WO2018012019A1 - Method for evaluating and manufacturing silicon wafer - Google Patents

Method for evaluating and manufacturing silicon wafer Download PDF

Info

Publication number
WO2018012019A1
WO2018012019A1 PCT/JP2017/006727 JP2017006727W WO2018012019A1 WO 2018012019 A1 WO2018012019 A1 WO 2018012019A1 JP 2017006727 W JP2017006727 W JP 2017006727W WO 2018012019 A1 WO2018012019 A1 WO 2018012019A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
thermal donor
single crystal
defect
region
Prior art date
Application number
PCT/JP2017/006727
Other languages
French (fr)
Japanese (ja)
Inventor
和尚 鳥越
小野 敏昭
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020187036819A priority Critical patent/KR102180784B1/en
Priority to DE112017003486.8T priority patent/DE112017003486T5/en
Priority to CN201780043227.6A priority patent/CN109477241B/en
Publication of WO2018012019A1 publication Critical patent/WO2018012019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a silicon wafer evaluation method and manufacturing method, and more particularly to a crystal defect region evaluation method of a silicon wafer manufactured by the Czochralski method (hereinafter referred to as “CZ method”).
  • CZ method a crystal defect region evaluation method of a silicon wafer manufactured by the Czochralski method
  • the CZ method is a method of growing a single crystal by melting a polycrystalline raw material filled in a quartz crucible with a heater and then immersing a seed crystal in the melt and pulling it upward while rotating it.
  • the FZ method is a method in which a part of a polycrystalline raw material rod is heated and melted at a high frequency to form a melting zone, and a single crystal is grown while moving the melting zone. Since the CZ method makes it easy to form a crystal with a large diameter, a wafer cut from a silicon single crystal manufactured by the CZ method is used as a highly integrated semiconductor element substrate.
  • Silicon wafers manufactured by the CZ method are exposed to thermal oxidation treatment for 1 to 10 hours in an acidic atmosphere of 1000 to 1200 ° C., and appear to have an oxidation-induced stacking fault (hereinafter referred to as OSF (Oxidation-induced Stacking-Fault)) Ring)) may occur.
  • OSF Oxidation-induced Stacking-Fault
  • Ring oxidation-induced stacking fault
  • several types of minute defects hereinafter referred to as “Grown-in defects”.
  • the generation site of the OSF ring in the crystal includes a growth rate (pulling rate) V of the silicon single crystal and a temperature gradient G in the pulling axis direction in the temperature range from the melting point of the grown silicon single crystal to 1300 ° C.
  • the ratio V / G When the V / G is larger than the critical value at which the OSF ring disappears at the center of the crystal, the vacancies agglomerate to form an octahedral void defect of about 0.1 ⁇ m, and a MOS type LSI is manufactured. In this case, the breakdown voltage of the gate oxide film is deteriorated, or an isolation defect in the element isolation region is caused. In addition, when trench capacitor is used, characteristic defects such as punch-through between the capacitor are caused. On the other hand, when V / G is smaller than the critical value, interstitial silicon aggregates to form dislocation clusters, leading to characteristic defects such as PN junction leakage.
  • Patent Document 1 a ratio V / G between a pulling rate V and a temperature gradient G in a crystal is controlled in a single crystal growth so that no grown-in defect or OSF ring occurs (hereinafter referred to as a defect-free region). ) Has been proposed.
  • a method for evaluating a Grown-in defect or an OSF ring for example, a method of detecting a void defect by infrared scattering tomography or an OSF ring that is manifested by etching after the thermal oxidation treatment at 1000 to 1200 ° C. described above with a microscope is used. The observation method is known.
  • Patent Documents 2 and 3 describe a method for analyzing and evaluating crystal defects of a silicon wafer by a so-called copper decoration method.
  • the analysis method described in Patent Document 2 includes a step of forming a thermal oxide film having a predetermined thickness on the surface of a bare wafer, a step of etching a bag side of the bare wafer, and copper at a defective portion of the bare wafer. And a step of analyzing a defect portion of the wafer decorated with copper after the step of performing copper decorating.
  • the distribution and density of defect sites on the copper-decorated wafer are analyzed with the naked eye, and the morphology of the defect sites on the copper-decorated wafer is analyzed by transmission electron microscope (TEM) or scanning electron microscope (SEM). ) To analyze.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Patent Document 3 describes a method of evaluating crystal defects in a silicon single crystal manufactured by the CZ method by a copper decoration method in which a sample contaminated with copper is heat-treated and then rapidly cooled.
  • a copper decoration method is applied to a silicon single crystal having a low oxygen concentration with an interstitial oxygen concentration of 10 ⁇ 10 17 atoms / cm 3 (ASTM'79) or less in the crystal, and a nucleus that becomes OSF or OSF. The area where the is present is detected with high sensitivity.
  • the film thickness of an epitaxial layer or a DZ layer in an epitaxial wafer is measured by measuring the resistivity of the wafer by a thermal donor generated from interstitial oxygen when the silicon wafer is annealed at a low temperature of about 450 ° C.
  • a method for evaluating a wafer structure related to oxygen concentration distribution such as measurement is described.
  • JP-A-8-330316 Japanese Patent Laid-Open No. 10-227729 JP 2001-81000 A JP-A-9-82768
  • the conventional method for evaluating crystal defects of a general silicon wafer requires a plurality of heat treatments and etching processes according to the types of crystal defects, and there is a problem that the evaluation takes time and cost.
  • the silicon wafer crystal defect evaluation method using the copper decoration method can simultaneously evaluate the presence or absence of a grown-in defect region or an OSF ring region, but a heat treatment process of several tens of hours for copper decoration. Is necessary, and there is a problem of lack of simplicity.
  • an object of the present invention is to provide a silicon wafer evaluation method and manufacturing method capable of evaluating the presence and type of a crystal defect region of a silicon wafer by a simple method while saving time and cost.
  • a silicon wafer evaluation method is an evaluation method of a silicon wafer cut out from a silicon single crystal ingot grown by a CZ method, and a thermal donor generation heat treatment is performed on the silicon wafer. It is characterized in that the generation rate of a thermal donor that is sometimes generated is measured, and the presence or absence of a crystal defect region or the type of crystal defect is determined based on the generation rate of the thermal donor.
  • a thermal donor generation rate based on a change in specific resistance caused by heat treatment of a silicon wafer cut from a silicon single crystal ingot grown by the CZ method while controlling V / G is measured.
  • the presence / absence of a crystal defect region and the type of crystal defect can be easily evaluated.
  • the first silicon wafer cut out from the silicon single crystal ingot is subjected to the thermal donor generation heat treatment in a state where the first silicon wafer includes an oxygen cluster.
  • the first thermal donor generation rate which is the generation rate of the thermal donor generated at the measurement point, was obtained, and the donor killer process and the thermal donor generation heat treatment were sequentially performed on the second silicon wafer different from the first silicon wafer.
  • a second thermal donor generation rate that is a generation rate of a thermal donor generated at a second measurement point on the second silicon wafer is sometimes obtained, and a first thermal donor generation relative to the second thermal donor generation rate is obtained.
  • the state in which the silicon wafer includes oxygen clusters refers to a state before the donor killer process is performed on the silicon wafer in the as-grown state.
  • the defect-free region refers to a region that does not include a grown-in defect and does not generate an OSF ring after the evaluation heat treatment.
  • the present invention based on the first and second thermal donor generation rates obtained from the two types of wafers having the difference in the presence or absence of the donor killer process, the presence or absence of the crystal defect region and the crystal defect The type can be easily evaluated.
  • the silicon wafer evaluation method determines that the first measurement point on the first silicon wafer is a defect-free region when the thermal donor generation speed ratio is within the first speed range.
  • the thermal donor generation speed ratio is in a second speed range higher than the first speed range, it is determined that the first measurement point is a region including a void defect, and the thermal donor
  • the generation speed ratio is in a third speed range higher than the second speed range, it is preferable to determine that the first measurement point is a region including an OSF nucleus.
  • the thermal donor generation heat treatment is preferably a heat treatment at 430 ° C. to 480 ° C. for 2 hours to 4 hours, and more preferably at 450 ° C. for 4 hours. Under this heat treatment condition, it is possible to activate the oxygen cluster and evaluate the presence or absence of a crystal defect region and the type of crystal defect based on the thermal donor generation rate.
  • the first silicon when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours, the first silicon is used when the thermal donor generation rate ratio is 1.3 or more and less than 1.7.
  • the first measurement point on the wafer is determined to be a defect-free region, and the thermal donor generation rate ratio is 1.7 or more and less than 1.9, the first measurement point includes a void defect. It is preferable to determine that the first measurement point is a region containing OSF nuclei when the thermal donor generation rate ratio is 1.9 or more and less than 2.3. By such determination, it is possible to easily determine an OSF ring region, a region including a void defect, and a defect-free region.
  • the crystal defect map in the radial direction of the silicon wafer is measured by measuring the generation rate of the thermal donor at each of a plurality of measurement points provided along the radial direction of the silicon wafer. It is preferable to create
  • the specific resistance of the silicon wafer is measured, the carrier concentration is obtained from an Irbin curve based on the specific resistance, and the thermal donor is calculated based on the carrier concentration before and after the thermal donor generation heat treatment. It is preferable to determine the generation amount and determine the thermal donor generation rate from the relationship between the thermal donor generation heat treatment time and the thermal donor generation amount. In this case, it is preferable to measure the specific resistance of the silicon wafer by a four-probe method.
  • the silicon wafer manufacturing method includes a first silicon single crystal ingot grown by the Czochralski method and subjected to thermal donor generation heat treatment on the silicon wafer for evaluation cut out from the first silicon single crystal ingot. And measuring the generation rate of the thermal donor generated at the time, and determining the presence or absence of the crystal defect region or the type of crystal defect in the silicon wafer for evaluation based on the measurement result of the generation rate of the thermal donor.
  • the second silicon single crystal ingot growth condition is adjusted based on the growth condition of the silicon single crystal ingot and the determination result of the presence or absence of the crystal defect region in the silicon wafer for evaluation or the type of the crystal defect.
  • a silicon wafer for production is cut out from a silicon single crystal ingot.
  • the second silicon single crystal ingot having a defect-free region may be grown by adjusting a growth condition of the second silicon single crystal ingot.
  • the second silicon single crystal ingot having a region including it may be grown, or the second silicon single crystal ingot having a region including an OSF nucleus may be grown.
  • the product silicon wafer is preferably subjected to donor killer treatment. According to this, it is possible to provide a silicon wafer product that is not affected by the thermal donor.
  • the evaluation method and manufacturing method of a silicon wafer which can evaluate the presence or absence of the crystal defect area
  • FIG. 1 is a flowchart for explaining a method of manufacturing a silicon wafer according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a general relationship between V / G and the type and distribution of crystal defects.
  • FIG. 3 is a flowchart showing a thermal donor generation rate measurement step.
  • FIG. 4 is a flowchart showing a process of discriminating the presence / absence of a crystal defect region in the wafer and the type of crystal defect.
  • FIG. 5 is a graph showing the relationship between the thermal donor generation rate and the thermal donor generation heat treatment time of the wafer samples A1 to A3 and B1 to B3.
  • FIG. 1 is a flowchart for explaining a method of manufacturing a silicon wafer according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a general relationship between V / G and the type and distribution of crystal defects.
  • FIG. 3 is a flowchart showing a thermal donor generation rate measurement step.
  • FIG. 4 is a flowchart showing
  • FIG. 6 shows the result of determining the relationship between the thermal donor generation rate and the oxygen concentration in the OSF ring generation region, the region including void defects, and the defect-free region when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours. It is a graph which shows.
  • FIG. 7 is a graph in which the thermal donor generation rate at each measurement point of the wafer without donor killer treatment in FIG. 6 is normalized by the thermal donor generation rate at the same measurement point of the wafer with donor killer treatment.
  • FIG. 1 is a flowchart for explaining a method of manufacturing a silicon wafer according to an embodiment of the present invention.
  • the silicon single crystal manufacturing method includes a crystal growth step (S11) for growing a silicon single crystal ingot by the CZ method, and a slicing step (S12) for cutting a silicon wafer from the silicon single crystal ingot. ), Thermal donor generation rate measurement step (S13Y, S14) performed when the evaluation of the crystal defect region of the silicon wafer is necessary, and the presence / absence of the crystal defect region and the type of crystal defect from the measurement result of the thermal donor generation rate A discriminating step (S15), and an adjusting step (S16Y, S17) for adjusting the growth conditions of the subsequent silicon single crystal ingot based on the discriminating result of the presence / absence of a crystal defect region and the type of crystal defect. Yes.
  • the silicon single crystal manufacturing method includes a donor killer processing step (S18) performed when evaluation of a silicon wafer is unnecessary, and a product such as mirror polishing performed on the silicon wafer after the donor killer processing. And a processing step (S19).
  • the kind and distribution of crystal defects contained in a silicon single crystal grown by the CZ method depend on the ratio V / G between the pulling speed V of the silicon single crystal and the temperature gradient G in the crystal in the pulling axis direction. Therefore, in order to control the crystal quality in the silicon single crystal, it is necessary to precisely control V / G. However, whether or not a silicon single crystal ingot (first silicon single crystal ingot) grown under a certain condition has a desired crystal quality cannot be known without actually evaluating the crystal quality.
  • the presence / absence of a crystal defect region in the wafer cut out from the silicon single crystal ingot and the type of crystal defect are evaluated.
  • this evaluation result is fed back to the subsequent silicon single crystal ingot (second silicon single crystal ingot) growing process.
  • the crystal growth conditions such as the crystal pulling speed V are adjusted so that the desired crystal quality is obtained.
  • FIG. 2 is a diagram showing a general relationship between V / G and the type and distribution of crystal defects.
  • V / G when V / G is large, vacancies become excessive and void defects that are aggregates of vacancies are generated.
  • a void defect is a crystal defect generally referred to as COP (Crystal Originated Particle).
  • V / G when V / G is small, the number of interstitial silicon atoms becomes excessive, and dislocation clusters that are aggregates of interstitial silicon are generated. Therefore, in order to produce a single crystal containing neither COP nor dislocation clusters, V / G must be controlled in both the radial direction and the length direction (crystal growth direction) of the single crystal.
  • an appropriate high temperature region is set in the chamber in order to keep the temperature gradient G in the radial direction within a predetermined range. Need to build.
  • the intra-crystal temperature gradient G in the radial direction is controlled by a heat shield provided above the silicon melt, whereby an appropriate hot zone can be constructed near the solid-liquid interface.
  • the temperature gradient G in the crystal in the length direction depends not only on the hot zone structure but also on the crystal pulling speed V, it is necessary to adjust the single crystal pulling speed V. At present, by strictly controlling the crystal pulling speed V, silicon single crystals having a diameter of 300 mm that do not contain COPs or dislocation clusters are mass-produced.
  • a silicon wafer that does not contain COP and dislocation clusters pulled up by controlling V / G is never homogeneous, and includes a plurality of regions that behave differently when heat-treated. For example, there are three regions, an OSF region, a Pv region, and a Pi region, in descending order of V / G between a region where COP occurs and a region where dislocation clusters occur.
  • the OSF region contains plate-like oxygen precipitates (OSF nuclei) in the as-grown state (the state in which no heat treatment is performed after single crystal growth), and is thermally oxidized at a high temperature of 1000 to 1200 ° C. This is a region where OSF occurs.
  • the Pv region includes oxygen precipitation nuclei in an as-grown state, and is a region where oxygen precipitates are easily generated when two-stage heat treatment is performed at a low temperature and a high temperature (for example, 800 ° C. and 1000 ° C.).
  • the Pi region is a region that hardly contains oxygen precipitation nuclei in an as-grown state and hardly generates oxygen precipitates even after heat treatment.
  • the control of V / G is performed mainly by adjusting the pulling speed V.
  • V / G is too large. Decrease the crystal pulling speed V.
  • V / G is too small and the crystal pulling speed V is increased. .
  • the time change of the thermal donor in the silicon wafer cut out from the ingot is measured.
  • oxygen dissolved from the quartz crucible is usually 10 ⁇ 10 17 atoms / cm 3 (ASTM F-121, 1979). This oxygen causes crystal defects in the wafer and causes device characteristic defects.
  • the wafer strength is increased to suppress deformation and heavy metals that cause device malfunction. It acts in a complicated manner, for example, by forming an oxygen precipitate having a gettering action for trapping the inside of the wafer.
  • oxygen atoms in silicon are electrically neutral and do not affect their electrical resistance.
  • a silicon single crystal produced by the CZ method is grown using a quartz crucible, it contains supersaturated oxygen in the crystal.
  • heat-treated at a low temperature of around 450 ° C. several oxygen atoms gather to form an oxygen cluster. It is known to form and become a donor that emits electrons.
  • the thermal donor formed by heat treatment at around 450 ° C. is affected by point defects, and the thermal donor generation rate differs depending on the difference in point defect concentration between the vacancy dominant region (COP region and OSF ring region) and the defect-free region. Therefore, in this embodiment, the presence / absence of a crystal defect region in the silicon wafer and the type of crystal defect are determined based on the generation rate of thermal donors generated in the silicon wafer.
  • thermal donor generation rate measuring step (S14) two silicon wafers for evaluation that are continuously cut out from the ingot by the slicing step (S12) are prepared.
  • the two evaluation wafers are preferably wafers cut out from the ingot by a wire saw and subjected to rough polishing.
  • one of the wafers (first wafer) is subjected to a thermal donor generation heat treatment step without performing donor killer treatment in advance, and the other wafer (second wafer) is subjected to donor killer treatment in advance and then subjected to thermal treatment.
  • a donor generation heat treatment is performed, and a thermal donor generation speed is obtained from a change in specific resistance before and after the thermal donor generation heat treatment of each of the first and second wafers.
  • FIG. 3 is a flowchart showing a thermal donor generation rate measurement step.
  • the thermal donor generation rate measurement step (S14) includes a preparation step (S20) for preparing the first and second wafers in the as-grown state, and a ratio for measuring the specific resistance of the first wafer.
  • a resistance measurement step (S21), a thermal donor generation heat treatment step (S22) for performing thermal donor generation heat treatment on the first wafer after the specific resistance measurement, and a specific resistance of the first wafer after the thermal donor generation heat treatment are measured.
  • the thermal donor generation rate measuring step (S14) includes a step of performing donor killer processing on the second wafer (S25), a resistance measuring step of measuring the specific resistance of the second wafer after donor killer processing (S26), and A thermal donor generation heat treatment step (S27) for performing the same thermal donor generation heat treatment as that of the first wafer on the second wafer after the specific resistance measurement, and a specific resistance of the second wafer after the thermal donor generation heat treatment are measured.
  • the temperature of the thermal donor-generated heat treatment is preferably 430 to 480 ° C, particularly preferably 450 ° C.
  • the heat treatment time for generating the thermal donor is preferably 1 to 4 hours, more preferably 2 to 4 hours.
  • the donor killer treatment is a short-time heat treatment performed in an inert gas atmosphere at 600 to 700 ° C., for example, and the heat treatment time is about 15 minutes, for example.
  • the specific resistance in the silicon wafer surface can be measured by a so-called four-probe method. Based on the measured specific resistance, the carrier concentration is determined from the Irvine curve, the amount of thermal donor generation is determined based on the carrier concentration before and after the thermal donor generation heat treatment, and from the relationship between the thermal donor generation heat treatment time and the amount of thermal donor generation The thermal donor generation rate can be determined.
  • a defect map in the radial direction of the silicon wafer can be created.
  • FIG. 4 is a flowchart showing a process for discriminating the presence / absence of a crystal defect region in the wafer and the type of crystal defect.
  • the ratio of the first thermal donor generation rate to the second thermal donor generation rate is calculated (S30).
  • the value is 1.3 or more and less than 1.7
  • the value is 1.7 or more and less than 1.9, it is a region including a void defect. It discriminate
  • the silicon wafer evaluation method cuts out a silicon wafer from a silicon single crystal ingot grown by the CZ method and performs thermal donor generation heat treatment on the silicon wafer. Since the generation rate is measured and the presence or absence of the crystal defect region or the type of crystal defect is determined based on the generation rate of the thermal donor, the region including the OSF nucleus, the region including the void defect, or the non-defect region can be quickly determined. It can be easily determined.
  • unlike the conventional evaluation method for example, it is not necessary to decorate copper, and evaluation can be performed with a relatively short time of low-temperature heat treatment. Existence and types of crystal defects can be evaluated.
  • the silicon wafer manufacturing method measures the thermal donor generation rate of the evaluation silicon wafer cut out from the preceding silicon single crystal ingot, and based on the measurement result of the thermal donor generation rate, the evaluation silicon wafer Since the presence / absence of the crystal defect region or the type of the crystal defect is discriminated, and the growth condition of the subsequent silicon single crystal ingot is adjusted based on the discrimination result, the crystal growth condition can be easily optimized.
  • the first and second silicon wafers cut from the silicon single crystal ingot in the thermal donor generation rate measuring step (S14) are prepared, and the donor killer process (S25) is performed on the second wafer.
  • the thermal donor generation heat treatment (S27) is performed to calculate the second thermal donor generation rate.
  • such a step of calculating the second thermal donor generation rate can be omitted.
  • the other silicon wafer equivalent to the second silicon wafer is subjected to donor killer treatment and thermal donor generation heat treatment, and the second thermal donor generation rate calculated in advance is made into a database to generate the second thermal donor generation.
  • the speed read from the database may be used, and only the first thermal donor generation speed may be measured to evaluate the presence / absence of a crystal defect region and the type of crystal defect.
  • the effect of the type of crystal defects on the thermal donor generation rate was evaluated.
  • a P-type silicon single crystal ingot having a diameter of 300 mm and a plane orientation (100) was grown by the CZ method.
  • a silicon single crystal ingot was grown while controlling V / G so as to include the OSF ring generation region.
  • the oxygen concentration of this silicon single crystal ingot was 5 ⁇ 10 17 to 20 ⁇ 10 17 atoms / cm 3 (ASTM F-121, 1979).
  • samples A1 and B1 of two silicon wafers including the OSF ring generation region were obtained.
  • the OSF ring generation region refers to a region where an OSF ring is generated after the evaluation heat treatment, and refers to a region including OSF nuclei in an as-grown state.
  • a silicon single crystal ingot is grown under the same conditions as Samples A1 and B1 except that the V / G is controlled so that a void defect area is included, and the silicon single crystal ingot is sliced to obtain a void defect.
  • Samples A2 and B2 of two silicon wafers including the region where the sapphire exists were obtained.
  • a silicon single crystal ingot is produced under the same conditions as those of the samples A1 and B1 except that V / G is controlled so as to be a defect-free region, and this silicon single crystal ingot is sliced to form 2 Two silicon wafer samples A3 and B3 were obtained.
  • a donor killer treatment was performed in a nitrogen atmosphere at 700 ° C. for 15 minutes.
  • Samples A1 to A3 of silicon wafers prepared by processes without donor killer treatment (Examples 1 to 3) and samples B1 to B3 of silicon wafers prepared by processes with donor killer treatment (Comparative Examples 1 to 3), respectively.
  • Thermal donor generation heat treatment was performed in a nitrogen atmosphere at 450 ° C. to generate a thermal donor.
  • FIG. 5 is a graph showing the relationship between the thermal donor generation rate of the wafer samples A1 to A3 and B1 to B3 and the thermal donor generation heat treatment time.
  • the horizontal axis represents the heat treatment time (h), and the vertical axis represents the thermal donor generation rate. (Cm ⁇ 3 / h) is shown respectively.
  • this graph is summarized only for wafers that satisfy the condition of oxygen concentration of 11 ⁇ 10 17 atoms / cm 3 .
  • the donor killer treatment is performed on the OSF ring generation region, the region including the void defect, and the non-defect region as compared with the case where the donor killer treatment is performed (samples B1, B2, and B3). None (samples A1, A2, A3) had a higher thermal donor generation rate.
  • the thermal donor generation rate was the same in any region with the donor killer treatment, but without the donor killer treatment, the thermal donor generation rate increased in the order of the OSF ring generation region, the void-containing region, and the defect-free region. became.
  • the thermal donor generation rate once increased and then decreased without the donor killer treatment.
  • the thermal donor generation rate decreased, and after 16 hours, the thermal donor generation rate became the same under all conditions.
  • FIG. 6 shows the result of determining the relationship between the thermal donor generation rate and the oxygen concentration in the OSF ring generation region, the region including void defects, and the defect-free region when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours.
  • the horizontal axis represents the oxygen concentration ( ⁇ 10 17 atoms / cm 3 ), and the vertical axis represents the thermal donor generation rate (cm ⁇ 3 / h).
  • the wafer with no donor killer treatment is the thermal donor at any oxygen concentration rather than the donor killer treatment (samples B1, B2, B3).
  • the generation rate was great.
  • the thermal donor generation rate was the same in all regions in the wafer with the donor killer process, but in the wafer without the donor killer process, the thermal donor was in the order of the OSF ring generation region, the region including the void defect, and the non-defect region. The generation rate has increased.
  • FIG. 7 is a graph in which the thermal donor generation rate at each measurement point of the wafer without donor killer treatment is normalized with the thermal donor generation rate at the same measurement point of the wafer with donor killer treatment in the graph of FIG.
  • the horizontal axis represents the oxygen concentration ( ⁇ 10 17 atoms / cm 3 ), and the vertical axis represents the thermal donor generation rate (standard value).
  • the thermal donor generation rate in the defect-free region of the wafer without donor killer treatment was 1.3 times or more and less than 1.7 times the thermal donor generation rate of the wafer with donor killer treatment.
  • the thermal donor generation rate in the region including the void defect of the wafer without donor killer treatment was 1.7 times or more and less than 1.9 times the thermal donor generation rate of the wafer with donor killer treatment.
  • the thermal donor generation rate in the OSF ring generation region of the wafer without donor killer treatment was 1.9 times or more and less than 2.3 times the thermal donor generation rate of the wafer with donor killer treatment.

Abstract

According to the present invention, the presence and types of defective regions in a silicon wafer are evaluated with a simple method while saving time and costs. This method for evaluating a silicon wafer, which is cut from a single crystal silicon ingot grown by using the Czochralski method, includes: (S14) measuring the generation rate of thermal donors generated when a thermal-donor-generating heat treatment is performed on the silicon wafer; and (S15) determining the presence of crystalline defective regions and the types of crystalline defects on the basis of the generation rate of thermal donors.

Description

シリコンウェーハの評価方法及び製造方法Silicon wafer evaluation method and manufacturing method
 本発明は、シリコンウェーハの評価方法及び製造方法に関し、特に、チョクラルスキー法(以下、「CZ法」という)によって製造されたシリコンウェーハの結晶欠陥領域の評価方法に関するものである。 The present invention relates to a silicon wafer evaluation method and manufacturing method, and more particularly to a crystal defect region evaluation method of a silicon wafer manufactured by the Czochralski method (hereinafter referred to as “CZ method”).
 半導体材料に用いられるシリコン単結晶の製造には種々の方法があるが、一般にCZ(Czochralski)法、又は、FZ(Floating Zone)法が用いられている。CZ法は、石英ルツボに充填した多結晶原料をヒーターで加熱溶融した後、この融液に種結晶を浸し、これを回転させつつ上方に引き上げることによって単結晶を成長させる方法である。また、FZ法は、多結晶原料ロッドの一部を高周波で加熱溶融して溶融帯域を作り、この溶融帯域を移動させながら単結晶を成長させる方法である。前記CZ法は、大きな直径の結晶の形成が容易であるため、CZ法で製造したシリコン単結晶から切り出したウェーハが、高集積度半導体素子基板として用いられている。 There are various methods for producing a silicon single crystal used as a semiconductor material, but generally, the CZ (Czochralski) method or the FZ (Floating Zone) method is used. The CZ method is a method of growing a single crystal by melting a polycrystalline raw material filled in a quartz crucible with a heater and then immersing a seed crystal in the melt and pulling it upward while rotating it. The FZ method is a method in which a part of a polycrystalline raw material rod is heated and melted at a high frequency to form a melting zone, and a single crystal is grown while moving the melting zone. Since the CZ method makes it easy to form a crystal with a large diameter, a wafer cut from a silicon single crystal manufactured by the CZ method is used as a highly integrated semiconductor element substrate.
 CZ法によって製造されたシリコンウェーハは、1000~1200℃の酸性雰囲気下で1~10時間の熱酸化処理を受けたとき、リング状に現れる酸化誘起積層欠陥(以下、OSF(Oxidation induced Stacking Fault)リングという)が発生する場合がある。その他に、数種類の微小欠陥(以下、Grown-in欠陥という)が形成される。 Silicon wafers manufactured by the CZ method are exposed to thermal oxidation treatment for 1 to 10 hours in an acidic atmosphere of 1000 to 1200 ° C., and appear to have an oxidation-induced stacking fault (hereinafter referred to as OSF (Oxidation-induced Stacking-Fault)) Ring)) may occur. In addition, several types of minute defects (hereinafter referred to as “Grown-in defects”) are formed.
 結晶内でのOSFリングの発生部位は、シリコン単結晶の成長速度(引き上げ速度)Vと、育成されるシリコン単結晶の融点から1300℃までの温度域内における引き上げ軸方向の結晶内温度勾配Gとの比V/Gによって決定される。OSFリングが結晶中心部で消滅する臨界値よりもV/Gが大きい場合には空孔が凝集して、0.1μm程度の八面体の空洞(ボイド)欠陥が形成され、MOS型LSIを製造する場合にゲート酸化膜の耐圧を劣化させたり、素子分離領域の分離不良を生じさせたりする。さらにトレンチキヤパシターを用いる場合にキヤパシター間のパンチスルー等の特性不良を招く。一方、V/Gが臨界値より小さい場合には格子間シリコンが凝集して転位クラスターが形成され、PN接合リーク等の特性不良を招く。 The generation site of the OSF ring in the crystal includes a growth rate (pulling rate) V of the silicon single crystal and a temperature gradient G in the pulling axis direction in the temperature range from the melting point of the grown silicon single crystal to 1300 ° C. The ratio V / G. When the V / G is larger than the critical value at which the OSF ring disappears at the center of the crystal, the vacancies agglomerate to form an octahedral void defect of about 0.1 μm, and a MOS type LSI is manufactured. In this case, the breakdown voltage of the gate oxide film is deteriorated, or an isolation defect in the element isolation region is caused. In addition, when trench capacitor is used, characteristic defects such as punch-through between the capacitor are caused. On the other hand, when V / G is smaller than the critical value, interstitial silicon aggregates to form dislocation clusters, leading to characteristic defects such as PN junction leakage.
 このような問題に対応するため、従来から多くの方法が提案されている。例えば、特許文献1では、単結晶育成時の引上げ速度Vと結晶内の温度勾配Gの比V/Gを制御して、いかなるGrown-in欠陥もOSFリングも発生しない領域(以下、無欠陥領域)を育成する方法が提案されている。 In the past, many methods have been proposed to deal with such problems. For example, in Patent Document 1, a ratio V / G between a pulling rate V and a temperature gradient G in a crystal is controlled in a single crystal growth so that no grown-in defect or OSF ring occurs (hereinafter referred to as a defect-free region). ) Has been proposed.
 Grown-in欠陥やOSFリングの評価方法としては、例えば、赤外散乱トモグラフによってボイド欠陥を検出する方法や上述した1000~1200℃の熱酸化処理後にエッチングすることによって顕在化するOSFリングを顕微鏡で観察する方法などが知られている。 As a method for evaluating a Grown-in defect or an OSF ring, for example, a method of detecting a void defect by infrared scattering tomography or an OSF ring that is manifested by etching after the thermal oxidation treatment at 1000 to 1200 ° C. described above with a microscope is used. The observation method is known.
 また特許文献2、3には、いわゆる銅デコレーション法によりシリコンウェーハの結晶欠陥を分析・評価する方法が記載されている。例えば特許文献2に記載された分析方法は、ベアウェーハの表面上に所定の厚さの熱酸化膜を形成させる段階と、ベアウェーハのバッグサイドをエッチングする段階と、ベアウェーハの欠陥部位に銅のデコレーティングを遂行する段階と、銅のデコレーティング遂行段階の以後に銅がデコレーションされたウェーハの欠陥部位を分析する段階を備えている。分析段階では、銅がデコレーションされたウェーハの欠陥部位の分布及び密度が肉眼で分析することの他、銅でデコレーションされたウェーハの欠陥部位のモルホロジーを透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)で分析する。 Patent Documents 2 and 3 describe a method for analyzing and evaluating crystal defects of a silicon wafer by a so-called copper decoration method. For example, the analysis method described in Patent Document 2 includes a step of forming a thermal oxide film having a predetermined thickness on the surface of a bare wafer, a step of etching a bag side of the bare wafer, and copper at a defective portion of the bare wafer. And a step of analyzing a defect portion of the wafer decorated with copper after the step of performing copper decorating. In the analysis stage, the distribution and density of defect sites on the copper-decorated wafer are analyzed with the naked eye, and the morphology of the defect sites on the copper-decorated wafer is analyzed by transmission electron microscope (TEM) or scanning electron microscope (SEM). ) To analyze.
 さらに、特許文献3には、銅で汚染した試料を熱処理した後に急冷する銅デコレーション法により、CZ法で製造したシリコン単結晶中の結晶欠陥を評価する方法が記載されている。この評価方法では、結晶中の格子間酸素濃度が10×1017atoms/cm(ASTM'79)以下の低酸素濃度のシリコン単結晶に対して銅デコレーション法を施し、OSF又はOSFとなる核が存在する領域を高感度で検出する。 Further, Patent Document 3 describes a method of evaluating crystal defects in a silicon single crystal manufactured by the CZ method by a copper decoration method in which a sample contaminated with copper is heat-treated and then rapidly cooled. In this evaluation method, a copper decoration method is applied to a silicon single crystal having a low oxygen concentration with an interstitial oxygen concentration of 10 × 10 17 atoms / cm 3 (ASTM'79) or less in the crystal, and a nucleus that becomes OSF or OSF. The area where the is present is detected with high sensitivity.
 特許文献4には、シリコンウェーハを450℃程度の低温でアニールしたときに格子間酸素から生成されるサーマルドナーによるウェーハの抵抗率を測定することによって、エピタキシャルウェーハにおけるエピタキシャル層やDZ層の膜厚測定など、酸素濃度分布に関連したウェーハ構造を評価する方法が記載されている。 In Patent Document 4, the film thickness of an epitaxial layer or a DZ layer in an epitaxial wafer is measured by measuring the resistivity of the wafer by a thermal donor generated from interstitial oxygen when the silicon wafer is annealed at a low temperature of about 450 ° C. A method for evaluating a wafer structure related to oxygen concentration distribution such as measurement is described.
特開平8-330316号公報JP-A-8-330316 特開平10-227729号公報Japanese Patent Laid-Open No. 10-227729 特開2001-81000号公報JP 2001-81000 A 特開平9-82768号公報JP-A-9-82768
 しかしながら、従来の一般的なシリコンウェーハの結晶欠陥の評価方法は、結晶欠陥の種類に応じた複数の熱処理やエッチング工程を必要とするものであり、評価に時間とコストがかかるという問題がある。 However, the conventional method for evaluating crystal defects of a general silicon wafer requires a plurality of heat treatments and etching processes according to the types of crystal defects, and there is a problem that the evaluation takes time and cost.
 また、銅デコレーション法を利用したシリコンウェーハの結晶欠陥の評価方法は、Grown-in欠陥領域やOSFリング領域の有無を同時に評価することができるものの、銅のデコレーションのために数十時間という熱処理工程が必要であり、簡便さに欠けるという問題がある。 In addition, the silicon wafer crystal defect evaluation method using the copper decoration method can simultaneously evaluate the presence or absence of a grown-in defect region or an OSF ring region, but a heat treatment process of several tens of hours for copper decoration. Is necessary, and there is a problem of lack of simplicity.
 したがって、本発明の目的は、時間とコストを抑えて簡便な方法でシリコンウェーハの結晶欠陥領域の有無及び種類を評価することが可能なシリコンウェーハの評価方法及び製造方法を提供することにある。 Therefore, an object of the present invention is to provide a silicon wafer evaluation method and manufacturing method capable of evaluating the presence and type of a crystal defect region of a silicon wafer by a simple method while saving time and cost.
 上記課題を解決するため、本発明によるシリコンウェーハの評価方法は、CZ法によって育成されたシリコン単結晶インゴットから切り出したシリコンウェーハの評価方法であって、前記シリコンウェーハにサーマルドナー発生熱処理を施したときに発生するサーマルドナーの発生速度を測定し、当該サーマルドナーの発生速度に基づいて結晶欠陥領域の有無又は結晶欠陥の種類を判別することを特徴とする。 In order to solve the above problems, a silicon wafer evaluation method according to the present invention is an evaluation method of a silicon wafer cut out from a silicon single crystal ingot grown by a CZ method, and a thermal donor generation heat treatment is performed on the silicon wafer. It is characterized in that the generation rate of a thermal donor that is sometimes generated is measured, and the presence or absence of a crystal defect region or the type of crystal defect is determined based on the generation rate of the thermal donor.
 本発明によれば、V/Gを制御しながらCZ法によって育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハに熱処理を施したことによる比抵抗の変化に基づくサーマルドナー発生速度を測定することによって結晶欠陥領域の有無及び結晶欠陥の種類を簡便に評価することができる。 According to the present invention, a thermal donor generation rate based on a change in specific resistance caused by heat treatment of a silicon wafer cut from a silicon single crystal ingot grown by the CZ method while controlling V / G is measured. Thus, the presence / absence of a crystal defect region and the type of crystal defect can be easily evaluated.
 本発明によるシリコンウェーハの評価方法は、前記シリコン単結晶インゴットから切り出した第1のシリコンウェーハが酸素クラスターを含む状態において前記サーマルドナー発生熱処理を施したときに前記第1のシリコンウェーハ上の第1の測定ポイントに発生するサーマルドナーの発生速度である第1のサーマルドナー発生速度を求め、前記第1のシリコンウェーハと異なる第2のシリコンウェーハにドナーキラー処理及び前記サーマルドナー発生熱処理を順に施したときに前記第2のシリコンウェーハ上の第2の測定ポイントに発生するサーマルドナーの発生速度である第2のサーマルドナー発生速度を求め、前記第2のサーマルドナー発生速度に対する第1のサーマルドナー発生速度の比であるサーマルドナー発生速度比に基づいて、前記第1のシリコンウェーハ上の前記第1の測定ポイントがOSF核を含む領域、ボイド欠陥を含む領域又は無欠陥領域のいずれに該当するかを判別することが好ましい。ここで、シリコンウェーハが酸素クラスターを含む状態とは、as-grown状態のシリコンウェーハに対してドナーキラー処理を施す前の状態のことを言う。また無欠陥領域とは、Grown-in欠陥を含まず、且つ、評価熱処理後にOSFリングが発生しない領域のことを言う。このように、本発明によれば、ドナーキラー処理の有無の違いを持つ2種類のウェーハからそれぞれ求めた第1及び第2のサーマルドナー発生速度に基づいて、結晶欠陥領域の有無及び結晶欠陥の種類を簡便に評価することができる。 In the silicon wafer evaluation method according to the present invention, the first silicon wafer cut out from the silicon single crystal ingot is subjected to the thermal donor generation heat treatment in a state where the first silicon wafer includes an oxygen cluster. The first thermal donor generation rate, which is the generation rate of the thermal donor generated at the measurement point, was obtained, and the donor killer process and the thermal donor generation heat treatment were sequentially performed on the second silicon wafer different from the first silicon wafer. A second thermal donor generation rate that is a generation rate of a thermal donor generated at a second measurement point on the second silicon wafer is sometimes obtained, and a first thermal donor generation relative to the second thermal donor generation rate is obtained. Based on thermal donor generation rate ratio, which is the rate ratio , It is preferable to determine whether the first measurement point on the first silicon wafer area including the OSF nucleus, corresponds to one region or a defect-free region includes a void defects. Here, the state in which the silicon wafer includes oxygen clusters refers to a state before the donor killer process is performed on the silicon wafer in the as-grown state. The defect-free region refers to a region that does not include a grown-in defect and does not generate an OSF ring after the evaluation heat treatment. As described above, according to the present invention, based on the first and second thermal donor generation rates obtained from the two types of wafers having the difference in the presence or absence of the donor killer process, the presence or absence of the crystal defect region and the crystal defect The type can be easily evaluated.
 本発明によるシリコンウェーハの評価方法は、前記サーマルドナー発生速度比が第1の速度範囲内にある場合に、前記第1のシリコンウェーハ上の前記第1の測定ポイントが無欠陥領域であると判別し、前記サーマルドナー発生速度比が前記第1の速度範囲よりも高い第2の速度範囲内にある場合に、前記第1の測定ポイントがボイド欠陥を含む領域であると判別し、前記サーマルドナー発生速度比が前記第2の速度範囲よりも高い第3の速度範囲内にある場合に、前記第1の測定ポイントがOSF核を含む領域であると判別することが好ましい。このような判別により、OSFリング領域、ボイド欠陥を含む領域、及び無欠陥領域を簡便に判定することができる。 The silicon wafer evaluation method according to the present invention determines that the first measurement point on the first silicon wafer is a defect-free region when the thermal donor generation speed ratio is within the first speed range. When the thermal donor generation speed ratio is in a second speed range higher than the first speed range, it is determined that the first measurement point is a region including a void defect, and the thermal donor When the generation speed ratio is in a third speed range higher than the second speed range, it is preferable to determine that the first measurement point is a region including an OSF nucleus. By such determination, it is possible to easily determine an OSF ring region, a region including a void defect, and a defect-free region.
 本発明において、前記サーマルドナー発生熱処理は、430℃以上480℃以下で2時間以上4時間以下の熱処理であることが好ましく、450℃で4時間の熱処理であることがさらに好ましい。この熱処理条件であれば、酸素クラスターを活性化させてサーマルドナー発生速度に基づく結晶欠陥領域の有無及び結晶欠陥の種類の評価を行うことが可能である。 In the present invention, the thermal donor generation heat treatment is preferably a heat treatment at 430 ° C. to 480 ° C. for 2 hours to 4 hours, and more preferably at 450 ° C. for 4 hours. Under this heat treatment condition, it is possible to activate the oxygen cluster and evaluate the presence or absence of a crystal defect region and the type of crystal defect based on the thermal donor generation rate.
 本発明によるシリコンウェーハの評価方法は、450℃で4時間の前記サーマルドナー発生熱処理を施したとき、前記サーマルドナー発生速度比が1.3以上1.7未満である場合に前記第1のシリコンウェーハ上の前記第1の測定ポイントが無欠陥領域であると判別し、前記サーマルドナー発生速度比が1.7以上1.9未満である場合に前記第1の測定ポイントがボイド欠陥を含む領域であると判別し、前記サーマルドナー発生速度比が1.9以上2.3未満である場合に前記第1の測定ポイントがOSF核を含む領域であると判別することが好ましい。このような判別により、OSFリング領域、ボイド欠陥を含む領域、無欠陥領域を簡便に判定することができる According to the silicon wafer evaluation method of the present invention, when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours, the first silicon is used when the thermal donor generation rate ratio is 1.3 or more and less than 1.7. When the first measurement point on the wafer is determined to be a defect-free region, and the thermal donor generation rate ratio is 1.7 or more and less than 1.9, the first measurement point includes a void defect. It is preferable to determine that the first measurement point is a region containing OSF nuclei when the thermal donor generation rate ratio is 1.9 or more and less than 2.3. By such determination, it is possible to easily determine an OSF ring region, a region including a void defect, and a defect-free region.
 本発明によるシリコンウェーハの評価方法は、前記シリコンウェーハの径方向に沿って設けた複数の測定ポイントの各々において前記サーマルドナーの発生速度を測定することにより、前記シリコンウェーハの径方向の結晶欠陥マップを作成することが好ましい。 According to the silicon wafer evaluation method of the present invention, the crystal defect map in the radial direction of the silicon wafer is measured by measuring the generation rate of the thermal donor at each of a plurality of measurement points provided along the radial direction of the silicon wafer. It is preferable to create
 本発明によるシリコンウェーハの評価方法は、前記シリコンウェーハの比抵抗を測定し、前記比抵抗をもとにキャリア濃度をアービンカーブから求め、前記サーマルドナー発生熱処理前後のキャリア濃度をもとにサーマルドナー発生量を求め、前記サーマルドナー発生熱処理の時間と前記サーマルドナー発生量との関係から前記サーマルドナー発生速度を求めることが好ましい。この場合、前記シリコンウェーハの比抵抗を4探針法により測定することが好ましい。 According to the silicon wafer evaluation method of the present invention, the specific resistance of the silicon wafer is measured, the carrier concentration is obtained from an Irbin curve based on the specific resistance, and the thermal donor is calculated based on the carrier concentration before and after the thermal donor generation heat treatment. It is preferable to determine the generation amount and determine the thermal donor generation rate from the relationship between the thermal donor generation heat treatment time and the thermal donor generation amount. In this case, it is preferable to measure the specific resistance of the silicon wafer by a four-probe method.
 また、本発明によるシリコンウェーハの製造方法は、第1のシリコン単結晶インゴットをチョクラルスキー法によって育成し、前記第1のシリコン単結晶インゴットから切り出した評価用シリコンウェーハにサーマルドナー発生熱処理を施したときに発生するサーマルドナーの発生速度を測定し、当該サーマルドナーの発生速度の測定結果に基づいて前記評価用シリコンウェーハ中の結晶欠陥領域の有無又は結晶欠陥の種類を判別し、前記第1のシリコン単結晶インゴットの育成条件及び前記評価用シリコンウェーハ中の結晶欠陥領域の有無又は結晶欠陥の種類の判別結果に基づいて、第2のシリコン単結晶インゴットの育成条件を調整し、前記第2のシリコン単結晶インゴットから製品用シリコンウェーハを切り出すことを特徴とする。 The silicon wafer manufacturing method according to the present invention includes a first silicon single crystal ingot grown by the Czochralski method and subjected to thermal donor generation heat treatment on the silicon wafer for evaluation cut out from the first silicon single crystal ingot. And measuring the generation rate of the thermal donor generated at the time, and determining the presence or absence of the crystal defect region or the type of crystal defect in the silicon wafer for evaluation based on the measurement result of the generation rate of the thermal donor. The second silicon single crystal ingot growth condition is adjusted based on the growth condition of the silicon single crystal ingot and the determination result of the presence or absence of the crystal defect region in the silicon wafer for evaluation or the type of the crystal defect. A silicon wafer for production is cut out from a silicon single crystal ingot.
 本発明によるシリコンウェーハの製造方法は、前記第2のシリコン単結晶インゴットの育成条件を調整することによって、無欠陥領域を有する前記第2のシリコン単結晶インゴットを育成してもよく、ボイド欠陥を含む領域を有する前記第2のシリコン単結晶インゴットを育成してもよく、OSF核を含む領域を有する前記第2のシリコン単結晶インゴットを育成してもよい。また本発明においては、前記第2のシリコン単結晶インゴットの育成条件として、前記第2のシリコン単結晶インゴットの引き上げ速度を調整することが好ましい。このように、サーマルドナー発生速度に基づく評価結果を用いて、様々なタイプのシリコンウェーハを作り分けることができる。 In the method for manufacturing a silicon wafer according to the present invention, the second silicon single crystal ingot having a defect-free region may be grown by adjusting a growth condition of the second silicon single crystal ingot. The second silicon single crystal ingot having a region including it may be grown, or the second silicon single crystal ingot having a region including an OSF nucleus may be grown. In the present invention, it is preferable to adjust a pulling rate of the second silicon single crystal ingot as a growth condition for the second silicon single crystal ingot. In this way, various types of silicon wafers can be made using the evaluation results based on the thermal donor generation rate.
 本発明においては、前記製品用シリコンウェーハにドナーキラー処理を施すことが好ましい。これによれば、サーマルドナーの影響がないシリコンウェーハ製品を提供することができる。 In the present invention, the product silicon wafer is preferably subjected to donor killer treatment. According to this, it is possible to provide a silicon wafer product that is not affected by the thermal donor.
 本発明によれば、時間とコストを抑えて簡便な方法でシリコンウェーハの結晶欠陥領域の有無及び結晶欠陥の種類を評価することが可能なシリコンウェーハの評価方法及び製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the evaluation method and manufacturing method of a silicon wafer which can evaluate the presence or absence of the crystal defect area | region of a silicon wafer and the kind of crystal defect by a simple method restraining time and cost can be provided. .
図1は、本発明の実施の形態によるシリコンウェーハの製造方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining a method of manufacturing a silicon wafer according to an embodiment of the present invention. 図2は、V/Gと結晶欠陥の種類及び分布との一般的な関係を示す図である。FIG. 2 is a diagram showing a general relationship between V / G and the type and distribution of crystal defects. 図3は、サーマルドナー発生速度測定工程を示すフローチャートである。FIG. 3 is a flowchart showing a thermal donor generation rate measurement step. 図4は、ウェーハ中の結晶欠陥領域の有無及び結晶欠陥の種類の判別工程を示すフローチャートである。FIG. 4 is a flowchart showing a process of discriminating the presence / absence of a crystal defect region in the wafer and the type of crystal defect. 図5は、上記ウェーハサンプルA1~A3、B1~B3のサーマルドナー発生速度とサーマルドナー発生熱処理時間との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the thermal donor generation rate and the thermal donor generation heat treatment time of the wafer samples A1 to A3 and B1 to B3. 図6は、450℃で4時間のサーマルドナー発生熱処理を施したときの、OSFリング発生領域、ボイド欠陥を含む領域、無欠陥領域での、サーマルドナー発生速度と酸素濃度の関係を求めた結果を示すグラフである。FIG. 6 shows the result of determining the relationship between the thermal donor generation rate and the oxygen concentration in the OSF ring generation region, the region including void defects, and the defect-free region when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours. It is a graph which shows. 図7は、図6において、ドナーキラー処理なしのウェーハの各測定ポイントでのサーマルドナー発生速度をドナーキラー処理ありのウェーハの同一測定ポイントでのサーマルドナー発生速度で規格化したグラフである。FIG. 7 is a graph in which the thermal donor generation rate at each measurement point of the wafer without donor killer treatment in FIG. 6 is normalized by the thermal donor generation rate at the same measurement point of the wafer with donor killer treatment.
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の実施の形態によるシリコンウェーハの製造方法を説明するためのフローチャートである。 FIG. 1 is a flowchart for explaining a method of manufacturing a silicon wafer according to an embodiment of the present invention.
 図1に示すように、本実施形態によるシリコン単結晶の製造方法は、シリコン単結晶インゴットをCZ法により育成する結晶育成工程(S11)と、シリコン単結晶インゴットからシリコンウェーハを切り出すスライス工程(S12)と、シリコンウェーハの結晶欠陥領域の評価が必要な場合に行われるサーマルドナー発生速度測定工程(S13Y,S14)と、サーマルドナーの発生速度の測定結果から結晶欠陥領域の有無及び結晶欠陥の種類を判別する判別工程(S15)と、結晶欠陥領域の有無及び結晶欠陥の種類の判別結果に基づいて後続のシリコン単結晶インゴットの育成条件を調整する調整工程(S16Y,S17)とを有している。 As shown in FIG. 1, the silicon single crystal manufacturing method according to the present embodiment includes a crystal growth step (S11) for growing a silicon single crystal ingot by the CZ method, and a slicing step (S12) for cutting a silicon wafer from the silicon single crystal ingot. ), Thermal donor generation rate measurement step (S13Y, S14) performed when the evaluation of the crystal defect region of the silicon wafer is necessary, and the presence / absence of the crystal defect region and the type of crystal defect from the measurement result of the thermal donor generation rate A discriminating step (S15), and an adjusting step (S16Y, S17) for adjusting the growth conditions of the subsequent silicon single crystal ingot based on the discriminating result of the presence / absence of a crystal defect region and the type of crystal defect. Yes.
 また本実施形態によるシリコン単結晶の製造方法は、シリコンウェーハの評価が不要な場合に行われるドナーキラー処理工程(S18)と、ドナーキラー処理後のシリコンウェーハに対して行われる鏡面研磨等の製品加工工程(S19)とを有している。 In addition, the silicon single crystal manufacturing method according to the present embodiment includes a donor killer processing step (S18) performed when evaluation of a silicon wafer is unnecessary, and a product such as mirror polishing performed on the silicon wafer after the donor killer processing. And a processing step (S19).
 CZ法により育成されるシリコン単結晶に含まれる結晶欠陥の種類や分布は、シリコン単結晶の引き上げ速度Vと引き上げ軸方向の結晶内温度勾配Gとの比V/Gに依存する。そのため、シリコン単結晶中の結晶品質を制御するためにはV/Gを精密に制御する必要がある。しかし、ある条件下で育成されたシリコン単結晶インゴット(第1のシリコン単結晶インゴット)が所望の結晶品質を有するかどうかは、実際に結晶品質を評価してみなければ分からない。 The kind and distribution of crystal defects contained in a silicon single crystal grown by the CZ method depend on the ratio V / G between the pulling speed V of the silicon single crystal and the temperature gradient G in the crystal in the pulling axis direction. Therefore, in order to control the crystal quality in the silicon single crystal, it is necessary to precisely control V / G. However, whether or not a silicon single crystal ingot (first silicon single crystal ingot) grown under a certain condition has a desired crystal quality cannot be known without actually evaluating the crystal quality.
 そこで本実施形態ではシリコン単結晶インゴットから切り出したウェーハ中の結晶欠陥領域の有無及び結晶欠陥の種類を評価する。結晶欠陥領域の有無及び結晶欠陥の種類を評価した結果、所望の結晶品質を満たさない場合には、この評価結果が後続のシリコン単結晶インゴット(第2のシリコン単結晶インゴット)の育成工程にフィードバックされ、所望の結晶品質となるように結晶引き上げ速度V等の結晶育成条件が調整される。 Therefore, in this embodiment, the presence / absence of a crystal defect region in the wafer cut out from the silicon single crystal ingot and the type of crystal defect are evaluated. As a result of evaluating the presence / absence of a crystal defect region and the type of crystal defect, if the desired crystal quality is not satisfied, this evaluation result is fed back to the subsequent silicon single crystal ingot (second silicon single crystal ingot) growing process. The crystal growth conditions such as the crystal pulling speed V are adjusted so that the desired crystal quality is obtained.
 図2は、V/Gと結晶欠陥の種類及び分布との一般的な関係を示す図である。 FIG. 2 is a diagram showing a general relationship between V / G and the type and distribution of crystal defects.
 図2に示すように、V/Gが大きい場合には空孔が過剰となり、空孔の凝集体であるボイド欠陥が発生する。ボイド欠陥は一般的にCOP(Crystal Originated Particle)と称される結晶欠陥である。一方、V/Gが小さい場合には格子間シリコン原子が過剰となり、格子間シリコンの凝集体である転位クラスターが発生する。したがって、COPも転位クラスターも含まない単結晶を製造するためには、単結晶の径方向及び長さ方向(結晶成長方向)の両方に対してV/Gを制御しなければならない。 As shown in FIG. 2, when V / G is large, vacancies become excessive and void defects that are aggregates of vacancies are generated. A void defect is a crystal defect generally referred to as COP (Crystal Originated Particle). On the other hand, when V / G is small, the number of interstitial silicon atoms becomes excessive, and dislocation clusters that are aggregates of interstitial silicon are generated. Therefore, in order to produce a single crystal containing neither COP nor dislocation clusters, V / G must be controlled in both the radial direction and the length direction (crystal growth direction) of the single crystal.
 結晶引き上げ速度Vは単結晶の径方向のどの位置でも一定であるため、径方向の結晶内温度勾配Gを所定の範囲内に収めるためには、チャンバー内に適切な高温領域(ホットゾーン)を構築する必要がある。径方向の結晶内温度勾配Gは、シリコン融液の上方に設けられた熱遮蔽体によって制御され、これにより固液界面付近に適切なホットゾーンを構築することができる。一方、長さ方向の結晶内温度勾配Gはホットゾーン構造のみならず結晶引き上げ速度Vに依存するので、単結晶引き上げ速度Vを調整する必要がある。現在では、結晶引き上げ速度Vを厳密に制御することによって、COPや転位クラスターを含まない直径300mmのシリコン単結晶が量産されている。 Since the crystal pulling speed V is constant at any position in the radial direction of the single crystal, an appropriate high temperature region (hot zone) is set in the chamber in order to keep the temperature gradient G in the radial direction within a predetermined range. Need to build. The intra-crystal temperature gradient G in the radial direction is controlled by a heat shield provided above the silicon melt, whereby an appropriate hot zone can be constructed near the solid-liquid interface. On the other hand, since the temperature gradient G in the crystal in the length direction depends not only on the hot zone structure but also on the crystal pulling speed V, it is necessary to adjust the single crystal pulling speed V. At present, by strictly controlling the crystal pulling speed V, silicon single crystals having a diameter of 300 mm that do not contain COPs or dislocation clusters are mass-produced.
 しかしながら、V/Gを制御して引き上げられたCOP及び転位クラスターを含まないシリコンウェーハはその全面が決して均質ではなく、熱処理された場合の挙動が異なる複数の領域を含んでいる。例えば、COPが発生する領域と転位クラスターが発生する領域との間には、V/Gが大きいほうから順に、OSF領域、Pv領域、Pi領域の三つの領域が存在する。 However, a silicon wafer that does not contain COP and dislocation clusters pulled up by controlling V / G is never homogeneous, and includes a plurality of regions that behave differently when heat-treated. For example, there are three regions, an OSF region, a Pv region, and a Pi region, in descending order of V / G between a region where COP occurs and a region where dislocation clusters occur.
 OSF領域とは、as-grown状態(単結晶成長後に何の熱処理も行っていない状態)で板状酸素析出物(OSF核)を含んでおり、1000~1200℃の高温で熱酸化処理した場合にOSFが発生する領域である。Pv領域とは、as-grown状態で酸素析出核を含んでおり、低温及び高温(例えば800℃と1000℃)の2段階の熱処理を施した場合に酸素析出物が発生しやすい領域である。Pi領域とは、as-grown状態で酸素析出核をほとんど含んでおらず、熱処理を施しても酸素析出物が発生しにくい領域である。 The OSF region contains plate-like oxygen precipitates (OSF nuclei) in the as-grown state (the state in which no heat treatment is performed after single crystal growth), and is thermally oxidized at a high temperature of 1000 to 1200 ° C. This is a region where OSF occurs. The Pv region includes oxygen precipitation nuclei in an as-grown state, and is a region where oxygen precipitates are easily generated when two-stage heat treatment is performed at a low temperature and a high temperature (for example, 800 ° C. and 1000 ° C.). The Pi region is a region that hardly contains oxygen precipitation nuclei in an as-grown state and hardly generates oxygen precipitates even after heat treatment.
 上記のように、V/Gの制御は、主に引き上げ速度Vを調整することにより行われる。例えば、無欠陥領域を主に含むウェーハを望んでいるにもかかわらず、ボイド欠陥を含む領域やOSFリング領域を多く含むウェーハが製造された場合には、V/Gが大きすぎると判断し、結晶引き上げ速度Vを小さくする。逆にOSFリング領域を主に含むウェーハを望んでいるにもかかわらず無欠陥領域を多く含むウェーハが製造された場合には、V/Gが小さすぎると判断し、結晶引き上げ速度Vを大きくする。このような引き上げ速度Vの調整により、所望の結晶品質を有するシリコン単結晶インゴットを製造することができる。 As described above, the control of V / G is performed mainly by adjusting the pulling speed V. For example, in the case where a wafer including mainly a defect-free region is desired but a wafer including a void defect or a lot of OSF ring regions is manufactured, it is determined that V / G is too large. Decrease the crystal pulling speed V. On the other hand, when a wafer containing many defect-free regions is manufactured despite the desire for a wafer mainly containing the OSF ring region, it is determined that V / G is too small and the crystal pulling speed V is increased. . By adjusting the pulling speed V in this manner, a silicon single crystal ingot having a desired crystal quality can be manufactured.
 シリコン単結晶インゴットが所望の結晶品質を満たすかどうかを判断するため、本実施形態においては、当該インゴットから切り出したシリコンウェーハ中のサーマルドナーの時間変化を測定する。 In order to determine whether or not the silicon single crystal ingot satisfies the desired crystal quality, in this embodiment, the time change of the thermal donor in the silicon wafer cut out from the ingot is measured.
 CZ法において、シリコン単結晶は、石英ルツボに充填した多結晶シリコン原料を溶解し、その融液から育成されるため、石英ルツボから溶け出した酸素を通常10×1017atoms/cm(ASTM F-121,1979)程度含有している。この酸素は、ウェーハに結晶欠陥を生じさせ、デバイスの特性不良の原因となるが、一方ではデバイスの製造過程においてウェーハの強度を高めて変形を抑止したり、デバイスの動作不良の原因となる重金属をトラップするゲッタリング作用を有する酸素析出物をウェーハ内部に形成させるなど、複雑に作用する。 In the CZ method, since the silicon single crystal dissolves the polycrystalline silicon raw material filled in the quartz crucible and is grown from the melt, oxygen dissolved from the quartz crucible is usually 10 × 10 17 atoms / cm 3 (ASTM F-121, 1979). This oxygen causes crystal defects in the wafer and causes device characteristic defects. On the other hand, in the device manufacturing process, the wafer strength is increased to suppress deformation and heavy metals that cause device malfunction. It acts in a complicated manner, for example, by forming an oxygen precipitate having a gettering action for trapping the inside of the wafer.
 通常、シリコン中の酸素原子は電気的に中性であり、その電気抵抗に影響を及ぼさない。しかしながら、CZ法で製造したシリコン単結晶は石英ルツボを用いて育成されるため、結晶中に過飽和な酸素を含有し、450℃前後の低温で熱処理すると数個の酸素原子が集まって酸素クラスターを形成し、電子を放出するドナーとなることが知られている。 Normally, oxygen atoms in silicon are electrically neutral and do not affect their electrical resistance. However, since a silicon single crystal produced by the CZ method is grown using a quartz crucible, it contains supersaturated oxygen in the crystal. When heat-treated at a low temperature of around 450 ° C., several oxygen atoms gather to form an oxygen cluster. It is known to form and become a donor that emits electrons.
 450℃前後の熱処理によって形成されるサーマルドナーは点欠陥の影響を受け、空孔優勢領域(COP領域、OSFリング領域)と無欠陥領域の点欠陥濃度の違いによってサーマルドナー発生速度が異なる。そこで本実施形態では、シリコンウェーハ中に発生するサーマルドナーの発生速度に基づいて、シリコンウェーハ中の結晶欠陥領域の有無及び結晶欠陥の種類を判別するものである。 The thermal donor formed by heat treatment at around 450 ° C. is affected by point defects, and the thermal donor generation rate differs depending on the difference in point defect concentration between the vacancy dominant region (COP region and OSF ring region) and the defect-free region. Therefore, in this embodiment, the presence / absence of a crystal defect region in the silicon wafer and the type of crystal defect are determined based on the generation rate of thermal donors generated in the silicon wafer.
 サーマルドナー発生速度測定工程(S14)では、スライス工程(S12)によりインゴットから連続して切り出された2枚の評価用シリコンウェーハを用意する。2枚の評価用ウェーハは、インゴットからワイヤソーによって切り出され、粗研磨が施されたウェーハであることが好ましい。そして、一方のウェーハ(第1のウェーハ)にはドナーキラー処理を予め施すことなくサーマルドナー発生熱処理工程を行い、また他方のウェーハ(第2のウェーハ)にはドナーキラー処理を予め施した後にサーマルドナー発生熱処理を行い、これら第1及び第2のウェーハの各々のサーマルドナー発生熱処理前後での比抵抗の変化からサーマルドナー発生速度が求められる。 In the thermal donor generation rate measuring step (S14), two silicon wafers for evaluation that are continuously cut out from the ingot by the slicing step (S12) are prepared. The two evaluation wafers are preferably wafers cut out from the ingot by a wire saw and subjected to rough polishing. Then, one of the wafers (first wafer) is subjected to a thermal donor generation heat treatment step without performing donor killer treatment in advance, and the other wafer (second wafer) is subjected to donor killer treatment in advance and then subjected to thermal treatment. A donor generation heat treatment is performed, and a thermal donor generation speed is obtained from a change in specific resistance before and after the thermal donor generation heat treatment of each of the first and second wafers.
 図3は、サーマルドナー発生速度測定工程を示すフローチャートである。 FIG. 3 is a flowchart showing a thermal donor generation rate measurement step.
 図3に示すように、サーマルドナー発生速度測定工程(S14)は、as-grown状態の第1及び第2のウェーハを用意する準備工程(S20)、第1のウェーハの比抵抗を測定する比抵抗測定工程(S21)と、比抵抗測定後の第1のウェーハにサーマルドナー発生熱処理を行うサーマルドナー発生熱処理工程(S22)と、サーマルドナー発生熱処理後の第1のウェーハの比抵抗を測定する比抵抗測定工程(S23)と、サーマルドナー発生熱処理前後の2つの比抵抗測定値から第1のサーマルドナー発生速度を算出する工程(S24)とを有している。 As shown in FIG. 3, the thermal donor generation rate measurement step (S14) includes a preparation step (S20) for preparing the first and second wafers in the as-grown state, and a ratio for measuring the specific resistance of the first wafer. A resistance measurement step (S21), a thermal donor generation heat treatment step (S22) for performing thermal donor generation heat treatment on the first wafer after the specific resistance measurement, and a specific resistance of the first wafer after the thermal donor generation heat treatment are measured. A specific resistance measurement step (S23) and a step (S24) of calculating a first thermal donor generation rate from two specific resistance measurement values before and after thermal donor generation heat treatment.
 またサーマルドナー発生速度測定工程(S14)は、第2のウェーハにドナーキラー処理を行う工程(S25)と、ドナーキラー処理後の第2のウェーハの比抵抗を測定する抵抗測定工程(S26)と、比抵抗測定後の第2のウェーハに第1のウェーハと同様のサーマルドナー発生熱処理を行うサーマルドナー発生熱処理工程(S27)と、サーマルドナー発生熱処理後の第2のウェーハの比抵抗を測定する比抵抗測定工程(S28)と、サーマルドナー発生熱処理前後の2つの比抵抗測定値から第2のサーマルドナー発生速度を算出する工程(S29)とを有している。 The thermal donor generation rate measuring step (S14) includes a step of performing donor killer processing on the second wafer (S25), a resistance measuring step of measuring the specific resistance of the second wafer after donor killer processing (S26), and A thermal donor generation heat treatment step (S27) for performing the same thermal donor generation heat treatment as that of the first wafer on the second wafer after the specific resistance measurement, and a specific resistance of the second wafer after the thermal donor generation heat treatment are measured. A specific resistance measurement step (S28) and a step (S29) of calculating a second thermal donor generation rate from two specific resistance measurement values before and after thermal donor generation heat treatment.
 サーマルドナー発生熱処理の温度は430~480℃であることが好ましく、450℃であることが特に好ましい。またサーマルドナー発生熱処理の時間は1~4時間であることが好ましく、2~4時間であることがさらに好ましい。ドナーキラー処理は、例えば600~700℃の不活性ガス雰囲気中で行う短時間の熱処理であり、熱処理時間は例えば15分程度である。 The temperature of the thermal donor-generated heat treatment is preferably 430 to 480 ° C, particularly preferably 450 ° C. The heat treatment time for generating the thermal donor is preferably 1 to 4 hours, more preferably 2 to 4 hours. The donor killer treatment is a short-time heat treatment performed in an inert gas atmosphere at 600 to 700 ° C., for example, and the heat treatment time is about 15 minutes, for example.
 シリコンウェーハ面内の比抵抗は、いわゆる4探針法によって測定することができる。測定した比抵抗をもとにキャリア濃度をアービンカーブから求め、サーマルドナー発生熱処理前後のキャリア濃度をもとにサーマルドナー発生量を求め、サーマルドナー発生熱処理の時間とサーマルドナー発生量との関係からサーマルドナー発生速度を求めることができる。 The specific resistance in the silicon wafer surface can be measured by a so-called four-probe method. Based on the measured specific resistance, the carrier concentration is determined from the Irvine curve, the amount of thermal donor generation is determined based on the carrier concentration before and after the thermal donor generation heat treatment, and from the relationship between the thermal donor generation heat treatment time and the amount of thermal donor generation The thermal donor generation rate can be determined.
 本実施形態においては、シリコンウェーハの径方向に沿って複数の測定ポイントを設定し、各測定ポイントにおいて抵抗測定を行い、測定結果からサーマルドナーの発生速度を算出することが好ましい。こうして測定ポイントごとに結晶欠陥領域の有無及び結晶欠陥の種類を評価することにより、シリコンウェーハの径方向の欠陥マップを作成することができる。 In the present embodiment, it is preferable to set a plurality of measurement points along the radial direction of the silicon wafer, perform resistance measurement at each measurement point, and calculate the generation rate of the thermal donor from the measurement result. Thus, by evaluating the presence / absence of a crystal defect region and the type of crystal defect for each measurement point, a defect map in the radial direction of the silicon wafer can be created.
 図4は、ウェーハ中の結晶欠陥領域の有無及び結晶欠陥の種類の判別工程を示すフローチャートである。 FIG. 4 is a flowchart showing a process for discriminating the presence / absence of a crystal defect region in the wafer and the type of crystal defect.
 図4に示すように、結晶欠陥領域の有無及び結晶欠陥の種類の判別工程(S15)では、第2のサーマルドナー発生速度に対する第1のサーマルドナー発生速度の比を算出し(S30)、この値が1.3以上1.7未満である場合には無欠陥領域であると判別し(S31Y,S34)、1.7以上1.9未満である場合にはボイド欠陥を含む領域であると判別し(S31N,S32Y,S35)、1.9以上2.3未満であるにはOSF核を含む領域であると判別する(S31N,S32N,S33Y,S36)。さらにいずれの数値範囲にも該当しない場合には判別不可(S31N,S32N,S33N,S37)と判別する。 As shown in FIG. 4, in the step of determining the presence / absence of a crystal defect region and the type of crystal defect (S15), the ratio of the first thermal donor generation rate to the second thermal donor generation rate is calculated (S30). When the value is 1.3 or more and less than 1.7, it is determined that the region is a defect-free region (S31Y, S34). When the value is 1.7 or more and less than 1.9, it is a region including a void defect. It discriminate | determines (S31N, S32Y, S35), and if it is 1.9 or more and less than 2.3, it will discriminate | determine that it is an area | region containing an OSF nucleus (S31N, S32N, S33Y, S36). Furthermore, when it does not correspond to any numerical range, it is determined that the determination is impossible (S31N, S32N, S33N, S37).
 以上説明したように、本実施形態によるシリコンウェーハの評価方法は、CZ法によって育成されたシリコン単結晶インゴットからシリコンウェーハを切り出し、シリコンウェーハにサーマルドナー発生熱処理を施したときに発生するサーマルドナーの発生速度を測定し、当該サーマルドナーの発生速度に基づいて結晶欠陥領域の有無又は結晶欠陥の種類を判別するので、OSF核を含む領域、ボイド欠陥を含む領域、又は無欠陥領域を短時間で簡便に判別することができる。また、従来の評価方法のように例えば銅のデコレーションを施す必要もなく、比較的短時間の低温熱処理で評価が可能であり、時間とコストを抑えて簡便な方法でシリコンウェーハの結晶欠陥領域の有無及び結晶欠陥の種類を評価することができる。 As described above, the silicon wafer evaluation method according to the present embodiment cuts out a silicon wafer from a silicon single crystal ingot grown by the CZ method and performs thermal donor generation heat treatment on the silicon wafer. Since the generation rate is measured and the presence or absence of the crystal defect region or the type of crystal defect is determined based on the generation rate of the thermal donor, the region including the OSF nucleus, the region including the void defect, or the non-defect region can be quickly determined. It can be easily determined. In addition, unlike the conventional evaluation method, for example, it is not necessary to decorate copper, and evaluation can be performed with a relatively short time of low-temperature heat treatment. Existence and types of crystal defects can be evaluated.
 また、本実施形態によるシリコンウェーハの製造方法は、先行のシリコン単結晶インゴットから切り出した評価用シリコンウェーハのサーマルドナー発生速度を測定し、当該サーマルドナー発生速度の測定結果に基づいて評価用シリコンウェーハ中の結晶欠陥領域の有無又は結晶欠陥の種類を判別し、この判別結果に基づいて後続のシリコン単結晶インゴットの育成条件を調整するので、結晶育成条件を簡便に最適化することができる。 Further, the silicon wafer manufacturing method according to the present embodiment measures the thermal donor generation rate of the evaluation silicon wafer cut out from the preceding silicon single crystal ingot, and based on the measurement result of the thermal donor generation rate, the evaluation silicon wafer Since the presence / absence of the crystal defect region or the type of the crystal defect is discriminated, and the growth condition of the subsequent silicon single crystal ingot is adjusted based on the discrimination result, the crystal growth condition can be easily optimized.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上記実施形態においては、サーマルドナー発生速度測定工程(S14)においてシリコン単結晶インゴットから切り出した第1及び第2のシリコンウェーハを用意し、第2のウェーハに対してドナーキラー処理(S25)の後にサーマルドナー発生熱処理(S27)を行って第2のサーマルドナー発生速度を算出しているが、本発明ではそのような第2のサーマルドナー発生速度の算出工程を省略することも可能である。すなわち、第2のシリコンウェーハと同等の他のシリコンウェーハにドナーキラー処理及びサーマルドナー発生熱処理を行って第2のサーマルドナー発生速度を予め算出したものをデータベース化しておき、第2のサーマルドナー発生速度についてはデータベースから読み出したものを用い、第1のサーマルドナー発生速度のみを測定して、結晶欠陥領域の有無及び結晶欠陥の種類を評価するようにしてもよい。 For example, in the above embodiment, the first and second silicon wafers cut from the silicon single crystal ingot in the thermal donor generation rate measuring step (S14) are prepared, and the donor killer process (S25) is performed on the second wafer. After that, the thermal donor generation heat treatment (S27) is performed to calculate the second thermal donor generation rate. However, in the present invention, such a step of calculating the second thermal donor generation rate can be omitted. . In other words, the other silicon wafer equivalent to the second silicon wafer is subjected to donor killer treatment and thermal donor generation heat treatment, and the second thermal donor generation rate calculated in advance is made into a database to generate the second thermal donor generation. The speed read from the database may be used, and only the first thermal donor generation speed may be measured to evaluate the presence / absence of a crystal defect region and the type of crystal defect.
 結晶欠陥の種類がサーマルドナー発生速度に与える影響を評価した。この評価試験では、直径300mm、面方位(100)のP型シリコン単結晶インゴットをCZ法により育成した。その際、OSFリング発生領域が含まれるようにV/Gを制御しながらシリコン単結晶インゴットを育成した。このシリコン単結晶インゴットの酸素濃度は5×1017~20×1017atoms/cm(ASTM F-121,1979)であった。このシリコン単結晶インゴットをスライスすることで、OSFリング発生領域を含む2枚のシリコンウェーハのサンプルA1,B1を得た。ここで、OSFリング発生領域とは、評価熱処理後にOSFリングが発生する領域のことを言い、as-grown状態でOSF核を含む領域のことを言う。 The effect of the type of crystal defects on the thermal donor generation rate was evaluated. In this evaluation test, a P-type silicon single crystal ingot having a diameter of 300 mm and a plane orientation (100) was grown by the CZ method. At that time, a silicon single crystal ingot was grown while controlling V / G so as to include the OSF ring generation region. The oxygen concentration of this silicon single crystal ingot was 5 × 10 17 to 20 × 10 17 atoms / cm 3 (ASTM F-121, 1979). By slicing the silicon single crystal ingot, samples A1 and B1 of two silicon wafers including the OSF ring generation region were obtained. Here, the OSF ring generation region refers to a region where an OSF ring is generated after the evaluation heat treatment, and refers to a region including OSF nuclei in an as-grown state.
 ボイド欠陥が存在する領域が含まれるようにV/Gを制御した点以外はサンプルA1,B1と同じ条件下でシリコン単結晶インゴットを育成し、このシリコン単結晶インゴットをスライスすることで、ボイド欠陥が存在する領域を含む2枚のシリコンウェーハのサンプルA2,B2を得た。 A silicon single crystal ingot is grown under the same conditions as Samples A1 and B1 except that the V / G is controlled so that a void defect area is included, and the silicon single crystal ingot is sliced to obtain a void defect. Samples A2 and B2 of two silicon wafers including the region where the sapphire exists were obtained.
 無欠陥領域となるようにV/Gを制御した点以外はサンプルA1,B1と同じ条件下でシリコン単結晶インゴットを作製し、このシリコン単結晶インゴットをスライスすることで、無欠陥領域からなる2枚のシリコンウェーハのサンプルA3,B3を得た。 A silicon single crystal ingot is produced under the same conditions as those of the samples A1 and B1 except that V / G is controlled so as to be a defect-free region, and this silicon single crystal ingot is sliced to form 2 Two silicon wafer samples A3 and B3 were obtained.
 その後、シリコンウェーハのサンプルB1,B2,B3の結晶育成中に発生したサーマルドナーを消去するため、700℃の窒素雰囲気で15分のドナーキラー処理を行った。 Thereafter, in order to erase the thermal donor generated during crystal growth of the silicon wafer samples B1, B2, and B3, a donor killer treatment was performed in a nitrogen atmosphere at 700 ° C. for 15 minutes.
 ドナーキラー処理なしのプロセスによりそれぞれ準備したシリコンウェーハのサンプルA1~A3(実施例1~3)並びにドナーキラー処理ありのプロセスによりそれぞれ準備したシリコンウェーハのサンプルB1~B3(比較例1~3)に450℃の窒素雰囲気でサーマルドナー発生熱処理を行い、サーマルドナーを発生させた。 Samples A1 to A3 of silicon wafers prepared by processes without donor killer treatment (Examples 1 to 3) and samples B1 to B3 of silicon wafers prepared by processes with donor killer treatment (Comparative Examples 1 to 3), respectively. Thermal donor generation heat treatment was performed in a nitrogen atmosphere at 450 ° C. to generate a thermal donor.
 JIS H 0602:1995に規定された4探針法による比抵抗率測定方法に従い、各シリコンウェーハのサンプルA1~A3,B1~B3の比抵抗を測定し、この比抵抗をもとにキャリア濃度をアービンカーブから求めた。さらに、サーマルドナー発生熱処理前後のキャリア濃度をもとに、サーマルドナー発生量を求め、さらに熱処理時間とサーマルドナー発生量の関係からサーマルドナー発生速度を求めた。 Measure the specific resistance of each of the silicon wafer samples A1 to A3 and B1 to B3 in accordance with the specific resistance measurement method based on the four-probe method specified in JIS H20602: 1995, and determine the carrier concentration based on this specific resistance. Obtained from Irvine curve. Furthermore, the thermal donor generation amount was determined based on the carrier concentration before and after the thermal donor generation heat treatment, and the thermal donor generation rate was determined from the relationship between the heat treatment time and the thermal donor generation amount.
 図5は、上記ウェーハサンプルA1~A3、B1~B3のサーマルドナー発生速度とサーマルドナー発生熱処理時間との関係を示すグラフであり、横軸は熱処理時間(h)、縦軸はサーマルドナー発生速度(cm-3/h)をそれぞれ示している。また特に、このグラフは酸素濃度が11×1017atoms/cmの条件を満たすウェーハのみでまとめたものである。 FIG. 5 is a graph showing the relationship between the thermal donor generation rate of the wafer samples A1 to A3 and B1 to B3 and the thermal donor generation heat treatment time. The horizontal axis represents the heat treatment time (h), and the vertical axis represents the thermal donor generation rate. (Cm −3 / h) is shown respectively. In particular, this graph is summarized only for wafers that satisfy the condition of oxygen concentration of 11 × 10 17 atoms / cm 3 .
 図5に示すように、熱処理時間が4時間以内では、OSFリング発生領域、ボイド欠陥を含む領域、及び無欠陥領域いずれも、ドナーキラー処理あり(サンプルB1,B2,B3)よりもドナーキラー処理なし(サンプルA1,A2,A3)のほうがサーマルドナー発生速度は大きかった。また、ドナーキラー処理ありではいずれの領域でもサーマルドナー発生速度は同じであったが、ドナーキラー処理なしでは、OSFリング発生領域、ボイド欠陥を含む領域、無欠陥領域の順にサーマルドナー発生速度は大きくなった。熱処理時間が4時間を越えると、ドナーキラー処理なしではサーマルドナー発生速度は一旦上昇したのち減少した。一方で、ドナーキラー処理ありではサーマルドナー発生速度は減少し、16時間以降は全ての条件でサーマルドナー発生速度は同じになった。 As shown in FIG. 5, when the heat treatment time is within 4 hours, the donor killer treatment is performed on the OSF ring generation region, the region including the void defect, and the non-defect region as compared with the case where the donor killer treatment is performed (samples B1, B2, and B3). None (samples A1, A2, A3) had a higher thermal donor generation rate. In addition, the thermal donor generation rate was the same in any region with the donor killer treatment, but without the donor killer treatment, the thermal donor generation rate increased in the order of the OSF ring generation region, the void-containing region, and the defect-free region. became. When the heat treatment time exceeded 4 hours, the thermal donor generation rate once increased and then decreased without the donor killer treatment. On the other hand, with donor killer treatment, the thermal donor generation rate decreased, and after 16 hours, the thermal donor generation rate became the same under all conditions.
 図6は、450℃で4時間のサーマルドナー発生熱処理を施したときの、OSFリング発生領域、ボイド欠陥を含む領域、無欠陥領域での、サーマルドナー発生速度と酸素濃度の関係を求めた結果を示すグラフであって、横軸は酸素濃度(×1017atoms/cm)、縦軸はサーマルドナー発生速度(cm-3/h)をそれぞれ示している。 FIG. 6 shows the result of determining the relationship between the thermal donor generation rate and the oxygen concentration in the OSF ring generation region, the region including void defects, and the defect-free region when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours. The horizontal axis represents the oxygen concentration (× 10 17 atoms / cm 3 ), and the vertical axis represents the thermal donor generation rate (cm −3 / h).
 図6に示すように、いずれの酸素濃度でも図1と同様に、ドナーキラー処理あり(サンプルB1,B2,B3)よりもドナーキラー処理なし(サンプルA1,A2,A3)のウェーハのほうがサーマルドナー発生速度は大きかった。また、ドナーキラー処理ありのウェーハではいずれの領域もサーマルドナー発生速度は同じであったが、ドナーキラー処理なしのウェーハでは、OSFリング発生領域、ボイド欠陥を含む領域、無欠陥領域の順にサーマルドナー発生速度は大きくなった。 As shown in FIG. 6, as in FIG. 1, the wafer with no donor killer treatment (samples A1, A2, A3) is the thermal donor at any oxygen concentration rather than the donor killer treatment (samples B1, B2, B3). The generation rate was great. In addition, the thermal donor generation rate was the same in all regions in the wafer with the donor killer process, but in the wafer without the donor killer process, the thermal donor was in the order of the OSF ring generation region, the region including the void defect, and the non-defect region. The generation rate has increased.
 図7は、図6のグラフにおいて、ドナーキラー処理なしのウェーハの各測定ポイントでのサーマルドナー発生速度をドナーキラー処理ありのウェーハの同一測定ポイントでのサーマルドナー発生速度で規格化したものであって、横軸は酸素濃度(×1017atoms/cm)、縦軸はサーマルドナー発生速度(規格値)をそれぞれ示している。 FIG. 7 is a graph in which the thermal donor generation rate at each measurement point of the wafer without donor killer treatment is normalized with the thermal donor generation rate at the same measurement point of the wafer with donor killer treatment in the graph of FIG. The horizontal axis represents the oxygen concentration (× 10 17 atoms / cm 3 ), and the vertical axis represents the thermal donor generation rate (standard value).
 図7に示すように、ドナーキラー処理なしのウェーハの無欠陥領域でのサーマルドナー発生速度は、ドナーキラー処理ありのウェーハのサーマルドナー発生速度の1.3倍以上1.7倍未満であった。また、ドナーキラー処理なしのウェーハのボイド欠陥を含む領域でのサーマルドナー発生速度は、ドナーキラー処理ありのウェーハのサーマルドナー発生速度の1.7倍以上1.9倍未満であった。さらに、ドナーキラー処理なしのウェーハのOSFリング発生領域でのサーマルドナー発生速度は、ドナーキラー処理ありのウェーハのサーマルドナー発生速度の1.9倍以上2.3倍未満であった。 As shown in FIG. 7, the thermal donor generation rate in the defect-free region of the wafer without donor killer treatment was 1.3 times or more and less than 1.7 times the thermal donor generation rate of the wafer with donor killer treatment. . In addition, the thermal donor generation rate in the region including the void defect of the wafer without donor killer treatment was 1.7 times or more and less than 1.9 times the thermal donor generation rate of the wafer with donor killer treatment. Furthermore, the thermal donor generation rate in the OSF ring generation region of the wafer without donor killer treatment was 1.9 times or more and less than 2.3 times the thermal donor generation rate of the wafer with donor killer treatment.
S11  結晶育成工程
S12  スライス工程
S13,S14  サーマルドナー発生速度測定工程
S15  判別工程
S16,S17  結晶育成条件調整工程
S20  ウェーハ準備工程
S21  第1のウェーハの比抵抗測定工程
S22  第1のウェーハのサーマルドナー発生熱処理工程
S23  第1のウェーハの比抵抗測定工程
S24  第1のサーマルドナー発生速度算出工程
S25  第2のウェーハのドナーキラー処理工程
S26  第2のウェーハの比抵抗測定工程
S27  第2のウェーハのサーマルドナー発生熱処理工程
S28  第2のウェーハの比抵抗測定工程
S29  第2のサーマルドナー発生速度算出工程
S11 Crystal growth step S12 Slice step S13, S14 Thermal donor generation rate measurement step S15 Discrimination step S16, S17 Crystal growth condition adjustment step S20 Wafer preparation step S21 Specific resistance measurement step S22 of the first wafer Thermal donor generation of the first wafer Heat treatment step S23 First wafer specific resistance measurement step S24 First thermal donor generation rate calculation step S25 Second wafer donor killer processing step S26 Second wafer specific resistance measurement step S27 Second wafer thermal donor Generation heat treatment step S28 Second wafer specific resistance measurement step S29 Second thermal donor generation rate calculation step

Claims (15)

  1.  チョクラルスキー法によって育成されたシリコン単結晶インゴットから切り出したシリコンウェーハの評価方法であって、前記シリコンウェーハにサーマルドナー発生熱処理を施したときに発生するサーマルドナーの発生速度を測定し、当該サーマルドナーの発生速度に基づいて結晶欠陥領域の有無又は結晶欠陥の種類を判別することを特徴とするシリコンウェーハの評価方法。 An evaluation method of a silicon wafer cut out from a silicon single crystal ingot grown by the Czochralski method, measuring the generation rate of a thermal donor generated when a thermal donor generation heat treatment is performed on the silicon wafer, A silicon wafer evaluation method, wherein the presence or absence of a crystal defect region or the type of crystal defect is determined based on a donor generation rate.
  2.  前記シリコン単結晶インゴットから切り出した第1のシリコンウェーハが酸素クラスターを含む状態において前記サーマルドナー発生熱処理を施したときに前記第1のシリコンウェーハ上の第1の測定ポイントに発生するサーマルドナーの発生速度である第1のサーマルドナー発生速度を求め、
     前記第1のシリコンウェーハと異なる第2のシリコンウェーハにドナーキラー処理及び前記サーマルドナー発生熱処理を順に施したときに前記第2のシリコンウェーハ上の第2の測定ポイントに発生するサーマルドナーの発生速度である第2のサーマルドナー発生速度を求め、
     前記第2のサーマルドナー発生速度に対する第1のサーマルドナー発生速度の比であるサーマルドナー発生速度比に基づいて、前記第1のシリコンウェーハ上の前記第1の測定ポイントがOSF核を含む領域、ボイド欠陥を含む領域又は無欠陥領域のいずれに該当するかを判別する、請求項1に記載のシリコンウェーハの評価方法。
    Generation of a thermal donor generated at a first measurement point on the first silicon wafer when the thermal donor generation heat treatment is performed in a state where the first silicon wafer cut out from the silicon single crystal ingot includes an oxygen cluster. A first thermal donor generation rate, which is a rate,
    The generation rate of the thermal donor generated at the second measurement point on the second silicon wafer when the second silicon wafer different from the first silicon wafer is subjected to the donor killer process and the thermal donor generation heat treatment in order. A second thermal donor generation rate of
    Based on a thermal donor generation rate ratio, which is a ratio of a first thermal donor generation rate to the second thermal donor generation rate, a region where the first measurement point on the first silicon wafer includes OSF nuclei, The silicon wafer evaluation method according to claim 1, wherein it is determined whether the region corresponds to a void defect-containing region or a defect-free region.
  3.  前記サーマルドナー発生速度比が第1の速度範囲内にある場合に、前記第1のシリコンウェーハ上の前記第1の測定ポイントが無欠陥領域であると判別し、
     前記サーマルドナー発生速度比が前記第1の速度範囲よりも高い第2の速度範囲内にある場合に、前記第1のシリコンウェーハ上の前記第1の測定ポイントがボイド欠陥を含む領域であると判別し、
     前記サーマルドナー発生速度比が前記第2の速度範囲よりも高い第3の速度範囲内にある場合に、前記第1のシリコンウェーハ上の前記第1の測定ポイントがOSF核を含む領域であると判別する、請求項2に記載のシリコンウェーハの評価方法。
    When the thermal donor generation speed ratio is within a first speed range, it is determined that the first measurement point on the first silicon wafer is a defect-free region;
    When the thermal donor generation speed ratio is in a second speed range higher than the first speed range, the first measurement point on the first silicon wafer is a region including a void defect. Discriminate,
    When the thermal donor generation speed ratio is in a third speed range higher than the second speed range, the first measurement point on the first silicon wafer is a region including OSF nuclei. The silicon wafer evaluation method according to claim 2, wherein discrimination is performed.
  4.  前記サーマルドナー発生熱処理は、430℃以上480℃以下で2時間以上4時間以下の熱処理である、請求項1乃至3のいずれか一項に記載のシリコンウェーハの評価方法。 The method for evaluating a silicon wafer according to any one of claims 1 to 3, wherein the thermal donor-generated heat treatment is a heat treatment at 430 ° C or higher and 480 ° C or lower for 2 hours or longer and 4 hours or shorter.
  5.  450℃で4時間の前記サーマルドナー発生熱処理を施したとき、前記サーマルドナー発生速度比が1.3以上1.7未満である場合に、前記第1のシリコンウェーハ上の前記第1の測定ポイントが無欠陥領域であると判別する、請求項2に記載のシリコンウェーハの評価方法。 The first measurement point on the first silicon wafer when the thermal donor generation rate ratio is not less than 1.3 and less than 1.7 when the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours. The silicon wafer evaluation method according to claim 2, wherein it is determined that is a defect-free region.
  6.  450℃で4時間の前記サーマルドナー発生熱処理を施したとき、前記サーマルドナー発生速度比が1.7以上1.9未満である場合に、前記第1の測定ポイントがボイド欠陥を含む領域であると判別する、請求項2又は5に記載のシリコンウェーハの評価方法。 When the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours, when the thermal donor generation rate ratio is 1.7 or more and less than 1.9, the first measurement point is a region including void defects. The silicon wafer evaluation method according to claim 2, wherein:
  7.  450℃で4時間の前記サーマルドナー発生熱処理を施したとき、前記サーマルドナー発生速度比が1.9以上2.3未満である場合に、前記第1の測定ポイントがOSF核を含む領域であると判別する、請求項2、5又は6に記載のシリコンウェーハの評価方法。 When the thermal donor generation heat treatment is performed at 450 ° C. for 4 hours and the thermal donor generation rate ratio is 1.9 or more and less than 2.3, the first measurement point is a region containing OSF nuclei. The silicon wafer evaluation method according to claim 2, 5 or 6.
  8.  前記シリコンウェーハの径方向に沿って設けた複数の測定ポイントの各々において前記サーマルドナーの発生速度を測定することにより、前記シリコンウェーハの径方向の結晶欠陥マップを作成する、請求項1乃至7のいずれか一項に記載のシリコンウェーハの評価方法。 The crystal defect map in the radial direction of the silicon wafer is created by measuring the generation rate of the thermal donor at each of a plurality of measurement points provided along the radial direction of the silicon wafer. The evaluation method of the silicon wafer as described in any one of Claims.
  9.  前記シリコンウェーハの比抵抗を測定し、前記比抵抗をもとにキャリア濃度をアービンカーブから求め、前記サーマルドナー発生熱処理前後のキャリア濃度をもとにサーマルドナー発生量を求め、前記サーマルドナー発生熱処理の時間と前記サーマルドナー発生量との関係から前記サーマルドナー発生速度を求める、請求項1乃至8のいずれか一項に記載のシリコンウェーハの評価方法。 The specific resistance of the silicon wafer is measured, the carrier concentration is determined from an Irvin curve based on the specific resistance, the thermal donor generation amount is determined based on the carrier concentration before and after the thermal donor generation heat treatment, and the thermal donor generation heat treatment 9. The method for evaluating a silicon wafer according to claim 1, wherein the thermal donor generation rate is obtained from a relationship between the time of generation and the thermal donor generation amount.
  10.  第1のシリコン単結晶インゴットをチョクラルスキー法によって育成し、
     前記第1のシリコン単結晶インゴットから切り出した評価用シリコンウェーハにサーマルドナー発生熱処理を施したときに発生するサーマルドナーの発生速度を測定し、当該サーマルドナーの発生速度の測定結果に基づいて前記評価用シリコンウェーハ中の結晶欠陥領域の有無又は結晶欠陥の種類を判別し、
     前記第1のシリコン単結晶インゴットの育成条件及び前記評価用シリコンウェーハ中の結晶欠陥領域の有無又は結晶欠陥の種類の判別結果に基づいて、第2のシリコン単結晶インゴットの育成条件を調整し、前記第2のシリコン単結晶インゴットから製品用シリコンウェーハを切り出すことを特徴とするシリコンウェーハの製造方法。
    Growing the first silicon single crystal ingot by the Czochralski method,
    The generation rate of a thermal donor generated when a thermal donor generation heat treatment is performed on the evaluation silicon wafer cut out from the first silicon single crystal ingot is measured, and the evaluation is performed based on the measurement result of the generation rate of the thermal donor. Determine the presence or absence of crystal defects in the silicon wafer for use or the type of crystal defects,
    Based on the growth condition of the first silicon single crystal ingot and the determination result of the presence or absence of the crystal defect region in the silicon wafer for evaluation or the type of crystal defect, the growth condition of the second silicon single crystal ingot is adjusted, A silicon wafer production method, wherein a product silicon wafer is cut out from the second silicon single crystal ingot.
  11.  前記第2のシリコン単結晶インゴットの育成条件を調整することによって、無欠陥領域を有する前記第2のシリコン単結晶インゴットを育成する、請求項10に記載のシリコンウェーハの製造方法。 The method for producing a silicon wafer according to claim 10, wherein the second silicon single crystal ingot having a defect-free region is grown by adjusting a growth condition of the second silicon single crystal ingot.
  12.  前記第2のシリコン単結晶インゴットの育成条件を調整することによって、ボイド欠陥を含む領域を有する前記第2のシリコン単結晶インゴットを育成する、請求項10に記載のシリコンウェーハの製造方法。 The method for producing a silicon wafer according to claim 10, wherein the second silicon single crystal ingot having a region including a void defect is grown by adjusting a growth condition of the second silicon single crystal ingot.
  13.  前記第2のシリコン単結晶インゴットの育成条件を調整することによって、OSF核を含む領域を有する前記第2のシリコン単結晶インゴットを育成する、請求項10に記載のシリコンウェーハの製造方法。 The method for producing a silicon wafer according to claim 10, wherein the second silicon single crystal ingot having a region including an OSF nucleus is grown by adjusting a growth condition of the second silicon single crystal ingot.
  14.  前記第2のシリコン単結晶インゴットの育成条件として、前記第2のシリコン単結晶インゴットの引き上げ速度を調整する、請求項10乃至13のいずれか一項に記載のシリコンウェーハの製造方法。 The method for producing a silicon wafer according to any one of claims 10 to 13, wherein a pulling rate of the second silicon single crystal ingot is adjusted as a growth condition for the second silicon single crystal ingot.
  15.  前記製品用シリコンウェーハにドナーキラー処理を施す、請求項10乃至14のいずれか一項に記載のシリコンウェーハの製造方法。 The method for producing a silicon wafer according to any one of claims 10 to 14, wherein the product silicon wafer is subjected to a donor killer treatment.
PCT/JP2017/006727 2016-07-11 2017-02-23 Method for evaluating and manufacturing silicon wafer WO2018012019A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187036819A KR102180784B1 (en) 2016-07-11 2017-02-23 Silicon wafer evaluation method and manufacturing method
DE112017003486.8T DE112017003486T5 (en) 2016-07-11 2017-02-23 METHOD FOR EVALUATING AND PRODUCING A SILICON WAFER
CN201780043227.6A CN109477241B (en) 2016-07-11 2017-02-23 Evaluation method and production method for silicon wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136639A JP6569613B2 (en) 2016-07-11 2016-07-11 Silicon wafer evaluation method and manufacturing method
JP2016-136639 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012019A1 true WO2018012019A1 (en) 2018-01-18

Family

ID=60951697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006727 WO2018012019A1 (en) 2016-07-11 2017-02-23 Method for evaluating and manufacturing silicon wafer

Country Status (6)

Country Link
JP (1) JP6569613B2 (en)
KR (1) KR102180784B1 (en)
CN (1) CN109477241B (en)
DE (1) DE112017003486T5 (en)
TW (1) TWI631242B (en)
WO (1) WO2018012019A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669133B2 (en) * 2017-06-23 2020-03-18 株式会社Sumco Method for predicting thermal donor generation behavior of silicon wafer, method for evaluating silicon wafer, and method for manufacturing silicon wafer
JP6711327B2 (en) * 2017-07-18 2020-06-17 株式会社Sumco Silicon wafer manufacturing process evaluation method and silicon wafer manufacturing method
JP7336961B2 (en) * 2019-10-31 2023-09-01 信越化学工業株式会社 Single crystal ingot manufacturing method and single crystal wafer manufacturing method
WO2022118922A1 (en) * 2020-12-04 2022-06-09 株式会社Sumco Silicon single crystal growing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982768A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Evaluating method for semiconductor wafer
WO2005071144A1 (en) * 2004-01-27 2005-08-04 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for predicting precipitation behavior of oxygen in silicon single crystal, method for determining production parameter of silicon single crystal, and storage medium storing program for predicting precipitation behavior of oxygen in silicon single crystal
JP2008545605A (en) * 2005-05-19 2008-12-18 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド High resistivity silicon structure and manufacturing method thereof
JP2016500641A (en) * 2012-10-23 2016-01-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Method for forming a doped silicon ingot with uniform resistance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134840A (en) * 1990-09-27 1992-05-08 Kawasaki Steel Corp Measurement of heavy metal impulity energy level of silicon wafer
JP3341378B2 (en) * 1993-08-25 2002-11-05 富士通株式会社 Method for measuring hydrogen concentration in silicon crystal and method for producing silicon crystal
JP3085146B2 (en) 1995-05-31 2000-09-04 住友金属工業株式会社 Silicon single crystal wafer and method of manufacturing the same
KR100237829B1 (en) 1997-02-06 2000-01-15 윤종용 Defect analysing method for wafer
JP2001081000A (en) 1999-09-08 2001-03-27 Shin Etsu Handotai Co Ltd Method of evaluating crystal defect in silicon single crystal
JP2007235153A (en) * 2002-04-26 2007-09-13 Sumco Corp High-resistance silicon wafer, and manufacturing method thereof
JP2006054350A (en) * 2004-08-12 2006-02-23 Komatsu Electronic Metals Co Ltd Nitrogen-doped silicon wafer and its manufacturing method
FR2964459B1 (en) * 2010-09-02 2012-09-28 Commissariat Energie Atomique METHOD FOR MAPPING THE OXYGEN CONCENTRATION
KR101246493B1 (en) * 2011-07-08 2013-04-01 주식회사 엘지실트론 Method for evaluating defect in Wafer
KR101759876B1 (en) * 2015-07-01 2017-07-31 주식회사 엘지실트론 Wafer and method for analyzing defect of the wafer
CN105332061A (en) * 2015-11-17 2016-02-17 阳光能源(青海)有限公司 Thermal treatment process for eliminating influences of oxygen donor effect of monocrystalline rods on electrical resistivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982768A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Evaluating method for semiconductor wafer
WO2005071144A1 (en) * 2004-01-27 2005-08-04 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for predicting precipitation behavior of oxygen in silicon single crystal, method for determining production parameter of silicon single crystal, and storage medium storing program for predicting precipitation behavior of oxygen in silicon single crystal
JP2008545605A (en) * 2005-05-19 2008-12-18 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド High resistivity silicon structure and manufacturing method thereof
JP2016500641A (en) * 2012-10-23 2016-01-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Method for forming a doped silicon ingot with uniform resistance

Also Published As

Publication number Publication date
KR102180784B1 (en) 2020-11-19
TW201809375A (en) 2018-03-16
CN109477241B (en) 2021-05-18
CN109477241A (en) 2019-03-15
TWI631242B (en) 2018-08-01
DE112017003486T5 (en) 2019-04-04
JP2018008832A (en) 2018-01-18
JP6569613B2 (en) 2019-09-04
KR20190009354A (en) 2019-01-28

Similar Documents

Publication Publication Date Title
KR100461893B1 (en) Silicon wafer and method of producing silicon single crystal utilizing same
US8231852B2 (en) Silicon wafer and method for producing the same
JP6569613B2 (en) Silicon wafer evaluation method and manufacturing method
JP6724142B2 (en) Silicon wafer with uniform radial oxygen variation
JP2001500468A (en) Self-interstitial-dominated silicon with low defect density
KR101997561B1 (en) Method for manufacturing silicon monocrystal rod
JP2010040587A (en) Method of manufacturing silicon wafer
JP5163459B2 (en) Silicon single crystal growth method and silicon wafer inspection method
JP2007176732A (en) Annealed wafer and method of manufacturing annealed wafer
US20110263126A1 (en) Method for manufacturing a silicon wafer
JP4566478B2 (en) Silicon semiconductor substrate and manufacturing method thereof
KR101895817B1 (en) Silicon wafer and method for manufacturing same
JP2001217251A (en) Method of heat-treating silicon wafer
US20130273719A1 (en) Method of manufacturing annealed wafer
JP4131077B2 (en) Silicon wafer manufacturing method
JP2001151597A (en) Method of producing silicon water free from agglomerate of point defects
KR100445190B1 (en) Manufacturing method of silicon single crystal ingot
KR100389250B1 (en) Silicon Wafer and Method for Manufacturing the Same
JP2001102385A (en) Silicon wafer without aggregate of dot-like defect
JP3452042B2 (en) Silicon wafer manufacturing method
JP2010116271A (en) Growing method of silicon single crystal and silicon single crystal ingot
JP2002134517A (en) Method for heat-treating silicon wafer
JP2004189584A (en) Method of measuring point defect distribution in silicon single crystal ingot
JP2010155748A (en) Method of producing annealed wafer
JP2021098623A (en) Method for evaluating oxide film voltage resistance of single crystal silicon wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036819

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17827154

Country of ref document: EP

Kind code of ref document: A1