFIC 130 and a capacitor 131 which are parts separate from the coil module 100.
  • Each of the RFIC 130 and the capacitor 131 may be, for example, a chip component mounted together with the coil module 100 on a printed wiring board on which the coil module 100 is mounted.
  • the coil antenna 111 and the capacitor 131 are connected via the surface electrode 124 to constitute a first resonance circuit.
  • the first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 111 and the capacitance C1 of the capacitor 131.
  • the booster coil 121 and the capacitor 122 constitute a second resonance circuit.
  • the capacitor 122 may be a capacitance component generated between conductors constituting the booster coil 121, or may be a chip capacitor that is explicitly installed.
  • the second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 121 and the capacitance C2 of the capacitor 122.
  • the booster coil 121 and the coil antenna 111 are not directly connected but are coupled via a magnetic field.
  • the RFIC 130 feeds an antenna current to the coil antenna 111, a magnetic field and a radio wave are radiated from both the coil antenna 111 and the booster coil 121 coupled via the magnetic field.
  • FIG. 4A to 4C are diagrams for explaining an example of the configuration of the booster coil 121 and the capacitor 122.
  • FIG. 4A to 4C are diagrams for explaining an example of the configuration of the booster coil 121 and the capacitor 122.
  • the booster coil 121 is composed of in-plane conductors 1211, 1212 provided in two layers, and the capacitor 122 is composed of parasitic capacitances 1221, 1222 generated between the in-plane conductors 1211, 1212. .
  • the in-plane conductors 1211, 1212 are each arranged in a one-turn loop shape, and both ends are open.
  • the booster coil 121 is composed of in-plane conductors 1213 and 1214 provided in two layers, and the capacitor 122 is composed of parasitic capacitances 1223 and 1224 generated between the in-plane conductors 1213 and 1214.
  • the in-plane conductors 1213 and 1214 are each arranged in a loop shape of a plurality of turns, and both ends are open.
  • the booster coil 121 is configured by connecting in-plane conductors 1215, 1216, and 1217 provided in three layers by interlayer conductors 1218 and 1219, and the capacitor 122 is configured by a chip capacitor 1225. . Both ends of the booster coil 121 are connected to the chip capacitor 1225 by conductors 1261 and 1262.
  • the chip capacitor 1225 may be incorporated in a resin package, for example.
  • FIGS. 4A to 4C Any of the configurations shown in FIGS. 4A to 4C is equivalent to a circuit (a second resonance circuit described above) in which the booster coil 121 and the capacitor 122 shown in FIG. .
  • FIG. 5 is a side view showing an example of a method for manufacturing the coil module 100.
  • the coil module 100 is manufactured as follows, for example.
  • the resin sheets 1201 to 1206 are flexible thermoplastic resin sheets made of, for example, polyimide or liquid crystal polymer.
  • the through hole includes a via hole for providing the via 123 and an opening 125 for storing the substrate 110.
  • the through-holes as via holes are filled with a conductor paste 123a, and conductor pastes 121a and 124a are printed at specific positions on the main surface to form in-plane conductor patterns and surface electrode patterns.
  • the through hole is formed by, for example, laser processing, and the in-plane conductor pattern and the surface electrode pattern can be formed by screen printing of, for example, conductor pastes 121a and 124a containing Ag powder.
  • the substrate 110 is prepared.
  • the substrate 110 is manufactured according to a general manufacturing method of a ferrite chip antenna, and detailed description of the manufacturing method of the substrate 110 itself is omitted.
  • the plurality of resin sheets 1201 to 1206 on which the conductor pastes 121a, 123a, and 124a are arranged and the substrate 110 are aligned and laminated, and are integrated by thermocompression bonding.
  • thermocompression bonding the resin sheet is melted and integrated with the substrate 110, and the Ag powder in the conductor pastes 121a, 123a, and 124a is sintered to form the booster coil 121, the via 123, and the surface electrode 124.
  • the surface electrode 124 exposed on the mounting surface (the lower surface in FIG. 5) of the coil module 100 is plated.
  • a nickel / gold plating film is formed by electroless plating.
  • FIG. 6 is a side view showing an example of the mounting structure of the coil module 100, and shows an example of a communication terminal using the coil module 100.
  • a plurality of surface-mounted components including the coil module 100, the RFIC 130, and the capacitor 131 are surface-mounted on a printed wiring board 810 having a ground plane 811.
  • the coil module 100 is disposed at a position that does not overlap the ground plane 811 in a plan view of the printed wiring board 810.
  • the coil module 100 is a communication antenna that receives an antenna current from the RFIC 130 and radiates a magnetic field and a radio wave, and may be used as an antenna for far-field communication such as mobile communication. It may be used as an antenna for near-field communication with a card and a proximity sensor.
  • the antenna performance is improved by coupling the booster coil 121 to the coil antenna 111 via a magnetic field. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 100 capable of improving the antenna performance while achieving both miniaturization and reliability can be obtained.
  • the coil diameter of the booster coil 121 larger than the coil diameter of the coil antenna 111, the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
  • the booster coil 121 by providing the booster coil 121, the communication distance in a certain direction is increased, the communicable range is expanded, or the direction in which the coil antenna 111 alone cannot be communicated as compared with the case of the coil antenna 111 alone. Will also be able to communicate.
  • the resin member 120 a member that is more flexible than the substrate 110, the stress can be absorbed by deformation of the resin member 120 when stress is applied, and the coil module 100 can be prevented from being damaged, thereby improving reliability.
  • the substrate 110 is a ceramic substrate
  • the resin member 120 is a thermoplastic resin member, and any member has good availability and processability
  • the coil module 100 can be easily manufactured using these members.
  • the first coil by configuring the first coil with a rigid substrate such as ceramic with little loss and characteristic variation, and configuring the first coil with a flexible substrate that is easy to enlarge and has high strength, both communication characteristics and reliability can be achieved.
  • FIG. 7 is a side view showing an example of the configuration of the coil module according to the second embodiment.
  • the coil module 200 includes a substrate 210 and a resin member 220 that covers one main surface (the upper surface in FIG. 7) of the substrate 210.
  • the substrate 210 is an IC package (wafer level chip size package) in which a rewiring layer 213 having a coil antenna 214 is disposed on one main surface (lower surface in FIG. 7) of a semiconductor substrate 211 such as a silicon substrate.
  • a semiconductor substrate 211 such as a silicon substrate.
  • an RF circuit 212 is formed in the element region of the semiconductor substrate 211.
  • the RF circuit 212 includes a power feeding circuit for the coil antenna 214.
  • the resin member 220 is a resin layer (for example, a topcoat resin layer) that covers the other main surface of the semiconductor substrate 211, and has a booster coil 221 inside.
  • the resin member 220 is formed by laminating a plurality of resin base layers, and the booster coil 221 is formed of a loop-shaped in-plane conductor disposed on the resin base layer.
  • the booster coil 221 is not directly connected to the coil antenna 214 but is coupled to the coil antenna 214 via a magnetic field.
  • the booster coil 221 is not limited to the inside of the resin layer, and may be provided on the top surface of the resin layer.
  • a surface electrode 215 electrically connected to the coil antenna 214 is provided on the exposed surface (the lower surface in FIG. 7) of the rewiring layer 213 that is not in contact with the semiconductor substrate 211.
  • the coil module 200 is surface-mounted on a mother board such as a printed wiring board via the surface electrode 215.
  • the resin member 220 may be a member that is more flexible than the substrate 210.
  • the resin member 220 is more flexible than the substrate 210 when the same amount of stress is applied to the resin member 220 and the substrate 210 so that the amount of strain generated in the resin member 220 is greater than the amount of strain generated in the substrate 210. It means big.
  • FIG. 8 is a top view showing an example of the configuration of the coil module 200.
  • In-plane conductors constituting the coil antenna 214 and the booster coil 221 are provided in the regions A3 and A4 shown in gray in FIG.
  • the coil diameter of the booster coil 221 may be larger than the coil diameter of the coil antenna 214. This means that at least the outer diameter of the booster coil 221 is larger than the outer diameter of the coil antenna 214. Further, as shown in FIG. 8, the inner diameter of the booster coil 221 may be larger than the outer diameter of the coil antenna 214.
  • the line width of the booster coil is larger than the line width of the coil antenna.
  • FIG. 9 is a circuit diagram showing an example of an equivalent circuit of the coil module 200.
  • Capacitor 230 may be, for example, a capacitor pattern (a pair of conductors arranged opposite to each other) or a chip capacitor provided in redistribution layer 213, and may be an external component separate from substrate 210.
  • the coil antenna 214 and the capacitor 230 constitute a first resonance circuit.
  • the first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 214 and the capacitance C1 of the capacitor 230.
  • the booster coil 221 and the capacitor 222 constitute a second resonance circuit.
  • the capacitor 222 may be a parasitic capacitance generated between conductors constituting the booster coil 221 or may be a chip capacitor that is explicitly installed.
  • the chip capacitor may be built in the resin layer.
  • the second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 221 and the capacitance C2 of the capacitor 222.
  • the booster coil 221 and the coil antenna 214 are not directly connected but are coupled via a magnetic field.
  • the RF circuit 212 feeds an antenna current to the coil antenna 214, a magnetic field and a radio wave are radiated from both the coil antenna 214 and the booster coil 221 coupled via a magnetic field.
  • FIG. 10 is a side view showing an example of a method for manufacturing the coil module 200.
  • the coil module 200 is manufactured as follows, for example.
  • the resin sheets 2201 to 2203 are flexible thermoplastic resin sheets made of, for example, polyimide or liquid crystal polymer.
  • the conductor paste 221a is printed at a specific position on the main surface of the predetermined resin sheet to form an in-plane conductor pattern.
  • the in-plane conductor pattern can be formed, for example, by screen printing of a conductor paste 221a containing Ag powder.
  • the substrate 210 is prepared.
  • the substrate 210 is manufactured, for example, according to a general manufacturing method of the RFIC chip, and detailed description of the manufacturing method of the substrate 210 itself is omitted.
  • the plurality of resin sheets 2201 to 2203 on which the conductor paste is arranged and the substrate 210 are aligned and laminated, and integrated by thermocompression bonding.
  • the resin sheet is cured and integrated with the semiconductor substrate 211 as a resin layer, and the Ag powder in the conductor paste 221a is sintered to form the booster coil 221.
  • the coil module 100 in which the substrate 210 is covered with the resin member 220 is completed.
  • the resin layer with a built-in booster coil was formed by the batch lamination pressure bonding method using a resin sheet.
  • the sequential lamination method in which the process of coating or printing the resin layer and patterning the booster coil on the resin layer is repeated. It may be formed.
  • the booster coil 221 is coupled to the coil antenna 214 via a magnetic field to improve the antenna performance. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 200 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
  • the booster coil 221 is arranged on the top surface (upper surface in FIG. 7) side of the coil module 200, the communication distance in the top surface direction can be increased.
  • the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
  • the stress can be absorbed by deformation of the resin member 220 when stress is applied, and the coil module 200 can be prevented from being damaged, thereby improving reliability. .
  • the substrate 210 is a semiconductor substrate 211 having a rewiring layer 213
  • the resin member 220 is a thermoplastic resin member, and any member has good availability and workability. Therefore, the coil module 200 includes these members. It can be easily manufactured using.
  • FIG. 11 is a side view showing an example of the configuration of the coil module according to the third embodiment.
  • the coil module 300 includes a substrate 310 on which a chip component is mounted to form a composite component 340, and a resin member 320 that seals the composite component 340 including the substrate 310.
  • the substrate 310 is a ceramic substrate in which a coil antenna 311 is incorporated.
  • the substrate 310 is formed by laminating a plurality of ceramic base layers, and the coil antenna 311 is formed of a loop-shaped in-plane conductor disposed on the ceramic base layer.
  • a connection terminal 313 electrically connected to the coil antenna 311 is provided on one main surface (the lower surface in FIG. 11) of the substrate 310.
  • the RFIC chip 330 and the chip-type capacitor 331 are mounted on the other main surface (the upper surface in FIG. 11) of the substrate 310, and are sealed and fixed to the substrate 310 with the resin layer 312 to constitute the composite component 340.
  • the RFIC chip 330 may have a power feeding circuit to the coil antenna 311.
  • the resin member 320 is a resin package for sealing the composite component 340 and has a booster coil 321 inside.
  • the resin member 320 is formed by laminating a plurality of resin base layers, and the booster coil 321 is formed of a loop-shaped in-plane conductor disposed on the resin base layer.
  • the booster coil 321 is not directly connected to the coil antenna 311 but is coupled to the coil antenna 311 via a magnetic field.
  • a surface electrode 324 electrically connected to the connection terminal 313 is provided on the exposed surface (the lower surface in FIG. 11) of the resin member 320.
  • the connection terminal 313 and the surface electrode 324 are electrically connected through a via 323 that is an interlayer conductor provided in the resin member 320.
  • the coil module 300 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 324.
  • the resin member 320 may be a member that is more flexible than the substrate 310.
  • the fact that the resin member 320 is more flexible than the substrate 310 means that the amount of strain generated in the resin member 320 when the same magnitude of stress is applied to the resin member 320 and the substrate 310 is greater than the amount of strain generated in the substrate 310. It means big.
  • FIG. 12 is a top view showing an example of the configuration of the coil module 300.
  • In-plane conductors constituting the coil antenna 311 and the booster coil 321 are provided in regions A5 and A6 shown in gray in FIG.
  • the coil diameter of the booster coil 321 may be larger than the coil diameter of the coil antenna 311. This means that at least the outer diameter of the booster coil 321 is larger than the outer diameter of the coil antenna 311. Furthermore, as shown in FIG. 11, the inner diameter of the booster coil 321 may be larger than the outer diameter of the coil antenna 311.
  • FIG. 13 is a circuit diagram showing an example of an equivalent circuit of the coil module 300.
  • the coil antenna 311 and the capacitor 331 constitute a first resonance circuit.
  • the first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 311 and the capacitance C1 of the capacitor 331.
  • the booster coil 321 and the capacitor 322 constitute a second resonance circuit.
  • the capacitor 322 may be a parasitic capacitance generated between conductors constituting the booster coil 321 or may be a chip capacitor that is explicitly installed.
  • the chip capacitor may be built in the resin member.
  • the second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 321 and the capacitance C2 of the capacitor 322.
  • the booster coil 321 and the coil antenna 311 are not directly connected but are coupled via a magnetic field.
  • the RFIC chip 330 supplies an antenna current to the coil antenna 311, a magnetic field and a radio wave are radiated from both the coil antenna 311 and the booster coil 321 that are coupled via a magnetic field.
  • the coil module 300 configured as described above can be manufactured by applying the manufacturing method of the coil module 100 described in FIG. 5 to the composite component 340 including the substrate 310 instead of the substrate 110.
  • the antenna performance is improved by coupling the booster coil 321 with the coil antenna 311 through a magnetic field instead of increasing the size of the coil antenna 311. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 300 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
  • the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
  • the stress can be absorbed by the deformation of the resin member 320 when stress is applied, and the coil module 300 can be prevented from being damaged, and the reliability is improved. .
  • the substrate 310 is a ceramic multilayer substrate
  • the resin member 320 is a thermoplastic resin member, and any member has good availability and processability
  • the coil module 300 can be easily manufactured using these members. it can.
  • the first coil and various mounting parts are composed of a rigid substrate such as ceramic that can be finely wired with little loss and characteristic variation
  • the second coil is composed of a flexible substrate that is easy to enlarge and has high strength. As well as achieving miniaturization, it is possible to achieve both communication characteristics and reliability.
  • FIG. 14 is a side view showing an example of the configuration of the coil module according to the fourth embodiment.
  • the coil module 400 includes a substrate 410 and a resin member 420 that seals the substrate 410.
  • the substrate 410 is an IC chip (bare chip) in which a rewiring layer 413 on which a coil antenna 414 is formed is disposed on one main surface (upper surface in FIG. 14) of the semiconductor substrate 411, and an element region of the semiconductor substrate 411. Is formed with an RF circuit 412.
  • the RF circuit 412 may include a power feeding circuit to the coil antenna 414.
  • a connection terminal 415 that is electrically connected to the coil antenna 414 is provided on a main surface (upper surface in FIG. 14) of the rewiring layer 413 that is not in contact with the semiconductor substrate 411.
  • the resin member 420 is a resin package for sealing an IC chip including the semiconductor substrate 411 and the rewiring layer 413, and has a booster coil 421 inside.
  • the resin member 420 is formed by laminating a plurality of resin base layers, and the booster coil 421 is formed of a loop-shaped in-plane conductor disposed on the resin base layer.
  • the booster coil 421 is not directly connected to the coil antenna 414 but is coupled to the coil antenna 414 via a magnetic field.
  • a surface electrode 424 electrically connected to the connection terminal 415 of the substrate 410 is provided on the exposed surface (the lower surface in FIG. 14) of the resin member 420.
  • the connection terminal 415 and the surface electrode 424 are the resin member 420.
  • the coil module 400 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 424.
  • the resin member 420 may be a member that is more flexible than the substrate 410.
  • the fact that the resin member 420 is more flexible than the substrate 410 is that the amount of strain generated in the resin member 420 is greater than the amount of strain generated in the substrate 410 when the resin member 420 and the substrate 410 are given the same amount of stress. It means big.
  • FIG. 15 is a top view showing an example of the configuration of the coil module 400.
  • In-plane conductors constituting the coil antenna 414 and the booster coil 421 are provided in regions A7 and A8 shown in gray in FIG.
  • the coil diameter of the booster coil 421 may be larger than the coil diameter of the coil antenna 414. This means that at least the outer diameter of the booster coil 421 is larger than the outer diameter of the coil antenna 414. Further, as shown in FIG. 15, the inner diameter of the booster coil 421 may be larger than the outer diameter of the coil antenna 414.
  • the line width of the booster coil is larger than the line width of the coil antenna.
  • FIG. 16 is a circuit diagram showing an example of an equivalent circuit of the coil module 400.
  • the capacitor 430 may be, for example, a capacitor pattern (a pair of conductors arranged opposite to each other) provided on the rewiring layer 413 or a chip capacitor.
  • the coil antenna 414 and the capacitor 430 constitute a first resonance circuit.
  • the first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 414 and the capacitance C1 of the capacitor 430.
  • the booster coil 421 and the capacitor 430 constitute a second resonance circuit.
  • the capacitor 430 may be a parasitic capacitance generated between the conductors constituting the booster coil 421, or may be a chip capacitor explicitly provided.
  • the chip capacitor may be built in the resin member.
  • the second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 421 and the capacitance C2 of the capacitor 422.
  • the booster coil 421 and the coil antenna 414 are not directly connected but are coupled via a magnetic field.
  • the RF circuit 412 supplies an antenna current to the coil antenna 414, a magnetic field and a radio wave are radiated from both the coil antenna 414 and the booster coil 421 that are coupled via a magnetic field.
  • the coil module 400 configured as described above can be manufactured by applying the manufacturing method of the coil module 100 described in FIG. 5 to the substrate 410 instead of the substrate 110.
  • the antenna performance is improved by coupling the booster coil 421 to the coil antenna 414 via a magnetic field. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 400 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
  • the rewiring layer 413 is arranged toward the top surface (the upper surface in FIG. 14) of the coil module 400, the distance from the booster coil 421 is reduced, and a magnetic field is generated between the coil module 400 and the booster coil 421. A stronger bond is obtained.
  • the antenna performance can be improved more reliably.
  • the stress can be absorbed by the deformation of the resin member 420 when the stress is applied to prevent the coil module 400 from being damaged, and the reliability is improved. .
  • the substrate 410 is a semiconductor substrate 411 having a rewiring layer 413
  • the resin member 420 is a thermoplastic resin member, and any member has good availability and workability. Therefore, the coil module 400 includes these members. It can be easily manufactured using.
  • the first coil is formed of a semiconductor substrate such as silicon that can be finely processed
  • the second coil is formed of a flexible substrate that is easy to increase in size and has high strength, thereby achieving both downsizing and reliability.
  • FIG. 17 is a side view showing an example of the configuration of the coil module according to the fifth embodiment.
  • the coil module 500 includes a substrate 510 and a resin member 520 that seals the substrate 510.
  • the substrate 510 is a ceramic multilayer substrate having a coil antenna 511.
  • the substrate 510 is formed by laminating a plurality of ceramic base layers, and the coil antenna 511 is formed of an in-plane conductor and an interlayer conductor disposed on the ceramic base layer.
  • Connection terminals 512 and 513 electrically connected to the coil antenna 511 are provided on one main surface (the lower surface in FIG. 17) of the substrate 510.
  • the resin member 520 is a resin package for sealing the substrate 510 and has a booster coil 521 inside.
  • the resin member 520 is formed by laminating a plurality of resin base layers, and the booster coil 521 is formed of a loop-shaped in-plane conductor disposed on the resin base layer.
  • the booster coil 521 is not directly connected to the coil antenna 511 but is coupled to the coil antenna 511 through a magnetic field.
  • connection terminals 512 and 513 of the substrate 510 are provided on the exposed surface (the lower surface in FIG. 17) of the resin member 520, respectively.
  • the connection terminals 512 and 513 and the surface electrodes 524 and 525 are electrically connected through vias 522 and 523 which are interlayer conductors provided in the resin member 520, respectively.
  • the coil module 500 is surface-mounted on a mother board such as a printed wiring board via surface electrodes 524 and 525.
  • the resin member 520 may be a member that is more flexible than the substrate 510.
  • the resin member 520 is more flexible than the substrate 510 when the same amount of stress is applied to the resin member 520 and the substrate 510 so that the amount of strain generated in the resin member 520 is greater than the amount of strain generated in the substrate 510. It means big.
  • FIG. 18 is a top view showing an example of the configuration of the coil module 500.
  • Coil conductors constituting the coil antenna 511 and the booster coil 521 are provided in regions A9 and A10 shown in gray in FIG.
  • the coil conductor constituting the coil antenna 511 and the coil conductor constituting the booster coil are overlapped when viewed in the stacking direction (in other words, when the coil module 500 is viewed in plan).
  • the substrate 510 is not limited to the examples of FIGS. 17 and 18, and may be arranged anywhere as long as the coupling between the coil antenna 511 and the booster coil 521 can be obtained. For example, you may arrange
  • FIG. 19 is a perspective view showing an example of a detailed configuration of the substrate 510.
  • the surface located in front of FIG. 19 corresponds to the surface shown in FIG.
  • the substrate 510 is formed by laminating a plurality of ceramic base layers 5101 to 5104, and the in-plane conductors arranged on the ceramic base layers 5101 and 5104 are connected by the interlayer conductors arranged on the ceramic base layers 5101 to 5104.
  • a coil antenna 511 is formed.
  • Connection terminals 512 and 513 are provided on the exposed surface of the ceramic base material layer 5104.
  • a magnetic field 550 is formed by feeding an antenna current to the coil antenna 511 from a feeding circuit (not shown) (see FIG. 17). Since the coil antenna 511 and the booster coil 521 are arranged in a region that overlaps when viewed in the stacking direction, the magnetic field 550 of the coil antenna 511 is formed so as to wrap around the coil conductor that constitutes the booster coil 521. . Thereby, the coupling
  • the present invention can be widely used in various electronic devices such as a wireless terminal using a coil module as an antenna.
  • Coil module 110 210, 310, 410, 510 Substrate 111, 214, 311, 414, 511 Coil antenna 112, 313, 415, 512, 513 Connection terminal 120, 220, 320, 420 520 Resin member 121,221,321,421,521 Booster coil 121a, 123a, 221a Conductor paste 122,131,222,230,322,331,422,430 Capacitor 123,323,423,426,522,523 Via 124, 215, 324, 424, 524, 525 Surface electrode 125 Opening 130 RFIC 211, 411 Semiconductor substrate 212 RF circuit 213, 413 Rewiring layer 312 Resin layer 330 RFIC chip 340 Composite part 412 RF circuit 425 Wiring pattern 550 Magnetic field 800 Communication terminal 810 Printed wiring board 811 Ground plane 1201 to 1206, 2201 to 2203 Resin sheet 1211-12121, 2211, 2122 In-plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Details Of Aerials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A coil module (100) is provided with: a substrate (110) that has a coil antenna (111); and a resin member (120) that covers at least one main surface of the substrate, wherein the resin member (120) is provided with a booster coil (121) that is not directly connected to the coil antenna (111) but linked therewith via a magnetic field. The diameter of the booster coil (121) may be larger than the coil diameter of the coil antenna (111), the substrate (110) is a rigid substrate, and the resin member (120) may be a member that is more flexible than the substrate (110).

Description

コイルモジュールCoil module
 本発明は、コイルモジュールに関し、特には、コイルアンテナを備えるモジュールに関する。 The present invention relates to a coil module, and more particularly to a module including a coil antenna.
 従来、超小型のコイルアンテナが周知となっている(例えば、特許文献1~3)。コイルアンテナは、例えば、周波数が3~30MHzのHF(High Frequency)帯以上の周波数の信号の送受信に用いられる。 Conventionally, ultra-small coil antennas are well known (for example, Patent Documents 1 to 3). The coil antenna is used, for example, for transmission / reception of a signal having a frequency of HF (High Frequency) band of 3 to 30 MHz or higher.
 特許文献1、2には、半導体チップの再配線層にコイルアンテナを形成してなるコイル付きIC(Integrated Circuit)チップが開示されている。また、例えば、特許文献3には、フェライト多層基板にコイルアンテナを形成してなる積層型インダクタ素子が開示されている。 Patent Documents 1 and 2 disclose an IC (Integrated Circuit) chip with a coil in which a coil antenna is formed on a rewiring layer of a semiconductor chip. For example, Patent Document 3 discloses a multilayer inductor element in which a coil antenna is formed on a ferrite multilayer substrate.
特開2002-83894号公報JP 2002-83894 A 特開2003-78023号公報JP 2003-78023 A 特開2014-207432号公報JP 2014-207432 A
 特許文献1~3の開示は、いずれも小型の薄型基板にコイルアンテナを形成したものであって、十分なアンテナ性能(例えば、通信距離)を得ることが難しい。アンテナ性能を改善しようとするとき、薄型基板を大型化してコイルアンテナを大径化すればアンテナ性能は改善するが、断線などの機械的な破損の懸念が増大し、コイルアンテナ自体の信頼性が低下してしまう。 Patent Documents 1 to 3 all disclose that a coil antenna is formed on a small thin substrate, and it is difficult to obtain sufficient antenna performance (for example, communication distance). When trying to improve antenna performance, increasing the thickness of the thin substrate and increasing the diameter of the coil antenna will improve the antenna performance. However, the possibility of mechanical damage such as disconnection will increase, and the reliability of the coil antenna itself will increase. It will decline.
 そこで、本発明は、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュールを提供する。 Therefore, the present invention provides a coil module that can improve antenna performance while achieving both miniaturization and reliability.
 上記目的を達成するために、本発明の一態様に係るコイルモジュールは、コイルアンテナを有する基板と、前記基板の少なくとも1主面を覆う樹脂部材と、を備え、前記樹脂部材には、前記コイルアンテナに直接的には接続されておらず、磁界を介して結合されているブースターコイルが設けられている。 In order to achieve the above object, a coil module according to an aspect of the present invention includes a substrate having a coil antenna and a resin member that covers at least one main surface of the substrate, and the resin member includes the coil. A booster coil is provided that is not directly connected to the antenna but is coupled via a magnetic field.
 この構成によれば、前記コイルアンテナを大型化する代わりに、前記ブースターコイルを、磁界を介して前記コイルアンテナと結合させることによって、アンテナ性能を改善する。磁界による結合のため、樹脂部材が撓んだり反ったりした場合でも断線などの機械的な破損が生じにくい。 According to this configuration, the antenna performance is improved by coupling the booster coil with the coil antenna via a magnetic field instead of increasing the size of the coil antenna. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs.
 その結果、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュールが得られる。小型でも良好なアンテナ性能が出るので、コイルモジュールの配置の自由度が高まり、セットの設計の合理化に役立つ。 As a result, a coil module capable of improving antenna performance while achieving both miniaturization and reliability can be obtained. Good antenna performance is achieved even with a small size, which increases the degree of freedom in arranging the coil modules and helps streamline the design of the set.
 また、前記ブースターコイルのコイル径は、前記コイルアンテナのコイル径より大きくてもよい。 The coil diameter of the booster coil may be larger than the coil diameter of the coil antenna.
 この構成によれば、コイル径が大きいブースターコイルを用いるので、アンテナ性能をより確実に改善できる。 According to this configuration, since the booster coil having a large coil diameter is used, the antenna performance can be improved more reliably.
 また、前記樹脂部材は前記基板よりフレキシブルな部材であってもよい。 Further, the resin member may be a member that is more flexible than the substrate.
 この構成によれば、応力がかかった際に樹脂部材の変形により応力を吸収してコイルモジュールの破損を防ぐことができ、信頼性が向上する。 According to this configuration, when stress is applied, the stress can be absorbed by deformation of the resin member to prevent the coil module from being damaged, and the reliability is improved.
 また、前記基板はセラミック基板または半導体基板であり、前記樹脂部材は熱可塑性樹脂部材であってもよい。 The substrate may be a ceramic substrate or a semiconductor substrate, and the resin member may be a thermoplastic resin member.
 この構成によれば、コイルモジュールを、入手性及び加工性の良い材料を用いて容易に作製できる。 According to this configuration, the coil module can be easily manufactured using a material having good availability and workability.
 また、前記基板は、前記コイルアンテナを内蔵したセラミック基板であり、前記セラミック基板の一方主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、前記樹脂部材は、前記セラミック基板を封止する樹脂パッケージであり、前記樹脂パッケージの露出面に、前記接続端子に電気的に接続された表面電極が設けられていてもよい。 The substrate is a ceramic substrate incorporating the coil antenna, and a connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate, and the resin member is formed of the ceramic substrate. The surface electrode electrically connected to the connection terminal may be provided on the exposed surface of the resin package.
 この構成によれば、コイルアンテナとブースターコイルとを積層して配置することができるので、フットプリントが小さく、かつ信頼性及びアンテナ特性に優れたチップ型アンテナとしてのコイルモジュールが得られる。 According to this configuration, since the coil antenna and the booster coil can be arranged in a stacked manner, a coil module as a chip antenna having a small footprint and excellent reliability and antenna characteristics can be obtained.
 また、前記基板は、半導体基板の一方主面に、前記コイルアンテナが形成された再配線層を配してなり、前記樹脂部材は、前記半導体基板の他方主面を覆う樹脂層であり、前記再配線層の前記半導体基板と接していない露出面に、前記コイルアンテナに電気的に接続された表面電極が設けられていてもよい。 Further, the substrate is formed by arranging a rewiring layer in which the coil antenna is formed on one main surface of a semiconductor substrate, and the resin member is a resin layer covering the other main surface of the semiconductor substrate, A surface electrode electrically connected to the coil antenna may be provided on an exposed surface of the redistribution layer that is not in contact with the semiconductor substrate.
 この構成によれば、コイルアンテナと、ブースターコイルとを積層して配置することができるので、フットプリントが小さく、かつ信頼性及び特性に優れたアンテナを持つICチップが得られる。表面電極は、ICチップを介してコイルアンテナに接続されていてもよく、ICチップは、コイルアンテナへの給電回路を有していてもよい。これにより、所要の機能が統合された利便性の高いRF(高周波)ICチップとしてのコイルモジュールが得られる。 According to this configuration, the coil antenna and the booster coil can be stacked and arranged, so that an IC chip having an antenna having a small footprint and excellent reliability and characteristics can be obtained. The surface electrode may be connected to the coil antenna via the IC chip, and the IC chip may have a power feeding circuit to the coil antenna. As a result, a coil module as a highly convenient RF (high frequency) IC chip in which required functions are integrated is obtained.
 また、前記基板は、前記コイルアンテナを内蔵したセラミック基板であり、前記セラミック基板の一方主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、前記セラミック基板の他方主面にチップ部品が搭載され、前記セラミック基板とともに複合部品を構成し、前記樹脂部材は、前記複合部品を封止する樹脂パッケージであり、前記樹脂パッケージの露出面に、前記接続端子に電気的に接続された表面電極が設けられていてもよい。 The substrate is a ceramic substrate incorporating the coil antenna, and a connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate, and the other main surface of the ceramic substrate is provided on the other main surface. A chip component is mounted and constitutes a composite component together with the ceramic substrate, and the resin member is a resin package for sealing the composite component, and is electrically connected to the connection terminal on the exposed surface of the resin package. A surface electrode may be provided.
 この構成によれば、チップ部品と、コイルアンテナと、ブースターコイルとを積層して配置することができるので、フットプリントが小さく、かつ信頼性及び特性に優れた内蔵アンテナを持つモジュールが得られる。表面電極は、チップ部品を介してコイルアンテナに接続されていてもよく、チップ部品は、コイルアンテナへの給電回路を有するRFICチップであってもよい。これにより、所要の機能が統合された利便性の高いRFモジュールとしてのコイルモジュールが得られる。 According to this configuration, a chip component, a coil antenna, and a booster coil can be stacked and disposed, so that a module having a built-in antenna with a small footprint and excellent reliability and characteristics can be obtained. The surface electrode may be connected to the coil antenna via a chip component, and the chip component may be an RFIC chip having a power feeding circuit to the coil antenna. Thereby, a coil module as a highly convenient RF module in which necessary functions are integrated is obtained.
 また、前記基板は、半導体基板の一方主面に、前記コイルアンテナが形成された再配線層を配してなり、前記再配線層の前記半導体基板と接していない主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、前記樹脂部材は、前記半導体基板と前記再配線層とで構成されるICチップを封止する樹脂パッケージであり、前記樹脂パッケージの露出面に、前記接続端子に電気的に接続された表面電極が設けられていてもよい。 Further, the substrate includes a redistribution layer on which the coil antenna is formed on one main surface of the semiconductor substrate, and the main surface of the redistribution layer that is not in contact with the semiconductor substrate is connected to the coil antenna. An electrically connected connection terminal is provided, and the resin member is a resin package for sealing an IC chip composed of the semiconductor substrate and the rewiring layer, and the exposed surface of the resin package has the A surface electrode electrically connected to the connection terminal may be provided.
 この構成によれば、コイルアンテナとブースターコイルとを積層して配置することができるので、フットプリントが小さく、かつ信頼性及び特性に優れたアンテナを持つモジュールが得られる。表面電極は、ICチップを介してコイルアンテナに接続されていてもよく、ICチップは、コイルアンテナへの給電回路を有していてもよい。これにより、所要の機能が統合された利便性の高いRFモジュールとしてのコイルモジュールが得られる。 According to this configuration, since the coil antenna and the booster coil can be arranged in a stacked manner, a module having an antenna having a small footprint and excellent reliability and characteristics can be obtained. The surface electrode may be connected to the coil antenna via the IC chip, and the IC chip may have a power feeding circuit to the coil antenna. Thereby, a coil module as a highly convenient RF module in which necessary functions are integrated is obtained.
 また、前記コイルアンテナを構成するコイル導体と前記ブースターコイルを構成するコイル導体とは、積層方向に見て重なりを有する領域において、互いに平行でない軸の周りにループ状に配置されていてもよい。 Further, the coil conductor constituting the coil antenna and the coil conductor constituting the booster coil may be arranged in a loop around axes that are not parallel to each other in an overlapping region when viewed in the stacking direction.
 この構成によれば、コイルアンテナとブースターコイルとを、積層方向に見て(言い換えれば、コイルモジュールを平面視したときに)重なりを有する領域に配置するので、コイルアンテナとブースターコイルとの磁界を介した結合は確保され、アンテナ性能の改善効果が得られる。しかも、コイルアンテナとブースターコイルとを互いの軸方向が平行になるように配置する場合と比べて、配置の制約が大幅に緩和される。 According to this configuration, the coil antenna and the booster coil are arranged in an overlapping region when viewed in the stacking direction (in other words, when the coil module is viewed in plan), and therefore the magnetic field between the coil antenna and the booster coil is reduced. Therefore, the effect of improving the antenna performance can be obtained. In addition, as compared with the case where the coil antenna and the booster coil are arranged so that their axial directions are parallel to each other, the restriction on the arrangement is greatly eased.
 本発明に係るコイルモジュールによれば、コイルアンテナを大型化する代わりに、コイルアンテナに直接的には接続されていないブースターコイルを設け、当該ブースターコイルを、磁界を介して前記コイルアンテナと結合させる。これにより、断線などの機械的な破損の懸念を増大させることなく、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュールが得られる。 According to the coil module of the present invention, instead of increasing the size of the coil antenna, a booster coil that is not directly connected to the coil antenna is provided, and the booster coil is coupled to the coil antenna via a magnetic field. . As a result, a coil module capable of improving antenna performance while achieving both miniaturization and reliability can be obtained without increasing the concern of mechanical damage such as disconnection.
図1は、実施の形態1に係るコイルモジュールの構成の一例を示す側面図である。FIG. 1 is a side view showing an example of the configuration of the coil module according to the first embodiment. 図2は、実施の形態1に係るコイルモジュールの構成の一例を示す上面図である。FIG. 2 is a top view showing an example of the configuration of the coil module according to the first embodiment. 図3は、実施の形態1に係るコイルモジュールの等価回路の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the first embodiment. 図4Aは、実施の形態1に係るブースターコイル及びコンデンサの構成の一例を説明する図である。4A is a diagram for explaining an example of a configuration of a booster coil and a capacitor according to Embodiment 1. FIG. 図4Bは、実施の形態1に係るブースターコイル及びコンデンサの構成の一例を説明する図である。FIG. 4B is a diagram illustrating an example of the configuration of the booster coil and the capacitor according to Embodiment 1. 図4Cは、実施の形態1に係るブースターコイル及びコンデンサの構成の一例を説明する図である。FIG. 4C is a diagram illustrating an example of a configuration of a booster coil and a capacitor according to Embodiment 1. 図5は、実施の形態1に係るコイルモジュールの製造方法の一例を示す側面図である。FIG. 5 is a side view showing an example of the method for manufacturing the coil module according to Embodiment 1. 図6は、実施の形態1に係るコイルモジュールの実装構造の一例を示す側面図である。FIG. 6 is a side view showing an example of the mounting structure of the coil module according to the first embodiment. 図7は、実施の形態2に係るコイルモジュールの構成の一例を示す側面図である。FIG. 7 is a side view showing an example of the configuration of the coil module according to the second embodiment. 図8は、実施の形態2に係るコイルモジュールの構成の一例を示す上面図である。FIG. 8 is a top view showing an example of the configuration of the coil module according to the second embodiment. 図9は、実施の形態2に係るコイルモジュールの等価回路の一例を示す回路図である。FIG. 9 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the second embodiment. 図10は、実施の形態2に係るコイルモジュールの製造方法の一例を示す側面図である。FIG. 10 is a side view illustrating an example of a method for manufacturing a coil module according to the second embodiment. 図11は、実施の形態3に係るコイルモジュールの構成の一例を示す側面図である。FIG. 11 is a side view showing an example of the configuration of the coil module according to the third embodiment. 図12は、実施の形態3に係るコイルモジュールの構成の一例を示す上面図である。FIG. 12 is a top view illustrating an example of the configuration of the coil module according to the third embodiment. 図13は、実施の形態3に係るコイルモジュールの等価回路の一例を示す回路図である。FIG. 13 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the third embodiment. 図14は、実施の形態4に係るコイルモジュールの構成の一例を示す側面図である。FIG. 14 is a side view showing an example of the configuration of the coil module according to the fourth embodiment. 図15は、実施の形態4に係るコイルモジュールの構成の一例を示す上面図である。FIG. 15 is a top view showing an example of the configuration of the coil module according to the fourth embodiment. 図16は、実施の形態4に係るコイルモジュールの等価回路の一例を示す回路図である。FIG. 16 is a circuit diagram illustrating an example of an equivalent circuit of the coil module according to the fourth embodiment. 図17は、実施の形態5に係るコイルモジュールの構成の一例を示す側面図である。FIG. 17 is a side view showing an example of the configuration of the coil module according to the fifth embodiment. 図18は、実施の形態5に係るコイルモジュールの構成の一例を示す上面図である。FIG. 18 is a top view illustrating an example of the configuration of the coil module according to the fifth embodiment. 図19は、実施の形態5に係るコイルモジュールの構造の一例を示す斜視図である。FIG. 19 is a perspective view showing an example of the structure of the coil module according to the fifth embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as optional constituent elements. In addition, the size or ratio of components shown in the drawings is not necessarily strict.
 本発明の実施の形態に係るコイルモジュールは、コイルアンテナ(第1コイル)を有する基板と、前記基板の少なくとも1つの主面を覆う樹脂部材と、を備え、前記樹脂部材には、前記コイルアンテナに直接的には接続されておらず、磁界を介して結合されているブースターコイル(第2コイル)が設けられているものである。換言すると第1コイルと第2コイルは分離して設けられていることとなる。 A coil module according to an embodiment of the present invention includes a substrate having a coil antenna (first coil) and a resin member that covers at least one main surface of the substrate, and the resin member includes the coil antenna. Is provided with a booster coil (second coil) that is not directly connected to each other but coupled via a magnetic field. In other words, the first coil and the second coil are provided separately.
 前記コイルモジュールは、種々の態様のデバイスとして実現され得る。以下では、チップ型アンテナ、RFICチップ、及びRFモジュールの例を用いて、前記コイルモジュールについて具体的に説明する。 The coil module can be realized as a device of various modes. Hereinafter, the coil module will be specifically described by using examples of a chip-type antenna, an RFIC chip, and an RF module.
 (実施の形態1)
 実施の形態1では、チップ型アンテナとして構成された表面実装型のコイルモジュールについて説明する。
(Embodiment 1)
In the first embodiment, a surface mount type coil module configured as a chip type antenna will be described.
 図1は、実施の形態1に係るコイルモジュールの構成の一例を示す側面図である。図1に示すように、コイルモジュール100は、基板110と、基板110を封止する(つまり、基板110の全体を覆う)樹脂部材120と、を備える。 FIG. 1 is a side view showing an example of the configuration of the coil module according to the first embodiment. As shown in FIG. 1, the coil module 100 includes a substrate 110 and a resin member 120 that seals the substrate 110 (that is, covers the entire substrate 110).
 基板110は、コイルアンテナ111を内蔵したセラミック多層基板である。基板110は、複数のセラミックス基材層を積層してなり、コイルアンテナ111は、前記セラミックス基材層に配置したループ状の面内導体で形成されている。基板110の一方主面(図1での下面)に、コイルアンテナ111に電気的に接続された接続端子112が設けられている。 The substrate 110 is a ceramic multilayer substrate with a built-in coil antenna 111. The substrate 110 is formed by laminating a plurality of ceramic base layers, and the coil antenna 111 is formed of a loop-shaped in-plane conductor disposed on the ceramic base layer. A connection terminal 112 electrically connected to the coil antenna 111 is provided on one main surface (the lower surface in FIG. 1) of the substrate 110.
 樹脂部材120は、基板110を封止する樹脂パッケージであり、内部にブースターコイル121を有している。樹脂部材120は、複数の樹脂基材層を積層してなり、ブースターコイル121は、前記樹脂基材層に配置されたループ状の面内導体で形成されている。ブースターコイル121は、コイルアンテナ111に直接的には接続されておらず、磁界を介してコイルアンテナ111と結合されている。 The resin member 120 is a resin package for sealing the substrate 110 and has a booster coil 121 inside. The resin member 120 is formed by laminating a plurality of resin base layers, and the booster coil 121 is formed by a loop-shaped in-plane conductor disposed on the resin base layer. The booster coil 121 is not directly connected to the coil antenna 111 but is coupled to the coil antenna 111 via a magnetic field.
 樹脂部材120の露出面(図1での下面)に、基板110の接続端子112に電気的に接続された表面電極124が設けられている。接続端子112と表面電極124とは、樹脂部材120に設けられた層間導体であるビア123を介して電気的に接続されている。コイルモジュール100は、表面電極124を介して、プリント配線板などのマザー基板に表面実装される。 A surface electrode 124 electrically connected to the connection terminal 112 of the substrate 110 is provided on the exposed surface (the lower surface in FIG. 1) of the resin member 120. The connection terminal 112 and the surface electrode 124 are electrically connected through a via 123 that is an interlayer conductor provided in the resin member 120. The coil module 100 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 124.
 樹脂部材120は、基板110よりフレキシブルな部材であってもよい。ここで、樹脂部材120が基板110よりフレキシブルであるとは、樹脂部材120と基板110とに同じ大きさの応力を与えたとき、樹脂部材120に生じる歪量が、基板110に生じる歪量より大きいことを意味する。 The resin member 120 may be a member that is more flexible than the substrate 110. Here, that the resin member 120 is more flexible than the substrate 110 is that the amount of strain generated in the resin member 120 when the same magnitude of stress is applied to the resin member 120 and the substrate 110 is greater than the amount of strain generated in the substrate 110. It means big.
 図2は、コイルモジュール100の構成の一例を示す上面図である。図2の灰色で示す領域A1、A2に、それぞれコイルアンテナ111及びブースターコイル121を構成する面内導体が設けられている。ブースターコイル121のコイル径は、コイルアンテナ111のコイル径より大きくてもよい。これは、少なくとも、ブースターコイル121の外径が、コイルアンテナ111の外径より大きいことを意味する。さらに、図2に示すように、ブースターコイル121の内径が、コイルアンテナ111の外径より大きくてもよい。また、ブースターコイルの線幅はコイルアンテナの線幅よりも大きい。 FIG. 2 is a top view showing an example of the configuration of the coil module 100. In-plane conductors constituting the coil antenna 111 and the booster coil 121 are provided in regions A1 and A2 shown in gray in FIG. The coil diameter of the booster coil 121 may be larger than the coil diameter of the coil antenna 111. This means that at least the outer diameter of the booster coil 121 is larger than the outer diameter of the coil antenna 111. Furthermore, as shown in FIG. 2, the inner diameter of the booster coil 121 may be larger than the outer diameter of the coil antenna 111. The line width of the booster coil is larger than the line width of the coil antenna.
 図3は、コイルモジュール100の等価回路の一例を示す回路図である。図3には、説明のため、コイルモジュール100とは別体の部品であるRFIC130及びコンデンサ131が示されている。RFIC130及びコンデンサ131の各々は、例えば、コイルモジュール100が実装されたプリント配線板に、コイルモジュール100と共に実装されたチップ部品であってもよい。 FIG. 3 is a circuit diagram showing an example of an equivalent circuit of the coil module 100. For the sake of explanation, FIG. 3 shows an RFIC 130 and a capacitor 131 which are parts separate from the coil module 100. Each of the RFIC 130 and the capacitor 131 may be, for example, a chip component mounted together with the coil module 100 on a printed wiring board on which the coil module 100 is mounted.
 コイルアンテナ111とコンデンサ131とは表面電極124を介して接続され、第1の共振回路を構成している。第1の共振回路は、コイルアンテナ111のインダクタンスL1と、コンデンサ131のキャパシタンスC1とに応じて、目的のアンテナ信号の周波数と略等しい第1の共振周波数を有している。 The coil antenna 111 and the capacitor 131 are connected via the surface electrode 124 to constitute a first resonance circuit. The first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 111 and the capacitance C1 of the capacitor 131.
 また、ブースターコイル121とコンデンサ122とが第2の共振回路を構成している。コンデンサ122は、ブースターコイル121を構成する導体間に生じる容量成分であってもよく、明示的に設置したチップコンデンサであってもよい。第2の共振回路は、ブースターコイル121のインダクタンスL2と、コンデンサ122のキャパシタンスC2とに応じて、目的のアンテナ信号の周波数と略等しい第2の共振周波数を有している。 Further, the booster coil 121 and the capacitor 122 constitute a second resonance circuit. The capacitor 122 may be a capacitance component generated between conductors constituting the booster coil 121, or may be a chip capacitor that is explicitly installed. The second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 121 and the capacitance C2 of the capacitor 122.
 ブースターコイル121とコイルアンテナ111とは、直接的には接続されておらず、磁界を介して結合されている。RFIC130が、コイルアンテナ111にアンテナ電流を給電することにより、磁界を介して結合されているコイルアンテナ111とブースターコイル121の双方から、磁界および電波が放射される。 The booster coil 121 and the coil antenna 111 are not directly connected but are coupled via a magnetic field. When the RFIC 130 feeds an antenna current to the coil antenna 111, a magnetic field and a radio wave are radiated from both the coil antenna 111 and the booster coil 121 coupled via the magnetic field.
 図4A~図4Cは、ブースターコイル121及びコンデンサ122の構成の一例を説明する図である。 4A to 4C are diagrams for explaining an example of the configuration of the booster coil 121 and the capacitor 122. FIG.
 図4Aの例では、ブースターコイル121は、2層に設けられた面内導体1211、1212で構成され、コンデンサ122は、面内導体1211、1212の間に生じる寄生容量1221、1222で構成される。面内導体1211、1212は、それぞれワンターンのループ状に配置され、両端は開放されている。 In the example of FIG. 4A, the booster coil 121 is composed of in- plane conductors 1211, 1212 provided in two layers, and the capacitor 122 is composed of parasitic capacitances 1221, 1222 generated between the in- plane conductors 1211, 1212. . The in- plane conductors 1211, 1212 are each arranged in a one-turn loop shape, and both ends are open.
 図4Bの例では、ブースターコイル121は、2層に設けられた面内導体1213、1214で構成され、コンデンサ122は、面内導体1213、1214の間に生じる寄生容量1223、1224で構成される。面内導体1213、1214は、それぞれ複数ターンのループ状に配置され、両端は開放されている。 In the example of FIG. 4B, the booster coil 121 is composed of in- plane conductors 1213 and 1214 provided in two layers, and the capacitor 122 is composed of parasitic capacitances 1223 and 1224 generated between the in- plane conductors 1213 and 1214. . The in- plane conductors 1213 and 1214 are each arranged in a loop shape of a plurality of turns, and both ends are open.
 図4Cの例では、ブースターコイル121は、3層に設けられた面内導体1215、1216、1217を、層間導体1218、1219で接続して構成され、コンデンサ122は、チップコンデンサ1225で構成される。ブースターコイル121の両端は、導体1261、1262で、チップコンデンサ1225に接続されている。チップコンデンサ1225は、例えば、樹脂パッケージに内蔵されてもよい。 In the example of FIG. 4C, the booster coil 121 is configured by connecting in- plane conductors 1215, 1216, and 1217 provided in three layers by interlayer conductors 1218 and 1219, and the capacitor 122 is configured by a chip capacitor 1225. . Both ends of the booster coil 121 are connected to the chip capacitor 1225 by conductors 1261 and 1262. The chip capacitor 1225 may be incorporated in a resin package, for example.
 図4A~図4Cに示す何れの構成も、集中定数回路として表した場合、図3に示すブースターコイル121とコンデンサ122とを接続してなる回路(前述した第2の共振回路)と等価である。 Any of the configurations shown in FIGS. 4A to 4C is equivalent to a circuit (a second resonance circuit described above) in which the booster coil 121 and the capacitor 122 shown in FIG. .
 図5は、コイルモジュール100の製造方法の一例を示す側面図である。コイルモジュール100は、例えば、次のようにして製造される。 FIG. 5 is a side view showing an example of a method for manufacturing the coil module 100. The coil module 100 is manufactured as follows, for example.
 図5の(A)に示すように、樹脂部材120の基材層を構成する複数の樹脂シート1201~1206を準備する。樹脂シート1201~1206は、例えば、ボリイミドまたは液晶ポリマなどで構成された可撓性の熱可塑性樹脂シートである。 As shown in FIG. 5A, a plurality of resin sheets 1201 to 1206 constituting the base material layer of the resin member 120 are prepared. The resin sheets 1201 to 1206 are flexible thermoplastic resin sheets made of, for example, polyimide or liquid crystal polymer.
 次いで、例えば、図5の(A)に示される配置に従って、所定の樹脂シートの特定の位置に貫通孔を形成する。貫通孔には、ビア123を設けるためのビアホールと、基板110を格納するための開口125とが含まれる。ビアホールとしての前記貫通孔内に導体ペースト123aを充填するとともに、主面上の特定の位置に導体ペースト121a、124aを印刷して面内導体パターンおよび表面電極パターンを形成する。前記貫通孔は、例えばレーザー加工により形成され、前記面内導体パターンおよび前記表面電極パターンは、例えばAg粉末を含んだ導体ペースト121a、124aのスクリーン印刷により形成され得る。 Then, for example, according to the arrangement shown in FIG. 5A, through holes are formed at specific positions of a predetermined resin sheet. The through hole includes a via hole for providing the via 123 and an opening 125 for storing the substrate 110. The through-holes as via holes are filled with a conductor paste 123a, and conductor pastes 121a and 124a are printed at specific positions on the main surface to form in-plane conductor patterns and surface electrode patterns. The through hole is formed by, for example, laser processing, and the in-plane conductor pattern and the surface electrode pattern can be formed by screen printing of, for example, conductor pastes 121a and 124a containing Ag powder.
 これと並行して基板110を準備する。基板110は、例えば、フェライトチップアンテナの一般的な製造方法に従って作製することとし、基板110自体の製造方法の詳細な説明は省略する。 In parallel with this, the substrate 110 is prepared. For example, the substrate 110 is manufactured according to a general manufacturing method of a ferrite chip antenna, and detailed description of the manufacturing method of the substrate 110 itself is omitted.
 次いで、導体ペースト121a、123a、124aが配置された複数の樹脂シート1201~1206及び基板110を、位置合わせをして積層し、熱圧着により一体化させる。この熱圧着により、樹脂シートが溶融して基板110とともに一体化するとともに、導体ペースト121a、123a、124a中のAg粉末が焼結してブースターコイル121、ビア123、及び表面電極124が形成される。 Next, the plurality of resin sheets 1201 to 1206 on which the conductor pastes 121a, 123a, and 124a are arranged and the substrate 110 are aligned and laminated, and are integrated by thermocompression bonding. By this thermocompression bonding, the resin sheet is melted and integrated with the substrate 110, and the Ag powder in the conductor pastes 121a, 123a, and 124a is sintered to form the booster coil 121, the via 123, and the surface electrode 124. .
 その後、コイルモジュール100の実装面(図5での下面)に露出している表面電極124にめっきが施される。具体的には、無電解めっきにより、ニッケル/金のめっき膜を形成する。 Thereafter, the surface electrode 124 exposed on the mounting surface (the lower surface in FIG. 5) of the coil module 100 is plated. Specifically, a nickel / gold plating film is formed by electroless plating.
 これにより、図5の(B)に示すように、基板110を樹脂部材120で封止したコイルモジュール100が完成する。 Thereby, as shown in FIG. 5B, the coil module 100 in which the substrate 110 is sealed with the resin member 120 is completed.
 図6は、コイルモジュール100の実装構造の一例を示す側面図であり、コイルモジュール100を用いた通信端末の例を示している。図6に示す通信端末800では、コイルモジュール100、RFIC130、及びコンデンサ131を含む複数の表面実装部品が、グランドプレーン811を有するプリント配線板810に表面実装されている。コイルモジュール100は、プリント配線板810の平面視で、グランドプレーン811と重ならない位置に配置されている。コイルモジュール100は、一例として、RFIC130からアンテナ電流を給電されて磁界および電波を放射する通信用のアンテナであり、移動体通信などの遠方界通信用のアンテナとして用いられてもよく、また、ICカードおよび近接センサーなどとの近傍界通信用のアンテナとして用いられてもよい。 FIG. 6 is a side view showing an example of the mounting structure of the coil module 100, and shows an example of a communication terminal using the coil module 100. In the communication terminal 800 illustrated in FIG. 6, a plurality of surface-mounted components including the coil module 100, the RFIC 130, and the capacitor 131 are surface-mounted on a printed wiring board 810 having a ground plane 811. The coil module 100 is disposed at a position that does not overlap the ground plane 811 in a plan view of the printed wiring board 810. As an example, the coil module 100 is a communication antenna that receives an antenna current from the RFIC 130 and radiates a magnetic field and a radio wave, and may be used as an antenna for far-field communication such as mobile communication. It may be used as an antenna for near-field communication with a card and a proximity sensor.
 以上のように構成されたコイルモジュール100によれば、次のような効果が得られる。 According to the coil module 100 configured as described above, the following effects can be obtained.
 コイルアンテナ111を大型化する代わりに、ブースターコイル121を、磁界を介してコイルアンテナ111と結合させることによって、アンテナ性能を改善する。磁界による結合のため、樹脂部材が撓んだり反ったりした場合でも断線などの機械的な破損が生じにくい。その結果、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュール100が得られる。 Instead of increasing the size of the coil antenna 111, the antenna performance is improved by coupling the booster coil 121 to the coil antenna 111 via a magnetic field. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 100 capable of improving the antenna performance while achieving both miniaturization and reliability can be obtained.
 また、ブースターコイル121のコイル径を、コイルアンテナ111のコイル径より大きくすることで、通信距離および通信エリアを拡大することができ、アンテナ性能をより確実に改善できる。 Also, by making the coil diameter of the booster coil 121 larger than the coil diameter of the coil antenna 111, the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
 なお、ブースターコイル121を備えることで、コイルアンテナ111単体の場合に比べて、ある特定方向の通信距離をより大きくしたり、通信可能な範囲を広げたり、コイルアンテナ111単体では通信できなかった方向も通信できるようになる。 In addition, by providing the booster coil 121, the communication distance in a certain direction is increased, the communicable range is expanded, or the direction in which the coil antenna 111 alone cannot be communicated as compared with the case of the coil antenna 111 alone. Will also be able to communicate.
 また、樹脂部材120を基板110よりフレキシブルな部材とすることで、応力がかかった際に樹脂部材120の変形により応力を吸収してコイルモジュール100の破損を防ぐことができ、信頼性が向上する。 Further, by making the resin member 120 a member that is more flexible than the substrate 110, the stress can be absorbed by deformation of the resin member 120 when stress is applied, and the coil module 100 can be prevented from being damaged, thereby improving reliability. .
 また、基板110はセラミック基板であり、樹脂部材120は熱可塑性樹脂部材であり、何れの部材も入手性及び加工性が良いことから、コイルモジュール100は、これらの部材を用いて容易に作製できる。また、第1コイルを損失および特性変動が少ないセラミック等のリジッドな基板で構成し、第1コイルを大型化しやすく強度の高いフレキシブルな基板で構成することで、通信特性と信頼性を両立できる。 Further, since the substrate 110 is a ceramic substrate, the resin member 120 is a thermoplastic resin member, and any member has good availability and processability, the coil module 100 can be easily manufactured using these members. . Further, by configuring the first coil with a rigid substrate such as ceramic with little loss and characteristic variation, and configuring the first coil with a flexible substrate that is easy to enlarge and has high strength, both communication characteristics and reliability can be achieved.
 (実施の形態2)
 実施の形態2では、RFICチップとして構成された表面実装型のコイルモジュールについて説明する。
(Embodiment 2)
In the second embodiment, a surface mount type coil module configured as an RFIC chip will be described.
 図7は、実施の形態2に係るコイルモジュールの構成の一例を示す側面図である。図7に示すように、コイルモジュール200は、基板210と、基板210の1主面(図7での上面)を覆う樹脂部材220と、を備える。 FIG. 7 is a side view showing an example of the configuration of the coil module according to the second embodiment. As shown in FIG. 7, the coil module 200 includes a substrate 210 and a resin member 220 that covers one main surface (the upper surface in FIG. 7) of the substrate 210.
 基板210は、シリコン基板等の半導体基板211の一方主面(図7での下面)に、コイルアンテナ214が形成された再配線層213を配してなるICパッケージ(ウェハレベルチップサイズパッケージ)であり、半導体基板211の素子領域にはRF回路212が形成されている。RF回路212は、コイルアンテナ214への給電回路を含んでいる。 The substrate 210 is an IC package (wafer level chip size package) in which a rewiring layer 213 having a coil antenna 214 is disposed on one main surface (lower surface in FIG. 7) of a semiconductor substrate 211 such as a silicon substrate. In addition, an RF circuit 212 is formed in the element region of the semiconductor substrate 211. The RF circuit 212 includes a power feeding circuit for the coil antenna 214.
 樹脂部材220は、半導体基板211の他方主面を覆う樹脂層(例えば、トップコート樹脂層)であり、内部にブースターコイル221を有している。樹脂部材220は、複数の樹脂基材層を積層してなり、ブースターコイル221は、前記樹脂基材層に配置されたループ状の面内導体で形成されている。ブースターコイル221は、コイルアンテナ214に直接的には接続されておらず、磁界を介してコイルアンテナ214と結合されている。なお、ブースターコイル221は、樹脂層の内部には限らず、樹脂層の天面に設けられていてもよい。 The resin member 220 is a resin layer (for example, a topcoat resin layer) that covers the other main surface of the semiconductor substrate 211, and has a booster coil 221 inside. The resin member 220 is formed by laminating a plurality of resin base layers, and the booster coil 221 is formed of a loop-shaped in-plane conductor disposed on the resin base layer. The booster coil 221 is not directly connected to the coil antenna 214 but is coupled to the coil antenna 214 via a magnetic field. The booster coil 221 is not limited to the inside of the resin layer, and may be provided on the top surface of the resin layer.
 再配線層213の半導体基板211と接していない露出面(図7での下面)に、コイルアンテナ214に電気的に接続された表面電極215が設けられている。コイルモジュール200は、表面電極215を介して、プリント配線板などのマザー基板に表面実装される。 A surface electrode 215 electrically connected to the coil antenna 214 is provided on the exposed surface (the lower surface in FIG. 7) of the rewiring layer 213 that is not in contact with the semiconductor substrate 211. The coil module 200 is surface-mounted on a mother board such as a printed wiring board via the surface electrode 215.
 樹脂部材220は、基板210よりフレキシブルな部材であってもよい。ここで、樹脂部材220が基板210よりフレキシブルであるとは、樹脂部材220と基板210とに同じ大きさの応力を与えたとき、樹脂部材220に生じる歪量が、基板210に生じる歪量より大きいことを意味する。 The resin member 220 may be a member that is more flexible than the substrate 210. Here, the resin member 220 is more flexible than the substrate 210 when the same amount of stress is applied to the resin member 220 and the substrate 210 so that the amount of strain generated in the resin member 220 is greater than the amount of strain generated in the substrate 210. It means big.
 図8は、コイルモジュール200の構成の一例を示す上面図である。図8の灰色で示す領域A3、A4に、それぞれコイルアンテナ214及びブースターコイル221を構成する面内導体が設けられている。ブースターコイル221のコイル径は、コイルアンテナ214のコイル径より大きくてもよい。これは、少なくとも、ブースターコイル221の外径が、コイルアンテナ214の外径より大きいことを意味する。さらに、図8に示すように、ブースターコイル221の内径が、コイルアンテナ214の外径より大きくてもよい。また、ブースターコイルの線幅はコイルアンテナの線幅よりも大きい。 FIG. 8 is a top view showing an example of the configuration of the coil module 200. In-plane conductors constituting the coil antenna 214 and the booster coil 221 are provided in the regions A3 and A4 shown in gray in FIG. The coil diameter of the booster coil 221 may be larger than the coil diameter of the coil antenna 214. This means that at least the outer diameter of the booster coil 221 is larger than the outer diameter of the coil antenna 214. Further, as shown in FIG. 8, the inner diameter of the booster coil 221 may be larger than the outer diameter of the coil antenna 214. The line width of the booster coil is larger than the line width of the coil antenna.
 図9は、コイルモジュール200の等価回路の一例を示す回路図である。コンデンサ230は、例えば、再配線層213に設けられたコンデンサパターン(対向配置された導体対)又はチップコンデンサであってもよく、基板210とは別体の外付け部品であってもよい。 FIG. 9 is a circuit diagram showing an example of an equivalent circuit of the coil module 200. Capacitor 230 may be, for example, a capacitor pattern (a pair of conductors arranged opposite to each other) or a chip capacitor provided in redistribution layer 213, and may be an external component separate from substrate 210.
 コイルアンテナ214とコンデンサ230とは、第1の共振回路を構成している。第1の共振回路は、コイルアンテナ214のインダクタンスL1と、コンデンサ230のキャパシタンスC1とに応じて、目的のアンテナ信号の周波数と略等しい第1の共振周波数を有している。 The coil antenna 214 and the capacitor 230 constitute a first resonance circuit. The first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 214 and the capacitance C1 of the capacitor 230.
 また、ブースターコイル221とコンデンサ222とが第2の共振回路を構成している。コンデンサ222は、ブースターコイル221を構成する導体間に生じる寄生容量でもよく、明示的に設置したチップコンデンサであってもよい。チップコンデンサは、樹脂層に内蔵されていてもよい。第2の共振回路は、ブースターコイル221のインダクタンスL2と、コンデンサ222のキャパシタンスC2とに応じて、目的のアンテナ信号の周波数と略等しい第2の共振周波数を有している。 Also, the booster coil 221 and the capacitor 222 constitute a second resonance circuit. The capacitor 222 may be a parasitic capacitance generated between conductors constituting the booster coil 221 or may be a chip capacitor that is explicitly installed. The chip capacitor may be built in the resin layer. The second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 221 and the capacitance C2 of the capacitor 222.
 ブースターコイル221とコイルアンテナ214とは、直接的には接続されておらず、磁界を介して結合されている。RF回路212が、コイルアンテナ214にアンテナ電流を給電することにより、磁界を介して結合されているコイルアンテナ214とブースターコイル221の双方から、磁界および電波が放射される。 The booster coil 221 and the coil antenna 214 are not directly connected but are coupled via a magnetic field. When the RF circuit 212 feeds an antenna current to the coil antenna 214, a magnetic field and a radio wave are radiated from both the coil antenna 214 and the booster coil 221 coupled via a magnetic field.
 図10は、コイルモジュール200の製造方法の一例を示す側面図である。コイルモジュール200は、例えば、次のようにして製造される。 FIG. 10 is a side view showing an example of a method for manufacturing the coil module 200. The coil module 200 is manufactured as follows, for example.
 図10の(A)に示すように、樹脂部材220の基材層を構成する複数の樹脂シート2201~2203を準備する。樹脂シート2201~2203は、例えば、ボリイミドまたは液晶ポリマなどで構成された可撓性の熱可塑性樹脂シートである。 As shown in FIG. 10A, a plurality of resin sheets 2201 to 2203 constituting the base material layer of the resin member 220 are prepared. The resin sheets 2201 to 2203 are flexible thermoplastic resin sheets made of, for example, polyimide or liquid crystal polymer.
 次いで、例えば、図10の(A)に示される配置に従って、所定の樹脂シートの主面上の特定の位置に導体ペースト221aを印刷して面内導体パターンを形成する。前記面内導体パターンは、例えばAg粉末を含んだ導体ペースト221aのスクリーン印刷により形成され得る。 Next, for example, according to the arrangement shown in FIG. 10A, the conductor paste 221a is printed at a specific position on the main surface of the predetermined resin sheet to form an in-plane conductor pattern. The in-plane conductor pattern can be formed, for example, by screen printing of a conductor paste 221a containing Ag powder.
 これと並行して基板210を準備する。基板210は、例えば、RFICチップの一般的な製造方法に従って作製することとし、基板210自体の製造方法の詳細な説明は省略する。 In parallel with this, the substrate 210 is prepared. The substrate 210 is manufactured, for example, according to a general manufacturing method of the RFIC chip, and detailed description of the manufacturing method of the substrate 210 itself is omitted.
 次いで、導体ペーストが配置された複数の樹脂シート2201~2203及び基板210を、位置合わせをして積層し、熱圧着により一体化させる。この熱圧着により、樹脂シートが硬化して樹脂層として半導体基板211とともに一体化するとともに、導体ペースト221a中のAg粉末が焼結してブースターコイル221が形成される。 Next, the plurality of resin sheets 2201 to 2203 on which the conductor paste is arranged and the substrate 210 are aligned and laminated, and integrated by thermocompression bonding. By this thermocompression bonding, the resin sheet is cured and integrated with the semiconductor substrate 211 as a resin layer, and the Ag powder in the conductor paste 221a is sintered to form the booster coil 221.
 これにより、図10の(B)に示すように、基板210を樹脂部材220で覆ったコイルモジュール100が完成する。なお、上述の製造方法に従って、複数のコイルモジュール200の集合体を作製した後、個々のコイルモジュール200に個片化してもよい。また、ブースターコイルを内蔵した樹脂層を樹脂シートを利用した一括積層圧着法で形成したが、樹脂層を塗布あるいは印刷し、その上にブースターコイルをパターニングする、という工程を繰り返し行う逐次積層法で形成してもよい。 Thereby, as shown in FIG. 10B, the coil module 100 in which the substrate 210 is covered with the resin member 220 is completed. In addition, after producing the aggregate | assembly of the several coil module 200 according to the above-mentioned manufacturing method, you may divide into each coil module 200. FIG. In addition, the resin layer with a built-in booster coil was formed by the batch lamination pressure bonding method using a resin sheet. However, the sequential lamination method in which the process of coating or printing the resin layer and patterning the booster coil on the resin layer is repeated. It may be formed.
 以上のように構成されたコイルモジュール200によれば、次のような効果が得られる。 According to the coil module 200 configured as described above, the following effects can be obtained.
 コイルアンテナ214を大型化する代わりに、ブースターコイル221を、磁界を介してコイルアンテナ214と結合させることによって、アンテナ性能を改善する。磁界による結合のため、樹脂部材が撓んだり反ったりした場合でも断線などの機械的な破損が生じにくい。その結果、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュール200が得られる。 Instead of increasing the size of the coil antenna 214, the booster coil 221 is coupled to the coil antenna 214 via a magnetic field to improve the antenna performance. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 200 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
 ブースターコイル221をコイルモジュール200の天面(図7での上面)側に配置するので、天面方向への通信距離を大きくできる。 Since the booster coil 221 is arranged on the top surface (upper surface in FIG. 7) side of the coil module 200, the communication distance in the top surface direction can be increased.
 また、ブースターコイル221のコイル径を、コイルアンテナ214のコイル径より大きくすることで、通信距離および通信エリアを拡大することができ、アンテナ性能をより確実に改善できる。 Also, by making the coil diameter of the booster coil 221 larger than the coil diameter of the coil antenna 214, the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
 また、樹脂部材220を基板210よりフレキシブルな部材とすることで、応力がかかった際に樹脂部材220の変形により応力を吸収してコイルモジュール200の破損を防ぐことができ、信頼性が向上する。 Further, by making the resin member 220 a member that is more flexible than the substrate 210, the stress can be absorbed by deformation of the resin member 220 when stress is applied, and the coil module 200 can be prevented from being damaged, thereby improving reliability. .
 また、基板210は再配線層213を有する半導体基板211であり、樹脂部材220は熱可塑性樹脂部材であり、何れの部材も入手性及び加工性が良いことから、コイルモジュール200は、これらの部材を用いて容易に作製できる。 Further, since the substrate 210 is a semiconductor substrate 211 having a rewiring layer 213, the resin member 220 is a thermoplastic resin member, and any member has good availability and workability. Therefore, the coil module 200 includes these members. It can be easily manufactured using.
 (実施の形態3)
 実施の形態3では、RFモジュールとして構成された表面実装型のコイルモジュールについて説明する。
(Embodiment 3)
In the third embodiment, a surface mount type coil module configured as an RF module will be described.
 図11は、実施の形態3に係るコイルモジュールの構成の一例を示す側面図である。図11に示すように、コイルモジュール300は、チップ部品が搭載されて複合部品340を構成している基板310と、基板310を含む複合部品340を封止する樹脂部材320と、を備える。 FIG. 11 is a side view showing an example of the configuration of the coil module according to the third embodiment. As shown in FIG. 11, the coil module 300 includes a substrate 310 on which a chip component is mounted to form a composite component 340, and a resin member 320 that seals the composite component 340 including the substrate 310.
 基板310は、コイルアンテナ311を内蔵したセラミック基板である。基板310は、複数のセラミックス基材層を積層してなり、コイルアンテナ311は、前記セラミックス基材層に配置したループ状の面内導体で形成されている。基板310の一方主面(図11での下面)に、コイルアンテナ311に電気的に接続された接続端子313が設けられている。また、基板310の他方主面(図11での上面)にRFICチップ330及びチップ型のコンデンサ331が搭載され、樹脂層312で基板310に封止、固定され、複合部品340を構成している。RFICチップ330は、コイルアンテナ311への給電回路を有していてもよい。 The substrate 310 is a ceramic substrate in which a coil antenna 311 is incorporated. The substrate 310 is formed by laminating a plurality of ceramic base layers, and the coil antenna 311 is formed of a loop-shaped in-plane conductor disposed on the ceramic base layer. A connection terminal 313 electrically connected to the coil antenna 311 is provided on one main surface (the lower surface in FIG. 11) of the substrate 310. Further, the RFIC chip 330 and the chip-type capacitor 331 are mounted on the other main surface (the upper surface in FIG. 11) of the substrate 310, and are sealed and fixed to the substrate 310 with the resin layer 312 to constitute the composite component 340. . The RFIC chip 330 may have a power feeding circuit to the coil antenna 311.
 樹脂部材320は、複合部品340を封止する樹脂パッケージであり、内部にブースターコイル321を有している。樹脂部材320は、複数の樹脂基材層を積層してなり、ブースターコイル321は、前記樹脂基材層に配置されたループ状の面内導体で形成されている。ブースターコイル321は、コイルアンテナ311に直接的には接続されておらず、磁界を介してコイルアンテナ311と結合されている。 The resin member 320 is a resin package for sealing the composite component 340 and has a booster coil 321 inside. The resin member 320 is formed by laminating a plurality of resin base layers, and the booster coil 321 is formed of a loop-shaped in-plane conductor disposed on the resin base layer. The booster coil 321 is not directly connected to the coil antenna 311 but is coupled to the coil antenna 311 via a magnetic field.
 樹脂部材320の露出面(図11での下面)に、接続端子313に電気的に接続された表面電極324が設けられている。接続端子313と表面電極324とは、樹脂部材320に設けられた層間導体であるビア323を介して電気的に接続されている。コイルモジュール300は、表面電極324を介して、プリント配線板などのマザー基板に表面実装される。 A surface electrode 324 electrically connected to the connection terminal 313 is provided on the exposed surface (the lower surface in FIG. 11) of the resin member 320. The connection terminal 313 and the surface electrode 324 are electrically connected through a via 323 that is an interlayer conductor provided in the resin member 320. The coil module 300 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 324.
 樹脂部材320は、基板310よりフレキシブルな部材であってもよい。ここで、樹脂部材320が基板310よりフレキシブルであるとは、樹脂部材320と基板310とに同じ大きさの応力を与えたとき、樹脂部材320に生じる歪量が、基板310に生じる歪量より大きいことを意味する。 The resin member 320 may be a member that is more flexible than the substrate 310. Here, the fact that the resin member 320 is more flexible than the substrate 310 means that the amount of strain generated in the resin member 320 when the same magnitude of stress is applied to the resin member 320 and the substrate 310 is greater than the amount of strain generated in the substrate 310. It means big.
 図12は、コイルモジュール300の構成の一例を示す上面図である。図12の灰色で示す領域A5、A6に、それぞれコイルアンテナ311及びブースターコイル321を構成する面内導体が設けられている。ブースターコイル321のコイル径は、コイルアンテナ311のコイル径より大きくてもよい。これは、少なくとも、ブースターコイル321の外径が、コイルアンテナ311の外径より大きいことを意味する。さらに、図11に示すように、ブースターコイル321の内径が、コイルアンテナ311の外径より大きくてもよい。 FIG. 12 is a top view showing an example of the configuration of the coil module 300. In-plane conductors constituting the coil antenna 311 and the booster coil 321 are provided in regions A5 and A6 shown in gray in FIG. The coil diameter of the booster coil 321 may be larger than the coil diameter of the coil antenna 311. This means that at least the outer diameter of the booster coil 321 is larger than the outer diameter of the coil antenna 311. Furthermore, as shown in FIG. 11, the inner diameter of the booster coil 321 may be larger than the outer diameter of the coil antenna 311.
 図13は、コイルモジュール300の等価回路の一例を示す回路図である。 FIG. 13 is a circuit diagram showing an example of an equivalent circuit of the coil module 300.
 コイルアンテナ311とコンデンサ331とは、第1の共振回路を構成している。第1の共振回路は、コイルアンテナ311のインダクタンスL1と、コンデンサ331のキャパシタンスC1とに応じて、目的のアンテナ信号の周波数と略等しい第1の共振周波数を有している。 The coil antenna 311 and the capacitor 331 constitute a first resonance circuit. The first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 311 and the capacitance C1 of the capacitor 331.
 また、ブースターコイル321とコンデンサ322とが第2の共振回路を構成している。コンデンサ322は、ブースターコイル321を構成する導体間に生じる寄生容量でもよく、明示的に設置したチップコンデンサであってもよい。チップコンデンサは、樹脂部材に内蔵されていてもよい。第2の共振回路は、ブースターコイル321のインダクタンスL2と、コンデンサ322のキャパシタンスC2とに応じて、目的のアンテナ信号の周波数と略等しい第2の共振周波数を有している。 Also, the booster coil 321 and the capacitor 322 constitute a second resonance circuit. The capacitor 322 may be a parasitic capacitance generated between conductors constituting the booster coil 321 or may be a chip capacitor that is explicitly installed. The chip capacitor may be built in the resin member. The second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 321 and the capacitance C2 of the capacitor 322.
 ブースターコイル321とコイルアンテナ311とは、直接的には接続されておらず、磁界を介して結合されている。RFICチップ330が、コイルアンテナ311にアンテナ電流を給電することにより、磁界を介して結合されているコイルアンテナ311とブースターコイル321の双方から、磁界および電波が放射される。 The booster coil 321 and the coil antenna 311 are not directly connected but are coupled via a magnetic field. When the RFIC chip 330 supplies an antenna current to the coil antenna 311, a magnetic field and a radio wave are radiated from both the coil antenna 311 and the booster coil 321 that are coupled via a magnetic field.
 このように構成されたコイルモジュール300は、図5で説明したコイルモジュール100の製造方法を、基板110に代えて、基板310を含む複合部品340に対して適用することによって、作製できる。 The coil module 300 configured as described above can be manufactured by applying the manufacturing method of the coil module 100 described in FIG. 5 to the composite component 340 including the substrate 310 instead of the substrate 110.
 以上のように構成されたコイルモジュール300によれば、次のような効果が得られる。 According to the coil module 300 configured as described above, the following effects can be obtained.
 コイルアンテナ311を大型化する代わりに、ブースターコイル321を、磁界を介してコイルアンテナ311と結合させることによって、アンテナ性能を改善する。磁界による結合のため、樹脂部材が撓んだり反ったりした場合でも断線などの機械的な破損が生じにくい。その結果、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュール300が得られる。 The antenna performance is improved by coupling the booster coil 321 with the coil antenna 311 through a magnetic field instead of increasing the size of the coil antenna 311. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 300 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
 また、ブースターコイル321のコイル径を、コイルアンテナ311のコイル径より大きくすることで、通信距離および通信エリアを拡大することができ、アンテナ性能をより確実に改善できる。 Also, by making the coil diameter of the booster coil 321 larger than the coil diameter of the coil antenna 311, the communication distance and communication area can be expanded, and the antenna performance can be improved more reliably.
 また、樹脂部材320を基板310よりフレキシブルな部材とすることで、応力がかかった際に樹脂部材320の変形により応力を吸収してコイルモジュール300の破損を防ぐことができ、信頼性が向上する。 Further, by making the resin member 320 more flexible than the substrate 310, the stress can be absorbed by the deformation of the resin member 320 when stress is applied, and the coil module 300 can be prevented from being damaged, and the reliability is improved. .
 また、基板310はセラミック多層基板であり、樹脂部材320は熱可塑性樹脂部材であり、何れの部材も入手性及び加工性が良いことから、コイルモジュール300は、これらの部材を用いて容易に作製できる。また、第1コイルおよび各種実装部品を損失および特性変動が少なく、微細配線が可能なセラミック等のリジッドな基板で構成し、第2コイルを大型化しやすく強度の高いフレキシブルな基板で構成することで、小型化を達成できるとともに、通信特性と信頼性を両立できる。 Further, since the substrate 310 is a ceramic multilayer substrate, the resin member 320 is a thermoplastic resin member, and any member has good availability and processability, the coil module 300 can be easily manufactured using these members. it can. In addition, the first coil and various mounting parts are composed of a rigid substrate such as ceramic that can be finely wired with little loss and characteristic variation, and the second coil is composed of a flexible substrate that is easy to enlarge and has high strength. As well as achieving miniaturization, it is possible to achieve both communication characteristics and reliability.
 (実施の形態4)
 実施の形態4では、RFモジュールとして構成された表面実装型のコイルモジュールについて説明する。
(Embodiment 4)
In the fourth embodiment, a surface mount type coil module configured as an RF module will be described.
 図14は、実施の形態4に係るコイルモジュールの構成の一例を示す側面図である。図14に示すように、コイルモジュール400は、基板410と、基板410を封止する樹脂部材420と、を備える。 FIG. 14 is a side view showing an example of the configuration of the coil module according to the fourth embodiment. As shown in FIG. 14, the coil module 400 includes a substrate 410 and a resin member 420 that seals the substrate 410.
 基板410は、半導体基板411の一方主面(図14での上面)に、コイルアンテナ414が形成された再配線層413を配してなるICチップ(ベアチップ)であり、半導体基板411の素子領域にはRF回路412が形成されている。RF回路412は、コイルアンテナ414への給電回路を含んでいてもよい。再配線層413の半導体基板411と接していない主面(図14での上面)に、コイルアンテナ414に電気的に接続された接続端子415が設けられている。 The substrate 410 is an IC chip (bare chip) in which a rewiring layer 413 on which a coil antenna 414 is formed is disposed on one main surface (upper surface in FIG. 14) of the semiconductor substrate 411, and an element region of the semiconductor substrate 411. Is formed with an RF circuit 412. The RF circuit 412 may include a power feeding circuit to the coil antenna 414. A connection terminal 415 that is electrically connected to the coil antenna 414 is provided on a main surface (upper surface in FIG. 14) of the rewiring layer 413 that is not in contact with the semiconductor substrate 411.
 樹脂部材420は、半導体基板411と再配線層413とを含むICチップを封止する樹脂パッケージであり、内部にブースターコイル421を有している。樹脂部材420は、複数の樹脂基材層を積層してなり、ブースターコイル421は、前記樹脂基材層に配置されたループ状の面内導体で形成されている。ブースターコイル421は、コイルアンテナ414に直接的には接続されておらず、磁界を介してコイルアンテナ414と結合されている。 The resin member 420 is a resin package for sealing an IC chip including the semiconductor substrate 411 and the rewiring layer 413, and has a booster coil 421 inside. The resin member 420 is formed by laminating a plurality of resin base layers, and the booster coil 421 is formed of a loop-shaped in-plane conductor disposed on the resin base layer. The booster coil 421 is not directly connected to the coil antenna 414 but is coupled to the coil antenna 414 via a magnetic field.
 樹脂部材420の露出面(図14での下面)に、基板410の接続端子415に電気的に接続された表面電極424が設けられている、接続端子415と表面電極424とは、樹脂部材420に設けられた層間導体であるビア423、426、及び面内導体である配線パターン425を介して、電気的に接続されている。コイルモジュール400は、表面電極424を介して、プリント配線板などのマザー基板に表面実装される。 A surface electrode 424 electrically connected to the connection terminal 415 of the substrate 410 is provided on the exposed surface (the lower surface in FIG. 14) of the resin member 420. The connection terminal 415 and the surface electrode 424 are the resin member 420. Are electrically connected via vias 423 and 426 which are interlayer conductors provided on the wiring pattern and a wiring pattern 425 which is an in-plane conductor. The coil module 400 is surface-mounted on a mother board such as a printed wiring board via a surface electrode 424.
 樹脂部材420は、基板410よりフレキシブルな部材であってもよい。ここで、樹脂部材420が基板410よりフレキシブルであるとは、樹脂部材420と基板410とに同じ大きさの応力を与えたとき、樹脂部材420に生じる歪量が、基板410に生じる歪量より大きいことを意味する。 The resin member 420 may be a member that is more flexible than the substrate 410. Here, the fact that the resin member 420 is more flexible than the substrate 410 is that the amount of strain generated in the resin member 420 is greater than the amount of strain generated in the substrate 410 when the resin member 420 and the substrate 410 are given the same amount of stress. It means big.
 図15は、コイルモジュール400の構成の一例を示す上面図である。図15の灰色で示す領域A7、A8に、それぞれコイルアンテナ414及びブースターコイル421を構成する面内導体が設けられている。ブースターコイル421のコイル径は、コイルアンテナ414のコイル径より大きくてもよい。これは、少なくとも、ブースターコイル421の外径が、コイルアンテナ414の外径より大きいことを意味する。さらに、図15に示すように、ブースターコイル421の内径が、コイルアンテナ414の外径より大きくてもよい。また、ブースターコイルの線幅はコイルアンテナの線幅よりも大きい。 FIG. 15 is a top view showing an example of the configuration of the coil module 400. In-plane conductors constituting the coil antenna 414 and the booster coil 421 are provided in regions A7 and A8 shown in gray in FIG. The coil diameter of the booster coil 421 may be larger than the coil diameter of the coil antenna 414. This means that at least the outer diameter of the booster coil 421 is larger than the outer diameter of the coil antenna 414. Further, as shown in FIG. 15, the inner diameter of the booster coil 421 may be larger than the outer diameter of the coil antenna 414. The line width of the booster coil is larger than the line width of the coil antenna.
 図16は、コイルモジュール400の等価回路の一例を示す回路図である。コンデンサ430は、例えば、再配線層413に設けられたコンデンサパターン(対向配置された導体対)又はチップコンデンサであってもよい。 FIG. 16 is a circuit diagram showing an example of an equivalent circuit of the coil module 400. The capacitor 430 may be, for example, a capacitor pattern (a pair of conductors arranged opposite to each other) provided on the rewiring layer 413 or a chip capacitor.
 コイルアンテナ414とコンデンサ430とは、第1の共振回路を構成している。第1の共振回路は、コイルアンテナ414のインダクタンスL1と、コンデンサ430のキャパシタンスC1とに応じて、目的のアンテナ信号の周波数と略等しい第1の共振周波数を有している。 The coil antenna 414 and the capacitor 430 constitute a first resonance circuit. The first resonance circuit has a first resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L1 of the coil antenna 414 and the capacitance C1 of the capacitor 430.
 また、ブースターコイル421とコンデンサ430とが第2の共振回路を構成している。コンデンサ430は、ブースターコイル421を構成する導体間に生じる寄生容量でもよく、明示的に設置したチップコンデンサであってもよい。チップコンデンサは、樹脂部材に内蔵されていてもよい。第2の共振回路は、ブースターコイル421のインダクタンスL2と、コンデンサ422のキャパシタンスC2とに応じて、目的のアンテナ信号の周波数と略等しい第2の共振周波数を有している。 The booster coil 421 and the capacitor 430 constitute a second resonance circuit. The capacitor 430 may be a parasitic capacitance generated between the conductors constituting the booster coil 421, or may be a chip capacitor explicitly provided. The chip capacitor may be built in the resin member. The second resonance circuit has a second resonance frequency substantially equal to the frequency of the target antenna signal in accordance with the inductance L2 of the booster coil 421 and the capacitance C2 of the capacitor 422.
 ブースターコイル421とコイルアンテナ414とは、直接的には接続されておらず、磁界を介して結合されている。RF回路412が、コイルアンテナ414にアンテナ電流を給電することにより、磁界を介して結合されているコイルアンテナ414とブースターコイル421の双方から、磁界および電波が放射される。 The booster coil 421 and the coil antenna 414 are not directly connected but are coupled via a magnetic field. When the RF circuit 412 supplies an antenna current to the coil antenna 414, a magnetic field and a radio wave are radiated from both the coil antenna 414 and the booster coil 421 that are coupled via a magnetic field.
 このように構成されたコイルモジュール400は、図5で説明したコイルモジュール100の製造方法を、基板110に代えて、基板410に対して適用することによって、作製できる。 The coil module 400 configured as described above can be manufactured by applying the manufacturing method of the coil module 100 described in FIG. 5 to the substrate 410 instead of the substrate 110.
 以上のように構成されたコイルモジュール400によれば、次のような効果が得られる。 According to the coil module 400 configured as described above, the following effects can be obtained.
 コイルアンテナ414を大型化する代わりに、ブースターコイル421を、磁界を介してコイルアンテナ414と結合させることによって、アンテナ性能を改善する。磁界による結合のため、樹脂部材が撓んだり反ったりした場合でも断線などの機械的な破損が生じにくい。その結果、小型化と信頼性とを両立しながらアンテナ性能を改善できるコイルモジュール400が得られる。 Instead of increasing the size of the coil antenna 414, the antenna performance is improved by coupling the booster coil 421 to the coil antenna 414 via a magnetic field. Due to the coupling by the magnetic field, even when the resin member is bent or warped, mechanical breakage such as disconnection hardly occurs. As a result, the coil module 400 that can improve the antenna performance while achieving both miniaturization and reliability can be obtained.
 再配線層413を、コイルモジュール400の天面(図14での上面)に向けて配置するので、ブースターコイル421との距離が小さくなり、コイルモジュール400とブースターコイル421との間で、磁界によるより強い結合が得られる。 Since the rewiring layer 413 is arranged toward the top surface (the upper surface in FIG. 14) of the coil module 400, the distance from the booster coil 421 is reduced, and a magnetic field is generated between the coil module 400 and the booster coil 421. A stronger bond is obtained.
 また、ブースターコイル421のコイル径を、コイルアンテナ414のコイル径より大きくすることで、アンテナ性能をより確実に改善できる。 Further, by making the coil diameter of the booster coil 421 larger than the coil diameter of the coil antenna 414, the antenna performance can be improved more reliably.
 また、樹脂部材420を基板410よりフレキシブルな部材とすることで、応力がかかった際に樹脂部材420の変形により応力を吸収してコイルモジュール400の破損を防ぐことができ、信頼性が向上する。 Further, by making the resin member 420 more flexible than the substrate 410, the stress can be absorbed by the deformation of the resin member 420 when the stress is applied to prevent the coil module 400 from being damaged, and the reliability is improved. .
 また、基板410は再配線層413を有する半導体基板411であり、樹脂部材420は熱可塑性樹脂部材であり、何れの部材も入手性及び加工性が良いことから、コイルモジュール400は、これらの部材を用いて容易に作製できる。また、第1コイルを微細加工が可能なシリコン等の半導体基板で構成し、第2コイルを大型化しやすく強度の高いフレキシブルな基板で構成することで、小型化と信頼性を両立できる。 Further, since the substrate 410 is a semiconductor substrate 411 having a rewiring layer 413, the resin member 420 is a thermoplastic resin member, and any member has good availability and workability. Therefore, the coil module 400 includes these members. It can be easily manufactured using. In addition, the first coil is formed of a semiconductor substrate such as silicon that can be finely processed, and the second coil is formed of a flexible substrate that is easy to increase in size and has high strength, thereby achieving both downsizing and reliability.
 (実施の形態5)
 実施の形態5では、コイルアンテナを構成するコイル導体とブースターコイルを構成するコイル導体とが、互いに平行でない軸の周りにループ状に配置されているコイルモジュールについて説明する。
(Embodiment 5)
In the fifth embodiment, a coil module in which a coil conductor constituting a coil antenna and a coil conductor constituting a booster coil are arranged in a loop around axes that are not parallel to each other will be described.
 図17は、実施の形態5に係るコイルモジュールの構成の一例を示す側面図である。図17に示すように、コイルモジュール500は、基板510と、基板510を封止する樹脂部材520と、を備える。 FIG. 17 is a side view showing an example of the configuration of the coil module according to the fifth embodiment. As shown in FIG. 17, the coil module 500 includes a substrate 510 and a resin member 520 that seals the substrate 510.
 基板510は、コイルアンテナ511を有するセラミック多層基板である。基板510は、複数のセラミックス基材層を積層してなり、コイルアンテナ511は、前記セラミックス基材層に配置した面内導体及び層間導体で形成されている。基板510の一方主面(図17での下面)に、コイルアンテナ511に電気的に接続された接続端子512、513が設けられている。 The substrate 510 is a ceramic multilayer substrate having a coil antenna 511. The substrate 510 is formed by laminating a plurality of ceramic base layers, and the coil antenna 511 is formed of an in-plane conductor and an interlayer conductor disposed on the ceramic base layer. Connection terminals 512 and 513 electrically connected to the coil antenna 511 are provided on one main surface (the lower surface in FIG. 17) of the substrate 510.
 樹脂部材520は、基板510を封止する樹脂パッケージであり、内部にブースターコイル521を有している。樹脂部材520は、複数の樹脂基材層を積層してなり、ブースターコイル521は、前記樹脂基材層に配置されたループ状の面内導体で形成されている。ブースターコイル521は、コイルアンテナ511に直接的には接続されておらず、磁界を介してコイルアンテナ511と結合されている。 The resin member 520 is a resin package for sealing the substrate 510 and has a booster coil 521 inside. The resin member 520 is formed by laminating a plurality of resin base layers, and the booster coil 521 is formed of a loop-shaped in-plane conductor disposed on the resin base layer. The booster coil 521 is not directly connected to the coil antenna 511 but is coupled to the coil antenna 511 through a magnetic field.
 樹脂部材520の露出面(図17での下面)に、基板510の接続端子512、513にそれぞれ電気的に接続された表面電極524、525が設けられている。接続端子512、513と表面電極524、525とは、樹脂部材520に設けられた層間導体であるビア522、523を介してそれぞれ電気的に接続されている。コイルモジュール500は、表面電極524、525を介して、プリント配線板などのマザー基板に表面実装される。 Surface electrodes 524 and 525 electrically connected to the connection terminals 512 and 513 of the substrate 510 are provided on the exposed surface (the lower surface in FIG. 17) of the resin member 520, respectively. The connection terminals 512 and 513 and the surface electrodes 524 and 525 are electrically connected through vias 522 and 523 which are interlayer conductors provided in the resin member 520, respectively. The coil module 500 is surface-mounted on a mother board such as a printed wiring board via surface electrodes 524 and 525.
 樹脂部材520は、基板510よりフレキシブルな部材であってもよい。ここで、樹脂部材520が基板510よりフレキシブルであるとは、樹脂部材520と基板510とに同じ大きさの応力を与えたとき、樹脂部材520に生じる歪量が、基板510に生じる歪量より大きいことを意味する。 The resin member 520 may be a member that is more flexible than the substrate 510. Here, the resin member 520 is more flexible than the substrate 510 when the same amount of stress is applied to the resin member 520 and the substrate 510 so that the amount of strain generated in the resin member 520 is greater than the amount of strain generated in the substrate 510. It means big.
 図18は、コイルモジュール500の構成の一例を示す上面図である。図18の灰色で示す領域A9、A10に、コイルアンテナ511及びブースターコイル521を構成するコイル導体が設けられている。図18に示すように、コイルアンテナ511を構成するコイル導体と前記ブースターコイルを構成するコイル導体とは、積層方向に見て(言い換えれば、コイルモジュール500を平面視したときに)重なりを有する領域において、互いに平行でない軸P及び軸Qの周りにループ状に配置されている。 FIG. 18 is a top view showing an example of the configuration of the coil module 500. Coil conductors constituting the coil antenna 511 and the booster coil 521 are provided in regions A9 and A10 shown in gray in FIG. As shown in FIG. 18, the coil conductor constituting the coil antenna 511 and the coil conductor constituting the booster coil are overlapped when viewed in the stacking direction (in other words, when the coil module 500 is viewed in plan). Are arranged in a loop around axes P and Q that are not parallel to each other.
 なお、基板510は、図17及び図18の例には限られず、コイルアンテナ511とブースターコイル521との磁界を介した結合が得られる限り、どこに配置しても構わない。例えば、図18において一点鎖線で示した基板510と同形状の領域の何れに配置してもよい。 Note that the substrate 510 is not limited to the examples of FIGS. 17 and 18, and may be arranged anywhere as long as the coupling between the coil antenna 511 and the booster coil 521 can be obtained. For example, you may arrange | position in any of the area | regions of the same shape as the board | substrate 510 shown with the dashed-dotted line in FIG.
 図19は、基板510の詳細な構成の一例を示す斜視図である。図19で手前に位置する面が、図17に示されている面に対応する。基板510は、複数のセラミックス基材層5101~5104を積層してなり、セラミックス基材層5101、5104に配置された面内導体を、セラミックス基材層5101~5104に配置された層間導体で接続して、コイルアンテナ511が形成されている。セラミックス基材層5104の露出面に、接続端子512、513が設けられている。 FIG. 19 is a perspective view showing an example of a detailed configuration of the substrate 510. The surface located in front of FIG. 19 corresponds to the surface shown in FIG. The substrate 510 is formed by laminating a plurality of ceramic base layers 5101 to 5104, and the in-plane conductors arranged on the ceramic base layers 5101 and 5104 are connected by the interlayer conductors arranged on the ceramic base layers 5101 to 5104. Thus, a coil antenna 511 is formed. Connection terminals 512 and 513 are provided on the exposed surface of the ceramic base material layer 5104.
 図示していない給電回路からコイルアンテナ511にアンテナ電流が給電されることで、磁界550が形成される(図17を参照)。コイルアンテナ511とブースターコイル521とは、積層方向に見て重なりを有する領域に配置されているので、コイルアンテナ511の磁界550は、ブースターコイル521を構成するコイル導体に巻き付く形で形成される。これにより、コイルアンテナ511とブースターコイル521との磁界を介した結合は確保され、アンテナ性能の改善効果が得られる。しかも、コイルアンテナとブースターコイルとを互いの軸方向が平行になるように配置する場合と比べて、配置の制約が大幅に緩和される。 A magnetic field 550 is formed by feeding an antenna current to the coil antenna 511 from a feeding circuit (not shown) (see FIG. 17). Since the coil antenna 511 and the booster coil 521 are arranged in a region that overlaps when viewed in the stacking direction, the magnetic field 550 of the coil antenna 511 is formed so as to wrap around the coil conductor that constitutes the booster coil 521. . Thereby, the coupling | bonding via the magnetic field of the coil antenna 511 and the booster coil 521 is ensured, and the improvement effect of antenna performance is acquired. In addition, as compared with the case where the coil antenna and the booster coil are arranged so that their axial directions are parallel to each other, the restriction on the arrangement is greatly eased.
 以上、本発明の実施の形態に係るコイルモジュールについて説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。 As mentioned above, although the coil module which concerns on embodiment of this invention was demonstrated, this invention is not limited to each embodiment. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
 本発明は、例えば、コイルモジュールをアンテナとして利用する無線端末など、種々の電子機器に広く利用できる。 The present invention can be widely used in various electronic devices such as a wireless terminal using a coil module as an antenna.
 100、200、300、400、500 コイルモジュール
 110、210、310、410、510 基板
 111、214、311、414、511 コイルアンテナ
 112、313、415、512、513 接続端子
 120、220、320、420、520 樹脂部材
 121、221、321、421、521  ブースターコイル
 121a、123a、221a 導体ペースト
 122、131、222、230、322、331、422、430 コンデンサ
 123、323、423、426、522、523 ビア
 124、215、324、424、524、525 表面電極
 125 開口
 130 RFIC
 211、411 半導体基板
 212 RF回路
 213、413 再配線層
 312 樹脂層
 330 RFICチップ
 340 複合部品
 412 RF回路
 425 配線パターン
 550 磁界
 800 通信端末
 810 プリント配線板
 811 グランドプレーン
 1201~1206、2201~2203 樹脂シート
 1211~1217、2211、2212 面内導体
 1218、1219 層間導体
 1221~1224 寄生容量
 1225 チップコンデンサ
 1261、1262 導体
 5101~5104 セラミックス基材層
100, 200, 300, 400, 500 Coil module 110, 210, 310, 410, 510 Substrate 111, 214, 311, 414, 511 Coil antenna 112, 313, 415, 512, 513 Connection terminal 120, 220, 320, 420 520 Resin member 121,221,321,421,521 Booster coil 121a, 123a, 221a Conductor paste 122,131,222,230,322,331,422,430 Capacitor 123,323,423,426,522,523 Via 124, 215, 324, 424, 524, 525 Surface electrode 125 Opening 130 RFIC
211, 411 Semiconductor substrate 212 RF circuit 213, 413 Rewiring layer 312 Resin layer 330 RFIC chip 340 Composite part 412 RF circuit 425 Wiring pattern 550 Magnetic field 800 Communication terminal 810 Printed wiring board 811 Ground plane 1201 to 1206, 2201 to 2203 Resin sheet 1211-12121, 2211, 2122 In- plane conductors 1218, 1219 Interlayer conductors 1221-1224 Parasitic capacitance 1225 Chip capacitors 1261, 1262 Conductors 5101-5104 Ceramic substrate layers

Claims (9)

  1.  コイルアンテナを有する基板と、
     前記基板の少なくとも1主面を覆う樹脂部材と、
     を備え、
     前記樹脂部材には、前記コイルアンテナに直接的には接続されておらず、磁界を介して結合されているブースターコイルが設けられている、
     コイルモジュール。
    A substrate having a coil antenna;
    A resin member covering at least one main surface of the substrate;
    With
    The resin member is not directly connected to the coil antenna, but is provided with a booster coil that is coupled via a magnetic field.
    Coil module.
  2.  前記ブースターコイルのコイル径は、前記コイルアンテナのコイル径より大きい、
     請求項1に記載のコイルモジュール。
    The coil diameter of the booster coil is larger than the coil diameter of the coil antenna.
    The coil module according to claim 1.
  3.  前記樹脂部材は前記基板よりフレキシブルな部材である、
     請求項1又は2に記載のコイルモジュール。
    The resin member is a member that is more flexible than the substrate.
    The coil module according to claim 1 or 2.
  4.  前記基板は、セラミック基板、または再配線層を有する半導体基板であり、前記樹脂部材は熱可塑性樹脂部材である、
     請求項3に記載のコイルモジュール。
    The substrate is a ceramic substrate or a semiconductor substrate having a rewiring layer, and the resin member is a thermoplastic resin member.
    The coil module according to claim 3.
  5.  前記基板は、前記コイルアンテナを内蔵したセラミック基板であり、
     前記セラミック基板の一方主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、
     前記樹脂部材は、前記セラミック基板を封止する樹脂パッケージであり、
     前記樹脂パッケージの露出面に、前記基板の前記接続端子に電気的に接続された表面電極が設けられている、
     請求項1から4の何れか1項に記載のコイルモジュール。
    The substrate is a ceramic substrate incorporating the coil antenna;
    A connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate,
    The resin member is a resin package for sealing the ceramic substrate;
    A surface electrode electrically connected to the connection terminal of the substrate is provided on the exposed surface of the resin package.
    The coil module according to any one of claims 1 to 4.
  6.  前記基板は、半導体基板の一方主面に、前記コイルアンテナが形成された再配線層を配してなり、
     前記樹脂部材は、前記半導体基板の他方主面を覆う樹脂層であり、
     前記再配線層の前記半導体基板と接していない露出面に、前記コイルアンテナに電気的に接続された表面電極が設けられている、
     請求項1から4の何れか1項に記載のコイルモジュール。
    The substrate comprises a rewiring layer on which the coil antenna is formed on one main surface of a semiconductor substrate,
    The resin member is a resin layer covering the other main surface of the semiconductor substrate,
    A surface electrode electrically connected to the coil antenna is provided on an exposed surface of the redistribution layer that is not in contact with the semiconductor substrate.
    The coil module according to any one of claims 1 to 4.
  7.  前記基板は、前記コイルアンテナを内蔵したセラミック基板であり、
     前記セラミック基板の一方主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、
     前記セラミック基板の他方主面にチップ部品が搭載され、前記セラミック基板とともに複合部品を構成し、
     前記樹脂部材は、前記複合部品を封止する樹脂パッケージであり、
     前記樹脂パッケージの露出面に、前記基板の前記接続端子に電気的に接続された表面電極が設けられている、
     請求項1から4の何れか1項に記載のコイルモジュール。
    The substrate is a ceramic substrate incorporating the coil antenna;
    A connection terminal electrically connected to the coil antenna is provided on one main surface of the ceramic substrate,
    Chip components are mounted on the other main surface of the ceramic substrate, and constitute a composite component together with the ceramic substrate,
    The resin member is a resin package for sealing the composite component,
    A surface electrode electrically connected to the connection terminal of the substrate is provided on the exposed surface of the resin package.
    The coil module according to any one of claims 1 to 4.
  8.  前記基板は、半導体基板の一方主面に、前記コイルアンテナが形成された再配線層を配してなり、
     前記再配線層の前記半導体基板と接していない主面に、前記コイルアンテナに電気的に接続された接続端子が設けられ、
     前記樹脂部材は、前記半導体基板と前記再配線層とで構成される集積回路チップを封止する樹脂パッケージであり、
     前記樹脂パッケージの露出面に、前記基板の前記接続端子に電気的に接続された表面電極が設けられている、
     請求項1から4の何れか1項に記載のコイルモジュール。
    The substrate comprises a rewiring layer on which the coil antenna is formed on one main surface of a semiconductor substrate,
    A connection terminal electrically connected to the coil antenna is provided on a main surface of the redistribution layer that is not in contact with the semiconductor substrate,
    The resin member is a resin package for sealing an integrated circuit chip composed of the semiconductor substrate and the rewiring layer,
    A surface electrode electrically connected to the connection terminal of the substrate is provided on the exposed surface of the resin package.
    The coil module according to any one of claims 1 to 4.
  9.  前記コイルアンテナを構成するコイル導体と前記ブースターコイルを構成するコイル導体とは、積層方向に見て重なりを有する領域において、互いに平行でない軸の周りにループ状に配置されている、
     請求項1から4の何れか1項に記載のコイルモジュール。
    The coil conductors that constitute the coil antenna and the coil conductors that constitute the booster coil are arranged in a loop around axes that are not parallel to each other in a region that overlaps when viewed in the stacking direction.
    The coil module according to any one of claims 1 to 4.
PCT/JP2017/024702 2016-07-15 2017-07-05 Coil module WO2018012378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140825 2016-07-15
JP2016-140825 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012378A1 true WO2018012378A1 (en) 2018-01-18

Family

ID=60952502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024702 WO2018012378A1 (en) 2016-07-15 2017-07-05 Coil module

Country Status (1)

Country Link
WO (1) WO2018012378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066086A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Wireless power receiving circuit module
CN112018498A (en) * 2019-05-28 2020-12-01 Tdk株式会社 Antenna device and IC card provided with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083894A (en) * 2000-06-21 2002-03-22 Hitachi Maxell Ltd Semiconductor chip and semiconductor device using it
WO2012032974A1 (en) * 2010-09-06 2012-03-15 株式会社村田製作所 Rfid module and rfid device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083894A (en) * 2000-06-21 2002-03-22 Hitachi Maxell Ltd Semiconductor chip and semiconductor device using it
WO2012032974A1 (en) * 2010-09-06 2012-03-15 株式会社村田製作所 Rfid module and rfid device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066086A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Wireless power receiving circuit module
WO2020066085A1 (en) * 2018-09-25 2020-04-02 株式会社村田製作所 Planar-type wireless power-receiving circuit module
CN112567508A (en) * 2018-09-25 2021-03-26 株式会社村田制作所 Wireless power receiving circuit module
JPWO2020066085A1 (en) * 2018-09-25 2021-08-30 株式会社村田製作所 Flat wireless power receiving circuit module
JPWO2020066086A1 (en) * 2018-09-25 2021-08-30 株式会社村田製作所 Wireless power receiving circuit module
US11218031B2 (en) 2018-09-25 2022-01-04 Murata Manufacturing Co., Ltd. Planar-type wireless power-receiving circuit module
US11228211B2 (en) 2018-09-25 2022-01-18 Murata Manufacturing Co., Ltd. Wireless power receiving circuit module
JP7044168B2 (en) 2018-09-25 2022-03-30 株式会社村田製作所 Flat wireless power receiving circuit module
JP7044169B2 (en) 2018-09-25 2022-03-30 株式会社村田製作所 Wireless power receiving circuit module
CN112018498A (en) * 2019-05-28 2020-12-01 Tdk株式会社 Antenna device and IC card provided with same
CN112018498B (en) * 2019-05-28 2023-10-27 Tdk株式会社 Antenna device and IC card provided with same

Similar Documents

Publication Publication Date Title
US10020582B2 (en) Coil antenna and communication terminal device
EP2696438B1 (en) Antenna device, wireless communication device, and method of manufacturing antenna device
JP6119845B2 (en) High frequency component and high frequency module including the same
JP5578291B2 (en) Antenna device and communication terminal device
US7808434B2 (en) Systems and methods for integrated antennae structures in multilayer organic-based printed circuit devices
US10374305B2 (en) Multilayer substrate and electronic device
US9691710B1 (en) Semiconductor package with antenna
WO2015015863A1 (en) Antenna-integrated wireless module and method for manufacturing antenna-integrated wireless module
KR101659561B1 (en) Antenna module package
US11211689B2 (en) Chip antenna
US9627759B2 (en) Antenna device antenna module
JP5310855B2 (en) Antenna matching device, antenna device, and mobile communication terminal
JP6156611B1 (en) Component built-in device, RFID tag, and method of manufacturing component built-in device
CN108962878B (en) Electronic package and manufacturing method thereof
US10868369B2 (en) Antenna module
WO2018012378A1 (en) Coil module
WO2014199886A1 (en) Communication apparatus and electronic device
JP2019008596A (en) Wiring board and RFID tag
JP2012238797A (en) Multilayer circuit module
JP6015813B2 (en) Multilayer circuit module
WO2023135912A1 (en) Antenna module
JP5736949B2 (en) High frequency circuit module
WO2023223954A1 (en) High frequency module
WO2021049399A1 (en) Electronic component module
CN112701105A (en) Semiconductor device with embedded flexible circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP