WO2018012022A1 - Rubber wear testing device - Google Patents

Rubber wear testing device Download PDF

Info

Publication number
WO2018012022A1
WO2018012022A1 PCT/JP2017/007439 JP2017007439W WO2018012022A1 WO 2018012022 A1 WO2018012022 A1 WO 2018012022A1 JP 2017007439 W JP2017007439 W JP 2017007439W WO 2018012022 A1 WO2018012022 A1 WO 2018012022A1
Authority
WO
WIPO (PCT)
Prior art keywords
test sample
circumferential surface
rubber
rotating body
wear
Prior art date
Application number
PCT/JP2017/007439
Other languages
French (fr)
Japanese (ja)
Inventor
剛 侯
畑中 進
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to AU2017296468A priority Critical patent/AU2017296468B2/en
Priority to US16/316,176 priority patent/US11333592B2/en
Priority to CN201780030071.8A priority patent/CN109313111B/en
Priority to DE112017003544.9T priority patent/DE112017003544T5/en
Publication of WO2018012022A1 publication Critical patent/WO2018012022A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/445Rubber

Definitions

  • the present invention relates to a rubber wear test apparatus, and more particularly to a rubber wear test apparatus that can easily and accurately grasp the wear state of rubber that matches actual use.
  • a DIN abrasion tester and a Williams abrasion tester are known as testers for evaluating the wear resistance of rubber.
  • these wear testers are intended to grasp the wear resistance under a predetermined condition set in advance. For this reason, it is impossible to set the conditions consistent with various usage environments of the conveyor belt, and it is difficult to accurately predict the wear resistance of the upper cover rubber of the conveyor belt in actual use.
  • An object of the present invention is to provide a rubber wear test apparatus that can easily and accurately grasp the wear state of rubber that matches actual use.
  • a rubber wear test apparatus comprises a holding portion for holding a rubber test sample, a rotating body having a circumferential surface with which the test sample contacts, and a drive for rotating the rotating body. And a pressure-bonding mechanism that imparts an additional force toward the circumferential surface to the test sample held by the holding portion and always allows movement of the test sample in a direction opposite to the additional force.
  • the test sample held in the holding portion is pressed against the circumferential surface at a predetermined fixed position with respect to the rotating body that is rotationally driven.
  • the pressure-bonding mechanism by using the pressure-bonding mechanism, an additional force toward the circumferential surface of the rotating body that is rotationally driven is applied to the test sample held by the holding portion.
  • the stick-slip phenomenon can be reproduced by crimping the circumferential surface at a predetermined fixed position and always allowing the test sample to move in a direction opposite to the applied force. Therefore, it is possible to grasp the wear state of the rubber that matches the actual use with higher accuracy without using an annular rubber sample or an apparatus having a complicated structure.
  • FIG. 1 is an explanatory view illustrating the wear test apparatus of the present invention in a front view.
  • FIG. 2 is an explanatory view illustrating a part of the wear test apparatus of FIG. 1 in plan view.
  • FIG. 3 is an explanatory diagram illustrating the stick-slip phenomenon.
  • FIG. 4 is an explanatory view illustrating a partial configuration of another embodiment of the wear test apparatus in a front view.
  • FIG. 5 is an explanatory view illustrating a conveyor belt line in a simplified manner. 6 is a cross-sectional view taken along the line AA in FIG.
  • the rubber test sample S to be tested may be a block-like lump instead of an annular body.
  • the test apparatus 1 includes a holding unit 3 that holds a test sample S, a rotating body 4, a driving unit 5 that rotationally drives the rotating body 4, and a crimping mechanism 10.
  • the wear test apparatus 1 of this embodiment further includes a dynamometer 6a, a temperature sensor 6b, a camera 6c, a control unit 7, a temperature adjustment mechanism 8, and a scraper 16, and is a component excluding the dynamometer 6a and the control unit 7. Is covered by a casing 2 a installed on the base 2.
  • the holding unit 3 holds the test sample S in a detachable manner.
  • the holding unit 3 is not limited to a single unit, and a plurality of holding units 3 may be provided.
  • the rotating body 4 is a columnar or cylindrical grinding wheel and has a circumferential surface 4a with which the test sample S comes into contact.
  • the circumferential surface 4a is a polished surface for the test sample S.
  • the rotating body 4 is rotatable around a rotating shaft 4b provided at the center of the circle.
  • the material and surface roughness of the circumferential surface 4a are selected according to the test conditions. For example, a plurality of rotating bodies 4 having different specifications of the circumferential surface 4a are prepared, and the rotating body 4 is replaced according to the required specifications of the circumferential surface 4a. Or it can also be set as the rotary body 4 which can replace
  • the drive unit 5 is, for example, a drive motor and is connected to the control unit 7.
  • the rotational speed of the rotating body 4 (rotating shaft 4b) is controlled by the control unit 7 to a desired speed.
  • the drive part 5 and the control part 7 are connected via the dynamometer 6a.
  • the dynamometer 6a measures energy required for rotational driving of the rotating body 4 (for example, power consumption of the drive motor 5). Data measured by the dynamometer 6a is input and stored in the control unit 7.
  • the crimping mechanism 10 applies an additional force F toward the circumferential surface 4 a to the test sample S held by the holding unit 3. As a result, the test sample S held by the holding unit 3 is pressed against the circumferential surface 4a at a predetermined fixed position with respect to the rotating body 4 that is rotationally driven.
  • the crimping mechanism 10 is further configured to always allow movement of the test sample S in the direction opposite to the additional force F.
  • the crimping mechanism 10 of this embodiment includes an L-shaped holding arm 11 a to which the holding unit 3 is connected, a wire 12 having one end connected to the holding arm 11 a, and the other end of the wire 12. It is composed of a connected weight 15.
  • a support shaft 14 disposed in parallel with the rotation shaft 4 b of the rotating body 4 is rotatably supported through the support column 11 erected on the base 2.
  • a holding arm 11a is fixed to one end of the support shaft 14, and a balancer 13 is fixed to the other end.
  • the weight of the weight 15 acts on the holding arm 11a through the wire 12. Therefore, the holding part 3 integrated with the holding arm 11a is rotated around the support shaft 14 together with the test sample S by the tension of the wire 12. That is, the weight of the weight 15 acts on the test sample S held by the holding unit 3 to apply an additional force F toward the circumferential surface 4 a to the test sample S.
  • the magnitude of the additional force F can be easily changed by changing the weight of the weight 15.
  • the magnitude of the additional force F can be changed by changing the horizontal distance between the connection position of the wire 12 to the holding arm 11a and the support shaft 14 and the weight of the balancer 13.
  • the balancer 13 can also be installed so that the additional force F becomes zero with the weight 15 removed.
  • the weight of the balancer 13 and the distance from the support shaft 14 are selected so that the weight of the pressure-bonding mechanism 10 with the weight 15 removed is canceled and the applied force F becomes zero.
  • the balancer 13 is installed so that the additional force F becomes zero with the weight 15 removed, the distance between the test sample S and the support shaft 14, the connection position of the wire 12 to the holding arm 11a, and the support shaft 14
  • the weight of the weight 15 and the additional force F can be made equal.
  • the surface of the test sample S facing the circumferential surface 4a is always pressed against and contacted with the circumferential surface 4a by an additional force F (specified load) having a constant magnitude.
  • the direction of the additional force F is preferably set in a direction toward the rotation center (rotating shaft 4b) of the rotating body 4. In this direction, the test sample S can be stably pressed and brought into contact with the circumferential surface 4a by the additional force F.
  • the support shaft 14 may be supported by the support column 11 through a bearing, for example.
  • test sample S is only pressed toward the circumferential surface 4 a based on the weight of the weight 15. Therefore, the test arm S can always move in the direction opposite to the additional force F by rotating the holding arm 11a around the support shaft 14. Accordingly, if a force in the direction opposite to the additional force F acts on the test sample S, the test sample S can move in a direction away from the circumferential surface 4a.
  • the crimping mechanism 10 is not limited to the configuration exemplified in this embodiment.
  • the crimping mechanism 10 applies an additional force F toward the circumferential surface 4a to the test sample S held by the holding unit 3 so as to crimp the circumferential force on the circumferential surface 4a at a predetermined fixed position.
  • Various configurations can be adopted as long as the configuration allows the movement of the test sample S in the direction opposite to F at all times.
  • the test sample S is in contact with the circumferential surface 4a at the same horizontal level position as the rotating shaft 4b, but the position where the test sample S is in contact with the circumferential surface 4a (the circumferential position of the rotating body 4). Is not limited to this.
  • the test sample S may be configured to contact the circumferential surface 4a at a position above the rotation shaft 4b.
  • the predetermined fixed position where the test sample S is pressure-bonded to the circumferential surface 4a can be set as appropriate.
  • the temperature sensor 6b detects the temperature of at least one of the circumferential surface 4a or the test sample S. Data detected by the temperature sensor 6 b is input and stored in the control unit 7.
  • the camera 6 c images the movement of the test sample S, and the captured moving image data is input and stored in the control unit 7.
  • the temperature adjustment mechanism 8 adjusts the test sample S to a desired temperature.
  • the temperature adjustment mechanism 8 is provided on the upper surface of the casing 2a.
  • the temperature of the test sample S is indirectly adjusted by adjusting the internal temperature of the casing 2a to a predetermined temperature by the temperature control mechanism 8.
  • the temperature control mechanism 8 is controlled by the control unit 7.
  • a heater that directly heats the test sample S or a cooler that directly cools the test sample S may be employed as the temperature control mechanism 8.
  • the scraper 16 has a brush shape, for example, and is in contact with the circumferential surface 4a. In this embodiment, the scraper 16 is in contact with the circumferential surface 4a at a position opposite to the test sample S across the rotating shaft 4b.
  • the conveyed product 20 conveyed by the conveyor belt 17A is put into another conveyor belt 17B and conveyed to the conveyance destination.
  • the conveyor belt 17B is stretched between pulleys 18 and 18, and is stretched with a predetermined tension.
  • the conveyor belt 17B includes a core body layer 17c formed of a core body such as canvas or a steel cord, and an upper cover rubber 17a and a lower cover rubber 17b sandwiching the core body layer 17c.
  • the core layer 17c bears tension for tensioning the conveyor belt 17B.
  • the lower cover rubber 17b is supported by the support roller 19 on the carrier side of the conveyor belt 17B, and the upper cover rubber 17a is supported by the support roller 19 on the return side.
  • On the carrier side of the conveyor belt 17B for example, three support rollers 19 are arranged in the belt width direction, and the conveyor belt 17B is supported by the support rollers 19 in a concave shape at a predetermined trough angle a.
  • the conveyed product 20 is fed from a conveyor belt 17A having a relatively low traveling speed V1 to a conveyor belt 17B having a relatively high traveling speed V2 (traveling speed V1 ⁇ traveling speed V2).
  • a conveyor belt 17B having a relatively high traveling speed V2 (traveling speed V1 ⁇ traveling speed V2).
  • V1 traveling speed
  • V2 traveling speed
  • the conveyed product 20 slides with respect to the upper cover rubber 17a, and this sliding becomes one of the main factors, and the upper cover rubber 17a is worn.
  • the holding unit 3 holds the test sample S.
  • the circumferential surface 4a is set to a desired specification. For example, when the upper cover rubber 17a of the conveyor belt is evaluated as the test sample S, the circumferential surface 4a having a surface roughness matching the shape or the like of the conveyed product 20 conveyed by the conveyor belt is used. Further, the weight 15 is set so that a desired additional force F is applied to the test sample S, and the rotating body 4 is rotated at the set desired speed. Further, the temperature control mechanism 8 is operated to set the test sample S to a desired temperature. These settings are performed, for example, so as to meet the conditions for actually using the rubber of the test sample S.
  • the test sample S is given an additional force F toward the circumferential surface 4a of the rotating rotating body 4.
  • the test sample S is pressed against the circumferential surface 4a by the applied force F at a predetermined fixed position with respect to the rotating body 4 and comes into contact therewith. Since the rotating body 4 is rotating, the test sample S and the circumferential surface 4a are in a sliding state, and the contact surface of the test sample S with the circumferential surface 4a is gradually worn.
  • the wear amount of the test sample S is measured and the wear surface is observed. Further, the surface roughness of the test sample S before and after the test is compared to comprehensively grasp the wear state of the test sample S.
  • the test sample S is always allowed to move in the direction opposite to the applied force F. Therefore, in the test sample S sliding on the circumferential surface 4a, a step of elastically deforming against the frictional force with the circumferential surface 4a (sticking step) and an elastic deformation without being able to counteract this frictional force. It is possible to repeat the step (sliding step) of eliminating and sliding with respect to the circumferential surface 4a. That is, the stick-slip phenomenon is reproduced.
  • the test sample S has no room to move in the opposite direction to the additional force F, and thus is always in close contact with the circumferential surface 4a. It becomes a state. Therefore, the stick-slip phenomenon cannot be reproduced without repeating the sticking process and the sliding process.
  • the stick-slip phenomenon since the stick-slip phenomenon can be reproduced, it becomes possible to grasp the wear state of the rubber that matches the actual use with higher accuracy. In particular, it is suitable for grasping the wear state of the upper cover rubber of the conveyor belt.
  • test sample S may be a small piece such as a block, and it is not necessary to prepare an annular body.
  • an additional force F directed to the circumferential surface 4a of the rotating body 4 is applied to the test sample S to be crimped to the circumferential surface 4a at a predetermined fixed position, and the test sample in the direction opposite to the additional force F is applied. It is not necessary to use a device having a complicated structure in order to always allow the movement of S.
  • the temperature change of at least one of the circumferential surface 4a or the test sample S can be detected by the temperature sensor 6b during the test. Since thermal energy is generated when the test sample S is worn, the energy at the time of wear can be grasped based on the detection data by the temperature sensor 6b. The magnitude of this energy varies depending on the type of rubber. Therefore, this detection data is useful, for example, for grasping the rubber type that can reduce this energy.
  • the energy fluctuation can be grasped by measuring the energy required for rotational driving of the rotating body 4 by the dynamometer 6a.
  • the energy required for rotational driving of the rotating body 4 is relatively large in the sticking process of the tick-slip phenomenon and relatively small in the sliding process. Therefore, it becomes possible to grasp the predetermined pitch P in the tick-slip phenomenon of the test sample S based on the fluctuation of energy detected by the dynamometer 6a. Since the pitch P varies depending on the rubber type and test conditions, it is an index for evaluating the wear state of the rubber.
  • the wear force acting on the test sample S can be calculated based on the detection data by the dynamometer 6a. For example, the energy required for rotationally driving the rotating body 4 at a predetermined speed is compared between the case where the test sample S is brought into contact with the circumferential surface 4a of the rotating body 4 with the applied force F applied and the case where it is not contacted By doing so, the energy generated by the friction between the test sample S and the circumferential surface 4a can be calculated. That is, the difference in energy compared can be approximated as energy due to friction. And since the outer diameter, rotational speed, etc. of the rotary body 4 are known, the frictional force acting on the test sample S can be calculated approximately. Thereby, the relationship between the additional force F applied to the test sample S for each rubber type and the frictional force can be grasped.
  • the behavior of the test sample S in the stick-slip phenomenon can be confirmed by photographing the movement of the test sample S with the camera 6c.
  • One cycle in which the sticking process and the sliding process in the stick-slip phenomenon are repeated varies depending on the rotation speed of the rotating body 4 and the type of rubber, and is, for example, about 0.01 seconds to 0.03 seconds. Therefore, it is preferable to use a high-speed camera 6c that can capture 100 frames or more in one second.
  • the deformation amount in the pressing direction of the test sample S can be grasped from the photographing data of the camera 6c. Accordingly, it is possible to grasp the relationship between the deformation amount of the test sample S and the additional force F and the relationship between the deformation amount and the frictional force.
  • the wear resistance of the test sample S is temperature dependent. Therefore, this temperature dependence can be ascertained for each rubber type by performing the test while varying the temperature of the test sample S by the temperature control mechanism 8.
  • a circumferential surface 4 a that is in contact with the test sample S and a loading mechanism 9 that loads the inclusion W between the test sample S are provided.
  • the inclusion W a material or the like that is supposed to adhere to the rubber under the condition that the rubber of the test sample S is used is used.
  • Specific examples of the inclusion W include fine particles such as water, oil, and sand.
  • the supply amount (supply speed) of the inclusion W may be controlled by the control unit 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Provided is a rubber wear testing device with which the state of wear of rubber which corresponds to wear from actual use can be easily understood with higher accuracy. A rubber test sample S is held by a holding part 3, and an additional force F is applied to the test sample S in the direction toward the circumferential surface 4a of a rotating rotary body 4 by a press-adhesion mechanism 10 to subject the test sample S to wear by replicating a stick-slip phenomenon by always allowing the test sample S to move in a direction opposite from the additional force F while pressing the test sample S against the circumferential surface 4a at a predetermined constant position.

Description

ゴムの摩耗試験装置Rubber wear test equipment
 本発明は、ゴムの摩耗試験装置に関し、さらに詳しくは、実使用に合致したゴムの摩耗状態を、より高精度で簡便に把握することができるゴムの摩耗試験装置に関するものである。 The present invention relates to a rubber wear test apparatus, and more particularly to a rubber wear test apparatus that can easily and accurately grasp the wear state of rubber that matches actual use.
 従来、ゴムの耐摩耗性を評価する試験機として、DIN摩耗試験機やウィリアムス摩耗試験機が知られている。しかしながら、これら摩耗試験機は、予め設定された一定条件下の耐摩耗性を把握することを目的としている。そのため、コンベヤベルトの様々な使用環境に整合した条件に設定することができず、実使用した場合のコンベヤベルトの上カバーゴムの耐摩耗性を精度よく予測することが難しい。 Conventionally, a DIN abrasion tester and a Williams abrasion tester are known as testers for evaluating the wear resistance of rubber. However, these wear testers are intended to grasp the wear resistance under a predetermined condition set in advance. For this reason, it is impossible to set the conditions consistent with various usage environments of the conveyor belt, and it is difficult to accurately predict the wear resistance of the upper cover rubber of the conveyor belt in actual use.
 そこで、環状のベルトサンプルおよびベルトコンベヤ装置と類似した機構を用いた摩耗試験装置が提案されている(特許文献1参照)。この試験装置によれば、コンベヤベルトの実際の使用条件に類似した条件下で試験を行えるので、上カバーゴムの耐摩耗性を精度よく把握するには有利である。しかしながら、環状のベルトサンプルが必要となり、試験装置の構造も複雑になる。 Therefore, an abrasion test apparatus using a mechanism similar to an annular belt sample and a belt conveyor apparatus has been proposed (see Patent Document 1). According to this test apparatus, since the test can be performed under conditions similar to the actual use conditions of the conveyor belt, it is advantageous for accurately grasping the wear resistance of the upper cover rubber. However, an annular belt sample is required, and the structure of the test apparatus is complicated.
 ところで、対象物とゴムとが接触状態で相対移動してゴムに対して対象物が摺動している場合、両者は常に一様に接触している訳ではない。ゴムが対象物から受ける力(摩擦力)に対抗して弾性変形する工程(粘り工程)と、この摩擦力に対抗できずに弾性変形が解消されて対象物に対してゴムが滑る工程(滑り工程)とを繰り返すスティック・スリップ現象が生じている。従来の試験装置では、このスティック・スリップ現象を十分に考慮してないため、ゴムの摩耗状態を高精度で把握するには改善の余地がある。 By the way, when the object and the rubber move relative to each other in a contact state and the object slides against the rubber, they are not always in uniform contact. The process of elastically deforming the rubber against the force (frictional force) received from the object (sticking process), and the process of slipping the rubber against the object after the elastic deformation is resolved without resisting this frictional force (sliding) The stick-slip phenomenon is repeated. Since the conventional test apparatus does not fully consider this stick-slip phenomenon, there is room for improvement in order to grasp the wear state of rubber with high accuracy.
日本国特開2016-90417号公報Japanese Unexamined Patent Publication No. 2016-90417
 本発明の目的は、実使用に合致したゴムの摩耗状態を、より高精度で簡便に把握することができるゴムの摩耗試験装置を提供することにある。 An object of the present invention is to provide a rubber wear test apparatus that can easily and accurately grasp the wear state of rubber that matches actual use.
 上記目的を達成するため本発明のゴムの摩耗試験装置は、ゴムの試験サンプルを保持する保持部と、前記試験サンプルが接触する円周面を有する回転体と、この回転体を回転駆動する駆動部と、前記保持部に保持されている前記試験サンプルに、前記円周面に向けた付加力を付与するとともに、この付加力と反対方向への前記試験サンプルの移動を常に許容する圧着機構とを備えて、回転駆動されている前記回転体に対して前記保持部に保持されている前記試験サンプルを所定の定位置で前記円周面に圧着させる構成にしたことを特徴とする。 In order to achieve the above object, a rubber wear test apparatus according to the present invention comprises a holding portion for holding a rubber test sample, a rotating body having a circumferential surface with which the test sample contacts, and a drive for rotating the rotating body. And a pressure-bonding mechanism that imparts an additional force toward the circumferential surface to the test sample held by the holding portion and always allows movement of the test sample in a direction opposite to the additional force. The test sample held in the holding portion is pressed against the circumferential surface at a predetermined fixed position with respect to the rotating body that is rotationally driven.
 本発明によれば、前記圧着機構を用いて、前記保持部に保持されている前記試験サンプルに対して、回転駆動されている前記回転体の前記円周面に向けた付加力を付与して所定の定位置で前記円周面に圧着させるとともに、この付加力と反対方向への前記試験サンプルの移動を常に許容することで、スティック・スリップ現象を再現することができる。そのため、環状のゴムサンプルや複雑な構造の装置を用いることなく、実使用に合致したゴムの摩耗状態を、より高精度で把握することが可能になる。 According to the present invention, by using the pressure-bonding mechanism, an additional force toward the circumferential surface of the rotating body that is rotationally driven is applied to the test sample held by the holding portion. The stick-slip phenomenon can be reproduced by crimping the circumferential surface at a predetermined fixed position and always allowing the test sample to move in a direction opposite to the applied force. Therefore, it is possible to grasp the wear state of the rubber that matches the actual use with higher accuracy without using an annular rubber sample or an apparatus having a complicated structure.
図1は本発明の摩耗試験装置を正面視で例示する説明図である。FIG. 1 is an explanatory view illustrating the wear test apparatus of the present invention in a front view. 図2は図1の摩耗試験装置の一部を平面視で例示する説明図である。FIG. 2 is an explanatory view illustrating a part of the wear test apparatus of FIG. 1 in plan view. 図3はスティック・スリップ現象を例示する説明図である。FIG. 3 is an explanatory diagram illustrating the stick-slip phenomenon. 図4は摩耗試験装置の別の実施形態の一部の構成を正面視で例示する説明図である。FIG. 4 is an explanatory view illustrating a partial configuration of another embodiment of the wear test apparatus in a front view. 図5はコンベヤベルトラインを単純化して例示する説明図である。FIG. 5 is an explanatory view illustrating a conveyor belt line in a simplified manner. 図6は図5のA-A断面図である。6 is a cross-sectional view taken along the line AA in FIG.
 以下、本発明のゴムの摩耗試験装置を、図に示した実施形態に基づいて説明する。 Hereinafter, the rubber abrasion test apparatus of the present invention will be described based on the embodiments shown in the drawings.
 図1~図2に例示する本発明のゴムの摩耗試験装置1では、試験対象とするゴムの試験サンプルSは環状体ではなく、ブロック状などの塊を使用すればよい。この試験装置1は、試験サンプルSを保持する保持部3と、回転体4と、回転体4を回転駆動する駆動部5と、圧着機構10とを備えている。この実施形態の摩耗試験装置1は、さらに、動力計6a、温度センサ6b、カメラ6c、制御部7、温調機構8およびスクレーパ16を備えていて、動力計6aおよび制御部7を除く構成部品がベース2の上に設置されたケーシング2aによって覆われている。 In the rubber abrasion test apparatus 1 of the present invention illustrated in FIGS. 1 and 2, the rubber test sample S to be tested may be a block-like lump instead of an annular body. The test apparatus 1 includes a holding unit 3 that holds a test sample S, a rotating body 4, a driving unit 5 that rotationally drives the rotating body 4, and a crimping mechanism 10. The wear test apparatus 1 of this embodiment further includes a dynamometer 6a, a temperature sensor 6b, a camera 6c, a control unit 7, a temperature adjustment mechanism 8, and a scraper 16, and is a component excluding the dynamometer 6a and the control unit 7. Is covered by a casing 2 a installed on the base 2.
 保持部3は試験サンプルSを着脱自在に保持する。保持部3は単数に限らず、複数設けることもできる。 The holding unit 3 holds the test sample S in a detachable manner. The holding unit 3 is not limited to a single unit, and a plurality of holding units 3 may be provided.
 回転体4は、円柱状または円筒状の研磨輪であり、試験サンプルSが接触する円周面4aを有している。円周面4aが試験サンプルSに対する研磨面となる。回転体4は、その円中心に設けられている回転軸4bを中心にして回転可能になっている。 The rotating body 4 is a columnar or cylindrical grinding wheel and has a circumferential surface 4a with which the test sample S comes into contact. The circumferential surface 4a is a polished surface for the test sample S. The rotating body 4 is rotatable around a rotating shaft 4b provided at the center of the circle.
 円周面4aの材質や表面粗さ等は、試験条件によって適切な仕様が選択される。例えば、円周面4aの仕様が異なる複数の回転体4を用意しておき、必要な円周面4aの仕様に応じて回転体4を交換する構成にする。或いは、円周面4aのみ交換可能な回転体4にすることもできる。この場合は、必要な仕様の円周面4aを回転体4のコアに装着する。 The material and surface roughness of the circumferential surface 4a are selected according to the test conditions. For example, a plurality of rotating bodies 4 having different specifications of the circumferential surface 4a are prepared, and the rotating body 4 is replaced according to the required specifications of the circumferential surface 4a. Or it can also be set as the rotary body 4 which can replace | exchange only the circumferential surface 4a. In this case, the circumferential surface 4a having the required specifications is attached to the core of the rotating body 4.
 駆動部5は例えば駆動モータであり制御部7に接続されている。制御部7によって回転体4(回転軸4b)の回転速度が所望の速度に制御される。この実施形態では、動力計6aを介して駆動部5と制御部7とが接続されている。動力計6aは回転体4の回転駆動に要するエネルギ(例えば、駆動モータ5の消費電力)を計測する。動力計6aによる計測データは制御部7に入力、記憶される。 The drive unit 5 is, for example, a drive motor and is connected to the control unit 7. The rotational speed of the rotating body 4 (rotating shaft 4b) is controlled by the control unit 7 to a desired speed. In this embodiment, the drive part 5 and the control part 7 are connected via the dynamometer 6a. The dynamometer 6a measures energy required for rotational driving of the rotating body 4 (for example, power consumption of the drive motor 5). Data measured by the dynamometer 6a is input and stored in the control unit 7.
 圧着機構10は、保持部3に保持されている試験サンプルSに対して、円周面4aに向けた付加力Fを付与する。これにより、保持部3に保持されている試験サンプルSを、回転駆動されている回転体4に対して所定の定位置で円周面4aに圧着させる。圧着機構10はさらに、付加力Fと反対方向への試験サンプルSの移動を常に許容する構成になっている。 The crimping mechanism 10 applies an additional force F toward the circumferential surface 4 a to the test sample S held by the holding unit 3. As a result, the test sample S held by the holding unit 3 is pressed against the circumferential surface 4a at a predetermined fixed position with respect to the rotating body 4 that is rotationally driven. The crimping mechanism 10 is further configured to always allow movement of the test sample S in the direction opposite to the additional force F.
 具体的には、この実施形態の圧着機構10は、保持部3が連結されたL字状の保持アーム11aと、保持アーム11aに一端が接続されたワイヤ12と、このワイヤ12の他端に接続された錘15とで構成されている。回転体4の回転軸4bと平行に配置されている支持軸14が、ベース2に立設されている支柱11を貫通して回転自在に支持されている。この支持軸14の一端部に保持アーム11aが固定され、他端部にはバランサー13が固定されている。 Specifically, the crimping mechanism 10 of this embodiment includes an L-shaped holding arm 11 a to which the holding unit 3 is connected, a wire 12 having one end connected to the holding arm 11 a, and the other end of the wire 12. It is composed of a connected weight 15. A support shaft 14 disposed in parallel with the rotation shaft 4 b of the rotating body 4 is rotatably supported through the support column 11 erected on the base 2. A holding arm 11a is fixed to one end of the support shaft 14, and a balancer 13 is fixed to the other end.
 錘15の重量が、ワイヤ12を介して保持アーム11aに作用する。そのため、ワイヤ12の張力によって、保持アーム11aと一体化している保持部3は、試験サンプルSとともに、支持軸14を中心にして回転する。即ち、錘15の重量が保持部3に保持されている試験サンプルSに作用して、試験サンプルSに対して円周面4aに向けた付加力Fを付与する。 The weight of the weight 15 acts on the holding arm 11a through the wire 12. Therefore, the holding part 3 integrated with the holding arm 11a is rotated around the support shaft 14 together with the test sample S by the tension of the wire 12. That is, the weight of the weight 15 acts on the test sample S held by the holding unit 3 to apply an additional force F toward the circumferential surface 4 a to the test sample S.
 付加力Fの大きさは、錘15の重量を変更することで容易に変えることができる。或いは、保持アーム11aに対するワイヤ12の接続位置と支持軸14との水平距離や、バランサー13の重量を変更することで付加力Fの大きさを変更することもできる。また、錘15を取り除いた状態で付加力Fがゼロとなるようにバランサー13を設置することもできる。例えば、錘15を取り除いた状態の圧着機構10の自重を打ち消して付加力Fがゼロとなるように、バランサー13の重量と支持軸14からの距離を選択する。錘15を取り除いた状態で付加力Fがゼロとなるようにバランサー13を設置し、且つ、試験サンプルSと支持軸14との距離と、保持アーム11aに対するワイヤ12の接続位置と支持軸14との距離とを等しくすることにより、錘15の重量と付加力Fとを等しくすることができる。 The magnitude of the additional force F can be easily changed by changing the weight of the weight 15. Alternatively, the magnitude of the additional force F can be changed by changing the horizontal distance between the connection position of the wire 12 to the holding arm 11a and the support shaft 14 and the weight of the balancer 13. Moreover, the balancer 13 can also be installed so that the additional force F becomes zero with the weight 15 removed. For example, the weight of the balancer 13 and the distance from the support shaft 14 are selected so that the weight of the pressure-bonding mechanism 10 with the weight 15 removed is canceled and the applied force F becomes zero. The balancer 13 is installed so that the additional force F becomes zero with the weight 15 removed, the distance between the test sample S and the support shaft 14, the connection position of the wire 12 to the holding arm 11a, and the support shaft 14 The weight of the weight 15 and the additional force F can be made equal.
 円周面4aに対向する試験サンプルSの表面は、常に一定の大きさの付加力F(規定荷重)によって円周面4aに押圧されて接触した状態になる。付加力Fの向きは、回転体4の回転中心(回転軸4b)に向かう方向にすることが好ましい。この方向にすることで、付加力Fによって試験サンプルSを安定して円周面4aに押圧して接触させることができる。支持軸14を中心とした保持アーム11aの回転を円滑にするために、例えばベアリングを介して支持軸14を支柱11で支持するとよい。 The surface of the test sample S facing the circumferential surface 4a is always pressed against and contacted with the circumferential surface 4a by an additional force F (specified load) having a constant magnitude. The direction of the additional force F is preferably set in a direction toward the rotation center (rotating shaft 4b) of the rotating body 4. In this direction, the test sample S can be stably pressed and brought into contact with the circumferential surface 4a by the additional force F. In order to smoothly rotate the holding arm 11a around the support shaft 14, the support shaft 14 may be supported by the support column 11 through a bearing, for example.
 ここで、試験サンプルSは、錘15の重量に基づいて円周面4aに向かって押圧されているだけである。そのため、保持アーム11aが支持軸14を中心に回転することで、試験サンプルSは付加力Fと反対方向に常時、移動が可能になっている。これに伴い、試験サンプルSに対して付加力Fと反対方向の力が作用すれば、試験サンプルSは円周面4aから離反する方向に移動することが可能である。 Here, the test sample S is only pressed toward the circumferential surface 4 a based on the weight of the weight 15. Therefore, the test arm S can always move in the direction opposite to the additional force F by rotating the holding arm 11a around the support shaft 14. Accordingly, if a force in the direction opposite to the additional force F acts on the test sample S, the test sample S can move in a direction away from the circumferential surface 4a.
 圧着機構10は、この実施形態に例示した構成に限定されない。圧着機構10は、保持部3に保持されている試験サンプルSに対して、円周面4aに向けた付加力Fを付与して所定の定位置で円周面4aに圧着させるとともに、付加力Fと反対方向への試験サンプルSの移動を常に許容する構成であれば、様々な構成を採用することができる。 The crimping mechanism 10 is not limited to the configuration exemplified in this embodiment. The crimping mechanism 10 applies an additional force F toward the circumferential surface 4a to the test sample S held by the holding unit 3 so as to crimp the circumferential force on the circumferential surface 4a at a predetermined fixed position. Various configurations can be adopted as long as the configuration allows the movement of the test sample S in the direction opposite to F at all times.
 この実施形態では、試験サンプルSが回転軸4bと同じ水平レベル位置で円周面4aに接触しているが、試験サンプルSが円周面4aに接触する位置(回転体4の周方向位置)はこれに限らない。例えば、回転軸4bの上方の位置で試験サンプルSが円周面4aに接触する構成にすることもできる。このように試験サンプルSを円周面4aに圧着させる所定の定位置は、適宜設定することができる。 In this embodiment, the test sample S is in contact with the circumferential surface 4a at the same horizontal level position as the rotating shaft 4b, but the position where the test sample S is in contact with the circumferential surface 4a (the circumferential position of the rotating body 4). Is not limited to this. For example, the test sample S may be configured to contact the circumferential surface 4a at a position above the rotation shaft 4b. Thus, the predetermined fixed position where the test sample S is pressure-bonded to the circumferential surface 4a can be set as appropriate.
 温度センサ6bは、円周面4aまたは試験サンプルSの少なくとも一方の温度を検知する。温度センサ6bによる検知データは、制御部7に入力、記憶される。カメラ6cは、試験サンプルSの動きを撮影し、撮影した動画データは、制御部7に入力、記憶される。 The temperature sensor 6b detects the temperature of at least one of the circumferential surface 4a or the test sample S. Data detected by the temperature sensor 6 b is input and stored in the control unit 7. The camera 6 c images the movement of the test sample S, and the captured moving image data is input and stored in the control unit 7.
 温調機構8は、試験サンプルSを所望の温度に調整する。この実施形態では、温調機構8はケーシング2aの上面に備わっている。温調機構8によってケーシング2aの内部温度を所定温度に調整することで、間接的に試験サンプルSの温度が調整される。 The temperature adjustment mechanism 8 adjusts the test sample S to a desired temperature. In this embodiment, the temperature adjustment mechanism 8 is provided on the upper surface of the casing 2a. The temperature of the test sample S is indirectly adjusted by adjusting the internal temperature of the casing 2a to a predetermined temperature by the temperature control mechanism 8.
 温調機構8は制御部7によって制御される。試験サンプルSを直接加温するヒータや、直接冷却する冷却器を温調機構8として採用することもできる。 The temperature control mechanism 8 is controlled by the control unit 7. A heater that directly heats the test sample S or a cooler that directly cools the test sample S may be employed as the temperature control mechanism 8.
 スクレーパ16は例えばブラシ状であり、円周面4aに接触している。この実施形態では、スクレーパ16は、回転軸4bを挟んで試験サンプルSとは反対側の位置で円周面4aに接触している。 The scraper 16 has a brush shape, for example, and is in contact with the circumferential surface 4a. In this embodiment, the scraper 16 is in contact with the circumferential surface 4a at a position opposite to the test sample S across the rotating shaft 4b.
 ところで、実際のコンベヤベルトラインでは、図5、図6に例示するように、コンベヤベルト17Aによって搬送された搬送物20が別のコンベヤベルト17Bに投入されて、搬送先に搬送される。コンベヤベルト17Bは、プーリ18、18間に架け渡されていて所定のテンションで張設されている。 By the way, in the actual conveyor belt line, as illustrated in FIGS. 5 and 6, the conveyed product 20 conveyed by the conveyor belt 17A is put into another conveyor belt 17B and conveyed to the conveyance destination. The conveyor belt 17B is stretched between pulleys 18 and 18, and is stretched with a predetermined tension.
 コンベヤベルト17Bは、帆布やスチールコード等の心体で構成される心体層17cと、心体層17cを挟む上カバーゴム17aと下カバーゴム17bとにより構成されている。心体層17cは、コンベヤベルト17Bを張設するためのテンションを負担する。コンベヤベルト17Bのキャリア側では下カバーゴム17bが支持ローラ19により支持され、リターン側では上カバーゴム17aが支持ローラ19により支持されている。コンベヤベルト17Bのキャリア側では、例えばベルト幅方向に3つの支持ローラ19が配置されていて、これらの支持ローラ19によってコンベヤベルト17Bは所定のトラフ角度aで凹状に支持されている。 The conveyor belt 17B includes a core body layer 17c formed of a core body such as canvas or a steel cord, and an upper cover rubber 17a and a lower cover rubber 17b sandwiching the core body layer 17c. The core layer 17c bears tension for tensioning the conveyor belt 17B. The lower cover rubber 17b is supported by the support roller 19 on the carrier side of the conveyor belt 17B, and the upper cover rubber 17a is supported by the support roller 19 on the return side. On the carrier side of the conveyor belt 17B, for example, three support rollers 19 are arranged in the belt width direction, and the conveyor belt 17B is supported by the support rollers 19 in a concave shape at a predetermined trough angle a.
 一般に搬送物20は、走行速度V1が相対的に遅いコンベヤベルト17Aから走行速度V2が相対的に速いコンベヤベルト17Bに投入される(走行速度V1<走行速度V2)。コンベヤベルト17Bの上カバーゴム17a上では、投入された搬送物20の速度が走行速度V1からV2に変化することになる。そのため、上カバーゴム17aに対して搬送物20が摺動し、この摺動が主要因の1つとなって上カバーゴム17aは摩耗する。 Generally, the conveyed product 20 is fed from a conveyor belt 17A having a relatively low traveling speed V1 to a conveyor belt 17B having a relatively high traveling speed V2 (traveling speed V1 <traveling speed V2). On the upper cover rubber 17a of the conveyor belt 17B, the speed of the loaded conveyed product 20 changes from the running speed V1 to V2. Therefore, the conveyed product 20 slides with respect to the upper cover rubber 17a, and this sliding becomes one of the main factors, and the upper cover rubber 17a is worn.
 このように搬送物20が上カバーゴム17aに対して摺動する場合、スティック・スリップ現象が生じている。スティック・スリップ現象では、上述したように粘り工程と滑り工程とを繰り返すため、対象物が摺動するゴムRの表面には、図3に例示するように摺動方向FDに所定のピッチPで摩耗の筋Lが形成される。このピッチPは滑り工程に対応し、摩耗の筋Lは粘り工程に対応する。本発明の摩耗試験装置1では、このスティック・スリップ現象を再現することが可能になっている。 Thus, when the conveyed product 20 slides with respect to the upper cover rubber 17a, a stick-slip phenomenon occurs. In the stick-slip phenomenon, since the sticking process and the sliding process are repeated as described above, the surface of the rubber R on which the object slides has a predetermined pitch P in the sliding direction FD as illustrated in FIG. Wear lines L are formed. The pitch P corresponds to the sliding process, and the wear streak L corresponds to the sticking process. In the wear test apparatus 1 of the present invention, this stick-slip phenomenon can be reproduced.
 以下、この摩耗試験装置1を用いてゴムの摩耗状態を把握する方法を説明する。 Hereinafter, a method for grasping the wear state of rubber using the wear test apparatus 1 will be described.
 図1、2に例示するように、保持部3には試験サンプルSを保持させる。円周面4aは所望の仕様に設定する。例えば、試験サンプルSとしてコンベヤベルトの上カバーゴム17aを評価する場合には、そのコンベヤベルトによって搬送する搬送物20の形状等に整合する表面粗さの円周面4aを用いる。また、試験サンプルSに所望の付加力Fが付与されるように錘15の重量を設定し、設定した所望の速度で回転体4を回転させる。また、温調機構8を作動させて試験サンプルSを所望の温度に設定する。これらの設定は例えば、試験サンプルSのゴムが実使用される条件に合致するように行われる。 As illustrated in FIGS. 1 and 2, the holding unit 3 holds the test sample S. The circumferential surface 4a is set to a desired specification. For example, when the upper cover rubber 17a of the conveyor belt is evaluated as the test sample S, the circumferential surface 4a having a surface roughness matching the shape or the like of the conveyed product 20 conveyed by the conveyor belt is used. Further, the weight 15 is set so that a desired additional force F is applied to the test sample S, and the rotating body 4 is rotated at the set desired speed. Further, the temperature control mechanism 8 is operated to set the test sample S to a desired temperature. These settings are performed, for example, so as to meet the conditions for actually using the rubber of the test sample S.
 このように設定した摩耗試験装置1では、図1に例示するように試験サンプルSには、回転する回転体4の円周面4aに向けた付加力Fが付与される。試験サンプルSは回転体4に対して所定の定位置で、付加力Fによって円周面4aに押圧されて接触する。回転体4は回転しているため、試験サンプルSと円周面4aとは摺動状態となり、試験サンプルSの円周面4aとの接触面は徐々に摩耗する。 In the wear test apparatus 1 set in this manner, as shown in FIG. 1, the test sample S is given an additional force F toward the circumferential surface 4a of the rotating rotating body 4. The test sample S is pressed against the circumferential surface 4a by the applied force F at a predetermined fixed position with respect to the rotating body 4 and comes into contact therewith. Since the rotating body 4 is rotating, the test sample S and the circumferential surface 4a are in a sliding state, and the contact surface of the test sample S with the circumferential surface 4a is gradually worn.
 所定の試験時間後に、試験サンプルSの摩耗量の測定や摩耗面を観察する。また、試験前後での試験サンプルSの表面粗さを比較して、総合的に試験サンプルSの摩耗状態を把握する。 After a predetermined test time, the wear amount of the test sample S is measured and the wear surface is observed. Further, the surface roughness of the test sample S before and after the test is compared to comprehensively grasp the wear state of the test sample S.
 ここで、本発明では、試験サンプルSは付加力Fと反対方向への移動が常に許容されている。そのため、円周面4aで摺動している試験サンプルSでは、円周面4aとの摩擦力に対抗して弾性変形する工程(粘り工程)と、この摩擦力に対抗できずに弾性変形が解消されて円周面4aに対して滑る工程(滑り工程)とを繰り返すことができる。即ち、スティック・スリップ現象が再現される。 Here, in the present invention, the test sample S is always allowed to move in the direction opposite to the applied force F. Therefore, in the test sample S sliding on the circumferential surface 4a, a step of elastically deforming against the frictional force with the circumferential surface 4a (sticking step) and an elastic deformation without being able to counteract this frictional force. It is possible to repeat the step (sliding step) of eliminating and sliding with respect to the circumferential surface 4a. That is, the stick-slip phenomenon is reproduced.
 一方、試験サンプルSに対して流体シリンダ等によって付加力Fを付与する構成であると、試験サンプルSは付加力Fと反対方向に移動できる余地がないため、常時、円周面4aに密着した状態になる。そのため、粘り工程と滑り工程とを繰り返すことができずにスティック・スリップ現象を再現することができない。 On the other hand, if the configuration is such that the additional force F is applied to the test sample S by a fluid cylinder or the like, the test sample S has no room to move in the opposite direction to the additional force F, and thus is always in close contact with the circumferential surface 4a. It becomes a state. Therefore, the stick-slip phenomenon cannot be reproduced without repeating the sticking process and the sliding process.
 本発明によれば、スティック・スリップ現象を再現することができるので、実使用に合致したゴムの摩耗状態を、より高精度で把握することが可能になる。特に、コンベヤベルトの上カバーゴムの摩耗状態を把握するには好適である。 According to the present invention, since the stick-slip phenomenon can be reproduced, it becomes possible to grasp the wear state of the rubber that matches the actual use with higher accuracy. In particular, it is suitable for grasping the wear state of the upper cover rubber of the conveyor belt.
 また、試験サンプルSはブロック状などの小片でもよく、わざわざ環状体を用意する必要もない。しかも、試験サンプルSに対して回転体4の円周面4aに向けた付加力Fを付与して所定の定位置で円周面4aに圧着させるとともに、付加力Fと反対方向への試験サンプルSの移動を常に許容する構成にするには、複雑な構造の装置を用いる必要はない。 Also, the test sample S may be a small piece such as a block, and it is not necessary to prepare an annular body. In addition, an additional force F directed to the circumferential surface 4a of the rotating body 4 is applied to the test sample S to be crimped to the circumferential surface 4a at a predetermined fixed position, and the test sample in the direction opposite to the additional force F is applied. It is not necessary to use a device having a complicated structure in order to always allow the movement of S.
 本発明では、試験中に温度センサ6bにより円周面4aまたは試験サンプルSの少なくとも一方の温度変化を検知できる。試験サンプルSが摩耗する際には熱エネルギが生じるので、温度センサ6bによる検知データに基づいて、摩耗する際のエネルギを把握することができる。ゴムの種類によってこのエネルギの大きさは異なる。そのため、この検知データは、例えば、このエネルギを小さくできるゴム種を把握するには有益である。 In the present invention, the temperature change of at least one of the circumferential surface 4a or the test sample S can be detected by the temperature sensor 6b during the test. Since thermal energy is generated when the test sample S is worn, the energy at the time of wear can be grasped based on the detection data by the temperature sensor 6b. The magnitude of this energy varies depending on the type of rubber. Therefore, this detection data is useful, for example, for grasping the rubber type that can reduce this energy.
 動力計6aによって回転体4の回転駆動に要するエネルギを計測することで、エネルギの変動が把握できる。回転体4の回転駆動に要するエネルギは、ティック・スリップ現象の粘り工程では相対的に大きくなり、滑り工程では相対的に小さくなる。そのため、動力計6aにより検知したエネルギの変動に基づいて、その試験サンプルSのティック・スリップ現象における所定のピッチPを把握することが可能になる。このピッチPはゴム種や試験条件によって異なるので、ゴムの摩耗状態を評価するには1つの指標になる。 The energy fluctuation can be grasped by measuring the energy required for rotational driving of the rotating body 4 by the dynamometer 6a. The energy required for rotational driving of the rotating body 4 is relatively large in the sticking process of the tick-slip phenomenon and relatively small in the sliding process. Therefore, it becomes possible to grasp the predetermined pitch P in the tick-slip phenomenon of the test sample S based on the fluctuation of energy detected by the dynamometer 6a. Since the pitch P varies depending on the rubber type and test conditions, it is an index for evaluating the wear state of the rubber.
 また、動力計6aによる検知データに基づいて、試験サンプルSに作用する摩耗力を算出することもできる。例えば、付加力Fを付与して試験サンプルSを回転体4の円周面4aに接触させた場合と、接触させない場合とで、回転体4を所定速度で回転駆動させる際に要するエネルギを比較することで、試験サンプルSと円周面4aとの摩擦によって生じているエネルギを算出できる。即ち、比較したエネルギの差が摩擦によるエネルギとして近似できる。そして、回転体4の外径や回転速度等は既知なので、試験サンプルSに作用している摩擦力を概ね算出できる。これにより、ゴム種毎に試験サンプルSに付与する付加力Fと摩擦力との関係を把握することができる。 Also, the wear force acting on the test sample S can be calculated based on the detection data by the dynamometer 6a. For example, the energy required for rotationally driving the rotating body 4 at a predetermined speed is compared between the case where the test sample S is brought into contact with the circumferential surface 4a of the rotating body 4 with the applied force F applied and the case where it is not contacted By doing so, the energy generated by the friction between the test sample S and the circumferential surface 4a can be calculated. That is, the difference in energy compared can be approximated as energy due to friction. And since the outer diameter, rotational speed, etc. of the rotary body 4 are known, the frictional force acting on the test sample S can be calculated approximately. Thereby, the relationship between the additional force F applied to the test sample S for each rubber type and the frictional force can be grasped.
 この実施形態では、カメラ6cによって試験サンプルSの動きを撮影することで、スティック・スリップ現象における試験サンプルSの挙動を確認することができる。スティック・スリップ現象における粘り工程と滑り工程とを繰り返す1周期は、回転体4の回転速度やゴム種によって変化するが、例えば0.01秒~0.03秒程度である。したがって、1秒で100コマ以上の撮影ができる高速度のカメラ6cを用いるとよい。 In this embodiment, the behavior of the test sample S in the stick-slip phenomenon can be confirmed by photographing the movement of the test sample S with the camera 6c. One cycle in which the sticking process and the sliding process in the stick-slip phenomenon are repeated varies depending on the rotation speed of the rotating body 4 and the type of rubber, and is, for example, about 0.01 seconds to 0.03 seconds. Therefore, it is preferable to use a high-speed camera 6c that can capture 100 frames or more in one second.
 また、カメラ6cの撮影データにより、試験サンプルSの押圧方向の変形量を把握することもできる。したがって、試験サンプルSの変形量と付加力Fとの関係、この変形量と摩擦力との関係を把握することも可能になる。 Also, the deformation amount in the pressing direction of the test sample S can be grasped from the photographing data of the camera 6c. Accordingly, it is possible to grasp the relationship between the deformation amount of the test sample S and the additional force F and the relationship between the deformation amount and the frictional force.
 試験サンプルSの耐摩耗性には温度依存性がある。そこで、温調機構8によって試験サンプルSの温度を異ならせて試験をすることで、この温度依存性をゴム種毎に把握することができる。 The wear resistance of the test sample S is temperature dependent. Therefore, this temperature dependence can be ascertained for each rubber type by performing the test while varying the temperature of the test sample S by the temperature control mechanism 8.
 この実施形態では、回転体4が回転することにより、円周面4aに付着している試験サンプルSの摩耗くず等は、スクレーパ16によって除去される。これにより、円周面4aを常に一定の表面粗さに維持し易くなるため、試験サンプルSのゴムの摩耗状態を高精度で把握するには益々有利になる。スクレーパ16の円周面4aとの接触位置は、試験サンプルSに対して回転体4の回転方向前方側にして、かつ、なるべく下方に配置すると、除去された摩耗くず等が飛散することを防止できる。 In this embodiment, when the rotating body 4 rotates, abrasion scraps and the like of the test sample S adhering to the circumferential surface 4a are removed by the scraper 16. As a result, the circumferential surface 4a can be easily maintained at a constant surface roughness, which is more advantageous for grasping the wear state of the rubber of the test sample S with high accuracy. When the scraper 16 is disposed at the front side in the rotational direction of the rotating body 4 with respect to the test sample S and disposed below the test sample S as much as possible, the removed wear debris is prevented from scattering. it can.
 図4に例示する摩耗試験装置1の別の実施形態では、試験サンプルSが接触している円周面4aと、この試験サンプルSとの間に介在物Wを投入する投入機構9を備えている。介在物Wとしては、試験サンプルSのゴムが使用される条件下で、このゴムに付着することが想定される材料等を用いる。介在物Wの具体例としては、水、油、砂などの微小粒子が挙げられる。 In another embodiment of the wear test apparatus 1 illustrated in FIG. 4, a circumferential surface 4 a that is in contact with the test sample S and a loading mechanism 9 that loads the inclusion W between the test sample S are provided. Yes. As the inclusion W, a material or the like that is supposed to adhere to the rubber under the condition that the rubber of the test sample S is used is used. Specific examples of the inclusion W include fine particles such as water, oil, and sand.
 投入機構9を設けることにより、介在物Wの有無による試験サンプルSの摩耗状態の違いを把握することができる。そのため、実使用に合致したゴムの摩耗状態を精度よく把握するには益々、有利になる。介在物Wの供給量(供給速度)は、制御部7により制御するとよい。 By providing the input mechanism 9, it is possible to grasp the difference in the wear state of the test sample S depending on the presence or absence of the inclusion W. Therefore, it becomes more and more advantageous to accurately grasp the wear state of rubber that matches actual use. The supply amount (supply speed) of the inclusion W may be controlled by the control unit 7.
1 摩耗試験装置
2 ベース
2a ケーシング
3 保持部
4 回転体
4a 円周面
4b 回転軸
5 駆動部
6a 動力計
6b 温度センサ
6c カメラ
7 制御部
8 温調機構
9 投入機構
10 圧着機構
11 支柱
11a 保持アーム
12 ワイヤ
13 バランサー
14 支持軸
15 錘
16 スクレーパ
17A コンベヤベルト
17B 別のコンベヤベルト
17a 上カバーゴム
17b 下カバーゴム
17c 芯体層
18 プーリ
19 支持ローラ
20 搬送物
S 試験サンプル
W 介在物
DESCRIPTION OF SYMBOLS 1 Wear test apparatus 2 Base 2a Casing 3 Holding | maintenance part 4 Rotating body 4a Circumferential surface 4b Rotating shaft 5 Drive part 6a Dynamometer 6b Temperature sensor 6c Camera 7 Control part 8 Temperature control mechanism 9 Input mechanism 10 Crimping mechanism 11 Strut 11a Holding arm 12 Wire 13 Balancer 14 Support shaft 15 Weight 16 Scraper 17A Conveyor belt 17B Another conveyor belt 17a Upper cover rubber 17b Lower cover rubber 17c Core layer 18 Pulley 19 Support roller 20 Conveyed material S Test sample W Inclusion

Claims (8)

  1.  ゴムの試験サンプルを保持する保持部と、前記試験サンプルが接触する円周面を有する回転体と、この回転体を回転駆動する駆動部と、前記保持部に保持されている前記試験サンプルに、前記円周面に向けた付加力を付与するとともに、この付加力と反対方向への前記試験サンプルの移動を常に許容する圧着機構とを備えて、回転駆動されている前記回転体に対して前記保持部に保持されている前記試験サンプルを所定の定位置で前記円周面に圧着させる構成にしたことを特徴とするゴムの摩耗試験装置。 A holding part for holding a test sample of rubber, a rotating body having a circumferential surface with which the test sample comes in contact, a driving part for rotationally driving the rotating body, and the test sample held in the holding part, A crimping mechanism that applies an additional force toward the circumferential surface and always allows movement of the test sample in a direction opposite to the additional force, and the rotational body is rotated with respect to the rotating body. A rubber wear test apparatus characterized in that the test sample held in a holding portion is configured to be pressed against the circumferential surface at a predetermined fixed position.
  2.  前記回転体の回転速度および前記付加力を制御する制御部を備えた請求項1に記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to claim 1, further comprising a control unit that controls a rotation speed of the rotating body and the additional force.
  3.  前記回転体の回転駆動に要するエネルギを計測する動力計を備えた請求項1または請求項2に記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to claim 1 or 2, further comprising a dynamometer for measuring energy required for rotational driving of the rotating body.
  4.  前記円周面または前記試験サンプルの少なくとも一方の温度を検知する温度センサを備えた請求項1~3のいずれかに記載のゴムの摩耗試験装置。 4. The rubber wear test apparatus according to claim 1, further comprising a temperature sensor that detects a temperature of at least one of the circumferential surface and the test sample.
  5.  前記試験サンプルの動きを撮影するカメラを備えた請求項1~4のいずれかに記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to any one of claims 1 to 4, further comprising a camera for photographing the movement of the test sample.
  6.  前記試験サンプルの温度を調整する温調機構を備えた請求項1~5のいずれかに記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to any one of claims 1 to 5, further comprising a temperature adjustment mechanism for adjusting a temperature of the test sample.
  7.  前記円周面に接触するスクレーパを備えた請求項1~6のいずれかに記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to any one of claims 1 to 6, further comprising a scraper that contacts the circumferential surface.
  8.  前記試験サンプルが接触している前記円周面と、この試験サンプルとの間に介在物を投入する投入機構を備えた請求項1~7のいずれかに記載のゴムの摩耗試験装置。 The rubber wear test apparatus according to any one of claims 1 to 7, further comprising an insertion mechanism for introducing inclusions between the circumferential surface in contact with the test sample and the test sample.
PCT/JP2017/007439 2016-07-12 2017-02-27 Rubber wear testing device WO2018012022A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017296468A AU2017296468B2 (en) 2016-07-12 2017-02-27 Rubber wear testing device
US16/316,176 US11333592B2 (en) 2016-07-12 2017-02-27 Rubber wear testing device
CN201780030071.8A CN109313111B (en) 2016-07-12 2017-02-27 Abrasion test device for rubber
DE112017003544.9T DE112017003544T5 (en) 2016-07-12 2017-02-27 Kautschukabriebprüfvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137239A JP6821981B2 (en) 2016-07-12 2016-07-12 Rubber wear tester
JP2016-137239 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018012022A1 true WO2018012022A1 (en) 2018-01-18

Family

ID=60952524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007439 WO2018012022A1 (en) 2016-07-12 2017-02-27 Rubber wear testing device

Country Status (6)

Country Link
US (1) US11333592B2 (en)
JP (1) JP6821981B2 (en)
CN (1) CN109313111B (en)
AU (1) AU2017296468B2 (en)
DE (1) DE112017003544T5 (en)
WO (1) WO2018012022A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426456B (en) * 2020-01-17 2021-11-26 北京工业大学 Steel rubber roller pair rolling test bed
CN114577456B (en) * 2022-03-10 2024-04-09 一汽解放汽车有限公司 Rubber joint performance test system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453951U (en) * 1987-09-29 1989-04-03
JPH02210243A (en) * 1989-02-10 1990-08-21 Tokyo Silicone Kk Frictional wear testing machine
JP2002181609A (en) * 2000-12-19 2002-06-26 Nippon Applied Technology Inc Fixed volume supply method of fine powder and fixed volume supply device of fine powder
JP2004037286A (en) * 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method
JP2009198276A (en) * 2008-02-21 2009-09-03 Bridgestone Corp Rubber testing machine
JP2013113672A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber friction test method and rubber friction test device
JP2013178163A (en) * 2012-02-28 2013-09-09 Kayaba Ind Co Ltd Evaluation method for plastic material
JP2016061597A (en) * 2014-09-16 2016-04-25 横浜ゴム株式会社 Wear test apparatus and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1711866A (en) * 1927-06-01 1929-05-07 Grasselli Chemical Co Method of and apparatus for testing materials
BE655226A (en) * 1964-11-04 1965-05-04
US3899917A (en) * 1973-12-06 1975-08-19 Frederick N Kisbany Laboratory wear resistance test machine for tires
JPH0818720B2 (en) 1987-08-25 1996-02-28 三田工業株式会社 Paper feeding device of image forming apparatus
US4995197A (en) * 1990-01-29 1991-02-26 Shieh Chiung Huei Method of abrading
CA2035414A1 (en) * 1990-02-12 1991-08-13 Chiung-Huei Shieh Method and apparatus for abrading
US6412330B1 (en) * 1998-11-25 2002-07-02 The Goodyear Tire & Rubber Company Abrasion tester
JP5534588B2 (en) * 2010-02-24 2014-07-02 株式会社ブリヂストン Tire rubber index calculation method, apparatus and program
CN102735559B (en) 2011-04-15 2015-04-22 青岛科技大学 Novel rubber high temperature abrasion tester for simulating wear of rolling tyre
CN202735182U (en) 2012-09-11 2013-02-13 中联重科股份有限公司 Rubber high-temperature abrasion detection equipment
JP6394295B2 (en) 2014-11-06 2018-09-26 横浜ゴム株式会社 Wear test apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453951U (en) * 1987-09-29 1989-04-03
JPH02210243A (en) * 1989-02-10 1990-08-21 Tokyo Silicone Kk Frictional wear testing machine
JP2002181609A (en) * 2000-12-19 2002-06-26 Nippon Applied Technology Inc Fixed volume supply method of fine powder and fixed volume supply device of fine powder
JP2004037286A (en) * 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method
JP2009198276A (en) * 2008-02-21 2009-09-03 Bridgestone Corp Rubber testing machine
JP2013113672A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber friction test method and rubber friction test device
JP2013178163A (en) * 2012-02-28 2013-09-09 Kayaba Ind Co Ltd Evaluation method for plastic material
JP2016061597A (en) * 2014-09-16 2016-04-25 横浜ゴム株式会社 Wear test apparatus and method

Also Published As

Publication number Publication date
JP2018009823A (en) 2018-01-18
US20210293680A1 (en) 2021-09-23
AU2017296468B2 (en) 2020-04-23
US11333592B2 (en) 2022-05-17
JP6821981B2 (en) 2021-01-27
AU2017296468A1 (en) 2018-11-22
CN109313111B (en) 2022-03-08
DE112017003544T5 (en) 2019-03-28
CN109313111A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018012023A1 (en) Method for evaluating wear resistance of rubber
AU2016253804B2 (en) Abrasive wear test device and method
CN104677763B (en) Rubber wet grinding grain-abrasion testing machine
US10371613B2 (en) Apparatus and method for loading and wear testing a rubber sample
US10184857B2 (en) Impact test device and method
JP6394295B2 (en) Wear test apparatus and method
JP2019529903A (en) Equipment for measuring rubber wear
WO2018012022A1 (en) Rubber wear testing device
CN108169048B (en) Novel friction and wear testing machine for film
CN104215536A (en) Cladding layer abrasion-resisting performance testing device
JP2006162301A (en) Abrasion testing machine
JP2012202926A (en) Wear testing apparatus
EP1721142B1 (en) Tribometer
JP5478464B2 (en) Abrasion test equipment
GB2443530A (en) Method for testing the surface quality of a substrate
CN204116164U (en) A kind of test unit of coating wear resistance
JP2008151690A (en) Method and apparatus for measuring characteristics of wet lubricant
PL207139B1 (en) Station for testing the abrasive wear in the presence of industrial suspended matters

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017296468

Country of ref document: AU

Date of ref document: 20170227

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827157

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17827157

Country of ref document: EP

Kind code of ref document: A1