WO2018010592A1 - 用于无人机系统的冗余电源及其供电方法和装置 - Google Patents

用于无人机系统的冗余电源及其供电方法和装置 Download PDF

Info

Publication number
WO2018010592A1
WO2018010592A1 PCT/CN2017/092052 CN2017092052W WO2018010592A1 WO 2018010592 A1 WO2018010592 A1 WO 2018010592A1 CN 2017092052 W CN2017092052 W CN 2017092052W WO 2018010592 A1 WO2018010592 A1 WO 2018010592A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
module
power supply
preset voltage
Prior art date
Application number
PCT/CN2017/092052
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
首家辉
Original Assignee
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启空间技术有限公司 filed Critical 深圳光启空间技术有限公司
Publication of WO2018010592A1 publication Critical patent/WO2018010592A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of unmanned aerial vehicle systems, and in particular to a redundant power supply for a drone system and a power supply method and apparatus therefor.
  • the UAV system uses a button battery as a backup power source, the power supply capacity is low, the output current is small, the power supply time is limited, and the system power supply requirement can only be met in a short time, and the power supply system cannot be stably satisfied in the long run. Requirements, so that the power supply requirements of the drone system cannot be effectively met.
  • a microcontroller (MCU) is used to monitor the voltage state of the power module and the backup power source, and then the channel is switched by the port of the microcontroller to control the conduction of the field effect transistor (MOS).
  • MOS field effect transistor
  • the main object of the present invention is to provide a redundant power supply for a UAV system and a power supply method and apparatus thereof, to at least solve the problem that the redundant power supply in the related art cannot effectively meet the power supply requirement of the UAV system. .
  • a redundant power supply method for an unmanned aerial vehicle system includes: acquiring a main voltage of the redundant power supply; stepping down the main voltage to a first preset voltage; and performing boosting on the battery according to the first preset voltage Obtaining a second preset voltage, wherein the battery is a standby power supply of the unmanned aerial vehicle system; and the power supply channel seamless switching module is powered according to the second preset voltage, wherein the power channel seamless switching module is configured according to the second preset The voltage switches the input channels of the dual power supplies to power the drone.
  • the redundant power supply method for the UAV system further includes: acquiring a battery power; determining whether the battery power is lower than the first The preset power is determined; if it is determined that the battery power is lower than the first preset power, the battery is charged according to the first preset voltage, and the second preset power is obtained.
  • adjusting the electrical parameter of the battery according to the first preset voltage, and obtaining the adjustment result includes: acquiring a voltage of the battery; determining whether the voltage of the battery reaches a second preset voltage; if it is determined that the voltage of the battery does not reach the second Presetting the voltage, performing boosting on the battery according to the first preset voltage, and obtaining a second preset voltage
  • the redundant power supply method for the UAV system further includes: stepping down the main voltage to a third preset voltage; and passing the third preset voltage
  • the power supply channel seamless switching module supplies power to obtain a first output voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the third preset voltage; performing multi-step bucking on the first output voltage, a second output voltage; performing power supply to a load of the drone system according to the second output voltage.
  • performing power supply to the load of the UAV system according to the second output voltage comprises: supplying power to the main control chip of the UAV system and/or the peripheral circuit of the UAV system according to the second output voltage.
  • the redundant power supply method for the UAV system further includes: boosting the first preset voltage to the fourth preset voltage And supplying a third output voltage according to the fourth preset voltage for the power channel seamless switching module, wherein the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the fourth preset voltage; and to the third output voltage Performing multi-step bucking to obtain a fourth output voltage; performing power supply to the load of the UAV system according to the fourth output voltage.
  • a redundant power supply device for an unmanned aerial vehicle system includes: a first acquisition unit for acquiring a main voltage of the redundant power supply; and a first step-down unit for The main voltage is stepped down to a first preset voltage; a boosting unit is configured to perform boosting on the battery according to the first preset voltage to obtain a second preset voltage, wherein the battery is a backup power supply of the unmanned system a first power supply unit, configured to supply power to the power channel seamless switching module according to the second preset voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power source according to the second preset voltage to the drone powered by.
  • the device further includes: a second acquiring unit, configured to acquire a battery power; a determining unit, configured to determine whether the battery power is lower than the first preset power; the charging unit is configured to determine The battery power is lower than the first preset power, and the battery is charged according to the first preset voltage to obtain a second preset power.
  • the boosting unit includes: an obtaining module, configured to acquire a voltage of the battery; a determining module, configured to determine whether the voltage of the battery reaches a second preset voltage; and a boosting module, configured to determine a voltage of the battery If the second preset voltage is not reached, the battery is boosted according to the first preset voltage to obtain a second preset voltage.
  • the redundant power supply device for the UAV system further includes: a second buck unit, configured to step down the main voltage to a third preset voltage after acquiring the main voltage of the redundant power supply a second power supply unit, configured to supply power to the power channel seamless switching module through the third preset voltage, to obtain a first output voltage, wherein the power channel seamless switching module is configured to switch the input of the dual power source according to the third preset voltage a third step-down unit, configured to perform multi-step bucking on the first output voltage to obtain a second output voltage; and a third power supply unit, configured to perform power supply on the load of the UAV system according to the second output voltage.
  • a second buck unit configured to step down the main voltage to a third preset voltage after acquiring the main voltage of the redundant power supply
  • a second power supply unit configured to supply power to the power channel seamless switching module through the third preset voltage, to obtain a first output voltage
  • the power channel seamless switching module is configured to switch the input of the dual power source according to the third preset voltage
  • a redundant power supply for an unmanned aerial vehicle system includes: a power protection module, connected to the power module, for obtaining a main voltage of the redundant power supply; and a first step-down module connected to the power protection module for using the main The voltage is stepped down to a first preset voltage; the battery is a standby power source of the unmanned system; the adjustment module is connected to the first step-down module and the battery, and is configured to perform boosting on the battery according to the first preset voltage, a second preset voltage, and supplying power to the power channel seamless switching module according to the second preset voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power source according to the second preset voltage to supply power to the drone .
  • the adjustment module includes: a charging module, configured to charge the battery's power to a preset power according to the first preset voltage.
  • the redundant power supply for the UAV system further includes: a second step-down module, and power protection The module is connected to step down the main voltage to a third preset voltage; the power channel seamless switching module is connected to the second step-down module, and is configured to switch the input channels of the dual power source according to the third preset voltage, a first output voltage; a third step-down module, connected to the power channel seamless switching module, configured to perform multi-step bucking on the output voltage to obtain a second output voltage; and the load is connected to the third buck module, Receiving a second output voltage.
  • the adjustment module includes: a boosting module, connected to the first buck module and the power channel seamless switching module, for boosting the first preset voltage to the fourth preset voltage.
  • the main voltage of the redundant power supply is obtained; the main voltage is stepped down to the first preset voltage; the electrical parameters of the battery are adjusted according to the first preset voltage, and the adjustment result is obtained, wherein the battery is unmanned
  • the backup power supply of the machine system solves the problem that the redundant power supply in the related technology cannot effectively meet the uninterruptible power supply demand of the long-distance system of the UAV system, thereby achieving the redundant power supply to effectively meet the power supply requirement of the long-distance system of the UAV system.
  • FIG. 1 is a schematic diagram of a redundant power supply for an unmanned aerial vehicle system in accordance with a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a redundant power supply for an unmanned aerial vehicle system in accordance with a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of a lithium battery charging and boosting module according to an embodiment of the invention.
  • FIG. 4 is a flow chart of a redundant power supply method for an unmanned aerial vehicle system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a redundant power supply device for a drone system in accordance with an embodiment of the present invention.
  • Embodiments of the present invention provide a redundant power supply for an unmanned aerial vehicle system.
  • the redundant power supply for the UAV system includes: a power protection module 10, a first buck module 20, a battery 30, and an adjustment module 40.
  • the power protection module 10 is connected to the power module for acquiring a main voltage of the redundant power source.
  • the UAV system is a general term for the UAV and its associated communication station, take-off (emission) recovery device, and the transportation, storage and detection devices of the UAV.
  • the UAV system mainly includes the aircraft body and flight control. Systems, data link systems, launch recovery systems, power systems, etc. Redundant power supplies are used in power systems in drone systems.
  • the redundant power supply includes a power protection module 10, and the power protection module 10 is connected to the power module for acquiring a main voltage of the redundant power supply.
  • the power module is the main power input of the power protection module 10. In addition to powering the power system, it also supplies power to the main control system of the UAV system, thereby providing a main voltage for the redundant power supply.
  • the power module provides a high voltage of 48V to 50V, and the power protection module 10 obtains the high voltage of 4 8V to 50V as the main voltage of the redundant power supply.
  • the power module may be composed of a plurality of high-power lithium battery packs.
  • a lithium battery is a type of battery using a lithium metal or a lithium alloy as a negative electrode material and using a nonaqueous electrolyte solution. It should be understood that in this embodiment and the following description, only the battery is used. As an illustrative example, the present invention does not limit the type of battery, and other batteries can also be used in the present invention.
  • the first step-down module 20 is connected to the power protection module 10 for stepping down the main voltage to a first preset voltage.
  • the first buck module 20 is connected to the power protection module 10, and after the power protection module 10 acquires the main voltage of the redundant power supply, the first buck module 20 acquires the main voltage of the redundant power supply, and drops the main voltage. Press to the first preset voltage.
  • the first preset voltage is 5V, and the main voltage can be stepped down from a high voltage of 48V to 50V to a low voltage of 5V for subsequent circuits.
  • the battery 30 is a backup power source for the drone system.
  • the battery 30 is a backup power source for the drone system and may be a backup power source for the control system of the drone system.
  • the battery 30 is a lithium battery.
  • the battery 30 is activated to maintain the power of the electrical system of the drone system or parts of the drone system to keep the drone system powered, without The failure of the unmanned aerial vehicle system due to a sudden power failure caused an unsafe accident, which in turn caused losses.
  • the adjustment module 40 is connected to the first buck module 20 and the battery 30, and is configured to perform boosting on the battery 30 according to the first preset voltage to obtain a second preset voltage, and according to the second preset voltage,
  • the power channel seamless switching module supplies power, wherein the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the second preset voltage to supply power to the drone.
  • the first buck module 20 is connected to the battery 30, and is configured to receive the first preset voltage after the first buck module 20 steps down the main voltage to the first preset voltage, and according to The first preset voltage adjusts the power parameter of the battery 30. For example, when it is detected that the battery 30 is low, the adjustment module 40 charges the battery 30 according to the first preset voltage. When the battery 30 is fully charged, the adjustment module 40 automatically stops. Charge the battery 30.
  • the adjustment module 40 has a voltage output at any time.
  • the adjustment module 40 adjusts the electrical parameters of the battery 30 according to the first preset voltage to obtain an adjustment result, and then outputs the adjustment result to a subsequent circuit of the redundant power supply.
  • the power protection module 10 is connected to the power module for acquiring the main voltage of the redundant power source, and the first step-down module 20 is connected to the power protection module 10 for stepping down the main voltage.
  • the battery 30 is a backup power supply for the UAV system, the adjustment module 40 and the first buck module 20 and the battery 3
  • the 0-phase connection is used for adjusting the electrical parameters of the battery 30 according to the first preset voltage, and the adjustment result is obtained.
  • the battery 30 is used as the backup power supply of the control system of the unmanned system, and the electrical parameters of the battery 30 are flexibly adjusted.
  • the utility model avoids the shortage of the power supply capacity, the small output current, and the short-circuit between the unmanned aerial vehicle system and the short-circuit power to meet the uninterrupted power supply demand of the unmanned aerial vehicle system, thereby avoiding the generator to the backup battery.
  • Charging, due to the size and weight of the generator, the redundant power supply has limitations, and thus the technical effect that the redundant power supply effectively meets the power supply requirements of the long-distance system of the UAV system is achieved.
  • the charging module may be a lithium battery charging module, and the adjusting module may charge the lithium battery according to the first preset voltage by the charging module to obtain a preset power.
  • the battery outputs the current battery power
  • the adjustment module obtains the battery power, and determines whether the battery power is lower than the first preset power, wherein the first preset power is preset to determine whether the battery is The amount of electricity that needs to be charged. If it is determined that the battery power is lower than the first preset power, the battery needs to be charged, and the first preset voltage output by the first buck module is obtained by the charging module, and the battery is charged according to the first preset voltage, and the second is obtained.
  • the preset power is the power of the battery that the UAV system works normally. For example, the second preset power is the full power of the battery.
  • the charging module includes a first receiving end and a second receiving end.
  • the first receiving end is connected to the first step-down module for receiving the first preset voltage
  • the second receiving end is connected to the battery for receiving the battery power.
  • the voltage of the charging module may be taken from the first step-down module, the first receiving end of the charging module is connected to the first step-down module, and the first preset voltage outputted by the first step-down module is received by the first receiving end.
  • the second receiving end of the charging module is connected to the battery, receives the battery power through the second receiving end, and charges the battery power to the preset power according to the first preset voltage, optionally, when the battery power is full In other words, the charging module stops charging the battery through the first receiving end and the second receiving end.
  • the adjustment module is connected to the battery, and the battery may be boosted according to the first preset voltage to boost the voltage of the battery to the second preset voltage.
  • the adjustment module obtains the voltage of the battery, determines whether the voltage of the battery reaches the second preset voltage, and if it is determined that the voltage of the battery does not reach the second preset voltage, The voltage of the battery is boosted to a second predetermined voltage.
  • the adjusting module receives the first preset voltage from the output of the first buck module, performs boosting on the battery according to the first preset voltage, obtains a second preset voltage, and outputs the second preset voltage to the subsequent of the redundant power supply Circuit.
  • the adjustment module includes a third receiving end and a first output end.
  • the third receiving end is connected to the first step-down module for receiving the first preset voltage;
  • the fourth receiving end is connected to the battery for receiving the voltage of the battery; and the first output end is used for The second preset voltage is output.
  • the voltage of the adjustment module may be taken from the first step-down module, the third receiving end of the adjustment module is connected to the first step-down module, and the first preset voltage output by the first step-down module is received through the third receiving end.
  • the fourth receiving end of the adjusting module is connected to the battery, and the voltage of the battery is received through the fourth receiving end. After the adjustment module boosts the voltage of the battery to the second preset voltage according to the first preset voltage, the second preset voltage is output through the first output terminal.
  • the redundant power supply for the UAV system further includes a second buck module, a power channel seamless switching module, a third buck module, and a load.
  • the second step-down module is connected to the power protection module for stepping down the main voltage to a third preset voltage;
  • the power channel seamless switching module is connected to the second step-down module, and is configured to be used according to the third
  • the preset voltage switches the input channel of the dual power supply;
  • the third step-down module is connected to the power channel seamless switching module, and is configured to perform multi-step bucking on the first output voltage of the power channel seamless switching module to obtain the second output.
  • the voltage is coupled to the third buck module for receiving the second output voltage.
  • the second step-down module is connected to the power protection module, and is configured to perform a step-down on the main voltage after the power protection module acquires the main voltage, and step down the main voltage to a third preset voltage, for example, the main The voltage is stepped down from high voltage 4 8V to low voltage 12V for use in subsequent circuits.
  • the power channel seamless switching module is connected to the second buck module, and is configured to switch the input channels of the dual power sources according to the third preset voltage after the main voltage is reduced to the third preset voltage by the second buck module, and output a first output voltage corresponding to the dual power channel switched by the power channel seamless switching module, thereby implementing seamless switching of the dual power channels; and a third step-down module connected to the power channel seamless switching module And after the power channel seamless switching module switches the input channels of the dual power sources according to the third preset voltage, performing multi-step bucking on the first output voltage to obtain a second output voltage.
  • the redundant power supply for the UAV system further includes a load coupled to the third buck module for receiving a second output voltage output by the third buck module, the second output The voltage can meet the power requirements of the load.
  • the load is a peripheral chip of the UAV system and/or a peripheral circuit of the UAV system.
  • the third buck module multi-steps the first output voltage outputted by the power channel seamless switching module until the output second output voltage satisfies the power requirements of the main control chip and various peripheral circuits.
  • the adjustment module includes a boosting module, and is connected to the first buck module and the power channel seamless switching module, for boosting the first preset voltage to the fourth preset voltage.
  • the adjustment module is connected to the first step-down module, and the boosting module can perform boosting on the first step-down module.
  • the adjusting module boosts the first preset voltage to the fourth preset voltage by using the boosting module
  • the adjusting module outputs the fourth preset voltage to the subsequent circuit of the redundant power supply through the boosting module.
  • the boosting module includes a fifth receiving end and a second output end.
  • the fifth receiving end is configured to receive the first preset voltage
  • the second output end is configured to output a fourth preset voltage.
  • the voltage of the boosting module may be taken from the first buck module, and the first preset voltage outputted by the first buck module is received by the fifth receiving end, and the first preset voltage is boosted to the fourth preset voltage. . After the boosting module boosts the first preset voltage to the fourth preset voltage, the fourth preset voltage is output through the second output terminal.
  • the power protection module includes a lightning protection sub-module and an electrostatic discharge (Electro Static Discharge)
  • the lightning protection sub-module is connected to the power module for performing lightning protection for the redundant power supply; the ESD protection sub-module is connected with the power module for performing electrostatic discharge protection for the redundant power supply.
  • the power protection module includes a lightning protection sub-module connected to the power module for protecting the lightning effect of the redundant power supply.
  • the lightning protection sub-module can be protected by a lightning rod, a lightning protection line, a protection gap, a lightning arrester, and a lightning protection grounding.
  • Device composed of reactance coil, capacitor bank, arc suppression coil, auto-reclosing, etc.; ESD protection sub-module is connected with the power module to prevent the damage caused by static electricity generated by the redundant power supply, and improve the safety of the redundant power supply. .
  • the lithium battery is a single-cell lithium battery, and the capacity of the lithium battery is greater than a preset capacity.
  • the lithium battery adopts a single-cell large-capacity lithium battery, which avoids the use of the button battery as the backup power source of the UAV system, resulting in low power supply capacity, small output current, and only a short time to meet the UAV system. Insufficient demand for power supply, thus achieving the technology that redundant power supply effectively meets the power supply requirements of the drone system Effect.
  • This embodiment effectively solves the drone by adopting a single-cell large-capacity lithium battery as a backup power source for the unmanned aerial vehicle system, flexibly adopting a step-down, boosting technology, and a seamless switching method of combining multiple power sources.
  • the redundant power supply of the system can not work stably in the long period of time, thereby achieving the technical effect that the redundant power supply can effectively meet the power supply requirements of the long-distance system of the unmanned aerial vehicle system.
  • the redundant power supply of the UAV system includes: lithium battery pack 1, power protection module 2, primary buck module 3, secondary buck module 4, lithium battery charging and boosting module 5, lithium Battery 6, power channel seamless switching module 7, multi-stage buck module 8 and main control and peripherals 9.
  • the lithium battery pack 1 may be composed of a plurality of high-power lithium battery packs, which supply power to the main control system in addition to powering the power system, as shown in FIG.
  • the part enclosed by the dashed box is the power supply block diagram of the main control system.
  • the power protection module 2 is connected to the lithium battery pack 1.
  • the power protection module 2 includes a lightning protection sub-module and an ESD protection sub-module, and the lithium battery pack 1 is a power supply module that supplies a main voltage to the redundant power supply.
  • the first step-down module 3 is connected to the power protection module 2, and is configured to reduce the main voltage of the lithium battery pack 1 to a third preset voltage, that is, reduce the high voltage of the power module to a certain setting.
  • the setting for example, steps down the high voltage 48V to a low voltage of 12V to supply the use of subsequent circuits.
  • the second step-down module 4 is connected to the power protection module 2, and is configured to step down the main voltage of the lithium battery pack 1 to a first preset voltage, for example, a high voltage 48V to 50V connected to the lithium battery pack 1 Pressurized to a low voltage of 5V for the use of the lithium battery charging and boosting module 5.
  • the lithium battery charging and boosting module 5 is connected with the secondary voltage stepping module 4 and the lithium battery 6, and can detect the first preset voltage input to the lithium battery 6 when the lithium battery 6 is insufficient in power.
  • the lithium battery charging and boosting module 5 also has a boosting function, which can directly boost the first preset voltage of the input of the secondary buck module 4 to a fourth preset voltage, for example, input of the secondary buck module 4
  • the 5V voltage is boosted to 12V
  • the lithium battery charging and boosting module 5 can also directly boost the voltage of the lithium battery 6 to a second preset voltage, for example, boosting the voltage of the lithium battery 6 to 12V, the lithium battery
  • the charging and boosting module 5 has a voltage output at any time.
  • the power channel seamless switching module 7 is connected to the primary step-down module 3, which can realize seamless switching of dual power channels.
  • the power channel seamless switching module 7 can independently switch the input channel according to the third preset voltage output by the primary buck module 3, thereby ensuring uninterrupted power supply of the subsequent circuit, and the multi-stage buck module 8 and the power channel seamless switching module. 7-phase connection, the first output voltage outputted by the power channel seamless switching module 7 is stepped down in multiple stages to obtain a second output voltage to meet the power supply requirements of the main control and peripherals 9, that is, to satisfy the redundant power supply.
  • the power requirements of the main control chip and various external control devices are examples of the power channel seamless switching module 7 stepped down in multiple stages to obtain a second output voltage to meet the power supply requirements of the main control and peripherals 9, that is, to satisfy the redundant power supply.
  • the power channel seamless switching module 7 is connected to the lithium battery charging and boosting module 5, and is used for automatically switching the input channel according to the voltage of the lithium battery charging and boosting module 5, thereby ensuring uninterrupted power supply of the subsequent circuit.
  • the third preset voltage outputted by the first-stage buck module 3 is substantially the same as the second preset voltage or the fourth preset voltage outputted by the lithium battery charging and protection module 5, and the two voltages are seamlessly switched to the power channel.
  • Module 7, the power channel seamless switching module 7 will automatically switch the input channel according to the input voltage to ensure uninterrupted power supply of the subsequent circuit.
  • the multi-stage buck module 8 steps down the voltage from the power channel seamless switching module 7 output to meet the voltage requirements of the master and peripheral 9.
  • the lithium battery charging and boosting module includes: a lithium battery charging module 51 and a boosting module 52.
  • the lithium battery charging module 51 is configured to charge the power of the lithium battery to a preset power according to the first preset voltage output by the secondary voltage stepping module 4.
  • the lithium battery charging module 51 is connected to the second step-down module 4 through the first receiving end for receiving the first preset voltage; the lithium battery charging module 51 is connected to the lithium battery 6 through the second receiving end for receiving the lithium battery 6
  • the amount of electricity is such that the lithium battery charging module 51 charges the amount of the lithium battery to a preset amount according to the first preset voltage output by the primary step-down module 3.
  • the boosting module 52 is connected to the lithium battery 6 for boosting the voltage of the lithium battery 6 to a second predetermined voltage according to the first preset voltage.
  • the boosting module 52 is connected to the secondary buck module 4 through the fifth receiving end for receiving the first preset voltage.
  • the boosting module 52 is connected to the secondary buck module 4 and the power channel seamless switching module 7 for boosting the first preset voltage output by the secondary voltage reducing module 4 to a fourth preset voltage.
  • the boosting module 52 is connected to the secondary buck module 4 through the fifth receiving end for receiving the first preset voltage, and outputting the fourth preset voltage through the second output terminal.
  • the third receiving end of the boosting module 52 and the fifth receiving end of the boosting module 52 may be boosted
  • the same output end of the module, the first output of the boost module 52 and the second output of the boost module 52 may be the same output of the boost module 52.
  • a single-cell large-capacity lithium battery is used as a backup power supply for flight control, and the power supply system is optimized from the circuit, that is, the power supply system of the flight control system is required to be supplied without interruption, and the load of the aircraft is not generated too much. Great impact.
  • This embodiment branches and supplies the power supply requirements of the flight control board from the power module, and simultaneously completes the charging and power management of the standby power supply, flexibly uses the buck and boost technologies, and realizes the seamless switching method of the power supply channel.
  • the flight control board has a stable and uninterrupted power supply between the long turns.
  • Embodiments of the present invention also provide a redundant power supply method for an unmanned aerial vehicle system. It should be noted that the redundant power supply method for the UAV system can be performed by the above redundant power supply for the UAV system.
  • the redundant power supply method for the UAV system includes the following steps:
  • Step S401 Acquire a main voltage of the redundant power source.
  • the main voltage of the redundant power supply is a high voltage supplied by the power supply module, and may be a high voltage between 48V and 50V.
  • the main voltage may be provided by a plurality of high-power lithium battery batteries, and the lithium battery in the lithium battery group is a battery using a lithium metal or a lithium alloy as a negative electrode material and using a non-aqueous electrolyte solution, which may be large
  • the capacity of the lithium battery which increases the length of power supply for the redundant power supply for the UAV system.
  • the power protection module can perform lightning protection for the redundant power supply, and can perform electrostatic discharge protection for the redundant power supply, thereby improving the security of the redundant power supply.
  • Step S402 stepping down the main voltage to a first preset voltage.
  • the main voltage After acquiring the main voltage of the redundant power supply, the main voltage is stepped down, and the main voltage is stepped down to the first preset voltage.
  • the main voltage is stepped down from a high voltage of 48V to 50V to a low voltage of 5V for use in subsequent circuits.
  • Step S403 performing boosting on the lithium battery according to the first preset voltage to obtain a second preset voltage.
  • the drone system has a backup power source that can be placed in the control system of the drone system.
  • the power supply of the UAV system or some parts of the UAV system can be maintained by the backup power source to maintain the UAV system in a normal power supply state.
  • the backup power source for the drone system is a lithium battery. After stepping down the main voltage to the first preset voltage Obtaining the electrical parameter of the lithium battery, the electrical parameter may be a voltage parameter of the lithium battery, or a power parameter of the lithium battery, etc., adjusting the electrical parameter of the lithium battery according to the first preset voltage, and adjusting the electrical parameter as an adjustment result .
  • the lithium battery is a single-cell large-capacity battery, and the power and voltage of the single-cell large-capacity lithium battery can be flexibly adjusted, and the redundant power supply is stably connected to the unmanned system for continuous voltage supply. .
  • Step S404 supplying power to the power channel seamless switching module according to the second preset voltage.
  • a single-cell large-capacity lithium battery is used as a backup power supply for the UAV system, and the buck and boost technologies are flexibly utilized, and the power system is optimized from the circuit to meet the power supply of the UAV system. Intermittent supply requirements, but will not have too much impact on the load of the UAV system, avoiding the use of button batteries as the backup power supply for the UAV system, resulting in low power supply capacity, small output current, and short In the meantime, the shortage of the power supply requirements of the UAV system is met, thereby achieving the technical effect that the redundant power supply effectively satisfies the power supply requirements of the UAV system.
  • This embodiment obtains a main voltage of the redundant power supply; depresses the main voltage to a first preset voltage; performs boosting on the lithium battery according to the first preset voltage, to obtain a second preset voltage, wherein, lithium
  • the battery is a backup power supply of the UAV system, and the power supply channel seamless switching module is powered according to the second preset voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power supply according to the second preset voltage to Man-machine power supply, to achieve redundant power supply to effectively meet the long-distance power supply requirements of the UAV system.
  • the power of the lithium battery is obtained; determining whether the power of the lithium battery is lower than the first preset power; The battery power is lower than the first preset power, and the lithium battery is charged according to the first preset voltage, and the second preset power is obtained.
  • Adjusting the electrical parameter of the lithium battery according to the first preset voltage may adjust the power of the lithium battery according to the first preset voltage.
  • the first preset power is a preset threshold for determining whether the lithium battery needs to be charged. If it is determined that the power of the lithium battery is lower than the first preset power, the lithium battery needs to be charged to maintain the normal power supply requirement, and the lithium battery is charged according to the first preset voltage to obtain a second preset power, the second preset Set the power to the power of the lithium battery in the normal operation of the UAV system.
  • the second preset power is the full power of the lithium battery.
  • performing boosting on the lithium battery according to the first preset voltage, and obtaining the second preset voltage includes: acquiring a voltage of the lithium battery; determining whether the voltage of the lithium battery reaches the second preset Voltage; if it is determined that the voltage of the lithium battery does not reach the second preset voltage, the lithium battery is boosted according to the first preset voltage to obtain a second preset voltage.
  • Adjusting the electrical parameter of the lithium battery according to the first preset voltage may adjust the voltage of the lithium battery according to the first preset voltage. First, obtain the voltage of the lithium battery, and then determine whether the voltage of the lithium battery reaches the second preset voltage. If it is determined that the voltage of the lithium battery does not reach the second preset voltage, performing boosting on the lithium battery according to the first preset voltage to obtain a second preset voltage, and if it is determined that the voltage of the lithium battery reaches the second preset voltage, Do not adjust the lithium battery.
  • the second preset voltage may be 12V, which achieves the effect of uninterruptible power supply between the long circuits of the UAV system.
  • the redundant power supply method for the UAV system further includes: stepping down the main voltage to a third preset voltage;
  • the power supply channel seamless switching module supplies power through the third preset voltage to obtain a first output voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the third preset voltage; perform the first output voltage Multiple steps down to obtain a second output voltage; power is supplied to the load of the drone system according to the second output voltage
  • the main voltage is stepped down to a third preset voltage, for example, the main voltage is stepped down from a high voltage of 48V to a low voltage of 12V for use by subsequent circuits.
  • the power supply channel seamless switching module is powered by the third preset voltage to obtain a first output voltage, where the first output voltage corresponds to the power channel seamless switching module switching.
  • Dual power channels for seamless switching of dual power channels. After powering the seamless switching module of the power channel through the third preset voltage to obtain the first output voltage, performing multi-step bucking on the first output voltage to obtain a second output voltage Supply power to the load of the UAV system based on the second output voltage.
  • performing power supply to the load of the UAV system according to the second output voltage includes: controlling the main control chip of the UAV system and/or the UAV system according to the second output voltage The peripheral circuit is powered.
  • the load of this embodiment may be a peripheral chip of the UAV system and/or a peripheral circuit of the UAV system, and the multi-channel buck is performed by the first output voltage outputted by the power channel seamless switching module. Until the output second output voltage meets the power requirements of the main control chip and various peripheral circuits, the redundant power supply is stably connected to the unmanned system for continuous voltage supply.
  • the redundant power supply method for the UAV system further includes: boosting the first preset voltage Up to the fourth preset voltage; supplying power to the power channel seamless switching module according to the fourth preset voltage, to obtain a third output voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power source according to the fourth preset voltage Performing a multi-step buck on the third output voltage to obtain a fourth output voltage; and supplying power to the load of the UAV system according to the fourth output voltage.
  • boosting the first preset voltage to a fourth preset voltage for example, boosting the first preset voltage to a low voltage of 5V to a high voltage of 12V.
  • the fourth preset voltage and the third preset voltage are substantially the same; after the first preset voltage is boosted to the fourth preset voltage, the power supply channel seamless switching module is powered according to the fourth preset voltage, Obtaining a third output voltage, wherein the power channel seamless switching module autonomously switches the input channel according to the input voltage condition to ensure an uninterrupted power supply of the subsequent circuit; performing multi-step bucking on the third output voltage to satisfy the main control and The voltage requirements of the peripheral circuits thus achieve the technical effect that the redundant power supply effectively satisfies the power supply requirements of the drone system.
  • a single-cell large-capacity lithium battery is selected as a backup power source for the unmanned aerial vehicle system, which does not have a great influence on the load of the aircraft, and the power supply system is optimized from the circuit, and the standby power supply is simultaneously charged.
  • power management work flexible use of buck, boost technology, seamless switching of the power channel to achieve a stable and uninterrupted power supply between the long drone system.
  • Embodiments of the present invention also provide a redundant power supply device for an unmanned aerial vehicle system. It should be noted that the redundant power supply device for the unmanned aerial vehicle system of this embodiment can be used to perform the redundant power supply method for the unmanned aerial vehicle system of the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a redundant power supply apparatus for an unmanned aerial vehicle system in accordance with an embodiment of the present invention.
  • the redundant power supply device for the UAV system includes: a first acquisition unit 50, a first step-down unit 60, a boost unit 70, and a first power supply unit 80.
  • the first obtaining unit 50 is configured to acquire a main voltage of the redundant power source.
  • the first step-down unit 60 is configured to step down the main voltage to a first preset voltage.
  • the boosting unit 70 is configured to adjust an electrical parameter of the battery according to the first preset voltage, and obtain an adjustment result, where
  • the battery is the backup power source for the drone system.
  • the first power supply unit 80 is configured to supply power to the power channel seamless switching module according to the second preset voltage, where
  • the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the second preset voltage to supply power to the unmanned machine.
  • the redundant power supply device for the UAV system further includes: a second acquisition unit and a charging unit.
  • the second obtaining unit is configured to: after the main voltage is stepped down to the first preset voltage, obtain the battery power; the determining unit is configured to determine whether the battery power is lower than the first preset power; When it is determined that the battery power is lower than the first preset power, the battery is charged according to the first preset voltage, and the second preset power is obtained.
  • the boosting unit 70 includes an obtaining module and a determining module.
  • the obtaining module is configured to obtain a voltage of the battery;
  • the determining module is configured to determine whether the voltage of the battery reaches a second preset voltage; and the boosting module is configured to determine that the voltage of the battery does not reach the second preset voltage, according to The first preset voltage performs boosting on the battery to obtain a second preset voltage.
  • the redundant power supply device for the UAV system further includes a second buck unit, a second power supply unit, a third buck unit, and a third power supply unit.
  • the second step-down unit is configured to: after obtaining the main voltage of the redundant power source, step down the main voltage to a third preset voltage; and the second power supply unit is configured to seamlessly connect the power source through the third preset voltage
  • the switching module supplies power to obtain a first output voltage, wherein the power channel seamless switching module is configured to switch the input channels of the dual power sources according to the third preset voltage; and the third step-down unit is configured to perform multipathing on the first output voltage Pressing to obtain a second output voltage; the third power supply unit , for performing power supply to the load of the drone system according to the second output voltage.
  • the third power supply unit is configured to supply power to the main control chip of the UAV system and/or the peripheral circuit of the UAV system according to the second output voltage.
  • This embodiment obtains the main voltage of the redundant power supply by the first obtaining unit 50, and the main voltage is stepped down to the first preset voltage by the first buck unit 60, and the first preset voltage is adopted by the boosting unit 70.
  • Performing a boost on the battery to obtain a second preset voltage wherein the battery is a backup power supply of the unmanned system
  • the first power supply unit 80 supplies power to the power channel seamless switching module according to the second preset voltage, wherein the power channel
  • the seamless switching module is configured to switch the input channels of the dual power sources according to the second preset voltage to supply power to the drone, and achieve the redundant power supply to effectively meet the power supply requirements of the unmanned system.
  • Embodiments of the present invention can be applied to an uninterruptible power supply, such as an Uninterruptible Power System (UPS), a redundant power supply system of a main control panel of a drone, a floating device, and the like.
  • UPS Uninterruptible Power System
  • the embodiment of the present invention is highly applicable, that is, suitable for low power applications, and also suitable for high power occasions, for different occasions. The application only needs to change a few small components in the main loop.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Implementing multiple modules or steps in them as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于无人机系统的冗余电源及其供电方法和装置,该用于无人机系统的冗余电源供电方法包括:获取冗余电源的主电压(S401);将主电压降压至第一预设电压(S402);根据第一预设电压对电池(6)执行升压,得到第二预设电压(S403),其中,电池(6)为无人机系统的备用电源;根据第二预设电压为电源通道无缝切换模块(7)供电(S404),其中,电源通道无缝切换模块(7)用于根据第二预设电压切换双电源的输入通道以对无人机供电。该无人机系统的冗余电源及其供电方法和装置,实现了冗余电源有效地满足无人机系统长时间供电需求的技术效果。

Description

用于无人机系统的冗余电源及其供电方法和装置 技术领域
[0001] 本发明涉及无人机系统领域, 具体而言, 涉及一种用于无人机系统的冗余电源 及其供电方法和装置。
背景技术
[0002] 目前, 无人机系统采用纽扣电池作为备用电源, 电源容量低, 输出电流小, 供 电吋间很有限, 只能短吋间满足系统供电需求, 不能长吋间稳定地满足供电系 统的要求, 从而不能有效地满足无人机系统供电需求。
[0003] 采用微控制器 (MCU) 监控电源模块及备用电源的电压状态, 然后通过微控 制器的端口控制场效应管 (MOS) 的导通进行通道切换, 这种方法虽然能满足 系统要求, 但是电路却过于复杂, 不能有效地满足无人机系统供电需求。
[0004] 采用发电机给备用电源充电, 效率比较低同吋增加了无人机的系统重量, 由于 发电机体积及重量的局限性, 降低了飞行器的续航吋间, 并不适合于对载荷要 求比较严格的中小型无人机系统, 不能有效地满足无人机系统长吋间不间断供 电需求。
技术问题
[0005] 针对相关技术中冗余电源不能有效地满足无人机系统长吋间不间断供电需求的 问题, 目前尚未提出有效的解决方案。
问题的解决方案
技术解决方案
[0006] 本发明的主要目的在于提供一种用于无人机系统的冗余电源及其供电方法和装 置, 以至少解决相关技术中冗余电源不能有效地满足无人机系统供电需求的问 题。
[0007] 为了实现上述目的, 根据本发明的一个方面, 提供了一种用于无人机系统的冗 余电源供电方法。 该用于无人机系统的冗余电源供电方法包括: 获取冗余电源 的主电压; 将主电压降压至第一预设电压; 根据第一预设电压对电池执行升压 , 得到第二预设电压, 其中, 电池为无人机系统的备用电源; 根据第二预设电 压为电源通道无缝切换模块供电, 其中, 电源通道无缝切换模块用于根据第二 预设电压切换双电源的输入通道以对无人机供电。
[0008] 进一步地, 在将主电压降压至第一预设电压之后, 该用于无人机系统的冗余电 源供电方法还包括: 获取电池的电量; 判断电池的电量是否低于第一预设电量 ; 如果判断出电池的电量低于第一预设电量, 根据第一预设电压对电池执行充 电, 得到第二预设电量。
[0009] 进一步地, 根据第一预设电压调整电池的电参数, 得到调整结果包括: 获取电 池的电压; 判断电池的电压是否达到第二预设电压; 如果判断出电池的电压没 有达到第二预设电压, 根据第一预设电压对电池执行升压, 得到第二预设电压
[0010] 进一步地, 在获取冗余电源的主电压之后, 该用于无人机系统的冗余电源供电 方法还包括: 将主电压降压至第三预设电压; 通过第三预设电压为电源通道无 缝切换模块供电, 得到第一输出电压, 其中, 电源通道无缝切换模块用于根据 第三预设电压切换双电源的输入通道; 对第一输出电压执行多路降压, 得到第 二输出电压; 根据第二输出电压对无人机系统的负载执行供电。
[0011] 进一步地, 根据第二输出电压对无人机系统的负载执行供电包括: 根据第二输 出电压对无人机系统的主控芯片和 /或无人机系统的外设电路供电。
[0012] 进一步地, 在将主电压降压至第一预设电压之后, 该用于无人机系统的冗余电 源供电方法还包括: 将第一预设电压升压至第四预设电压; 根据第四预设电压 为电源通道无缝切换模块供电, 得到第三输出电压, 其中, 电源通道无缝切换 模块用于根据第四预设电压切换双电源的输入通道; 对第三输出电压执行多路 降压, 得到第四输出电压; 根据第四输出电压对无人机系统的负载执行供电。
[0013] 为了实现上述目的, 根据本发明的另一方面, 还提供了一种用于无人机系统的 冗余电源供电装置。 用于无人机系统的冗余电源供电装置该用于无人机系统的 冗余电源供电装置包括: 第一获取单元, 用于获取冗余电源的主电压; 第一降 压单元, 用于将主电压降压至第一预设电压; 升压单元, 用于根据第一预设电 压对电池执行升压, 得到第二预设电压, 其中, 电池为无人机系统的备用电源 ; 第一供电单元, 用于根据第二预设电压为电源通道无缝切换模块供电, 其中 , 电源通道无缝切换模块用于根据第二预设电压切换双电源的输入通道以对无 人机供电。
[0014] 进一步地, 所述装置还包括: 第二获取单元, 用于获取电池的电量; 判断单元 , 用于判断电池的电量是否低于第一预设电量; 充电单元, 用于在判断出电池 的电量低于第一预设电量, 根据第一预设电压对电池执行充电, 得到第二预设 电量。
[0015] 进一步地, 升压单元包括: 获取模块, 用于获取电池的电压; 判断模块, 用于 判断电池的电压是否达到第二预设电压; 升压模块, 用于在判断出电池的电压 没有达到第二预设电压, 根据第一预设电压对电池执行升压, 得到第二预设电 压。
[0016] 进一步地, 用于无人机系统的冗余电源供电装置还包括: 第二降压单元, 用于 在获取冗余电源的主电压之后, 将主电压降压至第三预设电压; 第二供电单元 , 用于通过第三预设电压为电源通道无缝切换模块供电, 得到第一输出电压, 其中, 电源通道无缝切换模块用于根据第三预设电压切换双电源的输入通道; 第三降压单元, 用于对第一输出电压执行多路降压, 得到第二输出电压; 第三 供电单元, 用于根据第二输出电压对无人机系统的负载执行供电。
[0017] 为了实现上述目的, 根据本发明的另一方面, 还提供了一种用于无人机系统的 冗余电源。 该用于无人机系统的冗余电源包括: 电源保护模块, 与电源模块相 连接, 用于获取冗余电源的主电压; 第一降压模块, 与电源保护模块相连接, 用于将主电压降压至第一预设电压; 电池, 为无人机系统的备用电源; 调整模 块, 与第一降压模块和电池相连接, 用于根据第一预设电压对电池执行升压, 得到第二预设电压, 并根据第二预设电压为电源通道无缝切换模块供电, 其中 , 电源通道无缝切换模块用于根据第二预设电压切换双电源的输入通道以对无 人机供电。
[0018] 进一步地, 该调整模块包括: 充电模块, 用于根据第一预设电压将电池的电量 充电至预设电量。
[0019] 进一步地, 该用于无人机系统的冗余电源还包括: 第二降压模块, 与电源保护 模块相连接, 用于将主电压降压至第三预设电压; 电源通道无缝切换模块, 与 第二降压模块相连接, 用于根据第三预设电压切换双电源的输入通道, 得到第 一输出电压; 第三降压模块, 与电源通道无缝切换模块相连接, 用于对输出电 压执行多路降压, 得到第二输出电压; 负载, 与第三降压模块相连接, 用于接 收第二输出电压。
[0020] 进一步地, 该调整模块包括: 升压模块, 与第一降压模块和电源通道无缝切换 模块相连接, 用于将第一预设电压升压至第四预设电压。
发明的有益效果
有益效果
[0021] 通过本发明, 采用获取冗余电源的主电压; 将主电压降压至第一预设电压; 根 据第一预设电压调整电池的电参数, 得到调整结果, 其中, 电池为无人机系统 的备用电源, 解决了相关技术中冗余电源不能有效地满足无人机系统长吋间不 间断供电需求的问题, 进而达到了冗余电源有效地满足无人机系统长吋间供电 需求的技术效果。
对附图的简要说明
附图说明
[0022] 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性 实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: [0023] 图 1是根据本发明第一实施例的用于无人机系统的冗余电源的示意图;
[0024] 图 2是根据本发明第二实施例的用于无人机系统的冗余电源的示意图;
[0025] 图 3是根据本发明实施例的锂电充电及升压模块的示意图;
[0026] 图 4是根据本发明实施例的用于无人机系统的冗余电源供电方法的流程图; 以 及
[0027] 图 5是根据本发明实施例的用于无人机系统的冗余电源供电装置的示意图。
本发明的实施方式
[0028] 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以 相互组合。 下面将参考附图并结合实施例来详细说明本发明。
[0029] 为了使本技术领域的人员更好地理解本申请方案, 下面将结合本申请实施例中 的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述 的实施例仅仅是本申请一部分的实施例, 而不是全部的实施例。 基于本申请中 的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都应当属于本申请保护的范围。
[0030] 需要说明的是, 本申请的说明书和权利要求书及上述附图中的术语"第一"、 " 第二"等是用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。 应该 理解这样使用的数据在适当情况下可以互换, 以便这里描述的本申请的实施例 。 此外, 术语"包括"和"具有"以及他们的任何变形, 意图在于覆盖不排他的包含 , 例如, 包含了一系列步骤或单元的过程、 方法、 系统、 产品或设备不必限于 清楚地列出的那些步骤或单元, 而是可包括没有清楚地列出的或对于这些过程 、 方法、 产品或设备固有的其它步骤或单元。
[0031] 本发明实施例提供了一种用于无人机系统的冗余电源。
[0032] 图 1是根据本发明第一实施例的用于无人机系统的冗余电源的示意图。 如图 1所 示, 该用于无人机系统的冗余电源包括: 电源保护模块 10, 第一降压模块 20, 电池 30和调整模块 40。
[0033] 电源保护模块 10, 与电源模块相连接, 用于获取冗余电源的主电压。
[0034] 无人机系统为无人机及与其配套的通信站、 起飞 (发射) 回收装置以及无人机 的运输、 储存和检测装置等的统称, 无人机系统主要包括飞机机体、 飞控系统 、 数据链系统、 发射回收系统、 电源系统等。 冗余电源用于无人机系统中的电 源系统中。 冗余电源包括电源保护模块 10, 该电源保护模块 10与电源模块相连 接, 用于获取冗余电源的主电压。 电源模块为电源保护模块 10的主电源输入, 除了为动力系统供电之外, 还为无人机系统的主控系统供电, 从而为冗余电源 提供主电压。 比如, 电源模块提供高压 48V至 50V, 电源保护模块 10获取该高压 4 8V至 50V以作为冗余电源的主电压。 可选地, 电源模块可以由多个高倍率的锂电 池组构成。 其中, 锂电池是一类由锂金属或者锂合金为负极材料、 使用非水电 解质溶液的电池。 需要理解的是, 在本实施例以及后续的说明中, 仅使用电池 作为阐述的例子, 但是本发明并不限定电池的种类, 对于其他的电池, 也可以 用在本发明中。
[0035] 第一降压模块 20, 与电源保护模块 10相连接, 用于将主电压降压至第一预设电 压。
[0036] 第一降压模块 20与电源保护模块 10相连接, 在电源保护模块 10获取冗余电源的 主电压之后, 第一降压模块 20获取该冗余电源的主电压, 将主电压降压至第一 预设电压。 比如, 该第一预设电压为 5V, 可以将主电压为高压 48V至 50V降压至 低压 5V以供后续电路采用。
[0037] 电池 30, 为无人机系统的备用电源。 电池 30为无人机系统的备用电源, 可以为 无人机系统的控制系统的备用电源, 可选地, 电池 30为锂电池。 当冗余电源的 正常电源被切断吋, 电池 30启用, 用来维持无人机系统的电气装置或者无人机 系统的某些部分的供电, 以使无人机系统保持供电状态, 而不至于由于无人机 系统突然断电而出现故障造成不安全事故的发生, 进而造成损失。
[0038] 调整模块 40, 与第一降压模块 20和电池 30相连接, 用于根据第一预设电压对电 池 30执行升压, 得到第二预设电压, 并根据第二预设电压为电源通道无缝切换 模块供电, 其中, 电源通道无缝切换模块用于根据第二预设电压切换双电源的 输入通道以对无人机供电。
[0039] 可选地, 第一降压模块 20和电池 30相连接, 用于在第一降压模块 20将主电压降 压至第一预设电压之后, 接收第一预设电压, 并根据第一预设电压调整电池 30 的电量参数, 比如, 当检测到电池 30的电量不足吋, 调整模块 40根据第一预设 电压为电池 30充电, 当电池 30电量充满之后, 调整模块 40自动停止为电池 30充 电。
[0040] 可选地, 调整模块 40在任何吋候都有电压输出。 调整模块 40在根据第一预设电 压调整电池 30的电参数, 得到调整结果之后, 将调整结果输出至冗余电源的后 续电路中。
[0041] 在该实施例中, 电源保护模块 10与电源模块相连接, 用于获取冗余电源的主电 压, 第一降压模块 20与电源保护模块 10相连接, 用于将主电压降压至第一预设 电压, 电池 30为无人机系统的备用电源, 调整模块 40与第一降压模块 20和电池 3 0相连接, 用于根据第一预设电压调整电池 30的电参数, 得到调整结果, 通过采 用电池 30作为无人机系统的控制系统的备用电源, 灵活地对电池 30的电参数进 行调整, 避免了无人机系统采用纽扣电池作为备用电源所导致的电源容量低、 输出电流小、 只能短吋间满足无人机系统长吋间不间断供电需求的不足, 避免 了发电机给备用电池充电, 由于发电机的体积和重量使冗余电源适用具有局限 性, 进而达到了冗余电源有效地满足无人机系统长吋间供电需求的技术效果。
[0042] 可选地, 调整模块包括: 充电模块, 用于根据第一预设电压对电池执行充电, 得到预设电量。
[0043] 充电模块可以为锂电充电模块, 用于调整模块可以通过充电模块根据第一预设 电压对锂电池进行充电, 得到预设电量。 可选地, 电池输出当前电池的电量, 调整模块获取该电池的电量, 判断电池的电量是否低于第一预设电量, 其中, 该第一预设电量是预先设置好的用于确定电池是否需要充电的电量临界值。 如 果判断出电池的电量低于第一预设电量, 则电池需要充电, 通过充电模块获取 第一降压模块输出的第一预设电压, 根据第一预设电压对电池执行充电, 得到 第二预设电量, 该第二预设电量为无人机系统正常工作吋电池所具有的电量, 比如, 该第二预设电量为电池的满电量。 当调整模块通过充电模块根据第一预 设电压将电池的电量充电至预设电量吋, 调整模块控制充电模块停止充电。
[0044] 可选地, 该充电模块包括第一接收端和第二接收端。 其中, 第一接收端, 与第 一降压模块相连接, 用于接收第一预设电压; 第二接收端, 与电池相连接, 用 于接收电池的电量。
[0045] 充电模块的电压可以取自第一降压模块, 充电模块的第一接收端与第一降压模 块相连接, 通过第一接收端接收第一降压模块输出的第一预设电压; 充电模块 的第二接收端与电池相连接, 通过第二接收端接收电池的电量, 根据第一预设 电压将电池的电量充电至预设电量, 可选地, 当电池的电量为满电量吋, 充电 模块通过第一接收端和第二接收端停止对电池充电。
[0046] 可选地, 调整模块与电池相连接, 可以根据第一预设电压对电池执行升压, 将 电池的电压升压至第二预设电压。 调整模块获取电池的电压, 判断电池的电压 是否达到第二预设电压, 如果判断出电池的电压没有达到第二预设电压, 需要 将电池的电压升压至第二预设电压。 调整模块接收来自第一降压模块输出的第 一预设电压, 根据第一预设电压对电池执行升压, 得到第二预设电压, 并输出 该第二预设电压至冗余电源的后续电路。
[0047] 可选地, 调整模块包括第三接收端和第一输出端。 其中, 第三接收端, 与第一 降压模块相连接, 用于接收第一预设电压; 第四接收端, 与电池相连接, 用于 接收电池的电压; 以及第一输出端, 用于输出第二预设电压。
[0048] 调整模块的电压可以取自第一降压模块, 调整模块的第三接收端与第一降压模 块相连接, 通过第三接收端接收第一降压模块输出的第一预设电压, 调整模块 的第四接收端与电池相连接, 通过第四接收端接收电池的电压。 在调整模块根 据第一预设电压将电池的电压升压至第二预设电压之后, 通过第一输出端输出 第二预设电压。
[0049] 可选地, 该用于无人机系统的冗余电源还包括第二降压模块, 电源通道无缝切 换模块, 第三降压模块和负载。 其中, 第二降压模块, 与电源保护模块相连接 , 用于将主电压降压至第三预设电压; 电源通道无缝切换模块, 与第二降压模 块相连接, 用于根据第三预设电压切换双电源的输入通道; 第三降压模块, 与 电源通道无缝切换模块相连接, 用于对电源通道无缝切换模块的第一输出电压 执行多路降压, 得到第二输出电压; 负载, 与第三降压模块相连接, 用于接收 第二输出电压。
[0050] 第二降压模块, 与电源保护模块相连接, 用于在电源保护模块获取主电压之后 , 对主电压执行降压, 将主电压降压至第三预设电压, 比如, 将主电压为高压 4 8V降压至低压 12V以供后续电路使用。 电源通道无缝切换模块与第二降压模块相 连接, 用于在通过第二降压模块将主电压降低至第三预设电压之后根据第三预 设电压切换双电源的输入通道, 并且输出第一输出电压, 该第一输出电压对应 于电源通道无缝切换模块切换的双电源通道, 从而实现了双电源通道的无缝切 换; 第三降压模块, 与电源通道无缝切换模块相连接, 用于在电源通道无缝切 换模块根据第三预设电压切换双电源的输入通道之后, 对第一输出电压执行多 路降压, 得到第二输出电压。 该用于无人机系统的冗余电源还包括负载, 与第 三降压模块相连接, 用于接收第三降压模块输出的第二输出电压, 该第二输出 电压可以满足负载的供电需求。
[0051] 可选地, 负载为无人机系统的主控芯片和 /或无人机系统的外设电路。
[0052] 第三降压模块将电源通道无缝切换模块输出的第一输出电压进行多路降压, 直 至输出的第二输出电压满足主控芯片以及各种外设电路的电源需求。
[0053] 可选地, 该调整模块包括升压模块, 与第一降压模块和电源通道无缝切换模块 相连接, 用于将第一预设电压升压至第四预设电压。
[0054] 调整模块与第一降压模块相连接, 可以通过升压模块对第一降压模块执行升压
, 将第一降压模块输出的第一预设电压升压至第四预设电压。 在调整模块通过 升压模块将第一预设电压升压至第四预设电压之后, 调整模块通过该升压模块 输出该第四预设电压至冗余电源的后续电路。
[0055] 可选地, 升压模块包括第五接收端和第二输出端。 其中, 第五接收端, 用于接 收第一预设电压; 第二输出端, 用于输出第四预设电压。
[0056] 升压模块的电压可以取自第一降压模块, 通过第五接收端接收第一降压模块输 出的第一预设电压, 将第一预设电压升压至第四预设电压。 在升压模块将第一 预设电压升压至第四预设电压之后, 通过第二输出端输出第四预设电压。
[0057] 可选地, 该电源保护模块包括防雷子模块和静电释放 (Electro Static Discharge
, 简称为 ESD) 保护子模块。 其中, 防雷子模块, 与电源模块相连接, 用于为冗 余电源执行防雷保护; ESD保护子模块, 与电源模块相连接, 用于为冗余电源执 行静电放电保护。
[0058] 电源保护模块包括防雷子模块, 与电源模块相连接, 用于对冗余电源的雷电效 应进行防护, 该防雷子模块可以由避雷针、 避雷线、 保护间隙、 避雷器、 防雷 接地、 电抗线圈、 电容器组、 消弧线圈、 自动重合闸等组成的装置; ESD保护子 模块与电源模块相连接, 用于防止冗余电源产生的静电造成的危害, 提高了冗 余电源的安全性。
[0059] 可选地, 锂电池为单节锂电池, 锂电池的容量大于预设容量。
[0060] 锂电池采用单节大容量的锂电池, 避免了无人机系统采用纽扣电池作为无人机 系统的备用电源造成电源容量低、 输出电流小、 只能短吋间满足无人机系统供 电的需求的不足, 从而达到了冗余电源有效地满足无人机系统供电需求的技术 效果。
[0061] 该实施例通过采用单节大容量锂电池作为无人机系统的备用电源, 灵活地采用 降压、 升压技术、 并且融合多路电源无缝切换的方法有效地解决了无人机系统 的冗余电源不能长吋间稳定地工作的问题, 进而达到了冗余电源有效地满足无 人机系统长吋间供电需求的技术效果。
[0062] 下面结合优选的实施例对本发明的用于无人机系统的冗余电源的技术方案进行 说明。
[0063] 图 2是根据本发明第二实施例的用于无人机系统的冗余电源的示意图。 如图 2所 示, 该无人机系统的冗余电源包括: 锂电池组 1, 电源保护模块 2, 一级降压模 块 3, 二级降压模块 4, 锂电充电及升压模块 5, 锂电池 6, 电源通道无缝切换模 块 7, 多级降压模块 8和主控及外设 9。
[0064] 在该实施例中, 锂电池组 1可以由多个高倍率的锂电池组构成, 该锂电池组 1除 了给动力系统供电之外还给主控系统供电, 图 2中所示的虚线框所包括的部分即 为主控系统的电源框图。 电源保护模块 2与锂电池组 1相连接, 该电源保护模块 2 包括防雷子模块和 ESD保护子模块等, 锂电池组 1为冗余电源提供主电压的电源 模块。 一级降压模块 3与电源保护模块 2相连接, 用于将锂电池组 1接入的主电压 降低至第三预设电压, 也即, 将电源模块接入的高电压降低到某一设定值, 比 如, 将高压 48V降压到低压 12V以供应后续电路的使用。 二级降压模块 4与电源保 护模块 2相连接, 用于将锂电池组 1接入的主电压降压至第一预设电压, 比如, 将锂电池组 1接入的高压 48V至 50V降压至低压 5V以供锂电充电及升压模块 5的使 用。 锂电充电及升压模块 5与二级降压模块 4和锂电池 6相连接, 可以检测到当锂 电池 6的电量不足吋通过二级降压模块 4输入的第一预设电压对锂电池 6执行充电 , 当锂电池 6的电量充满后自动停止对锂电池 6的充电, 其中, 锂电池 6为冗余电 源的备用电源。 锂电充电及升压模块 5还具有升压功能, 可以直接将二级降压模 块 4的输入的第一预设电压升压到第四预设电压, 比如, 将二级降压模块 4的输 入的 5V电压升压到 12V电压, 锂电充电及升压模块 5也可以直接把锂电池 6的电压 升压到第二预设电压, 比如, 将锂电池 6的电压升压至 12V电压, 该锂电充电及 升压模块 5在任何吋候都有电压输出。 [0065] 电源通道无缝切换模块 7与一级降压模块 3相连接, 可以实现双电源通道的无缝 切换。 电源通道无缝切换模块 7可以根据一级降压模块 3输出的第三预设电压自 主切换输入通道, 从而保证后续电路无间断的电源供应, 多级降压模块 8与电源 通道无缝切换模块 7相连接, 将电源通道无缝切换模块 7输出的第一输出电压进 行多级降压, 得到第二输出电压, 以满足主控及外设 9的供电需求, 也即, 满足 冗余电源的主控芯片以及各种外控设备的电源需求。
[0066] 电源通道无缝切换模块 7与锂电充电及升压模块 5相连接, 用于根据锂电充电及 升压模块 5输出的电压自主切换输入通道, 从而保证后续电路无间断的电源供应 。 一级降压模块 3输出的第三预设电压和锂电池充电及保护模块 5输出的第二预 设电压或者第四预设电压基本相同, 这两路电压同吋输入到电源通道无缝切换 模块 7, 该电源通道无缝切换模块 7会根据输入的电压自主切换输入通道以保证 后续电路无间断的电源供应。 多级降压模块 8将来自电源通道无缝切换模块 7输 出的电压进行多级降压以满足主控及外设 9的电压需求。
[0067] 图 3是根据本发明实施例的锂电充电及升压模块的示意图。 如图 3所示, 该锂电 充电及升压模块包括: 锂电充电模块 51和升压模块 52。
[0068] 锂电充电模块 51用于根据二级降压模块 4输出的第一预设电压将锂电池的电量 充电至预设电量。 锂电充电模块 51通过第一接收端与二级降压模块 4相连接, 用 于接收第一预设电压; 锂电充电模块 51通过第二接收端与锂电池 6相连接, 用于 接收锂电池 6的电量, 从而使锂电充电模块 51根据一级降压模块 3输出的第一预 设电压将锂电池的电量充电至预设电量。
[0069] 升压模块 52与锂电池 6相连接, 用于根据第一预设电压将锂电池 6的电压升压至 第二预设电压。 升压模块 52通过第五接收端与二级降压模块 4相连接, 用于接收 第一预设电压。
[0070] 升压模块 52与二级降压模块 4和电源通道无缝切换模块 7相连接, 用于将二级降 压模块 4输出的第一预设电压升压至第四预设电压。 升压模块 52通过第五接收端 与二级降压模块 4相连接, 用于接收第一预设电压, 通过第二输出端输出第四预 设电压。
[0071] 可选地, 上述升压模块 52的第三接收端和升压模块 52的第五接收端可以为升压 模块的同一接收端, 升压模块 52的第一输出端和升压模块 52的第二输出端可以 为升压模块 52的同一输出端。
[0072] 该实施例采用单节大容量锂电做飞控的备用电源, 从电路上对电源系统进行优 化设计, 即满足了飞控系统的电源无间断供应要求又不会对飞行器的载荷产生 太大影响。
[0073] 该实施例从电源模块中分支供应飞行控制板电源需求, 并同吋完成备用电源的 充电及电源管理工作, 灵活地运用降压、 升压技术, 融合电源通道无缝切换方 法实现了飞控板长吋间稳定不间断的电源供应。
[0074] 本发明实施例还提供了一种用于无人机系统的冗余电源供电方法。 需要说明的 是, 该用于无人机系统的冗余电源供电方法可以由上述用于无人机系统的冗余 电源执行。
[0075] 图 4是根据本发明实施例的用于无人机系统的冗余电源供电方法的流程图。 如 图 4所示, 该用于无人机系统的冗余电源供电方法包括以下步骤:
[0076] 步骤 S401 , 获取冗余电源的主电压。
[0077] 冗余电源的主电压为由电源模块提供的高电压, 可以为 48V至 50V之间的高电 压。 优选地, 该主电压可以由多个高倍率的锂电池组提供, 该锂电池组中的锂 电池是一类由锂金属或者锂合金为负极材料、 使用非水电解质溶液的电池, 可 以为大容量的锂电池, 从而提高了冗余电源为无人机系统供电的吋长。
[0078] 可选地, 该电源保护模块可以为冗余电源执行防雷保护, 也可以为冗余电源执 行静电放电保护, 提高了冗余电源的安全性。
[0079] 步骤 S402, 将主电压降压至第一预设电压。
[0080] 在获取冗余电源的主电压之后, 对主电压进行降压, 将主电压降压至第一预设 电压。 可选地, 主电压为高压 48V至 50V降压至低压 5V以供后续电路采用。
[0081] 步骤 S403 , 根据第一预设电压对锂电池执行升压, 得到第二预设电压。
[0082] 无人机系统具有备用电源, 该备用电源可以设置在无人机系统的控制系统中。
这样, 当冗余电源的正常电源被切断吋, 通过备用电源可以维持无人机系统的 电气装置或者无人机系统的某些部分的供电, 以使无人机系统保持正常供电状 态。 该无人机系统的备用电源为锂电池。 在将主电压降压至第一预设电压之后 , 获取锂电池的电参数, 该电参数可以为锂电池的电压参数, 也可以为锂电池 的电量参数等, 根据第一预设电压调整锂电池的电参数将调整后的电参数作为 调整结果。 可选地, 锂电池为单节大容量电池, 该单节大容量锂电池的电量和 电压可以灵活地进行调整, 实现了冗余电源长吋间稳定不间断地为无人机系统 进行电压供应。
[0083] 根据第一预设电压调整锂电池的电压, 根据第一预设电压对锂电池执行升压, 得到第二预设电压。
[0084] 步骤 S404, 根据第二预设电压为电源通道无缝切换模块供电。
[0085] 在根据第一预设电压对锂电池执行升压, 得到第二预设电压之后, 根据第二预 设电压为电源通道无缝切换模块供电, 其中, 电源通道无缝切换模块用于根据 第二预设电压切换双电源的输入通道以对无人机供电。
[0086] 该实施例选用单节大容量锂电做无人机系统的备用电源, 灵活运用降压、 升压 技术, 从电路上对电源系统进行了优化设计, 满足了无人机系统的电源无间断 的供应要求, 而又不会对无人机系统的载荷产生太大影响, 避免了无人机系统 采用纽扣电池作为无人机系统的备用电源造成电源容量低、 输出电流小、 只能 短吋间满足无人机系统供电的需求的不足, 从而达到了冗余电源有效地满足无 人机系统长吋间供电需求的技术效果。
[0087] 该实施例通过获取冗余电源的主电压; 将主电压降压至第一预设电压; 根据第 一预设电压对锂电池执行升压, 得到第二预设电压, 其中, 锂电池为无人机系 统的备用电源, 根据第二预设电压为电源通道无缝切换模块供电, 其中, 电源 通道无缝切换模块用于根据第二预设电压切换双电源的输入通道以对无人机供 电, 达到了冗余电源有效地满足无人机系统长吋间供电需求。
[0088] 作为一种可选的实施方式, 在将主电压降压至第一预设电压之后, 获取锂电池 的电量; 判断锂电池的电量是否低于第一预设电量; 如果判断出锂电池的电量 低于第一预设电量, 根据第一预设电压对锂电池执行充电, 得到第二预设电量
[0089] 根据第一预设电压调整锂电池的电参数可以根据第一预设电压调整锂电池的电 量。 首先, 获取锂电池的电量, 然后判断锂电池的电量是否低于第一预设电量 , 该第一预设电量是预先设置好的用于确定锂电池是否需要充电的临界值。 如 果判断出锂电池的电量低于第一预设电量, 则锂电池需要充电以维持正常的供 电需求, 根据第一预设电压对锂电池执行充电, 得到第二预设电量, 该第二预 设电量为无人机系统正常工作吋锂电池所具有的电量, 比如, 该第二预设电量 为锂电池的满电量。 通过根据第一预设电压对锂电池执行充电, 得到第二预设 电量吋, 控制锂电池充电, 达到了无人机系统长吋间不间断供电的效果。
[0090] 作为一种可选的实施方式, 根据第一预设电压对锂电池执行升压, 得到第二预 设电压包括: 获取锂电池的电压; 判断锂电池的电压是否达到第二预设电压; 如果判断出锂电池的电压没有达到第二预设电压, 根据第一预设电压对锂电池 执行升压, 得到第二预设电压。
[0091] 根据第一预设电压调整锂电池的电参数可以根据第一预设电压调整锂电池的电 压。 首先, 获取锂电池的电压, 然后判断锂电池的电压是否达到第二预设电压 。 如果判断出锂电池的电压没有达到第二预设电压, 根据第一预设电压对锂电 池执行升压, 得到第二预设电压, 如果判断出锂电池的电压达到第二预设电压 , 则不对锂电池进行调整。 可选地, 该第二预设电压可以为 12V, 达到了无人机 系统长吋间不间断供电的效果。
[0092] 作为一种可选的实施方式, 在获取冗余电源的主电压之后, 该用于无人机系统 的冗余电源供电方法还包括: 将主电压降压至第三预设电压; 通过第三预设电 压为电源通道无缝切换模块供电, 得到第一输出电压, 其中, 电源通道无缝切 换模块用于根据第三预设电压切换双电源的输入通道; 对第一输出电压执行多 路降压, 得到第二输出电压; 根据第二输出电压对无人机系统的负载执行供电
[0093] 在获取冗余电源的主电压之后, 将主电压降压至第三预设电压, 比如, 将主电 压为高压 48V降压至低压 12V以供后续电路使用。 在将主电压降压至第三预设电 压之后, 通过第三预设电压为电源通道无缝切换模块供电, 得到第一输出电压 , 该第一输出电压对应于电源通道无缝切换模块切换的双电源通道, 从而实现 了双电源通道的无缝切换。 在通过第三预设电压为电源通道无缝切换模块供电 , 得到第一输出电压之后, 对第一输出电压执行多路降压, 得到第二输出电压 ; 根据第二输出电压对无人机系统的负载执行供电。
[0094] 作为一种可选的实施方式, 根据第二输出电压对无人机系统的负载执行供电包 括: 根据第二输出电压对无人机系统的主控芯片和 /或无人机系统的外设电路供 电。
[0095] 该实施例的负载可以为无人机系统的主控芯片和 /或无人机系统的外设电路, 通过对电源通道无缝切换模块输出的第一输出电压进行多路降压, 直至输出的 第二输出电压满足主控芯片以及各种外设电路的电源需求, 进而实现了冗余电 源长吋间稳定不间断地为无人机系统进行电压供应。
[0096] 作为一种可选的实施方式, 在将主电压降压至第一预设电压之后, 该用于无人 机系统的冗余电源供电方法还包括: 将第一预设电压升压至第四预设电压; 根 据第四预设电压为电源通道无缝切换模块供电, 得到第三输出电压, 其中, 电 源通道无缝切换模块用于根据第四预设电压切换双电源的输入通道; 对第三输 出电压执行多路降压, 得到第四输出电压; 根据第四输出电压对无人机系统的 负载执行供电。
[0097] 在将主电压降压至第一预设电压之后, 将第一预设电压升压至第四预设电压, 比如, 将第一预设电压为低压 5V升压至高压 12V, 可选地, 该第四预设电压和第 三预设电压基本相同; 在将第一预设电压升压至第四预设电压之后, 根据第四 预设电压为电源通道无缝切换模块供电, 得到第三输出电压, 其中, 该电源通 道无缝切换模块根据输入电压的情况自主切换输入通道以保证后续电路无间断 的电源供应; 对第三输出电压执行多路降压, 以满足主控及外设电路的电压需 求, 从而达到了冗余电源有效地满足无人机系统供电需求的技术效果。
[0098] 该实施例选用单节大容量锂电作为无人机系统的备用电源, 不会对飞行器的载 荷产生太大影响, 从电路上对电源系统进行优化设计, 并同吋完成备用电源的 充电及电源管理工作, 灵活地运用降压、 升压技术, 融合电源通道无缝切换实 现了无人机系统长吋间稳定不间断的电源供应。
[0099] 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令 的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情 况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 [0100] 本发明实施例还提供了一种用于无人机系统的冗余电源供电装置。 需要说明的 是, 该实施例的用于无人机系统的冗余电源供电装置可以用于执行本发明实施 例的用于无人机系统的冗余电源供电方法。
[0101] 图 5是根据本发明实施例的用于无人机系统的冗余电源供电装置的示意图。 如 图 5所示, 该用于无人机系统的冗余电源供电装置包括: 第一获取单元 50, 第一 降压单元 60, 升压单元 70和第一供电单元 80。
[0102] 第一获取单元 50, 用于获取冗余电源的主电压。
[0103] 第一降压单元 60, 用于将主电压降压至第一预设电压。
[0104] 升压单元 70, 用于根据第一预设电压调整电池的电参数, 得到调整结果, 其中
, 电池为无人机系统的备用电源。
[0105] 第一供电单元 80, 用于根据第二预设电压为电源通道无缝切换模块供电, 其中
, 电源通道无缝切换模块用于根据第二预设电压切换双电源的输入通道以对无 人机供电。
[0106] 可选地, 该用于无人机系统的冗余电源供电装置还包括: 第二获取单元和充电 单元。 其中, 第二获取单元, 用于在将主电压降压至第一预设电压之后, 获取 电池的电量; 判断单元, 用于判断电池的电量是否低于第一预设电量; 充电单 元, 用于在判断出电池的电量低于第一预设电量, 根据第一预设电压对电池执 行充电, 得到第二预设电量。
[0107] 可选地, 该升压单元 70包括获取模块和判断模块。 其中, 获取模块, 用于获取 电池的电压; 判断模块, 用于判断电池的电压是否达到第二预设电压; 升压模 块, 用于在判断出电池的电压没有达到第二预设电压, 根据第一预设电压对电 池执行升压, 得到第二预设电压。
[0108] 可选地, 该用于无人机系统的冗余电源供电装置还包括第二降压单元, 第二供 电单元, 第三降压单元和第三供电单元。 其中, 第二降压单元, 用于在获取冗 余电源的主电压之后, 将主电压降压至第三预设电压; 第二供电单元, 用于通 过第三预设电压为电源通道无缝切换模块供电, 得到第一输出电压, 其中, 电 源通道无缝切换模块用于根据第三预设电压切换双电源的输入通道; 第三降压 单元, 用于对第一输出电压执行多路降压, 得到第二输出电压; 第三供电单元 , 用于根据第二输出电压对无人机系统的负载执行供电。
[0109] 可选地, 第三供电单元用于根据第二输出电压对无人机系统的主控芯片和 /或 无人机系统的外设电路供电。
[0110] 该实施例通过第一获取单元 50获取冗余电源的主电压, 通过第一降压单元 60将 主电压降压至第一预设电压, 通过升压单元 70根据第一预设电压对电池执行升 压, 得到第二预设电压, 其中, 电池为无人机系统的备用电源, 通过第一供电 单元 80根据第二预设电压为电源通道无缝切换模块供电, 其中, 电源通道无缝 切换模块用于根据第二预设电压切换双电源的输入通道以对无人机供电, 达到 了冗余电源有效地满足无人机系统长吋间供电需求。
[0111] 本发明实施例可以应用于无间断电源供应的场合, 比如, 不间断电源 (Uninter ruptible Power System, 简称为 UPS) 、 无人机主控制板的冗余电源系统、 浮空器 及其他飞行器等控制系统中需要对电源进行冗余设计的场合, 以及其它需要无 间断电源供应的场合; 本发明实施例适用性强, 即适用于低功率场合, 也适用 于高功率场合, 不同场合的应用只需要更改替换主回路中几个少量元器件即可
[0112] 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通 用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计 算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实 现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或者将它们分别 制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电 路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。
[0113] 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内 , 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种用于无人机系统的冗余电源供电方法, 其特征在于, 包括: 步骤一: 获取冗余电源的主电压;
步骤二: 将所述主电压降压至第一预设电压;
步骤三: 根据所述第一预设电压对电池执行升压, 得到第二预设电压
, 其中, 所述电池为所述无人机系统的备用电源; 步骤四: 根据所述第二预设电压为电源通道无缝切换模块供电, 其中
, 所述电源通道无缝切换模块用于根据所述第二预设电压切换双电源 的输入通道以对无人机供电。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 在所述步骤二之后, 所述 方法还包括:
获取所述电池的电量;
判断所述电池的电量是否低于第一预设电量; 以及 如果判断出所述电池的电量低于所述第一预设电量, 根据所述第一预 设电压对所述电池执行充电, 得到第二预设电量。
[权利要求 3] 根据权利要求 1所述的方法, 其特征在于, 所述步骤三包括:
获取所述电池的电压;
判断所述电池的电压是否达到所述第二预设电压; 以及
如果判断出所述电池的电压没有达到所述第二预设电压, 根据所述第 一预设电压对所述电池执行升压, 得到所述第二预设电压。
[权利要求 4] 根据权利要求 1所述的方法, 其特征在于, 在所述步骤一之后, 所述 方法还包括:
将所述主电压降压至第三预设电压;
通过所述第三预设电压为电源通道无缝切换模块供电, 得到第一输出 电压, 其中, 所述电源通道无缝切换模块用于根据所述第三预设电压 切换双电源的输入通道;
对所述第一输出电压执行多路降压, 得到第二输出电压; 以及 根据所述第二输出电压对所述无人机系统的负载执行供电。 [权利要求 5] 根据权利要求 4所述的方法, 其特征在于, 根据所述第二输出电压对 所述无人机系统的负载执行供电包括: 根据所述第二输出电压对所述 无人机系统的主控芯片和 /或所述无人机系统的外设电路供电。
[权利要求 6] 根据权利要求 4所述的方法, 其特征在于, 在所述步骤二之后, 所述 方法还包括:
将所述第一预设电压升压至第四预设电压;
根据所述第四预设电压为所述电源通道无缝切换模块供电, 得到第三 输出电压, 其中, 所述电源通道无缝切换模块用于根据所述第四预设 电压切换双电源的输入通道;
对所述第三输出电压执行多路降压, 得到第四输出电压; 以及 根据所述第四输出电压对所述无人机系统的负载执行供电。
[权利要求 7] —种用于无人机系统的冗余电源供电装置, 其特征在于, 包括: 第一获取单元, 用于获取冗余电源的主电压;
第一降压单元, 用于将所述主电压降压至第一预设电压; 以及 升压单元, 用于根据所述第一预设电压对电池执行升压, 得到第二预 设电压, 其中, 所述电池为所述无人机系统的备用电源;
第一供电单元, 用于根据所述第二预设电压为电源通道无缝切换模块 供电, 其中, 所述电源通道无缝切换模块用于根据所述第二预设电压 切换双电源的输入通道以对无人机供电。
[权利要求 8] 根据权利要求 7所述的装置, 其特征在于, 所述装置还包括:
第二获取单元, 用于在将所述主电压降压至第一预设电压之后, 获取 所述电池的电量;
判断单元, 用于判断所述电池的电量是否低于第一预设电量; 以及 充电单元, 用于在判断出所述电池的电量低于所述第一预设电量, 根 据所述第一预设电压对所述电池执行充电, 得到第二预设电量。
[权利要求 9] 根据权利要求 7所述的装置, 其特征在于, 所述升压单元包括:
获取模块, 用于获取所述电池的电压;
判断模块, 用于判断所述电池的电压是否达到第二预设电压; 以及 升压模块, 用于在判断出所述电池的电压没有达到所述第二预设电压 , 根据所述第一预设电压对所述电池执行升压, 得到所述第二预设电 压。
根据权利要求 7所述的装置, 其特征在于, 所述装置还包括: 第二降压单元, 用于在获取所述冗余电源的主电压之后, 将所述主电 压降压至第三预设电压;
第二供电单元, 用于通过所述第三预设电压为电源通道无缝切换模块 供电, 得到第一输出电压, 其中, 所述电源通道无缝切换模块用于根 据所述第三预设电压切换双电源的输入通道;
第三降压单元, 用于对所述第一输出电压执行多路降压, 得到第二输 出电压; 以及
第三供电单元, 用于根据所述第二输出电压对所述无人机系统的负载 执行供电。
一种用于无人机系统的冗余电源, 其特征在于, 包括:
电源保护模块, 与电源模块相连接, 用于获取冗余电源的主电压; 第一降压模块, 与所述电源保护模块相连接, 用于将所述主电压降压 至第一预设电压;
电池, 为所述无人机系统的备用电源; 以及
调整模块, 与所述第一降压模块和所述电池相连接, 用于根据所述第 一预设电压对电池执行升压, 得到第二预设电压, 并根据所述第二预 设电压为电源通道无缝切换模块供电, 其中, 所述电源通道无缝切换 模块用于根据所述第二预设电压切换双电源的输入通道以对无人机供 电。
根据权利要求 11所述的冗余电源, 其特征在于, 所述调整模块包括: 充电模块, 用于根据所述第一预设电压对所述电池执行充电, 得到预 设电量。
根据权利要求 11所述的冗余电源, 其特征在于, 还包括:
第二降压模块, 与所述电源保护模块相连接, 用于将所述主电压降压 至第三预设电压;
电源通道无缝切换模块, 与所述第二降压模块相连接, 用于根据所述 第三预设电压切换双电源的输入通道, 得到第一输出电压; 第三降压模块, 与所述电源通道无缝切换模块相连接, 用于对所述第 一输出电压执行多路降压, 得到第二输出电压; 以及
负载, 与所述第三降压模块相连接, 用于接收所述第二输出电压。
[权利要求 14] 根据权利要求 13所述的冗余电源, 其特征在于, 所述调整模块包括: 升压模块, 与所述第一降压模块和所述电源通道无缝切换模块相连接 , 用于将所述第一预设电压升压至第四预设电压。
PCT/CN2017/092052 2016-07-14 2017-07-06 用于无人机系统的冗余电源及其供电方法和装置 WO2018010592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610556419.4A CN107623374A (zh) 2016-07-14 2016-07-14 用于无人机系统的冗余电源及其供电方法和装置
CN201610556419.4 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018010592A1 true WO2018010592A1 (zh) 2018-01-18

Family

ID=60952268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092052 WO2018010592A1 (zh) 2016-07-14 2017-07-06 用于无人机系统的冗余电源及其供电方法和装置

Country Status (2)

Country Link
CN (1) CN107623374A (zh)
WO (1) WO2018010592A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594715A (zh) * 2018-05-18 2018-09-28 赫星科技有限公司 无人机主控板
CN109502032B (zh) * 2018-11-28 2022-05-24 中电科特种飞机系统工程有限公司 一种供电系统及自转旋翼机
CN110832737A (zh) * 2018-11-30 2020-02-21 深圳市大疆创新科技有限公司 控制方法、无人机和计算机可读存储介质
CN110034602A (zh) * 2019-04-12 2019-07-19 无锡龙翼智能科技有限公司 一种无人机供电系统
CN110481468B (zh) * 2019-08-16 2023-02-24 重庆长安汽车股份有限公司 用于l3级自动驾驶的汽车双电源系统及车辆
CN110707806B (zh) * 2019-10-25 2023-04-14 天津航空机电有限公司 一种双冗余不间断控制电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082460A (zh) * 2009-12-01 2011-06-01 研祥智能科技股份有限公司 一种cpci电源装置及系统
CN102570582A (zh) * 2010-12-10 2012-07-11 深圳市凯旺电子有限公司 一种多用途智能型电源模块
CN103312027A (zh) * 2013-06-26 2013-09-18 中国矿业大学 在线式矿用隔爆锂离子蓄电池不间断直流电源及控制方法
CN203312887U (zh) * 2013-07-01 2013-11-27 中国移动通信集团河南有限公司 一种直流备用电源
CN103683383A (zh) * 2013-09-26 2014-03-26 华为技术有限公司 一种低压备电电路和方法
CN203562823U (zh) * 2013-11-12 2014-04-23 北京信威通信技术股份有限公司 一种基站电源管理系统
CN104035892A (zh) * 2014-06-17 2014-09-10 英业达科技有限公司 服务器系统及集群系统
US20150084415A1 (en) * 2013-09-26 2015-03-26 Lear Corporation On-board charger housekeeping power supply with automatic source transition
CN205864058U (zh) * 2016-07-14 2017-01-04 深圳光启空间技术有限公司 用于无人机系统的冗余电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864221A (en) * 1997-07-29 1999-01-26 Trw Inc. Dedicated avionics standby power supply
US6865690B2 (en) * 2001-06-21 2005-03-08 Northrop Grumman Corporation Voltage conditioner with embedded battery backup
CN104242435B (zh) * 2014-09-09 2017-05-24 深圳清华大学研究院 无人机的供电系统及无人机
CN204497835U (zh) * 2015-01-22 2015-07-22 东莞市永权东信息技术有限公司 一种不间断供电的PoE交换机
CN105680554A (zh) * 2015-12-28 2016-06-15 海鹰航空通用装备有限责任公司 一种无人机的供配电控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082460A (zh) * 2009-12-01 2011-06-01 研祥智能科技股份有限公司 一种cpci电源装置及系统
CN102570582A (zh) * 2010-12-10 2012-07-11 深圳市凯旺电子有限公司 一种多用途智能型电源模块
CN103312027A (zh) * 2013-06-26 2013-09-18 中国矿业大学 在线式矿用隔爆锂离子蓄电池不间断直流电源及控制方法
CN203312887U (zh) * 2013-07-01 2013-11-27 中国移动通信集团河南有限公司 一种直流备用电源
CN103683383A (zh) * 2013-09-26 2014-03-26 华为技术有限公司 一种低压备电电路和方法
US20150084415A1 (en) * 2013-09-26 2015-03-26 Lear Corporation On-board charger housekeeping power supply with automatic source transition
CN203562823U (zh) * 2013-11-12 2014-04-23 北京信威通信技术股份有限公司 一种基站电源管理系统
CN104035892A (zh) * 2014-06-17 2014-09-10 英业达科技有限公司 服务器系统及集群系统
CN205864058U (zh) * 2016-07-14 2017-01-04 深圳光启空间技术有限公司 用于无人机系统的冗余电源

Also Published As

Publication number Publication date
CN107623374A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2018010592A1 (zh) 用于无人机系统的冗余电源及其供电方法和装置
CN108258720B (zh) 一种双母线能源并网拓扑结构及其并网控制方法
JP6152241B2 (ja) 電力システム、携帯式電子機器および電力の供給方法
EP3163712B1 (en) Uninterruptible power-supply system
US20130249298A1 (en) Hybrid integrated wind-solar-diesel-city power supply system
CN205864058U (zh) 用于无人机系统的冗余电源
US9269989B2 (en) Electric power supply system
CN106100096A (zh) 一种微纳卫星低压高效电源系统
CN111106750B (zh) 一种不间断电源及其电池组升降压电路
WO2020192086A1 (zh) 一种移动式储能系统及其控制方法
US8957545B2 (en) Prioritization circuit and electric power supply system
CN108450039A (zh) 充电装置和电子设备
CN103354385A (zh) 移动机器人多电池组无缝切换电路
JP5900889B2 (ja) 分散型電源の自立運転システム及びその方法
US7014928B2 (en) Direct current/direct current converter for a fuel cell system
CN105490349A (zh) 移动终端的供电系统及方法
WO2016084400A1 (ja) 蓄電池システムおよび蓄電方法
JP6214131B2 (ja) 組電池充電システムおよび組電池充電方法
CN116231802A (zh) 一种带有充放电管理功能的锂离子储能电池系统及电池堆
KR101215396B1 (ko) 방전전류제어를 이용한 하이브리드 스마트그리드 무정전전원장치
TW202005225A (zh) 雙電壓雙電池行動電力調控系統
KR20220065600A (ko) 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
CN103715750B (zh) 下电电路、直流组合电源系统及下电控制方法
KR101710956B1 (ko) 이동용 하이브리드 전원 시스템 및 그 시스템을 제어하는 방법
CN112952926A (zh) 一种多电池切换控制电路、装置、系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17826928

Country of ref document: EP

Kind code of ref document: A1