WO2018012111A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2018012111A1
WO2018012111A1 PCT/JP2017/019038 JP2017019038W WO2018012111A1 WO 2018012111 A1 WO2018012111 A1 WO 2018012111A1 JP 2017019038 W JP2017019038 W JP 2017019038W WO 2018012111 A1 WO2018012111 A1 WO 2018012111A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
wireless communication
transmission power
transmission
Prior art date
Application number
PCT/JP2017/019038
Other languages
English (en)
French (fr)
Inventor
悠介 田中
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018527418A priority Critical patent/JP6939788B2/ja
Priority to EP21163694.9A priority patent/EP3890201B1/en
Priority to CN201780041766.6A priority patent/CN109417408B/zh
Priority to BR112019000140-9A priority patent/BR112019000140A2/pt
Priority to US16/302,675 priority patent/US11121747B2/en
Priority to EP17827244.9A priority patent/EP3487084B1/en
Priority to AU2017294718A priority patent/AU2017294718B2/en
Publication of WO2018012111A1 publication Critical patent/WO2018012111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/08Constructional details, e.g. cabinet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present disclosure relates to a wireless communication device and a wireless communication method.
  • wireless LAN Local Area Network
  • IEEE Institute of Electrical and Electronics Engineers 802.11
  • wireless communication devices products for wireless LAN (hereinafter also referred to as wireless communication devices) are increasing.
  • the radio communication resources that can be used for communication are limited. Therefore, it is desired to improve the efficiency of communication between wireless communication devices.
  • the multiple access communication technology includes OFDMA (Orthogonal Frequency Division Multiple Access) or SDMA (Space Division Multiple Access) using MIMO (Multi Input Multi Output). SDMA using MIMO is called multi-user MIMO (hereinafter also referred to as MU (Multi User) -MIMO).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SDMA Space Division Multiple Access
  • MIMO Multiple Input Multi Output
  • MU Multi User
  • Patent Document 1 MU-MIMO communication is performed based on uplink (hereinafter referred to as UL (Uplink)) communication quality information of a plurality of wireless communication terminals connected to a wireless communication base station apparatus.
  • UL Uplink
  • Patent Document 2 discloses a schedule device that selects a terminal having a SU (Single User) -MIMO optimum performance measure and selects a set of wireless communication terminals having a MU-MIMO optimum performance measure.
  • the scheduling apparatus selects the SU-MIMO mode or the MU-MIMO mode by comparing the SU-MIMO optimum performance measure with the MU-MIMO optimum performance measure.
  • the present disclosure proposes a mechanism capable of suppressing a decrease in reception characteristics when a plurality of wireless communication devices communicate simultaneously.
  • the reception unit that receives the first signal in which the first information in which the accuracy or accuracy of the transmission power is grasped is stored, and at least one specified based on the first information
  • a wireless communication device including a transmission unit that transmits a second signal related to permission of multiple access capable of simultaneous communication with the first wireless communication device.
  • a wireless communication device including a receiving unit that receives a second signal related to permission of multiple access and a control unit that controls transmission of a third signal based on the second signal.
  • a first signal storing first information in which accuracy or accuracy of transmission power is grasped is received, and specified based on the first information. Transmitting a second signal related to permission of multiple access capable of simultaneous communication to at least one first wireless communication device.
  • a wireless communication method includes receiving a second signal related to permission of multiple access capable of simultaneous communication, and controlling transmission of a third signal based on the second signal.
  • a mechanism capable of suppressing a decrease in reception characteristics when a plurality of wireless communication devices communicate simultaneously is provided. Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to each embodiment of the present disclosure.
  • FIG. 3 is a block diagram schematically illustrating an example of a functional configuration of a STA and an AP according to each embodiment of the present disclosure.
  • FIG. It is a sequence diagram which shows notionally the example of the process of the radio
  • a plurality of elements having substantially the same function may be distinguished by attaching different numbers after the same reference numerals.
  • a plurality of elements having substantially the same function are distinguished as necessary, such as STA 100A and STA 100B.
  • STA 100A and STA 100B when there is no need to distinguish between elements having substantially the same function, only the same reference numerals are given.
  • STA 100A and STA 100B when it is not necessary to distinguish between the STA 100A and the STA 100B, they are simply referred to as the STA 100.
  • the STAs 100 according to the first to fourth embodiments are distinguished by attaching numbers corresponding to the embodiments at the end, such as STA100-1 to STA100-4. This also applies to the AP 200.
  • the technology includes the above-described multiple access communication technology.
  • a downlink (hereinafter also referred to as DL (Down Link)) multiple access communication that simultaneously transmits signals from an AP (Access Point) to a plurality of STAs (Stations), and a plurality of STAs to an AP.
  • DL Down Link
  • the downlink MU-MIMO communication which is one of the downlink multiple access communication is already defined in the communication standard (IEEE802.11ac).
  • uplink multiple access communication is still under investigation in the communication standard and is not defined.
  • uplink multiple access communication is similar to control access communication, in which a plurality of specific STAs communicate simultaneously. Because. In the examination stage, it is considered to realize using an STA that permits uplink multiple access communication, a trigger frame for designating a communication period, and the like.
  • the STA group is selected so that the reception characteristic can secure the target value.
  • the signal is caused by nonlinearity or quantization of the RF (Radio Frequency) circuit, analog circuit or analog-digital converter provided in the AP. Distorted.
  • reception characteristics such as a signal interference noise power ratio (SINR) may be deteriorated.
  • SINR signal interference noise power ratio
  • the AP can collect information indicating the range of transmission power that can be set by the STA in advance, and can set the transmission power such that the reception power density at the AP falls within a predetermined range based on the collected information. Select the STA as a member of the same group.
  • the accuracy of transmission power generally varies among wireless communication devices. For example, a signal may be transmitted with a transmission power different from the designated transmission power due to a difference in control accuracy of the transmission power of the STA. For this reason, even if grouping is performed as described above, reception power density varies, and reception characteristics may be degraded.
  • the STA 100 stores first information (hereinafter also referred to as transmission power accuracy information) in which accuracy or accuracy (hereinafter also referred to as accuracy) of transmission power is grasped.
  • 1 signal (hereinafter also referred to as a transmission power accuracy notification signal)
  • the AP 200 performs grouping in the multiple access communication based on the transmission power accuracy information stored in the received transmission power accuracy notification signal.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to each embodiment of the present disclosure.
  • the wireless communication system includes an AP 200 and a plurality of STAs 100 as wireless communication devices.
  • the AP 200 and the STA 100 can communicate with each other, and communicate after establishing a communication connection.
  • the accuracy of transmission power differs between STA 100A and STA 100B.
  • the transmission power accuracy of the STAs 100A1 to 100A5 as shown in FIG. 1 is higher than that of the STAs 100B1 to 100B5.
  • FIG. 2 is a block diagram schematically illustrating an example of a functional configuration of the STA 100 and the AP 200 according to each embodiment of the present disclosure. Since the functional configurations of the STA 100 and the AP 200 are substantially the same, only the STA 100 will be described here.
  • the STA 100 includes a data processing unit 110, a wireless communication unit 120, and a control unit 130. Although not shown, the STA 100 is provided with a power supply unit that supplies power to each function.
  • the power supply unit is realized by a fixed power supply or a battery.
  • the data processing unit 110 performs processing for data transmission / reception. Specifically, the data processing unit 110 generates a frame (or packet) based on data from the communication upper layer, and provides the generated frame to the signal processing unit 121 described later. For example, the data processing unit 110 generates a frame from the data, and performs processing such as adding a MAC header for media access control (MAC) and adding an error detection code to the generated frame. Further, the data processing unit 110 extracts data from the received frame and provides the extracted data to a communication upper layer. For example, the data processing unit 110 acquires data by performing analysis of a MAC header, detection and correction of a code error, reorder processing, and the like for a received frame.
  • MAC media access control
  • the wireless communication unit 120 includes a signal processing unit 121, a channel estimation unit 122, a wireless interface unit 123, and an amplification unit 124.
  • the signal processing unit 121 performs modulation processing on the frame. Specifically, the signal processing unit 121 generates a symbol stream by performing encoding, interleaving, and modulation on the frame provided from the data processing unit 110 according to the coding and modulation schemes set by the control unit 130. . In addition, the signal processing unit 121 acquires a frame by performing demodulation and decoding on the symbol stream obtained by the spatial processing, and provides the acquired frame to the data processing unit 110 or the control unit 130.
  • the signal processing unit 121 performs processing related to space division multiplex communication. Specifically, the signal processing unit 121 performs signal processing related to spatial separation on the generated symbol stream, and provides each of the symbol streams obtained by the processing to the wireless interface unit 123. Further, the signal processing unit 121 performs spatial processing, for example, symbol stream separation processing, on the symbol stream related to the signal obtained from the wireless interface unit 123.
  • the signal processing unit 121 may perform other processing related to multiplex communication.
  • the signal processing unit 121 may perform processing related to frequency division multiplex communication, orthogonal frequency division multiplex communication, or code division multiplex communication.
  • the channel estimation unit 122 estimates a channel gain. Specifically, the channel estimation unit 122 calculates complex channel gain information from the preamble part or the training signal part of the signal related to the symbol stream obtained from the radio interface unit 123. The calculated complex channel gain information is provided to the signal processing unit 121 via the control unit 130 or directly, and is used for modulation processing, spatial separation processing, and the like.
  • the wireless interface unit 123 generates a signal to be transmitted / received via the antenna. Specifically, the radio interface unit 123 converts a signal related to the symbol stream provided from the signal processing unit 121 into an analog signal, filters, and frequency upconverts. Then, the wireless interface unit 123 provides the obtained signal to the amplification unit 124. In addition, the radio interface unit 123 performs a process reverse to that in the case of signal transmission, such as frequency down-conversion and digital signal conversion, on the signal obtained from the amplifying unit 124, and converts the signal obtained by the process into the channel estimation unit 122 and the signal Provided to the processing unit 121.
  • a process reverse to that in the case of signal transmission such as frequency down-conversion and digital signal conversion
  • the amplifying unit 124 amplifies the signal. Specifically, the amplification unit 124 amplifies the analog signal provided from the wireless interface unit 123 to a predetermined power, and transmits a signal obtained by the amplification via the antenna. The amplifying unit 124 amplifies a signal related to a radio wave received via the antenna to a predetermined power, and provides a signal obtained by the amplification to the wireless interface unit 123.
  • the amplification unit 124 is realized by a power amplifier module or the like. Note that either or both of the amplification function of the transmission radio wave and the amplification function of the reception radio wave of the amplification unit 124 may be included in the wireless interface unit 123.
  • FIG. 2 illustrates an example of a configuration (wireless interface units 123A and 123B and amplifying units 124A and 124B) in the case where the STA 100 includes two antennas. However, even if three or more antennas are provided. It may be one.
  • the control unit 130 controls the overall operation of the STA 100. Specifically, the control unit 130 performs processing such as information exchange between functions, communication parameter setting, and frame scheduling in the data processing unit 110. In particular, the control unit 130 controls transmission power control, notification of transmission power accuracy information, formation of a group of multiple access communication based on transmission power accuracy information, group notification, communication based on the notified group, and the like.
  • a plurality of STAs 100-1 are divided into a group that performs multiple access communication and a group that performs central access communication based on transmission power accuracy information.
  • the STA 100-1 notifies the AP 200-1 of transmission power accuracy information (first information). Specifically, when the transmission timing of the transmission power accuracy information arrives, the control unit 130 causes the data processing unit 110 to generate a transmission power accuracy notification signal (first signal) in which the transmission power accuracy information is stored. Then, the wireless communication unit 120 transmits the generated transmission power accuracy notification signal. On the other hand, the AP 200-1 receives the transmission power accuracy information. Specifically, the data processing unit 210 acquires transmission power accuracy information from the transmission power accuracy notification signal received by the wireless communication unit 220. The acquired transmission power accuracy information is provided to the control unit 230.
  • the transmission power accuracy information includes information relating to an error between the set value of transmission power and an actual measurement value (hereinafter also referred to as error information).
  • the error information may be information indicating a numerical value of an error between the set value and the actually measured value, or may be information indicating a class classified according to the numerical value of the error.
  • the error information may be set at the manufacturing stage or testing stage of the STA 100-1, or may be set or updated afterwards based on an instruction from the user of the STA 100-1 or the AP 200-1.
  • the transmission power accuracy notification signal may be a dedicated frame for communication of transmission power accuracy information, or may be a frame for other purposes having a field in which transmission power accuracy information is stored.
  • the transmission power accuracy notification signal may be transmitted at a predetermined time interval, may be transmitted when a predetermined condition is satisfied, or may be transmitted based on a transmission request from the AP 200-1. .
  • the transmission power accuracy notification signal may be communicated using either a multiple access communication system or a single access communication system.
  • Group formation AP 200-1 determines a group of STAs 100-1 (hereinafter, also referred to as a multiple access communication group) that performs multiple access communication based on the transmission power accuracy information.
  • control unit 230 specifies at least one STA 100-1 as a member of the multiple access communication group based on the transmission power accuracy information. More specifically, the control unit 230 determines a multiple access communication group based on transmission power control information and a threshold value. For example, the control unit 230 determines the STA 100-1 whose transmission power accuracy information is equal to or greater than the threshold as a member of the multiple access communication group.
  • control unit 230 uses the STA 100-1 having a numerical value of an error related to the accuracy of the transmission power that is less than a threshold, an error grade that is less than the threshold, or an evaluation value related to the error that is greater than or equal to the threshold. Decide to be a member of the connected communication group.
  • AP 200-1 determines a group of STAs 100-1 (hereinafter, also referred to as a single connection communication group) that performs the single connection communication based on the transmission power accuracy information.
  • the control unit 230 determines a single connection communication group based on transmission power accuracy information and a threshold value. For example, the control unit 230 determines the STA 100-1 whose transmission power accuracy information is less than the threshold as a member of the one-connection communication group.
  • the control unit 230 unifies the STAs 100-1 having a numerical value of an error related to the accuracy of transmission power equal to or higher than a threshold, an error grade equal to or higher than a threshold, or an evaluation value related to the error being lower than the threshold. Decide to be a member of the connected communication group.
  • a group is formed using a threshold value of transmission power accuracy information.
  • a group is formed based on a relative relationship between transmission power accuracy information notified from a plurality of STAs 100-1. Also good.
  • the group of STAs 100-1 may be divided into an upper group and a lower group in the ranking for the error value related to the accuracy of transmission power.
  • the AP 200-1 notifies the determined group to the STA 100-1 via communication.
  • the control unit 230 causes the data processing unit 210 to generate a group notification signal (second signal) for notifying the multiple access communication group addressed to the determined member of the multiple access communication group.
  • the signal is transmitted by the wireless communication unit 220.
  • the control unit 230 causes the data processing unit 210 to generate a group notification frame for notifying the multiple access O communication group addressed to the STA 100-1 determined as a member of the multiple access communication group. Then, the generated group notification frame is transmitted by the wireless communication unit 220.
  • control unit 230 causes the data processing unit 210 to generate a group notification signal for notifying the determined unified access communication group, and the generated signal is transmitted by the wireless communication unit 220.
  • the control unit 230 causes the data processing unit 210 to generate a group notification frame that notifies the central connection communication group addressed to the STA 100-1 determined as a member of the single connection communication group. Then, the generated group notification frame is transmitted by the wireless communication unit 220. Note that the control unit 230 does not have to transmit the group notification frame to the STA 100-1 determined as the single connection communication group.
  • group allocation information is stored.
  • the group assignment information is information for identifying the STA 100-1 in the assigned group or information indicating the group to which the STA 100-1 belongs.
  • the identification information or group ID of the STA 100-1 that is unique within the group is stored in the group notification frame.
  • the group notification signal may be realized by a transmission permission signal described later.
  • group assignment information is stored in the transmission permission signal.
  • the STA 100-1 registers the group notified from the AP 200-1. Specifically, the data processing unit 110 determines whether the destination of the group notification frame received by the wireless communication unit 120 is its own STA 100-1. When it is determined that its own STA 100-1 is the destination, the data processing unit 110 acquires group allocation information from the group notification frame, and the acquired group allocation information is stored in a storage unit (not shown). It is memorized.
  • control unit 230 causes data processing unit 210 to generate a transmission permission signal (second signal) addressed to STA 100-1 that is a member of the multiple access communication group.
  • the transmission permission signal is transmitted by the wireless communication unit 220.
  • the control unit 230 causes the data processing unit 210 to generate a trigger frame addressed to the STA 100-1 determined as a member of the multiple access communication group. Then, the generated trigger frame is transmitted by the wireless communication unit 220.
  • a trigger frame is transmitted for each of the multiple access communication groups.
  • the transmission permission signal stores communication parameter information used in signal transmission.
  • the communication parameter information includes information such as a transmission period, transmission power, MCS (Modulation and Coding Set).
  • MCS Modulation and Coding Set
  • the communication parameter information stored in the transmission permission signal may be different for a plurality of multiple access communication groups, or may be different from the communication parameters used by the STA 100-1 that is a member of the single access communication group.
  • Communication parameter information may be stored in the group notification signal described above.
  • the transmission permission signal may be another purpose signal having a field in which information indicating transmission permission and communication parameter information are stored.
  • the STA 100-1 controls transmission of a signal (third signal) based on the group notification and the transmission permission notification.
  • control unit 130 controls transmission of a signal based on a communication parameter stored in the transmission permission signal in response to reception of the transmission permission signal addressed to the multiple access communication group notified by the group notification signal.
  • the data processing unit 110 receives a trigger frame
  • the data processing unit 110 determines whether the STA 100-1 to which the multiple access communication group that is the destination of the trigger frame is registered belongs.
  • the data processing unit 110 acquires communication parameter information stored in the trigger frame, and the control unit 130 is based on the acquired communication parameter information.
  • Set communication parameters such as transmission power or MCS.
  • the control unit 130 causes the data processing unit 110 to generate a frame, and the generated frame is transmitted by the wireless communication unit 120. Similar processing is executed in other STAs 100-1 belonging to the same multiple access communication group. As a result, the frames transmitted from each STA 100-1 are frequency division multiplexed, space division multiplexed, or code division multiplexed, and multiple access communication is realized.
  • the AP 200-1 receives the multiplexed frame transmitted from the plurality of STAs 100-1 after transmitting the trigger frame. Specifically, the wireless communication unit 220 separates each frame from the multiplexed frame received after transmitting the trigger frame, and the data processing unit 210 performs reception processing on the separated frame. Then, data obtained by the reception process is provided to the upper communication layer or the control unit 230.
  • the STA 100-1 controls signal transmission based on the group notification. Specifically, the control unit 130 controls transmission of a signal in a transmission period different from that of the multiple access communication when the allocation to the single access communication group is notified by the group notification signal and the single access group is registered. For example, the control unit 130 executes the single access communication after a predetermined time has elapsed since the end of the multiple access communication performed after receiving the trigger frame. Note that the single access communication may be performed before the multiple access communication, that is, before the trigger frame communication.
  • FIG. 3 is a sequence diagram conceptually showing an example of processing of the wireless communication system according to the present embodiment.
  • the STAs 100-1A1 to 100-1A5 and the STAs 100-1B1 to 100-1B5 transmit a transmission power accuracy notification signal to the AP 200-1 (Step S301).
  • the AP 200-1 that has received the transmission power accuracy notification signal forms a group based on the transmission power accuracy information (step S302).
  • AP 200-1 transmits a multiple access communication group notification signal to STAs 100-1A1 to 100-1A5 that are members of the multiple access communication group (step S303).
  • AP 200-1 transmits a single connection communication group notification signal to STAs 100-1B1 to 100-1B5, which are members of the single connection communication group (step S304).
  • AP 200-1 transmits a transmission permission signal to STAs 100-1A1 to 100-1A5 that are members of the multiple access communication group (step S305).
  • the STAs 100-1A1 to 100-1A5 that have received the transmission permission signal transmit the signal to the AP 200-1 (step S306).
  • frames transmitted from the STAs 100-1A1 to 100-1A5 are frequency division multiplexed, space division multiplexed, or code division multiplexed.
  • the AP 200-1 Upon receiving the multiplexed signal, the AP 200-1 transmits a delivery confirmation signal to each of the STAs 100-1A1 to 100-1A5 that are the transmission source of the received signal (step S307).
  • the STAs 100-1B1 to 100-1B5 that are members of the single access communication group transmit signals to the AP 200-1 (step S308).
  • the AP 200-1 that has received the unmultiplexed signal transmits a delivery confirmation signal to each of the STAs 100-1B1 to 100-1B5 that are the transmission sources of the received signals (step S309).
  • FIG. 4 is a flowchart conceptually showing an example of the entire process of the AP 200-1 according to the present embodiment.
  • the AP 200-1 When it is determined that the transmission power accuracy notification signal has been received (step S401 / YES), the AP 200-1 forms a multiple access communication group based on the transmission power accuracy information (step S402). Specifically, the control unit 230 forms a multiple access communication group based on transmission power accuracy information and a threshold value stored in the received transmission power accuracy notification frame. Details will be described later.
  • the AP 200-1 forms a single connection communication group based on the transmission power accuracy information (step S404). Specifically, the control unit 230 forms a single access communication group based on transmission power accuracy information and a threshold value stored in the received transmission power accuracy notification frame. Note that the central connection communication group may not be formed.
  • AP 200-1 transmits a group notification signal (step S405).
  • the control unit 230 causes the data processing unit 210 to generate a multiple access communication group notification frame for notifying the formed multiple access communication group, and the generated wireless communication unit 220 transmits the generated frame.
  • the control unit 230 causes the data processing unit 210 to generate a single connection communication group notification frame that notifies the formed single connection communication group, and the generated wireless communication unit 220 transmits the generated frame. Note that, when the single connection communication group is not formed, the single connection communication group notification frame is not transmitted.
  • AP 200-1 transmits a transmission permission signal to the multiple access communication group (step S406). Specifically, after transmitting the multiple access communication group notification frame, control unit 230 causes data processing unit 210 to generate a trigger frame in which communication parameter information addressed to STA 100-1 that is a member of the multiple access communication group is stored. . Then, the generated trigger frame is transmitted by the wireless communication unit 220.
  • the radio communication unit 220 receives frames that are simultaneously transmitted and multiplexed from the STA 100-1 and separates the frames. Then, the data processing unit 210 performs reception processing for each frame obtained by the separation, and provides data obtained by the reception processing to the communication upper layer or the control unit 230. In addition, when the frame is received by the wireless communication unit 220, the control unit 230 causes the data processing unit 210 to generate an ACK (Acknowledgement) frame whose destination is the transmission source of the received frame, and generates the generated ACK frame. Transmit to the wireless communication unit 220.
  • ACK Acknowledgement
  • FIG. 5 is a flowchart conceptually showing an example of a process for forming a multiple access communication group in the AP 200-1 according to the present embodiment.
  • the AP 200-1 sets the STA 100-1 whose error value is less than the threshold value to the multiple access communication group (step S502).
  • the AP 200-1 sets the STA 100-1 having a relatively low error grade in the multiple access communication group (step S504).
  • the AP 200-1 sets the STA 100-1 whose evaluation value is equal to or greater than the threshold value to the multiple access communication group (step S506).
  • FIG. 6 is a flowchart conceptually showing an example of the entire process of the STA 100-1 according to the present embodiment.
  • the STA 100-1 periodically transmits a transmission power accuracy notification signal (step S601). Specifically, the control unit 130 causes the data processing unit 110 to generate a transmission power accuracy notification frame in which transmission power accuracy information is periodically stored, and the generated frame is transmitted by the wireless communication unit 120.
  • the STA 100-1 acquires information from the group notification signal (step S603). Specifically, the data processing unit 110 acquires group assignment information stored in the received group notification frame, and stores the acquired group assignment information in the storage unit.
  • the STA 100-1 After receiving the group notification signal, when the transmission permission signal is received (step S604 / YES), the STA 100-1 acquires information from the transmission permission signal (step S605). Specifically, when the trigger frame received by the wireless communication unit 120 indicates a group to which its own STA 100-1 belongs, the data processing unit 110 acquires communication parameter information from the trigger frame.
  • the STA 100-1 transmits a signal based on the acquired information (step S606).
  • the control unit 130 causes the data processing unit 110 to generate a frame addressed to the AP 200-1 based on the transmission period and the transmission frequency indicated by the acquired communication parameter information, and generates the generated frame as a wireless communication unit. 120 is transmitted. Thereby, the frames transmitted from the STA 100-1 are multiplexed.
  • the STA 100-1 performs central connection communication when belonging to the single connection communication group. Specifically, after the multiple access communication is completed, the control unit 130 causes the data processing unit 110 to generate a frame when it is confirmed that the transmission path is free by performing processing such as carrier sense. The frame to be transmitted is transmitted to the wireless communication unit 120.
  • the STA 100-1 receives a delivery confirmation signal for the transmitted signal. Specifically, when the control unit 130 receives an ACK frame for a frame transmitted by the wireless communication unit 120 using the multiple access communication or the single access communication, the control unit 130 uses the multiple access communication or the single access communication frame. Complete sending.
  • the AP 200-1 receives the first signal storing the first information in which the accuracy or accuracy of the transmission power is grasped, and the first signal A second signal related to permission of multiple access capable of simultaneous communication is transmitted to at least one first wireless communication device specified based on the information.
  • the STA 100-1 transmits the first signal, receives the second signal after transmitting the first signal, and controls transmission of the third signal based on the second signal.
  • an AP can select, as a member of the same group, a STA that can set transmission power such that the reception power density at the AP for a signal transmitted from the STA using multiple access communication falls within a predetermined range. It was thought. However, since the accuracy of transmission power generally varies among wireless communication devices, even if a multiple access communication group is formed based on settable transmission power, there is a possibility that variations in received power density may occur. As a result, the reception characteristics at the AP may be degraded.
  • the multiple access communication group is formed in consideration of the transmission power accuracy information, so that it is assumed that the reception power density of the signal that the AP 200-1 receives from the STA 100-1 Deviation from the received power density can be suppressed. Therefore, by suppressing the distortion of the received signal and the like, it is possible to suppress a decrease in reception characteristics when a plurality of STAs 100-1 communicate simultaneously.
  • the at least one first wireless communication device is specified based on the first information and a threshold value for the first information. For this reason, by forming a multiple access communication group by comparison with a specific value, it is possible to control the level of accuracy related to transmission power of members of the formed multiple access communication group. Accordingly, it is possible to control the degree of allowable reception characteristic degradation in the multiple access communication group.
  • the threshold value may be set statically or may be changed dynamically.
  • the AP 200-1 transmits the second signal to the first transmission source of the first signal in which the first information that is equal to or greater than the threshold is stored. For this reason, by allowing the STA 100-1 having an accuracy of a predetermined level or more to perform the multiple access communication, it is possible to more reliably ensure the acceptable reception characteristics for the multiple access communication group.
  • the AP 200-1 transmits a signal indicating permission of the single connection to the first transmission source of the first signal in which the first information that is less than the threshold is stored. Therefore, it can be clearly indicated to the STA 100-1 that it has not been selected as a member of the multiple access communication group. Therefore, it is possible to prevent the STA 100-1 from continuing to wait for the third signal. Further, the AP 200-1 does not have to transmit the second signal to the first transmission source. In this case, the communication amount can be reduced when the STA 100-1 recognizes the assignment to the one-connection communication group. Accordingly, communication efficiency can be improved.
  • the second signal includes a transmission permission signal indicating permission of multiple access capable of simultaneous communication
  • the STA 100-1 determines whether the third signal is based on a communication parameter stored in the transmission permission signal. Control transmission. For this reason, it is possible to prevent an increase in signals to be communicated by notifying the transmission permission of the third signal and notifying the multiple access communication group for the third signal.
  • an existing trigger frame as a transmission permission signal, it becomes easy to apply the configuration of the AP 200-1 or the STA 100-1 to an existing wireless communication apparatus.
  • the second signal includes a group notification signal for notifying a group to which the first wireless communication device to which multiple access capable of simultaneous communication is allowed belongs, and the STA 100-1 is notified by the group notification signal.
  • the transmission of the third signal is controlled in response to reception of a transmission permission signal indicating permission of the multiple connection capable of simultaneous communication to the group. For this reason, the timing of group notification and transmission permission notification can be divided. Accordingly, it is possible to prevent the transmission of the third signal due to the group notification.
  • the multiple access capable of simultaneous communication includes space division multiple access. For this reason, the improvement effect of the communication efficiency by space division multiple access can be heightened.
  • the multiple access capable of simultaneous communication may be frequency division multiple access or code division multiple access.
  • the first information includes information related to an error between the set value of transmission power and the actual measurement value. For this reason, it is possible to improve the grouping accuracy of the STA 100-1 performing the multiple access communication. Therefore, it is possible to suppress variations in received power density for signals transmitted from the grouped STAs 100-1, and it is possible to effectively suppress a decrease in reception characteristics.
  • a second embodiment of the present disclosure will be described.
  • a plurality of STAs 100-2 are divided into groups that perform a plurality of multiple access communications based on transmission power accuracy information.
  • the AP 200-2 determines a group of STAs 100-2 that performs a plurality of multiple access communications based on the transmission power accuracy information. Specifically, control section 230 determines STA 100-2 whose transmission power accuracy information is equal to or greater than the threshold as a member of the first multiple access communication group, and sets STA 100-2 whose transmission power accuracy information is less than the threshold as the first. 2 as a member of the multiple access communication group. For example, the control unit 230 sets the first STA 100-2 in which the numerical value of the error related to the accuracy of the transmission power is less than the threshold, the error grade is less than the threshold, or the evaluation value related to the error is equal to or more than the threshold. Decide to be a member of a multiple access communication group.
  • control unit 230 sets the second STA 100-2 in which the numerical value of the error related to the accuracy of the transmission power is equal to or higher than the threshold, the error grade is equal to or higher than the threshold, or the evaluation value related to the error is lower than the threshold. Decide to be a member of a multiple access communication group.
  • the AP 200-2 transmits a group notification signal notifying the multiple access communication group addressed to the determined members of the multiple access communication group.
  • the control unit 230 causes the data processing unit 210 to generate a group notification frame that notifies the members of the first multiple access communication group and the members of the second multiple access communication group. Is transmitted by the wireless communication unit 220.
  • the control unit 230 notifies the STA 100-2 determined as a member of the first multiple access communication group and the multiple access communication group addressed to the STA 100-2 determined as a member of the second multiple access communication group.
  • the data processing unit 210 is caused to generate a notification frame.
  • the generated group notification frame is transmitted by the wireless communication unit 220.
  • the notifications of a plurality of multiple access communication groups may be performed separately.
  • the plurality of multiple access communication groups may be three or more groups.
  • AP 200-2 transmits a transmission permission signal for each of the multiple access communication groups.
  • the control unit 230 controls transmission of the first transmission permission signal for the first multiple access communication group, and controls transmission of the second transmission permission signal for the second multiple access communication group.
  • the control unit 230 causes the data processing unit 210 to generate a first trigger frame addressed to a member of the first multiple access communication group, and the generated first trigger frame is transmitted by the wireless communication unit 220.
  • the control unit 230 causes the data processing unit 210 to generate a second trigger frame addressed to a member of the second multiple access communication group, and generates the second A trigger frame is transmitted by the wireless communication unit 220.
  • the first communication parameter information stored in the first transmission permission signal may be different from the second communication parameter information stored in the second transmission permission signal.
  • the communication parameter information related to noise tolerance for communication stored in the first trigger frame is different from the communication parameter information stored in the second trigger frame.
  • the communication parameter includes a modulation scheme, a coding scheme, or MCS.
  • MCS modulation scheme, a coding scheme, or MCS.
  • the second trigger frame transmitted to the member of the second multiple access communication group whose transmission power accuracy is lower than the transmission power accuracy for the first multiple access communication group includes the first trigger frame.
  • MCS information having higher communication reliability (redundancy, etc.) than stored MCS information is stored. This is because the accuracy of the transmission power for the second multiple access communication group is lower than the accuracy for the first multiple access communication group, so that the reception characteristics for signals transmitted from members of the second multiple access communication group This is because is considered to be relatively lowered.
  • FIG. 7 is a sequence diagram conceptually showing an example of processing of the wireless communication system according to the present embodiment.
  • the STAs 100-2A1 to 100-2A5 and the STAs 100-2B1 to 100-2B5 transmit a transmission power accuracy notification signal to the AP 200-2 (step S311).
  • the AP 200-2 that has received the transmission power accuracy notification signal forms a plurality of multiple access communication groups based on the transmission power accuracy information (step S312).
  • AP 200-2 sends a multiple access communication group notification signal to STAs 100-2A1 to 100-2A5 that are members of the first multiple access communication group and STAs 100-2B1 to 100 that are members of the second multiple access communication group. -2B5 (step S313).
  • AP 200-2 transmits a transmission permission signal to STAs 100-2A1 to 100-2A5 that are members of the first multiple access communication group (step S314).
  • the STAs 100-2A1 to 100-2A5 that have received the transmission permission signal transmit the signal to the AP 200-2 (step S315).
  • frames transmitted from the STAs 100-2A1 to 100-2A5 are frequency division multiplexed, space division multiplexed, or code division multiplexed.
  • the AP 200-2 Upon receiving the multiplexed signal, transmits a delivery confirmation signal to each of the STAs 100-2A1 to 100-2A5 that are transmission sources of the received signal (step S316).
  • the AP 200-2 After the end of the first multiple access communication, the AP 200-2 transmits a transmission permission signal to the STAs 100-2B1 to 100-2B5 that are members of the second multiple access communication group (step S317).
  • the STAs 100-2B1 to 100-2B5 that have received the transmission permission signal transmit the signal to the AP 200-2 (step S318).
  • the AP 200-2 Upon receiving the multiplexed signal, the AP 200-2 transmits a delivery confirmation signal to each of the STAs 100-2B1 to 100-2B5 that are transmission sources of the received signal (step S319).
  • FIG. 8 is a flowchart conceptually showing an example of the entire process of the AP 200-2 according to the present embodiment.
  • the AP 200-2 When it is determined that the transmission power accuracy notification signal has been received (step S411 / YES), the AP 200-2 forms a first multiple access communication group based on the transmission power accuracy information (step S412). Specifically, the control unit 230 forms a first multiple access communication group based on transmission power accuracy information and a threshold value stored in the received transmission power accuracy notification frame.
  • the AP 200-2 forms the second multiple access communication group based on the transmission power accuracy information (step S414). Specifically, the control unit 230 forms a second multiple access communication group based on transmission power accuracy information and a threshold value stored in the received transmission power accuracy notification frame.
  • the AP 200-2 sets communication parameters relating to different noise immunity in the first and second multiple access communication groups (step S415). Specifically, the control unit 230 sets the second communication parameter having higher reliability than the first communication parameter such as MCS set for the first multiple access communication group for the second multiple access communication group. Set.
  • the AP 200-2 transmits a group notification signal (step S416).
  • the control unit 230 causes the data processing unit 210 to generate a multiple access communication group notification frame for notifying the formed first and second multiple access communication groups, and the generated frame is a wireless communication unit. 220.
  • the AP 200-2 transmits a transmission permission signal for each of the multiple access communication groups (step S417).
  • the control unit 230 sends the first trigger frame in which the first communication parameter information set for the members of the first multiple access communication group is stored to the data processing unit 210 and the wireless communication unit 220. Send it.
  • the control unit 230 causes the data processing unit 210 and the wireless communication unit 220 to transmit a second trigger frame in which the second communication parameter information addressed to the members of the second multiple access communication group is stored.
  • the AP 200-1 transmits the second signal to the second transmission source of the first signal in which the first information that is less than the threshold is stored.
  • the second signal transmitted to the second transmission source stores a communication parameter different from the communication parameter stored in the second signal transmitted to the first transmission source. Therefore, communication efficiency can be improved by performing multiple access communication for the STA 100-2 whose transmission power accuracy is lower than the threshold.
  • the reception characteristics for the signal transmitted from the STA 100-2 whose transmission power accuracy is lower than the threshold are higher than the reception characteristics for the signal transmitted from the STA 100-2 whose transmission power accuracy is higher than the threshold. May be lowered. Therefore, by changing communication parameters used in multiple access communication for groups with different transmission power accuracy, it is possible to maintain a signal reception success rate even for a group whose reception characteristics may be relatively low.
  • the communication parameter includes a communication parameter related to noise resistance for communication. For this reason, failure of signal reception can be effectively suppressed for a group whose reception characteristics may be relatively low.
  • the AP 200-3 detects a change in the communication connection with the STA 100-3.
  • the control unit 230 detects the cancellation of the communication connection with the STA 100-3 or the start of the communication connection.
  • the control unit 230 detects connection release or connection start based on a connection release signal (fourth signal) or a connection start signal (fourth signal) received from the STA 100-3.
  • the STA 100-3 notifies the connection release to the AP 200-3 via communication. Specifically, when the communication connection between its own STA 100-3 and the AP 200-3 is released, the control unit 130 notifies the AP 200-3 of the connection release via the communication. For example, when the communication connection is normally released, the control unit 130 causes the data processing unit 110 to generate a connection release signal, and the generated connection release signal is transmitted by the wireless communication unit 120. When the communication connection is unintentionally disconnected, the connection release signal may not be transmitted.
  • the connection start signal may be a dedicated signal or an existing signal related to communication connection cancellation such as a disassociation frame or a deauthentication frame.
  • the connection release may be temporary. For example, the connection release signal may be transmitted in response to temporary connection release by power saving.
  • the STA 100-3 notifies the connection start to the AP 200-3 via communication.
  • control unit 130 notifies connection start to AP 200-3 via communication.
  • the control unit 130 causes the data processing unit 110 to generate a connection start signal, and the wireless communication unit 120 transmits the generated connection start signal.
  • the connection start signal may be a dedicated signal or an existing signal related to communication connection start such as a probe request frame, an association request frame, or an authentication frame.
  • the connection start may be a return from temporary connection release.
  • the connection start signal may be transmitted in response to a return from temporary connection release by power saving.
  • the AP 200-3 detects a change in the transmission power accuracy information.
  • control unit 230 detects a change in transmission power accuracy information based on a change notification of transmission power accuracy information or a notification of transmission power information.
  • the control unit 230 detects a change in transmission power accuracy information based on a transmission power accuracy information change signal (fourth signal) received from the STA 100-3.
  • the control unit 230 detects a change in transmission power accuracy information based on a signal (fourth signal) in which transmission power information received from the STA 100-3 is stored, a received power density and a propagation loss for the signal. To do.
  • the STA 100-3 notifies the AP 200-3 of a change in the transmission power accuracy information.
  • the control unit 130 notifies the AP 200-3 of the changed transmission power accuracy information via communication.
  • the control unit 130 changes the transmission power accuracy information when the accuracy of the transmission power changes due to an instruction from the upper communication layer or the state of the STA 100-3 transitioning to the power save mode.
  • the control unit 130 causes the data processing unit 110 to generate a change signal in which the changed transmission power accuracy information is stored, and the generated change signal is transmitted by the wireless communication unit 120.
  • the accuracy of the transmission power may be switched according to the mode, and the mode may be a mode dedicated to the accuracy of the transmission power or a mode used for other purposes.
  • control unit 130 notifies the AP 200-3 of the transmission power information when the accuracy of the transmission power changes. Specifically, when the accuracy of the transmission power changes, the control unit 130 causes the data processing unit 110 to generate a signal storing the transmission power information set in the STA 100-3. Then, the control unit 130 causes the radio communication unit 120 to transmit the signal with the transmission power indicated by the transmission power information stored in the generated signal.
  • the signal in which the transmission power information is stored may be a data frame or another purpose signal such as a management frame.
  • the AP 200-3 reconfigures the multiple access communication group based on detection of a change in communication connection. Specifically, when the connection release is detected, the control unit 230 removes the STA 100-3 from which the connection is released from the set multiple access communication group. For example, when the STA 100-3 that is the transmission source of the connection release signal is a member of the multiple access communication group, the control unit 230 removes the STA 100-3 from the multiple access communication group. Note that the control unit 230 may add another STA 100-3 that has already been connected to the multi-access communication group in accordance with the removal of the STA 100-3 that is released from the multi-access communication group.
  • the control unit 230 determines addition to the multiple access communication group set based on the transmission power accuracy information of the STA 100-3 where the connection is started. When it is determined that the connection is to be added, the control unit 230 adds the STA 100-3 to be connected to the multiple access communication group. For example, when the error value indicated by the transmission power accuracy information of the STA 100-3 that is the transmission source of the connection start signal is less than the threshold, the control unit 230 adds the STA 100-3 to the multiple access communication group. Note that the control unit 230 may remove any of the existing members of the multiple access communication group as a member is added to the multiple access communication group.
  • the AP 200-3 reconfigures the multiple access communication group based on detection of a change in the transmission power accuracy information. Specifically, when a change in transmission power accuracy information is detected, control unit 230 determines exclusion from the multiple access communication group based on the changed transmission power accuracy information. For example, when the STA 100-3 that is the transmission source of the change signal of the transmission power accuracy information is a member of the multiple access communication group, the control unit 230 performs multiple access to the STA 100-3 based on the changed transmission power accuracy information. Determine whether to remove from the communication group. When it is determined that the STA 100-3 is excluded because the error value indicated by the transmission power accuracy information is equal to or greater than the threshold, the control unit 230 removes the STA 100-3 from the multiple access communication group.
  • the changed transmission power accuracy information may be stored in the above-described change signal, or may be notified using another signal.
  • control unit 230 determines addition to the multiple access communication group based on the changed transmission power accuracy information. For example, when the STA 100-3 that is the transmission source of the change signal of the transmission power accuracy information is not a member of the multiple access communication group, the control unit 230 sends the STA 100-3 to the multiple access communication based on the changed transmission power accuracy information. Determine whether to add to the group. If it is determined that the STA 100-3 is to be added because the error value indicated by the transmission power accuracy information is less than the threshold, the control unit 230 adds the STA 100-3 to the multiple access communication group.
  • FIG. 9 is a sequence diagram conceptually illustrating an example of the group reconfiguration process based on a change in communication connection of the wireless communication system according to the present embodiment. The processing described below is performed after the multiple access communication group is once formed.
  • the STA100-3A5 transmits a connection release signal (step S321).
  • the AP 200-3 that has received the connection release signal re-forms the group (step S322).
  • the AP 200-3 transmits a group notification signal for the reconfigured group to the members of the group excluding the disconnected STA 100-3A5 (step S323).
  • the STA 100-3B5 transmits a connection start signal (step S324).
  • the AP 200-3 that has received the connection start signal re-forms the group (step S325).
  • the AP 200-3 transmits a group notification signal for the reconfigured group to the members of the group including the STA 100-3B5 that has started the connection (step S326).
  • FIG. 10 is a sequence diagram conceptually illustrating an example of the group reconfiguration process based on the change in the transmission power accuracy information of the wireless communication system according to the present embodiment.
  • the STA 100-3B1 transmits a transmission power accuracy information change signal (step S331).
  • the AP 200-3 that has received the change signal re-forms the group based on the changed transmission power accuracy information (step S332).
  • AP 200-3 transmits a group notification signal for the re-formed group to STAs 100-3A1 to 100-3B5 that are members of the group (step S333).
  • the STA 100-3B5 transmits a data signal storing the transmission power information (step S334).
  • the AP 200-3 that has received the data signal calculates the transmission power accuracy based on the data signal (step S335).
  • the AP 200-3 re-forms the group based on the difference in transmission power accuracy (step S336).
  • the AP 200-3 transmits a group notification signal for the re-formed group to the group members STAs 100-3A1 to 100-3B5 (step S337).
  • FIG. 11 is a flowchart conceptually showing an example of the entire process of the AP 200-3 according to the present embodiment.
  • the AP 200-3 re-forms the multiple access communication group (step S425). Specifically, when the connection release signal is received, the control unit 230 removes the STA 100-3 that is the transmission source of the connection release signal from the multiple access communication group.
  • the AP 200-3 re-forms the multiple access communication group (step S425). Specifically, when the connection start signal is received, the control unit 230 adds the STA 100-3 to the multiple access communication group based on the transmission power accuracy information of the STA 100-3 that is the transmission source of the connection start signal. I do.
  • the transmission power accuracy information may be stored in the connection start signal, or may be notified using another signal. Further, when the STA 100-3 has connected to the AP 200-3 in the past, transmission power accuracy information notified in the past may be used.
  • the AP 200-3 re-forms the multiple access communication group (step S425). Specifically, when a change signal of transmission power accuracy information is received, control unit 230 registers the changed transmission power accuracy information stored in the change signal. And the control part 230 adds or excludes a member to a multiple access communication group based on the transmission power accuracy information after a change about the transmission source of a change signal.
  • the AP 200-3 re-forms the multiple access communication group (step S425). Specifically, when a data signal storing transmission power information is received, control unit 230 estimates transmission power from the received power density and propagation loss for the data signal. Next, the control unit 230 calculates a difference between the estimated transmission power and the transmission power indicated by the transmission power information stored in the data signal. When there is a difference between the error indicated by the registered transmission power accuracy information and the calculated difference, the control unit 230 registers the calculated difference as the changed transmission power accuracy information, Based on the calculated difference, members are added to or removed from the multiple access communication group.
  • the registered transmission power accuracy information may be information calculated based on a signal received in the past.
  • the AP 200-3 transmits a group notification signal (step S427).
  • Communication parameter information may be stored in the group notification signal. Further, the communication parameter information may be updated according to the multiple-access communication group after re-formation.
  • FIG. 12 is a flowchart conceptually showing an example of the entire process of the STA 100-3 according to the present embodiment.
  • the STA 100-3 transmits a connection release signal to the AP 200-3 (step S622).
  • the STA 100-3 transmits a connection start signal to the AP 200-3 (step S623).
  • the STA 100-3 transmits a transmission power accuracy notification signal to the AP 200-3 (step S626).
  • the transmission power accuracy notification signal may not be transmitted.
  • the STA 100-3 determines that the transmission power accuracy information has been changed (step S629 / YES) and determines to notify the change of the transmission power accuracy information (step S630 / YES)
  • the STA 100-3 changes the transmission power accuracy information.
  • a signal is transmitted (step S631).
  • the STA 100-3 transmits a data signal storing the transmission power information (step S632).
  • the STA 100-3 acquires information from the group notification signal (step S628).
  • the AP 200-3 controls the destination of the second signal based on the change in the communication connection with the STA 100-3.
  • the STA 100-3 transmits a fourth signal notifying a change in communication connection with the AP 200-3. For this reason, when the number of members of the formed multiple access communication group increases or decreases, the number of members of the multiple access communication group can be optimized by reforming the multiple access communication group. Therefore, communication efficiency can be improved.
  • the AP 200-3 controls the destination of the second signal based on the change in the transmission power accuracy information. Also, the STA 100-3 transmits a fourth signal notifying the change of the transmission power accuracy information. For this reason, the multiple access communication group is reformed in accordance with the change in the accuracy of the transmission power, so that the reception power density of signals transmitted from the members of the multiple access communication group can be optimized. Therefore, it is possible to suppress a decrease in reception characteristics due to a change in transmission power accuracy.
  • transmission power accuracy information is shared and updated between a plurality of APs 200-4.
  • the AP 200-4 accumulates the difference between the notified transmission power and the calculated transmission power. Specifically, the control unit 230 determines the transmission power indicated by the transmission power information stored in the data signal received from the STA 100-4 and the transmission power estimated from the reception power density and propagation loss for the data signal. Calculate the difference. And the control part 230 memorize
  • the AP 200-4 shares the accumulated difference with other APs 200-4.
  • the control unit 230 causes the data processing unit 210 to generate a difference notification signal in which a predetermined amount of difference information is accumulated or periodically, in which the accumulated difference information is stored. Then, the generated difference notification signal is transmitted by the wireless communication unit 220.
  • the control unit 230 stores the difference information stored in the difference notification signal in the storage unit.
  • the transmission power accuracy information may be shared together with the difference information.
  • the AP 200-4 updates the transmission power accuracy information based on the accumulated difference information. Specifically, when a predetermined amount of difference information is accumulated, the control unit 230 performs statistical processing on the difference information and transmission power accuracy information, thereby performing statistical processing on transmission power accuracy. Get the value. Then, the control unit 230 uses the acquired statistical value as transmission power accuracy information for the group formation process or the like.
  • FIG. 13 is a sequence diagram conceptually illustrating an example of difference information sharing processing and transmission power accuracy information update processing of the wireless communication system according to the present embodiment.
  • the STAs 100-4A1 to 100-4B5 transmit a transmission power accuracy notification signal to the AP 200-4A (step S341). Similarly, the STAs 100-4A1 to 100-4B5 transmit a transmission power accuracy notification signal to the AP 200-4B (step S342). Next, the STAs 100-4A1 to 100-4B5 transmit a data signal storing transmission power information to the AP 200-4A (step S343). Similarly, STAs 100-4A1 to 100-4B5 transmit a data signal storing transmission power information to AP 200-4B (step S344).
  • the AP 200-4A transmits a difference notification signal storing the accumulated difference information to the AP 200-4B (step S345).
  • AP 200-4B transmits a difference notification signal storing the accumulated difference information to AP 200-4A (step S346).
  • AP200-4A which received the difference notification signal forms a group using the transmission power accuracy information updated based on the shared difference information and the accumulated difference information (step S347).
  • the AP 200-4B that has received the difference notification signal forms a group using the shared difference information and the transmission power accuracy information updated based on the accumulated difference information (step S348).
  • FIG. 14 is a flowchart conceptually showing an example of the entire process of the AP 200-4 according to the present embodiment.
  • the reception power information Difference information between the transmission power information estimated based on the received transmission power information and the received transmission power information is calculated (step S443).
  • the control unit 230 calculates the transmission power estimated based on the received power density and the propagation loss for the received data signal, and the transmission power indicated by the transmission power information stored in the data signal. Calculate the difference.
  • the control part 230 memorize
  • the AP 200-4 exchanges a difference notification signal (step S445). Specifically, when a predetermined amount of difference information is accumulated, the control unit 230 causes the data processing unit 210 to generate a difference notification signal in which the difference information and the received transmission power accuracy information are stored. Then, the generated difference notification signal is transmitted by the wireless communication unit 220. In addition, when a difference notification signal is received from another AP 200-4, the control unit 230 acquires difference information and transmission power accuracy information stored in the received difference notification signal.
  • control unit 230 acquires a statistical value by performing statistical processing on the stored difference information and transmission power accuracy information, and the received difference information and transmission power accuracy information. And the control part 230 forms a multiple access communication group by using the acquired statistics value as transmission power precision information. In addition, the said statistical value may be used for re-formation of a multiple access communication group.
  • the AP 200-4 transmits a group notification signal (step S448).
  • FIG. 15 is a flowchart conceptually showing an example of the entire process of the STA 100-4 according to the present embodiment.
  • the STA 100-4 transmits a transmission power accuracy notification signal (step S641).
  • the STA 100-4 transmits a data signal storing transmission power information indicating the transmission power to be used (step S642).
  • the transmission power accuracy information may be stored in the data signal, and in this case, the transmission power accuracy notification signal may not be transmitted.
  • the STA 100-4 acquires information from the group notification signal (step S644).
  • the AP 200-4 receives a transmission power notification signal in which transmission power information is stored, and transmits the transmission power information and the reception power stored in the transmission power notification signal.
  • a difference notification signal in which difference information related to the difference from the transmission power information estimated from is stored is transmitted. For this reason, the error of the transmission power grasped from the actually transmitted signal can be shared with the other AP 200-4. Therefore, individual differences in accuracy in signal reception by the AP 200-4 can be suppressed, and more accurate transmission power accuracy can be grasped.
  • the AP 200-4 receives the difference notification signal, and controls the destination of the second signal based on the difference information stored in the received difference notification signal and the estimated difference information. For this reason, by forming a multiple access communication group based on the accuracy of transmission power that is more accurate than the transmission power accuracy information, it is possible to more effectively suppress the degradation of reception characteristics.
  • the STA 100 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a mobile terminal such as a portable game terminal or a digital camera, a fixed terminal such as a television receiver, a printer, a digital scanner, or a network storage, or a car navigation device. It may be realized as an in-vehicle terminal.
  • the STA 100 is realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication such as a smart meter, a vending machine, a remote monitoring device, or a POS (Point Of Sale) terminal. May be.
  • the STA 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • the AP 200 may be realized as a wireless LAN access point (also referred to as a wireless base station) having a router function or not having a router function.
  • the AP 200 may be realized as a mobile wireless LAN router.
  • the AP 200 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these devices.
  • FIG. 16 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 913, an antenna switch 914, an antenna 915, A bus 917, a battery 918, and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU (Central Processing Unit) or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 901.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 913 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and performs wireless communication.
  • the wireless communication interface 913 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
  • the wireless communication interface 913 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct (registered trademark).
  • Wi-Fi Direct unlike the ad hoc mode, one of two terminals operates as an access point, but communication is performed directly between the terminals.
  • the wireless communication interface 913 can typically include a baseband processor, an RF (Radio Frequency) circuit, a power amplifier, and the like.
  • the wireless communication interface 913 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the wireless communication interface 913 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a cellular communication method in addition to the wireless LAN method.
  • the antenna switch 914 switches the connection destination of the antenna 915 among a plurality of circuits (for example, circuits for different wireless communication schemes) included in the wireless communication interface 913.
  • the antenna 915 includes a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the radio communication interface 913.
  • the smartphone 900 is not limited to the example of FIG. 16, and may include a plurality of antennas (for example, an antenna for a wireless LAN and an antenna for a proximity wireless communication method). In that case, the antenna switch 914 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 913, and auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 16 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the data processing unit 110, the wireless communication unit 120, and the control unit 130 described with reference to FIG. 2 may be implemented in the wireless communication interface 913.
  • at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
  • the control unit 130 uses the data processing unit 110 and the wireless communication unit 120 to transmit a first signal in which transmission power accuracy information is stored, and then receives a second signal related to multiple access permission received thereafter. Receive. Then, the control unit 130 controls transmission of the third signal based on the second signal. Thereby, it is possible to suppress a decrease in reception characteristics in the AP 200 that receives the multiplexed third signal and communicates with the smartphone 900.
  • the smartphone 900 may operate as a wireless access point (software AP) when the processor 901 executes the access point function at the application level. Further, the wireless communication interface 913 may have a wireless access point function.
  • FIG. 17 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • An interface 933, an antenna switch 934, an antenna 935, and a battery 938 are provided.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and executes wireless communication.
  • the wireless communication interface 933 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
  • the wireless communication interface 933 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct.
  • the wireless communication interface 933 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
  • the wireless communication interface 933 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a proximity wireless communication system, or a cellular communication system.
  • the antenna switch 934 switches the connection destination of the antenna 935 among a plurality of circuits included in the wireless communication interface 933.
  • the antenna 935 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas without being limited to the example of FIG. In that case, the antenna switch 934 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 17 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the data processing unit 110, the wireless communication unit 120, and the control unit 130 described with reference to FIG. 2 may be implemented in the wireless communication interface 933. Further, at least a part of these functions may be implemented in the processor 921.
  • the control unit 130 uses the data processing unit 110 and the wireless communication unit 120 to transmit a first signal in which transmission power accuracy information is stored, and then receives a second signal related to multiple access permission received thereafter. Receive. Then, the control unit 130 controls transmission of the third signal based on the second signal. Accordingly, it is possible to suppress a decrease in reception characteristics in the AP 200 that receives the multiplexed third signal and communicates with the car navigation device 920.
  • the wireless communication interface 933 may operate as the above-described AP 200 and provide a wireless connection to a terminal of a user who gets on the vehicle.
  • the control unit 230 forms a multiple access communication group based on transmission power accuracy information stored in a first signal received via the wireless communication unit 220 and the data processing unit 210. Then, using the data processing unit 210 and the wireless communication unit 220, the control unit 230 causes the members of the formed multiple access communication group to transmit a second signal related to the multiple access permission. As a result, it is possible to suppress a decrease in reception characteristics of signals transmitted from a terminal owned by a user and multiplexed.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • FIG. 18 is a block diagram illustrating an example of a schematic configuration of a wireless access point 950 to which the technology according to the present disclosure can be applied.
  • the wireless access point 950 includes a controller 951, a memory 952, an input device 954, a display device 955, a network interface 957, a wireless communication interface 963, an antenna switch 964, and an antenna 965.
  • the controller 951 may be a CPU or a DSP (Digital Signal Processor), for example, and various functions (for example, access restriction, routing, encryption, firewall) of the IP (Internet Protocol) layer and higher layers of the wireless access point 950 And log management).
  • the memory 952 includes a RAM and a ROM, and stores programs executed by the controller 951 and various control data (for example, a terminal list, a routing table, an encryption key, security settings, and a log).
  • the input device 954 includes, for example, a button or a switch and receives an operation from the user.
  • the display device 955 includes an LED lamp and the like, and displays the operation status of the wireless access point 950.
  • the network interface 957 is a wired communication interface for connecting the wireless access point 950 to the wired communication network 958.
  • the network interface 957 may have a plurality of connection terminals.
  • the wired communication network 958 may be a LAN such as Ethernet (registered trademark), or may be a WAN (Wide Area Network).
  • the wireless communication interface 963 supports one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and provides a wireless connection as an access point to nearby terminals.
  • the wireless communication interface 963 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
  • the wireless communication interface 963 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the antenna switch 964 switches the connection destination of the antenna 965 among a plurality of circuits included in the wireless communication interface 963.
  • the antenna 965 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 963.
  • the data processing unit 210, the wireless communication unit 220, and the control unit 230 described with reference to FIG. 2 may be implemented in the wireless communication interface 963.
  • at least a part of these functions may be implemented in the controller 951.
  • the control unit 230 forms a multiple access communication group based on transmission power accuracy information stored in a first signal received via the wireless communication unit 220 and the data processing unit 210. Then, using the data processing unit 210 and the wireless communication unit 220, the control unit 230 causes the members of the formed multiple access communication group to transmit a second signal related to the multiple access permission. Thereby, it is possible to suppress a decrease in reception characteristics of a signal transmitted from a terminal connected to the wireless access point 950 and multiplexed.
  • the multiple access communication group is formed in consideration of the transmission power accuracy information, so that the reception power density of the signal received by the AP 200-1 from the STA 100-1 Deviation from the assumed received power density can be suppressed. Therefore, by suppressing the distortion of the received signal and the like, it is possible to suppress a decrease in reception characteristics when a plurality of STAs 100-1 communicate simultaneously.
  • communication efficiency can be improved by performing multi-access communication for the STA 100-2 whose transmission power accuracy is lower than the threshold.
  • the reception characteristics for the signal transmitted from the STA 100-2 whose transmission power accuracy is lower than the threshold are higher than the reception characteristics for the signal transmitted from the STA 100-2 whose transmission power accuracy is higher than the threshold. May be lowered. Therefore, by changing communication parameters used in multiple access communication for groups with different transmission power accuracy, it is possible to maintain a signal reception success rate even for a group whose reception characteristics may be relatively low.
  • the number of members of the formed multiple access communication group increases or decreases, the number of members of the multiple access communication group is re-established by re-forming the multiple access communication group. Can be optimized. Therefore, communication efficiency can be improved.
  • the fourth embodiment of the present disclosure it is possible to share an error in transmission power grasped from a signal that is actually transmitted with another AP 200-4. Therefore, individual differences in accuracy in signal reception by the AP 200-4 can be suppressed, and more accurate transmission power accuracy can be grasped.
  • the AP 200 and the STA 100 perform the multiple access communication, but the present technology is not limited to such an example.
  • the STA 100 having a direct link with a plurality of STAs 100 and the plurality of STAs 100 may perform multiple access communication.
  • the above-described DL communication can be read as “simultaneous communication from one device to a plurality of devices” and the above-described UL communication can be read as “simultaneous communication from a plurality of devices to one device”.
  • the STA 100 is divided into a group having relatively high transmission power accuracy and a group having a low transmission power accuracy. May be. In this case, it is possible to suppress the difference in accuracy of transmission power between the former group and the latter group, and thus the difference in reception characteristics from being opened too much.
  • the difference information may be shared between the AP 200 and the STA 100.
  • the STA 100 also performs processing for calculating difference information.
  • a receiving unit that receives a first signal in which first information for determining accuracy or accuracy of transmission power is stored;
  • a transmission unit that transmits a second signal related to permission of multiple access capable of simultaneous communication to at least one first wireless communication device specified based on the first information;
  • a wireless communication device comprising: (2) The at least one first wireless communication device is identified based on the first information and a threshold for the first information; The wireless communication device according to (1).
  • the transmitter transmits the second signal to a first transmission source of the first signal in which the first information equal to or greater than the threshold is stored; The wireless communication device according to (2).
  • the transmission unit transmits the second signal to a second transmission source of the first signal in which the first information that is less than the threshold is stored;
  • the second signal transmitted to the second transmission source stores a communication parameter different from the communication parameter stored in the second signal transmitted to the first transmission source.
  • the wireless communication device includes a communication parameter related to noise tolerance for communication,
  • the wireless communication device (4).
  • the transmission unit does not transmit the second signal to the first transmission source of the first signal in which the first information that is less than the threshold value is stored, or a signal indicating permission of one-way connection Send,
  • the second signal includes a transmission permission signal indicating permission of multiple access capable of the simultaneous communication.
  • the wireless communication device includes a group notification signal for notifying a group to which the first wireless communication apparatus to which the multiple access capable of simultaneous communication is permitted belongs, The wireless communication device according to any one of (1) to (7).
  • the multiple access capable of simultaneous communication includes frequency division multiple access, space division multiple access or code division multiple access.
  • the wireless communication device includes information related to an error between a set value of transmission power and an actual measurement value.
  • the wireless communication device controls a destination of the second signal based on a change in communication connection with the first wireless communication device; The wireless communication device according to any one of (1) to (10).
  • the transmission unit controls a destination of the second signal based on a change in the first information;
  • the wireless communication device according to any one of (1) to (11).
  • the receiving unit receives a transmission power notification signal in which transmission power information is stored,
  • the transmitter transmits a difference notification signal in which difference information relating to a difference between the transmission power information stored in the transmission power notification signal and transmission power information estimated from reception power is stored;
  • the wireless communication device according to any one of (1) to (12).
  • the receiving unit further receives the difference notification signal,
  • the transmission unit controls a destination of the second signal based on the difference information stored in the received difference notification signal and the estimated difference information;
  • the wireless communication device 13).
  • a transmission unit for transmitting a first signal in which first information for determining accuracy or accuracy of transmission power is stored;
  • a receiving unit for receiving a second signal related to permission of multiple access capable of simultaneous communication after transmission of the first signal;
  • a control unit for controlling transmission of a third signal based on the second signal;
  • a wireless communication device comprising: (16)
  • the second signal includes a transmission permission signal indicating permission of multiple access capable of the simultaneous communication, The control unit controls transmission of the third signal based on a communication parameter stored in the transmission permission signal.
  • the second signal includes a group notification signal for notifying a group to which the first wireless communication apparatus to which multiple access capable of simultaneous communication is permitted belongs,
  • the control unit controls transmission of the third signal in response to reception of a transmission permission signal indicating permission of the multiple access capable of simultaneous communication, addressed to the group notified by the group notification signal.
  • the wireless communication device according to (15) or (16).
  • the transmission unit transmits a fourth signal that notifies a change in communication connection with the transmission source of the second signal or a change in first information.
  • the wireless communication device according to any one of (15) to (17).
  • a wireless communication method including: (20) Using a processor Transmitting a first signal in which first information for grasping accuracy or accuracy of transmission power is stored; Receiving a second signal relating to permission of multiple access capable of simultaneous communication after transmission of the first signal; Controlling transmission of a third signal based on the second signal;
  • a wireless communication method including:
  • STA 100 STA 200 AP 110, 210 Data processing unit 120, 220 Wireless communication unit 130, 230 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

【課題】複数の無線通信装置が同時に通信する場合において受信特性の低下を抑制することが可能な仕組みを提供する。 【解決手段】送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、を備える無線通信装置。送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、前記第2の信号に基づいて第3の信号の送信を制御する制御部と、を備える無線通信装置。

Description

無線通信装置および無線通信方法
 本開示は、無線通信装置および無線通信方法に関する。
 近年、IEEE(Institute of Electrical and Electronics Engineers)802.11に代表される無線LAN(Local Area Network)の普及が進んでいる。また、それに伴って無線LAN対応製品(以下、無線通信装置とも称する。)も増加している。これに対し、通信に利用可能な無線通信リソースには限りがある。そのため、無線通信装置間の通信の効率化が望まれる。
 通信の効率化のための技術の一例として、多元接続通信技術がある。例えば、多元接続通信技術としては、OFDMA(Orthogonal Frequency Division Multiple Access)またはMIMO(Multi Input Multi Output)を利用したSDMA(Space Division Multiple Access)などがある。MIMOを利用したSDMAはマルチユーザMIMO(以下、MU(Multi User)-MIMOとも称する。)と呼ばれる。
 ここで、多元接続通信では、複数の無線通信装置が同時に通信を行うため、通信の干渉が発生するおそれがある。そのため、通信の干渉を回避することが望まれる。
 これに対し、特許文献1では、無線通信基地局装置へ接続する複数の無線通信端末のアップリンク(以下、UL(Up Link)とも称する。)通信品質情報に基づいて、MU-MIMO通信を実行する無線通信端末の組合せを決定するスケジューラを備えた無線通信基地局装置に係る技術が開示されている。また、特許文献2では、SU(Single User)-MIMO最適性能尺度を有する端末を選択し、MU-MIMO最適性能尺度を有する無線通信端末の集合を選択するスケジュール装置が開示されている。当該スケジュール装置は、SU-MIMO最適性能尺度とMU-MIMO最適性能尺度との比較により、SU-MIMOモードまたはMU-MIMOモードを選択する。
特開2013-90256号公報 特表2010-537597号公報
 しかし、特許文献1、2で開示される技術に代表される従来技術では、受信特性が低下するおそれがある。例えば、通信品質または通信性能に影響を与える送信電力の精度は、概して個々の無線通信端末に応じて異なる。そのため、送信電力が想定よりも高い場合は受信信号が飽和するおそれがあり、送信電力が想定よりも低い場合は受信信号の強度が受信可能な強度を下回るおそれがある。すなわち、通信品質情報または通信性能尺度に基づいて決定された組合せの無線通信端末から受信される信号についての受信特性は、許容される受信特性よりも劣るおそれがある。その結果、通信が失敗し、通信効率が低下しかねない。
 そこで、本開示では、複数の無線通信装置が同時に通信する場合において受信特性の低下を抑制することが可能な仕組みを提案する。
 本開示によれば、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、を備える無線通信装置が提供される。
 また、本開示によれば、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、前記第2の信号に基づいて第3の信号の送信を制御する制御部と、を備える無線通信装置が提供される。
 本開示によれば、プロセッサを用いて、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信することと、前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、を含む無線通信方法が提供される。
 また、本開示によれば、プロセッサを用いて、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信することと、前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、前記第2の信号に基づいて第3の信号の送信を制御することと、を含む無線通信方法が提供される。
 以上説明したように本開示によれば、複数の無線通信装置が同時に通信する場合において受信特性の低下を抑制することが可能な仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の各実施形態に係る無線通信システムの構成例を示す図である。 本開示の各実施形態に係るSTAおよびAPの機能構成の例を概略的に示すブロック図である。 本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るAPにおける多元接続通信グループの形成処理の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの通信接続についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。 本実施形態に係る無線通信システムの送信電力精度情報についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の例を概念的に示すシーケンス図である。 本実施形態に係るAPの処理の全体の例を概念的に示すフローチャートである。 本実施形態に係るSTAの処理の全体の例を概念的に示すフローチャートである。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。 無線アクセスポイントの概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能を有する複数の要素を、同一の符号の後に異なる番号を付して区別する場合もある。例えば、実質的に同一の機能を有する複数の要素を、必要に応じてSTA100AおよびSTA100Bなどのように区別する。ただし、実質的に同一の機能を有する要素を区別する必要が無い場合、同一符号のみを付する。例えば、STA100AおよびSTA100Bを特に区別する必要がない場合には、単にSTA100と称する。
 また、説明の便宜上、第1~第4の実施形態に係るSTA100を、STA100-1~STA100-4のように、末尾に実施形態に対応する番号を付することにより区別する。なお、これはAP200についても同様である。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.システムおよび装置の構成
 3.第1の実施形態
  3.1.装置の機能
  3.2.処理の流れ
  3.3.第1の実施形態のまとめ
 4.第2の実施形態
  4.1.装置の機能
  4.2.処理の流れ
  4.3.第2の実施形態のまとめ
 5.第3の実施形態
  5.1.装置の機能
  5.2.処理の流れ
  5.3.第3の実施形態のまとめ
 6.第4の実施形態
  6.1.装置の機能
  6.2.処理の流れ
  6.3.第4の実施形態のまとめ
 7.応用例
 8.むすび
 <1.はじめに>
 まず、本開示の各実施形態に係る無線通信装置に関連する技術について説明する。当該技術としては、上述した多元接続通信技術がある。多元接続通信技術には、AP(Access Point)から複数のSTA(Station)へ信号を同時に送信するダウンリンク(以下、DL(Down Link)とも称する。)多元接続通信、および複数のSTAからAPへ信号を同時に送信するアップリンク多元接続通信がある。ここで、ダウンリンク多元接続通信の1つであるダウンリンクMU-MIMO通信については、既に通信規格(IEEE802.11ac)において規定されている。他方で、アップリンク多元接続通信については、通信規格においてまだ検討中であり、規定されていない。これは、無線LAN通信は、ランダムアクセス方式の通信システムである一方、アップリンク多元接続通信は、特定の複数のSTAが同時に通信を行う、いわばコントロールアクセス方式の通信に近い性質を有しているためである。検討段階では、アップリンク多元接続通信を許可するSTAおよび通信期間などを指定するためのトリガフレームなどを用いて実現することが考えられている。
 ここで、多元接続通信においては、同時に通信させるSTAのグルーピングが行われる。さらに、STAのグループは、受信特性が目標値を確保できるように選択されることが望ましい。例えば、APにおいて同一グループ内のSTAの各々から受信される信号の受信電力密度が異なる場合、APの備えるRF(Radio Frequency)回路、アナログ回路またはアナログデジタル変換器の非線形性または量子化により信号が歪む。その結果、信号干渉雑音電力比(SINR:Signal Interference Noise Ratio)などの受信特性が低下するおそれがある。
 これに対し、事前に送信電力の性能情報を収集し、当該性能情報を用いて多元接続通信におけるグルーピングを実行することも考えられる。例えば、APは、事前にSTAの設定可能な送信電力の範囲を示す情報を収集し、収集された情報に基づいて、APにおける受信電力密度が所定の範囲に収まるような送信電力を設定可能なSTAを同一グループのメンバとして選択する。
 しかし、送信電力の精度は概して、無線通信装置について個体差がある。例えば、STAの送信電力の制御精度が異なることにより、指定された送信電力と異なる送信電力で信号が送信されるおそれがある。そのため、上述のようにグルーピングが行われたとしても、受信電力密度にばらつきが生じ、受信特性が低下しかねない。
 そこで、本開示では、STA100は、送信電力の精度または正確性(以下、まとめて精度とも称する。)が把握される第1の情報(以下、送信電力精度情報とも称する。)が格納される第1の信号(以下、送信電力精度通知信号とも称する。)を送信し、AP200は、受信される送信電力精度通知信号に格納される送信電力精度情報に基づいて多元接続通信におけるグルーピングを実行する。これにより、STA100の送信電力の精度にばらつきがあっても、AP200におけるSTA100から受信される信号の受信電力密度が所定の範囲に収まるSTA100のグループを形成することができる。従って、複数のSTA100とAP200とが同時に通信する場合において受信特性の低下を抑制することが可能となる。
 <2.システムおよび装置の構成>
 次に、本開示の各実施形態に係る無線通信システムおよび当該無線通信システムを実現するための無線通信装置の構成について説明する。まず、図1を参照して、当該無線通信システムの構成について説明する。図1は、本開示の各実施形態に係る無線通信システムの構成例を示す図である。
 図1に示したように、無線通信システムは、無線通信装置としてAP200および複数のSTA100を備える。AP200およびSTA100は互いに通信が可能であり、通信接続を確立した後、通信する。さらに、STA100AとSTA100Bとで送信電力の精度が異なる。例えば、図1に示したようなSTA100A1~100A5の送信電力の精度は、STA100B1~100B5よりも高い。
 続いて、図2を参照して、STA100およびAP200の機能構成および基本機能について説明する。図2は、本開示の各実施形態に係るSTA100およびAP200の機能構成の例を概略的に示すブロック図である。なお、STA100およびAP200の機能構成は実質的に同一であるため、ここではSTA100についてのみ説明する。
 図2に示したように、STA100は、データ処理部110、無線通信部120および制御部130を備える。なお、図示しないが、STA100には、各機能に電力を供給する電源部が設けられる。当該電源部は、固定電源またはバッテリーなどで実現される。
   (データ処理部)
 データ処理部110は、データに対して送受信のための処理を行う。具体的には、データ処理部110は、通信上位層からのデータに基づいてフレーム(またはパケット)を生成し、生成されるフレームを後述する信号処理部121に提供する。例えば、データ処理部110は、データからフレームを生成し、生成されるフレームにメディアアクセス制御(MAC:Media Access Control)のためのMACヘッダの付加および誤り検出符号の付加などの処理を行う。また、データ処理部110は、受信されるフレームからデータを抽出し、抽出されるデータを通信上位層に提供する。例えば、データ処理部110は、受信されるフレームについて、MACヘッダの解析、符号誤りの検出および訂正、ならびにリオーダ処理などを行うことによりデータを取得する。
   (無線通信部)
 無線通信部120は、図2に示したように、信号処理部121、チャネル推定部122、無線インタフェース部123および増幅部124を備える。
 信号処理部121は、フレームについて変調処理を行う。具体的には、信号処理部121は、データ処理部110から提供されるフレームについて、制御部130によって設定されるコーディングおよび変調方式などに従って、エンコード、インタリーブおよび変調を行うことによりシンボルストリームを生成する。また、信号処理部121は、空間処理により得られるシンボルストリームについて、復調およびデコードなどを行うことによりフレームを取得し、取得されるフレームをデータ処理部110または制御部130に提供する。
 また、信号処理部121は、空間分割多重通信に係る処理を行う。具体的には、信号処理部121は、生成されるシンボルストリームについて空間分離に係る信号処理を行い、処理により得られるシンボルストリームの各々をそれぞれ無線インタフェース部123に提供する。また、信号処理部121は、無線インタフェース部123から得られる信号に係るシンボルストリームについて空間処理、例えばシンボルストリームの分離処理などを行う。
 また、信号処理部121は、他の多重通信に係る処理を行ってもよい。例えば、信号処理部121は、周波数分割多重通信、直交周波数分割多重通信または符号分割多重通信に係る処理を行ってもよい。
 チャネル推定部122は、チャネル利得を推定する。具体的には、チャネル推定部122は、無線インタフェース部123から得られるシンボルストリームに係る信号のうちの、プリアンブル部分またはトレーニング信号部分から複素チャネル利得情報を算出する。なお、算出される複素チャネル利得情報は、制御部130を介してまたは直接的に信号処理部121に提供され、変調処理および空間分離処理などに利用される。
 無線インタフェース部123は、アンテナを介して送受信される信号の生成を行う。具体的には、無線インタフェース部123は、信号処理部121から提供されるシンボルストリームに係る信号を、アナログ信号に変換し、フィルタリングし、および周波数アップコンバートする。そして、無線インタフェース部123は、得られる信号を増幅部124に提供する。また、無線インタフェース部123は、増幅部124から得られる信号について、信号送信の場合と逆の処理、例えば周波数ダウンコンバートおよびデジタル信号変換などを行い、処理により得られる信号をチャネル推定部122および信号処理部121に提供する。
 増幅部124は、信号の増幅を行う。具体的には、増幅部124は、無線インタフェース部123から提供されるアナログ信号を所定の電力まで増幅し、増幅により得られる信号を、アンテナに介して送信させる。また、増幅部124は、アンテナを介して受信される電波に係る信号を所定の電力まで増幅し、増幅により得られる信号を無線インタフェース部123に提供する。例えば、増幅部124はパワーアンプモジュールなどで実現される。なお、増幅部124の送信電波の増幅機能および受信電波の増幅機能のうちのいずれかまたは両方が無線インタフェース部123に内包されてもよい。
 なお、図2では、STA100に2本のアンテナが備えられる場合の構成(無線インタフェース部123A、123Bおよび増幅部124A、124B)の例を説明したが、備えられるアンテナは3本以上であってもよく、1本であってもよい。
   (制御部)
 制御部130は、STA100の動作を全体的に制御する。具体的には、制御部130は、各機能間の情報の受け渡し、通信パラメタの設定、およびデータ処理部110におけるフレームのスケジューリングなどの処理を行う。特に、制御部130は、送信電力の制御、送信電力精度情報の通知、送信電力精度情報に基づく多元接続通信のグループの形成、グループの通知および通知されたグループに基づく通信などを制御する。
 <3.第1の実施形態>
 次に、本開示の第1の実施形態について説明する。第1の実施形態では、複数のSTA100-1が、送信電力精度情報に基づいて、多元接続通信を行うグループと一元接続通信を行うグループとに分けられる。
  <3.1.装置の機能>
 まず、本実施形態に係る無線通信装置としてのSTA100-1およびAP200-1の各機能について説明する。
   (送信電力精度情報の通知)
 STA100-1は、送信電力精度情報(第1の情報)をAP200-1に通知する。具体的には、制御部130は、送信電力精度情報の送信タイミングが到来すると、送信電力精度情報が格納される送信電力精度通知信号(第1の信号)をデータ処理部110に生成させる。そして、無線通信部120は、生成される送信電力精度通知信号を送信する。他方で、AP200-1は、送信電力精度情報を受け取る。具体的には、データ処理部210は、無線通信部220により受信された送信電力精度通知信号から送信電力精度情報を取得する。そして、取得された送信電力精度情報は、制御部230へ提供される。
 送信電力精度情報としては、送信電力の設定値と実測値との誤差に係る情報(以下、誤差情報とも称する。)がある。例えば、誤差情報は、設定値と実測値との誤差の数値を示す情報であってもよく、誤差の数値に応じて分類される等級を示す情報であってもよい。なお、誤差情報は、STA100-1の製造段階またはテスト段階などで設定されてもよく、STA100-1のユーザまたはAP200-1からの指示に基づいて事後的に設定されまたは更新されてもよい。
 なお、送信電力精度通知信号は、送信電力精度情報の通信のための専用のフレームであってもよく、送信電力精度情報が格納されるフィールドを有する他の目的のフレームであってもよい。また、送信電力精度通知信号は、所定の時間間隔で送信されてもよく、所定の条件が満たされた場合に送信されてもよく、AP200-1からの送信要求に基づいて送信されてもよい。また、送信電力精度通知信号は、多元接続通信方式または一元接続通信方式のいずれを利用して通信されてもよい。
   (グループの形成)
 AP200-1は、送信電力精度情報に基づいて多元接続通信を行うSTA100-1のグループ(以下、多元接続通信グループとも称する。)を決定する。具体的には、制御部230は、送信電力精度情報に基づいて少なくとも1つのSTA100-1を多元接続通信グループのメンバとして特定する。より具体的には、制御部230は、送信電力制御情報と閾値とに基づいて多元接続通信グループを決定する。例えば、制御部230は、送信電力精度情報が閾値以上であるSTA100-1を多元接続通信グループのメンバに決定する。詳細には、制御部230は、送信電力の精度に係る誤差の数値が閾値未満であるか、誤差の等級が閾値未満であるか、または誤差に関する評価値が閾値以上であるSTA100-1を多元接続通信グループのメンバに決定する。
 また、AP200-1は、送信電力精度情報に基づいて一元接続通信を行うSTA100-1のグループ(以下、一元接続通信グループとも称する。)を決定する。具体的には、制御部230は、送信電力精度情報と閾値とに基づいて一元接続通信グループを決定する。例えば、制御部230は、送信電力精度情報が閾値未満であるSTA100-1を一元接続通信グループのメンバに決定する。詳細には、制御部230は、送信電力の精度に係る誤差の数値が閾値以上であるか、誤差の等級が閾値以上であるか、または誤差に関する評価値が閾値未満であるSTA100-1を一元接続通信グループのメンバに決定する。
 なお、上記では、送信電力精度情報の閾値を用いてグループが形成される例を説明したが、複数のSTA100-1から通知される送信電力精度情報間の相対関係に基づいてグループが形成されてもよい。例えば、STA100-1のグループは、送信電力の精度に係る誤差の数値についてのランキングにおける上位グループと下位グループとに分けられてもよい。
   (グループの通知)
 AP200-1は、通信を介して、決定されたグループをSTA100-1へ通知する。具体的には、制御部230は、決定された多元接続通信グループのメンバ宛ての当該多元接続通信グループを通知するグループ通知信号(第2の信号)をデータ処理部210に生成させ、生成された信号は無線通信部220により送信される。例えば、制御部230は、多元接続通信グループのメンバとして決定されたSTA100-1宛ての多元接続O通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。
 また、制御部230は、決定された一元接続通信グループを通知するグループ通知信号をデータ処理部210に生成させ、生成された信号は無線通信部220により送信される。例えば、制御部230は、一元接続通信グループのメンバとして決定されたSTA100-1宛ての一元接続通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。なお、制御部230は、一元接続通信グループとして決定されたSTA100-1にグループ通知フレームを送信しなくてもよい。
 グループ通知信号には、グループ割当て情報が格納される。具体的には、グループ割当て情報は、割当てられたグループにおいてSTA100-1が識別される情報またはSTA100-1が属するグループを示す情報である。例えば、グループ通知フレームには、グループ内において一意であるSTA100-1の識別情報またはグループIDが格納される。なお、グループ通知信号は、後述する送信許可信号により実現されてもよい。例えば、送信許可信号にグループ割当て情報が格納される。
 STA100-1は、AP200-1から通知されるグループを登録する。具体的には、データ処理部110は、無線通信部120により受信されるグループ通知フレームの宛先が自身のSTA100-1であるかを判定する。自身のSTA100-1が宛先であると判定されると、データ処理部110は、当該グループ通知フレームからグループ割当て情報を取得し、取得されるグループ割当て情報は、記憶部(図示せず。)に記憶させられる。
   (送信許可の通知)
 AP200-1は、通信を介して各グループへ送信許可を通知する。具体的には、制御部230は、グループ通知信号の送信後に、多元接続通信グループのメンバであるSTA100-1宛ての送信許可信号(第2の信号)をデータ処理部210に生成させ、生成される送信許可信号が無線通信部220により送信される。例えば、制御部230は、多元接続通信グループのメンバとして決定されたSTA100-1宛てのトリガフレームをデータ処理部210に生成させる。そして、生成されたトリガフレームが無線通信部220により送信される。なお、複数の多元接続通信グループが決定される場合には、多元接続通信グループの各々についてトリガフレームがそれぞれ送信される。
 送信許可信号には、信号送信において用いられる通信パラメタ情報が格納される。例えば、通信パラメタ情報としては、送信期間、送信電力、MCS(Modulation and Coding Set)などの情報がある。なお、送信許可信号に格納される通信パラメタ情報は、複数の多元接続通信グループについて異なってもよく、一元接続通信グループのメンバであるSTA100-1が通信において用いる通信パラメタと異なってもよい。また、通信パラメタ情報は、上述したグループ通知信号に格納されてもよい。また、送信許可信号は、送信許可を示す情報および通信パラメタ情報が格納されるフィールドを有する他の目的の信号であってもよい。
   (多元接続通信)
 STA100-1は、グループの通知および送信許可の通知に基づいて信号(第3の信号)の送信を制御する。具体的には、制御部130は、グループ通知信号により通知される多元接続通信グループ宛ての送信許可信号の受信に応じて、送信許可信号に格納される通信パラメタに基づく信号の送信の制御を行う。例えば、データ処理部110は、トリガフレームが受信されると、トリガフレームの宛先である多元接続通信グループが登録されている自身のSTA100-1が属するグループであるかを判定する。トリガフレームの宛先が登録済みのグループであると判定されると、データ処理部110は、トリガフレームに格納される通信パラメタ情報を取得し、制御部130は、取得された通信パラメタ情報に基づいて、送信電力またはMCSなどの通信パラメタを設定する。そして、制御部130は、取得された通信パラメタ情報の示す送信期間が到来すると、データ処理部110にフレームを生成させ、生成されるフレームが無線通信部120により送信される。同一の多元接続通信グループに属する他のSTA100-1においても同様の処理が実行される。その結果、各STA100-1から送信されるフレームが周波数分割多重化、空間分割多重化または符号分割多重化され、多元接続通信が実現される。
 AP200-1は、トリガフレームの送信後に複数のSTA100-1から送信され、多重化されたフレームを受信する。具体的には、無線通信部220は、トリガフレームの送信後に受信される多重化フレームから各フレームを分離し、分離されたフレームについてデータ処理部210により受信処理が行われる。そして、受信処理により得られるデータが通信上位層または制御部230などへ提供される。
   (一元接続通信)
 STA100-1は、グループの通知に基づいて信号の送信を制御する。具体的には、制御部130は、グループ通知信号により一元接続通信グループへの割当てが通知され、当該一元接続グループが登録されると、多元接続通信と異なる送信期間における信号の送信を制御する。例えば、制御部130は、トリガフレームの受信後に行われる多元接続通信の終了から所定の時間の経過後に一元接続通信を実行する。なお、一元接続通信は、多元接続通信の実行前すなわちトリガフレームの通信前に実行されてもよい。
  <3.2.処理の流れ>
 次に、図3を参照して、本実施形態に係る無線通信システムの処理の流れについて説明する。図3は、本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。
 STA100-1A1~100-1A5およびSTA100-1B1~100-1B5は、送信電力精度通知信号をAP200-1へ送信する(ステップS301)。送信電力精度通知信号を受信したAP200-1は、送信電力精度情報に基づいてグループを形成する(ステップS302)。次に、AP200-1は、多元接続通信グループ通知信号を多元接続通信グループのメンバであるSTA100-1A1~100-1A5へ送信する(ステップS303)。また、AP200-1は、一元接続通信グループ通知信号を一元接続通信グループのメンバであるSTA100-1B1~100-1B5へ送信する(ステップS304)。
 次に、AP200-1は、送信許可信号を多元接続通信グループのメンバであるSTA100-1A1~100-1A5へ送信する(ステップS305)。送信許可信号を受信したSTA100-1A1~100-1A5は、信号をAP200-1へ送信する(ステップS306)。なお、STA100-1A1~100-1A5から送信されるフレームは、周波数分割多重化、空間分割多重化または符号分割多重化される。多重化された信号を受信したAP200-1は、受信された信号の送信元であるSTA100-1A1~100-1A5の各々へ送達確認信号を送信する(ステップS307)。
 多元接続通信の終了後、一元接続通信グループのメンバであるSTA100-1B1~100-1B5は、信号をAP200-1へ送信する(ステップS308)。多重化されてない信号を受信したAP200-1は、受信された信号の送信元であるSTA100-1B1~100-1B5へそれぞれ送達確認信号を送信する(ステップS309)。
 続いて、本実施形態に係るSTA100-1およびAP200-1の処理について個別に説明する。
   (APの処理)
 まず、図4を参照して、AP200-1の処理の全体について説明する。図4は、本実施形態に係るAP200-1の処理の全体の例を概念的に示すフローチャートである。
 AP200-1は、送信電力精度通知信号が受信されたと判定されると(ステップS401/YES)、送信電力精度情報に基づいて多元接続通信グループを形成する(ステップS402)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて多元接続通信グループを形成する。なお、詳細については後述する。
 また、AP200-1は、一元接続通信グループを形成すると判定されると(ステップS403/YES)、送信電力精度情報に基づいて一元接続通信グループを形成する(ステップS404)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて一元接続通信グループを形成する。なお、一元接続通信グループは形成されなくてもよい。
 次に、AP200-1は、グループ通知信号を送信する(ステップS405)。具体的には、制御部230は、形成された多元接続通信グループを通知する多元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。また、制御部230は、形成された一元接続通信グループを通知する一元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。なお、一元接続通信グループが形成されない場合、一元接続通信グループ通知フレームは送信されない。
 その後、AP200-1は、多元接続通信グループへ送信許可信号を送信する(ステップS406)。具体的には、制御部230は、多元接続通信グループ通知フレームの送信後に、多元接続通信グループのメンバであるSTA100-1宛ての通信パラメタ情報が格納されるトリガフレームをデータ処理部210に生成させる。そして、生成されたトリガフレームが無線通信部220により送信される。
 なお、以降は、多元接続通信グループのメンバであるSTA100-1との多元接続通信が行われ、一元接続通信グループのメンバであるSTA100-1との一元接続通信が行われる。具体的には、無線通信部220は、STA100-1から同時に送信され多重化されるフレームを受信し、当該フレームの各々を分離する。そして、データ処理部210は、分離により得られるフレームの各々について受信処理を行い、受信処理により得られるデータを通信上位層または制御部230へ提供する。また、制御部230は、無線通信部220によりフレームが受信されると、受信されたフレームの送信元を宛先とするACK(Acknowledgement)フレームをデータ処理部210に生成させ、生成されるACKフレームを無線通信部220に送信させる。
 さらに、図5を参照して、AP200-1における多元接続通信グループの形成処理について詳細に説明する。図5は、本実施形態に係るAP200-1における多元接続通信グループの形成処理の例を概念的に示すフローチャートである。
 AP200-1は、送信電力精度情報が誤差の値である場合(ステップS501/YES)、誤差の値が閾値未満であるSTA100-1を多元接続通信グループに設定する(ステップS502)。
 また、AP200-1は、送信電力精度情報が誤差の等級である場合(ステップS503/YES)、誤差の等級が相対的に低いSTA100-1を多元接続通信グループに設定する(ステップS504)。
 また、AP200-1は、送信電力精度情報が誤差に対する評価値である場合(ステップS505/YES)、評価値が閾値以上であるSTA100-1を多元接続通信グループに設定する(ステップS506)。
   (STAの処理)
 続いて、図6を参照して、STA100-1の処理の全体について説明する。図6は、本実施形態に係るSTA100-1の処理の全体の例を概念的に示すフローチャートである。
 STA100-1は、定期的に送信電力精度通知信号を送信する(ステップS601)。具体的には、制御部130は、定期的に送信電力精度情報が格納される送信電力精度通知フレームをデータ処理部110に生成させ、生成される当該フレームが無線通信部120により送信される。
 また、STA100-1は、グループ通知信号が受信されると(ステップS602/YES)、グループ通知信号から情報を取得する(ステップS603)。具体的には、データ処理部110は、受信されたグループ通知フレームに格納されるグループ割当て情報を取得し、取得されたグループ割当て情報を記憶部に記憶させる。
 グループ通知信号の受信後に、STA100-1は、送信許可信号が受信されると(ステップS604/YES)、送信許可信号から情報を取得する(ステップS605)。具体的には、データ処理部110は、無線通信部120により受信されたトリガフレームが自身のSTA100-1の属するグループを示す場合、当該トリガフレームから通信パラメタ情報を取得する。
 そして、STA100-1は、取得された情報に基づいて信号を送信する(ステップS606)。具体的には、制御部130は、取得された通信パラメタ情報の示す送信期間および送信周波数に基づいて、AP200-1宛てのフレームをデータ処理部110に生成させ、生成されるフレームを無線通信部120に送信させる。これにより、STA100-1から送信されるフレームが多重化される。
 なお、STA100-1は、一元接続通信グループに属する場合、一元接続通信を行う。具体的には、制御部130は、多元接続通信の終了後、キャリアンセンスなどの処理を行うことにより伝送路が空いていることが確認されると、データ処理部110にフレーム生成させ、生成されるフレームを無線通信部120に送信させる。
 また、STA100-1は、送信した信号についての送達確認信号を受信する。具体的には、制御部130は、無線通信部120により多元接続通信または一元接続通信を用いて送信されたフレームついてのACKフレームが受信されると、多元接続通信または一元接続通信を用いたフレームの送信を完了させる。
  <3.3.第1の実施形態のまとめ>
 このように、本開示の第1の実施形態によれば、AP200-1は、送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信し、第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する。また、STA100-1は、上記第1の信号を送信し、第1の信号の送信後に上記第2の信号を受信し、第2の信号に基づいて第3の信号の送信を制御する。
 従来では、APは、多元接続通信を用いてSTAから送信される信号についてのAPにおける受信電力密度が所定の範囲に収まるような送信電力を設定可能なSTAを同一グループのメンバとして選択することが考えられた。しかし、送信電力の精度は概して、無線通信装置について個体差があるため、設定可能な送信電力に基づいて多元接続通信グループが形成されたとしても、受信電力密度にばらつきが生じるおそれがある。その結果、APにおける受信特性が低下しかねない。
 これに対し、本実施形態によれば、送信電力精度情報を考慮して多元接続通信グループが形成されることにより、AP200-1がSTA100-1から受信する信号についての受信電力密度と想定される受信電力密度との乖離を抑制することができる。従って、受信信号の歪みなどが抑制されることにより、複数のSTA100-1が同時に通信する場合において受信特性の低下を抑制することが可能となる。
 また、上記少なくとも1つの第1の無線通信装置は、上記第1の情報と第1の情報についての閾値とに基づいて特定される。このため、特定の値との比較によって多元接続通信グループが形成されることにより、形成される多元接続通信グループのメンバの送信電力に係る精度についてのレベルを制御することができる。従って、多元接続通信グループにおける許容される受信特性の低下の程度を制御することが可能となる。なお、閾値は、静的に設定されてもよく、動的に変更されてもよい。
 また、AP200-1は、上記閾値以上である上記第1の情報が格納される上記第1の信号の第1の送信元へ上記第2の信号を送信する。このため、所定のレベル以上の精度を有するSTA100-1に多元接続通信を行わせることにより、多元接続通信グループについての許容される受信特性をより確実に確保することができる。
 また、AP200-1は、上記閾値未満である上記第1の情報が格納される上記第1の信号の第1の送信元へ一元接続の許可を示す信号を送信する。このため、多元接続通信グループのメンバとして選ばれなかった旨をSTA100-1へ明示することができる。従って、STA100-1が第3の信号を待機し続けることを防止することが可能となる。また、AP200-1は、上記第1の送信元へ上記第2の信号を送信しなくてもよい。この場合、STA100-1が一元接続通信グループへの割当てを察することにより、通信量を低減することができる。従って、通信効率を向上させることが可能となる。
 また、上記第2の信号は、上記同時通信が可能な多元接続の許可を示す送信許可信号を含み、STA100-1は、送信許可信号に格納される通信パラメタに基づいて上記第3の信号の送信を制御する。このため、第3の信号の送信許可の通知と共に、第3の信号についての多元接続通信グループが通知されることにより、通信される信号の増加を防止することができる。特に、送信許可信号として既存のトリガフレームが利用されることにより、既存の無線通信装置にAP200-1またはSTA100-1の構成を適用することが容易となる。
 また、上記第2の信号は、上記同時通信が可能な多元接続が許可される上記第1の無線通信装置が属するグループを通知するグループ通知信号を含み、STA100-1は、グループ通知信号により通知されるグループ宛ての、上記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて上記第3の信号の送信を制御する。このため、グループの通知および送信許可の通知のタイミングを分けることができる。従って、グループの通知により第3の信号の送信が開始されることを防止することができる。
 また、上記同時通信が可能な多元接続は、空間分割多元接続を含む。このため、空間分割多元接続による通信効率の向上効果を高めることができる。特に、STA100-1側においてもMIMOが用いられる場合、通信ストリーム数が増加するため、送信電力の精度のばらつきによる受信電力密度の変動の幅が大きくなりやすい。そのため、本実施形態に係るAP200-1およびSTA100-1の機能は、有意義である。なお、上記同時通信が可能な多元接続は、周波数分割多元接続または符号分割多元接続であってもよい。
 また、上記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む。このため、多元接続通信を行うSTA100-1のグルーピングの正確性を高めることができる。従って、グルーピングされたSTA100-1から送信される信号についての受信電力密度のばらつきを抑制することができ、受信特性の低下の効果的な抑制が可能となる。
 <4.第2の実施形態>
 次に、本開示の第2の実施形態について説明する。第2の実施形態では、複数のSTA100-2が、送信電力精度情報に基づいて、複数の多元接続通信を行うグループに分けられる。
  <4.1.装置の機能>
 まず、本実施形態に係る無線通信装置としてのSTA100-2およびAP200-2の各機能について説明する。なお、第1の実施形態における機能と実質的に同一である機能については説明を省略する。
   (グループの形成)
 AP200-2は、送信電力精度情報に基づいて複数の多元接続通信を行うSTA100-2のグループを決定する。具体的には、制御部230は、送信電力精度情報が閾値以上であるSTA100-2を第1の多元接続通信グループのメンバに決定し、送信電力精度情報が閾値未満であるSTA100-2を第2の多元接続通信グループのメンバに決定する。例えば、制御部230は、送信電力の精度に係る誤差の数値が閾値未満であるか、誤差の等級が閾値未満であるか、または誤差に関する評価値が閾値以上であるSTA100-2を第1の多元接続通信グループのメンバに決定する。また、制御部230は、送信電力の精度に係る誤差の数値が閾値以上であるか、誤差の等級が閾値以上であるか、または誤差に関する評価値が閾値未満であるSTA100-2を第2の多元接続通信グループのメンバに決定する。
   (グループの通知)
 AP200-2は、決定された複数の多元接続通信グループのメンバ宛ての当該多元接続通信グループを通知するグループ通知信号を送信する。具体的には、制御部230は、第1の多元接続通信グループのメンバおよび第2の多元接続通信グループのメンバを通知するグループ通知フレームをデータ処理部210に生成させ、生成されるグループ通知フレームが無線通信部220により送信される。例えば、制御部230は、第1の多元接続通信グループのメンバとして決定されたSTA100-2および第2の多元接続通信グループのメンバとして決定されたSTA100-2宛ての多元接続通信グループを通知するグループ通知フレームをデータ処理部210に生成させる。そして、生成されたグループ通知フレームが無線通信部220により送信される。なお、複数の多元接続通信グループの通知は、それぞれ別個に行われてもよい。また、複数の多元接続通信グループは、3つ以上のグループであってもよい。
   (送信許可の通知)
 AP200-2は、複数の多元接続通信グループについてそれぞれ送信許可信号を送信する。具体的には、制御部230は、第1の多元接続通信グループについて第1の送信許可信号の送信を制御し、第2の多元接続通信グループについて第2の送信許可信号の送信を制御する。例えば、制御部230は、第1の多元接続通信グループのメンバ宛ての第1のトリガフレームをデータ処理部210に生成させ、生成される第1のトリガフレームが無線通信部220により送信される。その後、多元接続通信およびACKフレームの通信が完了すると、制御部230は、第2の多元接続通信グループのメンバ宛ての第2のトリガフレームをデータ処理部210に生成させ、生成される第2のトリガフレームが無線通信部220により送信される。
 なお、第1の送信許可信号に格納される第1の通信パラメタ情報は、第2の送信許可信号に格納される第2の通信パラメタ情報と異なってもよい。具体的には、第1のトリガフレームに格納される通信についてのノイズ耐性に係る通信パラメタ情報と第2のトリガフレームに格納される当該通信パラメタ情報とが異なる。当該通信パラメタとしては、変調方式、符号化方式またはMCSがある。例えば、送信電力の精度が第1の多元接続通信グループについての送信電力の精度よりも低い第2の多元接続通信グループのメンバに送信される第2のトリガフレームには、第1のトリガフレームに格納されるMCS情報よりも通信の信頼性(冗長性など)が高いMCS情報が格納される。これは、第2の多元接続通信グループについての送信電力の精度が第1の多元接続通信グループについての精度よりも低いので、第2の多元接続通信グループのメンバから送信される信号についての受信特性が相対的に低下すると考えられるためである。
  <4.2.処理の流れ>
 次に、図7を参照して、本実施形態に係る無線通信システムの処理の流れについて説明する。図7は、本実施形態に係る無線通信システムの処理の例を概念的に示すシーケンス図である。
 STA100-2A1~100-2A5およびSTA100-2B1~100-2B5は、送信電力精度通知信号をAP200-2へ送信する(ステップS311)。送信電力精度通知信号を受信したAP200-2は、送信電力精度情報に基づいて複数の多元接続通信グループを形成する(ステップS312)。次に、AP200-2は、多元接続通信グループ通知信号を第1の多元接続通信グループのメンバであるSTA100-2A1~100-2A5および第2の多元接続通信グループのメンバであるSTA100-2B1~100-2B5へ送信する(ステップS313)。
 次に、AP200-2は、第1の多元接続通信グループのメンバであるSTA100-2A1~100-2A5へ送信許可信号を送信する(ステップS314)。送信許可信号を受信したSTA100-2A1~100-2A5は、信号をAP200-2へ送信する(ステップS315)。なお、STA100-2A1~100-2A5から送信されるフレームは、周波数分割多重化、空間分割多重化または符号分割多重化される。多重化された信号を受信したAP200-2は、受信された信号の送信元であるSTA100-2A1~100-2A5の各々へ送達確認信号を送信する(ステップS316)。
 第1の多元接続通信の終了後、AP200-2は、第2の多元接続通信グループのメンバであるSTA100-2B1~100-2B5へ送信許可信号を送信する(ステップS317)。送信許可信号を受信したSTA100-2B1~100-2B5は、信号をAP200-2へ送信する(ステップS318)。多重化された信号を受信したAP200-2は、受信された信号の送信元であるSTA100-2B1~100-2B5の各々へ送達確認信号を送信する(ステップS319)。
 続いて、本実施形態に係るSTA100-2およびAP200-2の処理について個別に説明する。なお、第1の実施形態における処理と実質的に同一の処理については説明を省略する。
   (APの処理)
 まず、図8を参照して、AP200-2の処理の全体について説明する。図8は、本実施形態に係るAP200-2の処理の全体の例を概念的に示すフローチャートである。
 AP200-2は、送信電力精度通知信号が受信されたと判定されると(ステップS411/YES)、送信電力精度情報に基づいて第1の多元接続通信グループを形成する(ステップS412)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて第1の多元接続通信グループを形成する。
 また、AP200-2は、第2の多元接続通信グループを形成すると判定されると(ステップS413/YES)、送信電力精度情報に基づいて第2の多元接続通信グループを形成する(ステップS414)。具体的には、制御部230は、受信された送信電力精度通知フレームに格納される送信電力精度情報と閾値とに基づいて第2の多元接続通信グループを形成する。
 次に、AP200-2は、第1および第2の多元接続通信グループで異なるノイズ耐性に係る通信パラメタを設定する(ステップS415)。具体的には、制御部230は、第2の多元接続通信グループについて、第1の多元接続通信グループについて設定されるMCSなどの第1の通信パラメタよりも信頼性が高い第2の通信パラメタを設定する。
 次に、AP200-2は、グループ通知信号を送信する(ステップS416)。具体的には、制御部230は、形成された第1および第2の多元接続通信グループを通知する多元接続通信グループ通知フレームをデータ処理部210に生成させ、生成される当該フレームが無線通信部220により送信される。
 その後、AP200-2は、多元接続通信グループの各々について送信許可信号を送信する(ステップS417)。具体的には、制御部230は、第1の多元接続通信グループのメンバ宛ての設定される第1の通信パラメタ情報が格納される第1のトリガフレームをデータ処理部210および無線通信部220に送信させる。その後、制御部230は、第2の多元接続通信グループのメンバ宛ての第2の通信パラメタ情報が格納される第2のトリガフレームをデータ処理部210および無線通信部220に送信させる。
  <4.3.第2の実施形態のまとめ>
 このように、本開示の第2の実施形態によれば、AP200-1は、閾値未満である第1の情報が格納される第1の信号の第2の送信元へ第2の信号を送信し、第2の送信元へ送信される第2の信号には、第1の送信元へ送信される第2の信号に格納される通信パラメタと異なる通信パラメタが格納される。このため、送信電力の精度が閾値よりも低いSTA100-2についても多元接続通信が行われることにより、通信効率を向上させることができる。他方で、送信電力の精度が閾値よりも低いSTA100-2から送信される信号についての受信特性は、送信電力の精度が閾値よりも高いSTA100-2から送信される信号についての受信特性に比べて低くなるおそれがある。そこで、送信電力の精度が異なるグループについて多元接続通信で用いられる通信パラメタを変えることにより、受信特性が相対的に低くなるおそれのあるグループについても信号の受信成功率を維持することができる。
 また、上記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む。このため、受信特性が相対的に低くなるおそれのあるグループについて信号受信の失敗を効果的に抑制することができる。
 <5.第3の実施形態>
 次に、本開示の第3の実施形態について説明する。第3の実施形態では、状況の変化に応じて多元接続通信グループが再形成される。
  <5.1.装置の機能>
 まず、本実施形態に係る無線通信装置としてのSTA100-3およびAP200-3の各機能について説明する。なお、第1または第2の実施形態における機能と実質的に同一である機能については説明を省略する。
   (通信接続についての変化の検出)
 AP200-3は、STA100-3との通信接続についての変化を検出する。具体的には、制御部230は、STA100-3との通信接続の解除または通信接続の開始を検出する。例えば、制御部230は、STA100-3から受信される接続解除信号(第4の信号)または接続開始信号(第4の信号)に基づいて接続解除または接続開始を検出する。
 STA100-3は、通信を介してAP200-3へ接続解除を通知する。具体的には、制御部130は、自身のSTA100-3とAP200-3との通信接続が解除される場合、通信を介して接続解除をAP200-3へ通知する。例えば、制御部130は、通信接続が正常に解除される場合、接続解除信号をデータ処理部110に生成させ、生成される接続解除信号が無線通信部120により送信される。なお、通信接続が意図せず切断された場合、接続解除信号は送信されなくてもよい。また、接続開始信号は、専用の信号であってもよく、ディスアソシエーションフレームまたはディオーセンティケーションフレームなど通信接続解除に係る既存の信号であってもよい。また、接続解除は、一時的であってもよい。例えば、接続解除信号は、パワーセービングによる一時的な接続解除に応じて送信されてよい。
 また、STA100-3は、通信を介してAP200-3へ接続開始を通知する。具体的には、制御部130は、新たにAP200-3との通信接続が開始される場合、通信を介して接続開始をAP200-3へ通知する。例えば、制御部130は、接続開始信号をデータ処理部110に生成させ、生成される接続開始信号が無線通信部120により送信される。なお、接続開始信号は、専用の信号であってもよく、プローブリクエストフレーム、アソシエーションリクエストフレームまたはオーセンティケーションフレームなど通信接続開始に係る既存の信号であってもよい。また、接続開始は、一時的な接続解除からの復帰であってもよい。例えば、接続開始信号は、パワーセービングによる一時的な接続解除からの復帰に応じて送信されてよい。
   (送信電力精度情報についての変化の検出)
 AP200-3は、送信電力精度情報についての変化を検出する。具体的には、制御部230は、送信電力精度情報の変更通知または送信電力情報の通知に基づいて送信電力精度情報の変化を検出する。例えば、制御部230は、STA100-3から受信される送信電力精度情報の変更信号(第4の信号)に基づいて送信電力精度情報の変化を検出する。また、制御部230は、STA100-3から受信される送信電力情報が格納される信号(第4の信号)、当該信号についての受信電力密度および伝搬損失に基づいて送信電力精度情報の変化を検出する。
 STA100-3は、送信電力精度情報についての変化をAP200-3へ通知する。具体的には、制御部130は、送信電力の精度が変化した場合、通信を介して変更後の送信電力精度情報をAP200-3へ通知する。例えば、制御部130は、通信上位層からの指示またはSTA100-3の状態がパワーセーブモードに遷移することにより送信電力の精度が変化した場合、送信電力精度情報を変更する。そして、制御部130は、変更後の送信電力精度情報が格納される変更信号をデータ処理部110に生成させ、生成される変更信号が無線通信部120により送信される。なお、送信電力の精度は、モードに応じて切り替えられてもよく、当該モードは、送信電力の精度専用のモードであってもよく、他の目的に用いられるモードであってもよい。
 また、制御部130は、送信電力の精度が変化した場合、送信電力情報をAP200-3へ通知する。具体的には、制御部130は、送信電力の精度が変化すると、STA100-3において設定されている送信電力情報が格納される信号をデータ処理部110に生成させる。そして、制御部130は、生成された当該信号に格納されている送信電力情報の示す送信電力で当該信号を無線通信部120に送信させる。例えば、送信電力情報が格納される信号は、データフレームであってもよく、マネジメントフレームなどの他の目的の信号であってもよい。
   (グループの再形成)
 AP200-3は、通信接続についての変化の検出に基づいて多元接続通信グループを再形成する。具体的には、制御部230は、接続解除が検出されると、設定されている多元接続通信グループから接続が解除されるSTA100-3を外す。例えば、制御部230は、接続解除信号の送信元であるSTA100-3が多元接続通信グループのメンバである場合、当該STA100-3を多元接続通信グループから外す。なお、制御部230は、多元接続通信グループから接続が解除されるSTA100-3を外すことに伴い、既に通信接続されている他のSTA100-3を多元接続通信グループへ追加してもよい。
 また、制御部230は、接続開始が検出されると、接続が開始されるSTA100-3の送信電力精度情報に基づいて設定されている多元接続通信グループへの追加を判定する。追加する旨が判定されると、制御部230は、接続が開始されるSTA100-3を多元接続通信グループへ追加する。例えば、制御部230は、接続開始信号の送信元であるSTA100-3の送信電力精度情報の示す誤差の値が閾値未満である場合、当該STA100-3を多元接続通信グループへ追加する。なお、制御部230は、多元接続通信グループへのメンバ追加に伴い、多元接続通信グループの既存のメンバのいずれかを外してもよい。
 また、AP200-3は、送信電力精度情報についての変化の検出に基づいて多元接続通信グループを再形成する。具体的には、制御部230は、送信電力精度情報の変化が検出されると、変化後の送信電力精度情報に基づいて多元接続通信グループからの除外を判定する。例えば、制御部230は、送信電力精度情報の変更信号の送信元であるSTA100-3が多元接続通信グループのメンバである場合、変更後の送信電力精度情報に基づいて当該STA100-3を多元接続通信グループから外すかを判定する。送信電力精度情報の示す誤差の値が閾値以上であることなどから当該STA100-3を除外する旨が判定されると、制御部230は、当該STA100-3を多元接続通信グループから外す。なお、変更後の送信電力精度情報は、上述の変更信号に格納されてもよく、他の信号を用いて通知されてもよい。
 また、制御部230は、送信電力精度情報の変化が検出されると、変化後の送信電力精度情報に基づいて多元接続通信グループへの追加を判定する。例えば、制御部230は、送信電力精度情報の変更信号の送信元であるSTA100-3が多元接続通信グループのメンバでない場合、変更後の送信電力精度情報に基づいて当該STA100-3を多元接続通信グループへ追加するかを判定する。送信電力精度情報の示す誤差の値が閾値未満であることなどから当該STA100-3を追加する旨が判定されると、制御部230は、当該STA100-3を多元接続通信グループへ追加する。
  <5.2.処理の流れ>
 次に、本実施形態に係る無線通信システムのグループ再形成処理の流れについて説明する。まず、図9を参照して、通信接続についての変化に基づくグループ再形成処理について説明する。図9は、本実施形態に係る無線通信システムの通信接続についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。なお、以下で説明する処理は、多元接続通信グループが一旦形成された後に行われる。
 STA100-3A5は、接続解除信号を送信する(ステップS321)。接続解除信号を受信したAP200-3は、グループを再形成する(ステップS322)。そして、AP200-3は、再形成されたグループについてのグループ通知信号を接続が解除されたSTA100-3A5を除くグループのメンバへ送信する(ステップS323)。
 また、STA100-3B5は、接続開始信号を送信する(ステップS324)。接続開始信号を受信したAP200-3は、グループを再形成する(ステップS325)。そして、AP200-3は、再形成されたグループについてのグループ通知信号を接続が開始されたSTA100-3B5を含むグループのメンバへ送信する(ステップS326)。
 また、図10を参照して、送信電力精度情報についての変化に基づくグループ再形成処理について説明する。図10は、本実施形態に係る無線通信システムの送信電力精度情報についての変化に基づくグループ再形成処理の例を概念的に示すシーケンス図である。
 STA100-3B1は、送信電力精度情報の変更信号を送信する(ステップS331)。当該変更信号を受信したAP200-3は、変更後の送信電力精度情報に基づいてグループを再形成する(ステップS332)。そして、AP200-3は、再形成されたグループについてのグループ通知信号をグループのメンバであるSTA100-3A1~100-3B5へ送信する(ステップS333)。
 また、STA100-3B5は、送信電力精度情報が変化すると、送信電力情報が格納されるデータ信号を送信する(ステップS334)。当該データ信号を受信したAP200-3は、データ信号に基づいて送信電力精度を算出する(ステップS335)。次に、AP200-3は、送信電力精度の差異に基づいてグループを再形成する(ステップS336)。そして、AP200-3は、再形成されたグループについてのグループ通知信号をグループのメンバであるSTA100-3A1~100-3B5へ送信する(ステップS337)。
 続いて、本実施形態に係るSTA100-3およびAP200-3の処理について個別に説明する。なお、第1または第2の実施形態における処理と実質的に同一の処理については説明を省略する。
   (APの処理)
 まず、図11を参照して、AP200-3の処理の全体について説明する。図11は、本実施形態に係るAP200-3の処理の全体の例を概念的に示すフローチャートである。
 AP200-3は、接続解除が発生したと判定されると(ステップS421/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、接続解除信号が受信されると、接続解除信号の送信元であるSTA100-3を多元接続通信グループから外す。
 また、AP200-3は、接続開始が発生したと判定されると(ステップS422/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、接続開始信号が受信されると、接続開始信号の送信元であるSTA100-3の送信電力精度情報に基づいて当該STA100-3について多元接続通信グループへの追加を行う。なお、送信電力精度情報は、接続開始信号に格納されてもよく、別の信号を用いて通知されてもよい。また、当該STA100-3が過去にAP200-3と接続したことがある場合、過去に通知された送信電力精度情報が用いられてもよい。
 また、AP200-3は、送信電力精度情報の変更が通知されたと判定されると(ステップS423/YES)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、送信電力精度情報の変更信号が受信されると、当該変更信号に格納される変更後の送信電力精度情報を登録する。そして、制御部230は、変更信号の送信元について、変更後の送信電力精度情報に基づいて多元接続通信グループへのメンバの追加または除外を行う。
 また、AP200-3は、送信電力精度情報の変更を検出したと判定されると(ステップS424)、多元接続通信グループを再形成する(ステップS425)。具体的には、制御部230は、送信電力情報が格納されるデータ信号が受信されると、データ信号について、受信電力密度および伝搬損失から送信電力を推定する。次に、制御部230は、推定される送信電力とデータ信号に格納される送信電力情報の示す送信電力との差を算出する。そして、制御部230は、登録されている送信電力精度情報の示す誤差と算出された差との間に相違がある場合、当該算出された差を変更後の送信電力精度情報として登録すると共に、当該算出された差に基づいて多元接続通信グループへのメンバの追加または除外を行う。なお、登録されている送信電力精度情報は、過去に受信された信号に基づいて算出された情報であってもよい。
 そして、AP200-3は、グループを通知すると判定されると(ステップS426/YES)、グループ通知信号を送信する(ステップS427)。なお、グループ通知信号に、通信パラメタ情報が格納されてもよい。また、当該通信パラメタ情報は、再形成後の多元接続通信グループに応じて更新されてもよい。
   (STAの処理)
 続いて、図12を参照して、STA100-3の処理の全体について説明する。図12は、本実施形態に係るSTA100-3の処理の全体の例を概念的に示すフローチャートである。
 STA100-3は、AP200-3との通信接続を解除すると判定されると(ステップS621/YES)、接続解除信号をAP200-3へ送信する(ステップS622)。
 また、STA100-3は、AP200-3との通信接続を開始すると判定されると(ステップS623/YES)、接続開始信号をAP200-3へ送信する(ステップS623)。次に、STA100-3は、送信電力精度情報を通知すると判定されると(ステップS625/YES)、送信電力精度通知信号をAP200-3へ送信する(ステップS626)。なお、送信電力精度情報が過去に通知済みである場合には、送信電力精度通知信号は送信されなくてもよい。
 また、STA100-3は、送信電力精度情報が変更されたと判定され(ステップS629/YES)、送信電力精度情報の変更を通知すると判定されると(ステップS630/YES)、送信電力精度情報の変更信号を送信する(ステップS631)。他方で、送信電力精度情報の変更を通知しないと判定されると(ステップS630/NO)、STA100-3は、送信電力情報が格納されるデータ信号を送信する(ステップS632)。
 その後、STA100-3は、グループ通知信号が受信されると(ステップS627/YES)、グループ通知信号から情報を取得する(ステップS628)。
  <5.3.第3の実施形態のまとめ>
 このように、本開示の第3の実施形態によれば、AP200-3は、STA100-3との通信接続についての変化に基づいて第2の信号の宛先を制御する。また、STA100-3は、AP200-3との通信接続の変化を通知する第4の信号を送信する。このため、形成された多元接続通信グループのメンバの増減が生じた場合に、多元接続通信グループが再形成されることにより、多元接続通信グループのメンバ数を適正化することができる。従って、通信の効率を向上させることが可能となる。
 また、AP200-3は、送信電力精度情報についての変化に基づいて第2の信号の宛先を制御する。また、STA100-3は、送信電力精度情報の変更を通知する第4の信号を送信する。このため、送信電力の精度が変化したことに応じて多元接続通信グループが再形成されることにより、多元接続通信グループのメンバから送信される信号についての受信電力密度を適正化することができる。従って、送信電力の精度の変化による受信特性の低下を抑制することが可能となる。
 <6.第4の実施形態>
 次に、本開示の第4の実施形態について説明する。第4の実施形態では、送信電力精度情報が複数のAP200-4の間で共有され更新される。
  <6.1.装置の機能>
 まず、本実施形態に係る無線通信装置としてのSTA100-4およびAP200-4の各機能について説明する。なお、第1~第3の実施形態における機能と実質的に同一である機能については説明を省略する。
   (送信電力精度情報の差分の蓄積)
 AP200-4は、通知される送信電力と算出される送信電力との差分を蓄積する。具体的には、制御部230は、STA100-4から受信されるデータ信号に格納される送信電力情報の示す送信電力と当該データ信号についての受信電力密度および伝搬損失から推定される送信電力との差分を算出する。そして、制御部230は、算出された差分に係る差分情報を記憶部に記憶させる。
   (送信電力精度情報の差分の共有)
 AP200-4は、蓄積された差分を他のAP200-4と共有する。具体的には、制御部230は、所定の量の差分情報が蓄積されるか、または定期的に、蓄積された差分情報が格納される差分通知信号をデータ処理部210に生成させる。そして、生成された差分通知信号が無線通信部220により送信される。また、制御部230は、他のAP200-4から差分通知信号が受信されると、当該差分通知信号に格納される差分情報を記憶部に記憶させる。なお、差分情報と共に、送信電力精度情報が共有されてもよい。
   (送信電力精度情報の更新)
 AP200-4は、蓄積された差分情報に基づいて送信電力精度情報を更新する。具体的には、制御部230は、所定の量の差分情報が蓄積されると、制御部230は、差分情報および送信電力精度情報について統計的処理を実行することにより、送信電力精度に係る統計値を取得する。そして、制御部230は、取得された統計値を送信電力精度情報としてグループ形成処理などに用いる。
  <6.2.処理の流れ>
 次に、図13を参照して、本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の流れについて説明する。図13は、本実施形態に係る無線通信システムの差分情報の共有処理および送信電力精度情報の更新処理の例を概念的に示すシーケンス図である。
 STA100-4A1~100-4B5は、送信電力精度通知信号をAP200-4Aへ送信する(ステップS341)。同様に、STA100-4A1~100-4B5は、送信電力精度通知信号をAP200-4Bへ送信する(ステップS342)。次に、STA100-4A1~100-4B5は、送信電力情報が格納されるデータ信号をAP200-4Aへ送信する(ステップS343)。同様に、STA100-4A1~100-4B5は、送信電力情報が格納されるデータ信号をAP200-4Bへ送信する(ステップS344)。
 AP200-4Aは、蓄積された差分情報が格納される差分通知信号をAP200-4Bへ送信する(ステップS345)。同様に、AP200-4Bは、蓄積された差分情報が格納される差分通知信号をAP200-4Aへ送信する(ステップS346)。そして、差分通知信号を受信したAP200-4Aは、共有された差分情報と蓄積された差分情報に基づいて更新される送信電力精度情報を用いてグループを形成する(ステップS347)。同様に、差分通知信号を受信したAP200-4Bは、共有された差分情報と蓄積された差分情報に基づいて更新される送信電力精度情報を用いてグループを形成する(ステップS348)。
 続いて、本実施形態に係るSTA100-4およびAP200-4の処理について個別に説明する。なお、第1~第3の実施形態における処理と実質的に同一の処理については説明を省略する。
   (APの処理)
 まず、図14を参照して、AP200-4の処理の全体について説明する。図14は、本実施形態に係るAP200-4の処理の全体の例を概念的に示すフローチャートである。
 AP200-4は、送信電力精度通知信号が受信されたと判定され(ステップS441/YES)、送信電力情報が格納されるデータ信号が受信されたと判定されると(ステップS442/YES)、受信電力情報に基づいて推定される送信電力情報と受信された送信電力情報との差分情報を算出する(ステップS443)。具体的には、制御部230は、受信されたデータ信号についての受信電力密度および伝搬損失に基づいて推定される送信電力と、当該データ信号に格納される送信電力情報が示す送信電力と、の差分を算出する。そして、制御部230は、算出された差分に係る差分情報を記憶部に記憶させる。
 次に、AP200-4は、算出された差分情報を交換すると判定されると(ステップS444/YES)、差分通知信号を交換する(ステップS445)。具体的には、制御部230は、所定の量の差分情報が蓄積されると、当該差分情報および受信された送信電力精度情報が格納される差分通知信号をデータ処理部210に生成させる。そして、生成された差分通知信号が無線通信部220により送信される。また、制御部230は、他のAP200-4から差分通知信号が受信されると、受信された差分通知信号に格納される差分情報および送信電力精度情報を取得する。
 次に、AP200-4は、送信電力精度情報、算出された差分情報および交換により得られた差分情報に基づいてグループを形成する(ステップS446)。具体的には、制御部230は、記憶された差分情報および送信電力精度情報、ならびに受信された差分情報および送信電力精度情報について統計的処理を実行することにより統計値を取得する。そして、制御部230は、取得された統計値を送信電力精度情報として用いることにより、多元接続通信グループを形成する。なお、多元接続通信グループの再形成に当該統計値が用いられてもよい。
 そして、AP200-4は、グループを通知すると判定されると(ステップS447/YES)、グループ通知信号を送信する(ステップS448)。
   (STAの処理)
 続いて、図15を参照して、STA100-4の処理の全体について説明する。図15は、本実施形態に係るSTA100-4の処理の全体の例を概念的に示すフローチャートである。
 STA100-4は、送信電力精度通知信号を送信する(ステップS641)。また、STA100-4は、使用する送信電力を示す送信電力情報が格納されるデータ信号を送信する(ステップS642)。なお、送信電力精度情報がデータ信号に格納されてもよく、その場合、送信電力精度通知信号が送信されなくてもよい。
 次に、STA100-4は、グループ通知信号が受信されると(ステップS643/YES)、グループ通知信号から情報を取得する(ステップS644)。
  <6.3.第4の実施形態のまとめ>
 このように、本開示の第4の実施形態によれば、AP200-4は、送信電力情報が格納される送信電力通知信号を受信し、送信電力通知信号に格納される送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する。このため、実際に送信される信号から把握される送信電力の誤差を他のAP200-4と共有することができる。従って、AP200-4による信号の受信における精度の個体差を抑制することができ、より正確な送信電力の精度を把握することが可能となる。
 また、AP200-4は、差分通知信号を受信し、受信された差分通知信号に格納される差分情報と推定された差分情報とに基づいて第2の信号の宛先を制御する。このため、送信電力精度情報よりも正確な送信電力の精度に基づいて多元接続通信グループが形成されることにより、受信特性の低下をより効果的に抑制することができる。
 <7.応用例>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、STA100は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末若しくはデジタルカメラなどのモバイル端末、テレビジョン受像機、プリンタ、デジタルスキャナ若しくはネットワークストレージなどの固定端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、STA100は、スマートメータ、自動販売機、遠隔監視装置又はPOS(Point Of Sale)端末などの、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、STA100は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 一方、例えば、AP200は、ルータ機能を有し又はルータ機能を有しない無線LANアクセスポイント(無線基地局ともいう)として実現されてもよい。また、AP200は、モバイル無線LANルータとして実現されてもよい。さらに、AP200は、これら装置に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
  [7-1.第1の応用例]
 図16は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913、アンテナスイッチ914、アンテナ915、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU(Central Processing Unit)又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース913は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース913は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース913は、アドホックモード又はWi-Fi Direct(登録商標)等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。なお、Wi-Fi Directでは、アドホックモードとは異なり2つの端末の一方がアクセスポイントとして動作するが、通信はそれら端末間で直接的に行われる。無線通信インタフェース913は、典型的には、ベースバンドプロセッサ、RF(Radio Frequency)回路及びパワーアンプなどを含み得る。無線通信インタフェース913は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース913は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ914は、無線通信インタフェース913に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ915の接続先を切り替える。アンテナ915は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース913による無線信号の送信及び受信のために使用される。
 なお、図16の例に限定されず、スマートフォン900は、複数のアンテナ(例えば、無線LAN用のアンテナ及び近接無線通信方式用のアンテナ、など)を備えてもよい。その場合に、アンテナスイッチ914は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図16に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図16に示したスマートフォン900において、図2を用いて説明したデータ処理部110、無線通信部120および制御部130は、無線通信インタフェース913において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。例えば、制御部130がデータ処理部110および無線通信部120を用いて、送信電力精度情報が格納される第1の信号を送信し、その後に受信される多元接続許可に係る第2の信号を受信する。そして、制御部130は、第2の信号に基づいて第3の信号の送信を制御する。それにより、多重化される第3の信号を受信する、スマートフォン900と通信するAP200における受信特性の低下を抑制することができる。
 なお、スマートフォン900は、プロセッサ901がアプリケーションレベルでアクセスポイント機能を実行することにより、無線アクセスポイント(ソフトウェアAP)として動作してもよい。また、無線通信インタフェース913が無線アクセスポイント機能を有していてもよい。
  [7-2.第2の応用例]
 図17は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、アンテナスイッチ934、アンテナ935及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、無線通信を実行する。無線通信インタフェース933は、インフラストラクチャーモードにおいては、他の装置と無線LANアクセスポイントを介して通信し得る。また、無線通信インタフェース933は、アドホックモード又はWi-Fi Direct等のダイレクト通信モードにおいては、他の装置と直接的に通信し得る。無線通信インタフェース933は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース933は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、無線LAN方式に加えて、近距離無線通信方式、近接無線通信方式又はセルラ通信方式などの他の種類の無線通信方式をサポートしてもよい。アンテナスイッチ934は、無線通信インタフェース933に含まれる複数の回路の間でアンテナ935の接続先を切り替える。アンテナ935は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース933による無線信号の送信及び受信のために使用される。
 なお、図17の例に限定されず、カーナビゲーション装置920は、複数のアンテナを備えてもよい。その場合に、アンテナスイッチ934は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図17に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図17に示したカーナビゲーション装置920において、図2を用いて説明したデータ処理部110、無線通信部120および制御部130は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。例えば、制御部130がデータ処理部110および無線通信部120を用いて、送信電力精度情報が格納される第1の信号を送信し、その後に受信される多元接続許可に係る第2の信号を受信する。そして、制御部130は、第2の信号に基づいて第3の信号の送信を制御する。それにより、多重化される第3の信号を受信する、カーナビゲーション装置920と通信するAP200における受信特性の低下を抑制することができる。
 また、無線通信インタフェース933は、上述したAP200として動作し、車両に乗るユーザが有する端末に無線接続を提供してもよい。その際、例えば、制御部230は、無線通信部220およびデータ処理部210を介して受信される第1の信号に格納される送信電力精度情報に基づいて多元接続通信グループを形成する。そして、制御部230は、データ処理部210および無線通信部220を用いて、形成される多元接続通信グループのメンバへ多元接続許可に係る第2の信号を送信させる。それにより、ユーザが有する端末から送信され多重化される信号についての受信特性の低下を抑制することができる。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
  [7-3.第3の応用例]
 図18は、本開示に係る技術が適用され得る無線アクセスポイント950の概略的な構成の一例を示すブロック図である。無線アクセスポイント950は、コントローラ951、メモリ952、入力デバイス954、表示デバイス955、ネットワークインタフェース957、無線通信インタフェース963、アンテナスイッチ964及びアンテナ965を備える。
 コントローラ951は、例えばCPU又はDSP(Digital Signal Processor)であってよく、無線アクセスポイント950のIP(Internet Protocol)レイヤ及びより上位のレイヤの様々な機能(例えば、アクセス制限、ルーティング、暗号化、ファイアウォール及びログ管理など)を動作させる。メモリ952は、RAM及びROMを含み、コントローラ951により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、ルーティングテーブル、暗号鍵、セキュリティ設定及びログなど)を記憶する。
 入力デバイス954は、例えば、ボタン又はスイッチなどを含み、ユーザからの操作を受け付ける。表示デバイス955は、LEDランプなどを含み、無線アクセスポイント950の動作ステータスを表示する。
 ネットワークインタフェース957は、無線アクセスポイント950が有線通信ネットワーク958に接続するための有線通信インタフェースである。ネットワークインタフェース957は、複数の接続端子を有してもよい。有線通信ネットワーク958は、イーサネット(登録商標)などのLANであってもよく、又はWAN(Wide Area Network)であってもよい。
 無線通信インタフェース963は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、近傍の端末へアクセスポイントとして無線接続を提供する。無線通信インタフェース963は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース963は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。アンテナスイッチ964は、無線通信インタフェース963に含まれる複数の回路の間でアンテナ965の接続先を切り替える。アンテナ965は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース963による無線信号の送信及び受信のために使用される。
 図18に示した無線アクセスポイント950において、図2を用いて説明したデータ処理部210、無線通信部220および制御部230は、無線通信インタフェース963において実装されてもよい。また、これら機能の少なくとも一部は、コントローラ951において実装されてもよい。例えば、制御部230は、無線通信部220およびデータ処理部210を介して受信される第1の信号に格納される送信電力精度情報に基づいて多元接続通信グループを形成する。そして、制御部230は、データ処理部210および無線通信部220を用いて、形成される多元接続通信グループのメンバへ多元接続許可に係る第2の信号を送信させる。それにより、無線アクセスポイント950と接続される端末から送信され多重化される信号についての受信特性の低下を抑制することができる。
 <8.むすび>
 以上、本開示の第1の実施形態によれば、送信電力精度情報を考慮して多元接続通信グループが形成されることにより、AP200-1がSTA100-1から受信する信号についての受信電力密度と想定される受信電力密度との乖離を抑制することができる。従って、受信信号の歪みなどが抑制されることにより、複数のSTA100-1が同時に通信する場合において受信特性の低下を抑制することが可能となる。
 また、本開示の第2の実施形態によれば、送信電力の精度が閾値よりも低いSTA100-2についても多元接続通信が行われることにより、通信効率を向上させることができる。他方で、送信電力の精度が閾値よりも低いSTA100-2から送信される信号についての受信特性は、送信電力の精度が閾値よりも高いSTA100-2から送信される信号についての受信特性に比べて低くなるおそれがある。そこで、送信電力の精度が異なるグループについて多元接続通信で用いられる通信パラメタを変えることにより、受信特性が相対的に低くなるおそれのあるグループについても信号の受信成功率を維持することができる。
 また、本開示の第3の実施形態によれば、形成された多元接続通信グループのメンバの増減が生じた場合に、多元接続通信グループが再形成されることにより、多元接続通信グループのメンバ数を適正化することができる。従って、通信の効率を向上させることが可能となる。
 また、本開示の第4の実施形態によれば、実際に送信される信号から把握される送信電力の誤差を他のAP200-4と共有することができる。従って、AP200-4による信号の受信における精度の個体差を抑制することができ、より正確な送信電力の精度を把握することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、AP200とSTA100とが多元接続通信を行うとしたが、本技術はかかる例に限定されない。例えば、複数のSTA100とのダイレクトリンク持つSTA100と当該複数のSTA100とが多元接続通信を行ってもよい。なお、この場合、上述のDL通信が「1機から複数機への同時通信」と、上述のUL通信が「複数機から1機への同時通信」と読み替えられ得る。
 また、上記実施形態では、STA100が送信電力の精度が相対的に高いグループと低いグループに分けられる例を説明したが、後者のグループのメンバとして決定されるSTA100の一部が前者のグループに入れられてもよい。この場合、前者のグループと後者のグループとの間の送信電力の精度の差、ひいては受信特性の差が開きすぎることを抑制できる。
 また、上記実施形態では、AP200間で送信電力の差分情報が共有される例を説明したが、当該差分情報は、AP200とSTA100との間で共有されてもよい。その場合、STA100においても差分情報を算出する処理が行われる。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 また、上記の実施形態のフローチャートに示されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的にまたは個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
 また、STA100およびAP200に内蔵されるハードウェアに上述したSTA100およびAP200の各機能構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムが記憶された記憶媒体も提供される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、
 前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、
 を備える無線通信装置。
(2)
 前記少なくとも1つの第1の無線通信装置は、前記第1の情報と前記第1の情報についての閾値とに基づいて特定される、
 前記(1)に記載の無線通信装置。
(3)
 前記送信部は、前記閾値以上である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信する、
 前記(2)に記載の無線通信装置。
(4)
 前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第2の送信元へ前記第2の信号を送信し、
 前記第2の送信元へ送信される前記第2の信号には、前記第1の送信元へ送信される前記第2の信号に格納される通信パラメタと異なる通信パラメタが格納される、
 前記(3)に記載の無線通信装置。
(5)
 前記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む、
 前記(4)に記載の無線通信装置。
(6)
 前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信せず、または一元接続の許可を示す信号を送信する、
 前記(2)または(3)に記載の無線通信装置。
(7)
 前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含む、
 前記(1)~(6)のいずれか1項に記載の無線通信装置。
(8)
 前記第2の信号は、前記同時通信が可能な多元接続が許可される前記第1の無線通信装置が属するグループを通知するグループ通知信号を含む、
 前記(1)~(7)のいずれか1項に記載の無線通信装置。
(9)
 前記同時通信が可能な多元接続は、周波数分割多元接続、空間分割多元接続または符号分割多元接続を含む、
 前記(1)~(8)のいずれか1項に記載の無線通信装置。
(10)
 前記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む、
 前記(1)~(9)のいずれか1項に記載の無線通信装置。
(11)
 前記送信部は、前記第1の無線通信装置との通信接続についての変化に基づいて前記第2の信号の宛先を制御する、
 前記(1)~(10)のいずれか1項に記載の無線通信装置。
(12)
 前記送信部は、前記第1の情報の変化に基づいて前記第2の信号の宛先を制御する、
 前記(1)~(11)のいずれか1項に記載の無線通信装置。
(13)
 前記受信部は、送信電力情報が格納される送信電力通知信号を受信し、
 前記送信部は、前記送信電力通知信号に格納される前記送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する、
 前記(1)~(12)のいずれか1項に記載の無線通信装置。
(14)
 前記受信部は、さらに前記差分通知信号を受信し、
 前記送信部は、受信された前記差分通知信号に格納される前記差分情報と推定された前記差分情報とに基づいて前記第2の信号の宛先を制御する、
 前記(13)に記載の無線通信装置。
(15)
 送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、
 前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、
 前記第2の信号に基づいて第3の信号の送信を制御する制御部と、
 を備える無線通信装置。
(16)
 前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含み、
 前記制御部は、前記送信許可信号に格納される通信パラメタに基づいて前記第3の信号の送信を制御する、
 前記(15)に記載の無線通信装置。
(17)
 前記第2の信号は、前記同時通信が可能な多元接続が許可される第1の無線通信装置が属するグループを通知するグループ通知信号を含み、
 前記制御部は、前記グループ通知信号により通知されるグループ宛ての、前記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて前記第3の信号の送信を制御する、
 前記(15)または(16)に記載の無線通信装置。
(18)
 前記送信部は、前記第2の信号の送信元との通信接続の変化または第1の情報の変更を通知する第4の信号を送信する、
 前記(15)~(17)のいずれか1項に記載の無線通信装置。
(19)
 プロセッサを用いて、
 送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信することと、
 前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、
 を含む無線通信方法。
(20)
 プロセッサを用いて、
 送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信することと、
 前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、
 前記第2の信号に基づいて第3の信号の送信を制御することと、
 を含む無線通信方法。
 100  STA
 200  AP
 110、210  データ処理部
 120、220  無線通信部
 130、230  制御部

Claims (20)

  1.  送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信する受信部と、
     前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信する送信部と、
     を備える無線通信装置。
  2.  前記少なくとも1つの第1の無線通信装置は、前記第1の情報と前記第1の情報についての閾値とに基づいて特定される、
     請求項1に記載の無線通信装置。
  3.  前記送信部は、前記閾値以上である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信する、
     請求項2に記載の無線通信装置。
  4.  前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第2の送信元へ前記第2の信号を送信し、
     前記第2の送信元へ送信される前記第2の信号には、前記第1の送信元へ送信される前記第2の信号に格納される通信パラメタと異なる通信パラメタが格納される、
     請求項3に記載の無線通信装置。
  5.  前記通信パラメタは、通信についてのノイズ耐性に係る通信パラメタを含む、
     請求項4に記載の無線通信装置。
  6.  前記送信部は、前記閾値未満である前記第1の情報が格納される前記第1の信号の第1の送信元へ前記第2の信号を送信せず、または一元接続の許可を示す信号を送信する、
     請求項2に記載の無線通信装置。
  7.  前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含む、
     請求項1に記載の無線通信装置。
  8.  前記第2の信号は、前記同時通信が可能な多元接続が許可される前記第1の無線通信装置が属するグループを通知するグループ通知信号を含む、
     請求項1に記載の無線通信装置。
  9.  前記同時通信が可能な多元接続は、周波数分割多元接続、空間分割多元接続または符号分割多元接続を含む、
     請求項1に記載の無線通信装置。
  10.  前記第1の情報は、送信電力の設定値と実測値との誤差に係る情報を含む、
     請求項1に記載の無線通信装置。
  11.  前記送信部は、前記第1の無線通信装置との通信接続についての変化に基づいて前記第2の信号の宛先を制御する、
     請求項1に記載の無線通信装置。
  12.  前記送信部は、前記第1の情報の変化に基づいて前記第2の信号の宛先を制御する、
     請求項1に記載の無線通信装置。
  13.  前記受信部は、送信電力情報が格納される送信電力通知信号を受信し、
     前記送信部は、前記送信電力通知信号に格納される前記送信電力情報と受信電力から推定される送信電力情報との差に係る差分情報が格納される差分通知信号を送信する、
     請求項1に記載の無線通信装置。
  14.  前記受信部は、さらに前記差分通知信号を受信し、
     前記送信部は、受信された前記差分通知信号に格納される前記差分情報と推定された前記差分情報とに基づいて前記第2の信号の宛先を制御する、
     請求項13に記載の無線通信装置。
  15.  送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信する送信部と、
     前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信する受信部と、
     前記第2の信号に基づいて第3の信号の送信を制御する制御部と、
     を備える無線通信装置。
  16.  前記第2の信号は、前記同時通信が可能な多元接続の許可を示す送信許可信号を含み、
     前記制御部は、前記送信許可信号に格納される通信パラメタに基づいて前記第3の信号の送信を制御する、
     請求項15に記載の無線通信装置。
  17.  前記第2の信号は、前記同時通信が可能な多元接続が許可される第1の無線通信装置が属するグループを通知するグループ通知信号を含み、
     前記制御部は、前記グループ通知信号により通知されるグループ宛ての、前記同時通信が可能な多元接続の許可を示す送信許可信号の受信に応じて前記第3の信号の送信を制御する、
     請求項15に記載の無線通信装置。
  18.  前記送信部は、前記第2の信号の送信元との通信接続の変化または第1の情報の変更を通知する第4の信号を送信する、
     請求項15に記載の無線通信装置。
  19.  プロセッサを用いて、
     送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を受信することと、
     前記第1の情報に基づいて特定される少なくとも1つの第1の無線通信装置へ同時通信が可能な多元接続の許可に係る第2の信号を送信することと、
     を含む無線通信方法。
  20.  プロセッサを用いて、
     送信電力の精度または正確性が把握される第1の情報が格納される第1の信号を送信することと、
     前記第1の信号の送信後に同時通信が可能な多元接続の許可に係る第2の信号を受信することと、
     前記第2の信号に基づいて第3の信号の送信を制御することと、
     を含む無線通信方法。
PCT/JP2017/019038 2016-07-13 2017-05-22 無線通信装置および無線通信方法 WO2018012111A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018527418A JP6939788B2 (ja) 2016-07-13 2017-05-22 無線通信装置および無線通信方法
EP21163694.9A EP3890201B1 (en) 2016-07-13 2017-05-22 Wireless communication device and wireless communication method
CN201780041766.6A CN109417408B (zh) 2016-07-13 2017-05-22 无线通信设备和无线通信方法
BR112019000140-9A BR112019000140A2 (pt) 2016-07-13 2017-05-22 dispositivo e método de comunicação sem fio.
US16/302,675 US11121747B2 (en) 2016-07-13 2017-05-22 Wireless communication device and wireless communication method
EP17827244.9A EP3487084B1 (en) 2016-07-13 2017-05-22 Wireless communication device and wireless communication method
AU2017294718A AU2017294718B2 (en) 2016-07-13 2017-05-22 Wireless communication device and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-138936 2016-07-13
JP2016138936 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018012111A1 true WO2018012111A1 (ja) 2018-01-18

Family

ID=60952472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019038 WO2018012111A1 (ja) 2016-07-13 2017-05-22 無線通信装置および無線通信方法

Country Status (7)

Country Link
US (1) US11121747B2 (ja)
EP (2) EP3890201B1 (ja)
JP (1) JP6939788B2 (ja)
CN (1) CN109417408B (ja)
AU (1) AU2017294718B2 (ja)
BR (1) BR112019000140A2 (ja)
WO (1) WO2018012111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072310A (ja) * 2018-10-29 2020-05-07 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469620B2 (en) * 2018-03-05 2022-10-11 Sony Corporation Wireless communication apparatus and electric power distribution control method
EP4070469A1 (en) * 2019-12-04 2022-10-12 Telefonaktiebolaget LM Ericsson (publ) Mu-mimo scheduling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026769A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Wireless communication system and wireless communication method
JP5592839B2 (ja) * 2011-06-13 2014-09-17 日本電信電話株式会社 無線通信システム及び無線通信方法
US20170070961A1 (en) * 2015-09-03 2017-03-09 Qualcomm Incorporated Power control in wireless networks

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270015B2 (ja) * 1997-11-19 2002-04-02 沖電気工業株式会社 送信電力制御装置
JP3712160B2 (ja) * 1998-04-17 2005-11-02 松下電器産業株式会社 無線装置、無線装置における送信電力制御方法および記録媒体
JP3381689B2 (ja) * 1999-11-30 2003-03-04 日本電気株式会社 非線形歪み補償回路及びそれを用いた送信装置並びに移動通信機
JP2001186082A (ja) * 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd Cdma移動通信システム及び方法
JP4679686B2 (ja) * 2000-02-07 2011-04-27 パナソニック株式会社 無線通信装置及び送信電力制御方法
JP3463656B2 (ja) * 2000-07-12 2003-11-05 日本電気株式会社 送信電力増幅装置及びその方法
US7164919B2 (en) * 2002-07-01 2007-01-16 Qualcomm Incorporated Scheduling of data transmission for terminals with variable scheduling delays
US8571567B2 (en) 2004-06-10 2013-10-29 Pansonic Corporation Communication terminal device, base station device and radio communication system in which a random access channel is accessed by employing an initial access code randomly selected from a selected group of initial access codes
JP5259409B2 (ja) * 2006-08-18 2013-08-07 パナソニック株式会社 基地局装置および制御チャネル配置方法
KR100997573B1 (ko) 2007-08-31 2010-11-30 후지쯔 가부시끼가이샤 피드백 장치, 피드백 방법, 스케줄링 장치 및 스케줄링 방법
KR101740366B1 (ko) 2010-06-28 2017-05-29 삼성전자주식회사 이동 통신 시스템에서 역방향 최대 전송 전력을 보고하는 방법 및 장치
CN103229421A (zh) * 2010-11-26 2013-07-31 日本电气株式会社 发送功率控制电路以及发送设备、发送功率控制方法、程序
JP5736298B2 (ja) 2011-10-21 2015-06-17 株式会社日立製作所 無線基地局装置及び干渉制御方法
JP6050028B2 (ja) * 2012-05-25 2016-12-21 シャープ株式会社 端末、基地局、通信方法及び集積回路
CN203614091U (zh) * 2013-05-20 2014-05-28 北京华脉世纪石油科技有限公司 高集成度测井地面系统
EP3300213B1 (en) * 2015-05-19 2019-01-23 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supplying appliance and non-contact power receiving appliance, and non-contact power transmitting system provided therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026769A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Wireless communication system and wireless communication method
JP5592839B2 (ja) * 2011-06-13 2014-09-17 日本電信電話株式会社 無線通信システム及び無線通信方法
US20170070961A1 (en) * 2015-09-03 2017-03-09 Qualcomm Incorporated Power control in wireless networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3487084A4 *
YUNG-SZU TU: "Grouping Process for MU-MIMO", IEEE 802.11-10/0584R0, 16 May 2010 (2010-05-16), pages 1 - 18, XP055558723, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/10/11-10-0584-00-00ac-mu-mimo-grouping-process.pptx> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072310A (ja) * 2018-10-29 2020-05-07 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム
JP7208763B2 (ja) 2018-10-29 2023-01-19 キヤノン株式会社 通信装置、通信装置の制御方法、およびプログラム

Also Published As

Publication number Publication date
BR112019000140A2 (pt) 2019-04-16
US11121747B2 (en) 2021-09-14
EP3487084A1 (en) 2019-05-22
CN109417408A (zh) 2019-03-01
EP3890201A1 (en) 2021-10-06
EP3487084A4 (en) 2019-08-21
EP3890201B1 (en) 2022-11-30
CN109417408B (zh) 2021-10-26
JP6939788B2 (ja) 2021-09-22
US20190123790A1 (en) 2019-04-25
EP3487084B1 (en) 2021-03-31
JPWO2018012111A1 (ja) 2019-04-25
AU2017294718B2 (en) 2019-12-12
AU2017294718A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US11350371B2 (en) Communication control apparatus, communication apparatus, communication control method, communication method, and program which use uplink multiplex communication
WO2018012111A1 (ja) 無線通信装置および無線通信方法
CN115473620A (zh) 通信装置和通信方法
WO2016117199A1 (ja) 無線通信装置、情報処理方法およびプログラム
AU2016319274B2 (en) Wireless communication device, wireless communication method and wireless communication system
WO2018012114A1 (ja) 無線通信装置および無線通信方法
JP6771386B2 (ja) 通信装置および通信方法
US20180027508A1 (en) Communication device, communication method and program
JP6954278B2 (ja) 無線通信装置
WO2017110173A1 (ja) 通信装置および通信方法
WO2018016167A1 (ja) 無線通信装置および無線通信方法
US11012854B2 (en) Communication device and communication method
CN107079339B (zh) 通信装置和通信方法
CN108141859B (zh) 信息处理设备和通信系统
CN113315602B (zh) 通信装置和通信方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527418

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000140

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017294718

Country of ref document: AU

Date of ref document: 20170522

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017827244

Country of ref document: EP

Effective date: 20190213

ENP Entry into the national phase

Ref document number: 112019000140

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190104